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CrowdSourcing 
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“performing a task using 
human workers that solve sub-problems” 



Man/Woman vs. Machine 
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John Connor SkyNet Terminator 



CrowdSourcing 
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CrowdSourcing 
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7 
crowd powered 



Crowd Sourcing 
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Crowd Funding 
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Crowd Funding 
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More CrowdSourcing Examples 
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Image Matching 
Translation 

Categorizing Images 

Search Relevance 

Data Gathering 



CrowdSourcing: Final Examples 
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CrowdSourcing: Spammers & Porno 
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coordinator 

email service porno site 

open account 

capcha 
answer solve 



CrowdSourcing 
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CrowdSourcing Space 
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CrowdSourcing Space 
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coordinator 

human 

computer 

workers 
human computer 



CrowdSourcing Space 
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coordinator 

human 

computer 

workers 
human computer 
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old-fashioned 

current focus 

distributed 
computing 



CrowdSourcing Space 
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CrowdSourcing Space 

19 

coordinator 

computer 

human workers 
human computer 

data 
money 

document 
training set 

output 

this talk 



Two More Dimensions 
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incentives 

entertainment 

money 

granularity 
large small (micro) 

hidden 

philanthropy 



So, Is CrowdSourcing for Real?? 

• Is it used in practice? 
• Are there interesting research problems? 
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Many Crowdsourcing Marketplaces! 



Many Research Projects! 
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Overview: Crowd Data Management 

• Data Processing 
• Data Gathering 
• Searching 
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Finding the Maximum 
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job 
description 

CV#1 

CV#2 CV#4 

CV#3 ... 

What is the best 
applicant for the job? 
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Fundamental Tradeoffs 

Latency 

Cost 

Uncertainty 
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Fundamental Tradeoffs 

Latency 

Cost 

Uncertainty 

focus on these for now 



Example Max Algorithm FS 
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Example Max Algorithm FP 
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Latency-Cost Tradeoff 
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Latency-Cost Tradeoff 
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cost 
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Latency-Cost Tradeoff 
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cost 

time 

FP 

FS 

? 

Budget 

smallest 
time 

Min-Latency 
Problem 



Framework 

• Input: 
– Question budget b 
– Number of elements c 

– Latency function L(q): time to answer q questions 

• Reliable workers (use Reliable Worker Layer) 
• Proceed in rounds 
• First, select budget/round, e.g., (10, 7, 7, 5) 

• Then use Question Selection Algorithm in 
each round 
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Framework 

• Input: 
– Question budget b 
– Number of elements c 

– Latency function L(q): time to answer q questions 

• Reliable workers (use Reliable Worker Layer) 
• Proceed in rounds 
• First, select budget/round, e.g., (10, 7, 7, 5) 

• Then use Question Selection Algorithm in 
each round 
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To Do 

To Do 



Examples 
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                          budget b= 30; elements c=12 
 
    budget vector=(15, 10, 1)          budget vector=(6,6,1) 



Examples 
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                          budget= 30; elements=12 
 
    budget vector=(15, 10, 1)          budget vector=(6,6,1) 

Question Selection: 
Tournament Graphs 



Examples 
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                          budget= 30; elements=12 
 
    budget vector=(15, 10, 1)          budget vector=(6,6,1) 

num. groups => remaining elements 
"memoryless" 

Question Selection: 
Tournament Graphs 



Focus on Tournament Graphs 

• How to find optimal budget vector? 
• Example, which is best for b=70, c=40 
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Focus on Tournament Graphs 

• How to find optimal budget vector? 
• Example, which is best for b=70, c=40 
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Note: Goal is not minimum questions, but minimum latency 



tDP Algorithm 

• Assuming tournament graph question 
selection, our tDP Algorithm finds optimal 
budget vector 

• Can use dynamic programming because of 
nice properties of tournament graphs 
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How Does tDP Work (optional slide) 
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How Does tDP Work (optional slide) 
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• say we start with first round that reduces elements 6->3; 
• this tournament costs 3 questions, remaining 5-3=2 
• y = L(3) + x 

x 

y 



How Does tDP Work (optional slide) 
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• consider all possible reductions for first round 
• pick for y one that yields minimum latency 

y 



BUT wait, there is more!! 

• tDP + tournament graphs has better (lower) 
worst case latency than any budget allocation 
scheme with any question selection algorithm! 
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BUT wait, there is more!! 

• tDP + tournament graphs has better (lower) 
worst case latency than any budget allocation 
scheme with any question selection algorithm! 

• And in practice, tDP + tournament graphs is 
"damn good" for average case latency (see 
experiments) 
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Key Insight 
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worst case remaining elements: 
{a,c,e,g,i,k} same outcome but better latency! 



