
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Computación

Calendarización para disminuir el
tiempo de ejecución de integrales
multidimensionales en entornos

heterogéneos.

Tesis que presenta

Irene Elizabeth López Mares

para obtener el Grado de

Maestro en Ciencias en Computación

Directores de la Tesis

Dr. Amilcar Meneses Viveros
Dr. José Guadalupe Rodríguez García

Ciudad de México Diciembre 2025

ii

Resumen

Existen diversos problemas que requieren del cálculo de integrales multidimensionales;
sin embargo, la resolución numérica de estas tiene una alta complejidad. Además, el
error numérico aumenta con el número de dimensiones.

Para disminuir la complejidad y el tiempo de ejecución se han desarrollado biblio-
tecas de integración con base en las cuadraturas Gaussianas y se han paralelizado. Sin
embargo, el error numérico disminuye al aumentar el número de puntos de integración,
lo cual consume demasiado tiempo computacional.

Una solución para reducir el error numérico, al disminuir el número de puntos, es
aplicar la extrapolación de Romberg y aprovechar los entornos de ejecución hetero-
génea que hay en casi todos los equipos de cómputo.

En este trabajo de tesis se implementó la extrapolación de Romberg apoyada de
un calendarizador para aprovechar las plataformas heterogéneas.

Los resultados obtenidos permiten concluir que el sistema de calendarización pro-
puesto es funcional y adaptable a distintas plataformas, integrando de manera eficaz
las técnicas de extrapolación y calendarización. La extrapolación de Romberg con-
tribuyó a una reducción significativa en el tiempo de ejecución; sin embargo, el ca-
lendarizador no logró el rendimiento esperado, lo que sugiere la necesidad de realizar
ajustes adicionales en la estrategia de asignación de tareas.

iii

iv CAPÍTULO 0. RESUMEN

Abstract

There are various problems that require the calculation of multidimensional integrals;
however, their numerical resolution is highly complex. Furthermore, the numerical
error increases with the number of dimensions.

To reduce complexity and execution time, integration libraries based on Gaussian
quadratures have been developed and parallelized. However, the numerical error de-
creases with increasing number of integration points, which is computationally time-
consuming.

One solution to reduce numerical error by decreasing the number of points is
to apply Romberg extrapolation and take advantage of the heterogeneous execution
environments found on almost all computing equipment.

In this thesis, Romberg extrapolation was implemented with the support of a
scheduler to take advantage of heterogeneous platforms.

The results obtained allow us to conclude that the proposed scheduling system
is functional and adaptable to different platforms, effectively integrating extrapola-
tion and scheduling techniques. Romberg extrapolation contributed to a significant
reduction in execution time. However, the scheduler did not achieve the expected per-
formance, suggesting the need for further adjustments to the task allocation strategy.

v

vi CAPÍTULO 0. ABSTRACT

Agradecimientos

Agradezco al Centro de Investigación y Estudios Avanzados (CINVESTAV), por abrir-
me sus puertas y en especial al Departamento de Computación por brindarme apoyo
y conocimiento durante toda la maestría.

Agradezco a mis asesores de tesis, el Dr. Amílcar Meneses Viveros y el Dr. José
Guadalupe, por su valiosa guía y orientación durante el desarrollo de este trabajo.
Gracias por acompañarme en cada etapa del proceso, por compartir su conocimien-
to y por ofrecerme su apoyo constante, que fue fundamental para la realización y
consolidación de esta tesis.

Agradezco a profesores del departamento, por compartir su conocimiento, su ex-
periencia y su pasión por la investigación, los cuales fueron una guía fundamental en
mi formación académica. Así como al resto del personal, gracias por su apoyo.

Agradezco a mis padres y a mi hermano, por su amor incondicional, su apoyo
constante y su confianza en mí a lo largo de este camino.

Agradezco a mis amigos, por acompañarme durante este trayecto, brindándome
su compañía, ánimo y comprensión en los momentos más importantes.

Y por último, agradezco a la Secretaría de Ciencia, Humanidades, Tecnología e
Innovación (SECITHI) y al Programa de Becas Elisa Acuña, por el apoyo económico
otorgado durante mis estudios de maestría.

vii

viii CAPÍTULO 0. AGRADECIMIENTOS

Índice general

Resumen iii

Abstract v

Agradecimientos vii

Índice de figuras xi

Índice de tablas xiv

1. Introducción 1
1.1. Planteamiento del problema . 1
1.2. Propuesta . 4
1.3. Objetivos generales y específicos del proyecto 5
1.4. Antecedentes . 6

1.4.1. Paralelización del cálculo de integrales multidimensionales . . 6
1.4.2. Calendarizadores en ambientes heterogéneos 7

1.5. Descripción del documento . 7

2. Fundamentos 9
2.1. Integrales multidimensionales . 9
2.2. Bibliotecas para la resolución de integrales multidimensionales 13

2.2.1. DCUHRE . 13
2.2.2. CUHRE . 13

2.3. Plataformas heterogéneas . 14
2.4. Calendarizadores . 17

2.4.1. Calendarizadores estáticos . 18
2.4.2. Calendarizadores dinámicos 18
2.4.3. Ejecución secuencial y concurrente 19

2.5. Trabajos relacionados . 21
2.5.1. Planificador inteligente para integración numérica multidimen-

sional en ambientes heterogéneos 21
2.5.2. FlexTensor: un framework de exploración y optimización de

calendarización automática para el cálculo de tensores 22

ix

x ÍNDICE GENERAL

2.5.3. StarPU: una plataforma unificada para la calendarización de
tareas . 22

2.5.4. Algoritmo de calendarización de tareas basado en aprendizaje
por refuerzo . 23

2.5.5. Regla de Johnson para la calendarización de n tareas en dos
máquinas . 23

2.5.6. Algoritmo híbrido heurístico-genético con parámetros adapta-
tivos para la calendarización estática de tareas 24

2.5.7. Calendarización de tareas . 24
2.5.8. Método para construir algoritmos de calendarización de tareas 25
2.5.9. Resumen de los trabajos relacionados 25

2.6. Estrategias de Inteligencia Artificial para calendarizadores 26
2.6.1. Árbol de decisiones . 26
2.6.2. Búsqueda tabú . 29

3. Implementación 31
3.1. Introducción a la implementación propuesta 31
3.2. Arquitectura del sistema de calendarización 32

3.2.1. Detalles de la implementación del sistema de calendarización . 35
3.3. Módulo de ejecución AVX . 35

3.3.1. Arquitectura del módulo de ejecución AVX 36
3.4. Codelet . 41

3.4.1. Arquitectura del codelet . 42
3.5. Calendarizadores . 44

3.5.1. Estático secuencial . 45
3.5.2. Dinámico secuencial . 47
3.5.3. Estático concurrente . 50
3.5.4. Tabla de características . 61

4. Pruebas 63
4.1. Funciones, dispositivos y condiciones base 64
4.2. Pruebas preliminares . 65

4.2.1. Pruebas para evaluar la complejidad de las funciones del bench-
mark de integrales multidimensionales 65

4.2.2. Pruebas para estimar el mínimo número de puntos para un error
aceptable . 68

4.3. Pruebas de calendarización . 71
4.3.1. Tablas de tiempo para alimentar los calendarizadores 72
4.3.2. Pruebas de tiempo de ejecución usando el calendarizador está-

tico secuencial . 78
4.3.3. Pruebas de tiempo de ejecución usando el calendarizador diná-

mico secuencial . 81
4.3.4. Pruebas de tiempo de ejecución usando el calendarizador está-

tico concurrente . 86

ÍNDICE GENERAL xi

5. Análisis 91
5.1. Comparación: 128 puntos vs extrapolación de Romberg 91
5.2. Desempeño de los calendarizadores 96

5.2.1. Comparación general . 98
5.2.2. Impacto de la estrategia de calendarización 102

Conclusiones 109

Glosario 113

Acrónimos 115

Bibliografía 116
Referencias . 116

xii ÍNDICE GENERAL

Índice de figuras

1.1. Precisión y tiempo de ejecución de los métodos de integración 2

2.1. Estructura general de una plataforma heterogénea compuesta por una
CPU y una GPU. P-Core hace referencia a los núcleos de rendimiento
(performance cores) y E-Core a los núcleos de eficiencia (efficient cores) 16

2.2. Ejemplo de un árbol de decisiones . 28
2.3. Ejemplo de la búsqueda tabú . 30

3.1. Integración por puntos en los módulos de ejecución. 33
3.2. Arquitectura del sistema de calendarización. 34
3.3. Incorporación del módulo de ejecución AVX a la biblioteca de integrales

multidimensionales. 36
3.4. Funciones del módulo de ejecución secuencial. 37
3.5. Codelet general. 42
3.6. Codelet del sistema de calendarización propuesto. 42

4.1. Funciones del benchmark de integrales multidimensionales. 68
4.2. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 en

estación de trabajo CUDA. 76
4.3. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 en

Jetson TX2. 77
4.4. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3

usando la extrapolación de Romberg: módulos VS calendarizador es-
tático secuencial, en estación de trabajo CUDA. 79

4.5. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador es-
tático secuencial, en Jetson TX2. 80

4.6. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador di-
námico secuencial, en estación de trabajo CUDA. 83

4.7. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador di-
námico secuencial, en Jetson TX2. 84

xiii

xiv ÍNDICE DE FIGURAS

4.8. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador es-
tático concurrente, en estación de trabajo CUDA. 87

4.9. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador es-
tático concurrente, en Jetson TX2. 88

5.1. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3: 128
puntos VS extrapolación de Romberg en estación de trabajo CUDA. . 94

5.2. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3: 128
puntos VS extrapolación de Romberg en Jetson TX2. 95

5.3. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg, en estación de trabajo CUDA. . 97

5.4. Caída atípica en el tiempo de ejecución del módulo OMP alrededor
del punto de integración 33 al evaluar la Función 1.3 en la estación de
trabajo CUDA. 98

5.5. Comparación de tiempos de ejecución (s) de calendarizadores al evaluar
la Función 1.3 en estación de trabajo CUDA. 100

5.6. Comparación de tiempos de ejecución (s) de calendarizadores al evaluar
la Función 1.3 en Jetson TX2. 101

5.7. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando diferentes técnicas en estación de trabajo CUDA. 104

5.8. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando diferentes técnicas en Jetson TX2. 104

5.9. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizadores,
en estación de trabajo CUDA. 106

5.10. Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizadores,
en Jetson TX2. 107

Índice de tablas

1.1. Error numérico relativo, σrel, CUHRE vs Kronrod. Las funciones co-
rresponden a las Funciones 1.1 y 1.2 del benchmark de integrales mul-
tidimensionales. Extraído de (Quintero-Monsebaiz y cols., 2021). . . . 4

2.1. Clasificación de calendarizadores que se abordan en este proyecto de
tesis. 20

2.2. Comparación de los trabajos relacionados. 27

3.1. Relación de dimensiones (bucles) e índices. 37
3.2. Asignación de módulos en el codelet. 43
3.3. Características de los tres calendarizadores implementados. 61

4.1. Funciones del benchmark de integrales multidimensionales evaluadas
en 6 dimensiones, en estación de trabajo CUDA. Tiempo de ejecución
(s). 67

4.2. Error numérico de la Función 1.3, evaluada en estación de trabajo
CUDA usando la cuadratura de Gauss-Kronrod. 69

4.3. Error numérico de la Función 1.3, evaluada en estación de trabajo
CUDA usando la cuadratura de Gauss-Kronrod y la extrapolación de
Romberg. 71

4.4. Fragmento de las tablas de tiempo (s) para alimentar los calendariza-
dores en estación de trabajo CUDA. 73

4.5. Fragmento de las tablas de tiempo (s) para alimentar los calendariza-
dores en Jetson TX2. 74

4.6. Pruebas realizadas en calendarizador estático secuencial usando la Fun-
ción 1.3 y la extrapolación de Romberg. Tiempo de ejecución (s) . . . 82

4.7. Pruebas realizadas en calendarizador dinámico secuencial usando la
Función 1.3 y la extrapolación de Romberg. Tiempo de ejecución (s) . 85

4.8. Pruebas realizadas en calendarizador estático concurrente usando la
Función 1.3 y la extrapolación de Romberg. Tiempo de ejecución (s) . 89

5.1. Aceleraciones de los módulos de ejecución usando la extrapolación de
Romberg tomando como referencia el módulo de ejecución CUDA con
128 puntos. 93

xv

xvi ÍNDICE DE TABLAS

5.2. Aceleraciones de los calendarizadores usando la extrapolación de Rom-
berg tomando como referencia el módulo de ejecución CUDA con 128
puntos. 103

Índice de algoritmos

1. Cálculo de integrales multidimensionales usando el módulo de ejecución
secuencial - 6 Dimensiones . 38

2. Cálculo de integrales multidimensionales usando el módulo de ejecución AVX - 6
Dimensiones . 40

3. Selección del módulo más adecuado por número de puntos 46
4. Evaluación punto a punto de la integral multidimensional usando el

calendarizador estático secuencial . 47
5. Inicialización del calendarizador dinámico secuencial 48
6. Evaluación punto a punto de la integral multidimensional usando el

calendarizador dinámico secuencial . 49
7. Selección dinámica del módulo más adecuado: sched() 49
8. Evaluación en pares de la integral multidimensional usando el calenda-

rizador estático concurrente . 52
9. Selección de los dos mejores módulos por punto: build_top2() 53
10. Búsqueda tabú para asignación óptima de módulos: tabu_assign_top2() 55
11. Simulación del makespan: simulate_makespan() 59
12. Función principal del calendarizador estático concurrente 60

xvii

xviii ÍNDICE DE ALGORITMOS

Capítulo 1

Introducción

Actualmente existen diversos problemas en Física, Química e Ingeniería que requieren
del cálculo de integrales multidimensionales. Sin embargo, no todas las integrales tie-
nen solución analítica, por lo que se requieren métodos numéricos para su resolución.

En las últimas décadas, se ha propuesto y desarrollado una amplia variedad de
métodos numéricos (Gibbs, 1915). Muchos de ellos se basan en cuadraturas gaussia-
nas, las cuales, al aumentar el número de dimensiones, incrementan tanto el error
numérico como la complejidad computacional. No obstante, la cuadratura de Gauss-
Kronrod (Genz, 1972; Patterson, 1968; Piessens y Branders, 1974) se distingue por
presentar el menor número de decimales donde oscila el error, gracias a la elección
estratégica de los puntos que mejora la precisión de la integral. Sin embargo, la com-
plejidad computacional sigue siendo elevada, por lo que se ha optado por disminuir
el número de puntos y complementar el proceso con técnicas de extrapolación, con
el fin de obtener estimaciones más precisas del resultado sin incrementar de manera
significativa el costo computacional.

