CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

Unidad Zacatenco

Departamento de Computacion

Calendarizacion para disminuir el
tiempo de ejecucion de integrales
multidimensionales en entornos
heterogéneos.

Tesis que presenta

Irene Elizabeth Lépez Mares

para obtener el Grado de

Maestro en Ciencias en Computaciéon

Directores de la Tesis

Dr. Amilcar Meneses Viveros
Dr. José Guadalupe Rodriguez Garcia

Ciudad de México Diciembre 2025

II

Resumen

Existen diversos problemas que requieren del calculo de integrales multidimensionales;
sin embargo, la resolucion numérica de estas tiene una alta complejidad. Ademas, el
error numérico aumenta con el nimero de dimensiones.

Para disminuir la complejidad y el tiempo de ejecucion se han desarrollado biblio-
tecas de integracion con base en las cuadraturas Gaussianas y se han paralelizado. Sin
embargo, el error numérico disminuye al aumentar el ntimero de puntos de integracion,
lo cual consume demasiado tiempo computacional.

Una solucion para reducir el error numérico, al disminuir el nimero de puntos, es
aplicar la extrapolacion de Romberg y aprovechar los entornos de ejecuciéon hetero-
génea que hay en casi todos los equipos de computo.

En este trabajo de tesis se implement6 la extrapolacion de Romberg apoyada de
un calendarizador para aprovechar las plataformas heterogéneas.

Los resultados obtenidos permiten concluir que el sistema de calendarizaciéon pro-
puesto es funcional y adaptable a distintas plataformas, integrando de manera eficaz
las técnicas de extrapolacion y calendarizacion. La extrapolacion de Romberg con-
tribuy6é a una reduccién significativa en el tiempo de ejecucion; sin embargo, el ca-
lendarizador no logré el rendimiento esperado, lo que sugiere la necesidad de realizar
ajustes adicionales en la estrategia de asignacién de tareas.

III

v

CAPITULO 0. RESUMEN

Abstract

There are various problems that require the calculation of multidimensional integrals;
however, their numerical resolution is highly complex. Furthermore, the numerical
error increases with the number of dimensions.

To reduce complexity and execution time, integration libraries based on Gaussian
quadratures have been developed and parallelized. However, the numerical error de-
creases with increasing number of integration points, which is computationally time-
consuming.

One solution to reduce numerical error by decreasing the number of points is
to apply Romberg extrapolation and take advantage of the heterogeneous execution
environments found on almost all computing equipment.

In this thesis, Romberg extrapolation was implemented with the support of a
scheduler to take advantage of heterogeneous platforms.

The results obtained allow us to conclude that the proposed scheduling system
is functional and adaptable to different platforms, effectively integrating extrapola-
tion and scheduling techniques. Romberg extrapolation contributed to a significant
reduction in execution time. However, the scheduler did not achieve the expected per-
formance, suggesting the need for further adjustments to the task allocation strategy.

VI

CAPITULO 0. ABSTRACT

Agradecimientos

Agradezco al Centro de Investigacion y Estudios Avanzados (CINVESTAV), por abrir-
me sus puertas y en especial al Departamento de Computaciéon por brindarme apoyo
y conocimiento durante toda la maestria.

Agradezco a mis asesores de tesis, el Dr. Amilcar Meneses Viveros y el Dr. José
Guadalupe, por su valiosa guia y orientaciéon durante el desarrollo de este trabajo.
Gracias por acompanarme en cada etapa del proceso, por compartir su conocimien-
to y por ofrecerme su apoyo constante, que fue fundamental para la realizacion y
consolidacion de esta tesis.

Agradezco a profesores del departamento, por compartir su conocimiento, su ex-
periencia y su pasion por la investigacion, los cuales fueron una guia fundamental en
mi formacién académica. Asi como al resto del personal, gracias por su apoyo.

Agradezco a mis padres y a mi hermano, por su amor incondicional, su apoyo
constante y su confianza en mi a lo largo de este camino.

Agradezco a mis amigos, por acompanarme durante este trayecto, brindandome
su companfa, &nimo y comprension en los momentos mas importantes.

Y por ultimo, agradezco a la Secretaria de Ciencia, Humanidades, Tecnologia e
Innovacion (SECITHI) y al Programa de Becas Elisa Acuna, por el apoyo econémico
otorgado durante mis estudios de maestria.

VII

VIII CAPITULO 0. AGRADECIMIENTOS

Indice general

Resumen

Abstract

Agradecimientos

Indice de figuras

Indice de tablas

1. Introduccién

2.

1.1.
1.2.
1.3.
1.4.

Planteamiento del problema
Propuesta
Objetivos generales y especificos del proyecto
Antecedentes
1.4.1. Paralelizaciéon del calculo de integrales multidimensionales

1.4.2. Calendarizadores en ambientes heterogéneos

1.5. Descripcion del documento
Fundamentos
2.1. Integrales multidimensionales

2.2.

2.3.
2.4.

2.5.

Bibliotecas para la resolucion de integrales multidimensionales
2.2.1. DCUHRE
222, CUHRE
Plataformas heterogéneas L.
Calendarizadores
2.4.1. Calendarizadores estaticos
2.4.2. Calendarizadores dinamicos
2.4.3. Ejecucion secuencial y concurrente
Trabajos relacionados
2.5.1. Planificador inteligente para integracion numérica multidimen-

sional en ambientes heterogéneos
2.5.2. FlexTensor: un framework de exploracion y optimizaciéon de

calendarizacion automatica para el calculo de tensores.

IX

111

VII

XI

XIvV

N 1 O O Ul ==

©

INDICE GENERAL

2.5.3. StarPU: una plataforma unificada para la calendarizacién de
tareaso L. oL e

2.5.4. Algoritmo de calendarizacion de tareas basado en aprendizaje
por refuerzo

2.5.5. Regla de Johnson para la calendarizaciéon de n tareas en dos
MAQUINAS .« v v v v e e e e e e e e e e

2.5.6. Algoritmo hibrido heuristico-genético con pardmetros adapta-
tivos para la calendarizacion estatica de tareas

2.5.7. Calendarizacion de tareas
2.5.8. Método para construir algoritmos de calendarizacion de tareas
2.5.9. Resumen de los trabajos relacionados
2.6. Estrategias de Inteligencia Artificial para calendarizadores
2.6.1. Arbol de decisiones
2.6.2. Busquedatabu 0oL

. Implementacion

3.1. Introduccién a la implementacion propuesta

3.2. Arquitectura del sistema de calendarizaciéon
3.2.1. Detalles de la implementacion del sistema de calendarizacion .

3.3. Modulo de ejecucion AVX
3.3.1. Arquitectura del modulo de ejecucion AVX

3.4. Codelet
3.4.1. Arquitectura del codelet

3.5. Calendarizadores
3.5.1. Estatico secuencial L.
3.5.2. Dinémico secuencial
3.5.3. Estatico concurrente
3.5.4. Tabla de caracteristicas

. Pruebas

4.1. Funciones, dispositivos y condiciones base
4.2. Pruebas preliminares
4.2.1. Pruebas para evaluar la complejidad de las funciones del bench-
mark de integrales multidimensionales

4.2.2. Pruebas para estimar el minimo niimero de puntos para un error
aceptable

4.3. Pruebas de calendarizaciono
4.3.1. Tablas de tiempo para alimentar los calendarizadores
4.3.2. Pruebas de tiempo de ejecucion usando el calendarizador esta-

tico secuencial Lo

4.3.3. Pruebas de tiempo de ejecuciéon usando el calendarizador diné-
mico secuencialo Lo

4.3.4. Pruebas de tiempo de ejecucion usando el calendarizador esta-

tico concurrente L.

31
31
32
35
35
36
41
42
44
45
47
50
61

INDICE GENERAL XI

5. Analisis 91
5.1. Comparacion: 128 puntos vs extrapolacion de Romberg 91
5.2. Desempeno de los calendarizadores 96

5.2.1. Comparaciéon general 98
5.2.2. Impacto de la estrategia de calendarizacion 102

Conclusiones 109

Glosario 113

Acrénimos 115

Bibliografia 116

Referencias 116

XII

INDICE GENERAL

Indice de figuras

1.1.

2.1.

2.2.
2.3.

3.1.
3.2.
3.3.

3.4.

3.5.
3.6.

4.1.
4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

Precision y tiempo de ejecucion de los métodos de integracion 2

Estructura general de una plataforma heterogénea compuesta por una
CPU y una GPU. P-Core hace referencia a los nuicleos de rendimiento
(performance cores) y E-Core a los nicleos de eficiencia (efficient cores) 16

Ejemplo de un arbol de decisiones 28
Ejemplo de la busqueda taba 30
Integracion por puntos en los moédulos de ejecuciéon. 33
Arquitectura del sistema de calendarizacion. 34
Incorporacion del médulo de ejecucion AVX a la biblioteca de integrales

multidimensionales. 36
Funciones del médulo de ejecucion secuencial. 37
Codelet general. 42
Codelet del sistema de calendarizacion propuesto. 42
Funciones del benchmark de integrales multidimensionales. 68
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 en

estacion de trabajo CUDA. 76
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 en

Jetson TX2. 7

Comparacion de tiempos de ejecucion (s) al evaluar la Funciéon 1.3
usando la extrapolacién de Romberg: modulos VS calendarizador es-
tatico secuencial, en estacion de trabajo CUDA. 79
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: moédulos VS calendarizador es-
tatico secuencial, en Jetson TX2. 80
Comparacion de tiempos de ejecucion (s) al evaluar la Funciéon 1.3
usando la extrapolacion de Romberg: modulos VS calendarizador di-
namico secuencial, en estacion de trabajo CUDA. 83
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: moédulos VS calendarizador di-
namico secuencial, en Jetson TX2.. 84

XIII

X1V

4.8.

4.9.

5.1.

5.2.

5.3.

5.4.

9.5.

5.6.

5.7.

5.8.

5.9.

5.10.

INDICE DE FIGURAS

Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: médulos VS calendarizador es-
tatico concurrente, en estacion de trabajo CUDA.
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: moédulos VS calendarizador es-
tatico concurrente, en Jetson TX2.

Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3: 128
puntos VS extrapolacion de Romberg en estacion de trabajo CUDA. .
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3: 128
puntos VS extrapolacion de Romberg en Jetson TX2.
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolaciéon de Romberg, en estacion de trabajo CUDA. .
Caida atipica en el tiempo de ejecucién del moédulo OMP alrededor
del punto de integraciéon 33 al evaluar la Funcién 1.3 en la estacion de
trabajo CUDA.
Comparacion de tiempos de ejecucion (s) de calendarizadores al evaluar
la Funciéon 1.3 en estacion de trabajo CUDA.
Comparacion de tiempos de ejecucion (s) de calendarizadores al evaluar
la Funcion 1.3 en Jetson TX2.
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando diferentes técnicas en estacion de trabajo CUDA.
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando diferentes técnicas en Jetson TX2.
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: médulos VS calendarizadores,
en estacion de trabajo CUDA.
Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolaciéon de Romberg: médulos VS calendarizadores,
en Jetson TX2.

94

97

104

Indice de tablas

1.1.

2.1.

2.2.

3.1.
3.2.
3.3.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

5.1.

Error numérico relativo, o,., CUHRE vs Kronrod. Las funciones co-
rresponden a las Funciones 1.1 y 1.2 del benchmark de integrales mul-
tidimensionales. Extraido de (Quintero-Monsebaiz y cols., 2021). . . .

Clasificacion de calendarizadores que se abordan en este proyecto de

Relacion de dimensiones (bucles) e indices.
Asignacion de modulos en el codelet.
Caracteristicas de los tres calendarizadores implementados.

Funciones del benchmark de integrales multidimensionales evaluadas
en 6 dimensiones, en estacion de trabajo CUDA. Tiempo de ejecuciéon

Error numérico de la Funcién 1.3, evaluada en estacion de trabajo
CUDA usando la cuadratura de Gauss-Kronrod.
Error numérico de la Funciéon 1.3, evaluada en estacion de trabajo
CUDA usando la cuadratura de Gauss-Kronrod y la extrapolacion de
Romberg.
Fragmento de las tablas de tiempo (s) para alimentar los calendariza-
dores en estacion de trabajo CUDA.
Fragmento de las tablas de tiempo (s) para alimentar los calendariza-
dores en Jetson TX2.
Pruebas realizadas en calendarizador estéatico secuencial usando la Fun-
cion 1.3 y la extrapolacion de Romberg. Tiempo de ejecucion (s) . . .
Pruebas realizadas en calendarizador dindmico secuencial usando la
Funcion 1.3 y la extrapolacion de Romberg. Tiempo de ejecucion (s) .
Pruebas realizadas en calendarizador estatico concurrente usando la
Funcion 1.3 y la extrapolacion de Romberg. Tiempo de ejecucion (s) .

Aceleraciones de los modulos de ejecucion usando la extrapolacion de
Romberg tomando como referencia el médulo de ejecucion CUDA con
128 puntos.o

20
27

37
43
61

67

69

71

73

74

82

85

89

XVI INDICE DE TABLAS

5.2. Aceleraciones de los calendarizadores usando la extrapolacion de Rom-
berg tomando como referencia el médulo de ejecucion CUDA con 128

Indice de algoritmos

10.
11.
12.

Célculo de integrales multidimensionales usando el médulo de ejecucion
secuencial - 6 Dimensioneso 38

Calculo de integrales multidimensionales usando el médulo de ejecucion AVX - 6

Dimensiones o. .o e e e e e e e 40
Seleccion del moédulo més adecuado por ntmero de puntos 46
Evaluacion punto a punto de la integral multidimensional usando el

calendarizador estatico secuencial 47
Inicializacion del calendarizador dindmico secuencial 48
Evaluaciéon punto a punto de la integral multidimensional usando el

calendarizador dinamico secuencial 49
Seleccion dinamica del médulo mas adecuado: sched() 49
Evaluacion en pares de la integral multidimensional usando el calenda-

rizador estatico concurrente 52
Seleccion de los dos mejores moédulos por punto: build_top2() 53
Busqueda tabu para asignacion 6ptima de médulos: tabu_assign_top2() 55
Simulacion del makespan: simulate_makespan() 59
Funcion principal del calendarizador estatico concurrente 60

XVII

XVIII INDICE DE ALGORITMOS

Capitulo 1

Introduccion

Actualmente existen diversos problemas en Fisica, Quimica e Ingenieria que requieren
del calculo de integrales multidimensionales. Sin embargo, no todas las integrales tie-
nen soluciéon analitica, por lo que se requieren métodos numéricos para su resolucion.

En las dltimas décadas, se ha propuesto y desarrollado una amplia variedad de
métodos numéricos (Gibbs, 1915). Muchos de ellos se basan en cuadraturas gaussia-
nas, las cuales, al aumentar el niimero de dimensiones, incrementan tanto el error
numérico como la complejidad computacional. No obstante, la cuadratura de Gauss-
Kronrod (Genz, 1972; Patterson, 1968; Piessens y Branders, 1974) se distingue por
presentar el menor niimero de decimales donde oscila el error, gracias a la eleccién
estratégica de los puntos que mejora la precision de la integral. Sin embargo, la com-
plejidad computacional sigue siendo elevada, por lo que se ha optado por disminuir
el nimero de puntos y complementar el proceso con técnicas de extrapolacion, con
el fin de obtener estimaciones mas precisas del resultado sin incrementar de manera
significativa el costo computacional.

Por tal motivo, en este proyecto se propone utilizar los algoritmos presentados en
el articulo (Quintero-Monsebaiz y cols., 2021), los cuales calculan las integrales me-
diante la cuadratura de Gauss-Kronrod combinada con extrapolaciones de Romberg
(Kebaier, 2005; E. H. L. Liu, 2006), con el objetivo de implementarlos en una plata-
forma heterogénea utilizando estrategias de calendarizaciéon que permitan reducir el
tiempo computacional.

1.1 Planteamiento del problema

Como se mencion6 previamente, en la evaluacion de integrales multidimensionales
mediante cuadraturas gaussianas, aumentar el niimero de dimensiones provoca un
incremento en la complejidad computacional. Sin embargo, las integrales multidi-
mensionales ofrecen resultados con mayor precision a diferencia de otros métodos,
como se puede observar en la Figura 1.1

En la columna izquierda se muestran: la suma de Riemann (), la integral unidi-
mensional ([) y la integral multidimensional ([[[). Cada una representa un método

1

2 Introduccion

Tiempo de ejecucion

~—
[

fff—fd« _)a\ .
VA" o

Figura 1.1: Precision y tiempo de ejecucion de los métodos de integracion

de integracion con distinto nivel de complejidad.
En la columna central, cada método esté asociado a un gato, usado como metafora
del resultado obtenido:

» Kl gato pixelado corresponde a la suma, indicando un resultado menos preciso.

= Kl gato ilustrado representa la integral unidimensional, con un nivel de precision
intermedio.

= Kl gato realista corresponde a la integral multidimensional, simbolizando un
resultado més preciso y detallado.

La idea es que entre mas realista es el gato, mayor es la precision del método asociado.
Sin embargo, mayor precisiéon implica un mayor tiempo de ejecucion requerido.

» La suma requiere poco tiempo (un reloj),
» La integral unidimensional requiere un tiempo moderado (dos relojes),

» La integral multidimensional demanda el mayor tiempo de computo (tres relo-
jes).

Con el objetivo de reducir el tiempo de ejecucion sin comprometer la precision, los
algoritmos descritos en (Quintero-Monsebaiz y cols., 2021) combinan la cuadratura de
Gauss—Kronrod con la extrapolaciéon de Romberg. Para evaluar su desempenio, estos
algoritmos se sometieron a pruebas utilizando un conjunto de funciones de referencia
del benchmark de integrales multidimensionales (Arumugam, Godunov, Ranjan, Ter-
zic, y Zubair, 2013), lo cual permitié medir tanto su eficiencia computacional como
su precision.

fi(z) =

a + cos? (iﬁ)] : (1.1)

Capitulo 1 3

fa(x) = cos (H cos(22ixi)> , (1.2)

=1

f3(x) = sen (Hz : arcsin(mﬁ)) : (1.3)

i=1

fa(z) = sen (H arcsin(xﬁ) , (1.4)

=1

fs(x) = % Zcos(awi), (1.5)

donde a = 0.1 y f = —0.054402111088937. Las funciones seran calculadas en un
hipercubo [0, 1]¢, donde d = 3,4, 5, 6.

La complejidad al evaluar cada funciéon del benchmark en cada punto de la malla
multidimensional es:

O(n?), (1.6)

donde n es el numero de puntos y d es el nimero de dimensiones d > 3 (Quintero-
Monsebaiz y cols., 2021).

El niimero de puntos evaluados en la integral esta directamente relacionado con
el error numérico; para que el resultado sea aceptable, dicho nimero debe ser lo sufi-
cientemente grande como para garantizar un error dentro de los margenes tolerables
(en funcién del dominio del problema puede ser < 107*). En (Quintero-Monsebaiz y
cols., 2021) se realizaron pruebas con las funciones del benchmark usando hasta 56
puntos, sin embargo, como se muestra en la Tabla 1.1, el error sigue siendo demasia-
do alto para ser aceptable, incluso en CUHRE (Hahn, 2005), considerado uno de los
algoritmos mas empleados en la resolucion de integrales multidimensionales. Por lo
tanto, es necesario realizar pruebas con un mayor nimero de puntos hasta alcanzar
un error numeérico aceptable.

No obstante, al incrementar el nimero de puntos, la complejidad computacional
también se eleva considerablemente, en especial para 5y 6 dimensiones, lo que implica
un alto costo en tiempo de ejecucion. A pesar de lo anterior, es posible reducir el ntime-
ro de puntos a aproximadamente 40 mediante la implementacion de extrapolaciones
de Romberg. Por lo tanto, la complejidad resultante al emplear estas extrapolaciones
es la siguiente:

4 Introduccion

O(i k%) ~ O(40%), (1.7)

donde d es el nimero de dimensiones > 3 (Quintero-Monsebaiz y cols., 2021).

Ademas, el comportamiento al evaluar la formula de la extrapolacion de Romberg
(Ecuacion 1.8) permite que los célculos puedan realizarse en paralelo, debido a que
los elementos T; se ejecutan de manera concurrente. Esta caracteristica contribuye
a la reduccion significativa del tiempo de ejecucion.

(Ti,kq - Tifl,kfl)
4k — 1 ’

Tip="Tip1+ (1.8)

donde T es la evaluacion de la integral para ¢ puntos y T , para k > 0, es el k-ésimo
ajuste (Kebaier, 2005; E. H. L. Liu, 2006).

Tabla 1.1: Error numérico relativo, o,., CUHRE vs Kronrod. Las funciones
corresponden a las Funciones 1.1 y 1.2 del benchmark de integrales
multidimensionales. Extraido de (Quintero-Monsebaiz y cols., 2021).

CUHRE Kronrod

Funcién Integral | 0, | Integral(56puntos) | o,
3 dimensiones

1 20.03172186 | e-06 20.03172187 | e-12
2 0.930740275 | e-07 0.930907702 | e-04
4 dimensiones

1 27.06839191 | e-05 27.06839069 | e-11
2 0.965374901 | e-02 0.963093722 | e-02
5 dimensiones

1 27.63237484 | e-03 27.63223859 | e-10
2 0.978854949 | e-02 0.979649828 | e-02
6 dimensiones

1 23.60730077 | e-01 23.60655943 | e-08
2 0.992661704 | e-02 0.990171077 | e-02

1.2 Propuesta

La hipoétesis de este proyecto plantea que, a través de una estrategia de calenda-
rizacion adecuada en entornos heterogéneos, se puede reducir el tiempo de ejecucion
de las integrales multidimensionales. Con el fin de validar esta hipoétesis, se propone
optimizar la ejecucion de la extrapolacion de Romberg seleccionando, para cada ca-
so, el modulo de ejecucion méas adecuado (secuencial, CUDA, OpenMP o AVX), en
funcion del namero de dimensiones de la integral y del niimero de puntos empleados
en la integracion.

Capitulo 1 5

Antes de construir el calendarizador, primero es necesario realizar un conjunto
de pruebas que permitan determinar cuantos puntos deben emplearse para alcanzar
un error numérico aceptable. Para ello, se toma como referencia la Funcién 1.3 del
benchmark, clasificada como la segunda més compleja. La justificacion de esta eleccion
se expone en la Seccidon 4.2.2. Se considera que, al controlar el error en esta funcién,
también sera posible lograr una precision adecuada en el resto de las funciones menos
complejas incluidas en el benchmark.

El calendarizador propuesto recibird como entradas el nimero de dimensiones y
el nimero de puntos de integraciéon. Con base en datos previamente obtenidos sobre
los tiempos de ejecucion (véase Seccion 4.3.1), determinara, para cada punto, qué
modulo de la plataforma heterogénea resulta més adecuado para realizar el célculo.
De este modo, el calendarizador actuara como un componente de decision capaz de
asignar los puntos de la integral a los médulos que ofrezca el mejor rendimiento.

Ademas, se implementara un codelet (Augonnet, Thibault, Namyst, y Wacrenier,
2009), encargado de gestionar la invocacion de los distintos modulos de ejecucion.
En otras palabras, si el calendarizador determina que la integral debe evaluarse en
el GPU, el codelet debera contener la referencia al moédulo implementado en CUDA.
Por el contrario, si la ejecucion se realiza en la CPU, el codelet debera incluir las
referencias a los modulos secuencial, OpenMP (para la ejecucion paralela) y AVX
(para la ejecucion vectorizada con instrucciones de Intel). De esta manera, el codelet
actuara como un mecanismo flexible que encapsula los diferentes modulos de ejecucion
y permite que el calendarizador seleccione la alternativa mas conveniente.

Sin embargo, para que el calendarizador pueda tomar decisiones informadas, es
necesario contar con datos confiables sobre el tiempo de ejecuciéon de cada moédulo en
distintos escenarios (variando dimensiones y nimero de puntos). Obtener estos datos
de manera manual seria impréctico, debido tanto a la cantidad de configuraciones po-
sibles como a la naturaleza heterogénea de las plataformas de ejecucion. Para superar
esta limitacion, este proyecto plantea el desarrollo de heuristicas capaces de estimar
el tiempo de ejecucion con rapidez y suficiente precisiéon. Dichas heuristicas no solo
reducen el tiempo requerido para obtener los datos de los mdédulos de la plataforma,
sino que ademas permiten generalizar el enfoque, facilitando su adaptacion y uso en
diferentes entornos heterogéneos sin necesidad de repetir todo el proceso de medicion
desde cero.

1.3 Objetivos generales y especificos del proyecto

General

Disminuir el tiempo de ejecucion en la extrapolacion de Romberg para el célculo
integrales multidimensionales en entornos heterogéneos.

6 Introduccion

Particulares

1. Estudiar los tipos de calendarizadores y heuristicas, adecuados en entornos he-
terogéneos, que se pueden implementar en este problema.

2. Extender la biblioteca de integrales multidimensionales con el médulo de ejecu-
cion AVX.

3. Determinar la cantidad minima (n) de puntos en la integral de Gauss-Kronrod
para tener un error aceptable (igual o menor a 107%).

4. Construir el codelet para administrar la biblioteca de integrales multidimensio-
nales.

5. Hacer pruebas con el codelet para estimar el tiempo de ejecucion y el error para
diferentes dispositivos y componentes.

6. Seleccionar e implementar el/los calendarizador(es) o heuristica(s) para despa-
cho de procesos.

7. Validar los tiempos de ejecucion y el error del mecanismo de integracion multi-
dimensional propuesto.

1.4 Antecedentes

Este proyecto de tesis pretende profundizar e integrar los trabajos que han sido de-
sarrollados en el departamento de Computacion del Centro de Investigacion y de
Estudios Avanzados del Instituto Politécnico Nacional unidad Zacatenco, con el pro-
posito de optimizar el calculo de integrales multidimensionales. A continuacion, se
describen brevemente los trabajos en los que se basa esta propuesta:

1.4.1 Paralelizaciéon del calculo de integrales multidimensio-
nales

(Quintero-Monsebaiz y cols., 2021) aborda los esquemas de paralelizacion en arquitec-
turas multi-nucleo: CUDA y OpenMP; los cuales, se emplean para acelerar y mejorar
la precision de los algoritmos de integracion multidimensional adaptativos, en espe-
cifico, el método adaptativo unidimensional Gauss-Kronrod que se generaliza a 3, 4,
5 y 6 dimensiones y el método de extrapolaciones de Romberg.

Este trabajo replantea el proceso tradicional de integracion multidimensional con
el proposito de aprovechar de manera efectiva las ventajas de las arquitecturas multi-
ntucleo. Para ello, se incorporan estrategias de paralelizacion basadas en el hecho de
que las cuadraturas multidimensionales pueden evaluarse mediante ciclos cuyas ite-
raciones son independientes entre si. Esta caracteristica permite distribuir el trabajo

Capitulo 1 7

entre varios niicleos de procesamiento y, con ello, mejorar significativamente el rendi-
miento computacional.

Las pruebas fueron realizadas en el conjunto de funciones de referencia del bench-
mark de integrales multidimensionales (Arumugam y cols., 2013), estas pruebas mos-
traron que el algoritmo es numéricamente preciso, con aceleraciones de hasta 800X
en CUDA y 300X en la implementacion OpenMP, en comparaciéon con un algoritmo
de integraciéon multidimensional secuencial.

1.4.2 Calendarizadores en ambientes heterogéneos

Debido a los grandes volumenes de datos que se han generado en los tiltimos anos, se ha
experimentado una creciente demanda en la creaciéon y expansion de centros de datos,
algunos de éstos han sido integrados por conjuntos de servidores con capacidades
variables de procesamiento y almacenamiento. Este tipo de entornos representa un
nuevo desafio en la optimizacion y uso eficiente de los recursos, por lo que calendarizar
tareas se vuelve méas complicado.

Para enfrentar estas dificultades se han desarrollado diversas estrategias, basadas
en indicadores que requieren la creaciéon de una matriz de costos que vincule tareas
y recursos. Esto implica una prediccion precisa de los indicadores seleccionados, en
funcion de las caracteristicas de las tareas y los servidores. En (Salas-Gonzalez, 2023)
se desarrolla una caracterizacion detallada de tareas y recursos para crear un conjun-
to de atributos que sirven como entradas para diferentes algoritmos de Inteligencia
Artificial (Random Forest, Regresion Lineal Multiple, Redes Neuronales Secuenciales
y Redes Long Short-Term Memory). El objetivo de estos algoritmos es predecir el
valor de un indicador que pueda integrarse en una funciéon objetivo para optimizar la
calendarizacion estatica de tareas en entornos heterogéneos.

1.5 Descripcion del documento

El contenido de esta tesis se estructura de manera progresiva, partiendo de los fun-
damentos tedricos hasta llegar al analisis del sistema de calendarizacién propuesto.

El Capitulo 2 presenta los fundamentos tedricos necesarios para comprender el
problema de la integracién multidimensional y su complejidad computacional. Asi
como los conceptos de calendarizacion, plataformas heterogéneas y algunas heuristicas
utilizadas en la asignacion de tareas.

El Capitulo 3 describe la implementacion del sistema de calendarizacion. Se detalla
la estructura de la biblioteca de integrales multidimensionales utilizada como base.
Posteriormente, se abordan las extensiones implementadas: el moédulo de ejecuciéon
AVX, el codelet para administrar los modulos de la biblioteca y las tres estrategias
de calendarizacion que gestionan el sistema: estéatica secuencial, dinamica secuencial
y estatica concurrente.

El Capitulo 4 presenta las pruebas realizadas para validar el funcionamiento del
sistema, asi como para evaluar la precision de los resultados obtenidos en el célculo

8 Introduccion

de las integrales y los tiempos de ejecucion. Se llevaron a cabo pruebas preliminares
para determinar la complejidad de las funciones del benchmark y estimar el ntimero
minimo de puntos necesario para mantener un error aceptable. Ademas, se presen-
tan las pruebas de rendimiento aplicadas a los calendarizadores en dos plataformas
heterogéneas.

El Capitulo 5 contiene el anélisis de los resultados obtenidos. Se comparan los
tiempos de ejecucion y la precision de los médulos con y sin extrapolacion de Romberg.
Posteriormente, se evaltia el desempeno de los calendarizadores propuestos, con el
objetivo de analizar su comportamiento y eficiencia.

En resumen, estos capitulos documentan el proceso de investigacién, implementa-
cion, validacion y anélisis del sistema de calendarizacion.

Capitulo 2

Fundamentos

Este capitulo establece los fundamentos tedricos y tecnolégicos que sustentan esta
propuesta de tesis. En primer lugar, se describen algunos métodos numéricos dis-
ponibles para la resolucion de integrales multidimensionales, destacando aquellos que
ofrecen mayor precision y eficiencia computacional. En la siguiente seccion se presenta
una revision resumida sobre las bibliotecas especializadas para la resolucién numérica
de integrales multidimensionales: DCUHRE y CUHRE.

La tercera seccion aborda las plataformas heterogéneas, poniendo especial énfasis
en aquellas integradas por CPUs, que cuentan con ntcleos de rendimiento y eficiencia,
asi como del conjunto de instrucciones vectoriales avanzadas (AVX), ademas de GPUs.
Se discute como estas tecnologias contribuyen significativamente a la paralelizacion
efectiva de tareas, logrando asi importantes reducciones en los tiempos de ejecucion.
Posteriormente, en la cuarta seccion se introducen los conceptos bésicos asociados con
los calendarizadores de tareas, clasificindolos en dos tipos: calendarizadores estaticos
y dindmicos. Asimismo, se menciona la capacidad de estos sistemas para ejecutar
tareas tanto de forma secuencial como concurrente.

En la quinta seccién se realiza una revision de trabajos relacionados, ofreciendo
un analisis comparativo de diversos calendarizadores existentes en la literatura. En
esta seccion se resaltan las similitudes y diferencias entre los enfoques existentes y
el enfoque propuesto en esta tesis, presentando finalmente una tabla comparativa de
caracteristicas clave.

Finalmente, la sexta seccion introducira las estrategias de Inteligencia Artificial
(IA) orientadas a la calendarizacion de tareas en plataformas heterogéneas. Se desta-
caran particularmente las técnicas basadas en arboles de decisiéon y bisqueda tabi,
pues éstas son las estrategias que seran implementadas dentro de este proyecto de
tesis.

2.1 Integrales multidimensionales

La integracion numérica por cuadratura es un método que busca aproximarse al valor
de una integral definida. Para ello, se emplea una regla de cuadratura que utiliza un

10 Fundamentos

conjunto finito de puntos evaluados en una funcion dada f(x):

b 00
/ f(x)dx = sz‘f(%% (2.1)

donde la integral se realiza sobre un intervalo cerrado |[a, b], 21, x, ..., x, son los no-
dos en el intervalo de integracion y wq, ws, ..., w, son los pesos asociados a cada nodo.
La precision de las férmulas de integracion depende de los pesos y las abscisas elegidos.

Una de las cuadraturas més simples se crea ubicando las abscisas sin espaciado
especial y resolviendo n + 1 ecuaciones para obtener los pesos correspondientes. Este
enfoque tiene el doble de precisiéon en comparacion a la regla de Newton-Cotes. Esta
cuadratura organiza los pesos y abscisas elegidos, con el propdsito de integrar una
clase de integrales que se pueden calcular mediante la multiplicacién de un polinomio
por una funcion de peso W(x) (Abramowitz, 1974; Arfken, 1985; Szegs, 1975), es
decir

[W@ de =Y wnw). 2.9)

donde p;(z), p2(z), ..., pu(z) son polinomios ortogonales cualesquiera de grado 2n — 1
0 menor.

En esta tesis se pretende utilizar la cuadratura de Gauss-Kronrod, sin embargo,
primero es necesario abordar algunas propiedades generales de la regla de cuadratura
de Gauss-Chebyshev (Abramowitz, 1974), donde los polinomios son ortogonales en el
intervalo [—1,1], y W(z) = (1—x2)"=. Para obtener los polinomios de Chebyshev del
primer tipo se emplea de manera directa la formula de recurrencia de tres términos:

To(ZL') 1,
Ti(z) = =, (2.3)
Thi1(z) = 22T, () — T ().

Por otro lado, para obtener los pesos se aplica la siguiente férmula:

T
L1 ()T (2;) ’

donde T,,(z;)" es la derivada del polinomio ortogonal en su cero x; , lo cual es sencillo
en su forma trigonométrica.

w; = — (2.4)

El procedimiento practico para calcular la integral (Ecuacion 2.2) mediante una
cuadratura, comienza por generar el polinomio de Chebyshev utilizando la relacion
de puntos del arbol de recursion (Ecuacion 2.3). Para posteriormente determinar los

Capitulo 2 11

ceros de Gauss-Chebyshev, mediante el método de Newton y finalmente se calculan
los pesos asociados utilizando la Ecuacion 2.4 (Dahlquist y Bjorck, 2008).