Example of Experimental Results 
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budget b=4000, all using tournament graphs 

c 



Beyond Max 

• Filtering 
• Sorting 
• Clustering 
• Entity Resolution 
• Adding terms to a taxonomy 
• Building a Folksonomy 
• ... 
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Overview: Crowd Data Management 

• Data Processing 
• Data Gathering 
• Searching 
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Crowd As Information Source 

DBMS like thing 

Declarative queries 

Web 
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Example #3: DeCo* 

RDBMS 

Actual schema 

Conceptual schema 

Schema 
designer 

relations and 
other stuff 

End 
user 

relations 

automatic (system) 

*Work with Aditya Parameswaran, 
Hyunjung Park, Jennifer Widom 



restaurant rating cuisine 
Chez Panisse   4.9 French 
Chez Panisse 4.9 California 

Bytes 3.8 California 
• • • • • • • • • 

Small Example 

User 
view 



restaurant rating cuisine 
Chez Panisse   4.9 French 
Chez Panisse 4.9 California 

Bytes 3.8 California 
• • • • • • • • • 

⋈ o 

Small Example 
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User 
view 

restaurant 
Chez Panisse   

Bytes 
• • • 

restaurant rating 
Chez Panisse   4.8 
Chez Panisse 5.0 
Chez Panisse 4.9 

Bytes 3.6 
Bytes 4.0 

• • • • • • 

restaurant cuisine 
Chez Panisse   French 
Chez Panisse California 

Bytes California 
Bytes California 

• • • • • • 

• • • • • • 

Anchor 

Dependent Dependent 



restaurant rating cuisine 
Chez Panisse   4.9 French 
Chez Panisse 4.9 California 

Bytes 3.8 California 
• • • • • • • • • 

⋈ o 

Small Example 
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User 
view 

restaurant 
Chez Panisse   

Bytes 
• • • 

restaurant rating 
Chez Panisse   4.8 
Chez Panisse 5.0 
Chez Panisse 4.9 

Bytes 3.6 
Bytes 4.0 

• • • • • • 

restaurant cuisine 
Chez Panisse   French 
Chez Panisse California 

Bytes California 
Bytes California 

• • • • • • 

• • • • • • 

Anchor 

Dependent Dependent 

fetch rule 

fetch rule 
Bytes 

Chez Panisse 

fetch rule fetch rule 

French 



restaurant rating cuisine 
Chez Panisse   4.9 French 
Chez Panisse 4.9 California 

Bytes 3.8 California 
• • • • • • • • • 

⋈ o 

Small Example 
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User 
view 

restaurant 
Chez Panisse   

Bytes 
• • • 

restaurant rating 
Chez Panisse   4.8 
Chez Panisse 5.0 
Chez Panisse 4.9 

Bytes 3.6 
Bytes 4.0 

• • • • • • 

restaurant cuisine 
Chez Panisse   French 
Chez Panisse California 

Bytes California 
Bytes California 

• • • • • • 

• • • • • • 

Anchor 

Dependent Dependent 

resolution 
rule 

resolution 
rule 

Bytes 

Chez Panisse 



Example #4: CorwdFill* 

• Goal: Collect high-quality structured data from the 
crowd, while capping total monetary cost and 
keeping latency low 

 
 name nationality position caps goals 

Brazil 
Messi FW 
Klose Germany 133 

new 

correct 

vote 
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*Hyunjung Park 



CrowdFill Prototype 

57 



Overview: Crowd Data Management 

• Data Processing 
• Data Gathering 
• Searching 
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Example #5: DataSift 
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type of cable that connects to 

buildings in the vicinity of  

• Can Your Search Engine Handle This? 

apartments in a good school district near 
Somerville, with a bus stop near by 
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DataSift* can handle rich queries! 

*work with Aditya Parameswaran and Ming-Han Teh 
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DataSift Steps (One Way) 
• Start with rich query Q 
• Ask crowd for keyword queries {K} (and target) 
• Run queries {K} and get some results {D} 
• Ask crowd to evaluate {D} (w.r.t. Q} 
• “Calibrate” queries {K} 
• Get more results 
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Crowd Component 1: G (Gather) 
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Crowd Component 2: F (Filter) 
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The Elephant(s) in the Room… 

•     Crowds are Slow! Crowds are Costly! 
 

•    Want to use DataSift selectively! 
 
 

Slow Costly 
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Conclusion 

• Is crowdsourcing for real?? 
– YES!! 

• Many interesting problems: 
– Crowd data processing 
– Crowd gathering 
– Search 
– Many others! 
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