Link Prediction in Large Directed Graphs

Dario Garcia-Gasulla Ulises Cortés

- Motivation
- State of the Art
- **O**Hypothesis
- **©**Hierarchical Link Prediction
- Computational Models
- OData Sets & Results
- **©**Conclusions
- ODiscussion & Future Work

- Motivation
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work

Objects Data

INTERNET!

Object-object Data

In Data Mining and Machine Learning ... From *intra-entity* to *inter-entity* patterns

"One small step for data, one giant leap for data science"

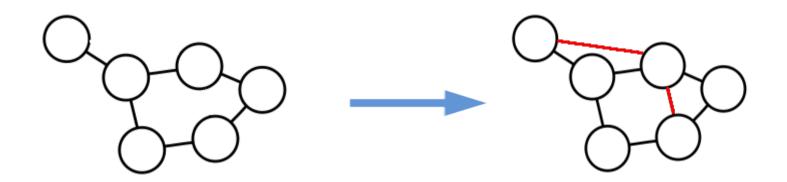
New family of domains

- -Web graphs
- -Social networks
- -Biological networks
- -Product recommendation
- -Terrorist associations

-...

Typically LARGE

- but, how large?


Whole new set of problems

- -Rank entities based on importance
- -Find groups of entities
- -Discover association patterns
- -Predict new relations

Let us call it just Graph Mining

Link Prediction

- Find new relations given the structure of a graph

Link Prediction

Needle in a haystack

-How many friends you do have in Facebook?

-How many friends you do NOT have?

we need **PRECISION**

An ocean of variables depending on one another Friends define friendship

we need **SCALABILITY**

- **Motivation**
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work

State of the Art

Compute statistics on the graph

Bayes / Markov (Getoor and Taskar, 2007)

Tensors (Nickel et al., 2011)

Compute the likelihood of the graph

Hierarchies (Clauset et al., 2008)

Communities (Stochastic block models)

Compute entity-entity similarities

Number of paths

State of the Art

Similarity-based Link Prediction

- -Scalable
- -Parallelizable
- -Unprecise

 Π^{λ}

5

We look for common neighbors... how far?

- -Local: 2-steps. It works, but not well enough.
- -Global: No limit. Poor scaling. Disappointing results.
- -Quasi-local: Unknown variable distance. Best! But wait, unknown distance?

State of the Art

Similarity-based: The essence

- -How many common neighbors we have? (Newman, 2001)
- -How many rare common neighbors we have? (Adamic and Adar, 2003) (Zhou, 2009)

Common Neighbors

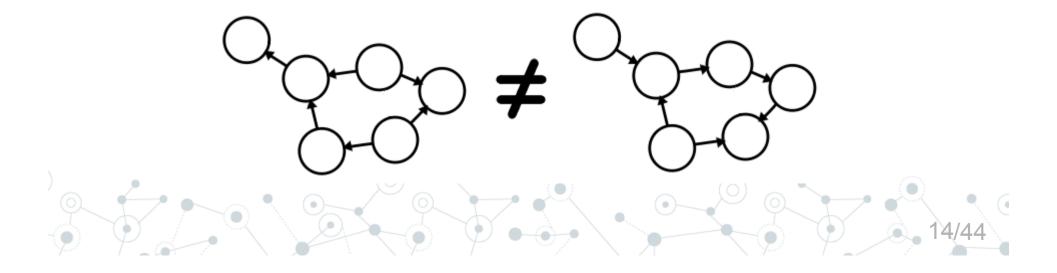
Adamic/Adar

$$s_{x,y}^{CN} = |\Gamma(x) \cap \Gamma(y)|$$

$$s_{x,y}^{AA} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log(|\Gamma(z)|)}$$

$$s_{x,y}^{RA} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{|\Gamma(z)|}$$

- **Motivation**
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work



Hypothesis

Currently, paths are the only measure Not really expressive... *isn't there anything else*?

Directionality of edges

Asymmetric relations are frequent
But what do directions *mean*?