Por tal motivo, en este proyecto se propone utilizar los algoritmos presentados en
el artículo (Quintero-Monsebaiz y cols., 2021), los cuales calculan las integrales me-
diante la cuadratura de Gauss-Kronrod combinada con extrapolaciones de Romberg
(Kebaier, 2005; E. H. L. Liu, 2006), con el objetivo de implementarlos en una plata-
forma heterogénea utilizando estrategias de calendarización que permitan reducir el
tiempo computacional.

1.1 Planteamiento del problema

Como se mencionó previamente, en la evaluación de integrales multidimensionales
mediante cuadraturas gaussianas, aumentar el número de dimensiones provoca un
incremento en la complejidad computacional. Sin embargo, las integrales multidi-
mensionales ofrecen resultados con mayor precisión a diferencia de otros métodos,
como se puede observar en la Figura 1.1

En la columna izquierda se muestran: la suma de Riemann (
∑

), la integral unidi-
mensional (

∫
) y la integral multidimensional (

∫∫∫
). Cada una representa un método

1

2 Introducción

Figura 1.1: Precisión y tiempo de ejecución de los métodos de integración
.

de integración con distinto nivel de complejidad.
En la columna central, cada método está asociado a un gato, usado como metáfora

del resultado obtenido:

El gato pixelado corresponde a la suma, indicando un resultado menos preciso.
El gato ilustrado representa la integral unidimensional, con un nivel de precisión
intermedio.
El gato realista corresponde a la integral multidimensional, simbolizando un
resultado más preciso y detallado.

La idea es que entre más realista es el gato, mayor es la precisión del método asociado.
Sin embargo, mayor precisión implica un mayor tiempo de ejecución requerido.

La suma requiere poco tiempo (un reloj),
La integral unidimensional requiere un tiempo moderado (dos relojes),
La integral multidimensional demanda el mayor tiempo de cómputo (tres relo-
jes).

Con el objetivo de reducir el tiempo de ejecución sin comprometer la precisión, los
algoritmos descritos en (Quintero-Monsebaiz y cols., 2021) combinan la cuadratura de
Gauss–Kronrod con la extrapolación de Romberg. Para evaluar su desempeño, estos
algoritmos se sometieron a pruebas utilizando un conjunto de funciones de referencia
del benchmark de integrales multidimensionales (Arumugam, Godunov, Ranjan, Ter-
zic, y Zubair, 2013), lo cual permitió medir tanto su eficiencia computacional como
su precisión.

f1(x) =

[
α + cos2

(
n∑

n=1

x2

)]2
, (1.1)

Capítulo 1 3

f2(x) = cos

(
n∏

i=1

cos(22ixi)

)
, (1.2)

f3(x) = sen

(
n∏

i=1

i · arcsin(xi
i)

)
, (1.3)

f4(x) = sen

(
n∏

i=1

arcsin(xi)

)
, (1.4)

f5(x) =
1

2β

n∑
n=1

cos(αxi), (1.5)

donde α = 0.1 y β = −0.054402111088937. Las funciones serán calculadas en un
hipercubo [0, 1]d, donde d = 3, 4, 5, 6.

La complejidad al evaluar cada función del benchmark en cada punto de la malla
multidimensional es:

O(nd), (1.6)

donde n es el número de puntos y d es el número de dimensiones d ⩾ 3 (Quintero-
Monsebaiz y cols., 2021).

El número de puntos evaluados en la integral está directamente relacionado con
el error numérico; para que el resultado sea aceptable, dicho número debe ser lo sufi-
cientemente grande como para garantizar un error dentro de los márgenes tolerables
(en función del dominio del problema puede ser ⩽ 10−4). En (Quintero-Monsebaiz y
cols., 2021) se realizaron pruebas con las funciones del benchmark usando hasta 56
puntos, sin embargo, como se muestra en la Tabla 1.1, el error sigue siendo demasia-
do alto para ser aceptable, incluso en CUHRE (Hahn, 2005), considerado uno de los
algoritmos más empleados en la resolución de integrales multidimensionales. Por lo
tanto, es necesario realizar pruebas con un mayor número de puntos hasta alcanzar
un error numérico aceptable.

No obstante, al incrementar el número de puntos, la complejidad computacional
también se eleva considerablemente, en especial para 5 y 6 dimensiones, lo que implica
un alto costo en tiempo de ejecución. A pesar de lo anterior, es posible reducir el núme-
ro de puntos a aproximadamente 40 mediante la implementación de extrapolaciones
de Romberg. Por lo tanto, la complejidad resultante al emplear estas extrapolaciones
es la siguiente:

4 Introducción

O(
40∑
k=1

kd) ≈ O(40d), (1.7)

donde d es el número de dimensiones ⩾ 3 (Quintero-Monsebaiz y cols., 2021).

Además, el comportamiento al evaluar la fórmula de la extrapolación de Romberg
(Ecuación 1.8) permite que los cálculos puedan realizarse en paralelo, debido a que
los elementos Ti,0 se ejecutan de manera concurrente. Esta característica contribuye
a la reducción significativa del tiempo de ejecución.

Ti,k = Ti,k−1 +
(Ti,k−1 − Ti−1,k−1)

4k − 1
, (1.8)

donde Ti,0 es la evaluación de la integral para i puntos y Ti,k, para k > 0, es el k-ésimo
ajuste (Kebaier, 2005; E. H. L. Liu, 2006).

Tabla 1.1: Error numérico relativo, σrel, CUHRE vs Kronrod. Las funciones
corresponden a las Funciones 1.1 y 1.2 del benchmark de integrales
multidimensionales. Extraído de (Quintero-Monsebaiz y cols., 2021).

CUHRE Kronrod
Función Integral σrel Integral(56puntos) σrel

3 dimensiones
1 20.03172186 e-06 20.03172187 e-12
2 0.930740275 e-07 0.930907702 e-04
4 dimensiones
1 27.06839191 e-05 27.06839069 e-11
2 0.965374901 e-02 0.963093722 e-02
5 dimensiones
1 27.63237484 e-03 27.63223859 e-10
2 0.978854949 e-02 0.979649828 e-02
6 dimensiones
1 23.60730077 e-01 23.60655943 e-08
2 0.992661704 e-02 0.990171077 e-02

1.2 Propuesta
La hipótesis de este proyecto plantea que, a través de una estrategia de calenda-

rización adecuada en entornos heterogéneos, se puede reducir el tiempo de ejecución
de las integrales multidimensionales. Con el fin de validar esta hipótesis, se propone
optimizar la ejecución de la extrapolación de Romberg seleccionando, para cada ca-
so, el módulo de ejecución más adecuado (secuencial, CUDA, OpenMP o AVX), en
función del número de dimensiones de la integral y del número de puntos empleados
en la integración.

Capítulo 1 5

Antes de construir el calendarizador, primero es necesario realizar un conjunto
de pruebas que permitan determinar cuántos puntos deben emplearse para alcanzar
un error numérico aceptable. Para ello, se toma como referencia la Función 1.3 del
benchmark, clasificada como la segunda más compleja. La justificación de esta elección
se expone en la Sección 4.2.2. Se considera que, al controlar el error en esta función,
también será posible lograr una precisión adecuada en el resto de las funciones menos
complejas incluidas en el benchmark.

El calendarizador propuesto recibirá como entradas el número de dimensiones y
el número de puntos de integración. Con base en datos previamente obtenidos sobre
los tiempos de ejecución (véase Sección 4.3.1), determinará, para cada punto, qué
módulo de la plataforma heterogénea resulta más adecuado para realizar el cálculo.
De este modo, el calendarizador actuará como un componente de decisión capaz de
asignar los puntos de la integral a los módulos que ofrezca el mejor rendimiento.

Además, se implementará un codelet (Augonnet, Thibault, Namyst, y Wacrenier,
2009), encargado de gestionar la invocación de los distintos módulos de ejecución.
En otras palabras, si el calendarizador determina que la integral debe evaluarse en
el GPU, el codelet deberá contener la referencia al módulo implementado en CUDA.
Por el contrario, si la ejecución se realiza en la CPU, el codelet deberá incluir las
referencias a los módulos secuencial, OpenMP (para la ejecución paralela) y AVX
(para la ejecución vectorizada con instrucciones de Intel). De esta manera, el codelet
actuará como un mecanismo flexible que encapsula los diferentes módulos de ejecución
y permite que el calendarizador seleccione la alternativa más conveniente.

Sin embargo, para que el calendarizador pueda tomar decisiones informadas, es
necesario contar con datos confiables sobre el tiempo de ejecución de cada módulo en
distintos escenarios (variando dimensiones y número de puntos). Obtener estos datos
de manera manual sería impráctico, debido tanto a la cantidad de configuraciones po-
sibles como a la naturaleza heterogénea de las plataformas de ejecución. Para superar
esta limitación, este proyecto plantea el desarrollo de heurísticas capaces de estimar
el tiempo de ejecución con rapidez y suficiente precisión. Dichas heurísticas no solo
reducen el tiempo requerido para obtener los datos de los módulos de la plataforma,
sino que además permiten generalizar el enfoque, facilitando su adaptación y uso en
diferentes entornos heterogéneos sin necesidad de repetir todo el proceso de medición
desde cero.

1.3 Objetivos generales y específicos del proyecto

General

Disminuir el tiempo de ejecución en la extrapolación de Romberg para el cálculo
integrales multidimensionales en entornos heterogéneos.

6 Introducción

Particulares

1. Estudiar los tipos de calendarizadores y heurísticas, adecuados en entornos he-
terogéneos, que se pueden implementar en este problema.

2. Extender la biblioteca de integrales multidimensionales con el módulo de ejecu-
ción AVX.

3. Determinar la cantidad mínima (n) de puntos en la integral de Gauss-Kronrod
para tener un error aceptable (igual o menor a 10−4).

4. Construir el codelet para administrar la biblioteca de integrales multidimensio-
nales.

5. Hacer pruebas con el codelet para estimar el tiempo de ejecución y el error para
diferentes dispositivos y componentes.

6. Seleccionar e implementar el/los calendarizador(es) o heurística(s) para despa-
cho de procesos.

7. Validar los tiempos de ejecución y el error del mecanismo de integración multi-
dimensional propuesto.

1.4 Antecedentes

Este proyecto de tesis pretende profundizar e integrar los trabajos que han sido de-
sarrollados en el departamento de Computación del Centro de Investigación y de
Estudios Avanzados del Instituto Politécnico Nacional unidad Zacatenco, con el pro-
pósito de optimizar el cálculo de integrales multidimensionales. A continuación, se
describen brevemente los trabajos en los que se basa esta propuesta:

1.4.1 Paralelización del cálculo de integrales multidimensio-
nales

(Quintero-Monsebaiz y cols., 2021) aborda los esquemas de paralelización en arquitec-
turas multi-núcleo: CUDA y OpenMP; los cuales, se emplean para acelerar y mejorar
la precisión de los algoritmos de integración multidimensional adaptativos, en espe-
cifico, el método adaptativo unidimensional Gauss-Kronrod que se generaliza a 3, 4,
5 y 6 dimensiones y el método de extrapolaciones de Romberg.

Este trabajo replantea el proceso tradicional de integración multidimensional con
el propósito de aprovechar de manera efectiva las ventajas de las arquitecturas multi-
núcleo. Para ello, se incorporan estrategias de paralelización basadas en el hecho de
que las cuadraturas multidimensionales pueden evaluarse mediante ciclos cuyas ite-
raciones son independientes entre sí. Esta característica permite distribuir el trabajo

Capítulo 1 7

entre varios núcleos de procesamiento y, con ello, mejorar significativamente el rendi-
miento computacional.

Las pruebas fueron realizadas en el conjunto de funciones de referencia del bench-
mark de integrales multidimensionales (Arumugam y cols., 2013), estas pruebas mos-
traron que el algoritmo es numéricamente preciso, con aceleraciones de hasta 800X
en CUDA y 300X en la implementación OpenMP, en comparación con un algoritmo
de integración multidimensional secuencial.

1.4.2 Calendarizadores en ambientes heterogéneos

Debido a los grandes volúmenes de datos que se han generado en los últimos años, se ha
experimentado una creciente demanda en la creación y expansión de centros de datos,
algunos de éstos han sido integrados por conjuntos de servidores con capacidades
variables de procesamiento y almacenamiento. Este tipo de entornos representa un
nuevo desafío en la optimización y uso eficiente de los recursos, por lo que calendarizar
tareas se vuelve más complicado.

Para enfrentar estas dificultades se han desarrollado diversas estrategias, basadas
en indicadores que requieren la creación de una matriz de costos que vincule tareas
y recursos. Esto implica una predicción precisa de los indicadores seleccionados, en
función de las características de las tareas y los servidores. En (Salas-González, 2023)
se desarrolla una caracterización detallada de tareas y recursos para crear un conjun-
to de atributos que sirven como entradas para diferentes algoritmos de Inteligencia
Artificial (Random Forest, Regresión Lineal Múltiple, Redes Neuronales Secuenciales
y Redes Long Short-Term Memory). El objetivo de estos algoritmos es predecir el
valor de un indicador que pueda integrarse en una función objetivo para optimizar la
calendarización estática de tareas en entornos heterogéneos.

1.5 Descripción del documento

El contenido de esta tesis se estructura de manera progresiva, partiendo de los fun-
damentos teóricos hasta llegar al análisis del sistema de calendarización propuesto.

El Capítulo 2 presenta los fundamentos teóricos necesarios para comprender el
problema de la integración multidimensional y su complejidad computacional. Así
como los conceptos de calendarización, plataformas heterogéneas y algunas heurísticas
utilizadas en la asignación de tareas.

El Capítulo 3 describe la implementación del sistema de calendarización. Se detalla
la estructura de la biblioteca de integrales multidimensionales utilizada como base.
Posteriormente, se abordan las extensiones implementadas: el módulo de ejecución
AVX, el codelet para administrar los módulos de la biblioteca y las tres estrategias
de calendarización que gestionan el sistema: estática secuencial, dinámica secuencial
y estática concurrente.