Sin embargo, las cuadraturas deterministas no adaptativas, como Gauss-Chebyshev,
no son precisas cuando el integrando es altamente oscilatorio (Notaris, 2016); por lo
que en este caso, los métodos deterministas adaptativos son una mejor opcion pa-
ra lidiar con la complejidad. En el método adaptativo se refina la cuadricula en los
intervalos donde el error local es mayor. Una de las cuadraturas adaptativas mas po-
pulares es Gauss-Kronrod (Kronrod, 1964). En esta cuadratura, se eligen los pesos
y las abscisas con el fin de maximizar la precision, ya que hay 3n + 1 variables, los
algoritmos buscan secuencias 6ptimas de reglas, en donde cada secuencia reutiliza
todas las abscisas de su predecesora. La formula de cuadratura de Gauss-Kronrod
esta dada por:

n+1

[r@de =Y wite) + 3 uf€) 2:5)

donde z; y w; son los nodos y pesos de Gauss, respectivamente, mientras que las
nuevas abscisas &; v los pesos v; son las abscisas y los pesos de Kronrod, que se eligen
para maximizar la precision a al menos 2n + 1.

Kronrod evalua la Ecuaciéon 2.5 para n > 40 asegurando que &; se encuentra
en el intervalo [1,—1] y w;, v; ambos definidos como positivos. Las abscisas & son
las raices del polinomio de Kronrod K, i que se evalia por medio de una ecuacion
de recurrencia (Piessens y Branders, 1974), mientras que los pesos w;, v; se obtie-
nen resolviendo un sistema lineal, para alcanzar la mayor precision en la Ecuacion
2.5. No obstante, el método propuesto por Kronrod para obtener los coeficientes de
K41 requiere una ecuaciéon que no se comporta bien (Szegd, 1935). En consecuen-
cia, Patterson propuso una expansion de K, 1 en términos de polinomios de Legen-
dre P,(z) (Patterson, 1968). Sin embargo, este método no aplica cuando se utilizan
N = 1,9,17,22,27,35,36,37 y 40 puntos. Por lo que, Pissens y Branders (Piessens
y Branders, 1974) propusieron una expansion del polinomio K, i(z) en términos
de polinomios de Chebyshev para ntimeros pares e impares. Asi, utilizando algunas
propiedades de los polinomios de Chebyshev, los pesos se obtienen de la siguiente
manera:

w; = C - ’ 2.6
S B @) Ko@) T (VL DN + D[Py @) (2:6)
N2 Cn o

"O2(NA41) [Pya(&) — E PN (&) K1 (&)

donde, Py es un polinomio de Legendre de grado N + 1, y K|, es un polinomio
de Kronrod de grado n + 1; los ¢rdenes de estos polinomios son diferentes.

12 Fundamentos

El método de Piessens es aplicable para cualquier caso, incluyendo niimeros pares
e impares, ademés, desde el punto de vista computacional es menos costoso. Por ende,
el tiempo de ejecucion se puede reducir a la mitad en comparaciéon con el método de
Patterson.

Dado que esta tesis tiene como objetivo reducir el tiempo de ejecucion y aumentar
la precision de la integracion multidimensional, se empleara el método de Piessens para
la generacion de nodos y abscisas. Por lo que es necesario generalizar la metodologia
unidimensional a la integraciéon de d-dimensiones.

Dicho lo anterior, se considera la evaluacion de la integral d-dimensional sobre un
hipervolumen ¢ mediante una cuadratura Gaussiana aproximada para d-dimensiones
(Keister, 1996)

/Q W (X)f(X)dX, (2.8)

donde X es un vector de dimensién d.

Bajo este contexto, se necesitan n puntos en la cuadricula hiperdimensional. La
evaluacion de la integral multidimensional (Ecuacion 2.8) requiere un arreglo de pesos
de rango d W (X) que se obtiene por un producto directo del vector de pesos w?, para
cada dimension j, generando un tensor de pesos de rango d

d
ng = {w{,w%, ...,’ZUI];, ...,w%}, Wg = @Wf’w (29)
j=1

donde W/ es un vector que va desde 1 hasta el nimero de puntos de la cuadricula
n, y j recorre las dimensiones presentes en la integral; el tensor de pesos W/ es el
producto directo de los vectores de pesos que cubren las d-dimensiones.

La generacion de los nodos para la funcion n-dimensional f(X) es similar a la
generacion de los pesos, es decir, se construye una matriz d-dimensional de puntos x
mediante el producto directo de cada vector unidimensional. En el caso de las abscisas,
se construye una matriz n-dimensional X evaluando la funcién en cada punto de la
cuadricula n-dimensional:

x) = {a], x), SO X = EBX% (2.10)

Una vez construido el tensor de orden de rango d X, se evaliia el integrando en
este arreglo, y para calcular la integral d-dimensional se lleva a cabo la contracciéon
de los arreglos de orden d W(X) y X de la siguiente manera:

d

/W x)dx = W« f(X9) = ZZW] F(XD), (2.11)

7j=1 =1

donde * denota la contraccién de los tensores.

Capitulo 2 13

2.2 Bibliotecas para la resolucién de integrales mul-
tidimensionales

A continuacion se describen dos bibliotecas ampliamente utilizadas para la resolu-
cién de integrales multidimensionales: DCUHRE y CUHRE. Ambas forman parte del
conjunto de algoritmos del paquete CUBA y se han consolidado como herramientas
eficientes para la evaluacién de funciones con comportamiento complejo.

2.2.1 DCUHRE

DCUHRE (Berntsen, Espelid, y Genz, 1991b) es una biblioteca implementada en
FORTRAN 77 para el calculo de integrales multidimensionales de doble precision so-
bre regiones hiperrectangulares. Esta biblioteca proporciona un algoritmo adaptativo
(Berntsen, Espelid, y Genz, 1991a), basado en una estrategia de subdivision global
adaptativa, que permite refinar selectivamente las subregiones de integracion donde
el integrando presenta mayor complejidad o variacion local. Ademés, su estructura
esta diseniada para facilitar la implementacion en dispositivos paralelos con memoria
compartida.

El procedimiento del algoritmo consiste en elegir una subregion de la integral y
determinar si requiere refinamiento adicional segiin el comportamiento del integrando.
Si los integrandos, en un vector de integrandos, son significativamente diferentes entre
si, el algoritmo divide dicho vector en subvectores més pequenos, aplicando el proceso
de integracién de manera independiente a cada uno. Por el contrario, cuando los
integrandos comparten suficiente similitud, es posible reutilizar la misma estrategia
de subdivision, con lo que se reduce el costo computacional en tiempo y memoria. Esta
caracteristica también permite aprovechar la ejecucion paralela de las evaluaciones del
integrando, logrando asi una optimizacion adicional del rendimiento.

2.2.2 CUHRE
La biblioteca CUBA (Hahn, 2005) incluye el algoritmo CUHRE, un algoritmo deter-

minista de integracion multidimensional que utiliza reglas de cuadratura para estimar
subregiones dentro de un esquema de subdivision globalmente adaptativo. A diferencia
de los métodos basados en Monte Carlo, CUHRE se fundamenta en aproximaciones
polinomiales del integrando y en una estrategia de refinamiento. En cada iteracion, la
subregion con mayor error estimado es dividida por la mitad a lo largo del eje donde
el integrando presenta la diferencia de cuarto orden mas pronunciada, lo que permite
identificar y refinar de manera eficiente las zonas con mayor dificultad numérica.
El procedimiento del algoritmo puede resumirse de la siguiente manera:

1. Seleccionar la regiéon con el mayor error estimado.

2. Dividir dicha region a lo largo del eje correspondiente a la mayor diferencia de
cuarto orden.

14 Fundamentos

3. Aplicar la regla de cuadratura a las dos subregiones generadas.

4. Incorporar las subregiones a la lista general de regiones y actualizar los resulta-
dos totales de la integral y el error.

En dimensiones moderadas, CUHRE ofrece un rendimiento competitivo, especial-
mente cuando el integrando puede aproximarse adecuadamente mediante polinomios.
No obstante, conforme aumentan las dimensiones del problema, el niimero de puntos
requeridos por las reglas de cuadratura crece de manera significativa, lo que reduce
su eficiencia y limita su aplicacion en espacios de altas dimensiones.

2.3 Plataformas heterogéneas

Durante la ultima década, las plataformas heterogéneas se han vuelto populares, debi-
do a que ofrecen un alto rendimiento y son eficientes en cuanto al consumo energético
se refiere, en comparacion con las plataformas homogéneas. Por tanto, estas platafor-
mas han comenzado a ser ampliamente utilizadas en clusteres de alto rendimiento y
estaciones de trabajo, lo que genera la necesidad de contar con una visiéon general y
una comprension profunda de las mismas.

Las plataformas heterogéneas integran procesadores con distintas arquitecturas,
conjuntos de instrucciones y representaciones de datos en un mismo sistema (Salas-
Gonzalez, 2023), con el objetivo de optimizar el rendimiento y/o reducir el consumo
de energia. A diferencia de las plataformas homogéneas convencionales, que suelen
emplear CPUs multi-nucleos simétricos, las plataformas heterogéneas pueden estar
compuestas por CPUs, GPUs e incluso FPGASs, esto permite que se usen tanto para
tareas de proposito general como tareas més especificas que requieren mayor eficiencia.
En este capitulo se abordaran los componentes de ejecucion CPU y GPU, puesto que
seran de vital importancia para este proyecto. Sin embargo, primero es necesario
entender como surgieron estas plataformas.

En 1965, Gordon Moore formul6é una observaciéon conocida como la Ley de Moore
(Moore, 1965), segtn la cual cada dos anos se duplicara la cantidad de transistores
integrados en un microprocesador, esta tendencia se mantuvo durante més de treinta
anos (Mollick, 2006). No obstante, aunque ahora es posible instalar aproximadamente
16,000 millones de transistores en un s6lo microprocesador debido a su tamano de 32
nm, no es econémico. Ademaés, existen ciertas limitaciones fisicas que han frenado e
incluso revertido ligeramente el crecimiento exponencial de la frecuencia (Brodtkorb,
Dyken, Hagen, Hjelmervik, y Storaasli, 2010), una muy importante es la densidad de
potencia.

A raiz de la Ley de Moore, se asumi6 que la frecuencia de los procesadores de un
s6lo niicleo también aumentaria de forma sostenida con el tiempo. Sin embargo, la
densidad de potencia en los procesadores superé la de los disipadores de calor y en
consecuencia, rebaso el limite del umbral de calor que el silicio puede soportar con los
métodos de refrigeracién convencionales. Aunque se desarrollaron nuevas tecnologias

Capitulo 2 15

de refrigeracion, como nitrogeno liquido o hidrogeno (Brodtkorb y cols., 2010), estas
soluciones resultaron inviables debido a sus elevados costos. Estas limitaciones han
conducido a la evolucion del diseno de los procesadores actuales, con el objetivo de
mantener un equilibrio entre el rendimiento y los costes de desarrollo. En lugar de
seguir aumentando la frecuencia, los procesadores fueron redisenados para incorpo-
rar miltiples ntucleos simétricos de baja frecuencia, comenzando con configuraciones
de dos ntucleos y evolucionando hacia arquitecturas de cuatro, ocho o més ntcleos,
permitiendo asi la ejecucion simultanea de multiples programas.

Sin embargo, una desventaja de los procesadores multi-ntucleo simétricos es que
utilizan la misma cantidad de transistores y operan a frecuencias similares tanto pa-
ra tareas simples como complejas, lo que implica un consumo energético constante,
incluso cuando las tareas no requieren un procesamiento intensivo. Ante esto, las
arquitecturas heterogéneas han surgido como una alternativa viable, combinando nu-
cleos tradicionales de rendimiento con nucleos de eficiencia (Brodtkorb y cols., 2010).
Los niicleos de eficiencia, generalmente usados en tareas mas sencillas, estan disenados
para optimizar el rendimiento dentro de un presupuesto energético o de transistores
determinado, lo cual generalmente implica un menor niimero de transistores, frecuen-
cias mas bajas y una funcionalidad reducida.

Ademés, Intel ha incorporado un moédulo especializado en instrucciones vecto-
rizadas dentro de los niicleos de rendimiento de sus procesadores, conocido como
AVX (Advanced Vector Extensions). Este conjunto de instrucciones SIMD (Single
Instruction, Multiple Data) busca mejorar el rendimiento en operaciones que pueden
aprovechar el paralelismo a nivel de datos. AVX permite que los procesadores realicen
una misma operacion sobre multiples datos al mismo tiempo, lo que lo hace especial-
mente util en aplicaciones cientificas, multimedia, de gréaficos, criptografia y machine
learning. AVX amplia la capacidad SIMD de los procesadores x86 mediante registros
vectoriales de 256 bits, lo que permite procesar multiples valores de punto flotante o
enteros de manera simultanea.

Desde una perspectiva algoritmica, tareas altamente paralelizables, como las si-
mulaciones de Monte Carlo, obtienen mayores ventajas al ejecutarse en procesadores
heterogéneos, puesto que, la mayoria de las aplicaciones se componen de una combi-
nacion de tareas en serie y en paralelo. No obstante, la idoneidad de un procesador
para una tarea especifica dependera de sus caracteristicas arquitectéonicas particulares
(Asanovié y cols., 2006; Hill y Marty, 2008).

Con el reciente énfasis en el computo de alto desempeno (High Performance Com-
puting), se vuelve fundamental utilizar todos los recursos disponibles de los sistemas
heterogéneos en cada ciclo de reloj. Tanto en el ambito académico como en la indus-
tria, se reconoce que el rendimiento en serie ha alcanzado su punto méaximo, lo que
ha impulsado un enfoque creciente en el desarrollo de nuevos algoritmos capaces de
aprovechar arquitecturas paralelas y heterogéneas. Por lo que, no sélo las CPUs han
evolucionado, sino que también lo han hecho las GPUs.

La GPU originalmente fue disenada para aplicaciones graficas, especialmente en
videojuegos, donde se encarga de renderizar imagenes 2D a partir de objetos geomé-

16 Fundamentos

tricos tridimensionales, mediante un conjunto de procesadores que operan en paralelo
para calcular el color de cada pixel (Brodtkorb y cols., 2010). Con el tiempo, las GPU
han evolucionado en arquitecturas més generales, donde el renderizado gréfico es solo
una de sus multiples aplicaciones. Actualmente, su rendimiento las convierte en una
opcidn atractiva para tareas de HPC y el entrenamiento de redes neuronales en IA.
No obstante, una de sus principales limitaciones es que, en la mayoria de los sistemas,
las GPUs estan conectadas a través del bus PCI Express, lo que puede convertirse en
un cuello de botella en la transferencia de datos, limitando la velocidad de subida y
descarga entre la CPU y la GPU. A pesar de este inconveniente, las GPUs son capaces
de procesar grandes volumenes de datos en un tiempo significativamente reducido,
lo que las hace ideales para tareas que requieren el manejo de grandes cantidades de
informacion.

En esencia, una GPU es un procesador multi-ntcleo simétrico al que la CPU
accede y controla exclusivamente (Brodtkorb y cols., 2010), lo que las convierte en
un sistema heterogéneo. La GPU opera de forma asincrona con respecto a la CPU,
lo que permite la ejecucion y la transferencia de memoria simultaneas.

El campo de la computacion heterogénea abarca una amplia variedad de arqui-
tecturas y areas de aplicacion, y actualmente no existe una teoria unificada que las
integre por completo. En consecuencia, en este proyecto se emplearan plataformas
heterogéneas compuestas por una CPU y una GPU para realizar pruebas. Si bien
las capacidades especificas de cada componente varian segin la plataforma, todas
comparten una estructura general similar a la representada en la Figura 2.1.

CPU GPU
(-) ()
Moédulo [l Modulo
SIMD SIMD E-Core E-Core
P-Core P-Core
E-Core E-Core PCI express
Moébdulo @ Modulo ¢
SIMD SIMD E-Core E-Core
P-Core P-Core
E-Core E-Core
\, J \, J
Memoria principal Memoria GPU

Figura 2.1: Estructura general de una plataforma heterogénea compuesta por una
CPU y una GPU. P-Core hace referencia a los nucleos de rendimiento (performance
cores) y E-Core a los niicleos de eficiencia (efficient cores)

Capitulo 2 17

2.4 Calendarizadores

El objetivo fundamental de la multi-programaciéon es mantener la CPU ocupada la
mayor parte del tiempo, maximizando asi su utilizaciéon global y asegurando un mejor
aprovechamiento de los recursos. Por otro lado, el tiempo compartido tiene como
propoésito alternar rapidamente entre miltiples procesos dentro de un mismo ntcleo
del procesador, generando la percepciéon de ejecucion simultanea e interactiva para
los usuarios. Para lograr estos objetivos, el calendarizador de procesos desempena
un papel central: selecciona, entre los procesos listos para ejecutarse, aquel que sera
ejecutado dentro del nicleo. Es importante destacar que cada ntcleo fisico s6lo puede
ejecutar un proceso a la vez, de modo que la eficiencia del sistema depende en gran
medida de la politica de calendarizacion aplicada.

Historicamente, los calendarizadores surgieron como un mecanismo para gestionar
la competencia entre procesos en sistemas de propodsito general. Sin embargo, confor-
me la arquitectura de los sistemas ha evolucionado, desde procesadores monontcleo
hasta plataformas multinicleo, distribuidas y heterogéneas, también lo han hecho
las estrategias de calendarizacion. En la actualidad, el calendarizador no sélo deter-
mina qué proceso ejecuta la CPU, sino que ademés puede gestionar multiples tipos
de recursos: nucleos de CPU, GPUs, FPGAs, aceleradores vectoriales y procesadores
especializados, entre otros.

Diversas definiciones encontradas en la literatura describen al calendarizador como
“un modulo que implementa politicas de planificaciéon de procesos y asigna recursos
en funcion de éstas” (Coulouris, Dollimore, Kindberg, y Blair, 2005), o como “el
modulo responsable de seleccionar, entre los procesos en ejecucion, aquél que deberia
recibir el proximo intervalo de tiempo de CPU” (Silberschatz, Galvin, y Gagne, 2012).
Estas definiciones se enfocan principalmente en la asignacion de tiempo de CPU; sin
embargo, en el contexto de esta tesis es necesario ampliar esta perspectiva hacia
plataformas heterogéneas.

Tal como senalan (Sterling, Anderson, y Brodowicz, 2017) y (Jeannot y Zilinskas,
2014), el calendarizador puede verse como “el componente de un sistema de alto
rendimiento que decide cuéles son los trabajos més importantes que deben ejecutarse
a continuacion, y en qué recurso de hardware”, asi como “el componente que gestiona
la planificaciéon de tareas y la asignaciéon de recursos en funciéon de los requisitos
de rendimiento y la disponibilidad de los recursos, con el objetivo de maximizar el
rendimiento y la utilizacién de los recursos”. Estas definiciones contemplan el uso de
otro procesadores, como GPUs, FPGAs y aceleradores especializados, en el proceso de
asignacion, reflejando la importancia de distribuir eficientemente la carga de trabajo
para obtener un mejor rendimiento y una menor demanda energética.

En funcién de sus caracteristicas operativas, los calendarizadores suelen clasificarse
en dos grandes categorias: calendarizadores estéaticos y calendarizadores dinamicos.

18 Fundamentos

2.4.1 Calendarizadores estaticos

Los calendarizadores estaticos asignan las tareas a los recursos antes de que comience
la ejecucion del programa (Lavaei, Noghabi, Chen, y Xue, 2018). Este tipo de plani-
ficacion determina de manera anticipada dénde y cuando sera ejecutada cada tarea,
basandose generalmente en informacién previa del sistema, estimaciones de carga o
un modelo conocido de la aplicacion.

Entre las ventajas que ofrecen este tipo de calendarizadores se encuentran (Buyya,
Vecchiola, y Selvi, 2013; Dastjerdi, Gupta, Calheiros, Ghosh, y Buyya, 2016):

= Son méas adecuados para cargas de trabajo de alta demanda y para entornos en
los que la configuracion del hardware no cambia con frecuencia.

= Permiten un control mas preciso sobre la asignacion de recursos y los tiempos
de ejecucion.

= Resultan apropiados para aplicaciones con requisitos de tiempo real y para
cargas con alta demanda de procesamiento.

No obstante, también presentan limitaciones importantes (Sotiriades, Petraki,
Kartsakli, Souravlias, y Bouganis, 2015; Al-Khateeb, Benkhlifa, y Bounceur, 2018):

= Su rigidez dificulta la adaptacion a escenarios con variabilidad en la carga de
trabajo o cambios en la disponibilidad de recursos, lo que puede llevar a des-
equilibrios en la carga.

= Pueden derivar en un uso ineficiente del sistema si la estimacion inicial no refleja
adecuadamente el comportamiento real de las tareas.

Los calendarizadores estaticos son especialmente ttiles en entornos donde la pre-
dictibilidad es alta, pero su falta de flexibilidad limita su efectividad en plataformas
heterogéneas con cargas dindmicas.

2.4.2 Calendarizadores dindmicos

A diferencia de los estéaticos, los calendarizadores dinamicos toman decisiones en tiem-
po de ejecucion, lo que les permite adaptarse a las condiciones cambiantes del siste-
ma, variaciones en la carga de trabajo o fluctuaciones en el rendimiento del hardware
(Lavaei y cols., 2018).

Entre sus principales ventajas destacan (Sotiriades y cols., 2015; Al-Khateeb y
cols., 2018):

= Se ajustan rdpidamente a cambios imprevistos en el sistema, redistribuyendo las
tareas segun la disponibilidad real de los recursos, mejorando asi el rendimiento.

= Son especialmente efectivos en plataformas heterogéneas, donde las capacidades
de los recursos pueden diferir significativamente.

= Mejoran la eficiencia energética al asignar tareas al recurso mas adecuado en el
momento oportuno.

Capitulo 2 19

Sin embargo, también presentan ciertas limitaciones (Al-Khateeb y cols., 2018;
J. Liu, Li, Li, Qian, y Zhan, 2019):

= Requieren un mayor costo computacional, ya que implican la monitorizacion
constante del sistema y la toma continua de decisiones en tiempo de ejecucion.

= Pueden generar sobrecarga de comunicacién entre recursos o nodos, lo cual
influye en la latencia total y puede originar cuellos de botella.

A pesar de estas desventajas, los calendarizadores dindmicos son la opcién prefe-
rida en sistemas modernos de alto rendimiento debido a su flexibilidad y capacidad
de adaptacion.

2.4.3 Ejecucion secuencial y concurrente

Tanto los calendarizadores estaticos como los dindmicos pueden asignar tareas de dos
maneras principales: de forma secuencial o de manera concurrente. En la ejecucion
secuencial, las tareas se procesan una a la vez en un tnico recurso, lo que resulta
mas simple de implementar y permite un mayor control sobre los flujos de ejecu-
cion. No obstante, limita el rendimiento cuando se dispone de multiples unidades de
procesamiento.

Por el contrario, la ejecucion concurrente divide la carga en subtareas que pue-
den ejecutarse simultaneamente en distintos recursos del sistema, como los ntcleos de
CPU, GPUs o aceleradores vectoriales. Este enfoque permite obtener mejoras signifi-
cativas en el rendimiento, especialmente en aplicaciones altamente paralelizables. Sin
embargo, introduce una complejidad adicional, ya que requiere un balanceo de carga
adecuado, la coordinacién entre recursos y mecanismos para evitar que el paralelismo
genere sobrecargas innecesarias.

En entornos heterogéneos, la eleccion entre ejecucion secuencial o concurrente, asi
como el disenio del calendarizador que las gestiona, afecta directamente la eficiencia
global del sistema, el tiempo de ejecucion y el consumo energético.

En la Tabla 2.1 se ilustran los tres tipos de calendarizadores que se abordan en
este proyecto para el calculo de integrales multidimensionales en plataformas hetero-
géneas: el calendarizador estatico secuencial, el calendarizador dinamico secuencial y
el calendarizador estatico concurrente. Cada uno de ellos representa un enfoque distin-
to respecto a la asignacion de tareas y el uso de los recursos de computo, permitiendo
evaluar sus ventajas, limitaciones y su impacto en el rendimiento bajo diferentes con-
figuraciones de hardware y estrategias de paralelizacion. Asi como un cuarto tipo de
calendarizador de mayor complejidad que podria ser explorado en una tesis doctoral
futura.

A continuacién, se describen las caracteristicas y el funcionamiento de cada uno.

Calendarizador estatico secuencial

El calendarizador estatico secuencial asigna todos los puntos de integracion si-
guiendo una estrategia de planificacion fija, determinada antes del inicio de la ejecu-

20 Fundamentos

Tabla 2.1: Clasificaciéon de calendarizadores que se abordan en este proyecto de
tesis.

Calendarizador
Secuencial Concurrente
Estatico v v
Dindmico v X

cion. En este enfoque, cada grupo de puntos se distribuye de forma predeterminada,
sin realizar ajustes durante el tiempo de ejecucion.

Este tipo de calendarizador permite analizar el comportamiento base del siste-
ma de calendarizacién cuando los puntos se procesan uno a la vez, sin paralelismo
ni redistribucién dinamica. Su principal ventaja es la simplicidad, pues no requie-
re mecanismos de sincronizacién ni monitoreo del estado del sistema. No obstante,
su rendimiento se ve limitado por la falta de paralelismo y por su incapacidad para
adaptarse a variaciones en la complejidad computacional de los distintos grupos de
puntos.

Calendarizador dinamico secuencial

En contraste con el enfoque anterior, el calendarizador dinamico secuencial ajusta
en tiempo de ejecucion la asignacion de puntos. Aunque la ejecucion sigue siendo
secuencial, el calendarizador decide dindAmicamente el orden en que los puntos deben
evaluarse.

Este enfoque resulta ttil cuando los subintervalos presentan comportamientos nu-
méricos heterogéneos, permitiendo equilibrar la carga de forma adaptativa incluso en
un entorno sin paralelismo. Su desventaja principal radica en la sobrecarga introdu-
cida por la toma de decisiones en tiempo de ejecucion, la cual puede ser significativa
cuando el nimero de puntos es grande y el beneficio adaptativo es limitado.

Calendarizador estatico concurrente

El calendarizador estéatico concurrente extiende el modelo estatico hacia un en-
torno paralelo y heterogéneo. En este caso, los puntos se distribuyen entre multiples
modulos de ejecucion (secuencial, CUDA, OpenMP, AVX), siguiendo una asignacion
determinada antes de iniciar la ejecucion. Cada moédulo recibe un conjunto previa-
mente definido de puntos y los procesa de manera paralela, sin interacciéon ni recon-
figuracion durante la evaluacion.

Este enfoque permite aprovechar de forma eficiente plataformas que cuentan con
multiples recursos, reduciendo significativamente el tiempo de ejecuciéon. Sin embargo,
su desempeno depende fuertemente de que la carga esté equilibrada desde un principio.
Cuando la estimacion de la carga asociada a cada moédulo no es precisa o cuando
los recursos presentan variaciones de rendimiento, este esquema puede derivar en

Capitulo 2 21
desbalances que reducen la ganancia paralela.

Calendarizador dindmico concurrente

Como parte del trabajo a futuro, se plantea el desarrollo de un calendarizador di-
namico concurrente, el cual combinaria la capacidad adaptativa del enfoque dindmico
con el aprovechamiento simultaneo de miiltiples recursos. Este tipo de calendarizador
ajustaria la asignacion de puntos en tiempo de ejecucién, redistribuyendo los puntos
de integracion entre los moédulos disponibles conforme cambia la carga, el estado del
sistema o el rendimiento de los moédulos de ejecucion.

Un calendarizador dindmico concurrente permitiria gestionar aplicaciones en es-
cenarios heterogéneos més complejos, donde las caracteristicas del hardware pueden
variar con el tiempo o donde la distribucion estatica resulta insuficiente para garan-
tizar un balance 6ptimo de carga. Ademas, facilitaria la explotacion de paralelismo a
nivel de tareas con un control fino del rendimiento, pudiendo integrar métricas adicio-
nales como consumo energético, latencias de comunicaciéon o prioridades especificas
de los modulos de integracion.

El desarrollo de este calendarizador se plantea como parte de una tesis doctoral
futura, debido a la complejidad de los mecanismos necesarios para la toma de de-
cisiones, la coordinacién entre recursos y la integracion de politicas de reasignacion
adaptativa en tiempo de ejecucion.

2.5 'Trabajos relacionados

En esta seccion se presentan diversos trabajos relacionados con el topico de esta tesis.
Se incluyen tanto frameworks diseniados para facilitar el desarrollo de calendarizadores
de tareas en entornos heterogéneos, como propuestas concretas de calendarizadores
que emplean heuristicas o técnicas de inteligencia artificial con el objetivo de mejorar
la asignacion y ejecucion de tareas.

2.5.1 Planificador inteligente para integracién numeérica mul-
tidimensional en ambientes heterogéneos

En (Morales y Puga, 2022) se presenta el diseno, implementacion y evaluacion
de un calendarizador basado en aprendizaje automatico, cuyo objetivo es mejorar el
rendimiento en la evaluacion de integrales multidimensionales.

Para ello, el calendarizador debe ser capaz de asignar dindmicamente las tareas
a distintas arquitecturas de procesamiento heterogéneo, mediante la bisqueda tabi.
Este mecanismo permite seleccionar, en tiempo de ejecucion, el médulo mas eficiente
para cada punto de integracion.

Los resultados muestran que el calendarizador mejora significativamente el tiempo
de ejecucion, reduce los desequilibrios de carga y aprovecha de manera mas eficiente
los recursos computacionales heterogéneos. Ademés, se observa que la busqueda tabu

22 Fundamentos

proporciona una seleccion precisa y de bajo costo computacional para cada punto de
integracion. Sin embargo, dichos resultados fueron simulados, por lo que no se puede
asegurar que el calendarizador funcione de la misma manera en un entorno real.

2.5.2 FlexTensor: un framework de exploraciéon y optimiza-
cion de calendarizacién automatica para el calculo de
tensores

El articulo (Zheng, Liang, Wang, Chen, y Sheng, 2020) presenta FlexTensor, un fra-
mework para la exploracion y optimizacion de calendarizadores orientados al calculo
de tensores en sistemas heterogéneos. FlexTensor combina heuristicas con técnicas de
aprendizaje automético para generar calendarizadores de alto rendimiento capaces de
adaptarse a distintos tipos de hardware, incluyendo CPU, GPU y FPGA.

En los experimentos se probaron 12 tipos diferentes de calculos tensonriales, Flex-
Tensor demostro mejoras significativas de rendimiento en todos. En particular, obtuvo
una aceleracion promedio de 1.83x usando la GPU NVIDIA V100 contra cuDNN,
una aceleracion de 1.72x usando procesadores Intel Xeon contra MKL-DNN para el
caso de convoluciones 2D y una aceleracion de 1.5x usando la FPGA Xilinx VU9P
respecto a las lineas base de OpenCL.

2.5.3 StarPU: una plataforma unificada para la calendariza-
cion de tareas

STARPU (Augonnet y cols., 2009) es una biblioteca de calendarizacion de tareas,
disenada para arquitecturas multi-niicleo heterogéneas. Su objetivo principal es pro-
porcionar un modelo de ejecuciéon uniforme que abstrae la complejidad del hardware
y permite al programador concentrarse en la definiciéon de tareas. Para ello, ofrece
un framework de alto nivel que facilita el diseno de politicas de calendarizaciéon, asi
como una biblioteca que automatiza las transferencias de datos.

Ademés, ofrece una abstraccion de tareas descargable y unificada llamada codelet.
El codelet es capaz de gestionar multiples implementaciones especializadas de una
misma tarea para distintos componentes de una arquitectura heterogénea (e.g., una
version optimizada para GPU y otra para CPU), ademas de implementaciones pa-
ralelas (e.g., OpenMP). STARPU se encarga de determinar, calendarizar y ejecutar
las implementaciones més adecuadas en cada componente disponible, explotando al
méaximo la heterogeneidad del sistema (por ejemplo, combinando CUDA y OpenCL).
Asimismo, cuando las implementaciones lo permiten, STARPU puede ejecutar fun-
ciones en paralelo sobre varios componentes de manera simultianea, con el fin de
maximizar el rendimiento global.

Capitulo 2 23

2.5.4 Algoritmo de calendarizacién de tareas basado en apren-
dizaje por refuerzo

El articulo (Song, Li, Tian, y Song, 2023) propone un algoritmo de calendarizacion de
tareas en grafos aciclicos dirigidos (DAG) para entornos heterogéneos, combinando
aprendizaje profundo con técnicas heuristicas. El enfoque consta de tres componentes
principales: una red convolucional de grafos, una red de politicas que proponen los
autores y un algoritmo heuristico de calendarizacién. El proceso inicia enviando las
caracteristicas de las tareas a la red convolucional de grafos, la cual aprende las
propiedades estructurales del DAG y genera representaciones de alto nivel para cada
tarea. Estas representaciones se entregan a la red de politicas, encargada de seleccionar
la siguiente tarea a ejecutar. Posteriormente, la tarea elegida se asigna al procesador
més adecuado, de acuerdo con el algoritmo heuristico propuesto. Este ciclo se repite
hasta que todas las tareas han sido asignadas.

El algoritmo aprende y ajusta continuamente sus estrategias a medida que interac-
tta con el entorno, lo que permite mejorar su capacidad de decisiéon. La incorporacion
del componente heuristico contribuye a agilizar el proceso de selecciéon de procesadores
y a incrementar el rendimiento global de la calendarizacion.

2.5.5 Regla de Johnson para la calendarizaciéon de n tareas en
dos maquinas

Una de las variantes clasicas del problema de calendarizacion de tareas es la asig-
naciéon de dos maquinas para procesar un conjunto de n tareas, donde todas deben
seguir el mismo orden de procesamiento. Para este escenario, una de las estrategias
maés utilizadas es la regla de Johnson (Garey y Johnson, 1976), cuyo objetivo es mini-
mizar el tiempo de ejecucion (makespan) requerido para completar todas las tareas.

La regla de Johnson establece una forma sistematica de ordenar las tareas para
obtener la secuencia 6ptima. El procedimiento se basa en los siguientes pasos:

1. Registrar los tiempos de ejecucion de cada tarea en ambas maquinas.
2. Seleccionar la tarea con el menor tiempo.
3. Determinar la posicion del tarea asociada a ese menor tiempo:

= Si el menor tiempo corresponde a la primera méaquina, la tarea se coloca
al inicio de la secuencia.

= Si el menor tiempo corresponde a la segunda méaquina, la tarea se coloca
al final de la secuencia.

= En caso de empate, la tarea se ejecuta en la primera maquina.

4. Repetir el proceso hasta ordenar todas las tareas.

Este método garantiza una secuencia 6éptima para el caso de dos maquinas, redu-
ciendo eficazmente el makespan y mejorando el aprovechamiento del sistema.

24 Fundamentos

2.5.6 Algoritmo hibrido heuristico-genético con parametros
adaptativos para la calendarizaciéon estatica de tareas

El articulo (Ding, Wu, Xie, y Zeng, 2017) propone un algoritmo hibrido heuristi-
co—genético con parametros adaptativos (HGAAP), el cual combina un método de
calendarizacion heuristica con un algoritmo genético. Para acelerar la convergencia
del proceso evolutivo, la generacion inicial se construye utilizando un algoritmo heu-
ristico de calendarizacién comun. Ademas, las probabilidades de cruce y mutacion se
ajustan dinamicamente durante la ejecucion, con el fin de favorecer la evolucion y
encontrar una mejor solucién. El algoritmo propuesto también incorpora un meca-
nismo para eliminar individuos redundantes en cada generacion, preservando asi la
diversidad de la poblaciéon y evitando la convergencia prematura.