Hypothesis

The most basic asymmetry: Hierarchies Knowledge does not get any simpler than that

Specialization → Generalization Descendant → Ancestor

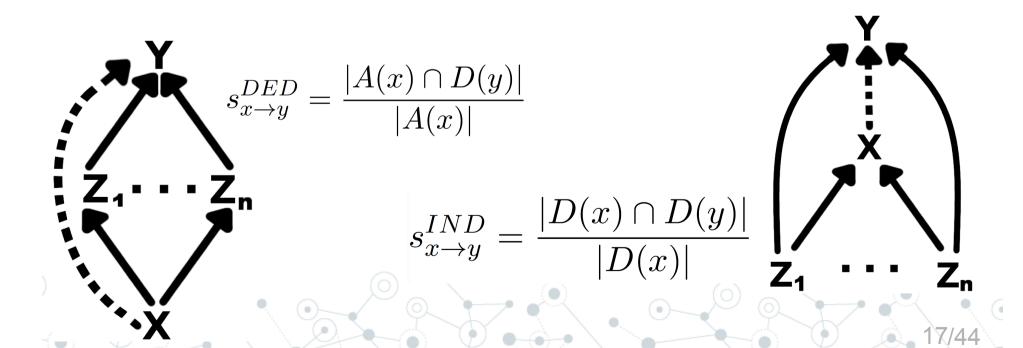
What do the descendants and ancestors of an entity tell us about that entity?

After meeting a thousand cats, what do you know about "cat"?

After meet animals with claws, what do you know about "cat"?

_λQuite a lot actually...

- **Motivation**
- State of the Art
- **O**Hypothesis
- **©**Hierarchical Link Prediction
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work



Hierarchical Link Prediction

\bigcirc The INFerence score: $x \rightarrow y$?

- -Given the generalizations of x, A(x), is $x \rightarrow y$ coherent? Deductive reasoning (DED)
- -Given the specializations of x, D(x), is $x \rightarrow y$ coherent? *Inductive reasoning (IND)*

Hierarchical Link Prediction

The INFerence score

Just add the evidence: INF = DED + IND

But INF is purely proportional:

$$s_{x \to y}^{DED} = \frac{|A(x) \cap D(y)|}{|A(x)|} \quad s_{x \to y}^{IND} = \frac{|D(x) \cap D(y)|}{|D(x)|}$$

While all top scores are accumulative:

$$s_{x,y}^{CN} = |\Gamma(x) \cap \Gamma(y)|$$

$$s_{x,y}^{AA} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log(|\Gamma(z)|)}$$

$$s_{x,y}^{RA} = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{|\Gamma(z)|}$$

Hierarchical Link Prediction

INFerence modifications

Accumulative scores: Skip low-degree vertices. Rich get richer.

Proportional evidence is important too: Make it hybrid

$$s_{x \to y}^{DED_LOG} = \frac{|A(x) \cap D(y)|}{|A(x)|} * log(|A(x)|)$$

Deduction is more reliable: INF_2D = 2*DED + IND INF_LOG, INF_LOG_2D a new family of hybrid scores

$$s_{x \to y}^{IND_LOG} = \frac{|D(x) \cap D(y)|}{|D(x)|} * log(|D(x)|)$$

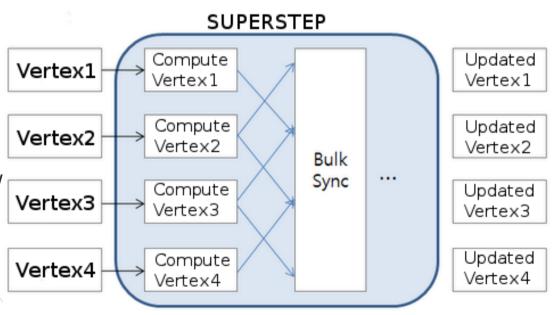
- **Motivation**
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work

Similarity-based is scalable ... enough?

Graph with 1M vertices $\rightarrow 1.10^{12}$ similarities Unfeasible to compute them one by one!

Similarity-based is parallelizable ... how?