El Capítulo 4 presenta las pruebas realizadas para validar el funcionamiento del
sistema, así como para evaluar la precisión de los resultados obtenidos en el cálculo

8 Introducción

de las integrales y los tiempos de ejecución. Se llevaron a cabo pruebas preliminares
para determinar la complejidad de las funciones del benchmark y estimar el número
mínimo de puntos necesario para mantener un error aceptable. Además, se presen-
tan las pruebas de rendimiento aplicadas a los calendarizadores en dos plataformas
heterogéneas.

El Capítulo 5 contiene el análisis de los resultados obtenidos. Se comparan los
tiempos de ejecución y la precisión de los módulos con y sin extrapolación de Romberg.
Posteriormente, se evalúa el desempeño de los calendarizadores propuestos, con el
objetivo de analizar su comportamiento y eficiencia.

En resumen, estos capítulos documentan el proceso de investigación, implementa-
ción, validación y análisis del sistema de calendarización.

Capítulo 2

Fundamentos

Este capítulo establece los fundamentos teóricos y tecnológicos que sustentan esta
propuesta de tesis. En primer lugar, se describen algunos métodos numéricos dis-
ponibles para la resolución de integrales multidimensionales, destacando aquellos que
ofrecen mayor precisión y eficiencia computacional. En la siguiente sección se presenta
una revisión resumida sobre las bibliotecas especializadas para la resolución numérica
de integrales multidimensionales: DCUHRE y CUHRE.

La tercera sección aborda las plataformas heterogéneas, poniendo especial énfasis
en aquellas integradas por CPUs, que cuentan con núcleos de rendimiento y eficiencia,
así como del conjunto de instrucciones vectoriales avanzadas (AVX), además de GPUs.
Se discute cómo estas tecnologías contribuyen significativamente a la paralelización
efectiva de tareas, logrando así importantes reducciones en los tiempos de ejecución.
Posteriormente, en la cuarta sección se introducen los conceptos básicos asociados con
los calendarizadores de tareas, clasificándolos en dos tipos: calendarizadores estáticos
y dinámicos. Asimismo, se menciona la capacidad de estos sistemas para ejecutar
tareas tanto de forma secuencial como concurrente.

En la quinta sección se realiza una revisión de trabajos relacionados, ofreciendo
un análisis comparativo de diversos calendarizadores existentes en la literatura. En
esta sección se resaltan las similitudes y diferencias entre los enfoques existentes y
el enfoque propuesto en esta tesis, presentando finalmente una tabla comparativa de
características clave.

Finalmente, la sexta sección introducirá las estrategias de Inteligencia Artificial
(IA) orientadas a la calendarización de tareas en plataformas heterogéneas. Se desta-
carán particularmente las técnicas basadas en árboles de decisión y búsqueda tabú,
pues éstas son las estrategias que serán implementadas dentro de este proyecto de
tesis.

2.1 Integrales multidimensionales

La integración numérica por cuadratura es un método que busca aproximarse al valor
de una integral definida. Para ello, se emplea una regla de cuadratura que utiliza un

9

10 Fundamentos

conjunto finito de puntos evaluados en una función dada f(x):∫ b

a

f(x) dx =
∞∑
i=1

wif(xi), (2.1)

donde la integral se realiza sobre un intervalo cerrado [a, b], x1, x2, ..., xn son los no-
dos en el intervalo de integración y w1, w2, ..., wn son los pesos asociados a cada nodo.
La precisión de las fórmulas de integración depende de los pesos y las abscisas elegidos.

Una de las cuadraturas más simples se crea ubicando las abscisas sin espaciado
especial y resolviendo n+ 1 ecuaciones para obtener los pesos correspondientes. Este
enfoque tiene el doble de precisión en comparación a la regla de Newton-Cotes. Esta
cuadratura organiza los pesos y abscisas elegidos, con el propósito de integrar una
clase de integrales que se pueden calcular mediante la multiplicación de un polinomio
por una función de peso W (x) (Abramowitz, 1974; Arfken, 1985; Szegő, 1975), es
decir ∫ b

a

W (x)f(x) dx =
n∑

i=1

wipi(xi), (2.2)

donde p1(x), p2(x), ..., pn(x) son polinomios ortogonales cualesquiera de grado 2n− 1
o menor.

En esta tesis se pretende utilizar la cuadratura de Gauss-Kronrod, sin embargo,
primero es necesario abordar algunas propiedades generales de la regla de cuadratura
de Gauss-Chebyshev (Abramowitz, 1974), donde los polinomios son ortogonales en el
intervalo [−1, 1], y W (x) = (1−x2)−

1
2 . Para obtener los polinomios de Chebyshev del

primer tipo se emplea de manera directa la fórmula de recurrencia de tres términos:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(2.3)

Por otro lado, para obtener los pesos se aplica la siguiente fórmula:

wi = −
π

Tn+1(xi)T ′n(xi)
, (2.4)

donde Tn(xi)
′ es la derivada del polinomio ortogonal en su cero xi , lo cual es sencillo

en su forma trigonométrica.

El procedimiento práctico para calcular la integral (Ecuación 2.2) mediante una
cuadratura, comienza por generar el polinomio de Chebyshev utilizando la relación
de puntos del árbol de recursión (Ecuación 2.3). Para posteriormente determinar los

Capítulo 2 11

ceros de Gauss-Chebyshev, mediante el método de Newton y finalmente se calculan
los pesos asociados utilizando la Ecuación 2.4 (Dahlquist y Björck, 2008).

Sin embargo, las cuadraturas deterministas no adaptativas, como Gauss-Chebyshev,
no son precisas cuando el integrando es altamente oscilatorio (Notaris, 2016); por lo
que en este caso, los métodos deterministas adaptativos son una mejor opción pa-
ra lidiar con la complejidad. En el método adaptativo se refina la cuadrícula en los
intervalos donde el error local es mayor. Una de las cuadraturas adaptativas más po-
pulares es Gauss-Kronrod (Kronrod, 1964). En esta cuadratura, se eligen los pesos
y las abscisas con el fin de maximizar la precisión, ya que hay 3n + 1 variables, los
algoritmos buscan secuencias óptimas de reglas, en donde cada secuencia reutiliza
todas las abscisas de su predecesora. La fórmula de cuadratura de Gauss-Kronrod
está dada por: ∫ b

a

f(x) dx =
n∑

i=1

wif(xi) +
n+1∑
i=1

vif(ξi), (2.5)

donde xi y wi son los nodos y pesos de Gauss, respectivamente, mientras que las
nuevas abscisas ξi y los pesos vi son las abscisas y los pesos de Kronrod, que se eligen
para maximizar la precisión a al menos 2n+ 1.

Kronrod evalúa la Ecuación 2.5 para n > 40 asegurando que ξi se encuentra
en el intervalo [1,−1] y wi, vi ambos definidos como positivos. Las abscisas ξi son
las raíces del polinomio de Kronrod Kn+1 que se evalúa por medio de una ecuación
de recurrencia (Piessens y Branders, 1974), mientras que los pesos wi, vi se obtie-
nen resolviendo un sistema lineal, para alcanzar la mayor precisión en la Ecuación
2.5. No obstante, el método propuesto por Kronrod para obtener los coeficientes de
Kn+1 requiere una ecuación que no se comporta bien (Szegö, 1935). En consecuen-
cia, Patterson propuso una expansión de Kn+1 en términos de polinomios de Legen-
dre Pn(x) (Patterson, 1968). Sin embargo, este método no aplica cuando se utilizan
N = 1, 9, 17, 22, 27, 35, 36, 37 y 40 puntos. Por lo que, Pissens y Branders (Piessens
y Branders, 1974) propusieron una expansión del polinomio Kn+1(x) en términos
de polinomios de Chebyshev para números pares e impares. Así, utilizando algunas
propiedades de los polinomios de Chebyshev, los pesos se obtienen de la siguiente
manera:

wi =
CN

2P ′N(xi)Kn+1(xi)
+

2

(N + 1)(N + 2)[PN+1(xi)]2
, (2.6)

vi =
N + 2

2(N + 1)

CN

[PN+1(ξi)− ξiPN+1(ξi)]K ′n+1(ξi)
, (2.7)

donde, PN+1 es un polinomio de Legendre de grado N + 1, y K ′n+1 es un polinomio
de Kronrod de grado n+ 1; los órdenes de estos polinomios son diferentes.

12 Fundamentos

El método de Piessens es aplicable para cualquier caso, incluyendo números pares
e impares, además, desde el punto de vista computacional es menos costoso. Por ende,
el tiempo de ejecución se puede reducir a la mitad en comparación con el método de
Patterson.

Dado que esta tesis tiene como objetivo reducir el tiempo de ejecución y aumentar
la precisión de la integración multidimensional, se empleará el método de Piessens para
la generación de nodos y abscisas. Por lo que es necesario generalizar la metodología
unidimensional a la integración de d-dimensiones.

Dicho lo anterior, se considera la evaluación de la integral d-dimensional sobre un
hipervolumen Ω mediante una cuadratura Gaussiana aproximada para d-dimensiones
(Keister, 1996) ∫

Ω

W (X)f(X) dX, (2.8)

donde X es un vector de dimensión d.

Bajo este contexto, se necesitan nd puntos en la cuadrícula hiperdimensional. La
evaluación de la integral multidimensional (Ecuación 2.8) requiere un arreglo de pesos
de rango d W (X) que se obtiene por un producto directo del vector de pesos wj

n para
cada dimensión j, generando un tensor de pesos de rango d

wj
n = {wj

1, w
j
2, ..., w

j
p, ..., w

j
n}, W d

n =
d⊕

j=1

wj
n, (2.9)

donde wj
n es un vector que va desde 1 hasta el número de puntos de la cuadrícula

n, y j recorre las dimensiones presentes en la integral; el tensor de pesos W j
n es el

producto directo de los vectores de pesos que cubren las d-dimensiones.

La generación de los nodos para la función n-dimensional f(X) es similar a la
generación de los pesos, es decir, se construye una matriz d-dimensional de puntos x
mediante el producto directo de cada vector unidimensional. En el caso de las abscisas,
se construye una matriz n-dimensional X evaluando la función en cada punto de la
cuadrícula n-dimensional:

xj
n = {xj

1, x
j
2, ..., x

j
p, ..., x

j
n}, Xd

n =
d⊕

j=1

xj
n. (2.10)

Una vez construido el tensor de orden de rango d X, se evalúa el integrando en
este arreglo, y para calcular la integral d-dimensional se lleva a cabo la contracción
de los arreglos de orden d W (X) y X de la siguiente manera:∫

Ω

W (x)f(x) dx = W d
n ∗ f(Xd

n) =
d∑

j=1

n∑
i=1

W j
i f(X

j
i), (2.11)

donde ∗ denota la contracción de los tensores.

Capítulo 2 13

2.2 Bibliotecas para la resolución de integrales mul-
tidimensionales

A continuación se describen dos bibliotecas ampliamente utilizadas para la resolu-
ción de integrales multidimensionales: DCUHRE y CUHRE. Ambas forman parte del
conjunto de algoritmos del paquete CUBA y se han consolidado como herramientas
eficientes para la evaluación de funciones con comportamiento complejo.

2.2.1 DCUHRE

DCUHRE (Berntsen, Espelid, y Genz, 1991b) es una biblioteca implementada en
FORTRAN 77 para el cálculo de integrales multidimensionales de doble precisión so-
bre regiones hiperrectangulares. Esta biblioteca proporciona un algoritmo adaptativo
(Berntsen, Espelid, y Genz, 1991a), basado en una estrategia de subdivisión global
adaptativa, que permite refinar selectivamente las subregiones de integración donde
el integrando presenta mayor complejidad o variación local. Además, su estructura
está diseñada para facilitar la implementación en dispositivos paralelos con memoria
compartida.

El procedimiento del algoritmo consiste en elegir una subregión de la integral y
determinar si requiere refinamiento adicional según el comportamiento del integrando.
Si los integrandos, en un vector de integrandos, son significativamente diferentes entre
sí, el algoritmo divide dicho vector en subvectores más pequeños, aplicando el proceso
de integración de manera independiente a cada uno. Por el contrario, cuando los
integrandos comparten suficiente similitud, es posible reutilizar la misma estrategia
de subdivisión, con lo que se reduce el costo computacional en tiempo y memoria. Esta
característica también permite aprovechar la ejecución paralela de las evaluaciones del
integrando, logrando así una optimización adicional del rendimiento.

2.2.2 CUHRE

La biblioteca CUBA (Hahn, 2005) incluye el algoritmo CUHRE, un algoritmo deter-
minista de integración multidimensional que utiliza reglas de cuadratura para estimar
subregiones dentro de un esquema de subdivisión globalmente adaptativo. A diferencia
de los métodos basados en Monte Carlo, CUHRE se fundamenta en aproximaciones
polinomiales del integrando y en una estrategia de refinamiento. En cada iteración, la
subregión con mayor error estimado es dividida por la mitad a lo largo del eje donde
el integrando presenta la diferencia de cuarto orden más pronunciada, lo que permite
identificar y refinar de manera eficiente las zonas con mayor dificultad numérica.

El procedimiento del algoritmo puede resumirse de la siguiente manera:

1. Seleccionar la región con el mayor error estimado.

2. Dividir dicha región a lo largo del eje correspondiente a la mayor diferencia de
cuarto orden.

14 Fundamentos

3. Aplicar la regla de cuadratura a las dos subregiones generadas.

4. Incorporar las subregiones a la lista general de regiones y actualizar los resulta-
dos totales de la integral y el error.

En dimensiones moderadas, CUHRE ofrece un rendimiento competitivo, especial-
mente cuando el integrando puede aproximarse adecuadamente mediante polinomios.
No obstante, conforme aumentan las dimensiones del problema, el número de puntos
requeridos por las reglas de cuadratura crece de manera significativa, lo que reduce
su eficiencia y limita su aplicación en espacios de altas dimensiones.

2.3 Plataformas heterogéneas

Durante la última década, las plataformas heterogéneas se han vuelto populares, debi-
do a que ofrecen un alto rendimiento y son eficientes en cuanto al consumo energético
se refiere, en comparación con las plataformas homogéneas. Por tanto, estas platafor-
mas han comenzado a ser ampliamente utilizadas en clústeres de alto rendimiento y
estaciones de trabajo, lo que genera la necesidad de contar con una visión general y
una comprensión profunda de las mismas.