Los resultados experimentales, obtenidos a partir de un gran conjunto de DAGs
generados aleatoriamente, demuestran que HGAAP produce soluciones de calen-
darizaciéon superiores a las obtenidas por algoritmos de referencia, incluido HEFT
(Topcuoglu, Hariri, y W., 2002), considerado uno de los métodos heuristicos méas
efectivos para este tipo de problemas.

2.5.7 Calendarizacion de tareas

El articulo (AlEbrahim y Ahmad, 2017) propone un algoritmo de calendarizacion
que asigna las tareas, representadas en el DAG, al procesador para minimizar el
tiempo total de ejecucion, considerando la restriccion de cruce entre procesadores. El
algoritmo inicia con una fase de priorizacion, en la cual las tareas se ordenan segin
un valor de prioridad que determina su relevancia dentro del grafo y su posiciéon en la
cola de ejecucion. Posteriormente, en la fase de selecciéon de procesador, se determina
cual procesador ejecutara cada tarea de la forma maés eficiente.

Para realizar esta asignacion, las tareas se ponderan mediante un peso calculado a
partir del tiempo de ejecucion estimado para cada procesador, los costos de comunica-
cion entre tareas dependientes y el valor de priorizaciéon heredado de la tarea anterior.
En la fase de seleccion, el algoritmo introduce una decision aleatoria basada en un
umbral asociado al cruce entre procesadores, el cual se calcula considerando los costos
de comunicacion entre tareas. Este mecanismo permite evitar asignaciones subopti-
mas debidas a decisiones deterministas demasiado rigidas y mejora el equilibrio en la
distribucion de tareas.

El algoritmo fue evaluado utilizando un conjunto de 750 DAGs generados alea-
toriamente. Los resultados mostraron mejoras en el makespan de entre un 6 % y un
7% en comparacion con los algoritmos HEFT y PEFT (Arabnejad y Barbosa, 2014),
considerados referentes en la calendarizacion sobre procesadores heterogéneos. Cabe
destacar que el algoritmo propuesto mantiene la misma complejidad computacional
que estos métodos, pero logra un rendimiento significativamente superior al reducir
el tiempo total de ejecucion.

Capitulo 2 25

2.5.8 Meétodo para construir algoritmos de calendarizacién de
tareas

El articulo (S. I. Kim y Kim, 2019) demuestra que un calendarizador de tareas in-
teligente es un componente clave para mejorar tanto el rendimiento como la eficien-
cia energética en entornos con procesadores multi-niicleo heterogéneos. Se realizdé un
analisis detallado de los algoritmos de calendarizacion existentes y del entorno de
ejecucion, con el propoésito de identificar los elementos fundamentales necesarios para
disenar el mejor método de calendarizacion para un sistema de ejemplo.

A partir de este analisis, se identificaron seis componentes esenciales: la clasifica-
cion de tareas, la asignacion de procesadores, el ordenamiento de colas, la migracion
de tareas, el escalamiento dinamico de voltaje y frecuencia (DVFS), y la estrategia
de robo de tareas (work stealing). Con base en estos componentes, se evaluaron mul-
tiples combinaciones posibles para determinar cuél configuracion ofrecia los mejores
resultados.

Los experimentos demostraron que la combinacién 6éptima de componentes puede
mejorar significativamente el rendimiento global del sistema, tanto en términos de
tiempo de ejecucion como de consumo energético. Estos resultados destacan la im-
portancia de disenar calendarizadores adaptativos y conscientes de la arquitectura,
especialmente en sistemas heterogéneos donde las diferencias entre ntcleos pueden
influir de manera notable en el desempeno final.

2.5.9 Resumen de los trabajos relacionados

La tabla 2.2 compara los trabajos ya mencionados, destacando las caracteristicas por
las que son relevantes en esta tesis:

» Aprendizaje automatico: se refiere al uso de modelos o técnicas que permiten
que el sistema aprenda patrones a partir de datos para tomar decisiones o me-
jorar su desempeno. Para este contexto, puede incluir modelos predictivos para
estimar el tiempo de ejecucion, seleccionar estrategias de integraciéon o ajustar
dindmicamente los parametros de ejecucion.

= Integrales multidimensionales: indica si los trabajos relacionados consideran la
integracion multidimensional como un problema especifico dentro del proceso
de calendarizacion.

= Codelet: se refiere a la implementacion de la unidad modular encargada de
agrupar y referenciar miltiples funciones codificadas, permitiendo su gestion,
seleccion y ejecucion de forma independiente dentro de arquitecturas heterogé-
neas.

= Ejecucion secuencial: corresponde a la capacidad de ejecutar un algoritmo de
manera lineal, en un tnico hilo o ntucleo, sin recurrir a paralelismo. Esta mo-
dalidad es relevante porque proporciona una linea base para comparar optimi-
zaciones y resulta ttil en dispositivos con recursos limitados o en etapas del
algoritmo que no pueden paralelizarse.

26 Fundamentos

= Ejecucion paralela: describe la posibilidad de distribuir el calculo entre multiples
unidades de procesamiento para acelerar las tareas.

e CPU: paralelismo basado en miltiples hilos.

e GPU: miles de niicleos capaces de realizar operaciones masivas en paralelo.

e AVX: instrucciones vectoriales que permiten procesar varios datos simul-
taneamente en una sola operacion.

Este enfoque resulta especialmente tutil para acelerar el calculo de integrales
complejas y otras tareas numéricas de alta demanda computacional.

= Reducciéon de tiempo: alude a la capacidad del método, algoritmo o calendari-
zador para disminuir el tiempo total de ejecucién en comparacion con enfoques
previos o versiones no optimizadas. En los trabajos relacionados, este punto
destaca las estrategias que lograron mejoras significativas mediante paralelis-
mo, optimizaciones algoritmicas o una asignacion eficiente de tareas.

2.6 Estrategias de Inteligencia Artificial para calen-
darizadores

Como se observo anteriormente, los calendarizadores son herramientas clave para
optimizar la asignacion de recursos, la programacion de tareas y la gestion del tiempo.
Bajo este contexto, las estrategias de IA ofrecen soluciones avanzadas que superan
las limitaciones de los métodos tradicionales, permitiendo sistemas mas adaptativos,
dindmicos y capaces de aprender de la experiencia.

En esta tesis, se describiran dos técnicas de IA que seran empleas en los calenda-
rizadores desarrollados durante este proyecto: arbol de decisiones y busqueda tab.

2.6.1 Arbol de decisiones

Los arboles de decision (Kotsiantis, 2013) son modelos de clasificacion que operan
mediante una secuencia estructurada de pruebas simples. Cada prueba consiste en
comparar un atributo numérico con un valor umbral o verificar si un atributo cate-
gorico pertenece a un conjunto especifico de valores. Este enfoque genera un proceso
de decision logico y transparente.

A diferencia de los modelos de tipo caja negra como las redes neuronales, los &ar-
boles de decision ofrecen una mayor comprension. Mientras que en una red neuronal
las relaciones entre nodos se representan mediante pesos numéricos dificiles de inter-
pretar, en un arbol de decision las reglas que guian cada clasificacion son explicitas y
facilmente comprensibles. Esto facilita su analisis y validacion en los sistemas, donde
son implementados.

Un ejemplo claro y simple se puede observar en la Figura 2.2, donde cada ruta es
una regla logica:

Capitulo 2 27

Tabla 2.2: Comparacion de los trabajos relacionados.

Aprendizaje | Integrales mul- Ejecucién Ejecucién paralela | Reduccidn
Estado del arte automatico tidin%ensionales Codelet secuencial | CPU | GPU | AVX | de tiempo
Planificador in- v v v v v v
teligente para
integracién numéri-
ca multidimensional
en ambientes hete-
rogéneos (Morales y
Puga, 2022)
FlexTensor (Zheng y v v v v v
cols., 2020)
StarPU (Augonnet y v v v v v
cols., 2009)
Algoritmo de calen- v v v v

darizacién de tareas
basado en apren-
dizaje por refuerzo
(Song y cols., 2023)
Regla de Johnson v v v
para la calendari-
zacion de n ta-
reas en dos maqui-
nas (Garey y John-
son, 1976)
Algoritmo hibrido v v v
heuristico-genético
con parametros
adaptativos para
la calendarizacién
estatica de tareas
(Ding y cols., 2017)
Calendarizacién de v v v
tareas (AlEbrahim y
Ahmad, 2017)
Método para cons- v v
truir algoritmos de
calendarizacién de
tareas (S. I. Kim y
Kim, 2019)
Propuesta v v v v v v v v

= Si A es verdadero y B es verdadero — Decision 1
= Si A es verdadero y B es falso — Decision 2

» Si A es falso — Decision 3

Enfoques estadisticos, como las pruebas de hipotesis y diversas técnicas de re-
muestreo, han evolucionado en paralelo con métodos de aprendizaje automético, lo
que ha dado lugar a herramientas basadas en arboles de decisién altamente flexibles
y aplicables a una amplia gama de tareas estadisticas y de aprendizaje automaéatico.
Estos métodos destacan por su capacidad para trabajar con distintos niveles de me-
dicion y con diferentes calidades de datos, mostrando una notable robustez ante la

28

Fundamentos

(Condicién A se
cumple?
/
/
Si
4

/

e

(Condicion B se Decision 3
cumple?

/ \
Si No

/ \,
/

\
Decision 1 Decision 2

Figura 2.2: Ejemplo de un arbol de decisiones

presencia de valores faltantes. De hecho, muchas de sus variantes incorporan meca-
nismos explicitos para manejar datos incompletos en las etapas de entrenamiento y
prediccion (Shiue y Su, 2003).

Asimismo, multiples estudios han demostrado que el empleo de arboles de decision

en sistemas de calendarizacion dinamica puede mejorar de manera significativa el
rendimiento general, optimizando la asignacion de tareas y reduciendo los tiempos de
ejecucion en arquitecturas heterogéneas (Shaw, Park, y Raman, 1992; Park, Raman,

y Shaw, 1997; Arzi y laroslavitz, 2000; C. O. Kim, Min, y Yih, 2010).

Las principales ventajas de emplear drboles de decision en calendarizadores dina-

micos incluyen:

1. El conocimiento aprendido a partir de ejemplos de entrenamiento no sélo per-

mite clasificar con precision los casos previamente observados, sino que también
ofrece una elevada capacidad de generalizacion hacia instancias no vistas, man-
teniendo un desempeno consistente.

La funcién inferida puede representarse mediante un tinico éarbol de decision o
mediante un conjunto de arboles con sus respectivas reglas. Esta representacion
explicita facilita su integracion en los mecanismos de control del calendarizador
y mejora la legibilidad del modelo.

Los métodos de aprendizaje basados en arboles de decisiéon presentan una ro-
bustez notable frente a errores de clasificacién en los datos de entrenamiento,
asi como ante posibles imprecisiones en los valores de los atributos. Esto los
convierte en una opcién adecuada en entornos donde la calidad de los datos
puede variar.

Estos métodos mantienen un rendimiento adecuado incluso cuando algunos atri-
butos contienen valores faltantes o desconocidos, gracias a que incorporan es-

Capitulo 2 29

trategias especificas para manejar de manera estable la incompletitud de la
informacion.

2.6.2 Bisqueda tabt

En 1986, Fred Glover introdujo un enfoque innovador para la optimizacién combina-
toria denominado busqueda tabu (Gendreau y Potvin, 2005). Esta técnica se basa en
ampliar la exploracion mas alla de los 6ptimos locales, permitiendo realizar movimien-
tos que no necesariamente mejoran la solucion actual. Para evitar retroceder hacia
combinaciones ya visitadas, la busqueda emplea estructuras de memoria, conocidas
como listas tabt, que registran los movimientos o soluciones recientes y restringen su
reutilizacion durante un nimero determinado de iteraciones.

La buisqueda tabt puede entenderse como una evolucion de los métodos clésicos de
busqueda local, cominmente utilizados para encontrar soluciones 6ptimas en proble-
mas complejos de combinatoria. Al igual que estos métodos, la bisqueda tabi recorre
el espacio de soluciones avanzando en cada iteracién hacia una solucién vecina, defini-
da por el operador de vecindad, el cual es un conjunto de transformaciones permitidas
sobre la solucién actual. La seleccion de la siguiente solucion puede realizarse bajo
el criterio de mejor mejora (elegir la mejor entre todas las soluciones vecinas) o de
primera mejora (tomar la primera solucion vecina que mejora la funcién objetivo).

Los métodos tradicionales dependen de una mejora continua de la funcién obje-
tivo para guiar la busqueda, lo que provoca que con frecuencia queden atrapados en
optimos locales. La principal aportacion de la busqueda tabu es su capacidad para
escapar de estos 6ptimos: cuando el algoritmo detecta que ha alcanzado uno, se per-
mite avanzar hacia la mejor solucién no tabtu en la vecindad, incluso si dicha soluciéon
es peor que la actual. Para evitar ciclos, se mantiene una memoria a corto plazo
que marca ciertos movimientos o soluciones como tabu (prohibidos), a menos que se
cumplan condiciones especiales conocidas como criterios de aspiracion, que permiten
ignorar la restriccion si el movimiento lleva a una soluciéon excepcionalmente buena.

Dado que este proceso puede continuar indefinidamente, las implementaciones
practicas requieren criterios explicitos de terminaciéon. Entre los mas comunes se en-
cuentran: limitar el tiempo de ejecucion total, fijar un niimero maximo de iteraciones
o detener la busqueda después de un ntimero determinado de iteraciones sin obtener
mejoras en el mejor valor objetivo registrado.

Un ejemplo claro y simple se puede observar en la Figura 2.3, en esta se muestra
un conjunto de soluciones posibles (los nodos S1--S5) conectadas mediante aristas que
representan los movimientos permitidos entre soluciones, cada uno con un “costo”, que
puede interpretarse como: el costo de pasar de una soluciéon a otra, la calidad relativa
de la solucion vecina o la penalizacion asociada al movimiento.

La busqueda tabti comenzaria en un nodo (por ejemplo S1), luego exploraria sus
vecinos (S2 y S3), elegiria uno aun si no mejora la solucion, y prohibiria volver a un
nodo recientemente visitado mediante la lista tab.

La idea fundamental de utilizar informacion previa para guiar la busqueda en

30 Fundamentos

— \
4 \,
S1 ~ 3
\
N \
2\
. _6.—— S4
S3 ————
!
N H
A
N 1
\\ ,
5. |
N
N

Figura 2.3: Ejemplo de la bisqueda tabu

procesos de optimizacion se relaciona con los métodos desarrollados en la década
de 1970 dentro del campo de la Inteligencia Artificial (Nilsson, 1933). Es importante
mencionar que Hansen propuso, en 1986, un enfoque conceptual cercano a la busqueda
tabt, conocido como “ascenso més pronunciado/descenso méas suave” (Hansen, 1986),
el cual también empleaba estrategias para escapar de 6éptimos locales.

Glover, por su parte, no concebia la buisqueda tabt como una heuristica aislada,
sino como una metaheuristica: un marco general disenado para supervisar y dirigir
heuristicas internas, ajustindose de manera flexible a las caracteristicas particulares
del problema a resolver.

En este proyecto, se propone emplear la busqueda tabti como un componente
clave dentro del calendarizador con el objetivo de seleccionar el médulo de ejecucion
més adecuado para cada punto de la integraciéon multidimensional. Esta eleccion se
realizara de acuerdo a la cantidad de dimensiones y el nimero de puntos a evaluar.

Capitulo 3

Implementacion

Este capitulo presenta las principales extensiones desarrolladas sobre la biblioteca de
integrales multidimensionales, enfocadas en mejorar el rendimiento mediante el uso
de arquitecturas heterogéneas y técnicas de optimizacion.

En la primera seccion, se describe la biblioteca de integrales multidimensionales,
los modulos de ejecucion que la componen y como se planea expandirla. En la segun-
da seccién, se presenta la arquitectura del sistema de calendarizaciéon propuesto, se
describe de manera general cada elemento involucrado y como interactian entre si.

La tercera seccion detalla la implementacién de un nuevo moédulo de ejecuciéon
para la biblioteca, el cual aprovecha las instrucciones vectoriales AVX. Este modulo
permite procesar multiples puntos de integracion de manera simultanea dentro de cada
hilo de la CPU, incrementando la eficiencia computacional en plataformas modernas
con soporte SIMD.

En la cuarta seccién, se introduce la unidad para administrar los modulos de
ejecucion denominada codelet. Funciona como un arreglo de apuntadores a funciones
que encapsula los modulos (secuencial, CUDA, OpenMP y AVX), permitiendo su
invocacion estatica o dindmica, independiente de la estrategia de calendarizacion y
los detalles especificos de implementacion de cada modulo.

Finalmente, se implementan tres estrategias de calendarizacion: estatica secuen-
cial, dinamica secuencial y estatica concurrente; las cuales permiten seleccionar el
modulo de ejecucion méas adecuado para evaluar cada punto de la integral multidi-
mensional, con el objetivo de minimizar el tiempo total de ejecucion.

Estas contribuciones permite transformar la biblioteca base en un sistema flexible,
escalable y optimizado para su ejecucion en plataformas heterogéneas.

3.1 Introduccién a la implementacién propuesta
Este trabajo de tesis toma como punto de partida la biblioteca de integrales multi-

dimensionales (Quintero-Monsebaiz y cols., 2021), la cual estd basada en reglas de
cuadratura de Gauss-Kronrod, junto con extrapolaciones de Romberg. Lo que permite

31

32 Implementacion

obtener resultados de alta precision de manera eficiente, al aprovechar los componen-
tes de la plataforma donde se ejecute.
La biblioteca esta compuesta por tres moédulos de ejecucion principales:

= Modulo de ejecucion secuencial (SEC): ejecuta la integracion punto por punto de
forma secuencial, utilizando tinicamente un hilo de la CPU. Sirve de referencia
para comparaciones de rendimiento con los otros moédulos.

= Modulo de ejecucion paralela con OpenMP (OMP): permite dividir el trabajo
entre miltiples hilos de la CPU, reduciendo el tiempo de ejecuciéon en procesa-
dores multintcleo.

» Modulo de ejecucion paralela con GPU (CUDA): aprovecha la capacidad de pro-
cesamiento masivamente paralelo de las tarjetas gréaficas para calcular multiples
puntos simultdneamente.

Cada moédulo esta disenado para recibir como entrada el nimero de puntos y el
niumero de dimensiones de la integral (3 < dimensiones < 6). Como salida, devuelve
el valor estimado de la integral junto con el tiempo de ejecucion. Ademés, el disenio
modular de la biblioteca facilita su extension, permitiendo agregar nuevos modulos
con diferentes tecnologias de paralelizacion.

El objetivo de este capitulo es expandir la funcionalidad de dicha biblioteca, me-
diante la incorporacion de tres elementos clave:

1. Médulo de ejecucion con instrucciones vectorizadas AVX.
2. Codelet.
3. Calendarizadores.

La integracion de estos nuevos elementos permite transformar la biblioteca original
en una herramienta mas versatil, escalable y adaptada a las plataformas heterogéneas.
Donde la correcta asignacién de tareas entre CPU y GPU puede tener un impacto
significativo en el rendimiento final del sistema.

3.2 Arquitectura del sistema de calendarizacion

Dado que la biblioteca de integrales multidimensionales emplea la cuadratura de
Gauss-Kronrod, la integral se evaltia a partir de un conjunto de puntos independien-
tes. Cada punto corresponde a una evaluacion de la funcion integrando f(z), lo que
permite enviarlos de manera individual a los distintos modulos de ejecucion disponi-
bles, como se observa en la Figura 3.1.

Sin embargo, no todos los puntos presentan el mismo costo computacional, ya que
la complejidad de la evaluaciéon depende del comportamiento local del integrando. Asi-
mismo, cada modulo de ejecucion (SEC, AVX, OMP, CUDA) exhibe un rendimiento
diferente dependiendo del tipo de carga que recibe.

Capitulo 3 33

] f(x)
—
—
V,—
—
/7

>

0 1
AVX OMP SEC OMP CUDA CUDA CUDA
SEC AVX AVX OMP OMP CUDA

Figura 3.1: Integracién por puntos en los médulos de ejecucion.

Por esta razon, se implementé el uso de una estrategia de caracterizacion que
permite seleccionar el modulo de ejecucion mas adecuado para cada punto. El objetivo
es asignar cada punto al médulo que maximice su rendimiento, optimizando asi el uso
de recursos heterogéneos y mejorando la eficiencia global del proceso de integracion
multidimensional.

Para ello, se diseno el sistema de calendarizaciéon con una arquitectura modu-
lar que permite coordinar la ejecucion de los modulos de la biblioteca de integrales
multidimensionales, en funciéon de su rendimiento, usando diferentes estrategias de ca-
lendarizacion. Esta integracion se basa en la interacciéon entre tres bloques principales:
el calendarizador, el codelet y la biblioteca.

El sistema recibe como pardmetros de entrada:

El nombre de la plataforma en la que se ejecutara el calculo.

La funcién a integrar f(x), junto con sus argumentos (especificados en la seccion
3.4.1).

s F] namero de dimensiones.

= El ntimero de puntos de integracion.

A partir estos parametros, el calendarizador accede a las tablas de tiempos de eje-
cucion correspondientes a la plataforma seleccionada. Dichas tablas contienen, para
cada nimero de puntos, los tiempos estimados de ejecucion de los modulos secuen-
cial, CUDA, OpenMP y AVX (véase Seccion 4.3.1). Posteriormente, el calendarizador
identifica la tabla asociada a la dimensién de la integral y determina el modulo de eje-
cucién mas eficiente para cada punto. Finalmente, genera un identificador del médulo
seleccionado y lo envia al codelet para su ejecucion.

El codelet recibe el identificador generado por el calendarizador, junto con los
datos de entrada del sistema de calendarizacion: niimero de puntos, dimensiones y
funcién a integrar. Después, invoca directamente el moédulo de ejecucion solicitado, el
cual se encarga de calcular la integral sobre la subregion asignada. Este ciclo se repite

34 Implementacion

para cada punto de integraciéon. El resultado parcial producido por cada moédulo es
acumulado de manera controlada hasta obtener el resultado final de la integral.

El sistema entrega como salida el resultado de la integral y el tiempo de ejecucion.
En la Figura 3.2, el resultado se simboliza con la imagen de un gato realista, utilizada
tnicamente como ejemplo de una salida precisa, al ser el resultado de una integral
multidimensional.

SISTEMA DE CALENDARIZACION

Tiempo de ejecucion

Tabl =]

ablas SEC =

Bl - () £

S

&

& 5
(¢}
Entrada —
,_¢ 2 GPU o =2 Salida
Puntos y Identificador del 1 (E » 4
Dimensiones 1 moédulo de ejecucion 7) “)
f(x) CALENDARIZADOR z i ~ <

Plataforma OMP %)ﬂb\ﬂ
2 e Resultado
3 CODELET (BD de la integral

=]

z.

5

4 AVX =

2

3

Figura 3.2: Arquitectura del sistema de calendarizacion.

En sintesis, el flujo de operacion del sistema puede describirse de la siguiente
manera:

1. Se proporcionan los pardmetros de entrada: puntos, dimensiones, funcién y pla-
taforma.

2. El calendarizador accede a las tablas de tiempo y selecciona el modulo de eje-
cucion mas eficiente para cada punto.

3. Los identificadores de los modulos y los argumentos de entrada (ntmero de
puntos, dimensiones y funcion a integrar) se envia al codelet.

4. Para cada punto, el codelet invoca el modulo de ejecucion correspondiente dentro
de la biblioteca y le pasa los argumentos necesarios.

5. Los modulos ejecutan el célculo y retornan el resultado de la integral.

Esta estructura flexible permite que diferentes subregiones del dominio puedan ser
evaluadas por distintos modulos, maximizando asi el rendimiento general. El calenda-
rizador, al ser un componente modular puede ser cambiado con facilidad, seleccionado
el calendarizador (estatico secuencial, dinamico secuencial, estatico concurrente) que
mas se adapte al entorno del problema.

Capitulo 3 35

3.2.1 Detalles de la implementacién del sistema de calendari-
zacion

El sistema de calendarizacion fue implementado en el lenguaje de programacion C,

debido a su eficiencia en el manejo de memoria, control de bajo nivel y compatibilidad

con bibliotecas de paralelismo y vectorizacion.

Para habilitar la ejecucion paralela y vectorizada en los médulos y calendarizado-
res, se emplearon las siguientes bibliotecas estandar:

= omp.h: utilizada para la creacion y gestion de regiones paralelas mediante la
interfaz de programacion OpenMP. Esta biblioteca permite distribuir las ta-
reas de integracion entre multiples hilos de ejecucién en CPU, optimizando el
rendimiento en sistemas multinticleo.

» immintrin.h: empleada para el uso de instrucciones vectoriales AVX. Permi-
te realizar operaciones aritméticas sobre varios datos de manera simultanea,
reduciendo el tiempo de ejecucion.

De esta forma, el sistema logra aprovechar las capacidades de procesamiento pa-
ralelo y vectorizado disponibles en las plataformas heterogéneas, garantizando una
ejecucion eficiente y portable.

3.3 Moédulo de ejecucion AVX

El moédulo de ejecucion AVX calcula la integracion multidimensional mediante la vec-
torizacion con instrucciones AVX. Este modulo fue desarrollado como un complemen-
to para la biblioteca de integrales multidimensionales (Figura 3.3). La incorporacion
del modulo AVX responde a la necesidad de explotar el paralelismo a nivel de datos
(SIMD), disponible en las arquitecturas modernas de las CPUs. Se busca una mejo-
ra significativa en el rendimiento sin recurrir a multiples hilos, ni a componentes de
ejecucion diferentes a la CPU. Esta integracion fortalece el conjunto de herramientas
disponibles en la biblioteca, al ofrecer una opcion adicional que aprovecha capacidades
especificas del hardware.

Para desarrollar este modulo, se tom6 como base el médulo de ejecucion secuen-
cial de la biblioteca de integrales multidimensionales y se modific6 para optimizarlo
mediante las instrucciones AVX. Esto permite procesar multiples evaluaciones de la
funcion en paralelo a nivel de registro.

El diseno del modulo considera las siguientes caracteristicas:

» Flexibilidad para evaluar distintas funciones.

» Capacidad de integrarse con diversos calendarizadores sin alterar su funciona-
miento interno.

= Aceleracion mediante instrucciones SIMD para reducir el tiempo de ejecucién
sin comprometer la precision numérica.

36 Implementacion

SEC

GPU

OMP

AVX

l

SO[BUOISUSWIPNNA] SI[BIZIIUT 9P BIAOIQIE

Figura 3.3: Incorporaciéon del modulo de ejecucion AVX a la biblioteca de integrales
multidimensionales.

Este modulo representa un ejemplo claro de como las técnicas de optimizacion a
nivel de hardware pueden ser aplicadas a algoritmos numéricos clasicos para mejorar
su desempeno en escenarios de alto costo computacional.

3.3.1 Arquitectura del médulo de ejecucion AVX

Para comprender la arquitectura del modulo de ejecuciéon AVX, primero es necesario
explicar el funcionamiento del médulo secuencial, el cual es la base. Este médulo se
disené como una estructura genérica capaz de evaluar integrales multidimensionales
mediante el método de cuadratura de Gauss—Kronrod. Su funcionamiento consiste en
recorrer todos los puntos de integracion en cada dimension, multiplicando el valor de
la funcion evaluada en dichos puntos por los pesos correspondientes de la cuadratura.
El moédulo esta conformado por cuatro funciones: SEC3D, SEC4D, SEC5D y SEC6D,
cada una corresponde a una dimension fija DIM (donde 3 < DIM < 6). Estas funcio-
nes estan implementadas mediante bucles for anidados, donde cada bucle representa
una dimension de la integral. Para realizar la integracion, se recorren los indices de
todos los bucles (Tabla 3.1); al llegar al bucle méas interno, se evalta la funcién para
cada punto y se acumula el resultado, multiplicado por los pesos correspondientes’.
La estructura general de cada funcion es la siguiente: SEC3D corresponde a tres
dimensiones y, por lo tanto, estd compuesta por tres bucles anidados (Figura 3.4a);
SEC4D corresponde a cuatro dimensiones y contiene cuatro bucles (Figura 3.4b); SEC5D
corresponde a cinco dimensiones y contiene cinco bucles (Figura 3.4c¢); y SEC6D co-

'Los pesos de cuadratura unidimensional se utilizan para aproximar el valor de la integral; su
producto entre dimensiones pondera cada término de la suma y permite convertir la suma discreta
en una aproximacion de la integral continua.

Capitulo 3 37

rresponde a seis dimensiones, por lo que incluye seis bucles (Figura 3.4d).

Tabla 3.1: Relacion de dimensiones (bucles) e indices.

Dimensiones | Indices
1 i
2 J
3 k
4 |
5 m
6 0
1 for i do
// Primera dimensién
2 for j do
1 for i do // Segunda dimensién
// Primera dimensién 3 for k do
2 for j do // Tercera dimensién
// Segunda dimensién 4 for | do
3 for k do // Cuarta dimensién
// Tercera dimensién 5 Evaluaciéon de la integral
4 ‘ Evaluaciéon de la integral 6 end
5 end 7 end
6 end 8 end
7 end 9 end
(a) SEC3D (b) SEC4D
1 for i do
// Primera dimensién
2 for j do
1 for i do // Segunda dimensién
// Primera dimensién 3 for k do
2 for j do // Tercera dimensién
// Segunda dimensién 4 for | do
3 for k do // Cuarta dimensién
// Tercera dimensién 5 for m do
4 for I do // Quinta dimensién
// Cuarta dimensién 6 for o do
5 for m do // Sexta dimensidén
// Quinta dimensién 7 Evaluacién de la integral
6 Evaluacién de la integral 8 end
7 end 9 end
8 end 10 end
9 end 11 end
10 end 12 end
11 end 13 end
(c) SEC5D (d) SEC6D

Figura 3.4: Funciones del médulo de ejecuciéon secuencial.

El algoritmo del médulo secuencial recibe como entrada:

= x[]: arreglo de puntos unidimensionales utilizados por la cuadratura.
= w[]: arreglo de pesos asociados a los puntos, uno por cada punto.

= n: numero de puntos de integracion.

n

xfunction: apuntador a la funcién a integrar.

Dado que todas las funciones siguen el mismo esquema, variando tinicamente en
el namero de dimensiones y, por ende, en la profundidad de los bucles, se tomé como

38 Implementacion

ejemplo la funcién SEC6D para explicar la implementacion del modulo de ejecucion
secuencial. El Algoritmo 1 muestra la estructura general de dicha funcion.

Algoritmo 1: Calculo de integrales multidimensionales usando el médulo
de ejecucion secuencial - 6 Dimensiones
Entrada: arreglo de puntos unidimensional x[], arreglo de pesos w[],
nimero de puntos n y apuntador a funciéon *function
Salida: valor aproximado de la integral sum
1 Inicializar sum < 0;
// Cada bucle interno corresponde a una dimensién adicional (max. 6D)
2 fori=0ton—1do

// Primera dimensién

w; < wli]; [0] < ¢

for j=0ton—1do

// Segunda dimensién
s || wy e wll il < s
6 for k=0ton—1do
// Tercera dimensién
7 wg < wlkl; 2] < k;
8 fori=0ton—1do
// Cuarta dimensién
9 wy < wll]; i3] « [
10 for m=0ton—1do
// Quinta dimensién
11 Wy, < wm|; 1i[4] < m;
12 foro=0ton—1do
// Sexta dimensién

13 W, < wlol; #i[5] < o;
14 Evaluar func < (xfunction)(x,ii, DIM);
15 sum 4— sum + func - w; - w; - W - Wi - Wy, - Wo;
16 end
17 end
18 end
19 end
20 end
21 end

22 return sum;

El bucle mas interno es la parte central del algoritmo (lineas 12-16), ya que en
él se evalia la funciéon function(x, i, j, k, 1, m, o, DIM) para obtener el valor
del integrando f(xX; jk1m.0), correspondiente al punto cuyas coordenadas estan deter-
minadas por los indices ¢, 7, k, [, m, 0, los cuales representan una posiciéon dentro de la
malla multidimensional. Una vez obtenido este valor, se multiplica por el producto

Capitulo 3 39

de los pesos asociados y el resultado se acumula en la variable sum.

Al finalizar todos los bucles, la funcién devuelve el valor de sum como aproximacion
de la integral en la region considerada. Dependiendo del niimero de dimensiones, el
ntmero de indices y pesos involucrados varia de manera correspondiente.

En el Algoritmo 1:

» wi, wj, wk, wD: representan los pesos de cuadratura unidimensional.
= DIM: representa el nimero de dimensiones.

= ii[]: representa el vector de coordenadas del punto de integraciéon dentro de la
malla multidimensional.

El moédulo secuencial constituye la base conceptual y funcional sobre la que se
construyo el modulo de ejecucion AVX. A partir de su estructura, se implementaron
optimizaciones que permiten aprovechar el paralelismo a nivel de datos sin modificar
la l6gica de célculo original.

Detalles de la implementaciéon del médulo de ejecucion AVX

La paralelizacion a nivel de datos, en el modulo AVX, se realiz6 utilizando registros
vectoriales de 256 bits, los cuales permiten trabajar con vectores de cuatro nimeros
de punto flotante de doble precision (double). Esto significa que se puede realizar una
misma operacion aritmética sobre cuatro datos double en un sélo paso de la CPU.

La funciones del médulo de ejecucion secuencial (SEC3D, SEC4D, SEC5D, SECED)
se reorganizaron para operar en bloques de cuatro puntos simultaneamente, aprove-
chando los registros vectoriales de 256 bits (__m256d).

Para explicar este proceso, nuevamente se toméd como ejemplo la funcion SECED
(Algoritmo 2). La entrada y la salida de la funcién permanecen sin cambios respecto
al modulo de ejecucion secuencial.

El bucle mas interno, al ser la parte central del algoritmo, fue el que se modifico
(lineas 14-25). Dicho bucle recorre los puntos en bloques de cuatro, dentro de él se
incorpora un nuevo bucle que itera sobre esos cuatro puntos de manera secuencial
para evaluar la funcion (*function) () de forma escalar (lineas 15-18), almacenando
cada resultado en el arreglo func [p].

Luego, estos valores, junto con los pesos o, se cargan en registros vectoriales me-
diante la instruccion _mm256_loadu_pd (lineas 19 y 20).