Very parallel... **embarrassingly** parallel! Similarities are independent of one another Parallel computing models are a must


General parallel computing model

- -Fork-join (OpenMP)
- -Tested on MareNostrum (BSC)

master thread R K N { parallel region }

Graph-specific parallel computing model

- -Pregel (ScaleGraph)
- -Tested on TSUBAME (UCD/ JSTCrest)

Local Computation

Communication

Different algorithmic designs are possible

Intersection-based

```
 \forall \ v^1 \in \textbf{N}   \forall \ v^2 \in \textbf{N}   intersection(neigh(v^1),neigh(v^2))
```

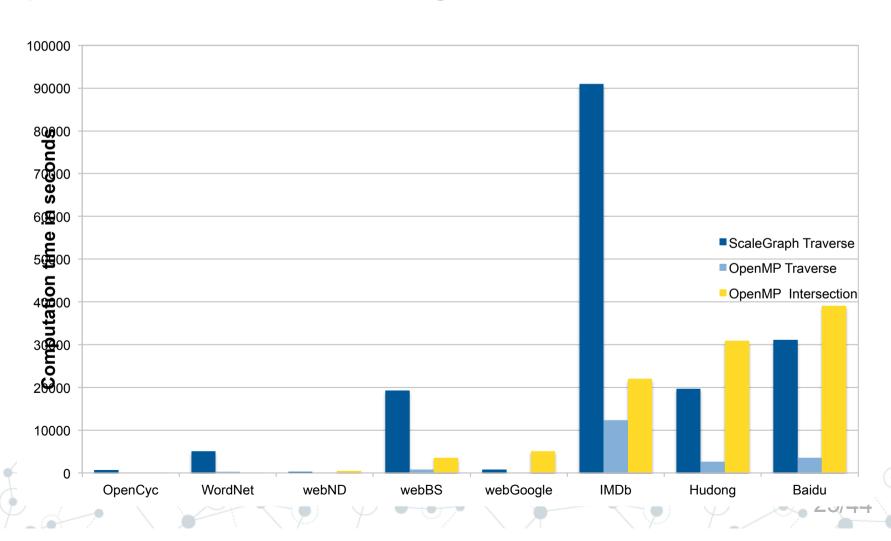
Traverse-based

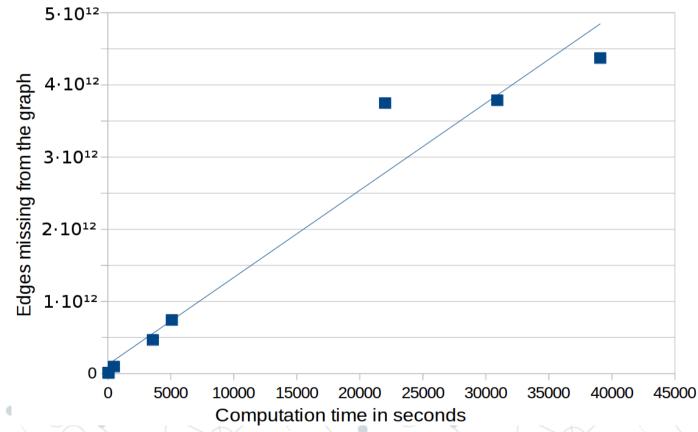
```
\forall v \in \mathbf{N}
\forall neigh(v)
\forall neigh(neigh(v))
```