Las plataformas heterogéneas integran procesadores con distintas arquitecturas,
conjuntos de instrucciones y representaciones de datos en un mismo sistema (Salas-
González, 2023), con el objetivo de optimizar el rendimiento y/o reducir el consumo
de energía. A diferencia de las plataformas homogéneas convencionales, que suelen
emplear CPUs multi-núcleos simétricos, las plataformas heterogéneas pueden estar
compuestas por CPUs, GPUs e incluso FPGAs, esto permite que se usen tanto para
tareas de propósito general como tareas más especificas que requieren mayor eficiencia.
En este capítulo se abordarán los componentes de ejecución CPU y GPU, puesto que
serán de vital importancia para este proyecto. Sin embargo, primero es necesario
entender cómo surgieron estas plataformas.

En 1965, Gordon Moore formuló una observación conocida como la Ley de Moore
(Moore, 1965), según la cual cada dos años se duplicará la cantidad de transistores
integrados en un microprocesador, esta tendencia se mantuvo durante más de treinta
años (Mollick, 2006). No obstante, aunque ahora es posible instalar aproximadamente
16,000 millones de transistores en un sólo microprocesador debido a su tamaño de 32
nm, no es económico. Además, existen ciertas limitaciones físicas que han frenado e
incluso revertido ligeramente el crecimiento exponencial de la frecuencia (Brodtkorb,
Dyken, Hagen, Hjelmervik, y Storaasli, 2010), una muy importante es la densidad de
potencia.

A raíz de la Ley de Moore, se asumió que la frecuencia de los procesadores de un
sólo núcleo también aumentaría de forma sostenida con el tiempo. Sin embargo, la
densidad de potencia en los procesadores superó la de los disipadores de calor y en
consecuencia, rebaso el limite del umbral de calor que el silicio puede soportar con los
métodos de refrigeración convencionales. Aunque se desarrollaron nuevas tecnologías

Capítulo 2 15

de refrigeración, como nitrógeno líquido o hidrógeno (Brodtkorb y cols., 2010), estas
soluciones resultaron inviables debido a sus elevados costos. Estas limitaciones han
conducido a la evolución del diseño de los procesadores actuales, con el objetivo de
mantener un equilibrio entre el rendimiento y los costes de desarrollo. En lugar de
seguir aumentando la frecuencia, los procesadores fueron rediseñados para incorpo-
rar múltiples núcleos simétricos de baja frecuencia, comenzando con configuraciones
de dos núcleos y evolucionando hacia arquitecturas de cuatro, ocho o más núcleos,
permitiendo así la ejecución simultánea de múltiples programas.

Sin embargo, una desventaja de los procesadores multi-núcleo simétricos es que
utilizan la misma cantidad de transistores y operan a frecuencias similares tanto pa-
ra tareas simples como complejas, lo que implica un consumo energético constante,
incluso cuando las tareas no requieren un procesamiento intensivo. Ante esto, las
arquitecturas heterogéneas han surgido como una alternativa viable, combinando nú-
cleos tradicionales de rendimiento con núcleos de eficiencia (Brodtkorb y cols., 2010).
Los núcleos de eficiencia, generalmente usados en tareas mas sencillas, están diseñados
para optimizar el rendimiento dentro de un presupuesto energético o de transistores
determinado, lo cual generalmente implica un menor número de transistores, frecuen-
cias más bajas y una funcionalidad reducida.

Además, Intel ha incorporado un módulo especializado en instrucciones vecto-
rizadas dentro de los núcleos de rendimiento de sus procesadores, conocido como
AVX (Advanced Vector Extensions). Este conjunto de instrucciones SIMD (Single
Instruction, Multiple Data) busca mejorar el rendimiento en operaciones que pueden
aprovechar el paralelismo a nivel de datos. AVX permite que los procesadores realicen
una misma operación sobre múltiples datos al mismo tiempo, lo que lo hace especial-
mente útil en aplicaciones científicas, multimedia, de gráficos, criptografía y machine
learning. AVX amplía la capacidad SIMD de los procesadores x86 mediante registros
vectoriales de 256 bits, lo que permite procesar múltiples valores de punto flotante o
enteros de manera simultánea.

Desde una perspectiva algorítmica, tareas altamente paralelizables, como las si-
mulaciones de Monte Carlo, obtienen mayores ventajas al ejecutarse en procesadores
heterogéneos, puesto que, la mayoría de las aplicaciones se componen de una combi-
nación de tareas en serie y en paralelo. No obstante, la idoneidad de un procesador
para una tarea específica dependerá de sus características arquitectónicas particulares
(Asanović y cols., 2006; Hill y Marty, 2008).

Con el reciente énfasis en el cómputo de alto desempeño (High Performance Com-
puting), se vuelve fundamental utilizar todos los recursos disponibles de los sistemas
heterogéneos en cada ciclo de reloj. Tanto en el ámbito académico como en la indus-
tria, se reconoce que el rendimiento en serie ha alcanzado su punto máximo, lo que
ha impulsado un enfoque creciente en el desarrollo de nuevos algoritmos capaces de
aprovechar arquitecturas paralelas y heterogéneas. Por lo que, no sólo las CPUs han
evolucionado, sino que también lo han hecho las GPUs.

La GPU originalmente fue diseñada para aplicaciones gráficas, especialmente en
videojuegos, donde se encarga de renderizar imágenes 2D a partir de objetos geomé-

16 Fundamentos

tricos tridimensionales, mediante un conjunto de procesadores que operan en paralelo
para calcular el color de cada pixel (Brodtkorb y cols., 2010). Con el tiempo, las GPU
han evolucionado en arquitecturas más generales, donde el renderizado gráfico es sólo
una de sus múltiples aplicaciones. Actualmente, su rendimiento las convierte en una
opción atractiva para tareas de HPC y el entrenamiento de redes neuronales en IA.
No obstante, una de sus principales limitaciones es que, en la mayoría de los sistemas,
las GPUs están conectadas a través del bus PCI Express, lo que puede convertirse en
un cuello de botella en la transferencia de datos, limitando la velocidad de subida y
descarga entre la CPU y la GPU. A pesar de este inconveniente, las GPUs son capaces
de procesar grandes volúmenes de datos en un tiempo significativamente reducido,
lo que las hace ideales para tareas que requieren el manejo de grandes cantidades de
información.

En esencia, una GPU es un procesador multi-núcleo simétrico al que la CPU
accede y controla exclusivamente (Brodtkorb y cols., 2010), lo que las convierte en
un sistema heterogéneo. La GPU opera de forma asíncrona con respecto a la CPU,
lo que permite la ejecución y la transferencia de memoria simultáneas.

El campo de la computación heterogénea abarca una amplia variedad de arqui-
tecturas y áreas de aplicación, y actualmente no existe una teoría unificada que las
integre por completo. En consecuencia, en este proyecto se emplearán plataformas
heterogéneas compuestas por una CPU y una GPU para realizar pruebas. Si bien
las capacidades específicas de cada componente varían según la plataforma, todas
comparten una estructura general similar a la representada en la Figura 2.1.

Figura 2.1: Estructura general de una plataforma heterogénea compuesta por una
CPU y una GPU. P-Core hace referencia a los núcleos de rendimiento (performance
cores) y E-Core a los núcleos de eficiencia (efficient cores)

.

Capítulo 2 17

2.4 Calendarizadores

El objetivo fundamental de la multi-programación es mantener la CPU ocupada la
mayor parte del tiempo, maximizando así su utilización global y asegurando un mejor
aprovechamiento de los recursos. Por otro lado, el tiempo compartido tiene como
propósito alternar rápidamente entre múltiples procesos dentro de un mismo núcleo
del procesador, generando la percepción de ejecución simultánea e interactiva para
los usuarios. Para lograr estos objetivos, el calendarizador de procesos desempeña
un papel central: selecciona, entre los procesos listos para ejecutarse, aquel que será
ejecutado dentro del núcleo. Es importante destacar que cada núcleo físico sólo puede
ejecutar un proceso a la vez, de modo que la eficiencia del sistema depende en gran
medida de la política de calendarización aplicada.

Históricamente, los calendarizadores surgieron como un mecanismo para gestionar
la competencia entre procesos en sistemas de propósito general. Sin embargo, confor-
me la arquitectura de los sistemas ha evolucionado, desde procesadores mononúcleo
hasta plataformas multinúcleo, distribuidas y heterogéneas, también lo han hecho
las estrategias de calendarización. En la actualidad, el calendarizador no sólo deter-
mina qué proceso ejecuta la CPU, sino que además puede gestionar múltiples tipos
de recursos: núcleos de CPU, GPUs, FPGAs, aceleradores vectoriales y procesadores
especializados, entre otros.

Diversas definiciones encontradas en la literatura describen al calendarizador como
“un módulo que implementa políticas de planificación de procesos y asigna recursos
en función de éstas” (Coulouris, Dollimore, Kindberg, y Blair, 2005), o como “el
módulo responsable de seleccionar, entre los procesos en ejecución, aquél que debería
recibir el próximo intervalo de tiempo de CPU” (Silberschatz, Galvin, y Gagne, 2012).
Estas definiciones se enfocan principalmente en la asignación de tiempo de CPU; sin
embargo, en el contexto de esta tesis es necesario ampliar esta perspectiva hacia
plataformas heterogéneas.

Tal como señalan (Sterling, Anderson, y Brodowicz, 2017) y (Jeannot y Zilinskas,
2014), el calendarizador puede verse como “el componente de un sistema de alto
rendimiento que decide cuáles son los trabajos más importantes que deben ejecutarse
a continuación, y en qué recurso de hardware”, así como “el componente que gestiona
la planificación de tareas y la asignación de recursos en función de los requisitos
de rendimiento y la disponibilidad de los recursos, con el objetivo de maximizar el
rendimiento y la utilización de los recursos”. Estas definiciones contemplan el uso de
otro procesadores, como GPUs, FPGAs y aceleradores especializados, en el proceso de
asignación, reflejando la importancia de distribuir eficientemente la carga de trabajo
para obtener un mejor rendimiento y una menor demanda energética.

En función de sus características operativas, los calendarizadores suelen clasificarse
en dos grandes categorías: calendarizadores estáticos y calendarizadores dinámicos.

18 Fundamentos

2.4.1 Calendarizadores estáticos

Los calendarizadores estáticos asignan las tareas a los recursos antes de que comience
la ejecución del programa (Lavaei, Noghabi, Chen, y Xue, 2018). Este tipo de plani-
ficación determina de manera anticipada dónde y cuándo será ejecutada cada tarea,
basándose generalmente en información previa del sistema, estimaciones de carga o
un modelo conocido de la aplicación.

Entre las ventajas que ofrecen este tipo de calendarizadores se encuentran (Buyya,
Vecchiola, y Selvi, 2013; Dastjerdi, Gupta, Calheiros, Ghosh, y Buyya, 2016):

Son más adecuados para cargas de trabajo de alta demanda y para entornos en
los que la configuración del hardware no cambia con frecuencia.
Permiten un control más preciso sobre la asignación de recursos y los tiempos
de ejecución.
Resultan apropiados para aplicaciones con requisitos de tiempo real y para
cargas con alta demanda de procesamiento.

No obstante, también presentan limitaciones importantes (Sotiriades, Petraki,
Kartsakli, Souravlias, y Bouganis, 2015; Al-Khateeb, Benkhlifa, y Bounceur, 2018):

Su rigidez dificulta la adaptación a escenarios con variabilidad en la carga de
trabajo o cambios en la disponibilidad de recursos, lo que puede llevar a des-
equilibrios en la carga.
Pueden derivar en un uso ineficiente del sistema si la estimación inicial no refleja
adecuadamente el comportamiento real de las tareas.

Los calendarizadores estáticos son especialmente útiles en entornos donde la pre-
dictibilidad es alta, pero su falta de flexibilidad limita su efectividad en plataformas
heterogéneas con cargas dinámicas.

2.4.2 Calendarizadores dinámicos

A diferencia de los estáticos, los calendarizadores dinámicos toman decisiones en tiem-
po de ejecución, lo que les permite adaptarse a las condiciones cambiantes del siste-
ma, variaciones en la carga de trabajo o fluctuaciones en el rendimiento del hardware
(Lavaei y cols., 2018).

Entre sus principales ventajas destacan (Sotiriades y cols., 2015; Al-Khateeb y
cols., 2018):

Se ajustan rápidamente a cambios imprevistos en el sistema, redistribuyendo las
tareas según la disponibilidad real de los recursos, mejorando así el rendimiento.
Son especialmente efectivos en plataformas heterogéneas, donde las capacidades
de los recursos pueden diferir significativamente.
Mejoran la eficiencia energética al asignar tareas al recurso más adecuado en el
momento oportuno.

Capítulo 2 19

Sin embargo, también presentan ciertas limitaciones (Al-Khateeb y cols., 2018;
J. Liu, Li, Li, Qian, y Zhan, 2019):

Requieren un mayor costo computacional, ya que implican la monitorización
constante del sistema y la toma continua de decisiones en tiempo de ejecución.
Pueden generar sobrecarga de comunicación entre recursos o nodos, lo cual
influye en la latencia total y puede originar cuellos de botella.

A pesar de estas desventajas, los calendarizadores dinámicos son la opción prefe-
rida en sistemas modernos de alto rendimiento debido a su flexibilidad y capacidad
de adaptación.

2.4.3 Ejecución secuencial y concurrente

Tanto los calendarizadores estáticos como los dinámicos pueden asignar tareas de dos
maneras principales: de forma secuencial o de manera concurrente. En la ejecución
secuencial, las tareas se procesan una a la vez en un único recurso, lo que resulta
más simple de implementar y permite un mayor control sobre los flujos de ejecu-
ción. No obstante, limita el rendimiento cuando se dispone de múltiples unidades de
procesamiento.

Por el contrario, la ejecución concurrente divide la carga en subtareas que pue-
den ejecutarse simultáneamente en distintos recursos del sistema, como los núcleos de
CPU, GPUs o aceleradores vectoriales. Este enfoque permite obtener mejoras signifi-
cativas en el rendimiento, especialmente en aplicaciones altamente paralelizables. Sin
embargo, introduce una complejidad adicional, ya que requiere un balanceo de carga
adecuado, la coordinación entre recursos y mecanismos para evitar que el paralelismo
genere sobrecargas innecesarias.

En entornos heterogéneos, la elección entre ejecución secuencial o concurrente, así
como el diseño del calendarizador que las gestiona, afecta directamente la eficiencia
global del sistema, el tiempo de ejecución y el consumo energético.