A continuacién, se calcula el producto total de los pesos asociados a los bucles
exteriores (wprod < wi - wj - wk - wl - wm)y se construye un vector con cuatro
réplicas de este valor utilizando la instruccion _mm256_set1_pd (linea 21). Dicho
vector se multiplica elemento por elemento por el vector de pesos o mediante la
instruccion _mm256_mul_pd, obteniendo asi los pesos completos correspondientes al
bloque procesado (linea 22).

w_avx < _mm256_mul_pd(wk_avx, _mm256_setl_pd(wprod))

40

Implementacion

Algoritmo 2: Calculo de integrales multidimensionales usando el médulo de ejecuciéon
AVX - 6 Dimensiones

10
11

12
13
14

15
16
17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33
34

Entrada: arreglo de puntos unidimensional x[], arreglo de pesos w[], nimero de puntos n
y apuntador a funcién *function
Salida: valor aproximado de la integral sum
Inicializar sum < 0;
aligned — flOOT(n/4) -4 /* Maximo miltiplo de 4 para vectorizacién */
// Cada bucle interno corresponde a una dimensién adicional (méx. 6D)
fori=0ton—1do
// Primera dimensién
w; <— wli]; 4[0] ¢
for j=0ton—1do
// Segunda dimensién
wy e wlfl; 1]
for k=0ton—1do
// Tercera dimensién
wy, — wlk]; 42 + k
for{=0ton—1do
// Cuarta dimensidon
wy w(l]; i3] 1
for m=0ton—1do
// Quinta dimensidn
Wy, < w[m]; ii[4] < m
Inicializar sum_avx[] —0; /* Registro vectorial acumulador */
for 0 =0 to aligned — 1 step 4 do
// Evaluar escalarmente 4 puntos consecutivos de la integral
for p < 0 to 3 do
ii[5] < o + p;
Evaluar func[p] < (xfunction)(z, i, DIM);
end
// Cargar bloques en registros vectoriales
func_avx < mm?256 loadu pd(func); /* Cargar los cuatro
valores del integrando */
we_avx < _mm256_loadu_pd(wlo: 0+ 3]) ; /* Carga los cuatro
pesos de o */
// Multiplicar y acumular en vector
’LUpTOd S Wi Wy WE =W - Wy, - Wo 5 /* Producto de pesos exteriores
*/
w_avx <+ _mm256_mul_ pd(w, ave, mm256_setl pd(wprod)) ;
/* Multiplica y carga wprod - wo_avx */
prod_ave < _mm256_mul_pd(func_ave,w avx)
sum_avx <+ _mm256 _add_pd(sum__avz,prod__avr)

end
// Reducir acumulador vectorial a escalar
for p<+ 0 to 3 do
| sum < sum + sum_avz[p];
end

end

end

end

end

end
return sum;

Capitulo 3 41

Posteriormente, se realiza la multiplicacién entre el vector que almacena los valores
evaluados de la funcion y el vector de pesos (linea 23).

prod_avx < _mm256_mul_pd(func_avx, w_avx)

Finalmente, los resultados ponderados se acumulan en la variable sum, represen-
tando la suma parcial de los valores obtenidos (lineas 24-28).

Las otras tres funciones (SEC3D, SEC4D, SEC5D) siguen exactamente el mismo
procedimiento, variando tnicamente en la profundidad de los bucles y en la cantidad
de dimensiones que procesan.

En el Algoritmo 2:

» wi, wj, wk, wl, wm, wo:representan los pesos de cuadratura unidimensional.
= DIM: representa el nimero de dimensiones.
= n: representa el nimero de puntos de integracion.

= ii[]: representa el vector de coordenadas del punto de integracion dentro de la
malla multidimensional.

= wprod: representa el producto parcial de pesos exteriores.
= sum: representa el acumulador escalar final del resultado.

= func[4]: representa el bufer temporal que guarda cuatro evaluaciones escalares
consecutivas de function.

» aligned: representa el mayor multiplo de 4 menor o igual que n; determina
hasta dénde se puede vectorizar.

= wk_avx, func_avx, w_avx, sum_avx: representa los registros __m256d usados
para cargas y computo vectorial.

3.4 Codelet

El codelet implementado en esta tesis actiia como una unidad de ejecucion modular,
permitiendo la seleccion estatica o dindmica del médulo de ejecucion a utilizar durante
el proceso de calendarizacion. Este enfoque favorece la reutilizacion del codigo, la
extensibilidad del sistema de calendarizaciéon y la independencia entre la logica de
calendarizacion y la biblioteca de integrales multidimensionales.

En términos funcionales, el codelet actiia como un vector de apuntadores a funcio-
nes (Figura 3.5), donde cada funcion representa una estrategia distinta (modulos de
ejecucion) para calcular integrales multidimensionales. De esta manera, el calendari-
zador no requiere conocer los detalles internos de cada implementacion; simplemente
envia un identificador numérico que representa el moédulo mas adecuado para cier-
to punto de integracion y el codelet se encarga de redirigir la ejecuciéon al modulo
correspondiente.

Esta arquitectura facilita la integracion con multiples tecnologias, desde un en-
foque secuencial basico hasta implementaciones optimizadas en CUDA, OpenMP y
AVX, sin alterar la estructura de la biblioteca, ni los calendarizadores.

42

codelet[1]

codelet[2]

codelet[3]

codelet[4]

Ay

—

funcionl1()

)

funcion2()

—

funcion3()

—
—

funcion4()

—

Figura 3.5: Codelet general.

3.4.1 Arquitectura del codelet

Implementacion

Como se explico previamente, el codelet fue implementado como un vector de apun-
tadores a funciones, donde cada funcion representa un modulo de ejecucion (Figura
3.6). Todos los médulos comparten los mismos argumentos y reciben los pardmetros
necesarios para realizar la integracion sobre una region especifica del dominio mul-
tidimensional. Al ser invocado el médulo ejecuta el procedimiento correspondiente y
devuelven como salida el valor numérico resultante de la integracion.

Entrada

Identificador
del modulo
de ejecucion

CODELET

SEC

GPU

OMP

AVX

SO[EUOISUSWIPNNA SA[BIZIU] 9p ©IAOIqIg

Figura 3.6: Codelet del sistema de calendarizacion propuesto.

Capitulo 3 43

Para ello, se defini6 el codelet como un tipo de dato mediante la instruccién:

typedef double (*codelet) (doublex,int,int,int,double,double,double);

Esta declaracion especifica que cada elemento de tipo codelet es un apuntador
a un modulo que devuelve un valor de tipo double (el cual almacena el tiempo de
ejecucion) y recibe los siguientes argumentos:

= double *: apuntador a una variable donde se almacenaré el resultado parcial
de la integral.

» int: identificador de la funcion a integrar (func_id) dentro del conjunto de
pruebas del benchmark (F1, F2, F3, F4 o F5).

» int: nimero de dimensiones (DIM).

» int: ntimero de puntos de integracion (POINTS).

» double: limite inferior del dominio de integracion (X1).

» double: limite superior del dominio de integracion (X2).

» double: tolerancia de error permitida (ERR).

En la funcién principal del sistema de calendarizacion, se declara el arreglo GL[]

que contiene las referencias a las funciones correspondientes a cada modulo de ejecu-
cion. Cada posicion del arreglo representa un modulo de ejecucion.

codelet GL[] <« GL_SEC, GL_CUDA, GL_OMP, GL_AVX;

El codelet selecciona el moédulo a ejecutar, a través de un identificador (Tabla 3.2).

Tabla 3.2: Asignacién de modulos en el codelet.

Identificador | Médulo de ejecucion
0 Secuencial
1 CUDA
2 OpenMP
3 AVX

Durante la ejecucion del sistema de calendarizacion, el calendarizador se encarga
de seleccionar el médulo mas adecuado para cada punto de integracion y lo almacena
en la variable mod_id (identificador). Al invocar al codelet, el calendarizador le pasa
el identificador como argumento, permitiendo que el sistema acceda al apuntador
correspondiente dentro del vector de funciones y redirija automaticamente la ejecucion
al modulo seleccionado, mediante:

GL[mod_id] (&sum, func_id, DIM, POINTS, X1, X2, ERR);

En esta llamada:

= mod_id: indica el médulo de ejecucion seleccionado.

44 Implementacion

= &sum: es un apuntador donde se almacena el resultado parcial de la integral en
una subregion.

= func_id: identifica la funciéon del benchmark a integrar.

= DIM, POINTS, X1, X2 y ERR: proporcionan los parametros necesarios para el célcu-
lo de la integral.

En resumen, el codelet funciona como un puente abstracto entre los calendariza-
dores y los modulos. Ademas, permite una ejecucion flexible, limpia y eficiente de los
modulos implementados. Este enfoque ofrece algunas ventajas:

= Modularidad: cada implementacion puede desarrollarse y probarse de manera
independiente.

» Extensibilidad: agregar un nuevo moédulo sélo requiere incluir su apuntador y
definir su légica interna.

= Simplicidad de uso: el calendarizador delega completamente la ejecucion sin
preocuparse por los detalles del entorno heterogéneo.

3.5 Calendarizadores

El problema de la calendarizacion de tareas, aplicado en este contexto, consiste en
decidir como asignar en qué modulo se evaluara cada punto o par de puntos de la
integral, buscando minimizar el tiempo total de ejecucion sin comprometer la precision
numeérica.

Cuando se dispone de plataformas heterogéneas el tiempo de ejecucion de la misma
tarea puede variar significativamente de un componente a otro. Un calendarizador
eficiente es clave para aprovechar al maximo los recursos disponibles, equilibrar la
carga de trabajo y garantizar resultados confiables en el menor tiempo posible.

En esta tesis se implementaron y compararon tres calendarizadores para calcu-
lar las integrales multidimensionales, y se propone un cuarto enfoque como trabajo
futuro:

» Calendarizador estatico secuencial: asigna de forma fija el médulo méas adecuado
para cada punto de integracion en funcion de datos de rendimiento previamente
obtenidos.

» Calendarizador dinamico secuencial: toma decisiones en tiempo de ejecucion,
lo que permite adaptarse a condiciones cambiantes del sistema. Esto mejora la
utilizacion de los recursos frente al estatico, aunque con un coste adicional de
gestion.

= Calendarizador estatico concurrente: extiende el modelo secuencial estatico con-
siderando la evaluacion por pares de los puntos de integracion y buscando com-
binaciones 6ptimas en distintas plataformas para aprovechar la paralelizacion
entre modulos heterogéneos.

Capitulo 3 45

» Calendarizador dindmico concurrente: combina la asignacion dinamica y la eje-
cucion concurrente. La idea es ajustar la planificacion en tiempo de ejecucion
mientras se coordinan varios grupos de puntos de la integral en paralelo sobre
diferentes dispositivos, con el fin de maximizar el rendimiento en escenarios he-
terogéneos mas complejos. Sin embargo, en este trabajo de tesis no se aborda
este calendarizador, solo se propone como un trabajo a futuro.

Esto permite analizar como varia el desempeno y la eficiencia al aplicar distintas
estrategias de calendarizacion sobre un conjunto de integrales multidimensionales y, al
mismo tiempo, sentar las bases para un modelo méas avanzado que podria explorarse
en un proyecto de doctorado.

3.5.1 Estatico secuencial

El calendarizador estatico secuencial fue disenado como la estrategia mas simple y
directa para asignar tareas de integracion en el sistema de calendarizacion. Su funcio-
namiento se basa en una politica de planificacion, en la que se determina de antemano
qué modulo de ejecucion (secuencial, CUDA, OpenMP o AVX) es el mas eficiente pa-
ra evaluar cada punto de integracion, basandose en los tiempos de ejecuciéon de cada
modulo que fueron previamente recolectados y almacenados en tablas, cada una de
estas tablas presenta los tiempos de ejecucion correspondientes a cada punto dentro
del intervalo [1, 40]. La seccion 4.3.1 aborda con mas detalle estas tablas.
El calendarizador recibe como entrada los siguientes argumentos:

= PLAT: nombre de la plataforma.
s DIM: nimero de dimensiones.

= n: nimero de puntos de integracion.

Durante la fase de inicializaciéon, el algoritmo del calendarizador selecciona la
tabla que corresponde a la plataforma y al nimero de dimensiones que recibié como
entrada, cada fila contiene los tiempos correspondientes a los distintos modulos de
ejecucion para un numero determinado de puntos. El algoritmo compara estos valores
y almacena el identificador del médulo, que reporta el menor tiempo de ejecucion en
cada caso, en el arreglo array.

El tamano del arreglo es igual al nimero total de puntos (en este caso, 40). Cada
posicion de este arreglo representa un punto de integraciéon especifico y su contenido
corresponde al identificador del moédulo que debe ejecutar el calculo de la integral
en dicho punto. Esta estructura permite que, durante la ejecucion, el sistema de
calendarizacion consulte directamente el arreglo para invocar el moédulo més eficiente
sin realizar comparaciones adicionales en tiempo de ejecucion.

El Algoritmo 3 ilustra el proceso principal de esta planificacion. Donde:

= n: representa el nimero de puntos de integracion.

= m: representa el ntiimero de modulos de ejecucion disponibles (secuencial, CUDA,
OpenMP y AVX).

46 Implementacion

» array[n]: almacena el identificador del moédulo que reporta el menor tiempo
de ejecucion para cada punto.

Algoritmo 3: Seleccion del médulo mas adecuado por ntimero de puntos

Entrada: nombre de la plataforma PLAT, nimero de dimensiones DIM,
nimero de puntos de integracion n
Salida: arreglo con los identificadores de los moédulos més adecuados por
punto array[]

1 Construir el nombre del archivo: f name <— PLAT/DIM txt;

2 Leer el archivo f time;

3 Reservar memoria para array de tamano n;

4 fori<0ton—1do

5 k <+ 0;

6 Leer el primer valor de la fila y asignarlo a m_wval;
7 for j < 1tom—1do

8 Leer el siguiente valor de la fila y asignarlo a val;
9 if val <m_wal then

10 m_val < val,

11 k + 7;

12 end

13 end

14 arrayli] < k;
15 end

16 Cerrar el archivo f_time;

Evaluacién en pares de la integral multidimensional usando el calendari-
zador estatico concurrente

Una vez completada esta etapa, la funciéon principal del sistema de calendarizacion
inicia el proceso de evaluacion de la integral multidimensional (Algoritmo 4). Para
ello, se recorre cada punto de integraciéon mediante un ciclo for. En cada iteracion,
para el punto i, se consulta en el arreglo array[i] qué moédulo de ejecucion debe
encargarse del calculo; el identificador obtenido se almacena en la variable mod_id.

Con el identificador, el codelet (GL[]) invoca al modulo con los parametros nece-
sarios para su ejecucion:

= sum: variable para acumular resultado parcial de la integracion.
» func_id: identificador de la funcién.

= DIM: dimension de la integral.

i+1: indice del punto actual.

X1 y X2: limites de integracion.

ERR: error tolerado.

Capitulo 3 47

El resultado parcial correspondiente se guarda en el arreglo t[] para su posterior
analisis.

Algoritmo 4: Evaluacion punto a punto de la integral multidimensional

usando el calendarizador estatico secuencial
Entrada: namero de puntos n, arreglo de los identificadores de médulos

array[], parametros de integraciéon sum, func_id, DIM, n, X1,
X2, ERR
Salida: resultados parciales de la integral t[]
for i<~ 0ton—1do
mod__id < arrayli];
GL[mod_id|(&sum, func_id, DIM,i+ 1, X1, X2, ERR);
Guardar el resultado parcial en t[i - n] < sum;
end

s W N =

En este proceso:

» array[i]: indica qué médulo de ejecucion debe calcular la integral para el punto
1.

» GL[mod_id]: invoca modulo de ejecucion (SEC, CUDA, OMP, AVX) correspon-
diente (véase Seccion 3.4.1).

De esta manera, el calendarizador estatico secuencial garantiza que cada punto de
integracion sea procesado por el moédulo méas adecuado.

Este calendarizador no realiza ningtin anéalisis dindmico en tiempo de ejecucion,
lo que lo hace ideal en situaciones donde el comportamiento computacional de los
modulos es predecible y las condiciones de ejecucion no varian significativamente.

Esta estrategia presenta las siguientes ventajas:

= Bajo costo computacional: no se requieren decisiones en tiempo de ejecucion.
= Determinismo: la asignacion de modulos es fija y repetible.
» Simplicidad de implementacién: no requiere sincronizacién ni estructuras de

control complejas.

Sin embargo, su principal desventaja radica en su incapacidad para adaptarse a
cambios en el entorno de ejecucion, lo cual puede derivar en subutilizacion de recursos
si las condiciones reales difieren de las medidas durante la generacion de la tabla, en
otras palabra, no se aprovecharia al méximo la capacidad potencial de cada modulo.

3.5.2 Dinadmico secuencial

El calendarizador dindamico secuencial presenta una estrategia similar al calendariza-
dor estatico secuencial, con la diferencia fundamental de que no realiza una planifica-
cion previa completa. En lugar de almacenar los identificadores de los modulos antes

48 Implementacion

de la ejecucion, este calendarizador mantiene en memoria una copia completa de la
tabla con los tiempos de ejecucion, y realiza la comparacion cada vez que el code-
let solicita una nueva evaluacion durante las iteraciones del bucle for en la funcién
principal del sistema de calendarizacion.

El calendarizador recibe como entrada los mismos argumentos que el calendariza-
dor estatico secuencial: nombre de la plataforma, niimero de dimensiones y nimero
de puntos de integracion. En la fase de inicializacion (Algoritmo 5), lee y almacena en
memoria la tabla con los tiempos de ejecucion, lo que le permite al sistema comparar
estos valores de forma dindmica durante la evaluacion de la integral, con el fin de
seleccionar el médulo méas adecuado en cada punto.

Algoritmo 5: Inicializacion del calendarizador dinamico secuencial

Entrada: nombre de la plataforma PLAT, nimero de dimensiones DIM,
nimero de puntos de integraciéon n
Salida: tabla de tiempos almacenada en memoria table []

1 Construir el nombre del archivo: f name < PLAT/DIM txt;
2 Leer el archivo f time;

3 Reservar memoria para la matriz table[n - m;

4 fori+0ton—1do

5 for j < 0tom—1do

6 | Leer valor desde el archivo y almacenarlo en tableli][5];
7 end

8 end

9

Cerrar el archivo f_time;

En este proceso:

= n: representa el niimero de puntos de integracion.

» m: representa el nimero de modulos de ejecucion disponibles (secuencial, CUDA,

OpenMP y AVX).

» table|n - m|: almacenada la tabla con los tiempos de ejecucion.

El proceso de evaluacion de la integral, en la funciéon principal del sistema de ca-
lendarizacion (Algoritmo 6), es casi igual al proceso del Algoritmo 4. Sin embargo,
a diferencia del calendarizador estatico secuencial que usa un arreglo, este calendari-
zador invoca de forma dindmica una funciéon especializada: sched() (Algoritmo 7).
Esta funcion recibe como entrada el punto de integracion i que sera evaluado y con
base en la tabla almacenada en memoria, determina el médulo méas adecuado para la
ejecucion, devolviendo a la salida el identificador de dicho moédulo para almacenarlo
en la variable mod_id.

Para ello, la funcion sched () selecciona, dentro de la tabla de tiempos table[], la
fila i correspondiente al punto de integracion recibido como entrada. Luego, mediante
un bucle, compara los tiempos registrados para cada médulo en dicha fila y selecciona

Capitulo 3 49

Algoritmo 6: Evaluacion punto a punto de la integral multidimensional
usando el calendarizador dindmico secuencial
Entrada: numero de puntos n, parametros de integraciéon sum, func_id,
DIM, n, X1, X2, ERR
Salida: resultados parciales de la integral t[]
1 fori+0ton—1do
2 mod__id < sched]i];
3 GL[mod_id|(&sum, func_id, DIM,i+ 1, X1, X2, ERR);
4 | tli-n] < sum;

5 end

aquel con el menor tiempo de ejecucion; este modulo sera el encargado de evaluar la
integral en el punto i. El valor retornado, mod, indica el identificador que recibira el
codelet durante el proceso de evaluacion de la integral.

El Algoritmo 7 muestra la implementacion de la funcién sched(i). Donde:

= n: representa el punto solicitado en la region actual.

» m: representa el nimero de modulos de ejecucion disponibles (secuencial, CUDA,
OpenMP y AVX).

table[n - j]: contiene el tiempo estimado para el moédulo de ejecucion j en el
punto n.

mod: representa el identificador del modulo con el menor tiempo para ese punto.

Algoritmo 7: Seleccion dindmica del médulo mas adecuado: sched ()

Entrada: numero del punto de integracion n, nimero de moédulos m, tabla
con los tiempos de ejecucion table[]
Salida: identificador del modulo de ejecuciéon mod
i < table[n][0];
mod < 0;
for j <1 tom do
if table[n][j] < i then
i < tableln][j];
mod < j;
end
end
return mod;

© 0w N o oA W N =

Este enfoque evita la necesidad de generar un arreglo auxiliar, como en el ca-
lendarizador estatico, y permite una toma de decisiones mas ajustada al contexto
inmediato de ejecucion.

Esta estrategia presenta las siguientes ventajas:

50 Implementacion

= Mayor adaptabilidad: se selecciona el moédulo méas adecuado en el momento
preciso en que se requiere.

= Reutilizacion de la tabla completa: permite evaluar nuevos escenarios sin generar
el arreglo auxiliar.

Sin embargo, la estrategia no esta exenta de desventajas:

= Sobrecarga ligera: al hacer comparaciones cada vez que se requiere un calculo,
se incurre en un pequeno costo adicional respecto al enfoque estatico.

= Requiere acceso constante a memoria: es necesario mantener la tabla de tiempos
en memoria para acceder a ella en cada evaluacion.

En resumen, el calendarizador dinamico secuencial ofrece un balance entre simpli-
cidad y adaptabilidad, siendo especialmente ttil en escenarios donde la distribucion
de cargas es irregular o donde las decisiones deben responder a condiciones cambiantes
en la ejecucion.

3.5.3 Estatico concurrente

En el calendarizador estatico concurrente, al igual que el calendarizador estatico se-
cuencial, la distribucion de las tareas se realiza de forma predeterminada antes de
la ejecucion y se mantiene fija durante todo el proceso, no varia dinamicamente en
funcion de la carga. Sin embargo, la diferencia radica en su disefio, que aprovecha la
ejecucion concurrente de tareas en plataformas heterogéneas, siguiendo un enfoque
similar a la regla de Johnson (Garey y Johnson, 1976) para calendarizacion en parejas.

Con el objetivo de aprovechar la concurrencia a nivel de tareas, se implemento
un esquema de ejecucion por lotes de dos puntos (pares) con espera activa. En cada
iteracion del bucle for de la funcién principal del sistema de calendarizacion (Algo-
ritmo 8), se seleccionan dos puntos consecutivos de la integral multidimensional y se
organiza la ejecucion para calcular la integral en esos puntos, mediante la creacion de
dos hilos independientes usando OpenMP.

Para evitar conflictos de acceso a recursos compartidos, se crean candados (locks)
independientes para cada médulo de ejecucion disponible. Estos candados garantizan
exclusion mutua en el uso de los recursos, evitando conflictos cuando dos hilos intentan
acceder simultaneamente al mismo moédulo.

Antes de iniciar la evaluaciéon de un punto, el hilo correspondiente intenta adquirir
el candado del modulo asignado:

= Si el modulo esté libre, el candado se adquiere de inmediato y el hilo comienza
la evaluacion del punto.

= Si el modulo ya esta ocupado, el hilo debe esperar hasta que el candado sea
liberado. De este modo, se garantiza que dos puntos asignados al mismo mo-
dulo se ejecuten de forma secuencial, incluso dentro de un bloque que intenta
ejecutarse de manera concurrente.

Capitulo 3 51

Este comportamiento reproduce una espera activa controlada sobre el modulo,
pero sin bloquear el avance de otras tareas en moédulos diferentes.

El calendarizador inicializa los candados correspondientes a cada modulo (lineas
1-3):

for 10 to m—1 do
Inicializar candado mod_lock[i];

donde m: representa el niimero de moédulos de ejecucion disponibles (secuencial, CU-
DA, OpenMP y AVX).

Después, se lanza una region paralela de OpenMP con dos hilos, cada uno res-
ponsable de procesar diferentes puntos de integracion (linea 6). El acceso al siguiente
punto a procesar se controla mediante una operacién atémica, de modo que cada hilo
obtiene un identificador tnico sin riesgo de colisiones:

#pragma omp atomic capture
{ idx < next_idx; next_idx++; }

Para cada punto de integracion (lineas 7-12):

= Se consulta el modulo asignado en el arreglo array[idx].

= Se adquiere el candado correspondiente al moédulo antes de su ejecuciéon. Si el
modulo esta ocupado, el hilo debe esperar activamente hasta que el candado
sea liberado.

= Una vez que el modulo esta disponible, se ejecuta la funcién correspondiente
mediante el codelet (GL[mod_id] (...)).
= Se libera el candado para que otro hilo puedo acceder al médulo.

= Kl resultado parcial local_sum se almacenan en el arreglo global t[].

Finalmente, al concluir la ejecucién de todos los puntos, los candados se destruyen
para liberar los recursos asociados (lineas 14-16):

for 10 to m—1 do
Destruir candado mod_lock[i];

Este mecanismo permite que el sistema de calendarizacion ejecute de manera
concurrente distintos puntos de integracién sobre modulos diferentes, manteniendo
la coherencia en el uso de los recursos. De esta forma, se logra una concurrencia
controlada sin introducir condiciones de carrera o bloqueos innecesarios. El Algoritmo
8 muestra la implementacion de lo descrito anteriormente. Donde:

= idx: representa el identificador del hilo, que a la vez esta asociado al punto de
integracion.
= n: representa el nimero de puntos de integracion.

= m: representa el ntiimero de modulos de ejecucion disponibles (secuencial, CUDA,
OpenMP y AVX).

52

Implementacion

array[i]: indica qué modulo de ejecucion debe calcular la integral para el punto
i

mod_id: identificador del modulo de ejecucion.

local_sum: almacena el resultado parcial de la integracion.

t []: guarda los resultados parciales acumulados para su posterior analisis.

Algoritmo 8: Evaluacion en pares de la integral multidimensional usando
el calendarizador estatico concurrente

1

2
3
4
5

© w0 N o

10
11
12
13
14
15
16

Entrada: namero de puntos n, arreglo de los identificadores de médulos
array[], parametros de la integraciéon sum, func_id, DIM, n,
X1, X2, ERR

Salida: resultados parciales de la integral t[]

for i <~ 0 tom —1do

| Inicializar candado mod_lock[i];

end

Paralelizar con 2 hilos usando OpenM P;

for cada hilo do

// Obtener los identificadores de forma atémica

#pragma omp atomic capture {idx <— next idx; next idx + +;}

Determinar modulo asignado mod_id < arraylidz];

Inicializar variable local local _sum < 0;

Adquirir candado mod_lock[mod _id];

GL[mod_id|(&local _sum, func_id, DIM,idx + 1, X1, X2, ERR);
Liberar candado mod_lock[mod _id];
Guardar los resultados parciales t[i - n] < local _sum,;
end
for : <~ 0tom —1do
| Destruir candado mod_lock[i];
end

Optimizacién mediante bisqueda tabt

Previo a la ejecucion, el calendarizador genera la asignacion de modulos usando una
estrategia basada en busqueda tabu (véase Secciéon 2.6.2). Esta técnica permite ex-
plorar el espacio de soluciones (asignaciones posibles) en busca de una que minimice
el tiempo total de ejecucion, conocido como makespan. La implementacion combina:

1. Lectura de la tabla con los tiempos de ejecucion.

2. Construccion de las dos mejores opciones para evaluar cada punto de integracion
(mejor y segundo mejor modulo).

3. Busqueda metaheuristica basada en busqueda tabi para encontrar una asig-
nacion (uso de la segunda mejor opcion en algunos puntos) que reduzca el
makespan.

Capitulo 3 53

4. Funcién simulacion del makespan que respeta las restricciones de emparejado y
exclusion por modulo.

Seleccion de los dos mejores modulos de ejecucion por cada punto de in-
tegracion

En la fase de inicializacion, el calendarizador almacena en memoria la tabla con los
tiempos de ejecucion de la misma forma que lo hace el Algoritmo 5. Después el
Algoritmo 9 identifica los dos mejores moédulos de ejecucion para cada punto de la
integral, basdndose en los tiempos de ejecucion registrados en la tabla.

Algoritmo 9: Seleccion de los dos mejores moédulos por punto:
build_top2()
Entrada: namero del punto de integraciéon n, nimero de médulos m, tabla
con los tiempos de ejecucion table[]
Salida: arreglo con los dos mejores modulos y sus tiempos por cada punto
array_top2[]

1 fori<0ton—1do

2 Inicializa los identificadores de los modulos b <— —1, s < —1;

3 Inicializa el mejor bt <— oo, v segundo mejor tiempo st <— oo;

4 for j <~ 0tom—1do

5 t < tableli][j];

6 if ¢ < bt then

7 St < bt; s<b ; /* Segundo mejor tiempo y mdédulo */
8 bt < t; b4« j; /* Mejor tiempo y médulo */
9 end

10 else if ¢ < st then

11 ‘ St t; 5 J;

12 end
13 end
14 Guardar en array_top2li]: best _mod < b, second_mod «+ s,

best t < bt, second t <« bt

15 end

Para cada punto, el algoritmo construye un registro con:

= best_mod: identificador del mdédulo con el menor tiempo de ejecucion para ese
punto.

= best_t: tiempo de ejecuciéon de best_mod.

= second_mod: segundo modulo con el menor tiempo de ejecucion para ese punto
(si existe; -1 si no).

= second_t: tiempo de ejecucion de second_mod.

54 Implementacion

Como salida devuelve un arreglo (array_top2) de longitud n, que contiene todos
los registros. En el algoritmo:

= n: representa el ntimeros de puntos.

= m: representa el nimero de modulos de ejecucion disponibles (secuencial, CUDA,
OpenMP y AVX).

= table[n - j]: contiene la tabla con los tiempos de ejecucion;

Asignacion 6ptima de moédulos de ejecucion usando bisqueda tabu

Posteriormente, el Algoritmo 10 determina, por cada punto, cual de los dos médu-
los seleccionados seré el encargado de evaluarlo, con el propoésito de optimizar la
asignacion mediante una metaheuristica de busqueda tabt. El objetivo principal es
minimizar el tiempo total de ejecucion (makespan) del sistema, explorando diversas
combinaciones de asignacion y evitando quedar atrapado en 6ptimos locales.

El algoritmo recibe como entrada:

= table[n - m]: tabla con los tiempos de ejecucion.
» array_top2[n]: arreglo con los dos mejores modulos por punto.

= tenure: parametros de configuracion del algoritmo tabu.

El procedimiento comienza al crear un arreglo de asignaciones (assign), donde
cada posicion indica si cada punto i usa el mejor moédulo (0) o el segundo mejor
(1). En la asignacion inicial cada punto se asocia a su mejor modulo disponible y se
calcula el makespan llamando a la funcién simulate_makespan (Algoritmo 11), ese
valor se guarda como el costo actual y mejor costo inicial (lineas 3 y 4):

cur_cost, best_cost < simulate_makespan(table, array_top2, assign);

El algoritmo examina los posibles movimientos para cada punto i de la integral
(lineas 10-20). Primero, reasigna cada punto a su segundo mejor modulo:

assign[i] < not(assign[il);

Cada movimiento temporal se prueba llamando nuevamente a la funciéon simulate_makespan
para estimar el nuevo makespan. Si el cambio mejora el tiempo total y no esta prohibi-
do por la lista tabt, se considera como el mejor movimiento candidato (lineas 17-19):

if cost < best_move_cost or best_move == -1 then
Actualizar best_move < i, best_move_cost < cost;

Durante la biisqueda, cada movimiento realizado se marca como tabt durante
un cierto nimero de iteraciones, evitando asi regresar a soluciones ya exploradas
o generar ciclos. Este periodo estda determinado por la variable tenure, que indica
cuéntas iteraciones deben pasar antes de que el movimiento vuelva a ser considerado
(linea 28).

Capitulo 3 55

Algoritmo 10: Busqueda tabu para asignaciéon oOptima de moédulos:
tabu_assign_top2()

Entrada: tabla con los tiempos de ejecucién table[], arreglo con los dos mejores
modulos y sus tiempos por cada punto array_top2[], pardmetros de
configuraciéon del algoritmo tabt tenure

Salida: registro que contiene el tiempo de ejecuciéon estimado y el arreglo con la

mejor asignacién de médulos encontrada tabu_search
1 Inicializar arreglo assign < 0 todos los puntos usan su mejor médulo
2 Inicializar contador de prohibiciones tabu[N| «+ 0;
3 Calcular costo inicial cur _cost < simulate _makespan(table, array top2, assign);
4 Guardar como mejor costo best cost <— cur_cost;
5 for iter < 1 to max_iters do

6 if supera limite sin mejora then

7 terminar busqueda

8 end

9 Inicializar best _move <— —1, best _move_cost < oo;
10 for i<~ 0ton—1do

11 if mddulo es tabi o no existe sequndo maodulo then

12 continuar

13 end

14 Intercambiar asignacion assignl[i] < not(assignli]);

15 Evaluar costo cost < simulate _makespan(table,array top2,assign);
16 Revertir cambio assign[i] < not(assignl[i));

17 if cost < best _move_ cost or best _move == —1 then
18 Actualizar best _move < i, best _move_cost < cost;
19 end
20 end
21 if no hay movimientos vdlidos: best move == —1 then
22 for cada punto i do

23 | Decrementar contadores tabu[i] — —
24 end
25 end

// Aplicar mejor movimiento encontrado
26 Invertir asignacion: assign[best move] < not(assignlbest _move));
27 Actualizar cur cost < best _move_cost;
28 Marcar tarea como tabu tabu[best move] = tenure;
29 Decrementar todos los contadores tabi mayores a 0;
// Si mejora el mejor costo global, actualizar best_cost y guardar
asignacién

30 if cur_cost < best_cost then
31 Actualizar best cost < cur__cost;
32 Copiar asignacion actual a best _ali] <— assignl[i];
33 end
34 end

35 Guardar en tabu_search < T'SOut(best cost,best _a);

56 Implementacion

En este caso, se establecié tenure < 7, con el proposito de favorecer la explora-
cion de nuevas regiones del espacio de busqueda sin perder eficiencia ni agilidad en el
proceso.

tabu[best_move] < tenure;

En cada iteracion, los contadores tabu se reducen gradualmente hasta liberar las
soluciones marcadas como tabu (lineas 21-25):

if no hay movimientos validos: best_move == -1 then
for cada punto i do
Decrementar contadores tabuli]-;

Si se encuentra una asignacién con menor makespan, se guarda como mejor asig-
nacion global (lineas 30-33).

if cur_cost < best_cost then
best_cost < cur_cost;
best_al[i] < assignl[i];

Si no hay mejora durante varias iteraciones consecutivas, el algoritmo puede de-
tenerse anticipadamente (lineas 6-8).

if supera limite sin mejora then
Terminar basqueda;

Finalmente, el algoritmo devuelve un registro tabu_search que contiene el tiempo
de ejecucion estimado y el arreglo con la mejor asignacion de médulos encontrada.

Funcion de simulacién del makespan

La funcion simulate_makespan (Algoritmo 11) tiene como objetivo estimar el tiempo
total de ejecucion (makespan) que resultaria de una determinada asignacion de los
puntos de integracion a los moédulos. Es decir, simula como se comportaria el sistema
de calendarizaciéon de manera concurrente, usando solamente los tiempos medidos, lo
que permite que el Algoritmo 10 pueda evaluar diferentes estrategias de asignacion
hasta encontrara la mas optima.