Intersection-based

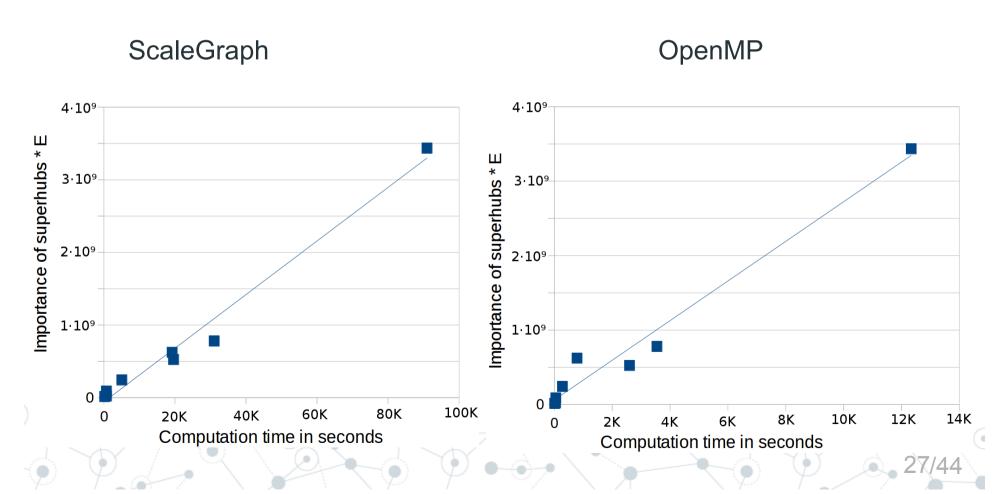
- -All v1,v2 paths found at the same time
- -High complexity: O(N²·k)
- -High locality

Traverse-based


- -v1,v2 paths found one at a time
- -Low complexity: O(N·k³)
- -No locality



Computation times of both designs



Intersection design: Good for superhubs (locality) -Cost based on missing edges

OpenMP computation times and regression

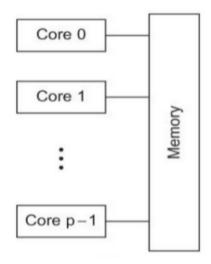
Traverse design: Good for all but superhubs (complexity)
-Cost based on graph size and superhubs relevance

OpenMP

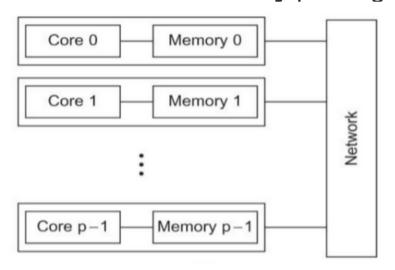
-Control over data-structures (type, order)

ScaleGraph

- -Designed for large-scale graphs
- -Automatic management of data and communications


What is a small/large graph?

- -Requires lots of memory
- -Requires lots of computing units



Single machines have a limit of memory and of computing units. Eventually...