En la Tabla 2.1 se ilustran los tres tipos de calendarizadores que se abordan en
este proyecto para el cálculo de integrales multidimensionales en plataformas hetero-
géneas: el calendarizador estático secuencial, el calendarizador dinámico secuencial y
el calendarizador estático concurrente. Cada uno de ellos representa un enfoque distin-
to respecto a la asignación de tareas y el uso de los recursos de cómputo, permitiendo
evaluar sus ventajas, limitaciones y su impacto en el rendimiento bajo diferentes con-
figuraciones de hardware y estrategias de paralelización. Así como un cuarto tipo de
calendarizador de mayor complejidad que podría ser explorado en una tesis doctoral
futura.

A continuación, se describen las características y el funcionamiento de cada uno.

Calendarizador estático secuencial

El calendarizador estático secuencial asigna todos los puntos de integración si-
guiendo una estrategia de planificación fija, determinada antes del inicio de la ejecu-

20 Fundamentos

Tabla 2.1: Clasificación de calendarizadores que se abordan en este proyecto de
tesis.

Calendarizador
Secuencial Concurrente

Estático ✓ ✓
Dinámico ✓ ×

ción. En este enfoque, cada grupo de puntos se distribuye de forma predeterminada,
sin realizar ajustes durante el tiempo de ejecución.

Este tipo de calendarizador permite analizar el comportamiento base del siste-
ma de calendarización cuando los puntos se procesan uno a la vez, sin paralelismo
ni redistribución dinámica. Su principal ventaja es la simplicidad, pues no requie-
re mecanismos de sincronización ni monitoreo del estado del sistema. No obstante,
su rendimiento se ve limitado por la falta de paralelismo y por su incapacidad para
adaptarse a variaciones en la complejidad computacional de los distintos grupos de
puntos.

Calendarizador dinámico secuencial

En contraste con el enfoque anterior, el calendarizador dinámico secuencial ajusta
en tiempo de ejecución la asignación de puntos. Aunque la ejecución sigue siendo
secuencial, el calendarizador decide dinámicamente el orden en que los puntos deben
evaluarse.

Este enfoque resulta útil cuando los subintervalos presentan comportamientos nu-
méricos heterogéneos, permitiendo equilibrar la carga de forma adaptativa incluso en
un entorno sin paralelismo. Su desventaja principal radica en la sobrecarga introdu-
cida por la toma de decisiones en tiempo de ejecución, la cual puede ser significativa
cuando el número de puntos es grande y el beneficio adaptativo es limitado.

Calendarizador estático concurrente

El calendarizador estático concurrente extiende el modelo estático hacia un en-
torno paralelo y heterogéneo. En este caso, los puntos se distribuyen entre múltiples
módulos de ejecución (secuencial, CUDA, OpenMP, AVX), siguiendo una asignación
determinada antes de iniciar la ejecución. Cada módulo recibe un conjunto previa-
mente definido de puntos y los procesa de manera paralela, sin interacción ni recon-
figuración durante la evaluación.

Este enfoque permite aprovechar de forma eficiente plataformas que cuentan con
múltiples recursos, reduciendo significativamente el tiempo de ejecución. Sin embargo,
su desempeño depende fuertemente de que la carga esté equilibrada desde un principio.
Cuando la estimación de la carga asociada a cada módulo no es precisa o cuando
los recursos presentan variaciones de rendimiento, este esquema puede derivar en

Capítulo 2 21

desbalances que reducen la ganancia paralela.

Calendarizador dinámico concurrente

Como parte del trabajo a futuro, se plantea el desarrollo de un calendarizador di-
námico concurrente, el cual combinaría la capacidad adaptativa del enfoque dinámico
con el aprovechamiento simultáneo de múltiples recursos. Este tipo de calendarizador
ajustaría la asignación de puntos en tiempo de ejecución, redistribuyendo los puntos
de integración entre los módulos disponibles conforme cambia la carga, el estado del
sistema o el rendimiento de los módulos de ejecución.

Un calendarizador dinámico concurrente permitiría gestionar aplicaciones en es-
cenarios heterogéneos más complejos, donde las características del hardware pueden
variar con el tiempo o donde la distribución estática resulta insuficiente para garan-
tizar un balance óptimo de carga. Además, facilitaría la explotación de paralelismo a
nivel de tareas con un control fino del rendimiento, pudiendo integrar métricas adicio-
nales como consumo energético, latencias de comunicación o prioridades específicas
de los módulos de integración.

El desarrollo de este calendarizador se plantea como parte de una tesis doctoral
futura, debido a la complejidad de los mecanismos necesarios para la toma de de-
cisiones, la coordinación entre recursos y la integración de políticas de reasignación
adaptativa en tiempo de ejecución.

2.5 Trabajos relacionados

En esta sección se presentan diversos trabajos relacionados con el tópico de esta tesis.
Se incluyen tanto frameworks diseñados para facilitar el desarrollo de calendarizadores
de tareas en entornos heterogéneos, como propuestas concretas de calendarizadores
que emplean heurísticas o técnicas de inteligencia artificial con el objetivo de mejorar
la asignación y ejecución de tareas.

2.5.1 Planificador inteligente para integración numérica mul-
tidimensional en ambientes heterogéneos

En (Morales y Puga, 2022) se presenta el diseño, implementación y evaluación
de un calendarizador basado en aprendizaje automático, cuyo objetivo es mejorar el
rendimiento en la evaluación de integrales multidimensionales.

Para ello, el calendarizador debe ser capaz de asignar dinámicamente las tareas
a distintas arquitecturas de procesamiento heterogéneo, mediante la búsqueda tabú.
Este mecanismo permite seleccionar, en tiempo de ejecución, el módulo más eficiente
para cada punto de integración.

Los resultados muestran que el calendarizador mejora significativamente el tiempo
de ejecución, reduce los desequilibrios de carga y aprovecha de manera más eficiente
los recursos computacionales heterogéneos. Además, se observa que la búsqueda tabú

22 Fundamentos

proporciona una selección precisa y de bajo costo computacional para cada punto de
integración. Sin embargo, dichos resultados fueron simulados, por lo que no se puede
asegurar que el calendarizador funcione de la misma manera en un entorno real.

2.5.2 FlexTensor: un framework de exploración y optimiza-
ción de calendarización automática para el cálculo de
tensores

El artículo (Zheng, Liang, Wang, Chen, y Sheng, 2020) presenta FlexTensor, un fra-
mework para la exploración y optimización de calendarizadores orientados al cálculo
de tensores en sistemas heterogéneos. FlexTensor combina heurísticas con técnicas de
aprendizaje automático para generar calendarizadores de alto rendimiento capaces de
adaptarse a distintos tipos de hardware, incluyendo CPU, GPU y FPGA.

En los experimentos se probaron 12 tipos diferentes de cálculos tensonriales, Flex-
Tensor demostró mejoras significativas de rendimiento en todos. En particular, obtuvo
una aceleración promedio de 1.83× usando la GPU NVIDIA V100 contra cuDNN,
una aceleración de 1.72× usando procesadores Intel Xeon contra MKL-DNN para el
caso de convoluciones 2D y una aceleración de 1.5× usando la FPGA Xilinx VU9P
respecto a las líneas base de OpenCL.

2.5.3 StarPU: una plataforma unificada para la calendariza-
ción de tareas

STARPU (Augonnet y cols., 2009) es una biblioteca de calendarización de tareas,
diseñada para arquitecturas multi-núcleo heterogéneas. Su objetivo principal es pro-
porcionar un modelo de ejecución uniforme que abstrae la complejidad del hardware
y permite al programador concentrarse en la definición de tareas. Para ello, ofrece
un framework de alto nivel que facilita el diseño de políticas de calendarización, así
como una biblioteca que automatiza las transferencias de datos.

Además, ofrece una abstracción de tareas descargable y unificada llamada codelet.
El codelet es capaz de gestionar múltiples implementaciones especializadas de una
misma tarea para distintos componentes de una arquitectura heterogénea (e.g., una
versión optimizada para GPU y otra para CPU), además de implementaciones pa-
ralelas (e.g., OpenMP). STARPU se encarga de determinar, calendarizar y ejecutar
las implementaciones más adecuadas en cada componente disponible, explotando al
máximo la heterogeneidad del sistema (por ejemplo, combinando CUDA y OpenCL).
Asimismo, cuando las implementaciones lo permiten, STARPU puede ejecutar fun-
ciones en paralelo sobre varios componentes de manera simultánea, con el fin de
maximizar el rendimiento global.

Capítulo 2 23

2.5.4 Algoritmo de calendarización de tareas basado en apren-
dizaje por refuerzo

El artículo (Song, Li, Tian, y Song, 2023) propone un algoritmo de calendarización de
tareas en grafos acíclicos dirigidos (DAG) para entornos heterogéneos, combinando
aprendizaje profundo con técnicas heurísticas. El enfoque consta de tres componentes
principales: una red convolucional de grafos, una red de políticas que proponen los
autores y un algoritmo heurístico de calendarización. El proceso inicia enviando las
características de las tareas a la red convolucional de grafos, la cual aprende las
propiedades estructurales del DAG y genera representaciones de alto nivel para cada
tarea. Estas representaciones se entregan a la red de políticas, encargada de seleccionar
la siguiente tarea a ejecutar. Posteriormente, la tarea elegida se asigna al procesador
más adecuado, de acuerdo con el algoritmo heurístico propuesto. Este ciclo se repite
hasta que todas las tareas han sido asignadas.

El algoritmo aprende y ajusta continuamente sus estrategias a medida que interac-
túa con el entorno, lo que permite mejorar su capacidad de decisión. La incorporación
del componente heurístico contribuye a agilizar el proceso de selección de procesadores
y a incrementar el rendimiento global de la calendarización.

2.5.5 Regla de Johnson para la calendarización de n tareas en
dos máquinas

Una de las variantes clásicas del problema de calendarización de tareas es la asig-
nación de dos máquinas para procesar un conjunto de n tareas, donde todas deben
seguir el mismo orden de procesamiento. Para este escenario, una de las estrategias
más utilizadas es la regla de Johnson (Garey y Johnson, 1976), cuyo objetivo es mini-
mizar el tiempo de ejecución (makespan) requerido para completar todas las tareas.

La regla de Johnson establece una forma sistemática de ordenar las tareas para
obtener la secuencia óptima. El procedimiento se basa en los siguientes pasos:

1. Registrar los tiempos de ejecución de cada tarea en ambas máquinas.

2. Seleccionar la tarea con el menor tiempo.

3. Determinar la posición del tarea asociada a ese menor tiempo:

Si el menor tiempo corresponde a la primera máquina, la tarea se coloca
al inicio de la secuencia.
Si el menor tiempo corresponde a la segunda máquina, la tarea se coloca
al final de la secuencia.
En caso de empate, la tarea se ejecuta en la primera máquina.

4. Repetir el proceso hasta ordenar todas las tareas.

Este método garantiza una secuencia óptima para el caso de dos máquinas, redu-
ciendo eficazmente el makespan y mejorando el aprovechamiento del sistema.

24 Fundamentos

2.5.6 Algoritmo híbrido heurístico-genético con parámetros
adaptativos para la calendarización estática de tareas

El artículo (Ding, Wu, Xie, y Zeng, 2017) propone un algoritmo híbrido heurísti-
co–genético con parámetros adaptativos (HGAAP), el cual combina un método de
calendarización heurística con un algoritmo genético. Para acelerar la convergencia
del proceso evolutivo, la generación inicial se construye utilizando un algoritmo heu-
rístico de calendarización común. Además, las probabilidades de cruce y mutación se
ajustan dinámicamente durante la ejecución, con el fin de favorecer la evolución y
encontrar una mejor solución. El algoritmo propuesto también incorpora un meca-
nismo para eliminar individuos redundantes en cada generación, preservando así la
diversidad de la población y evitando la convergencia prematura.

Los resultados experimentales, obtenidos a partir de un gran conjunto de DAGs
generados aleatoriamente, demuestran que HGAAP produce soluciones de calen-
darización superiores a las obtenidas por algoritmos de referencia, incluido HEFT
(Topcuoglu, Hariri, y W., 2002), considerado uno de los métodos heurísticos más
efectivos para este tipo de problemas.

2.5.7 Calendarización de tareas

El artículo (AlEbrahim y Ahmad, 2017) propone un algoritmo de calendarización
que asigna las tareas, representadas en el DAG, al procesador para minimizar el
tiempo total de ejecución, considerando la restricción de cruce entre procesadores. El
algoritmo inicia con una fase de priorización, en la cual las tareas se ordenan según
un valor de prioridad que determina su relevancia dentro del grafo y su posición en la
cola de ejecución. Posteriormente, en la fase de selección de procesador, se determina
cuál procesador ejecutará cada tarea de la forma más eficiente.

Para realizar esta asignación, las tareas se ponderan mediante un peso calculado a
partir del tiempo de ejecución estimado para cada procesador, los costos de comunica-
ción entre tareas dependientes y el valor de priorización heredado de la tarea anterior.
En la fase de selección, el algoritmo introduce una decisión aleatoria basada en un
umbral asociado al cruce entre procesadores, el cual se calcula considerando los costos
de comunicación entre tareas. Este mecanismo permite evitar asignaciones subópti-
mas debidas a decisiones deterministas demasiado rígidas y mejora el equilibrio en la
distribución de tareas.

El algoritmo fue evaluado utilizando un conjunto de 750 DAGs generados alea-
toriamente. Los resultados mostraron mejoras en el makespan de entre un 6 % y un
7 % en comparación con los algoritmos HEFT y PEFT (Arabnejad y Barbosa, 2014),
considerados referentes en la calendarización sobre procesadores heterogéneos. Cabe
destacar que el algoritmo propuesto mantiene la misma complejidad computacional
que estos métodos, pero logra un rendimiento significativamente superior al reducir
el tiempo total de ejecución.

Capítulo 2 25

2.5.8 Método para construir algoritmos de calendarización de
tareas

El artículo (S. I. Kim y Kim, 2019) demuestra que un calendarizador de tareas in-
teligente es un componente clave para mejorar tanto el rendimiento como la eficien-
cia energética en entornos con procesadores multi-núcleo heterogéneos. Se realizó un
análisis detallado de los algoritmos de calendarización existentes y del entorno de
ejecución, con el propósito de identificar los elementos fundamentales necesarios para
diseñar el mejor método de calendarización para un sistema de ejemplo.

A partir de este análisis, se identificaron seis componentes esenciales: la clasifica-
ción de tareas, la asignación de procesadores, el ordenamiento de colas, la migración
de tareas, el escalamiento dinámico de voltaje y frecuencia (DVFS), y la estrategia
de robo de tareas (work stealing). Con base en estos componentes, se evaluaron múl-
tiples combinaciones posibles para determinar cuál configuración ofrecía los mejores
resultados.