Para simular el esquema de ejecucion por lotes de dos puntos (pares) con espera
activa, se incluyen las siguientes restricciones:

» Exclusion por moédulo de ejecucion: un mismo moédulo no puede ejecutar dos
tareas simultdneamente.

= Restriccion de paralelismo maximo: s6lo 2 puntos pueden estar en ejecuciéon al
mismo tiempo.

Como entradas, el Algoritmo 11 de la funcién recibe:

= n: nimero de puntos de integracion.

Capitulo 3 57

» m: nimero de modulos de ejecucion disponibles (secuencial, CUDA, OpenMP y
AVX).

= array_top2[n]: arreglo con los dos mejores moédulos por punto.

» assign[n] arreglo con la asignacion de los médulos para cada punto.

El algoritmo inicializa los tiempos de liberacién de cada moédulo, es decir, el ins-
tante en el que cada modulo estara disponible para ejecutar la evaluaciéon de un nuevo
punto:

mod_free[mod_id] «+ O

Después, simula el comportamiento del sistema de calendarizacion al ejecutar, por
pares, los puntos de la integral. La seleccion del modulo de ejecucion para cada punto
se realiza con base en el plan de asignacién contenido en el arreglo assignl[], que
determina si se emplea el modulo con el mejor tiempo estimado o el modulo con
el segundo mejor tiempo. Para ello, ejecuta el bucle principal while mientras haya
puntos pendientes por calcular next < n o haya puntos que todavia no terminan de
calcularse running > 0 (lineas 3-25). Dentro del bucle principal hay otro bucle que
intenta calcular nuevos puntos, pero con una restriccion: sélo puede se pueden evaluar
dos puntos al mismo tiempo (lineas 4-17).

While{running < 2 and next < N}{...}

Si se cumplen las condiciones, se toma el siguiente punto use_second < assign[next]
y se verifica si debe ejecutarse en su mejor o segundo mejor moédulo, de acuerdo con
el valor almacenado en assign[next]. A partir de esta seleccion, se obtiene el iden-
tificador del médulo elegido, mod_id, junto con su tiempo de ejecucion esperado, dur
(lineas 5y 6).

La evaluacion del punto sélo puede empezar si el modulo esta libre y el tiempo
actual ya lo permite, para ello se calcula el momento en el que puede iniciar (linea 7):

start < max(mod_free[mod_id], cur_time);

Para evitar conflictos entre procesos, si ya hay un punto siendo evaluado (running
== 1), se verifica que la nueva evaluaciéon que se lanzara no use el mismo modulo que
usa la que ya esta activa (lineas 8-10):

if d == used_mod then break;

En el caso de que sea el mismo modulo, la nueva evaluaciéon no puede comenzar
aun, por lo que el bucle interno se detiene hasta que dicho moédulo se libere. Si no
existen conflictos, se calcula el tiempo de finalizacion de la nueva evaluacion (endt
< start + dur) y se determina en cual de los dos slots disponibles se colocara: A
o B (lineas 11 y 12). El sistema dispone tinicamente de dos espacios de ejecucion en
paralelo, siguiendo un esquema por pares.

58 Implementacion

endA < endt; endB < endt;
modA + d; modB + d;

Se marca el médulo como ocupado hasta ese momento mod_free[d] < endt y
se incrementan los contadores (lineas 14-15):

running++; (una tarea mds en ejecucidn)
next++; (pasar a la siguiente tarea)

Si esto ocurre, la variable progressed se pone en 1, indicando que hubo progreso
en la simulacion (linea 15). Si no se pudo lanzar ninguna tarea progressed = 0, eso
significa que todos los médulos requeridos estan ocupados. Por lo tanto, el algoritmo
avanza al siguiente evento, es decir, al momento en que un punto termina de calcularse
(lineas 18-24:

next_event < min(endA, endB);
cur_time < next_event;

Si una evaluacion termina (por ejemplo, endA < cur_time), se marca como libre
(lineas 21-23):

endA < 00;
modA + -1;
running-;

Asi, el simulador “avanza’” hasta que haya espacio para lanzar nuevas tareas. Cuan-
do todas las tareas han sido ejecutadas next >= n y no hay tareas corriendo running
== 0, el bucle termina.

Finalmente, el valor de cur_time representa el tiempo total que habria tardado el
sistema en completar todas las tareas, cumpliendo con las restricciones establecidas.
Dicho valor se devuelve como el makespan simulado.

En el Algoritmo 11:

» mod_free[d]: representa el instante en que el médulo mod_id queda libre (ini-
cialmente 0).

= cur_time: representa el tiempo actual de simulacion.
» running: representa el nimero de puntos evaluados en curso (0, 1 o 2).
= next: representa el indice del siguiente punto sin evaluar.

= endA, endB: representan los tiempos de finalizacion de las dos evaluaciones ac-
tualmente en ejecucion.

= modA, modB: representa el moédulo asociado a cada slot en ejecucion.

Capitulo 3 59

Algoritmo 11: Simulacién del makespan: simulate_makespan ()

Entrada: ntmero de puntos de integraciéon n, nimero de médulos m, arreglo
con los dos mejores dispositivos por punto array_top2[], arreglo
con la asignacion de los modulos para cada punto assign[]

Salida: tiempo total de ejecucion cur_time

1 Inicializar arreglo mod__ free[m| < 0 para cada modulo;
2 Inicializar cur time < 0, running < 0, next < 0;
3 while running > 0 or next < n do

4 while running < 2 and next < n do
5 use__second $— assz'gn[nea:t] ; /* Determinar el médulo a usar */
6 Obtener modulo mod__id y duracion dur;
7 Calcular start <— max(mod__free[mod_id], cur _time);
8 if mod_id == used_mod then
9 ‘ break ; /* Romper bucle para esperar disponibilidad */
10 end
11 Calcular tiempo de finalizacion endt < start + dur;
12 Registrar mod__id y endt en un slot libre: A o B
13 Actualizar mod__ free[d] < endt;
14 Registrar tarea como en ejecucion running + +;
15 Incrementar next + +;
16 progressed < 1;
17 end
18 if progressed == 0 then
// Avanzar al siguiente evento
19 next event <— min(endA, endB);
20 cur _time < next event;
// Liberar tareas que terminen en ese instante
21 endA + oo;
22 devA <+ —1;
23 running — —;
24 end
25 end

26 Retornar cur time como tiempo total de ejecucion (makespan);

Funcién principal del calendarizador estatico concurrente

El Algoritmo 12 coordina la ejecucion de los Algoritmos 9, 10 y 11, integrandolos para
conformar el calendarizador estatico concurrente. Su propésito es asignar el moédulo
encargado de evaluar cada punto, con el objetivo de minimizar el tiempo total de
ejecucion (makespan).

Primero, carga en memoria la tabla con los tiempos de ejecucion registrados para
cada modulo y cada punto de integracion. Luego, analiza los tiempos de cada fila de
la tabla para identificar, por punto el mejor y segundo mejor médulo de ejecucion

60 Implementacion

y almacena los datos en un arreglo array_top2 (Funcién build_top2() correspon-
diente al Algoritmo 9). Esta etapa reduce el espacio de busqueda, permitiendo que
la optimizacion se centre sélo en las dos mejores opciones por punto, en lugar de
considerar todos los médulos posibles.

Posteriormente, el algoritmo usa una metaheuristica de busqueda tabt (Funcion
tabu_assign_top2() correspondiente al Algoritmo 10) para decidir, entre las dos
opciones de cada punto, cual asignaciéon global produce el menor tiempo total de
ejecucion (makespan). Con los resultados de la busqueda tabu, el algoritmo construye
el arreglo final de asignacion, array[i], donde cada elemento contiene el identificador
del modulo que ejecutara el punto i. Este arreglo se guarda en memoria y luego es
utilizado por el sistema de calendarizacion (lineas 6-9).

Algoritmo 12: Funcién principal del calendarizador estéatico concurrente
Entrada: nombre de la plataforma PLAT, nimero de dimensiones DIM,
nimero de puntos de integracion n
Salida: arreglo con los identificadores de los modulos més adecuados por
punto array[]
1 Leer tabla con tiempos de ejecucion table = read table(PLAT, DIM, n);
2 Construir array_top2 con los dos mejores moédulos por punto:
array_top2 = build_top2(tabla);
tenure <— 7
Ejecutar busqueda tabu
tabu_search = tabu__assign_top2(table, array top2,tenure);

=W

Reservar memoria para array;

fori < 0ton—1do
Seleccionar modulo d segun asignacion 6ptima (best o second);
Guardar en arrayli] < d;

end

© 0w N O w;

Esta estrategia presenta las siguientes ventajas:

» Concurrencia: explota la concurrencia de forma sencilla, evitando la sobrecarga
de un calendarizador dindmico.

» Espera activa: incluir candados por modulo garantiza que no se produzcan ac-
cesos simultaneos no controlados a un mismo recurso.

Sin embargo, presenta ciertas limitaciones:

= Si el tiempo de ejecucion de los puntos asignados a un modulo es significati-
vamente mayor que en otros, el sistema de calendarizacién puede experimentar
desequilibrios de carga.

= Al no replanificar dindmicamente, no se corrige la asignacion inicial aunque se
detecten ineficiencias durante la ejecucion.

Capitulo 3 61

= La creacion de hilos genera un overhead en el tiempo de ejecucion.

= Los procesos generados pueden crear retrasos en la ejecucion al competir por el
tiempo de la CPU.

Por lo anterior, el esquema estatico concurrente resulta especialmente adecuado
cuando: se dispone de una planificacion previa de alta calidad, los tiempos de ejecucion
presentan una variabilidad reducida o predecible y existe certeza de que los procesos
no competiran por recursos de CPU.

3.5.4 Tabla de caracteristicas

La Tabla 3.3 presenta una comparacion entre los tres calendarizadores desarrollados,
sintetizando sus diferencias de manera estructurada. Cada uno de los calendarizadores
representa una estrategia distinta de asignacion y evaluaciéon de puntos sobre los mo-
dulos de ejecucion disponibles, variando principalmente en su nivel de optimizacion,
adaptabilidad y grado de paralelismo.

Tabla 3.3: Caracteristicas de los tres calendarizadores implementados.

cién

. .. Estatico Dinamico Estatico
Caracteristica . .
secuencial secuencial concurrente
Tipo de planifica- | Previa y fija En tiempo de ejecu- | Previa optimizada por bus-

cion

queda tabad

Asignaciéon de mé-
dulos

Se guarda en un arre-
glo auxiliar

Se calcula al momen-
to de cada llamada

Se guarda en arreglo opti-
mizado

Uso de recursos

Secuencial

Secuencial

Paralelo, dos médulos en
ejecucion sin conflicto

Modelo de ejecu-
cion

Punto por punto

Punto por punto

Ejecucién en pares simulta-
neos

Adaptabilidad

Nula: depende solo de
la tabla de tiempos

Alta: decide el mejor
modulo en cada paso

Media: depende de planifi-
cacion previa (busqueda ta-

ba)

Sincronizacién

No requerida

No requerida

Requiere candados por mé-
dulo para evitar conflictos

El calendarizador estatico secuencial basa su funcionamiento en una planificacion
previa y fija. Las asignaciones de cada punto a un moédulo se calculan una sola vez
antes de la ejecucion y se almacenan en un arreglo auxiliar. Debido a su naturaleza
determinista y su ejecuciéon punto por punto, este esquema no requiere sincronizacion
ni toma de decisiones durante el proceso, aunque su aprovechamiento de recursos es
limitado, ya que soélo utiliza un médulo a la vez.

Por otro lado, el calendarizador dinamico secuencial realiza la seleccién del moédulo
mas adecuado en tiempo de ejecucion. En cada paso, evaliia las opciones disponibles y
elige el moédulo que ofrece el menor tiempo de procesamiento para el punto actual. Esta
caracteristica proporciona una mayor adaptabilidad, ya que el calendarizador puede
reaccionar ante variaciones en los tiempos de ejecuciéon. Sin embargo, al igual que el

62 Implementacion

calendarizador estatico secuencial, su ejecucion permanece totalmente secuencial, sin
explotar la posible concurrencia entre médulos de ejecucion.

Finalmente, el calendarizador estatico concurrente representa una evoluciéon del
enfoque estatico. Aunque también se basa en una planificacion previa, ésta se obtiene
mediante un proceso de optimizacién con busqueda tabi. Dicha técnica explora mil-
tiples combinaciones de asignacién para encontrar una configuracion que minimice el
tiempo total de ejecucion (makespan), considerando la posibilidad de evaluar dos pun-
tos de forma simultanea en distintos modulos sin generar conflictos. Este método logra
un mejor aprovechamiento de los recursos al permitir concurrencia, aunque requiere
mecanismos de sincronizacion (como candados) para garantizar que los modulos no
se asignen de manera conflictiva.

Capitulo 4

Pruebas

En este capitulo se presentan las pruebas realizadas para evaluar el desempeno, la
precision y la adaptabilidad del sistema de calendarizacion implementado. El objetivo
principal es analizar la eficiencia de los médulos de ejecucion y las estrategias de
calendarizacion propuestas bajo diferentes condiciones de hardware y configuraciones
de prueba. Es decir, diferentes niimeros de puntos de integracion y dimensiones. Las
pruebas se dividieron en dos grandes apartados: pruebas preliminares y pruebas de
calendarizacion.

En la primera seccién se describen las plataformas utilizadas para ambos tipos de
pruebas, junto con las funciones a evaluar y las principales condiciones consideradas
para su ejecucion.

En la segunda secciéon, correspondiente a las pruebas preliminares, se valida el
funcionamiento correcto de los modulos de ejecucion y se establecen los parametros
base necesarios para las pruebas que evaluaran el rendimiento de los calendarizadores.
Se analizan tres aspectos fundamentales: la complejidad computacional de las funcio-
nes del benchmark de integrales multidimensionales, con el fin de seleccionar la mas
adecuada para las pruebas posteriores; la estimaciéon del ntiimero minimo de puntos
de integracion necesarios para alcanzar un error aceptable; y la aplicacion de la extra-
polacién de Romberg para reducir el ntimero de puntos requeridos y, en consecuencia,
el tiempo de ejecucion, sin comprometer la precision.

La dltima seccion, correspondiente a las pruebas de calendarizacion, evalua el de-
sempeno de las tres estrategias implementadas: estatico secuencial, dinamico secuen-
cial y estatico concurrente. En primer lugar se construyen las tablas de tiempo que
sirven para alimentar a los calendarizadores. Posteriormente se presentan las pruebas
realizadas con los calendarizadores en dos plataformas con diferentes capacidades de
computo: una estacion de trabajo CUDA y una Jetson TX2. Estas pruebas permiten
comparar la eficiencia de cada estrategia en entornos heterogéneos, identificando las
ventajas y limitaciones de cada estrategia, asi como su capacidad para adaptarse a
las restricciones de hardware.

En resumen, este capitulo establece los fundamentos experimentales que permi-
ten valorar la efectividad del sistema de calendarizaciéon propuesto, proporcionando
evidencia cuantitativa sobre su precision numérica, eficiencia computacional y flexi-

63

64 Pruebas

bilidad frente a distintos entornos de ejecucion.

4.1 Funciones, dispositivos y condiciones base

Como se menciond anteriormente, las pruebas fueron disenadas para validar el com-
portamiento, la eficiencia y la adaptabilidad del sistema de calendarizaciéon propuesto.
Para ello, se utilizaron las funciones del benchmark de integrales multidimensionales,
debido a su variabilidad en complejidad y precision numeérica. Estas funciones permi-
ten evaluar de forma robusta el rendimiento de los distintos médulos de ejecucion y
calendarizadores implementados.

En el moédulo de ejecucion OMP las pruebas no se ejecutaron sobre todos los
procesadores de manera simultanea. En cambio, se definieron dos configuraciones:
(1) OMP-P, emplea tunicamente los nucleos de rendimiento (performance cores) y (2)
OMP-E, utiliza los nicleos de eficiencia (efficient cores). El objetivo de esta separacion
es permitir que cada nucleo alcance su frecuencia maxima de operacion, sin verse
limitado por la necesidad de sincronizarse con otros nicleos de distinta naturaleza.

Cada prueba que mide el tiempo de ejecucion fue repetida diez veces consecutivas,
con el objetivo de mitigar posibles fluctuaciones ocasionadas por factores externos
al sistema de calendarizacion; como procesos en segundo plano o gestiéon dindmica
de recursos por parte del sistema operativo. Como medida representativa de cada
conjunto de ejecuciones se tomo la mediana, debido a que proporciona una estimacion
més robusta frente a valores atipicos que podrian sesgar el resultado si se utilizaran
(e. g., el promedio).

Las pruebas se llevaron a cabo en dos plataformas heterogéneas diferentes: una
estacion de trabajo con sistema operativo Rocky Linux 9 y un sistema embebido
Jetson TX2 con sistema operativo Ubuntu 18.04. Esta decision responde a la nece-
sidad de validar el sistema de calendarizacion bajo entornos heterogéneos. Por ello,
es necesario contar con plataformas que representen extremos opuestos en cuanto a
potencia de coémputo, disponibilidad de médulos de ejecucion, arquitecturas de CPU
y capacidades de vectorizacion y paralelismo.

Emplear una estacion de trabajo CUDA y una Jetson TX2 proporciona un con-
traste claro entre un sistema de escritorio de alto rendimiento y un sistema embebido
con recursos limitados. Ademas, ambas plataformas difieren en los médulos de ejecu-
cion que pueden utilizar.

La estacion de trabajo permite emplear todos los médulos disponibles: secuencial,
AVX, OpenMP y CUDA. En cambio, la Jetson TX2 incorpora una CPU ARM que
no soporta instrucciones AVX, por lo que no puede ejecutar dicho médulo; adicional-
mente, sus capacidades de paralelismo son diferentes a las de la estacion de trabajo, lo
que modifica el comportamiento del médulo OMP. Estas diferencias permiten verificar
que el sistema de calendarizacion detecta automaticamente los moédulos disponibles
en cada plataforma, evita el uso de médulos incompatibles (como el médulo AVX) y
redistribuye la carga de trabajo sin requerir intervencion del usuario.

Capitulo 4 65

En resumen, la combinaciéon seleccionada de plataformas permite validar el siste-
ma de calendarizaciéon en condiciones de alto rendimiento, recursos limitados, hete-
rogeneidad arquitectonica extrema, disponibilidad desigual de moédulos y diferentes
sistemas operativos.

Esta diversidad asegura una evaluacion realista y solida del desempeno del sistema
de calendarizacién implementado. A continuacién, se presentan las especificaciones
técnicas de las plataformas:

» Estacion de trabajo CUDA:

e GPU: GA104 |[GeForce RTX 3070 Lite Hash Rate| 64-bits
e CPU: 13th Gen Intel® Core i19-13900K 64-bits
e Memoria RAM: 31 GB 64-bits SRAM

s NVIDIA Jetson TX2:

e GPU: Arquitectura NVIDIA Pascal con 256 NVIDIA CUDA cores

e CPU: Dual-Core Nvidia Denver 2 64-bits CPU y Procesador Quad-Core
Arm®) Cortex®)-A57 MPCore

e Memoria RAM: 8 GB 128-bits LPDDR4 59.7 GB/s

4.2 Pruebas preliminares

Antes de realizar las pruebas de calendarizacion, fue necesario llevar a cabo un conjun-
to de pruebas preliminares destinadas a validar la correcta operacion de los médulos
de ejecucién con y sin la extrapolacion de Romberg, asi como establecer algunas con-
diciones para los experimentos posteriores. Estas pruebas se enfocan en analizar tres
aspectos fundamentales: la complejidad computacional de las funciones del bench-
mark, el minimo ntmero de puntos de integraciéon para obtener un error numérico
aceptable, y el efecto de la extrapolacion de Romberg en la precision numérica y la
reduccion del tiempo de ejecucion.

En conjunto, estas pruebas proporcionan una base sélida para comprender el com-
portamiento numérico de la biblioteca de integrales multidimensionales, asegurando
que las configuraciones elegidas para las etapas posteriores representen un equilibrio
adecuado entre precision y eficiencia computacional.

4.2.1 Pruebas para evaluar la complejidad de las funciones del
benchmark de integrales multidimensionales

Con el objetivo de seleccionar una funciéon adecuada para realizar las pruebas de
calendarizacion, se evalu6 la complejidad computacional de cada una de las cinco
funciones contenidas en el benchmark de integrales multidimensionales, las cuales
poseen estructuras algebraicas y grados de dificultad diferentes. Para ello, se realizaron
ejecuciones utilizando exclusivamente los moédulos implementados con la regla de

66 Pruebas

cuadratura de Gauss-Kronrod, sin aplicar la extrapolaciéon de Romberg, dentro de un
rango de 40 a 50 puntos de integracion. Las pruebas se efectuaron tinicamente en seis
dimensiones, con el propésito de observar con mayor claridad la complejidad de cada
funcién, dado que aumentar las dimensiones incrementa significativamente el costo
computacional. El analisis de estos resultados permitié6 comparar de forma objetiva
el tiempo requerido por cada funciéon bajo condiciones controladas y homogéneas.

La Tabla 4.1 presenta las funciones del benchmark y el tiempo (s) que tardaron
en evaluarse en cada modulo de ejecucion en relacion con el nimero de puntos. Cada
columna (Funciéon 1.1 — Funcion 1.5) corresponde a una funciéon y los resultados se
agrupan por modulo:

= Secuencial: implementacion pura en CPU sin paralelismo ni vectorizacion.
= CUDA: ejecucion paralela en GPU utilizando computo masivamente paralelo.

= OMP-E: ejecucion paralela en CPU empleando tnicamente los niicleos de efi-
ciencia.

= OMP-P: ejecucion paralela en CPU empleando tinicamente los ntcleos de ren-
dimiento.

= AVX: implementacién vectorizada por hardware SIMD usando instrucciones
AVX.

Cada seccién presenta los tiempos correspondientes a cinco puntos de integracion
consecutivos (46-50), lo que permite comparar la complejidad y el comportamiento
de las funciones en todos los médulos de ejecucion, evitando sesgos que podrian surgir
si se evaluaran tnicamente en un modulo.

A partir de los datos presentados en la Tabla 4.1, se determiné que:

= La Funcion 1.1 presenta los tiempos de ejecucion méas bajos en todos los mo-
dulos. Su crecimiento, con respecto al niimero de puntos, es casi perfectamente
proporcional, lo que confirma que el costo por evaluacion es minimo y estable.

s La Funciéon 1.5 resulta ser ligeramente més costosa que la Funcién 1.1, pero
claramente menos costosa que las demas funciones. Esto indica que el integrando
de la Funcion 1.5 agrega cierta complejidad adicional respecto a la Funcion 1.1,
pero no presenta términos altamente costosos. El patrén se mantiene estable en
todas las arquitecturas, lo que confirma una complejidad baja a media.

» La Funcién 1.4 ocupa un punto intermedio entre las funciones. Su crecimiento
es suave y coherente, lo cual apunta a una complejidad estable y relativamente
menor en comparacion con las Funciones 1.2 y 1.3.

= Los tiempos de la Funcién 1.3 son sistematicamente mayores que los de las Fun-
ciones 1.1, 1.4 y 1.5, y son cercanos a los de la Funcién 1.2, aunque ligeramente
menores. Esto indica una complejidad aritmética elevada pero no extrema.

= La Funcién 1.2 es consistentemente la funciéon mas costosa en la mayoria de los
modulos. La marcada diferencia en tiempo respecto a otras funciones evidencia
que su complejidad aritmética es significativamente mayor.

Capitulo 4

67

Tabla 4.1: Funciones del benchmark de integrales multidimensionales evaluadas en
6 dimensiones, en estacion de trabajo CUDA. Tiempo de ejecucion (s).

Puntos | Funcién 1.1 | Funcién 1.2 | Funcién 1.3 [Funcién 1.4 | Funcién 1.5
SECUENCIAL

46 75.3996625 936.0831740 809.1952620 | 238.0729600 | 276.2268660
47 85.7801670 | 1072.7830750 018.7347710 | 272.3382770 | 311.3526115
48 07.2724690 | 1215.6837025 | 1041.5524930 | 308.9656615 | 354.3307145
49 109.9852875 | 1379.2441440 | 1177.5097000 | 349.2575320 | 401.5813935
50 124.1955935 | 1549.0077680 | 1329.3573790 | 394.9378110 | 447.0571705
CUDA

46 3.3083423 43.8635459 46.9730884 11.1234946 8.3254663
47 3.8602425 47.9857967 52.0492519 12.8510994 0.1125629
48 4.1145525 51.1187600 55.4455836 13.6634206 9.6894928
49 5.0105843 66.9855101 71.7827684 17.3861715 12.7275292
50 5.3468530 71.0629356 76.2570657 18.4159402 13.5162827
OMP-E

46 17.5718030 154.2491160 114.4462040 40.8227235 47.5153235
47 19.3367120 172.0041920 127.7702755 47.0031900 55.1497895
48 20.9470510 190.2397720 141.4722120 50.5358580 59.6946905
49 27.9068520 281.7533230 210.9048005 71.9929870 87.9230165
50 32.3194350 310.0759610 230.7351250 79.7889495 94.8209015
OMP-P

46 8.7982325 101.4547705 87.9471200 28.6811405 32.2358530
47 9.8808690 114.4845110 08.4313410 32.4126835 36.1624040
48 11.0473450 127.7699575 109.9139960 36.2801730 40.5722820
49 14.5778090 170.1227050 146.5415880 47.6676100 53.2759140
50 16.2536900 189.5077510 163.3546610 53.1579585 58.9326380
AVX

46 70.2210900 0929.1938370 813.6420780 | 232.5348960 | 268.7045565
47 80.0087370 | 1062.7284845 023.7070030 | 264.1679865 | 304.7978095
48 90.2645070 | 1206.1304360 | 1044.9015930 | 298.0131675 | 343.3589055
49 102.2595550 | 1355.8468980 | 1180.5045915 | 337.5464170 | 391.4487065
50 115.5569825 | 1536.1999955 | 1334.8980040 | 381.4114960 | 438.6309785

La elevada complejidad de la Funcién 1.2 se debe a su comportamiento altamen-

te oscilatorio, como se muestra en la Figura 4.1a. Esta caracteristica la convierte,
en principio, en una candidata adecuada para las pruebas de calendarizacion y pa-
ra la estimacion del error numérico: al tratarse de la funciéon mas compleja, lograr
una reducciéon en el tiempo de ejecucion y obtener un error aceptable implicaria que
las demés funciones, de menor complejidad, también podrian evaluarse de manera
eficiente sin perder precision numeérica.

Sin embargo, se observd que, debido a su elevada complejidad, los algoritmos de
integracion empleados en este trabajo no permiten reducir de forma significativa el
tiempo de ejecucion sin comprometer la precision del resultado. Como consecuencia,
esta funcién fue descartada como caso de prueba principal para los calendarizadores
implementados, ya que no ofrece una mejora tangible en términos de optimizacion
del desempeno.

68 Pruebas

0.9
0.8 z
0.7
0.6

(a) Funcion 1.2 (b) Funcion 1.3

Figura 4.1: Funciones del benchmark de integrales multidimensionales.

En su lugar, se eligi6 la Funciéon 1.3 como representante de una funcion lo su-
ficientemente compleja pero abordable. Su comportamiento presenta una oscilacion
mas suave, como se ilustra en la Figura 4.1b, lo que permite observar reducciones
significativas en el tiempo de ejecucion sin comprometer la precision del resultado.
Si el sistema de calendarizacién propuesto es capaz de optimizar correctamente la
evaluacion de la Funciéon 1.3, también podra manejar de manera eficiente las otras
tres funciones restantes del benchmark (Funciones 1.1, 1.4 y 1.5), las cuales presentan
un menor grado de complejidad.

4.2.2 Pruebas para estimar el minimo ntimero de puntos para
un error aceptable

El propésito de estas pruebas es estimar el nimero minimo de puntos de integra-
cion necesarios para alcanzar un error numérico aceptable en el calculo de integrales
multidimensionales. En funcién del dominio del problema, el error puede ser < 1074,
tomando como referencia la convergencia de los resultados obtenidos en los distintos
modulos de ejecucion.

Se realizaron pruebas independientes con los médulos de ejecucion (CUDA, OMP y
AVX) disponibles en la biblioteca de integrales multidimensionales, usando la Funcion
1.3, sin aplicar la extrapolacion de Romberg, con el fin de determinar la precision del
resultado que ofrece la cuadratura de Gauss-Kronrod. El rango de prueba comprendio
desde 125 hasta 129 puntos de integracion, permitiendo observar la evolucion del error
conforme se incrementa el nimero de puntos.

La Tabla 4.2 presenta los resultados de la integral para cada nimero de puntos.
Los datos estan organizados en bloques, cada bloque corresponde a una dimension
especifica: 3, 4, 5y 6 dimensiones. Las filas de cada bloque corresponden a los nimeros
de puntos evaluados (125-129) y reportan el resultado numérico resultante al aplicar

Capitulo 4 69

la cuadratura de Gauss-Kronrod con ese ntimero de puntos. Por tltimo, cada columna
representa el modulo de ejecucion que evaluo la integral (CUDA, OMP y AVX).

Tabla 4.2: Error numérico de la Funciéon 1.3, evaluada en estacion de trabajo
CUDA usando la cuadratura de Gauss-Kronrod.

Puntos | CUDA \ OoOMP \ AVX

3 Dimensiones

125 0.166292299805 | 0.166292299805 | 0.166292299805
126 0.166292235618 | 0.166292235618 | 0.166292235618
127 0.166292172938 | 0.166292172938 | 0.166292172938
128 0.166292111719 | 0.166292111719 | 0.166292111719
129 0.166292051917 | 0.166292051917 | 0.166292051917
4 Dimensiones

125 0.090418755438 | 0.090418755438 | 0.090418755437
126 0.090418698747 | 0.090418698746 | 0.090418698746
127 0.090418643388 | 0.090418643388 | 0.090418643387
128 0.090418589320 | 0.090418589320 | 0.090418589320
129 0.090418536503 | 0.090418536503 | 0.090418536503
5 Dimensiones

125 0.048806937502 | 0.048806937495 | 0.048806937499
126 0.048806884346 | 0.048806884339 | 0.048806884318
127 0.048806832464 | 0.048806832457 | 0.048806832400
128 0.048806781811 | 0.048806781803 | 0.048806781808
129 0.048806732352 | 0.048806732344 | 0.048806732349
6 Dimensiones

125 0.025751755724 | 0.025751754079 | 0.025751754869
126 0.025751706296 | 0.025751704559 | 0.025751705400
127 0.025751658139 | 0.025751656314 | 0.025751657183
128 0.025751611139 | 0.025751609216 | 0.025751564539
129 0.025751565567 | 0.025751563564 | 0.025751520330

En todos los casos, los resultados numéricos obtenidos por los médulos son idén-
ticos o practicamente idénticos (solo hay diferencias en el ultimo digito debido al
redondeo de doble precision). Esto indica que:

= Todos los modulos de ejecucion implementan correctamente la regla de cuadra-
tura de Gauss-Kronrod.

= No existe pérdida de precision atribuible a diferencias en paralelismo o vectori-

zacion.

= Kl célculo de la integral es estable y depende tinicamente del ntimero de puntos,
no del moédulo empleado.

Al comparar los resultados, fue posible analizar la evolucién del error numérico
para los distintos nimeros de puntos de integraciéon. En particular, se observé que:

» Para 125, 126 y 127 puntos, el error disminuye, pero lo hace en el orden de 10~7
a 107® por incremento de un punto.

70 Pruebas

= A partir de 128 puntos, las mejoras adicionales se reducen practicamente al
orden del sexto decimal.

» Las diferencias entre CUDA, OMP y AVX se mantienen iguales hasta el sexto
decimal, lo que indica que el resultado ya se encuentra en una zona de estabilidad
nUmMErica.

Este comportamiento sugiere que el método de integracion alcanza una regiéon en
la que incrementar el niimero de puntos deja de generar mejoras significativas en la
precision. Por ello, se seleccion6 como referencia el nimero minimo de puntos a partir
del cual el error deja de disminuir de manera apreciable: 128. Este niimero de puntos
proporciona una precision de 107%, dentro del margen aceptable, sin necesidad de
incrementar el costo computacional. Ademas, es un punto de equilibrio 6ptimo entre
exactitud y eficiencia.

Estimacién del error numérico aplicando la extrapolacion de Romberg

Una vez obtenido el error numérico usando la cuadratura de Gauss-Kronrod, se pro-
cedi6 a realizar una segunda serie de pruebas anadiendo el método de extrapolacion
de Romberg, con el objetivo de evaluar su impacto en la precision y el tiempo de
ejecucion. Este conjunto de experimentos utilizé la misma funcién de prueba y los
mismos modulos de ejecucion, manteniendo las condiciones de prueba previamente
establecidas para asegurar una comparacion justa de los resultados.

La extrapolacion de Romberg se implement6 con el fin de reducir el tiempo de eje-
cucion, manteniendo una precision aceptable en los resultados al evaluar las integrales
multidimensionales. A partir de las aproximaciones calculadas mediante la cuadratu-
ra de Gauss-Kronrod con distintos ntimeros de puntos, el método de Romberg estima
un valor limite que se aproxima al resultado exacto mediante una secuencia de re-
finamientos sucesivos. De esta manera, se logra una correccion sistematica del error
de truncamiento, permitiendo alcanzar niveles de precision comparables a los de una
cuadratura més densa, pero con un niimero considerablemente menor de evaluaciones
de la funcion.

En estas pruebas, se redujo el nimero de puntos de integracién a un rango de 36
a 40, con el proposito de evaluar si la extrapolacion de Romberg permite conservar
una precision aceptable, al mismo tiempo que disminuye el tiempo de ejecucion.

La Tabla 4.3 presenta los resultados al integrar la Funciéon 1.3 mediante la cuadra-
tura de Gauss-Kronrod combinada con la extrapolacion de Romberg. La tabla sigue
la misma estructura de la Tabla 4.2, se divide en cuatro bloques correspondientes a 3,
4,5y 6 dimensiones. Las filas, de cada bloque, corresponden a los nimeros de puntos
utilizados (36-40) y las columnas representan los modulos de ejecucion que evaluaron
la integral (CUDA, OMP y AVX).

Esta organizacion permite observar con claridad que el error numérico comienza
a estabilizarse a partir de 40 puntos de integracion. En ese punto, la extrapolacion
de Romberg produce un error aproximado de 107*, valor que, aunque ligeramente
superior al obtenido sin aplicar extrapolacion, se considera aceptable dentro de los

Capitulo 4 71

méargenes definidos en esta tesis para mantener un equilibrio entre precision y eficien-
cia computacional.

Tabla 4.3: Error numérico de la Funcion 1.3, evaluada en estacion de trabajo
CUDA usando la cuadratura de Gauss-Kronrod y la extrapolaciéon de Romberg.