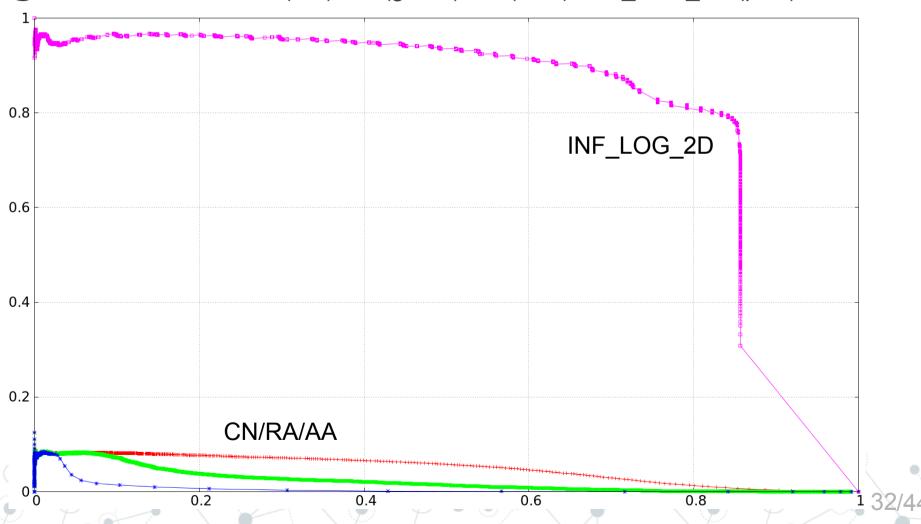
Shared memory paradigm

Distributed memory paradigm

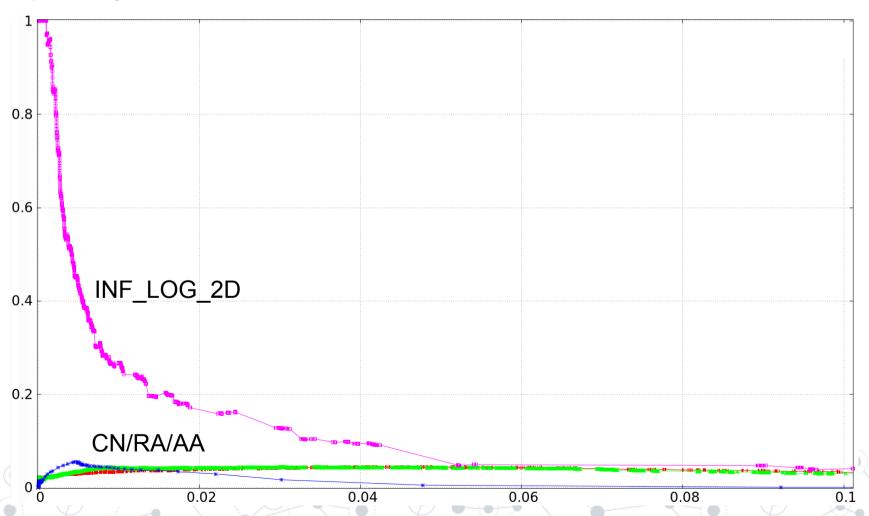
OpenMP/ScaleGraph

OmpSs/ScaleGraph https://pm.bsc.es/ompss

- **Motivation**
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work


INF assumes hierarchical directionality... should work on hierarchical graphs

Wordnet (lexical hyponym/hypernym)
89K vertices, 698K edges
OpenCyc (ontological subClass, instanceOf)
116K vertices, 345K edges


Evaluation through AUC – Precision/Recall curves -Random remove of 10% for test

○WordNet — RA (red), AA (green) CN (blue), INF_LOG_2D (pink)

OpenCyc — RA (red), AA (green) CN (blue), INF_LOG_2D (pink)

So it work for hierarchical graphs... what about non-hierarchical ones?

- -IMDb (movies, directors, genres and tags) 1.9M vertices, 7.5M edges
- -Web graphs* (web pages and hyperlinks)
 - λNotre Dame: 325K vertices, 1.5M edges
 - _λStanford-Berkley: 685K vertices, 7.6M edges
 - _λGoogle: 875K vertices, 5.1M edges
 - λHudong: 1.9M vertices, 14.8M edges
 - _λBaidu: 2.1M vertices, 17.7M edges

- **Motivation**
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **©**Conclusions
- ODiscussion & Future Work

Conclusions

- OHierarchies are latent in some large graphs -"Naturally!"
- OHierarchies can be used for Link Prediction "No they can't. They should!"
- Olt is feasible to do large-scale Link Prediction
 -"Link Prediction and HPC: a perfect couple"

Conclusions

- **OINFerence**
 - -Do not build a model, just use it
 - -Proportional-Accumulative scores
 - -Huge leap in predictive performance

Precision

Scalability

- ©Evaluation under class super-imbalance
 - -Do not do it all, just do it right

- Motivation
- State of the Art
- **O**Hypothesis
- **OHierarchical Link Prediction**
- Computational Models & Designs
- OData Sets & Results
- **O**Conclusions
- ODiscussion & Future Work

Discussion & Future Work

- Data-intensive tasks: Cost, data structures and locality
- Large-scale graphs
 - OmpSs/Scalegraph on cluster
- HPC & Graph Mining: Models, algorithms, ...
- Traverse vs intersection design

Discussion & Future Work

- Applications
 - Search engines, product recommendation, research support, etc.
- Improving INFerence
 - Tunned parameters
 - Quasi-local INF
- Deep Learning + Graph Mining

KEMLg BSC

dariog@lsi.upc.edu

dario.garcia@bsc.es

ia@cs.upc.edu

Credits

Special thanks to all the people who made and released these awesome resources for free:

- **Simple line icons** by Mirko Monti
- ©E-commerce icons by Virgil Pana
- Streamline iconset by Webalys
- Presentation template by <u>SlidesCarnival</u>
- OPhotographs by <u>Unsplash</u> & <u>Death to the Stock</u>
 Photo (license)