Los experimentos demostraron que la combinación óptima de componentes puede
mejorar significativamente el rendimiento global del sistema, tanto en términos de
tiempo de ejecución como de consumo energético. Estos resultados destacan la im-
portancia de diseñar calendarizadores adaptativos y conscientes de la arquitectura,
especialmente en sistemas heterogéneos donde las diferencias entre núcleos pueden
influir de manera notable en el desempeño final.

2.5.9 Resumen de los trabajos relacionados

La tabla 2.2 compara los trabajos ya mencionados, destacando las características por
las que son relevantes en esta tesis:

Aprendizaje automático: se refiere al uso de modelos o técnicas que permiten
que el sistema aprenda patrones a partir de datos para tomar decisiones o me-
jorar su desempeño. Para este contexto, puede incluir modelos predictivos para
estimar el tiempo de ejecución, seleccionar estrategias de integración o ajustar
dinámicamente los parámetros de ejecución.
Integrales multidimensionales: indica si los trabajos relacionados consideran la
integración multidimensional como un problema específico dentro del proceso
de calendarización.
Codelet: se refiere a la implementación de la unidad modular encargada de
agrupar y referenciar múltiples funciones codificadas, permitiendo su gestión,
selección y ejecución de forma independiente dentro de arquitecturas heterogé-
neas.
Ejecución secuencial: corresponde a la capacidad de ejecutar un algoritmo de
manera lineal, en un único hilo o núcleo, sin recurrir a paralelismo. Esta mo-
dalidad es relevante porque proporciona una línea base para comparar optimi-
zaciones y resulta útil en dispositivos con recursos limitados o en etapas del
algoritmo que no pueden paralelizarse.

26 Fundamentos

Ejecución paralela: describe la posibilidad de distribuir el cálculo entre múltiples
unidades de procesamiento para acelerar las tareas.

• CPU: paralelismo basado en múltiples hilos.
• GPU: miles de núcleos capaces de realizar operaciones masivas en paralelo.
• AVX: instrucciones vectoriales que permiten procesar varios datos simul-

táneamente en una sola operación.

Este enfoque resulta especialmente útil para acelerar el cálculo de integrales
complejas y otras tareas numéricas de alta demanda computacional.
Reducción de tiempo: alude a la capacidad del método, algoritmo o calendari-
zador para disminuir el tiempo total de ejecución en comparación con enfoques
previos o versiones no optimizadas. En los trabajos relacionados, este punto
destaca las estrategias que lograron mejoras significativas mediante paralelis-
mo, optimizaciones algorítmicas o una asignación eficiente de tareas.

2.6 Estrategias de Inteligencia Artificial para calen-
darizadores

Como se observo anteriormente, los calendarizadores son herramientas clave para
optimizar la asignación de recursos, la programación de tareas y la gestión del tiempo.
Bajo este contexto, las estrategias de IA ofrecen soluciones avanzadas que superan
las limitaciones de los métodos tradicionales, permitiendo sistemas más adaptativos,
dinámicos y capaces de aprender de la experiencia.

En esta tesis, se describirán dos técnicas de IA que serán empleas en los calenda-
rizadores desarrollados durante este proyecto: árbol de decisiones y búsqueda tabú.

2.6.1 Árbol de decisiones

Los árboles de decisión (Kotsiantis, 2013) son modelos de clasificación que operan
mediante una secuencia estructurada de pruebas simples. Cada prueba consiste en
comparar un atributo numérico con un valor umbral o verificar si un atributo cate-
górico pertenece a un conjunto específico de valores. Este enfoque genera un proceso
de decisión lógico y transparente.

A diferencia de los modelos de tipo caja negra como las redes neuronales, los ár-
boles de decisión ofrecen una mayor comprensión. Mientras que en una red neuronal
las relaciones entre nodos se representan mediante pesos numéricos difíciles de inter-
pretar, en un árbol de decisión las reglas que guían cada clasificación son explícitas y
fácilmente comprensibles. Esto facilita su análisis y validación en los sistemas, donde
son implementados.

Un ejemplo claro y simple se puede observar en la Figura 2.2, donde cada ruta es
una regla lógica:

Capítulo 2 27

Tabla 2.2: Comparación de los trabajos relacionados.

Estado del arte Aprendizaje
automático

Integrales mul-
tidimensionales Codelet Ejecución

secuencial
Ejecución paralela Reducción

de tiempoCPU GPU AVX
Planificador in-
teligente para
integración numéri-
ca multidimensional
en ambientes hete-
rogéneos (Morales y
Puga, 2022)

✓ ✓ ✓ ✓ ✓ ✓

FlexTensor (Zheng y
cols., 2020)

✓ ✓ ✓ ✓ ✓

StarPU (Augonnet y
cols., 2009)

✓ ✓ ✓ ✓ ✓

Algoritmo de calen-
darización de tareas
basado en apren-
dizaje por refuerzo
(Song y cols., 2023)

✓ ✓ ✓ ✓

Regla de Johnson
para la calendari-
zación de n ta-
reas en dos máqui-
nas (Garey y John-
son, 1976)

✓ ✓ ✓

Algoritmo híbrido
heurístico-genético
con parámetros
adaptativos para
la calendarización
estática de tareas
(Ding y cols., 2017)

✓ ✓ ✓

Calendarización de
tareas (AlEbrahim y
Ahmad, 2017)

✓ ✓ ✓

Método para cons-
truir algoritmos de
calendarización de
tareas (S. I. Kim y
Kim, 2019)

✓ ✓

Propuesta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Si A es verdadero y B es verdadero → Decisión 1
Si A es verdadero y B es falso → Decisión 2
Si A es falso → Decisión 3

Enfoques estadísticos, como las pruebas de hipótesis y diversas técnicas de re-
muestreo, han evolucionado en paralelo con métodos de aprendizaje automático, lo
que ha dado lugar a herramientas basadas en árboles de decisión altamente flexibles
y aplicables a una amplia gama de tareas estadísticas y de aprendizaje automático.
Estos métodos destacan por su capacidad para trabajar con distintos niveles de me-
dición y con diferentes calidades de datos, mostrando una notable robustez ante la

28 Fundamentos

Figura 2.2: Ejemplo de un árbol de decisiones
.

presencia de valores faltantes. De hecho, muchas de sus variantes incorporan meca-
nismos explícitos para manejar datos incompletos en las etapas de entrenamiento y
predicción (Shiue y Su, 2003).

Asimismo, múltiples estudios han demostrado que el empleo de árboles de decisión
en sistemas de calendarización dinámica puede mejorar de manera significativa el
rendimiento general, optimizando la asignación de tareas y reduciendo los tiempos de
ejecución en arquitecturas heterogéneas (Shaw, Park, y Raman, 1992; Park, Raman,
y Shaw, 1997; Arzi y Iaroslavitz, 2000; C. O. Kim, Min, y Yih, 2010).

Las principales ventajas de emplear árboles de decisión en calendarizadores diná-
micos incluyen:

1. El conocimiento aprendido a partir de ejemplos de entrenamiento no sólo per-
mite clasificar con precisión los casos previamente observados, sino que también
ofrece una elevada capacidad de generalización hacia instancias no vistas, man-
teniendo un desempeño consistente.

2. La función inferida puede representarse mediante un único árbol de decisión o
mediante un conjunto de árboles con sus respectivas reglas. Esta representación
explícita facilita su integración en los mecanismos de control del calendarizador
y mejora la legibilidad del modelo.

3. Los métodos de aprendizaje basados en árboles de decisión presentan una ro-
bustez notable frente a errores de clasificación en los datos de entrenamiento,
así como ante posibles imprecisiones en los valores de los atributos. Esto los
convierte en una opción adecuada en entornos donde la calidad de los datos
puede variar.

4. Estos métodos mantienen un rendimiento adecuado incluso cuando algunos atri-
butos contienen valores faltantes o desconocidos, gracias a que incorporan es-

Capítulo 2 29

trategias específicas para manejar de manera estable la incompletitud de la
información.

2.6.2 Búsqueda tabú

En 1986, Fred Glover introdujo un enfoque innovador para la optimización combina-
toria denominado búsqueda tabú (Gendreau y Potvin, 2005). Esta técnica se basa en
ampliar la exploración más allá de los óptimos locales, permitiendo realizar movimien-
tos que no necesariamente mejoran la solución actual. Para evitar retroceder hacia
combinaciones ya visitadas, la búsqueda emplea estructuras de memoria, conocidas
como listas tabú, que registran los movimientos o soluciones recientes y restringen su
reutilización durante un número determinado de iteraciones.

La búsqueda tabú puede entenderse como una evolución de los métodos clásicos de
búsqueda local, comúnmente utilizados para encontrar soluciones óptimas en proble-
mas complejos de combinatoria. Al igual que estos métodos, la búsqueda tabú recorre
el espacio de soluciones avanzando en cada iteración hacia una solución vecina, defini-
da por el operador de vecindad, el cual es un conjunto de transformaciones permitidas
sobre la solución actual. La selección de la siguiente solución puede realizarse bajo
el criterio de mejor mejora (elegir la mejor entre todas las soluciones vecinas) o de
primera mejora (tomar la primera solución vecina que mejora la función objetivo).

Los métodos tradicionales dependen de una mejora continua de la función obje-
tivo para guiar la búsqueda, lo que provoca que con frecuencia queden atrapados en
óptimos locales. La principal aportación de la búsqueda tabú es su capacidad para
escapar de estos óptimos: cuando el algoritmo detecta que ha alcanzado uno, se per-
mite avanzar hacia la mejor solución no tabú en la vecindad, incluso si dicha solución
es peor que la actual. Para evitar ciclos, se mantiene una memoria a corto plazo
que marca ciertos movimientos o soluciones como tabú (prohibidos), a menos que se
cumplan condiciones especiales conocidas como criterios de aspiración, que permiten
ignorar la restricción si el movimiento lleva a una solución excepcionalmente buena.

Dado que este proceso puede continuar indefinidamente, las implementaciones
prácticas requieren criterios explícitos de terminación. Entre los más comunes se en-
cuentran: limitar el tiempo de ejecución total, fijar un número máximo de iteraciones
o detener la búsqueda después de un número determinado de iteraciones sin obtener
mejoras en el mejor valor objetivo registrado.

Un ejemplo claro y simple se puede observar en la Figura 2.3, en esta se muestra
un conjunto de soluciones posibles (los nodos S1-–S5) conectadas mediante aristas que
representan los movimientos permitidos entre soluciones, cada uno con un “costo”, que
puede interpretarse como: el costo de pasar de una solución a otra, la calidad relativa
de la solución vecina o la penalización asociada al movimiento.

La búsqueda tabú comenzaría en un nodo (por ejemplo S1), luego exploraría sus
vecinos (S2 y S3), elegiría uno aun si no mejora la solución, y prohibiría volver a un
nodo recientemente visitado mediante la lista tabú.

La idea fundamental de utilizar información previa para guiar la búsqueda en

30 Fundamentos

Figura 2.3: Ejemplo de la búsqueda tabú
.

procesos de optimización se relaciona con los métodos desarrollados en la década
de 1970 dentro del campo de la Inteligencia Artificial (Nilsson, 1933). Es importante
mencionar que Hansen propuso, en 1986, un enfoque conceptual cercano a la búsqueda
tabú, conocido como “ascenso más pronunciado/descenso más suave” (Hansen, 1986),
el cual también empleaba estrategias para escapar de óptimos locales.

Glover, por su parte, no concebía la búsqueda tabú como una heurística aislada,
sino como una metaheurística: un marco general diseñado para supervisar y dirigir
heurísticas internas, ajustándose de manera flexible a las características particulares
del problema a resolver.

En este proyecto, se propone emplear la búsqueda tabú como un componente
clave dentro del calendarizador con el objetivo de seleccionar el módulo de ejecución
más adecuado para cada punto de la integración multidimensional. Esta elección se
realizará de acuerdo a la cantidad de dimensiones y el número de puntos a evaluar.

Capítulo 3

Implementación

Este capítulo presenta las principales extensiones desarrolladas sobre la biblioteca de
integrales multidimensionales, enfocadas en mejorar el rendimiento mediante el uso
de arquitecturas heterogéneas y técnicas de optimización.

En la primera sección, se describe la biblioteca de integrales multidimensionales,
los módulos de ejecución que la componen y cómo se planea expandirla. En la segun-
da sección, se presenta la arquitectura del sistema de calendarización propuesto, se
describe de manera general cada elemento involucrado y como interactúan entre sí.

La tercera sección detalla la implementación de un nuevo módulo de ejecución
para la biblioteca, el cual aprovecha las instrucciones vectoriales AVX. Este módulo
permite procesar múltiples puntos de integración de manera simultánea dentro de cada
hilo de la CPU, incrementando la eficiencia computacional en plataformas modernas
con soporte SIMD.

En la cuarta sección, se introduce la unidad para administrar los módulos de
ejecución denominada codelet. Funciona como un arreglo de apuntadores a funciones
que encapsula los módulos (secuencial, CUDA, OpenMP y AVX), permitiendo su
invocación estática o dinámica, independiente de la estrategia de calendarización y
los detalles específicos de implementación de cada módulo.

Finalmente, se implementan tres estrategias de calendarización: estática secuen-
cial, dinámica secuencial y estática concurrente; las cuales permiten seleccionar el
módulo de ejecución más adecuado para evaluar cada punto de la integral multidi-
mensional, con el objetivo de minimizar el tiempo total de ejecución.

Estas contribuciones permite transformar la biblioteca base en un sistema flexible,
escalable y optimizado para su ejecución en plataformas heterogéneas.

3.1 Introducción a la implementación propuesta

Este trabajo de tesis toma como punto de partida la biblioteca de integrales multi-
dimensionales (Quintero-Monsebaiz y cols., 2021), la cuál está basada en reglas de
cuadratura de Gauss-Kronrod, junto con extrapolaciones de Romberg. Lo que permite

31

32 Implementación

obtener resultados de alta precisión de manera eficiente, al aprovechar los componen-
tes de la plataforma donde se ejecute.