Puntos | CUDA \ OMP \ AVX

3 Dimensiones

36 0.166335717828 | 0.166335717828 | 0.166335717828
37 0.166333229263 | 0.166333229263 | 0.166333229263
38 0.166330931258 | 0.166330931258 | 0.166330931258
39 0.166328804849 | 0.166328804849 | 0.166328804849
40 0.166326833371 | 0.166326833371 | 0.166326833371
4 Dimensiones

36 0.090457281921 | 0.090457281921 | 0.090457281921
37 0.090455062320 | 0.090455062320 | 0.090455062320
38 0.090453014013 | 0.090453014013 | 0.090453014013
39 0.090451119806 | 0.090451119806 | 0.090451119806
40 0.090449364567 | 0.090449364567 | 0.090449364567
5 Dimensiones

36 0.048844879520 | 0.048844879520 | 0.048844879520
37 0.048842446717 | 0.048842446717 | 0.048842446717
38 0.048841175414 | 0.048841175414 | 0.048841175414
39 0.048838629778 | 0.048838629778 | 0.048838629778
40 0.048837194702 | 0.048837194702 | 0.048837194702
6 Dimensiones

36 0.025778016783 | 0.025778016785 | 0.025778016785
37 0.025776259169 | 0.025776259164 | 0.025776259164
38 0.025775398725 | 0.025775398727 | 0.025775398717
39 0.025774084951 | 0.025774084950 | 0.025774084940
40 0.025773357342 | 0.025773357345 | 0.025773357345

El error obtenido (107*) confirma que el método de extrapolacion de Romberg
permite obtener una precision adecuada con un ntimero de puntos considerablemente
menor, lo cual representa una reduccion significativa en el costo computacional. El
tiempo de ejecucion registrado para 40 puntos con la extrapolacion de Romberg fue
notablemente inferior al correspondiente a 128 puntos sin ella, lo que sugiere una
ganancia de eficiencia importante. No obstante, el analisis detallado de estos tiempos
y de la influencia de las estrategias de calendarizaciéon sobre dicho rendimiento se
aborda en el siguiente capitulo (véase Seccion 5.1).

4.3 Pruebas de calendarizacion

Una vez verificado que el error numérico se encuentra dentro del margen aceptable
y determinado el nimero de puntos necesarios para alcanzarlo (128 puntos producen
un error de 1075 y 40 puntos alcanzan un error de 107*), se procedié a evaluar el
comportamiento de las diferentes estrategias de calendarizacién implementadas. El
objetivo de estas pruebas es analizar la eficiencia de cada estrategia en la asignacion de

72 Pruebas

puntos de integracion entre los distintos modulos disponibles, considerando escenarios
con diferentes dimensiones y arquitecturas de hardware.

Cada calendarizador fue probado tanto en la estacion de trabajo CUDA como en la
Jetson TX2, lo que permitié analizar su comportamiento en plataformas heterogéneas
con diferentes capacidades de computo. Todas las pruebas se realizaron usando la
misma funcion de prueba (Funciéon 1.3).

4.3.1 Tablas de tiempo para alimentar los calendarizadores

Con el propésito de generar informacion de referencia que permita a los calenda-
rizadores seleccionar de forma automatica el moédulo de ejecucion mas eficiente. Se
construyeron tablas de tiempos de ejecucion especificas para cada plataforma: esta-
cion de trabajo CUDA y Jetson TX2. Estas tablas alimentan las tres estrategias de
calendarizacion, implementadas y descritas en el capitulo anterior, ya que permiten
identificar, para cada punto de integracion, qué modulo ofrece el mejor desempeno en
relacion a las dimensiones de la integral y a la plataforma utilizada.

Para crear dichas tablas se realizaron pruebas de tiempo en los cuatro médulos
de ejecucion (Secuencial, CUDA, OpenMP y AVX), realizando las mediciones desde
el punto 1 hasta el punto 40. Todas las pruebas se efectuaron sin aplicar la extrapo-
lacion de Romberg, con el fin de evaluar el tiempo de ejecuciéon de la cuadratura de
Gauss-Kronrod en cada modulo sin el costo de tiempo computacional que agrega la
extrapolacion.

Las plataformas permitieron analizar el comportamiento del sistema bajo entornos
heterogéneos, donde las capacidades de computo y los médulos disponibles varian sig-
nificativamente. En particular, la Jetson TX2 no cuenta con soporte para instrucciones
AVX, lo que representa un escenario ideal para observar como los calendarizadores se
adaptan automéaticamente ante la ausencia de un moédulo especifico.

Con los tiempos de ejecucion obtenidos, se generaron las tablas de tiempo con es-
tructura NV - M, donde N representa el nimero de puntos de integracion (del 1 al 40)
y M el nimero de modulos de ejecucion disponibles. Estas tablas fueron construidas
individualmente para cada plataforma (Estacion de trabajo CUDA y Jetson TX2) y
a su vez para cada dimension (3D, 4D, 5D y 6D), con el fin de capturar las variacio-
nes de desempeno asociadas tanto al crecimiento dimensional como a las diferencias
arquitectonicas del hardware. En el caso de la Jetson TX2, las tablas disenadas para
esta plataforma no incluyen el médulo AVX.

Los calendarizadores utilizan esta informacién como entrada para determinar el
modulo de ejecucion mas eficiente para cada punto. De este modo, el proceso de
integracién se optimiza.

A continuacion, se muestra un fragmento de cada tabla construida. La Tabla 4.4
presenta las tablas de tiempo disenadas para la estacion de trabajo CUDA. Su es-
tructura permite comparar, para un mismo nimero de puntos, el desempeno de los
modulos de ejecucion (SEC, CUDA, OMP-E, OMP-P y AVX). La primera columna
indica el niimero de puntos y las demas columnas indican los moédulos de ejecucion

Capitulo 4 73

empleados. La tabla se divide en cuatro bloques, correspondientes a 3, 4, 5 y 6 di-
mensiones, cada bloque representa el fragmento de una tabla de tiempo. Dentro de
cada bloque se muestran los tiempos obtenidos para cinco puntos de integraciéon con-
secutivos (36-40). Esto permite identificar patrones importantes:

= El modulo CUDA es el méas rapido, especialmente en altas dimensiones.

s Los modulos AVX y SEC muestran tiempos similares, ya que las operaciones
vectoriales no son lo suficientemente explotadas en este caso.

» Los modulos OMP-E y OMP-P presentan una aceleracion moderada respecto
al modulo secuencial, pero inferior al moédulo CUDA.

» La diferencia entre 3 y 6 dimensiones ilustra el crecimiento exponencial del costo
computacional al aumentar la dimensionalidad.

Tabla 4.4: Fragmento de las tablas de tiempo (s) para alimentar los
calendarizadores en estacion de trabajo CUDA.

Puntos \ SEC \ CUDA \ OMP-E \ OMP-P \ AVX

3 Dimensiones

36 0.0081250 0.0005965 0.0011250 | 0.0007960 0.0027980
37 0.0058765 0.0006365 0.0011495 0.0008070 0.0027135
38 0.0039605 0.0006535 0.0011470 | 0.0008675 0.0030305
39 0.0102905 0.0006735 0.0011780 | 0.0008685 0.0031190
40 0.0129425 0.0006700 | 0.0012575 0.0009020 0.0033490
4 Dimensiones

36 0.1081705 0.0063280 | 0.0201370 | 0.0144610 0.1051795
37 0.1230435 0.0083885 0.0217275 0.0157150 0.1173515
38 0.1318860 0.0086055 0.0235115 0.0168765 0.1338460
39 0.1460755 0.0092070 | 0.0253470 | 0.0182765 0.1454455
40 0.1614300 0.0094480 | 0.0271755 0.0196750 0.1615425
5 Dimensiones

36 45701550 0.2528100 | 0.8296870 | 0.5664170 4.6040615
37 5.2374090 0.3386130 | 0.9451825 0.6310175 5.2247210
38 5.9664955 0.3576945 1.0418870 | 0.6998535 5.9626540
39 6.8116815 0.3928375 1.1676685 0.7778680 6.8369160
40 7.7493995 0.4155625 1.2766010 | 0.8599085 7.7826535
6 Dimensiones

36 188.1915175 9.7744500 | 33.8972150 | 23.2697750 | 188.7730510
37 221.3589945 | 13.9541845 | 38.5375195 | 26.6600405 | 221.5038270
38 259.1308680 | 15.1307505 | 43.8080475 | 30.4321160 | 259.7708710
39 302.2779010 | 17.0622010 | 50.5999200 | 34.5655860 | 302.2110690
40 351.6011680 | 18.4122340 | 56.5778165 | 39.2335565 | 350.7724255

En conjunto, esta tabla cumple dos funciones fundamentales en el sistema:

1. Proveer los datos necesarios para que los calendarizadores puedan decidir qué
modulo utilizar para cada punto, en la estacion de trabajo CUDA.

2. Permitir analizar el comportamiento relativo de cada moédulo en funcion del
numero de puntos, la dimensiéon del problema y los recursos de la plataforma.

74 Pruebas

La Tabla 4.5 presenta un fragmento de cada tabla de tiempo generada especifica-
mente para la Jetson TX2. La organizacion de la tabla mantiene la misma estructura
empleada para la Tabla 4.4, con la diferencia de que no incluye el modulo AVX, ya que
la plataforma no soporta instrucciones vectoriales AVX. Esta organizacion facilitar la
comparacion entre plataformas.

= El moédulo CUDA posee una aceleracion con respecto al médulo SEC, pero de
forma menos marcada que en la estacion de trabajo CUDA, debido a la menor
capacidad de computo de la GPU integrada en la Jetson TX2.

» Los moédulos OMP-E y OMP-P muestran mejoras moderadas, expresando las
limitaciones del procesador ARM en computo intensivo.

= El moédulo SEC presenta tiempos altos en dimensiones elevadas, evidenciando
el crecimiento exponencial del costo de la integral.

= La ausencia del modulo AVX modifica la distribucién de tiempos respecto a
la estacion de trabajo, generando un escenario mas restringido en términos de
heterogeneidad.

Tabla 4.5: Fragmento de las tablas de tiempo (s) para alimentar los
calendarizadores en Jetson TX2.

Puntos \ SEC \ CUDA \ OMP-E \ OMP-P

3 Dimensiones

36 0.0283380 0.0822570 0.0147250 0.0287100
37 0.0308645 0.0843120 0.0164210 0.0313865
38 0.0332555 0.0908845 0.0171880 0.0335250
39 0.0361240 0.0863445 0.0191180 0.0362610
40 0.0387175 0.0837800 0.0199990 0.0390635
4 Dimensiones

36 1.3844420 0.1363845 0.5233365 1.3850520
37 1.5470000 0.1641760 0.6049235 1.5471000
38 1.7177325 0.1738900 0.6496380 1.7177350
39 1.9148380 0.1883555 0.7182320 1.9102840
40 2.1073190 0.1852710 0.7936845 2.1065165
5 Dimensiones

36 63.5042890 4.0377040 22.0294770 63.3678255
37 72.8950990 5.3386920 25.3700260 72.7052670
38 83.5235035 5.5025570 29.4548390 83.3140820
39 05.0809615 6.0663860 32.7650515 94.8652030
40 107.4584325 6.3487945 36.9740870 | 107.3620445
6 Dimensiones

36 2798.6301325 | 155.2763245 | 940.2878875 | 2795.7039895
37 3286.2258590 | 218.5440930 | 1147.9061050 | 3278.4770255
38 3872.0503585 | 237.0778720 | 1333.7556295 | 3859.5540160
39 4524.1764865 | 269.5824400 | 1513.0280615 | 4509.6641820
40 5250.9282605 | 290.8073185 | 1761.0665985 | 5241.1169100

Capitulo 4 75

Los propositos de esta tabla son:

1. Proveer los tiempos de ejecucion necesarios para que los calendarizadores pue-
dan decidir qué modulo utilizar para cada punto, considerando tinicamente los
modulos disponibles en la Jetson TX2. De este modo, el sistema se adapta
automaticamente a las limitaciones de hardware sin intervencion del usuario.

2. Permitir analizar el impacto del entorno embebido sobre el rendimiento de la
biblioteca de integrales multidimensionales.

Estos fragmentos representan sélo una parte de las tablas completas almacenadas
para el sistema de calendarizacion, las cuales contienen los tiempos de ejecuciéon para
todos los puntos de integracion requeridos (1-40).

Las Figuras 4.2 presentan las curvas de tiempo de ejecucion obtenidas al evaluar
la Funcién 1.3 utilizando los médulos de ejecucion disponibles en la estacion de tra-
bajo CUDA. Todas las graficas fueron generadas a partir de las tablas de tiempos
completas, por lo que reflejan el comportamiento real de cada moédulo para todos los
puntos de integraciéon considerados.

Las figuras organizan los resultados por dimension: 3D (Figura 4.2a), 4D (Figura
4.2b), 5D (Figura 4.2c) y 6D (Figura 4.2d), permitiendo observar de manera clara
como crece el tiempo de ejecucion conforme aumentan los puntos de integracion y las
dimensiones. A partir de las figuras, se observa que:

= El modulo CUDA presenta los menores tiempos conforme el nimero de puntos
aumenta en todas las dimensiones, evidenciando la ventaja de una GPU de alto
rendimiento cuando se trata de cargas altamente paralelizables.

= El moédulo AVX presenta un desempeno superior al del médulo SEC en 3D
(Figura 4.2a); sin embargo, a medida que aumenta la dimensionalidad, su ren-
dimiento se aproxima al del médulo SEC y deja de ofrecer mejoras apreciables.
Esto se debe a que su implementacién no es completamente paralelizable.

s Los modulos OMP-E y OMP-P alcanzan mejoras moderadas respecto los mo-
dulos SEC y AVX, pero no logran superar al médulo CUDA.

= El médulo SEC exhibe el crecimiento de tiempo mas pronunciado.

Por otro lado, las Figuras 4.3 muestran el comportamiento de los médulos de
ejecucion disponibles en la Jetson TX2. La organizacion es la misma: 3D (Figura
4.3a), 4D (Figura 4.3b), 5D (Figura 4.3c) y 6D (Figura 4.3d). En las figuras se observa
que:

» El modulo CUDA posee los tiempos de ejecucion més grandes en 3D (Figura
4.3a), pero ofrece una aceleracion notable respecto al médulo SEC en las demaés
dimensiones, no obstante, la separacion entre ambas curvas es significativamente
menor que en la estacion de trabajo. Esto refleja la diferencia entre una GPU
integrada (Jetson TX2) y una GPU dedicada de escritorio.

76

0012/ —* SEC
0.011{ —+— CUDA
0.010 OMP-E

Tiempo (s)

Tiempo (s)
000000000000 00000
[elelelolelelelelelel Il

Tiempo (s)
COHENNWWARUINIOD NN
ouiocuIouIoUuIouIouUIoULIOUIO

008/ —— OMP-P
.007 AVX

S52

0 2 4 6 8 1012141618202224 26283032 34363840
Puntos de integracion

(a) 3D

8 — sEC s
4~ CupaA Va
2 OMP-E
31 —— omp-p ¥
9
8 AVX
7
6
5
4
3
2
1
0 S =Y

0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40

Puntos de integracion
(b) 4D
—e— SEC /o
d
—— CUDA b4
OMP-E 7
—— OMP-P /
AVX //
/0/0/6/0/
» I
—teieie JSOPO PP PPPPTTS S 2 a0t e

350
325
300
275
— 250
L2225
g 200
175

€ 150
@125
F 100
75

25

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(c) 5D

—— SEC

—+— CUDA #
OMP-E 4

—+— OMP-P e
AVX /

&

o’ M
oo
,,,,,,,,,,,,, s P

2009000000000 000D

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(d) 6D

Pruebas

Figura 4.2: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 en
estacion de trabajo CUDA.

Capitulo 4

0.09
0.08
0.07
N o.06
8 0.05
£ 0.04
20,03
0.02
0.01
0.00

2.0
1.8
1.6
wig
ol2
1.0
o 0.8
Fo06
0.4
0.2

—e— SEC

CUDA
OMP-E
OMP-P

—a—

.
oo
°
PO

+-0-0-0-0-0-0-

0 2 4 6 8 10121416 182022242628 30 32 34 36 38 40
Puntos de integracién

(a) 3D

0.0

—e— SEC

—— CUDA
OMP-E &
OMP-P #

110
100
90
80
70
60
50
40
30
20
10

Tiempo (s)

5000
4500
__4000
13500
g 3000
22500
E 2000
= 1500
1000
500

Figura 4.3: Comparacion de tiempos de ejecucion (s) al evaluar la Funciéon 1.3 en

Jetson TX2.

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(b) 4D

—+— SEC r
—+— CUDA pd

OMP-E Vi

OMP-P a

#
#
#
&
& O
,Q°QJ
OUPDON ,::-_:_/_s_:“ >4 Q:_H_rﬁﬁﬁa—r‘—ff‘

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(c) 5D

—e— SEC

—— CUDA
OMP-E
OMP-P

0 2 4 6 8 101214 16 18 20 22 24 26 26 30 32 34 36 38 40
Puntos de integracién

(d) 6D

78 Pruebas

= El médulo OMP-P no proporcionan mejoras significativas, su desempeno es
bastante cercano al médulo SEC, debido a las restricciones del procesador ARM
en tareas de computo intensivo con niicleos de rendimiento.

» El modulo OMP-E presenta el mejor desempeno en 3D (Figura 4.3a) y un
desempeno superior al de los médulos OMP-P y SEC, pero sin superar el médulo
CUDA, en las deméas dimensiones.

= El tiempo del modulo SEC crece rapidamente con el nimero de dimensiones,
volviéndose demasiado grande en 5D (Figura 4.3c) y 6D (Figura 4.3d).

En todas las graficas, tanto en la estacion de trabajo como en la Jetson TX2, se
observa un patréon comun: el tiempo de ejecucion crece de forma acelerada a medi-
da que aumentan los puntos de integracién y las dimensiones. Las curvas permiten
identificar visualmente las diferencias entre plataformas y muestran cémo la dispo-
nibilidad o ausencia de modulos especializados (como CUDA o AVX) condiciona el
rendimiento general del sistema de calendarizacion.

4.3.2 Pruebas de tiempo de ejecuciéon usando el calendariza-
dor estatico secuencial

En esta seccion se presentan los resultados obtenidos al realizar las pruebas con el
calendarizador estético secuencial (SCHED SS). Las mediciones se realizaron en am-
bas plataformas, utilizando la Funciéon 1.3 y el rango de 1 a 40 puntos de integracion,
aplicando la extrapolaciéon de Romberg.

El objetivo de estas pruebas es cuantificar el tiempo total de ejecucion y analizar el
comportamiento del sistema de calendarizacion, contrastando el desempeno individual
de cada modulo de ejecucion con el obtenido por el calendarizador estético secuencial.

Las Figuras 4.4 y 4.5 muestran los tiempos de ejecucion al evaluar la Funcion 1.3
en la estacion de trabajo CUDA y en la Jetson TX2.

Las Figuras 4.4, correspondientes a los tiempos de ejecuciéon en la estacion de
trabajo CUDA, organizan las graficas por dimension: 3D (Figura 4.4a), 4D (Figura
4.4b), 5D (Figura 4.4c) y 6D (Figura 4.4d), lo que facilita analizar como se comporta
el calendarizador en distintas dimensiones. A partir de esto, se observa que:

= El médulo CUDA contintia mostrando el mejor rendimiento individual, siendo
la curva més baja en todas las dimensiones.

s El calendarizador SCHED-SS sigue de cerca el desempeno del moédulo CUDA
cuando la carga computacional crece considerablemente, lo cual ocurre princi-
palmente en 5D (Figura 4.4c) y 6D (Figura 4.4d). Ademas, su desempeno es
mejor comparado con los moédulos SEC, AVX, OMP-P y OMP-E.

Las Figuras 4.5, organizadas por dimension: 3D (Figura 4.5a), 4D (Figura 4.5b),
5D (Figura 4.5¢) y 6D (Figura 4.5d), muestran los tiempos de ejecucion en la Jetson TX2,
donde el comportamiento cambia significativamente debido a las restricciones de la
plataforma:

Capitulo 4 79

0.044

0.040
0.036/ " CUDA

—~0.032{ —*— OMP-E f
L0.028/ —— omP-P

—— SEC

8 0.024 AVX /
£ 0.020 SCHED-SS /
¥ 0.016 \
F 0.012

0.008

0.004 — %
0.000] oisibotteutiioied

0 2 4 6 81012141618202224 26283032 34363840
Puntos de integracion

(a) 3D

—e— SEC r
—=— CUDA »
—e— OMP-E A
—+«— OMP-P ‘f

AVX /
SCHED-SS ,

S0
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

Tiempo (s)
0000000000 EEE
OFNWRARUONOOOFENWRE

(b) 4D
gg —e— SEC _Q
481 —=— CUDA #
a0l —~— OMP-E 4
L36] —— OMP-P 4
83 AVX 4
€24 SCHED-SS P
@20 /
F 16
12
8
4
0 S-S 0-¢09
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién
(c) 5D
2200 »
e /
2000 SEC
1800/ —= CUDA #
—1600{ OMP-E y
— 1400{ —+— OMP-P J
8§ 1200 AVX
»
£ 1000 SCHED-SS /
@ 800 /
F 600 #
400 %
200
0 SH-S0-0-00%
0 2 4 6 8101214161820 2224 2628303234 363840

Puntos de integracién
(d) 6D

Figura 4.4: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: modulos VS calendarizador estatico secuencial,
en estacion de trabajo CUDA.

80

0.32

028 —* SEC

—=— CUDA

024 . omp-E
%0-20 OMP-P
©.0.16 SCHED-SS
qE, 0.12
F 0.08

0.04

0.00{ ¢-¢-0-0-00000000000F

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(a) 3D

=i
(VY

Tiempo (s)
B
OFRNWAUIOONOOOHN

—e— SEC /"

—=— CUDA

—e— OMP-E f
OMP-P ¢
SCHED-SS /

-5

650
600
550
500

% 450

830

2-300
5 250

= 200
150
100

50

27000 SEC /
24000(. cypa /
4

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D

—+— SEC /

—=— CUDA #
—— OMP-E /
OMP-P 4

SCHED-SS /

o

untos de integracién
(c) 5D

210001 o OMP-E

W 18000 OMP-P

8 15000 SCHED-SS a

€ 12000
9000
6000
3000

Tie

810121416 18202224 26283032 3436 3840
Puntos de integracion

(d) 6D

Pruebas

Figura 4.5: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: moédulos VS calendarizador estatico secuencial,

en Jetson TX2.

Capitulo 4 81

= El modulo CUDA continiia siendo mas eficiente que los médulos que usan la
CPU en 4D(Figura 4.5b), 5D (Figura 4.5¢) y 6D (Figura 4.5d), sin embargo
continua teniendo tiempos de ejecucion elevados en 3D (Figura 4.5a).

» El calendarizador SCHED-SS se ajusta al rendimiento de la Jetson, combinan-
do los moédulos disponibles. No obstante, su desempeno queda limitado por la
menor capacidad de procesamiento de la CPU ARM y de la GPU integrada.

» En 3D (Figura 4.5a) el calendarizador SCHED-SS posee el menor tiempo de
ejecucion, cumpliendo el objetivo de reducir el tiempo a través de una estrategia
de calendarizacion.

» En 5D (Figura 4.5¢) y 6D (Figura 4.5d), el calendarizador SCHED-SS mantiene
un mejor desempeno en comparacién con el moédulo SEC, pero sigue de cerca
el rendimiento del médulo CUDA.

Estas figuras resultan fundamentales para validar el funcionamiento del calenda-
rizador estatico secuencial, ya que permiten comparar la estrategia de asignaciéon con
los tiempos de cada modulo individual y muestran cémo el rendimiento del sistema
de calendarizacion surge de la adecuada combinacion de los recursos disponibles.

La Tabla 4.6 presenta los tiempos de ejecucién obtenidos con el calendarizador
estatico secuencial en un rango de 36 a 40 puntos. Estos valores corresponden tnica-
mente a un subconjunto de puntos de integracion y a las cuatro dimensiones evaluadas
(3D-6D), seleccionados con el proposito de ilustrar de manera compacta el compor-
tamiento del calendarizador en ambas plataformas: la estacion de trabajo CUDA y
la Jetson TX2.

Todos los datos mostrados en esta tabla provienen directamente de las mismas
mediciones utilizadas para construir las graficas de las Figuras 4.4 y 4.5. En las figuras,
los valores de tiempo se representan de forma visual para todos los puntos evaluados
(1-40), mientras que la tabla ofrece una vista concentrada que permite observar de
forma més clara la tendencia del calendarizador para un intervalo especifico de puntos
de integracion (36-40).

La tabla sirve como referencia numeérica directa del comportamiento que aparece
representado en las curvas del calendarizador SCHED-SS dentro de las graficas, mos-
trando coémo el tiempo de ejecucion crece conforme aumenta el nimero de puntos de
integraciéon y la dimensionalidad del dominio.

En general, las pruebas confirman que esta estrategia es adecuada para entornos
donde las condiciones de ejecucion son estables y el costo de calendarizacion previa
se compensa con la reduccion del tiempo total de computo.

4.3.3 Pruebas de tiempo de ejecuciéon usando el calendariza-
dor dindmico secuencial
Los resultados obtenidos usando el calendarizador dinamico secuencial (SCHED DS)

muestran que este enfoque logra un desempeno muy similar al del calendarizador
estatico secuencial en condiciones estables, con una ligera penalizaciéon en tiempo

82 Pruebas

Tabla 4.6: Pruebas realizadas en calendarizador estatico secuencial usando la
Funcién 1.3 y la extrapolacién de Romberg. Tiempo de ejecucion (s)

Puntos trE:)taa}tc:)IoCnUd[()e A Jetson TX2
3 Dimensiones

36 0.0058130 0.0611985
37 0.0059520 0.0684210
38 0.0062590 0.0754485
39 0.0065900 0.0831530
40 0.0069075 0.0913880
4 Dimensiones

36 0.0583350 0.9736850
37 0.0661450 1.0948180
38 0.0746965 1.2114875
39 0.0772280 1.3468675
40 0.0838085 1.4856400
5 Dimensiones

36 1.7585130 28.1786615
37 2.0808835 33.4708585
38 2.4203720 39.0795090
39 2.7959825 45.2268855
40 3.1883440 51.7129405
6 Dimensiones

36 64.2720825 | 1029.1366955
37 78.3937330 | 1261.2886605
38 93.7072915 | 1512.0529185
39 111.0044350 | 1796.3995345
40 129.6988870 | 2104.5626530

debido al proceso de comparaciéon que se realiza en cada iteracién. Sin embargo,
dicha sobrecarga es minima y se mantiene constante a lo largo de toda la ejecucion.

Las Figuras 4.6 y 4.7 muestran la comparacion de los tiempos de ejecucion en la
estacion de trabajo CUDA y en la Jetson TX2, contrastando los médulos individuales
frente al calendarizador dindmico secuencial.

En la estacion de trabajo CUDA (Figuras 4.6), donde las graficas estan ordenadas
por dimension: 3D (Figura 4.6a), 4D (Figura 4.6b), 5D (Figura 4.6¢) y 6D (Figura
4.6d), el calendarizador SCHED-DS tiende a comportarse de manera similar al mo-
dulo CUDA, el cual tiene los menores tiempos de ejecucion en cada dimension. No
obstante, en 3D (Figura 4.6a) presenta ligeras irregularidades, debido a la variabilidad
introducida por la asignacion dindmica. A partir de 4D (Figura 4.6b) y en adelante, la
curva del calendarizador SCHED-DS converge hacia una tendencia suave, dominada
por el costo acumulado de las evaluaciones.

En la Jetson TX2 (Figuras 4.7), donde las graficas estan ordenadas por dimension:
3D (Figura 4.7a), 4D (Figura 4.7b), 5D (Figura 4.7¢) y 6D (Figura 4.7d), el compor-
tamiento del calendarizador SCHED-DS en 3D (Figura 4.7a) es mejor en comparacion
con los modulos individuales, cumpliendo el objetivo de reducir el tiempo.

Capitulo 4

0.044
0.040

—— SEC

0.036, —=— CUDA

—0032 —* OMPE f
L0.028/ —— omP-P

8 0.024
£0.020
@ 0.016
Fo0.012
0.008
0.004

0.000 LA 2SS e o

AVX /
SCHED-DS ¢

0 2

4 6 810121416182022242628303234363840
Puntos de integracion

(a) 3D

Tiempo (s)
0000000000 EEE
OFNWRARUONOOOFENWRE

—e— SEC r
—=— CUDA »
—e— OMP-E A
—+«— OMP-P ‘f

AVX /
SCHED-DS)

0 2 4

6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(b) 4D

521 —— SEC _Q
481 —=— CUDA #

— 0l —=— OMP-E 4
m ,
— 361 —— OMP-P %
g 32 AVX #
€24 SCHED-DS #

14 16 18 20 22 24 26 28 30 32 34 36 38 40
untos de integracién

(c) 5D

oN

SEC !
CUDA 4
OMP-E
OMP-P
AVX
SCHED-DS 4

8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(d) 6D

83

Figura 4.6: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 usando
la extrapolaciéon de Romberg: moédulos VS calendarizador dindmico secuencial, en

estacion de trabajo CUDA.

84

0.32

028 —* SEC

—=— CUDA

=024 . ompE
%0-20 OMP-P
©.0.16 SCHED-DS
qE, 0.12
F 0.08

0.04

0.001 - 0-0-0-0-0-0-0-0-0-0-0-0-0-00t

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(a) 3D

=i
(VY

Tiempo (s)
B
OFRNWAUIOONOOOHN

—e— SEC /"

—=— CUDA

—+— OMP-E A
OMP-P ¢
SCHED-DS

o-0-0-0-0-0
-5 S S

650
600
550
500

450

25

2-300
5 250

= 200
150
100

50

27000 SEC /
24000 = CUDA /'
¢

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D

—+— SEC /

—=— CUDA #
—— OMP-E /
OMP-P 4

SCHED-DS /

o

untos de integracién
(c) 5D

210001 o OMP-E

W 18000 OMP-P

@) 4
8 15000 SCHED-DS v

€ 12000
9000
6000
3000

Tie

810121416 18202224 26283032 3436 3840
Puntos de integracion

(d) 6D

Pruebas

Figura 4.7: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 usando
la extrapolacion de Romberg: moédulos VS calendarizador dindmico secuencial, en

Jetson TX2.

Capitulo 4 85

Sin embargo, en dimensiones altas (5D (Figura 4.7c) y 6D (Figura 4.7d)), la curva
del calendarizador SCHED-DS muestra un desempeno similar al médulo CUDA, sin
agregar mejoras.

La Tabla 4.7 presenta un fragmento de los tiempos de ejecuciéon obtenidos con el
calendarizador dinamico secuencial. Estos valores corresponden a los mismos datos
que se utilizaron para generar las graficas mostradas en las Figuras 4.6 y 4.7; sin
embargo, aqui se resume Unicamente el intervalo de puntos de integracion de 36 a
40, con el fin de observar claramente el comportamiento del calendarizador en ambas
plataformas: la estacion de trabajo CUDA y la Jetson TX2.

La estructura de la tabla se organiza por bloques, uno por cada dimension del
problema (3D, 4D, 5D y 6D), permitiendo comparar directamente el crecimiento
del tiempo de ejecucion conforme aumenta el nimero de puntos de integracion y la
dimensionalidad del dominio.

En conjunto, esta tabla ofrece una vista sintetizada pero representativa del de-
sempeno del calendarizador dinamico, permitiendo relacionar cuantitativamente los
valores que se compararon visualmente en las figuras.

Tabla 4.7: Pruebas realizadas en calendarizador dindmico secuencial usando la
Funcion 1.3 y la extrapolacion de Romberg. Tiempo de ejecucion (s)

Puntos trE::taE}(c)l?Ud[()e A Jetson TX2
3 Dimensiones

36 0.0057150 0.0846915
37 0.0059625 0.0937825
38 0.0062490 0.1205385
39 0.0065820 0.1324245
40 0.0069380 0.1258805
4 Dimensiones

36 0.0577000 0.9707205
37 0.0672020 1.0892880
38 0.0754635 1.2144655
39 0.0771860 1.3475005
40 0.0824145 1.4838455
5 Dimensiones

36 1.8011205 28.1653055
37 2.0921675 33.4641705
38 2.4201670 39.0657690
39 2.7949995 45.2000950
40 3.1875860 51.7072995
6 Dimensiones

36 64.2837270 | 1033.4060260
37 78.3934990 | 1265.6574855
38 93.7225400 | 1517.8290865
39 111.0416065 | 1804.1610285
40 129.7061360 | 2113.3271530

En términos generales, las pruebas confirman que el calendarizador dinamico se-
cuencial constituye una estrategia flexible y confiable, capaz de mantener una distri-

86 Pruebas

bucién eficiente de las tareas con un costo computacional adicional despreciable, lo
que lo convierte en una alternativa viable cuando se busca adaptabilidad sin compro-
meter el rendimiento global.

4.3.4 Pruebas de tiempo de ejecuciéon usando el calendariza-
dor estatico concurrente

El calendarizador estatico concurrente (SCHED SC) fue diseniado con el proposito de
aprovechar la concurrencia a nivel de hilos, evaluando dos puntos consecutivos de la
integral multidimensional en distintos modulos con espera activa, es decir, siempre
que los modulos correspondientes estuvieran disponibles. Sin embargo, durante las
pruebas se observd que este enfoque no logré mejorar los tiempos de ejecucion con
respecto a los calendarizadores secuenciales. Por el contrario, en la mayoria de los casos
el rendimiento fue inferior, especialmente en las configuraciones de mayor dimension.

Las Figuras 4.8 y 4.9 presentan los tiempos de ejecucion obtenidos al usar el
calendarizador estatico concurrente, tanto en la estacion de trabajo CUDA como en
la Jetson TX2. Estas graficas permiten analizar el desempeno de dicho calendarizador
frente a los modulos individuales.

El desempernio en la estacion de trabajo CUDA (Figuras 4.8), donde las graficas
estéan ordenadas por dimension: 3D (Figura 4.8a), 4D (Figura 4.8b), 5D (Figura 4.8¢)
y 6D (Figura 4.8d), muestra que:

= El calendarizador SCHED-SC supera en rendimiento a los médulos SEC y AVX.
Esto se debe a que la concurrencia entre dos modulos de ejecucion permite
repartir la carga de forma més equilibrada.

= Los modulos CUDA, OMP-P y OMP-E tienen mejores tiempos de ejecucion
a diferencia del calendarizador SCHED-SC, debido al overhead inherente a la
sincronizacion entre modulos concurrentes y a las restricciones de exclusion
mutua del calendarizador, lo que incrementa ligeramente su tiempo respecto a
los médulos paralelos individuales.

En la Jetson TX2 (Figuras 4.9), donde las gréficas estan ordenadas por dimension:
3D (Figura 4.9a), 4D (Figura 4.9b), 5D (Figura 4.9¢) y 6D (Figura 4.9d), los resultados
muestran que:

» En 3D (Figura 4.9a) el calendarizador SCHED-SC muestra un bajo desemperio,
siguiendo de cerca el comportamiento de los médulos SEC y OMP-P.

» En 4D (Figura 4.9b), 5D (Figura 4.9¢) y 6D (Figura 4.9d), donde el costo
computacional se incrementa considerablemente, el calendarizador SCHED-SC
supera a los médulos SEC y OMP-P y en algunos casos, al médulo OMP-E.

