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Motivation

Objects Data INTERNET! Object-object Data

In Data Mining and Machine Learning ...
From intra-entity to inter-entity patterns

“One small step for data, one giant leap for data science”



Motivation

New family of domains
-Web graphs
-Social networks
-Biological networks
-Product recommendation
-Terrorist associations

Typically LARGE
- but, how large”?



Motivation

Whole new set of problems

-Rank entities based on importance
-Find groups of entities

-Discover association patterns
-Predict new relations

Let us call it just Graph Mining



Motivation

Link Prediction

- Find new relations given the structure of a graph




Motivation

Link Prediction

Needle in a haystack
-How many friends you do have in Facebook?
-How many friends you do NOT have?

we need PRECISION

An ocean of variables depending on one another
Friends define friendship

we need SCALABILITY
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State of the Art

Compute statistics on the graph
Bayes / Markov (Getoor and Taskar, 2007)
Tensors (Nickel et al., 2011)

Compute the likelihood of the graph

Hierarchies (Clauset et al., 2008)
Communities (Stochastic block models)

Compute entity-entity similarities
Number of paths



State of the Art

Similarity-based Link Prediction

-Scalable ':[/j
Parallelizable 75
-Unprecise gn

We look for common neighbors... how far?

-Local. 2-steps. It works, but not well enough.

-Global: No limit. Poor scaling. Disappointing results.

-Quasi-local: Unknown variable distance. Best!
But wait, unknown distance?



State of the Art

Similarity-based: The essence
-How many common neighbors we have? (Newman, 2001)
-How many rare common neighbors we have? (Adamic and Adar,

2003) (Zhou, 2009)

Common Neighbors

Adamic/Adar

Resource Allocation
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Hypothesis

Currently, paths are the only measure
Not really expressive... isn't there anything else?

Directionality of edges
Asymmetric relations are frequent
But what do directions mean?

+



Hypothesis

The most basic asymmetry: Hierarchies
Knowledge does not get any simpler than that

Specialization — Generalization
Descendant — Ancestor

What do the descendants and ancestors of an entity tell
us about that entity?

After meeting a thousand cats, what do you know about “cat”?

After meet animals with claws, what do you know about “cat”?

Quite a lot actually...
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Hierarchical Link Prediction

©OThe INFerence score: x—y?
-Given the generalizations of x, A(x), is x—Yy coherent? Deductive

reasoning (DED)
-Given the specializations of x, D(x), is x—Yy coherent? Inductive

reasoning (IND)
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Hierarchical Link Prediction

The INFerence score

Just add the evidence: INF = DED + IND
But INF is purely proportional.
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Hierarchical Link Prediction

INFerence modifications

Accumulative scores: Skip low-degree vertices. Rich get richer.
Proportional evidence is important too: Make it hybrid

pepoc _ [Alz) N D(y)] e Toa(|Alx

S

Deduction is more reliable: INF_2D = 2*DED + IND
INF_LOG, INF_LOG 2D a new family of hybrid scores
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Computational Models & Designs

Similarity-based is scalable ... enough?

Graph with 1M vertices — 1-10"? similarities
Unfeasible to compute them one by one!

Similarity-based is parallelizable ... how?

Very parallel... embarrassingly parallel!
Similarities are independent of one another
Parallel computing models are a must



Computational Models & Designs

General parallel computing

model I
-Fork-join (OpenMP) master
Tested on MareNostrum (BSC) thread

{ parallel region }
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Local Computation Communication



Computational Models & Designs

Different algorithmic designs are possible

Intersection-based
VvieN
Vv2ie N
intersection(neigh(v?'),neigh(v?))

Traverse-based
VveN
V neigh(v)
V neigh(neigh(v))



Computational Models & Designs

Intersection-based
-All v1,v2 paths found at the same time 175
-High complexity: O(N=-k) 1»7—/]] gﬂ
-High locality 175

Traverse-based
-v1,v2 paths found one at a time g]]
-Low complexity: O(N-k?) 75 o
-No locality g}]




Computational Models & Designs

Computation times of both designs
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Computational Models & Designs

Intersection design: Good for superhubs (locality)
-Cost based on missing edges

5.-10%2
|
£ 410
g |

OpenMP 2

computation g 3107
times and s
i c

regression 7 2.1012
IS
7))
(]

= 1.1012
L

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Computation time in seconds



Computational Models & Designs

Traverse design: Good for all but superhubs (complexity)
-Cost based on graph size and superhubs relevance

ScaleGraph OpenMP
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Computational Models & Designs

OpenMP
-Control over data-structures (type, order)

ScaleGraph
-Designed for large-scale graphs
-Automatic management of data and communications

What is a small/large graph?

-Requires lots of memory
-Requires lots of computing units



Computational Models & Designs

Single machines have a limit of memory and of computing
units. Eventually...

Shared memory paradigm Distributed memory paradigm
Core 0 Core 0 Memory 0
Core 1 Core 1 Memory 1
g 5
: ;
= =
Core p-1 Core p-1 Memory p -1
OpenMP/ScaleGraph | OmpSs/ScaleGraph

https://[pm.bsc.es/lompss
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Data Sets & Results

INF assumes hierarchical directionality... should work
on hierarchical graphs

Wordnet (lexical hyponym/hypernym)
89K vertices, 698K edges

OpenCyc (ontological subClass, instanceOf)
116K vertices, 345K edges

Evaluation through AUC - Precision/Recall curves
-Random remove of 10% for test



Data Sets & Results
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Data Sets & Results

OpenCyc — RA (red), AA (green) CN (blue), INF_LOG_2D (pink)
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Data Sets & Results

So it work for hierarchical graphs... what about non-
hierarchical ones?

-IMDb (movies, directors, genres and tags)
»1.9M vertices, 7.5M edges

-Web graphs™® (web pages and hyperlinks)
xNotre Dame: 325K vertices, 1.5M edges
~otanford-Berkley: 685K vertices, 7.6M edges
»Google: 875K vertices, 5.1M edges
»Hudong: 1.9M vertices, 14.8M edges
Baidu: 2.1M vertices, 17.7M edges
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Conclusions

OHierarchies are latent in some large graphs
-“Naturally!”

OMHierarchies can be used for Link Prediction
-“No they can't. They should!”

Olt is feasible to do large-scale Link Prediction
-“Link Prediction and HPC: a perfect couple”



Conclusions

OINFerence

-Do not build a model, just use it
-Proportional-Accumulative scores
-Huge leap in predictive performance

Precision Scalability

OkEvaluation undeF[@Iass super-imbalan@@
-Do not do it all, just do it right
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Discussion & Future Work

 Data-intensive tasks: Cost, data structures and locality

« Large-scale graphs
 OmpSs/Scalegraph on cluster

« HPC & Graph Mining: Models, algorithms, ...

* Traverse vs intersection design



Discussion & Future Work

* Applications
e Search engines, product recommendation,
research support, etc.

* Improving INFerence
 Tunned parameters
* Quasi-local INF

* Deep Learning + Graph Mining
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