La biblioteca está compuesta por tres módulos de ejecución principales:

Módulo de ejecución secuencial (SEC): ejecuta la integración punto por punto de
forma secuencial, utilizando únicamente un hilo de la CPU. Sirve de referencia
para comparaciones de rendimiento con los otros módulos.
Módulo de ejecución paralela con OpenMP (OMP): permite dividir el trabajo
entre múltiples hilos de la CPU, reduciendo el tiempo de ejecución en procesa-
dores multinúcleo.
Módulo de ejecución paralela con GPU (CUDA): aprovecha la capacidad de pro-
cesamiento masivamente paralelo de las tarjetas gráficas para calcular múltiples
puntos simultáneamente.

Cada módulo está diseñado para recibir como entrada el número de puntos y el
número de dimensiones de la integral (3 ⩽ dimensiones ⩽ 6). Como salida, devuelve
el valor estimado de la integral junto con el tiempo de ejecución. Además, el diseño
modular de la biblioteca facilita su extensión, permitiendo agregar nuevos módulos
con diferentes tecnologías de paralelización.

El objetivo de este capítulo es expandir la funcionalidad de dicha biblioteca, me-
diante la incorporación de tres elementos clave:

1. Módulo de ejecución con instrucciones vectorizadas AVX.

2. Codelet.

3. Calendarizadores.

La integración de estos nuevos elementos permite transformar la biblioteca original
en una herramienta más versátil, escalable y adaptada a las plataformas heterogéneas.
Donde la correcta asignación de tareas entre CPU y GPU puede tener un impacto
significativo en el rendimiento final del sistema.

3.2 Arquitectura del sistema de calendarización
Dado que la biblioteca de integrales multidimensionales emplea la cuadratura de
Gauss-Kronrod, la integral se evalúa a partir de un conjunto de puntos independien-
tes. Cada punto corresponde a una evaluación de la función integrando f(x), lo que
permite enviarlos de manera individual a los distintos módulos de ejecución disponi-
bles, como se observa en la Figura 3.1.

Sin embargo, no todos los puntos presentan el mismo costo computacional, ya que
la complejidad de la evaluación depende del comportamiento local del integrando. Asi-
mismo, cada módulo de ejecución (SEC, AVX, OMP, CUDA) exhibe un rendimiento
diferente dependiendo del tipo de carga que recibe.

Capítulo 3 33

Figura 3.1: Integración por puntos en los módulos de ejecución.

Por esta razón, se implementó el uso de una estrategia de caracterización que
permite seleccionar el módulo de ejecución más adecuado para cada punto. El objetivo
es asignar cada punto al módulo que maximice su rendimiento, optimizando así el uso
de recursos heterogéneos y mejorando la eficiencia global del proceso de integración
multidimensional.

Para ello, se diseño el sistema de calendarización con una arquitectura modu-
lar que permite coordinar la ejecución de los módulos de la biblioteca de integrales
multidimensionales, en función de su rendimiento, usando diferentes estrategias de ca-
lendarización. Esta integración se basa en la interacción entre tres bloques principales:
el calendarizador, el codelet y la biblioteca.

El sistema recibe como parámetros de entrada:

El nombre de la plataforma en la que se ejecutará el cálculo.
La función a integrar f(x), junto con sus argumentos (especificados en la sección
3.4.1).
El número de dimensiones.
El número de puntos de integración.

A partir estos parámetros, el calendarizador accede a las tablas de tiempos de eje-
cución correspondientes a la plataforma seleccionada. Dichas tablas contienen, para
cada número de puntos, los tiempos estimados de ejecución de los módulos secuen-
cial, CUDA, OpenMP y AVX (véase Sección 4.3.1). Posteriormente, el calendarizador
identifica la tabla asociada a la dimensión de la integral y determina el módulo de eje-
cución más eficiente para cada punto. Finalmente, genera un identificador del módulo
seleccionado y lo envía al codelet para su ejecución.

El codelet recibe el identificador generado por el calendarizador, junto con los
datos de entrada del sistema de calendarización: número de puntos, dimensiones y
función a integrar. Después, invoca directamente el módulo de ejecución solicitado, el
cual se encarga de calcular la integral sobre la subregión asignada. Este ciclo se repite

34 Implementación

para cada punto de integración. El resultado parcial producido por cada módulo es
acumulado de manera controlada hasta obtener el resultado final de la integral.

El sistema entrega como salida el resultado de la integral y el tiempo de ejecución.
En la Figura 3.2, el resultado se simboliza con la imagen de un gato realista, utilizada
únicamente como ejemplo de una salida precisa, al ser el resultado de una integral
multidimensional.

Figura 3.2: Arquitectura del sistema de calendarización.

En síntesis, el flujo de operación del sistema puede describirse de la siguiente
manera:

1. Se proporcionan los parámetros de entrada: puntos, dimensiones, función y pla-
taforma.

2. El calendarizador accede a las tablas de tiempo y selecciona el módulo de eje-
cución más eficiente para cada punto.

3. Los identificadores de los módulos y los argumentos de entrada (número de
puntos, dimensiones y función a integrar) se envía al codelet.

4. Para cada punto, el codelet invoca el módulo de ejecución correspondiente dentro
de la biblioteca y le pasa los argumentos necesarios.

5. Los módulos ejecutan el cálculo y retornan el resultado de la integral.

Esta estructura flexible permite que diferentes subregiones del dominio puedan ser
evaluadas por distintos módulos, maximizando así el rendimiento general. El calenda-
rizador, al ser un componente modular puede ser cambiado con facilidad, seleccionado
el calendarizador (estático secuencial, dinámico secuencial, estático concurrente) que
mas se adapte al entorno del problema.

Capítulo 3 35

3.2.1 Detalles de la implementación del sistema de calendari-
zación

El sistema de calendarización fue implementado en el lenguaje de programación C,
debido a su eficiencia en el manejo de memoria, control de bajo nivel y compatibilidad
con bibliotecas de paralelismo y vectorización.

Para habilitar la ejecución paralela y vectorizada en los módulos y calendarizado-
res, se emplearon las siguientes bibliotecas estándar:

omp.h: utilizada para la creación y gestión de regiones paralelas mediante la
interfaz de programación OpenMP. Esta biblioteca permite distribuir las ta-
reas de integración entre múltiples hilos de ejecución en CPU, optimizando el
rendimiento en sistemas multinúcleo.
immintrin.h: empleada para el uso de instrucciones vectoriales AVX. Permi-
te realizar operaciones aritméticas sobre varios datos de manera simultánea,
reduciendo el tiempo de ejecución.

De esta forma, el sistema logra aprovechar las capacidades de procesamiento pa-
ralelo y vectorizado disponibles en las plataformas heterogéneas, garantizando una
ejecución eficiente y portable.

3.3 Módulo de ejecución AVX
El módulo de ejecución AVX calcula la integración multidimensional mediante la vec-
torización con instrucciones AVX. Este módulo fue desarrollado como un complemen-
to para la biblioteca de integrales multidimensionales (Figura 3.3). La incorporación
del módulo AVX responde a la necesidad de explotar el paralelismo a nivel de datos
(SIMD), disponible en las arquitecturas modernas de las CPUs. Se busca una mejo-
ra significativa en el rendimiento sin recurrir a múltiples hilos, ni a componentes de
ejecución diferentes a la CPU. Esta integración fortalece el conjunto de herramientas
disponibles en la biblioteca, al ofrecer una opción adicional que aprovecha capacidades
específicas del hardware.

Para desarrollar este módulo, se tomó como base el módulo de ejecución secuen-
cial de la biblioteca de integrales multidimensionales y se modificó para optimizarlo
mediante las instrucciones AVX. Esto permite procesar múltiples evaluaciones de la
función en paralelo a nivel de registro.

El diseño del módulo considera las siguientes características:

Flexibilidad para evaluar distintas funciones.
Capacidad de integrarse con diversos calendarizadores sin alterar su funciona-
miento interno.
Aceleración mediante instrucciones SIMD para reducir el tiempo de ejecución
sin comprometer la precisión numérica.

36 Implementación

Figura 3.3: Incorporación del módulo de ejecución AVX a la biblioteca de integrales
multidimensionales.

Este módulo representa un ejemplo claro de cómo las técnicas de optimización a
nivel de hardware pueden ser aplicadas a algoritmos numéricos clásicos para mejorar
su desempeño en escenarios de alto costo computacional.

3.3.1 Arquitectura del módulo de ejecución AVX

Para comprender la arquitectura del módulo de ejecución AVX, primero es necesario
explicar el funcionamiento del módulo secuencial, el cual es la base. Este módulo se
diseñó como una estructura genérica capaz de evaluar integrales multidimensionales
mediante el método de cuadratura de Gauss–Kronrod. Su funcionamiento consiste en
recorrer todos los puntos de integración en cada dimensión, multiplicando el valor de
la función evaluada en dichos puntos por los pesos correspondientes de la cuadratura.

El módulo está conformado por cuatro funciones: SEC3D, SEC4D, SEC5D y SEC6D,
cada una corresponde a una dimensión fija DIM (donde 3 ≤ DIM ≤ 6). Estas funcio-
nes están implementadas mediante bucles for anidados, donde cada bucle representa
una dimensión de la integral. Para realizar la integración, se recorren los índices de
todos los bucles (Tabla 3.1); al llegar al bucle más interno, se evalúa la función para
cada punto y se acumula el resultado, multiplicado por los pesos correspondientes1.

La estructura general de cada función es la siguiente: SEC3D corresponde a tres
dimensiones y, por lo tanto, está compuesta por tres bucles anidados (Figura 3.4a);
SEC4D corresponde a cuatro dimensiones y contiene cuatro bucles (Figura 3.4b); SEC5D
corresponde a cinco dimensiones y contiene cinco bucles (Figura 3.4c); y SEC6D co-

1Los pesos de cuadratura unidimensional se utilizan para aproximar el valor de la integral; su
producto entre dimensiones pondera cada término de la suma y permite convertir la suma discreta
en una aproximación de la integral continua.

Capítulo 3 37

rresponde a seis dimensiones, por lo que incluye seis bucles (Figura 3.4d).

Tabla 3.1: Relación de dimensiones (bucles) e índices.
Dimensiones Índices

1 i
2 j
3 k
4 l
5 m
6 o

1 for i do
// Primera dimensión

2 for j do
// Segunda dimensión

3 for k do
// Tercera dimensión

4 Evaluación de la integral
5 end
6 end
7 end

(a) SEC3D

1 for i do
// Primera dimensión

2 for j do
// Segunda dimensión

3 for k do
// Tercera dimensión

4 for l do
// Cuarta dimensión

5 Evaluación de la integral
6 end
7 end
8 end
9 end

(b) SEC4D

1 for i do
// Primera dimensión

2 for j do
// Segunda dimensión

3 for k do
// Tercera dimensión

4 for l do
// Cuarta dimensión

5 for m do
// Quinta dimensión

6 Evaluación de la integral
7 end
8 end
9 end

10 end
11 end

(c) SEC5D

1 for i do
// Primera dimensión

2 for j do
// Segunda dimensión

3 for k do
// Tercera dimensión

4 for l do
// Cuarta dimensión

5 for m do
// Quinta dimensión

6 for o do
// Sexta dimensión

7 Evaluación de la integral
8 end
9 end

10 end
11 end
12 end
13 end

(d) SEC6D

Figura 3.4: Funciones del módulo de ejecución secuencial.

El algoritmo del módulo secuencial recibe como entrada:

x[]: arreglo de puntos unidimensionales utilizados por la cuadratura.
w[]: arreglo de pesos asociados a los puntos, uno por cada punto.
n: número de puntos de integración.
*function: apuntador a la función a integrar.

Dado que todas las funciones siguen el mismo esquema, variando únicamente en
el número de dimensiones y, por ende, en la profundidad de los bucles, se tomó como

38 Implementación

ejemplo la función SEC6D para explicar la implementación del módulo de ejecución
secuencial. El Algoritmo 1 muestra la estructura general de dicha función.

Algoritmo 1: Cálculo de integrales multidimensionales usando el módulo
de ejecución secuencial - 6 Dimensiones
Entrada: arreglo de puntos unidimensional x[], arreglo de pesos w[],

número de puntos n y apuntador a función *function
Salida: valor aproximado de la integral sum

1 Inicializar sum← 0;
// Cada bucle interno corresponde a una dimensión adicional (máx. 6D)

2 for i = 0 to n− 1 do
// Primera dimensión

3 wi ← w[i]; ii[0]← i;
4 for j = 0 to n− 1 do

// Segunda dimensión
5 wj ← w[j]; ii[1]← j;
6 for k = 0 to n− 1 do

// Tercera dimensión
7 wk ← w[k]; ii[2]← k;
8 for l = 0 to n− 1 do

// Cuarta dimensión
9 wl ← w[l]; ii[3]← l;

10 for m = 0 to n− 1 do
// Quinta dimensión

11 wm ← w[m]; ii[4]← m;
12 for o = 0 to n− 1 do

// Sexta dimensión
13 wo ← w[o]; ii[5]← o;
14 Evaluar func← (∗function)(x, ii,DIM);
15 sum← sum+ func · wi · wj · wk · wl · wm · wo;
16 end
17 end
18 end
19 end
20 end
21 end
22 return sum;

El bucle más interno es la parte central del algoritmo (líneas 12–16), ya que en
él se evalúa la función function(x, i, j, k, l, m, o, DIM) para obtener el valor
del integrando f(xi,j,k,l,m,o), correspondiente al punto cuyas coordenadas están deter-
minadas por los índices i, j, k, l,m, o, los cuales representan una posición dentro de la
malla multidimensional. Una vez obtenido este valor, se multiplica por el producto

Capítulo 3 39

de los pesos asociados y el resultado se acumula en la variable sum.
Al finalizar todos los bucles, la función devuelve el valor de sum como aproximación

de la integral en la región considerada. Dependiendo del número de dimensiones, el
número de índices y pesos involucrados varía de manera correspondiente.

En el Algoritmo 1:

wi, wj, wk, wD: representan los pesos de cuadratura unidimensional.

DIM: representa el número de dimensiones.

ii[]: representa el vector de coordenadas del punto de integración dentro de la
malla multidimensional.

El módulo secuencial constituye la base conceptual y funcional sobre la que se
construyó el módulo de ejecución AVX. A partir de su estructura, se implementaron
optimizaciones que permiten aprovechar el paralelismo a nivel de datos sin modificar
la lógica de cálculo original.

Detalles de la implementación del módulo de ejecución AVX

La paralelización a nivel de datos, en el módulo AVX, se realizó utilizando registros
vectoriales de 256 bits, los cuales permiten trabajar con vectores de cuatro números
de punto flotante de doble precisión (double). Esto significa que se puede realizar una
misma operación aritmética sobre cuatro datos double en un sólo paso de la CPU.