= El moédulo CUDA continua siendo el médulo con los mejores tiempos de eje-
cucion, el calendarizador SCHED-SC no logra superarlo, la separacion entre
ambas curvas es significativamente grande.

Capitulo 4 87

0.044
0.040 SEC

0036, —= CUDA
—~0.032{ —*— OMP-E
L0.028/ —— omP-P

8 0.024 AVX
£ 0.020 SCHED-SC
©0.016
F0.012
0.008

0.004 L
PSS ve s
0.000| sdSESsiBeniiseee
0 2 4 6 81012141618202224 26283032 34363840
Puntos de integracion

(a) 3D
—e— SEC /‘»
—=— CUDA /,f’
—e— OMP-E A
—+— OMP-P /“‘/

AVX /
SCHED-SC

o
PPN A,.Mﬁw-"J‘rﬁmﬁ_‘»

0000
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

Tiempo (s)
0000000000 EEE
OFNWRARUONOOOFENWRE

(b) 4D
gg —e— SEC ""'
48| —=— CUDA 4
a0l —~— OMP-E 4
L 36{ —— OMP-P e
83 AVX 4
€24 SCHED-SC ¥
V20 .4
16 s‘fﬁ
12 o
8 real
3 cscccscccccsscﬂmﬁ"’*"“"’“'{"&of
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién
(c) 5D
2200 PY
o .
2000 SEC
1800/ —= CUDA 4
— 1400{ —+— OMP-P
S 1200 AVX Va
g 1000 SCHED-SC :
@ 800
F 600 :
400 pogt
200 o
] O s s s
0 2 4 6 810121416182022242628303234363840

Puntos de integracién
(d) 6D

Figura 4.8: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 usando
la extrapolacion de Romberg: modulos VS calendarizador estético concurrente, en
estacion de trabajo CUDA.

88

Pruebas

0.32 ;

028 —* SEC /
—=— CUDA p,

,‘30-24 —+— OMP-E #

—0.20 OMP-P vl

2016 SCHED-SC

IS

§ 012

F 0.08

0.04
0.00

Puntos de integracién

(a) 3D
14 z
13] —* SEC /"
12{ —=— CUDA
11 g 4
—1o —* OMPE
L5 OMP-P
S 8 SCHED-SC P
IS
QL 5
— a4
3
2
1
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion
(b) 4D
650 B
6001 —— SEC /
5501 —s— CUDA #
3000 ompe /
2]
— 400 OMP-P y
8350 SCHED-SC /
£ 300 4
$ 250 /
i= 200
150 e A
100 & ™
50 »00?'?»“*"'/
0 SO0 oS OS-o0-0-0-0-0HF
0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion
(c) 5D
27000 SEC "
240000 ., cupa /
210001 . omP-E Z
W 18000 OMP-P /
@) P
8 15000 SCHED-SC Vi
€ 12000
2 9000
|_
6000
3000
O ©So00000
0 2 4 6 810121416182022242628303234363840

untos de integracion
(d) 6D

Figura 4.9: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3 usando
la extrapolacion de Romberg: modulos VS calendarizador estético concurrente, en

Jetson TX2.

Capitulo 4 89

La Tabla 4.8 presenta un fragmento representativo de los tiempos de ejecucion
obtenidos con el calendarizador estatico concurrente, tanto en la estacion de trabajo
CUDA como en la Jetson TX2. Estos valores corresponden a los mismos datos que
se utilizaron para generar las graficas mostradas en las Figuras 4.8 y 4.9.

El objetivo de esta tabla es mostrar de manera estructurada como se comporta
el calendarizador cuando combina dos modulos de ejecucion de forma concurrente
para resolver las integrales multidimensionales. Los resultados se presentan para cinco
puntos de integracion consecutivos (36-40), permitiendo observar la tendencia del
tiempo de computo conforme aumenta la carga y crece la complejidad del problema
en 3D, 4D, 5D y 6D.

Tabla 4.8: Pruebas realizadas en calendarizador estatico concurrente usando la
Funcion 1.3 y la extrapolacion de Romberg. Tiempo de ejecucion (s)

Estacion de

Puntos trabajo CUDA Jetson TX2
3 Dimensiones

36 0.0151475 0.2023605
37 0.0181585 0.2254015
38 0.0181555 0.2499150
39 0.0216875 0.2771290
40 0.0216970 0.3054160
4 Dimensiones

36 0.3653950 2.8283780
37 0.3733455 4.0554185
38 0.3819945 4.1832000
39 0.5252940 4.3109860
40 0.5363515 4.4378590
5 Dimensiones

36 13.2290310 122.3459580
37 13.5906915 127.6760570
38 13.9398545 133.4473490
39 20.7490085 139.5041090
40 21.1865920 145.8986720
6 Dimensiones

36 497.7480595 | 6279.4874210
37 513.7554920 | 6513.4717390
38 536.2696760 | 6775.9281455
39 850.6828590 | 7049.9691395
40 867.9491250 | 7359.7395700

90

Pruebas

Capitulo 5
Analisis

En este capitulo se presenta el anélisis detallado de los resultados obtenidos a partir
de las pruebas descritas en el capitulo anterior. El objetivo es evaluar el desempeno
de los distintos modulos de ejecucion, asi como la efectividad de las estrategias de
calendarizacion implementadas para la integraciéon multidimensional. El anélisis se
centra en comparar la eficiencia, escalabilidad y adaptabilidad del sistema de calen-
darizacion en las plataformas heterogéneas utilizadas: una estaciéon de trabajo CUDA
y una Jetson TX2.

La primera seccion compara el calculo de las integrales multidimensionales utili-
zando los modulos de ejecuciéon con 128 puntos sin extrapolacion frente al método de
extrapolacion de Romberg aplicado con sblo 40 puntos. En esta parte se analiza la re-
duccion del tiempo de ejecucion y el impacto en la precision del resultado, destacando
como la extrapolacion permite mantener errores dentro de méargenes aceptables con
un costo computacional significativamente menor.

La segunda seccién aborda el desempeno de los calendarizadores propuestos. Se
realiza una comparacion general entre las tres estrategias: estatico secuencial, diné-
mico secuencial y estatico concurrente, evaluando sus tiempos de ejecucion en ambas
plataformas y resaltando sus ventajas y limitaciones. Finalmente, se analiza el im-
pacto de las estrategias de calendarizacion frente a la ejecucion individual de los
modulos, considerando las aceleraciones obtenidas y su comportamiento frente a la
heterogeneidad de las plataformas.

En conjunto, este capitulo permite comprender la relacion entre la complejidad
del método, la carga computacional y la arquitectura de ejecuciéon, ofreciendo una
vision integral del desempeno del sistema de calendarizacion implementado.

5.1 Comparacion: 128 puntos vs extrapolaciéon de
Romberg

Las pruebas preliminares tuvieron como proposito evaluar la precision y el compor-
tamiento de la biblioteca de integrales multidimensionales antes de aplicar las estra-
tegias de calendarizacion. Para este fin, se compararon dos enfoques distintos para el

91

92 Andlisis

calculo de las integrales: el primero utilizando 128 puntos de integraciéon sin aplicar
la extrapolacion de Romberg, y el segundo reduciendo el niimero de puntos a 40,
incorporando dicho método.

El enfoque con 128 puntos de integraciéon utiliza tnicamente la cuadratura de
Gauss-Kronrod, la cual garantiza una mayor precision numeérica, a diferencia de otras
cuadraturas. Sin embargo, este enfoque presenta un mayor tiempo de ejecucion, de-
bido al elevado niimero de puntos. En contraste, el método con 40 puntos emplea,
ademés de la cuadratura de Gauss-Kronrod, la extrapolaciéon de Romberg, una técni-
ca que permite disminuir el nimero de puntos. Esto mejora los tiempos de ejecucion
y mantiene un error aceptable dentro de los margenes establecidos en esta tesis.

Como se muestra en las Tablas 4.2 y 4.3 (Secciéon 4.2.2), al reducir el niamero de
puntos e incorporar la extrapolacion de Romberg se obtiene un error ligeramente su-
perior, 10™%, en comparacién con el error de 10~¢ obtenido al integrar con 128 puntos.
No obstante, esta diferencia se considera aceptable, debido a que la disminucién en el
nimero de puntos produce una reducciéon notable en el tiempo de ejecucion. En par-
ticular, el tiempo requerido para la integraciéon usando la extrapolacion de Romberg
corresponde s6lo a una fraccion del necesario para la version de 128 puntos, lo que
representa una mejora significativa en eficiencia computacional sin comprometer en
exceso la exactitud del resultado.

Para evaluar el impacto de la extrapolacion de Romberg en el desempeno de los
modulos de ejecucion, se calcularon las aceleraciones relativas (Ecuacion 5.1) de cada
modulo respecto al moédulo CUDA evaluando 128 puntos, ya que éste representa la
referencia més rapida dentro de los médulos con 128 puntos.

T
4 — Leupa, 128 (5.1)
Trrop, Rao

donde Ty pa, 128 corresponde al tiempo de ejecucion del moédulo CUDA al evaluar 128
puntos sin aplicar la extrapolaciéon de Romberg, mientras que Th/op, rao representa
el tiempo de ejecucion de los distintos moédulos al evaluar 40 puntos con la extrapo-
lacion de Romberg. El término M OD hace referencia a los médulos de la biblioteca
de integrales multidimensionales (Secuencial, CUDA, OpenMP y AVX).

El valor del parametro A permite cuantificar el cambio en el rendimiento. Si A > 1,
el modulo presenta aceleracion respecto al caso base; si A = 1, no se observa variacién
en el tiempo de ejecuciéon; y si A < 1, se produce una desaceleracion, lo que indica
que el nuevo método es menos eficiente.

La Tabla 5.1 presenta las aceleraciones obtenidas para las distintas dimensiones.
La tabla se divide en dos secciones principales, correspondientes a las dos plataformas
de prueba: estacion de trabajo CUDA y Jetson TX2. Cada fila de la tabla corresponde
a un modulo de ejecucion, mientras que cada columna representa una dimension del
problema (3D, 4D, 5D y 6D). De esta forma, las celdas contienen los valores numéricos
de aceleracion alcanzados en cada caso.

Capitulo 5 93

Tabla 5.1: Aceleraciones de los modulos de ejecucion usando la extrapolacion de
Romberg tomando como referencia el modulo de ejecucion CUDA con 128 puntos.

Médulos [3D | 4D | 5D [6D
Estacion de trabajo CUDA
SEC 0.187 | 0.606 | 2.286 8.938

CUDA 1.034 | 9.924 | 40.558 | 152.259
OMP-P | 0.809 | 3.296 | 13.181 | 51.595
OMP-E | 1.156 | 4.718 | 19.083 | 75.638

AVX 0.156 | 0.602 2.284 8.958
Jetson TX2
SEC 0.524 | 0.928 3.473 13.447

CUDA 1.163 | 9.259 | 42.207 | 172.011
OMP-P | 1.037 | 2.404 | 9.746 | 38.980
OMP-E | 0.516 | 0.923 | 3.453 13.364

De acuerdo con los datos presentados en la Tabla 5.1, en la estacion de trabajo
CUDA se observa que el modulo de ejecucion CUDA alcanza una aceleracion supe-
rior a 150x en seis dimensiones. Asimismo, los médulos OMP-P y OMP-E presentan
incrementos de rendimiento significativos, particularmente a partir de las cuatro di-
mensiones. Sin embargo, el médulo AVX, no alcanzo aceleraciones significativas y, en
algunos casos, incluso present6 tiempos de ejecucion mayores que el médulo SEC. Es-
to se debe a que las instrucciones AVX permiten paralelizar tinicamente operaciones
vectoriales a nivel de registro, es decir, procesar varios elementos en un mismo ciclo
de reloj, pero no aprovechan miltiples niicleos, ni dispositivos de computo. Ademés,
la sobrecarga asociada a la preparacion de los datos y a la alineaciéon de memoria
puede anular los beneficios del procesamiento vectorial cuando el nimero de puntos
es grande o las operaciones no son completamente vectorizables, como es el caso de
la funcion a integrar (véase Seccion 22). El modulo AVX resulta ventajoso solo para
integraciones de baja dimensionalidad o con un nimero reducido de puntos, donde el
acceso a memoria y el tamano del vector no penalizan el rendimiento del médulo.

Por otro lado, en la Jetson TX2 se observan tendencias similares: el médulo de
ejecucion CUDA presenta las mayores aceleraciones. No obstante, se identificd que el
médulo OMP-E, que emplea exclusivamente los niicleos de eficiencia, obtuvo tiem-
pos de ejecucion inferiores a los del moédulo OMP-P, el cual utiliza los niicleos de
rendimiento. Esta tendencia se explica por las caracteristicas particulares de la ar-
quitectura heterogénea de la plataforma, donde los ntcleos de eficiencia presentan un
consumo energético y una frecuencia mas estables bajo cargas prolongadas. En con-
traste, los nicleos de rendimiento tienden a operar a frecuencias mas altas durante
intervalos cortos, pero experimentan una rapida reduccién de velocidad debido a la
gestion térmica y las limitaciones de energia del sistema integrado. Como resultado,
las ejecuciones paralelas en los ntucleos de eficiencia mantienen un desempeno mas
constante y sostenido, mientras que el uso intensivo de los nucleos de rendimiento
introduce variaciones y penalizaciones que aumentan el tiempo total de computo.

Las Figuras 5.1 y 5.2 muestran la comparacion de los tiempos de ejecucion obte-
nidos al evaluar la Funciéon 1.3 en las dos plataformas de prueba: estacion de trabajo
CUDA y Jetson TX2. En ambos casos, se contrastan los resultados de los médulos de

94

Andlisis

ejecucion al usar 128 puntos sin extrapolacion frente a la extrapolacion de Romberg

con 40 puntos.

3.273 0102 ,418.801
0.007 0.012 mad 0-037 0 007 0.006 2:044 :
G OF 16.007
o (o3
g £ 1.378 1.388
= F:
i 0.177
0.084
SEC CUDAOMP-P AVX SEC CUDAOMP-P AVX SEC CUDAOMP-P AVX SEC CUDAOMP-P AVX
128 Puntos Romberg - 40 Puntos 128 Puntos Romberg - 40 Puntos
(a) 3D (b) 4D
2454.134 2482 303 364105.6 365716.1
@ 262.29 @ 19697.39083'
pe 127.83 ps
= 55.910 55.955 o
£ £ 2203.5 2198.6
QL K]
. 6.699 .
: 260.4
3.152 129.4 8¢
SEC CUDA OMP-P AVX SEC CUDA OMP-P AVX SEC CUDA OMP-P AVX SEC CUDA OMP-P AVX
128 Puntos Romberg - 40 Puntos 128 Puntos Romberg - 40 Puntos
(c) 5D (d) 6D

Figura 5.1: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3: 128
puntos VS extrapolacion de Romberg en estacion de trabajo CUDA.

En la estacion de trabajo CUDA (Figuras 5.1), las graficas ordenadas por dimen-

sion: 3D (Figura 5.1a), 4D (Figura 5.1b), 5D (Figura 5.1c) y 6D (Figura 5.1d), indican
que la extrapolaciéon de Romberg reduce de manera notable los tiempos de ejecucién
para la mayoria de los modulos, en comparacion con la integracion realizada mediante
los médulos con 128 puntos.

» En 3D (Figura 5.1a), los modulos SEC, OMP-P y AVX reducen su tiempo de

ejecucion al emplear extrapolacion de Romberg, mientras que el médulo CUDA
no presenta una disminucién a considerar.

En 4D (Figura 5.1b), el beneficio es atin mas evidente: los modulos paralelos
reducen su tiempo en un rango aproximado del 80 % al 90 %, destacando CUDA
y OMP-P, que logran los menores tiempos absolutos.

En 5D (Figura 5.1c) y 6D (Figura 5.1d), donde la carga computacional crece
exponencialmente con la dimensionalidad, la extrapolacion de Romberg permi-
te mantener tiempos de ejecucion controlados. Los moédulos CUDA y OMP-P
muestran una reduccion superior al 90 %, lo que confirma la eficacia del mé-
todo para disminuir el nimero de evaluaciones requeridas sin comprometer la
precision del resultado.

En general, la extrapolacion de Romberg demostr6 ser una estrategia efectiva

para acelerar los calculos en entornos de alta capacidad computacional como la esta-

Capitulo 5 95

cion de trabajo CUDA, logrando reducciones notables en el tiempo de ejecucion en
comparacion con el uso directo de 128 puntos.

1.2841 222.0130
. — 46.1926
L L
é éz 13.1079 14.1203
0.3048
_g 0.2694 _g 54513
0.1599
0.1375 %1541 1.4156
SEC CUDA OMP-E SEC CUDA OMP-E SEC CUDA OMP-E SEC CUDA OMP-E
128 Puntos Romberg - 40 Puntos 128 Puntos Romberg - 40 Puntos
(a) 3D (b) 4D
20772 A06
29772.406 1214593.1
| 7708.284 i
ol o)
o] o1
Q al
g i 628.496 €1 27042.4
Rl o/
=] 223.967 | 9329.4
51.720] 2114.2
SEC CUDA OMP-E SEC CUDA OMP-E SEC CUDA OMP-E SEC CUDA OMP-E
128 Puntos Romberg - 40 Puntos 128 Puntos Romberg - 40 Puntos
(c) 5D (d) 6D

Figura 5.2: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3: 128
puntos VS extrapolacion de Romberg en Jetson TX2.

En la Jetson TX2 (Figuras 5.2), las graficas ordenadas por dimension: 3D (Figu-
ra 5.2a), 4D (Figura 5.2b), 5D (Figura 5.2¢) y 6D (Figura 5.2d), muestran que los
tiempos de ejecucion son mayores debido a las limitaciones del hardware embebido,
pero la tendencia de mejora se mantiene en comparaciéon con la integracion realizada
mediante los moédulos con 128 puntos.

» En 3D (Figura 5.2a) y 4D (Figura 5.2b), los médulos CUDA y OMP-E reducen
sus tiempos de ejecucion entre un 70 % y 85 %, evidenciando que la extrapola-
cion de Romberg también es beneficiosa en plataformas con menor ntimero de
ntucleos o menor frecuencia de reloj.

» En 5D (Figura 5.2¢) y 6D (Figura 5.2d), la diferencia entre ambas configura-
ciones se amplia considerablemente: el tiempo de ejecucion del médulo CUDA,
con 40 puntos y extrapolacion de Romberg, es entre 10 y 20 veces menor que el
modulo con 128 puntos.

= Kl moédulo secuencial SEC también se ve beneficiado, aunque en menor pro-

porcion, ya que no aprovecha el paralelismo para distribuir las evaluaciones del
integrando.

96 Andlisis

El analisis comparativo muestra que la extrapolacion de Romberg reduce de ma-
nera significativa el tiempo de ejecucion en todos los moédulos de prueba, siendo
especialmente eficiente en los modulos paralelos CUDA, OMP-P y OMP-E. Esta me-
jora es consistente tanto en la estacion de trabajo como en la Jetson TX2, lo que
demuestra que la estrategia es portable y efectiva en diferentes arquitecturas.

Caida en los tiempos de ejecucion de los médulos OMP-E y OMP-P

Los tiempos de ejecucion de los modulos al evaluar la integral en un rango de 1 a 40
puntos de integraciéon, utilizando la extrapolacion de Romberg para las dimensiones
3D (Figura 5.3a), 4D (Figura 5.3b), 5D (Figura 5.3c) y 6D (Figura 5.3d), mostraron
en la estacion de trabajo CUDA una caida en los tiempos de ejecucion de los moédulos
OMP-E y OMP-P alrededor del punto 33 para las dimensiones 3D y 4D. En las
Figuras 5.4a y 5.4b se puede observar mejor esta caida.

Este comportamiento no se manifestd en la Jetson TX2, lo que sugiere que esté
asociado a caracteristicas propias de la arquitectura x86 de la estacion de trabajo
CUDA vy del calendarizador del sistema operativo. Entre las posibles causas se en-
cuentra:

» La arquitectura hibrida del procesador Intel, que combina niicleos de rendimien-
to (P-cores) y de eficiencia (E-cores);

s El runtime de OpenMP puede redistribuir dinaAmicamente los hilos entre estos
nucleos en funcion de la carga y del niimero de iteraciones, generando cambios
abruptos en el rendimiento.

= El compilador puede aplicar diferentes estrategias de vectorizacion y desenro-
llado de bucles, segiin el tamano del conjunto de datos, activando en ciertos
puntos versiones del cédigo mas eficientes.

= El mecanismo de Turbo Boost de Intel, que ajusta dinAmicamente la frecuencia
de reloj en funcién del consumo y la carga térmica, podria contribuir a esta
variacion: en cargas cortas o con menor niimero de hilos activos, algunos niicleos
pueden alcanzar frecuencias mas altas, reduciendo temporalmente el tiempo de
ejecucion.

En resumen, estos factores explican por qué la caida de tiempo se presenta tnica-
mente en configuraciones especificas y no en plataformas ARM como la Jetson TX2,
donde la gestion de energia y la arquitectura de los niicleos es diferente.

5.2 Desempeno de los calendarizadores
En esta seccion se analizan los tiempos de ejecucion obtenidos al aplicar las tres

estrategias de calendarizacion propuestas: estatico secuencial (SCHED SS), dinamico
secuencial (SCHED DS) y estatico concurrente (SCHED SC).

Capitulo 5 97

0.044
0.040 —e— SEC
0.036, — CUDA
— 0032 OMP-E /
L0.028/ —— omP-P
8 0.024 AVX //
0.020 .
_aE_J 0.016 25
F0.012
0.008
0.004 — Lo & 24
0.000 | eEEbsEtestert

0 2 4 6 81012141618202224 26283032 34363840
Puntos de integracion

(a) 3D
1.4 7
1.3] —— SEC Vil
1.21 —«— CUDA #
1.1 o &
= 1.0 MP-E /
vg.g —+— OMP-P /
o 0.
Q07 AVX /
€ 0.6 /
v 0.5 r
0.4 ol
0.3 <
0.2 Y
0.0{ et-o-s-0000-00000 -ttt

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D

521 —— SEC
481 —— CUDA »
OMP-E
=40 @
— 361 —— OMP-P %
g 32 AVX Pl

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(c) 5D
2200 e
5000 —* SEC
1800, —* CUDA 4
—~ 1600 OMP-E /
0 %
— 1400{ —+— OMP-P 4
8§ 1200 AVX
£ 1000 vd
0 800 /
F 600 &
400 gt
200 o el
0 GGGGGGGGGQG&&G&——C—G—HA‘”A‘AQQO

0 2 4 6 810121416 182022 24262830 3234 36 38 40
Puntos de integracién

(d) 6D

Figura 5.3: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolaciéon de Romberg, en estacion de trabajo CUDA.

98 Andlisis

0.0181 —e— OMP-E
—=— OMP-P

Tiempo (s)

0 2 4 6 810121416182022 2426283032 34363840
Puntos de integracion

(a) 3D

0251 —+— OMP-E

—=— OMP-P
0.20

o
=
w

Tiempo (s)
o
)

0.05

0.00

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D

Figura 5.4: Caida atipica en el tiempo de ejecucion del médulo OMP alrededor del
punto de integracion 33 al evaluar la Funcion 1.3 en la estacion de trabajo CUDA.

El objetivo principal de este anélisis es comparar la eficiencia de cada estrategia
en la asignacién de moédulos de ejecucion, considerando su comportamiento tanto en
la estacion de trabajo CUDA como en la plataforma Jetson TX2.

5.2.1 Comparacién general

La implementacion de los tres calendarizadores presenta diferentes niveles de comple-
jidad, tanto en su construccién como en su comportamiento computacional.

El calendarizador estatico secuencial es el mas sencillo de implementar, ya que
sigue una estructura determinista donde las tareas se asignan de forma fija y lineal.
Cada punto de integracion se ejecuta de manera consecutiva sin depender de la sin-
cronizacion entre entre hilos o procesos. La simplicidad del diseio permite minimizar
el uso de estructuras auxiliares, empleando inicamente un arreglo para almacenar los
identificadores de los moédulos de ejecucion. Esto resulta en una implementacion mas
limpia y de bajo costo computacional.

La implementacion del calendarizador dindmico secuencial presenta una comple-
jidad ligeramente superior a la del calendarizador estéatico secuencial; sin embargo,
sigue siendo manejable debido a que conserva una ejecucién completamente secuen-
cial. No obstante, requiere un mayor consumo de memoria, ya que necesita almacenar

Capitulo 5 99

estructuras auxiliares, como la tabla de tiempos de ejecucion, para realizar compara-
ciones cada vez que se efectiia un célculo.

El calendarizador estatico concurrente es el mas complejo de implementar debido
a la inclusion de multiples funciones auxiliares necesarias para manejar la ejecucion
paralela. Entre ellas destaca la busqueda tabt, empleada para optimizar la asignacion
de tareas y evitar repeticiones en la distribucion de subregiones. Ademés, es necesario
incorporar un control de sincronizaciéon, candados y comunicacién entre hilos concu-
rrentes, lo cual incrementa notablemente la dificultad de programacion y el consumo
de recursos.

En términos de implementacion, el calendarizador estatico concurrente presenta
la mayor complejidad debido a la cantidad de funciones de control y mecanismos de
optimizacién requeridos. Por otro lado, los calendarizadores secuenciales resultan mas
simples, con un menor costo de mantenimiento.

Analisis de tiempos de ejecucion de los calendarizadores

En las Figuras 5.5 y 5.6 se presentan los tiempos de ejecucion correspondientes a
los calendarizadores estético secuencial (SCHED SS), dinamico secuencial (SCHED
DS) y estatico concurrente (SCHED SC). Estos resultados provienen de las pruebas
descritas en el capitulo anterior (Secciones 4.3.2, 4.3.3 y 4.3.4).

Las graficas se encuentran organizadas por dimension: 3D (Figuras 5.5a y 5.6a),
4D (Figuras 5.5b y 5.6b), 5D (Figuras 5.5¢ y 5.6¢) y 6D (Figuras 5.5d y 5.6d). En
general, los resultados indican que los calendarizadores secuenciales, tanto el estatico
como el dindmico, mantienen un desempeno estable y predecible, obteniendo tiempos
de ejecucion muy similares entre si.

El calendarizador estéatico secuencial presenta la ventaja de una seleccion previa
de modulos, basada en las tablas de tiempos, lo que minimiza la sobrecarga compu-
tacional en tiempo de ejecuciéon. Aunque no emplea paralelismo, su desempeno en las
pruebas resulta notablemente eficiente, registrando tiempos de ejecuciéon inferiores a
los del calendarizador estatico concurrente. Esto se debe a que evita el costo asociado
a la creacion y sincronizacion de hilos, permitiendo una ejecuciéon continua, ligera y
estable.

El calendarizador dinamico realiza la seleccion de moédulos de manera directa
durante la ejecucion, lo que introduce una ligera sobrecarga computacional. Sin em-
bargo, esta estrategia ofrece una mayor adaptabilidad ante posibles variaciones en el
rendimiento de los moédulos. A pesar del costo adicional, el calendarizador dinamico
secuencial supero al calendarizador estatico secuencial en las pruebas de 4D (Figuras
5.5b y 5.6b) y 5D (Figuras 5.5¢ y 5.6¢) en ambas plataformas. Aunque las diferencias
fueron de s6lo una fraccion de segundo, este comportamiento resulto inesperado. Una
posible explicacion es la naturaleza adaptable de la estrategia, que permite seleccio-
nar en cada iteracion el moédulo méas adecuado con base en los valores actualizados de
la tabla de tiempos. Esto reduce los sesgos asociados a la asignacion fija del método
estatico y puede favorecer ligeras mejoras en el tiempo total de ejecucion.

100

0.022
0.020

—e— SCHED-SS

0.018 SCHED-DS
—~0.0161 —*— SCHED-SC

L0.014
9 0.012
Z0.010
@ 0.008
F 0.006
0.004
0.002
0.000

0.55
0.50
0.45
. 0.40
Los3s
0 0.30
0.25
© 0.20
F 0.15
0.10
0.05
0.00

0 2 4 6 810121416182022 24262830 3234363840
Puntos de integracion

(a) 3D

—e— SCHED-SS
SCHED-DS
—+— SCHED-SC

P i
o 2ol
P o S ad

$-0-900¢

0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D

20{ —e— SCHED-SS

SCHED-DS

—~ 161 . SCHED-SC

0

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(c) 5D

800
700
& 600
S 500
2'400
.E 300
200
100

—e— SCHED-SS
SCHED-DS
—+— SCHED-SC

0 2 4 6 8101214161820 22 24 26 28 30 32 34 36 38 40

Puntos de integracion

(d) 6D

Andlisis

Figura 5.5: Comparacion de tiempos de ejecucion (s) de calendarizadores al evaluar
la Funciéon 1.3 en estacion de trabajo CUDA.

Capitulo 5

0.30 _s— SCHED-SS
0.27 SCHED-DS

0.24
§0.21
o 0.18
20.15
@012
= 0.09
0.06
0.03
0.00

—+— SCHED-SC

0 2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(a) 3D

—e— SCHED-SS
SCHED-DS
—+— SCHED-SC

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D

150

135

120
—~105
90
75
60
45
30
15

Tiempo (s

—e— SCHED-SS
SCHED-DS
—+— SCHED-SC

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(c) 5D

72001" —s— SCHED-SS

6600
6000

SCHED-DS

5400/ —— SCHED-SC

Y 4800
o 4200
23600
€ 3000
= 2400
= 1800
1200
600

0 2 4 6 81012141618202224262
Puntos de integraci

(d) 6D

03234363840

O~
S w

101

Figura 5.6: Comparacion de tiempos de ejecucion (s) de calendarizadores al evaluar
la Funcién 1.3 en Jetson TX2.

102 Andlisis

En contraste, el calendarizador estatico concurrente no logré superar el desempeno
de las estrategias secuenciales. A pesar de estar disenado para ejecutar dos moédulos
en paralelo mediante hilos independientes, la sobrecarga generada por la creacion
y sincronizaciéon de los hilos, asi como la competencia de los hilos por el uso del
procesador, redujo significativamente su eficiencia. En consecuencia, los tiempos de
ejecucion resultaron mayores que los obtenidos con los esquemas secuenciales, lo que
sugiere que su implementacion solo seria ventajosa en sistemas con mayor cantidad
de nucleos fisicos y soporte de hardware para concurrencia intensiva.

En la estacion de trabajo CUDA (Figuras 5.5), tanto el calendarizador estatico
secuencial como el dindmico secuencial mostraron un rendimiento muy similar, mien-
tras que el calendarizador estatico concurrente presenta una penalizacion significativa
en el tiempo de ejecucion a partir de los 20 puntos de integracion, especialmente en
5D (Figura 5.5¢) y 6D (Figura 5.5d).

En la Jetson TX2 (Figuras 5.6), la tendencia general es similar; sin embargo,
la diferencia entre los calendarizadores secuenciales se vuelve mas evidente en 3D
(Figura 5.6a). En este caso, el calendarizador estético secuencial obtiene el menor
tiempo de ejecucion, seguido por el calendarizador dinamico secuencial y, finalmente,
por el calendarizador estatico concurrente. Por lo tanto, para un ntimero reducido de
dimensiones, el calendarizador estatico secuencial aprovecha de manera més eficiente
los recursos del sistema de calendarizacion en esta plataforma.

En resumen, el desempeno general de los calendarizadores demuestra que las es-
trategias secuenciales son mas confiables y eficientes bajo las condiciones de prueba
empleadas. La estrategia dinamica, aunque més compleja, demostré una ventaja con-
creta en escenarios de cuatro y cinco dimensiones, lo que sugiere que su aplicacion
resulta especialmente efectiva cuando las diferencias de rendimiento entre moédulos
varian con la dimensionalidad del problema. La estrategia concurrente, por otro lado,
requiere una revision mas profunda o un entorno de hardware con mayor grado de
paralelismo fisico para alcanzar un beneficio real.

5.2.2 Impacto de la estrategia de calendarizacién

Para evaluar el beneficio real de las estrategias de calendarizacion, se compard el
desempeno de los calendarizadores: estatico secuencial, dindmico secuencial y estatico
concurrente, frente al desempeno obtenido integrando 128 puntos sin extrapolacion
utilizando tnicamente el moédulo CUDA. Este ultimo se tom6 como referencia base,
dado que mostr6 el mejor rendimiento entre todos los médulos individuales.

La Tabla 5.2 presenta las aceleraciones obtenidas para las dos plataformas uti-
lizadas: estacion de trabajo CUDA y Jetson TX2. En general, se observa que los
calendarizadores estatico secuencial y dindmico secuencial alcanzan las mayores ace-
leraciones en ambas plataformas, especialmente conforme aumenta la dimensionalidad
del problema.

En la estacion de trabajo CUDA, ambos calendarizadores presentan comporta-
mientos casi idénticos, con aceleraciones que van desde aproximadamente 10x en 4D

Capitulo 5 103

Tabla 5.2: Aceleraciones de los calendarizadores usando la extrapolacion de
Romberg tomando como referencia el modulo de ejecucion CUDA con 128 puntos.

Calendarizador | 3D | 4D | 5D | 6D
Estacion de trabajo CUDA
Estatico secuencial 0.994 9.972 | 40.093 | 151.869
Dinamico secuencial | 0.990 | 10.141 | 40.102 | 151.861
Estatico concurrente | 0.316 0.536 6.033 22.694
Jetson TX2
Estatico secuencial 1.749 8.823 | 42.213 | 172.797
Dinamico secuencial | 1.270 8.833 | 42.217 | 172.080
Estatico concurrente | 0.523 2.953 | 14.962 49.412

hasta mas de 150x en 6D. Esto indica que la extrapolaciéon de Romberg permitio
reducir significativamente los tiempos de ejecucion respecto al moédulo CUDA con
128 puntos, manteniendo una eficiencia muy similar entre las variantes estatica y di-
namica. Por otro lado, el calendarizador estatico concurrente muestra aceleraciones
considerablemente menores. Apenas alcanza una aceleracion de 6.03x en 5D y 22.69 x
en 6D, valores muy por debajo de los obtenidos por los calendarizadores secuenciales.

En la plataforma Jetson TX2, los resultados mantienen la misma tendencia: los
calendarizadores secuenciales son los mas eficientes, alcanzando aceleraciones de hasta
172x en 6D. El calendarizador dindmico secuencial tiene un desempeno muy similar
al calendarizador estatico secuencial, mostrando que el manejo dinamico de tareas no
introduce penalizaciones relevantes en esta arquitectura. En contraste, el calendari-
zador estatico concurrente vuelve a mostrar un desempeno inferior, con aceleraciones
moderadas entre 0.52x en 3D y 49.4x en 6D, evidenciando que su complejidad no se
ve compensada por una mejora en la velocidad.

Al analizar los tiempos de ejecucion de los calendarizadores en comparacion con
los modulos individuales, evaluando un rango de 1 a 40 puntos con extrapolacion de
Romberg en la estacion de trabajo CUDA, para las dimensiones 3D (Figura 5.7a),
4D (Figura 5.7b), 5D (Figura 5.7c) y 6D (Figura 5.7d), se observa que tanto el ca-
lendarizador estatico secuencial como el dindmico secuencial presentan un desempeno
muy cercano al del modulo individual CUDA con extrapolacion de Romberg. Esto
confirma que ambas estrategias administran de manera eficiente la asignacion de mo-
dulos. Las diferencias de tiempo son minimas, de apenas una fracciéon de segundo,
lo que indica que el costo adicional asociado al calendarizador dindmico, derivado de
realizar comparaciones en tiempo de ejecucion, no afecta de manera significativa su
rendimiento.

Por el contrario, el calendarizador estatico concurrente muestra un aumento vi-
sible en los tiempos de ejecucion, especialmente en las dimensiones mas altas: 5D
(Figura 5.7¢) y 6D (Figura 5.7d), debido a que el costo asociado con la creacion y
sincronizacion de hilos, asi como el uso compartido del procesador incrementan la
complejidad sin aportar una ganancia de rendimiento.

En la Jetson TX2, para las dimensiones: 3D (Figura 5.8a), 4D (Figura 5.8b), 5D
(Figura 5.8¢) y 6D (Figura 5.8d), se repite la misma tendencia general. Sin embargo,

104 Andlisis

418.801
<)
ol oo o™ o) _
0
o
—_ Q
G £
° b 1.378 1.388
g = 0.536
= 0.177
0.084 0.084 0.082
SEC CUDA OMP-P AVX SEC CUDAOMP-P AVX SS DS SC
SEC CUDA OMP-P AVX SEC CUDA OMP-P AVX SS DS sC i)
128 Puntos Romberg - 40 Puntos Sched - 40 Puntos 128 Puntos Romberg - 40 Puntos Sched - 40 Puntos
(a) 3D (b) 4D
2454.134 2482.303 364105.6 365716.1
39083.
I o 19697.
2 g
55.955
3 g 2198.6
g 21.187 £ 818.9
5699 260.4
3.152 3.188 3.188 129.4 129.7 129.7
| m— = | —
SEC CUDA OMP-P AVX SEC CUDA OMP-P AVX SS DS SC SEC CUDA OMP-P AVX SEC CUDA OMP-P AVX SS DS sC
128 Puntos Romberg - 40 Puntos Sched - 40 Puntos 128 Puntos Romberg - 40 Puntos Sched - 40 Puntos

(c) 5D (d) 6D

Figura 5.7: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando diferentes técnicas en estacion de trabajo CUDA.

222.013
1.284
G 0
g 2
I<h £
- o
= [
1.416 1.4861.484
SEC CUDA OMP-E SEC CUDA OMP-E SS DS sC SEC CUDA OMP-E SEC CUDA OMP-E SS DS SC
128 Puntos Romberg - 40 Puntos Sched - 40 Puntos 128 Puntos Romberg - 40 Puntos Sched - 40 Puntos
(a) 3D (b) 4D
) ol
2 2!
£ 628.496 £1
2 9]
= =]
223.967
145.899 :
51.720 51.713 51.707 2114.2 2104.6 2113.3
SEC CUDA OMP-E SEC CUDA OMP-E SS DS SC SEC CUDA OMP-E SEC CUDA OMP-E S5 DS SC
128 Puntos Romberg - 40 Puntos Sched - 40 Puntos 128 Puntos Romberg - 40 Puntos Sched - 40 Puntos
(c) 5D (d) 6D

Figura 5.8: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando diferentes técnicas en Jetson TX2.

es importante destacar los resultados obtenidos en 3D (Figura 5.8a), donde los ca-
lendarizadores secuenciales alcanzan tiempos de ejecucion inferiores a los del médulo
CUDA con extrapolaciéon de Romberg y logran aceleraciones de hasta 1.7x respecto
al médulo CUDA con 128 puntos. Esto demuestra que la estrategia de calendarizacion

Capitulo 5 105

cumple con el objetivo de reducir el tiempo de ejecucion.

Este comportamiento se debe principalmente a la heterogeneidad del hardware,
que permite al calendarizador seleccionar los médulos més eficientes de acuerdo a las
capacidades reales de la plataforma. Ademas, en esta dimension todas las operaciones
se ejecutan directamente en el CPU, dado que los tiempos de ejecucion en el mdédulo
CUDA son demasiado elevados (Figura 4.3a), lo que lo convierte en una opcién no
viable. Esto elimina por completo la transferencia de datos entre CPU y GPU, lo
que contribuye a una reduccién significativa en el tiempo de ejecuciéon. A partir de
cuatro dimensiones, aunque las aceleraciones siguen siendo elevadas, los resultados se
asemejan a los obtenidos por los médulos individuales con extrapolacion de Romberg,
lo que indica que el beneficio principal de la calendarizacién radica en su capacidad
de adaptacion automatica mas que en una ganancia directa de velocidad.

Las Figuras 5.9 y 5.10 complementan la comparacion de las graficas de barras al
presentar los tiempos de ejecucion de los calendarizadores comparados con los tiempos
de los médulos individuales con la extrapolacion de Romberg en el rango de 1 a 40
puntos de integracion.

En la estacion de trabajo CUDA (Figuras 5.9), se presentan las gréficas organi-
zadas por dimensiones: 3D (Figura 5.9a), 4D (Figura 5.9b), 5D (Figura 5.9¢) y 6D
(Figura 5.9d). Los modulos con extrapolacion de Romberg mantienen un crecimiento
progresivo del tiempo de ejecucion conforme aumenta el nimero de puntos de inte-
gracion. Entre ellos, los médulos CUDA, OMP-E y OMP-P siguen destacando como
los mas eficientes, mientras que los médulos SEC y AVX presentan mayores tiempos.

Al comparar los resultados de los calendarizadores, se aprecia que las estrate-
gias secuenciales (SCHED-SS y SCHED-DS) logran tiempos de ejecucién equivalen-
tes al modulo individual CUDA. En cambio, el calendarizador estatico concurrente
(SCHED-SC) presenta un crecimiento méas pronunciado, especialmente en las dimen-
siones 5D (Figura 5.9¢) y 6D (Figura 5.9d), debido a los costos asociados a su disefio
concurrente.

En la Jetson TX2 (Figuras 5.10), se presentan las graficas organizadas por dimen-
siones: 3D (Figura 5.10a), 4D (Figura 5.10b), 5D (Figura 5.10c) y 6D (Figura 5.10d).
Los moédulos individuales CUDA y OMP-E conservan el mejor desempeno, mientras
que los calendarizadores secuenciales (SCHED-SS y SCHED-DS) contintian mostran-
do un comportamiento estable y eficiente. Nuevamente, el calendarizador concurrente
(SCHED-SC) exhibe una degradacion notable en las dimensiones superiores, reflejan-
do que su estructura paralela no se adapta eficientemente a dispositivos con menor
capacidad de procesamiento paralelo y memoria compartida limitada.

En particular, se esperaba que el calendarizador estatico concurrente mostrara un
rendimiento competitivo, especialmente por el manejo de concurrencia y la incorpo-
racion de la busqueda tabt como estrategia de optimizacion. En (Morales y Puga,
2022), se propuso un calendarizador para este problema, basado en la busqueda ta-
bi. Dicho enfoque fue evaluado en un entorno de simulacién, donde los resultados
mostraron una mejora significativa en la asignacion de modulos y en el equilibrio de
carga entre los modulos disponibles.

106 Andlisis

0.044
0.0a0/ —* SEC

0.036!/ —=— CUDA
5 0.0327 —— OMP-E
— 00281 . omp-P

©0.024

o

£ 0.020 AVX

T 0.016 SCHED-SS

F 0.012 SCHED-DS
0.008 SCHED-SC
0.004

0.000| o&H e iaia

0 2 4 6 81012141618202224 262830 3234363840
Puntos de integracion

(a) 3D

—— SEC

—=— CUDA

—e— OMP-E

—+— OMP-P
AVX
SCHED-SS
SCHED-DS
SCHED-SC

Tiempo (s)
0000000000 HHE
OFHNWARUIOONOOORNWA

& & 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(b) 4D

48| —=— CUDA b
—~ 40/ —=— OMP-E #
— 3% . ompp #
Q28 AVX
© 20 SCHED-SS
16 SCHED-DS
8 SCHED-SC

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ AAAAAAAAA!?
LA e s s s a e s s s s o g

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(c) 5D

—e— SEC
1800/ —=— CUDA #

—~1600{ —=— OMP-E Y

~— 1400 . QOMP-P /

AVX d

S 800 SCHED-SS

= 600 SCHED-DS
400 SCHED-SC

AAMA,\AA»A<‘

024681012 1416 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracién

(d) 6D

Figura 5.9: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3

usando la extrapolaciéon de Romberg: modulos VS calendarizadores, en estacion de
trabajo CUDA.

Capitulo 5

0.3

0.28
024
Zo0.20 OMP-P

20.16 SCHED-SS
€012 SCHED-DS

F 0.08
0.04
0.00

2
—e— SEC

—s=— CUDA
—e— OMP-E

—+— SCHED-SC
S Sl o gui B

0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(a) 3D

OHENWRUIOIN0WO

—e— SEC /"
—=— CUDA
—e— OMP-E

OMP-P

SCHED-SS

SCHED-DS #
—+— SCHED-SC

650
600
550
500

7 450

— 400

Q350

300
& 250
{= 200

150

100
50

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(b) 4D
—e— SEC /
—=— CUDA /«
—+— OMP-E p

OMP-P 4

SCHED-SS

SCHED-DS /
—+— SCHED-SC

,C*"’
00009

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Puntos de integracion

(c) 5D

27000 _, g

240001 . cupA
AZlOOO —e— OMP-E
W 18000 OMP-P
g 15000 SCHED-SS]
€ 12000 SCHED-DS ;
{2 9000 —— SCHED-SC

6000

3000

0

0 2 4 6 810121416182022242628303234363840
Puntos de integracion
(d) 6D

107

Figura 5.10: Comparacion de tiempos de ejecucion (s) al evaluar la Funcion 1.3
usando la extrapolacion de Romberg: modulos VS calendarizadores, en Jetson TX2.

108 Andlisis

El algoritmo de bisqueda tabti demostro, en ese contexto, una capacidad eficiente
para evitar soluciones suboptimas y reducir el tiempo total de ejecuciéon simulado.
Sin embargo, al trasladar este enfoque a entornos reales en el presente trabajo, los
resultados difirieron considerablemente.

El calendarizador estatico concurrente, que integra la busqueda tabt para decidir
las asignaciones, present6 un desempeno inferior al esperado. Esto se debe a que, en
las simulaciones del trabajo previo, no se consideraron factores inherentes al hardware
real, como la competencia entre procesos por el tiempo de CPU, la sobrecarga asociada
a la creacion y sincronizacion de hilos y la latencia por acceso concurrente a memoria
compartida. En consecuencia, el comportamiento observado confirma que, aunque la
busqueda tabu es prometedora en entornos teéricos o simulados, su implementaciéon
directa en sistemas reales puede generar una sobrecarga que anula sus beneficios de
optimizacion.

En general, los calendarizadores secuenciales alcanzan niveles de desempeno a
la par de los modulos mas rapidos ejecutados individualmente, lo que demuestra
que la estrategia de seleccion automatica no introduce penalizaciones significativas
y mantiene un rendimiento competitivo. El calendarizador estético concurrente, a
pesar de su diseio mas complejo, no logran superar el rendimiento de las variantes
secuenciales ni de los modulos optimizados en GPU.

Conclusiones

El trabajo desarrollado en esta tesis abordé el problema del calculo eficiente de in-
tegrales multidimensionales, una tarea de gran relevancia cientifica y técnica debido
a su presencia en aplicaciones de simulacion fisica, analisis estadistico y modelado
computacional. Sin embargo, este tipo de integrales presenta una alta complejidad
conforme aumentan las dimensiones, lo que exige estrategias de optimizacion tanto
en el nivel algoritmico como en el uso eficiente de los recursos de hardware disponibles.

En este trabajo se implement6 una estrategia de calendarizaciéon para aprovechar
de mejor manera dichos recursos. Primero, se realizé una revision exhaustiva de los
métodos de calendarizacion utilizados en entornos heterogéneos, identificando que la
mayoria de los trabajos existentes se centran en la distribucion de tareas generales, sin
considerar las tareas de proposito especifico, como las integrales multidimensionales,
ni las limitaciones fisicas del hardware. El estudio permitio seleccionar tres estrategias
diferentes: calendarizador estatico secuencial, calendarizador dindmico secuencial y
calendarizador estatico concurrente, que ofrecen distintos grados de adaptabilidad y
complejidad. Asimismo, se analiz6 la aplicacion de heuristicas como la busqueda tabu
y los arboles de decisiones.

Posteriormente, se ampli6 la biblioteca de integrales multidimensionales incorpo-
rando tres componentes: (1) un modulo basado en instrucciones vectoriales AVX, (2)
un codelet encargado de la gestion de los modulos y (3) las estrategias de calendari-
zacion disenadas para optimizar la distribucion de carga entre los diferentes médulos
de ejecucion.

El modulo de ejecucion AVX se implement6 con el propésito de complementar
los modulos existentes (secuencial, CUDA y OMP), lo que permiti6 explotar el pa-
ralelismo a nivel de datos. Su incorporacion aument6 la flexibilidad de la biblioteca
y la volvio mas adecuada para arquitecturas modernas. El codelet actué como inter-
mediario entre los calendarizadores y la biblioteca de integrales multidimensionales,
ademaés se encarg6 de abstraer y referenciar la ejecucion de los distintos modulos. Esta
estrategia permitié una administracion mas limpia y eficiente del codigo, al facilitar
la seleccion automatica del método de ejecucion segun las necesidades de cada punto
de integracion.

Como tercer componente y punto central, las tres estrategias de calendarizacion
implementadas para mejorar el rendimiento de los moédulos fueron:

= Estatico secuencial: asigna previamente el mejor moédulo a cada punto con base
en una tabla de tiempos.

109

110 Conclusiones

= Dindmico secuencial: permite una asignacién, en tiempo de ejecucion, aprove-
chando los recursos disponibles.

= Estatico concurrente: realiza ejecuciones en pares, optimizadas por la busqueda
tabt, con control de dispositivos mediante candados, permitiendo el paralelismo
sin conflictos de acceso.

A través de las pruebas preliminares, se comprob6 la estabilidad numérica de
los modulos de ejecucion, se determind el niimero minimo de puntos necesario para
alcanzar un error aceptable (igual o menor a 107%) y se verifico la efectividad de la
extrapolacion de Romberg para reducir la cantidad de puntos sin comprometer la
precision del resultado.

Después, se realizaron las pruebas correspondientes a las distintas estrategias de
calendarizacion, utilizando como base las tablas de tiempo generadas para ambas
plataformas de prueba: la estacion de trabajo CUDA y la Jetson TX2. Estas pruebas
permitieron verificar la correcta interaccion entre los calendarizadores y el codelet,
asi como la capacidad del sistema de calendarizaciéon para adaptarse a entornos con
diferentes caracteristicas de hardware.

El analisis de resultados permitio evaluar de forma integral el comportamiento de
los distintos modulos de ejecucion y los calendarizadores propuestos. El desempeno
del modulo AVX resulté limitado para configuraciones con pocos puntos, debido a
su naturaleza parcialmente paralelizable y a la sobrecarga en la administracion de
registros vectoriales, lo que impidi6 que superara al médulo secuencial en la mayoria de
los casos. Por otra parte, en la Jetson TX2 se observé un comportamiento interesante:
el médulo OMP-E, que emplea tnicamente nucleos de eficiencia, superd al modulo
OMP-P, que usa niicleos de rendimiento, este comportamiento se atribuye al menor
consumo energético, menor frecuencia térmica y a la mejor coherencia de caché de los
ntucleos de eficiencia bajo cargas de trabajo prolongadas.

Respecto a los calendarizadores, los resultados demostraron que las estrategias
secuenciales, tanto estatica como dinamica, ofrecen un desempeinio similar y estable,
con ligeras ventajas del enfoque dinamico en cuatro y cinco dimensiones. En contraste,
el calendarizador estatico concurrente, que integraba un esquema de busqueda tabu
para la asignacion de modulos, presenté un rendimiento inferior al esperado. Debido
a que la creacion y sincronizacion de hilos, asi como la competencia por los recursos
del procesador que introduce retardos significativos que anulan los beneficios teéricos
del algoritmo.

Finalmente, se identificaron particularidades especificas del hardware en el com-
portamiento de los modulos, como la caida puntual de tiempo observada en los mo-
dulos OMP en la estacion de trabajo Intel, atribuida a la interaccion entre el Turbo
Boost, la asignacion hibrida de niicleos y la vectorizacion automatica.

En conjunto, los resultados obtenidos permiten concluir que el sistema de calen-
darizacion propuesto es funcional y adaptable a distintas plataformas, integrando de
manera eficaz las técnicas de extrapolacion y calendarizacién. Sin embargo, aunque
logro6 reducir el tiempo de ejecucion en comparacion con el enfoque de 128 puntos, su
desempeno se mantuvo comparable al del médulo individual de CUDA utilizando la

Conclusiones 111

extrapolacion de Romberg con 40 puntos, sin alcanzar la mejora esperada en los tiem-
pos de ejecucion. No obstante, las estrategias secuenciales implementadas constituyen
una base so6lida sobre la cual pueden desarrollarse optimizaciones futuras més espe-
cializadas, tales como la incorporaciéon de técnicas de aprendizaje automatico para la
seleccion dinamica de modulos, el balanceo predictivo de carga entre CPU y GPU, y
mecanismos de autoajuste que adapten la ejecucion a las caracteristicas particulares
de cada plataforma y problema numeérico.

Trabajo a futuro

Como trabajo a futuro, se propone la optimizacién del calendarizador estatico concu-
rrente. Aunque este enfoque permitié aprovechar multiples modulos para la ejecucion
paralela, su desempeno atin puede mejorarse mediante estrategias mas refinadas de
asignacion y balanceo de carga. Se buscara reducir la sobrecarga asociada a la coordi-
nacion entre hilos y dispositivos, asi como explorar técnicas heuristicas mas eficientes
que puedan reemplazar o complementar mecanismos como la busqueda tabu. El ob-
jetivo es obtener un comportamiento mas estable y competitivo, especialmente en
integrales de mayor complejidad dimensional.

No obstante, el eje central del trabajo a futuro consistira en el diseno e implemen-
tacion de un calendarizador dindmico concurrente. Esta estrategia de calendarizacion
combinara la asignaciéon dindmica de tareas con la ejecucion paralela, permitiendo
ajustar la calendarizacion en tiempo de ejecucion conforme cambien las caracteristi-
cas del célculo o del entorno de la plataforma. La idea es desarrollar un sistema capaz
de redistribuir grupos de puntos de la integral entre los distintos médulos disponibles,
reaccionando a variaciones en el rendimiento, latencia o carga del sistema. Esto ofre-
ceria una mayor adaptabilidad frente a escenarios heterogéneos, donde las diferencias
entre componentes de computo (como la CPU o la GPU) requieren decisiones més
flexibles y eficientes que las que puede ofrecer un enfoque estatico.

Finalmente, se propone ampliar el trabajo de tesis hacia nuevas plataformas de
ejecucion y entornos distribuidos. Probar los calendarizadores desarrollados en dife-
rentes arquitecturas de hardware permitird analizar su robustez, portabilidad y es-
calabilidad. Asimismo, la adaptacion del sistema a un ambiente distribuido abriria la
posibilidad de coordinar miltiples nodos de computo, lo cual resultaria especialmente
relevante para problemas de integracion multidimensional de gran escala.

En conjunto, se busca consolidar un sistema de calendarizacién més flexible, efi-
ciente y adaptable, capaz de responder a las demandas crecientes de aplicaciones
cientificas que requieren calculos de alto rendimiento en entornos cada vez mas com-
plejos y diversificados.

112 Conclusiones

(Glosario

Codelet
Unidad encargada de referenciar multiples funciones codificadas, permitiendo
su gestion y ejecucion de manera independiente.

Componentes de ejecucion
Elementos encargados de realizar las operaciones de procesamiento, especifica-
mente la CPU y GPU.

Dimensién
Variable independiente dentro del dominio de integracion. Cada dimension ana-
de un eje adicional al espacio sobre el cual se calcula la integral, de modo que una
integral de n dimensiones corresponde al calculo del volumen hiperdimensional
bajo una funcion f(xq,xs, ..., z,) dentro de un dominio definido.

Integrando
Funciéon matematica que a integrar. En el contexto de una integral multidimen-
sional, es una funciéon de varias variables: ff(xl, To,...,xp)drydrs -+ drp

Moédulos de ejecucion
Funciones responsables de ejecutar la extrapolaciéon de Romberg, implementa-
das de manera secuencial y paralela (CUDA, OpenMP y AVX).

Plataformas
Equipos de computo y tarjetas programables utilizadas para la ejecucion de los
procesos.

Puntos de integracion

Cantidad de evaluaciones que realiza el método de integracion en cada dimension
para aproximar el valor de la integral. Un mayor ntimero de puntos generalmente
mejora la precision, pero incrementa el tiempo de ejecucion.

113

114 Glosario

Acrénimos

AVX Advanced Vector Extensions
CPU Central Processing Unit

CUDA Compute Unified Device Architecture
DAG Directed Acyclic Graph

E-Cores Efficient Cores

FPGA Field-Programmable Gate Arrays
GPU Graphics Processing Unit

HPC High-Performance Computing
IA Inteligencia Artificial

OoOMP Open Multi-Processing

P-Cores Performance Cores

SCHED-DS Schedule Dynamic Sequential
SCHED-SC Schedule Static Concurrent
SCHED-SS Schedule Static Sequential

SIMD Single Instruction, Multiple Data

115

116 Referencias

Referencias

Abramowitz, M. (1974). Handbook of mathematical functions, with formulas, graphs,
and mathematical tables (1.* ed.). New York: Dover Publications Inc.

AlEbrahim, S., y Ahmad, I. (2017). Task scheduling for heterogeneous computing
systems. Supercomput, 78, 2313-2338. doi: 10.1007/s11227-016-1917-2

Al-Khateeb, H., Benkhlifa, E., y Bounceur, A. (2018). An overview of task sche-
duling in cloud computing: Concepts and challenges. Network and Computer
Applications, 113, 1-18. doi: 10.1016/j.jnca.2018.04.023

Arabnejad, H., y Barbosa, J. G. (2014). List scheduling algorithm for heterogeneo-
us systems by an optimistic cost table. IEFEE Transactions on Parallel and
Distributed Systems, 25(3), 682-694. doi: 10.1109/TPDS.2013.57

Arfken, G. (1985). Mathematical methods for physicists (3.2 ed.). Oxford, Ohio:
Academic Press Inc.

Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., y Zubair, M. (2013). An efficient
deterministic parallel algorithm for adaptive multidimensional numerical inte-
gration on gpus. En 2013 /2nd international conference on parallel processing
(p. 486-491).

Arzi, Y., y laroslavitz, L. (2000). Operating an fmc by a decision-tree-based adap-
tive production control system. International Journal of Production Research,
38(3), 675-697. doi: 10.1080,/002075400189365

Asanovi¢, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K.,
... Yelick, K. A. (2006). The landscape of parallel computing research: A view
from berkeley (Inf. Téc. n.° UCB/EECS-2006-183). Berkeley.

Augonnet, C., Thibault, S., Namyst, R., y Wacrenier, P. A. (2009). Starpu: A
unified platform for task scheduling on heterogeneous multicore architectures.
En H. Sips, D. Epema, y H. X. Lin (Eds.), Euro-par 2009 parallel processing
(pp. 863-874). Berlin, Heidelberg: Springer Berlin Heidelberg.

Berntsen, J., Espelid, T. O., y Genz, A. (1991a). An adaptive algorithm for the
approximate calculation of multiple integrals. ACM Trans. Math. Softw., 17(4),
437--451. doi: https://doi.org/10.1145/210232.210233

Berntsen, J., Espelid, T. O., y Genz, A. (1991b). Algorithm 698: Dcuhre: an adaptive
multidemensional integration routine for a vector of integrals. ACM Trans.
Math. Softw., 17(4), 452-456. doi: https://doi.org/10.1145,/210232.210234

Brodtkorb, A., Dyken, C., Hagen, T., Hjelmervik, J., y Storaasli, O. (2010). State-
of-the-art in heterogeneous computing. Scientific Programming, 18, 1-5. doi:
10.1155/2010/540159

Buyya, R., Vecchiola, C., y Selvi, S. (2013). Mastering cloud computing: Foundations
and applications programming. Morgan Kaufmann Publishers.

Coulouris, G., Dollimore, J., Kindberg, T., y Blair, G. (2005). Distributed systems:
Concepts and design (5.2 ed.). Amsterdam: Addison-Wesley Longman.

Dahlquist, G., y Bjorck, A. (2008). Numerical methods in scientific computing (1.2
ed., Vol. 1). Philadelphia: Society for Industrial and Applied Mathematics.

Referencias 117

Dastjerdi, A., Gupta, H., Calheiros, R., Ghosh, S., y Buyya, R. (2016). Chapter 4 -
fog computing: principles, architectures, and applications. En Internet of things
(p. 61-75). Morgan Kaufmann. doi: 10.1016/B978-0-12-805395-9.00004-6

Ding, S., Wu, J., Xie, G., y Zeng, G. (2017). A hybrid heuristic-genetic algorithm
with adaptive parameters for static task scheduling in heterogeneous computing
system. En 2017 ieee trustcom/bigdatase /icess (pp. 761-766). doi: 10.1109/
Trustcom/BigDataSE /ICESS.2017.310

Garey, M. R., y Johnson, D. S. (1976, julio). Scheduling tasks with nonuniform
deadlines on two processors. Association for Computing Machinery, 23(3),
461-467. doi: 10.1145/321958.321967

Gendreau, M., y Potvin, J. Y. (2005). Parallel tabu search. En E. K. Burke y
G. Kendall (Eds.), Search methodologies: Introductory tutorials in optimization
and decision support techniques (pp. 165-186). Boston, MA: Springer US. doi:
10.1007/0-387-28356-0 6

Genz, A. (1972). An adaptive multidimensional quadrature procedure. Com-
puter Physics Communications, 4 (1), 11-15. doi: https://doi.org/10.1016/
0010-4655(72)90024-0

Gibbs, D. (1915). A course in interpolation and numerical integration for the mathe-
matical laboratory (1st ed.). Cornell University Library.

Hahn, T. (2005). Cuba—a library for multidimensional numerical integration. Com-
puter Physics Communications, 168(2), 78-95. doi: https://doi.org/10.1016/
j.cpc.2005.01.010

Hansen, P. (1986). The steepest ascent mildest descent heuristic for combinatorial
programming. En Congress on numerical methods in combinatorial optimization
(pp. 70-145). Capri, Italy.

Hill, M. D., y Marty, M. R. (2008). Amdahl’s law in the multicore era. Computer,
41(7), 33-38. doi: 10.1109/MC.2008.209

Jeannot, E., y Zilinskas, J. (2014). High-performance computing on complex environ-
ments. Wiley.

Kebaier, A. (2005). Statistical romberg extrapolation: A new variance reduction
method and applications to option pricing. The Annals of Applied Probability,
15(4), 2681 — 2705. doi: https://doi.org/10.1214/105051605000000511

Keister, B. D. (1996). Multidimensional quadrature algorithms. Computers in Phy-
sics, 10(2), 119-128.

Kim, C. O., Min, H. S., y Yih, Y. (2010). Integration of inductive learning and
neural networks for multi-objective fms scheduling. International Journal of
Production Research, 36(9), 2497-2509. doi: 10.1080,/002075498192652

Kim, S. I., y Kim, J. K. (2019). A method to construct task scheduling algorithms
for heterogeneous multi-core systems. IEEE Access, 7, 142640-142651. doi:
10.1109/ACCESS.2019.2944238

Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence
Review, 39(4), 261—283. doi: 10.1007/s10462-011-9272-4

Kronrod, A. S. (1964). Nodes and weights of quadrature formulas (1.* ed.). New

118 Referencias

York: Consultants Bureau.

Lavaei, J., Noghabi, B., Chen, Q., y Xue, G. (2018). Online optimization of hete-
rogeneous datacenters with resource-efficient workloads. IEEE Transactions on
Cloud Computing, 8(4), 1346-1359. doi: 10.1109/TCC.2018.2816479

Liu, E. H. L. (2006). Fundamental methods of numerical extrapolation with appli-
cations. Mitopencourseware, Massachusetts Institute Of Technology, 209.

Liu, J., Li, J., Li, D., Qian, D., y Zhan, D. (2019). Task scheduling algorithm
for heterogeneous computing based on multi-objective genetic algorithm and
dynamic priority strategy. Journal of Parallel and Distributed Computing, 124,
101-112. doi: 10.1016/j.jpdc.2018.10.013

Mollick, E. (2006). Establishing moore’s law. Annals of the History of Computing,
IEEE, 28(3), 62-75. doi: 10.1109/MAHC.2006.45

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electro-
nics, 38(8), 114-117. doi: 10.1109/N-SSC.2006.4785860

Morales, A. 1., y Puga, J. J. (2022). Planificador inteligente para integracion numérica
multidimensional en ambientes heterogéneos (Tesis de Master no publicada).
Instituto Politécnico Nacional, Ciudad de México, México.

Nilsson, N. J. (1933). Principles of artificial intelligence. Los Altos, CA.: Morgan
Kaufmann.

Notaris, S. E. (2016). Gauss-kronrod quadrature formulae-a survey of fifty years of
research. FElectronic Transactions on Numerical Analysis, 45(1), 371-404.
Park, S. C., Raman, N., y Shaw, M. J. (1997). Adaptive scheduling in dynamic flexible
manufacturing systems: a dynamic rule selection approach. IEEE Transactions

on Robotics and Automation, 13(4), 486-502. doi: 10.1109/70.611301

Patterson, T. (1968). The optimum addition of points to quadrature formulae. Mathe-
matics of Computation, 22, 847-856.

Piessens, R., y Branders, M. (1974). A note on the optimal addition of abscissas to
quadrature formulas of gauss and lobatto type. Mathematics of Computation,
28(125), 135-1309.

Quintero-Monsebaiz, R., Meneses-Viveros, A., Carranza, F., Cortés, C. G., Gonzalez-
Zamudio, A., y Vela, A. (2021). Multidimensional adaptative and deterministic
integration in cuda and openmp. Supercomputing, 77, 12075-12097.

Salas-Gonzélez, R. (2023). Caracterizacion de tareas y recursos para la simulacion
de un calendarizador en un ambiente heterogéneo (Tesis de Master no publica-
da). Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico
Nacional.

Shaw, M. J., Park, S., y Raman, N. (1992). Intelligent scheduling with machine
learning capabilities: The induction of scheduling knowledge. IIE Transactions,
24(2), 156-168. doi: 10.1080,/07408179208964213

Shiue, Y.-R., y Su, C.-T. (2003). An enhanced knowledge representation for decision-
tree based learning adaptive scheduling. International Journal of Computer
Integrated Manufacturing, 16(1), 48-60. doi: 10.1080/713804978

Silberschatz, A., Galvin, P. B., y Gagne, G. (2012). Operating system concepts (9th

Referencias 119

ed.). Wiley Publishing.

Song, Y., Li, C., Tian, L., y Song, H. (2023). A reinforcement learning based job
scheduling algorithm for heterogeneous computing environment. Computers
and Electrical Engineering, 107. doi: https://www.sciencedirect.com/science/
article/pii/S0045790623000782

Sotiriades, E., Petraki, E., Kartsakli, E., Souravlias, D., y Bouganis, C.-S. (2015).
A survey of task scheduling in multicore and accelerator-based systems. ACM
Computing Surveys, 48(1).

Sterling, T., Anderson, M., y Brodowicz, M. (2017). High performance computing:
Modern systems and practices. Elsevier. doi: 10.1016/C2013-0-09704-6

Szegd, G. (1935). Uber gewisse orthogonale polynome, die zu einer oszillierenden
belegungsfunktion gehoren. Mathematische Annalen, 110(1), 501-513.

Szegds, G. (1975). Orthogonal polynomials (4.2 ed., Vol. 23). Rhode Island: American
Mathematical Society.

Topcuoglu, H., Hariri, S., y W., M.-Y. (2002). Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEFE Transactions
on Parallel and Distributed Systems, 13(3), 260-274. doi: 10.1109/71.993206

Zheng, S., Liang, Y., Wang, S., Chen, R., y Sheng, K. (2020). Flextensor: An automa-
tic schedule exploration and optimization framework for tensor computation on
heterogeneous system. En Proceedings of the twenty-fifth international confe-
rence on architectural support for programming languages and operating systems
(p. 859-873). New York, NY, USA: Association for Computing Machinery. doi:
https://doi.org/10.1145/3373376.3378508

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Planteamiento del problema
	Propuesta
	Objetivos generales y específicos del proyecto
	Antecedentes
	Paralelización del cálculo de integrales multidimensionales
	Calendarizadores en ambientes heterogéneos

	Descripción del documento

	Fundamentos
	Integrales multidimensionales
	Bibliotecas para la resolución de integrales multidimensionales
	DCUHRE
	CUHRE

	Plataformas heterogéneas
	Calendarizadores
	Calendarizadores estáticos
	Calendarizadores dinámicos
	Ejecución secuencial y concurrente

	Trabajos relacionados
	Planificador inteligente para integración numérica multidimensional en ambientes heterogéneos
	FlexTensor: un framework de exploración y optimización de calendarización automática para el cálculo de tensores
	StarPU: una plataforma unificada para la calendarización de tareas
	Algoritmo de calendarización de tareas basado en aprendizaje por refuerzo
	Regla de Johnson para la calendarización de n tareas en dos máquinas
	Algoritmo híbrido heurístico-genético con parámetros adaptativos para la calendarización estática de tareas
	Calendarización de tareas
	Método para construir algoritmos de calendarización de tareas
	Resumen de los trabajos relacionados

	Estrategias de Inteligencia Artificial para calendarizadores
	Árbol de decisiones
	Búsqueda tabú

	Implementación
	Introducción a la implementación propuesta
	Arquitectura del sistema de calendarización
	Detalles de la implementación del sistema de calendarización

	Módulo de ejecución AVX
	Arquitectura del módulo de ejecución AVX

	Codelet
	Arquitectura del codelet

	Calendarizadores
	Estático secuencial
	Dinámico secuencial
	Estático concurrente
	Tabla de características

	Pruebas
	Funciones, dispositivos y condiciones base
	Pruebas preliminares
	Pruebas para evaluar la complejidad de las funciones del benchmark de integrales multidimensionales
	Pruebas para estimar el mínimo número de puntos para un error aceptable

	Pruebas de calendarización
	Tablas de tiempo para alimentar los calendarizadores
	Pruebas de tiempo de ejecución usando el calendarizador estático secuencial
	Pruebas de tiempo de ejecución usando el calendarizador dinámico secuencial
	Pruebas de tiempo de ejecución usando el calendarizador estático concurrente

	Análisis
	Comparación: 128 puntos vs extrapolación de Romberg
	Desempeño de los calendarizadores
	Comparación general
	Impacto de la estrategia de calendarización

	Conclusiones
	Glosario
	Acrónimos
	Bibliografía
	Referencias