La funciones del módulo de ejecución secuencial (SEC3D, SEC4D, SEC5D, SEC6D)
se reorganizaron para operar en bloques de cuatro puntos simultáneamente, aprove-
chando los registros vectoriales de 256 bits (__m256d).

Para explicar este proceso, nuevamente se tomó como ejemplo la función SEC6D
(Algoritmo 2). La entrada y la salida de la función permanecen sin cambios respecto
al módulo de ejecución secuencial.

El bucle más interno, al ser la parte central del algoritmo, fue el que se modificó
(líneas 14–25). Dicho bucle recorre los puntos en bloques de cuatro, dentro de él se
incorpora un nuevo bucle que itera sobre esos cuatro puntos de manera secuencial
para evaluar la función (*function)() de forma escalar (líneas 15–18), almacenando
cada resultado en el arreglo func[p].

Luego, estos valores, junto con los pesos o, se cargan en registros vectoriales me-
diante la instrucción _mm256_loadu_pd (líneas 19 y 20).

A continuación, se calcula el producto total de los pesos asociados a los bucles
exteriores (wprod ← wi · wj · wk · wl · wm) y se construye un vector con cuatro
réplicas de este valor utilizando la instrucción _mm256_set1_pd (línea 21). Dicho
vector se multiplica elemento por elemento por el vector de pesos o mediante la
instrucción _mm256_mul_pd, obteniendo así los pesos completos correspondientes al
bloque procesado (línea 22).

w_avx ← _mm256_mul_pd(wk_avx, _mm256_set1_pd(wprod))

40 Implementación

Algoritmo 2: Cálculo de integrales multidimensionales usando el módulo de ejecución
AVX - 6 Dimensiones

Entrada: arreglo de puntos unidimensional x[], arreglo de pesos w[], número de puntos n
y apuntador a función *function

Salida: valor aproximado de la integral sum
1 Inicializar sum← 0;
2 aligned← floor(n/4) · 4 ; /* Máximo múltiplo de 4 para vectorización */
// Cada bucle interno corresponde a una dimensión adicional (máx. 6D)

3 for i = 0 to n− 1 do
// Primera dimensión

4 wi ← w[i]; ii[0]← i
5 for j = 0 to n− 1 do

// Segunda dimensión
6 wj ← w[j]; ii[1]← j
7 for k = 0 to n− 1 do

// Tercera dimensión
8 wk ← w[k]; ii[2]← k
9 for l = 0 to n− 1 do

// Cuarta dimensión
10 wl ← w[l]; ii[3]← l
11 for m = 0 to n− 1 do

// Quinta dimensión
12 wm ← w[m]; ii[4]← m
13 Inicializar sum_avx[]← 0 ; /* Registro vectorial acumulador */
14 for o = 0 to aligned− 1 step 4 do

// Evaluar escalarmente 4 puntos consecutivos de la integral
15 for p← 0 to 3 do
16 ii[5]← o+ p;
17 Evaluar func[p]← (∗function)(x, ii,DIM);
18 end

// Cargar bloques en registros vectoriales
19 func_avx← _mm256_loadu_pd(func) ; /* Cargar los cuatro

valores del integrando */
20 wo_avx← _mm256_loadu_pd(w[o : o+ 3]) ; /* Carga los cuatro

pesos de o */
// Multiplicar y acumular en vector

21 wprod← wi ·wj ·wk ·wl ·wm ·wo ; /* Producto de pesos exteriores
*/

22 w_avx← _mm256_mul_pd(wo_avx,_mm256_set1_pd(wprod)) ;
/* Multiplica y carga wprod · wo_avx */

23 prod_avx← _mm256_mul_pd(func_avx,w_avx)
24 sum_avx← _mm256_add_pd(sum_avx, prod_avx)

25 end
// Reducir acumulador vectorial a escalar

26 for p← 0 to 3 do
27 sum← sum+ sum_avx[p];
28 end
29 end
30 end
31 end
32 end
33 end
34 return sum;

Capítulo 3 41

Posteriormente, se realiza la multiplicación entre el vector que almacena los valores
evaluados de la función y el vector de pesos (línea 23).

prod_avx ← _mm256_mul_pd(func_avx, w_avx)

Finalmente, los resultados ponderados se acumulan en la variable sum, represen-
tando la suma parcial de los valores obtenidos (líneas 24–28).

Las otras tres funciones (SEC3D, SEC4D, SEC5D) siguen exactamente el mismo
procedimiento, variando únicamente en la profundidad de los bucles y en la cantidad
de dimensiones que procesan.

En el Algoritmo 2:

wi, wj, wk, wl, wm, wo: representan los pesos de cuadratura unidimensional.
DIM: representa el número de dimensiones.
n: representa el número de puntos de integración.
ii[]: representa el vector de coordenadas del punto de integración dentro de la
malla multidimensional.
wprod: representa el producto parcial de pesos exteriores.
sum: representa el acumulador escalar final del resultado.
func[4]: representa el búfer temporal que guarda cuatro evaluaciones escalares
consecutivas de function.
aligned: representa el mayor múltiplo de 4 menor o igual que n; determina
hasta dónde se puede vectorizar.
wk_avx, func_avx, w_avx, sum_avx: representa los registros __m256d usados
para cargas y cómputo vectorial.

3.4 Codelet
El codelet implementado en esta tesis actúa como una unidad de ejecución modular,
permitiendo la selección estática o dinámica del módulo de ejecución a utilizar durante
el proceso de calendarización. Este enfoque favorece la reutilización del código, la
extensibilidad del sistema de calendarización y la independencia entre la lógica de
calendarización y la biblioteca de integrales multidimensionales.

En términos funcionales, el codelet actúa como un vector de apuntadores a funcio-
nes (Figura 3.5), donde cada función representa una estrategia distinta (módulos de
ejecución) para calcular integrales multidimensionales. De esta manera, el calendari-
zador no requiere conocer los detalles internos de cada implementación; simplemente
envía un identificador numérico que representa el módulo mas adecuado para cier-
to punto de integración y el codelet se encarga de redirigir la ejecución al módulo
correspondiente.

Esta arquitectura facilita la integración con múltiples tecnologías, desde un en-
foque secuencial básico hasta implementaciones optimizadas en CUDA, OpenMP y
AVX, sin alterar la estructura de la biblioteca, ni los calendarizadores.

42 Implementación

Figura 3.5: Codelet general.

3.4.1 Arquitectura del codelet

Como se explicó previamente, el codelet fue implementado como un vector de apun-
tadores a funciones, donde cada función representa un módulo de ejecución (Figura
3.6). Todos los módulos comparten los mismos argumentos y reciben los parámetros
necesarios para realizar la integración sobre una región específica del dominio mul-
tidimensional. Al ser invocado el módulo ejecuta el procedimiento correspondiente y
devuelven como salida el valor numérico resultante de la integración.

Figura 3.6: Codelet del sistema de calendarización propuesto.

Capítulo 3 43

Para ello, se definió el codelet como un tipo de dato mediante la instrucción:

typedef double (*codelet)(double*,int,int,int,double,double,double);

Esta declaración especifica que cada elemento de tipo codelet es un apuntador
a un módulo que devuelve un valor de tipo double (el cual almacena el tiempo de
ejecución) y recibe los siguientes argumentos:

double *: apuntador a una variable donde se almacenará el resultado parcial
de la integral.

int: identificador de la función a integrar (func_id) dentro del conjunto de
pruebas del benchmark (F1, F2, F3, F4 o F5).

int: número de dimensiones (DIM).

int: número de puntos de integración (POINTS).

double: límite inferior del dominio de integración (X1).

double: límite superior del dominio de integración (X2).

double: tolerancia de error permitida (ERR).

En la función principal del sistema de calendarización, se declara el arreglo GL[]
que contiene las referencias a las funciones correspondientes a cada módulo de ejecu-
ción. Cada posición del arreglo representa un módulo de ejecución.

codelet GL[] ← GL_SEC, GL_CUDA, GL_OMP, GL_AVX;

El codelet selecciona el módulo a ejecutar, a través de un identificador (Tabla 3.2).

Tabla 3.2: Asignación de módulos en el codelet.
Identificador Módulo de ejecución

0 Secuencial
1 CUDA
2 OpenMP
3 AVX

Durante la ejecución del sistema de calendarización, el calendarizador se encarga
de seleccionar el módulo más adecuado para cada punto de integración y lo almacena
en la variable mod_id (identificador). Al invocar al codelet, el calendarizador le pasa
el identificador como argumento, permitiendo que el sistema acceda al apuntador
correspondiente dentro del vector de funciones y redirija automáticamente la ejecución
al módulo seleccionado, mediante:

GL[mod_id](&sum, func_id, DIM, POINTS, X1, X2, ERR);

En esta llamada:

mod_id: indica el módulo de ejecución seleccionado.

44 Implementación

&sum: es un apuntador donde se almacena el resultado parcial de la integral en
una subregión.
func_id: identifica la función del benchmark a integrar.
DIM, POINTS, X1, X2 y ERR: proporcionan los parámetros necesarios para el cálcu-
lo de la integral.

En resumen, el codelet funciona como un puente abstracto entre los calendariza-
dores y los módulos. Además, permite una ejecución flexible, limpia y eficiente de los
módulos implementados. Este enfoque ofrece algunas ventajas:

Modularidad: cada implementación puede desarrollarse y probarse de manera
independiente.
Extensibilidad: agregar un nuevo módulo sólo requiere incluir su apuntador y
definir su lógica interna.
Simplicidad de uso: el calendarizador delega completamente la ejecución sin
preocuparse por los detalles del entorno heterogéneo.

3.5 Calendarizadores
El problema de la calendarización de tareas, aplicado en este contexto, consiste en
decidir cómo asignar en qué módulo se evaluará cada punto o par de puntos de la
integral, buscando minimizar el tiempo total de ejecución sin comprometer la precisión
numérica.

Cuando se dispone de plataformas heterogéneas el tiempo de ejecución de la misma
tarea puede variar significativamente de un componente a otro. Un calendarizador
eficiente es clave para aprovechar al máximo los recursos disponibles, equilibrar la
carga de trabajo y garantizar resultados confiables en el menor tiempo posible.

En esta tesis se implementaron y compararon tres calendarizadores para calcu-
lar las integrales multidimensionales, y se propone un cuarto enfoque como trabajo
futuro:

Calendarizador estático secuencial: asigna de forma fija el módulo más adecuado
para cada punto de integración en función de datos de rendimiento previamente
obtenidos.
Calendarizador dinámico secuencial: toma decisiones en tiempo de ejecución,
lo que permite adaptarse a condiciones cambiantes del sistema. Esto mejora la
utilización de los recursos frente al estático, aunque con un coste adicional de
gestión.
Calendarizador estático concurrente: extiende el modelo secuencial estático con-
siderando la evaluación por pares de los puntos de integración y buscando com-
binaciones óptimas en distintas plataformas para aprovechar la paralelización
entre módulos heterogéneos.

Capítulo 3 45

Calendarizador dinámico concurrente: combina la asignación dinámica y la eje-
cución concurrente. La idea es ajustar la planificación en tiempo de ejecución
mientras se coordinan varios grupos de puntos de la integral en paralelo sobre
diferentes dispositivos, con el fin de maximizar el rendimiento en escenarios he-
terogéneos más complejos. Sin embargo, en este trabajo de tesis no se aborda
este calendarizador, sólo se propone como un trabajo a futuro.

Esto permite analizar cómo varía el desempeño y la eficiencia al aplicar distintas
estrategias de calendarización sobre un conjunto de integrales multidimensionales y, al
mismo tiempo, sentar las bases para un modelo más avanzado que podría explorarse
en un proyecto de doctorado.

3.5.1 Estático secuencial

El calendarizador estático secuencial fue diseñado como la estrategia más simple y
directa para asignar tareas de integración en el sistema de calendarización. Su funcio-
namiento se basa en una política de planificación, en la que se determina de antemano
qué módulo de ejecución (secuencial, CUDA, OpenMP o AVX) es el más eficiente pa-
ra evaluar cada punto de integración, basándose en los tiempos de ejecución de cada
módulo que fueron previamente recolectados y almacenados en tablas, cada una de
estas tablas presenta los tiempos de ejecución correspondientes a cada punto dentro
del intervalo [1, 40]. La sección 4.3.1 aborda con mas detalle estas tablas.

El calendarizador recibe como entrada los siguientes argumentos:

PLAT: nombre de la plataforma.
DIM: número de dimensiones.
n: número de puntos de integración.

Durante la fase de inicialización, el algoritmo del calendarizador selecciona la
tabla que corresponde a la plataforma y al número de dimensiones que recibió como
entrada, cada fila contiene los tiempos correspondientes a los distintos módulos de
ejecución para un número determinado de puntos. El algoritmo compara estos valores
y almacena el identificador del módulo, que reporta el menor tiempo de ejecución en
cada caso, en el arreglo array.

El tamaño del arreglo es igual al número total de puntos (en este caso, 40). Cada
posición de este arreglo representa un punto de integración específico y su contenido
corresponde al identificador del módulo que debe ejecutar el cálculo de la integral
en dicho punto. Esta estructura permite que, durante la ejecución, el sistema de
calendarización consulte directamente el arreglo para invocar el módulo más eficiente
sin realizar comparaciones adicionales en tiempo de ejecución.

El Algoritmo 3 ilustra el proceso principal de esta planificación. Donde:

n: representa el número de puntos de integración.
m: representa el número de módulos de ejecución disponibles (secuencial, CUDA,
OpenMP y AVX).

46 Implementación

array[n]: almacena el identificador del módulo que reporta el menor tiempo
de ejecución para cada punto.

Algoritmo 3: Selección del módulo más adecuado por número de puntos
Entrada: nombre de la plataforma PLAT, número de dimensiones DIM,

número de puntos de integración n
Salida: arreglo con los identificadores de los módulos más adecuados por

punto array[]
1 Construir el nombre del archivo: f_name← PLAT/DIM.txt;
2 Leer el archivo f_time;
3 Reservar memoria para array de tamaño n;
4 for i← 0 to n− 1 do
5 k ← 0;
6 Leer el primer valor de la fila y asignarlo a m_val;
7 for j ← 1 to m− 1 do
8 Leer el siguiente valor de la fila y asignarlo a val;
9 if val < m_val then

10 m_val← val;
11 k ← j;
12 end
13 end
14 array[i]← k;
15 end
16 Cerrar el archivo f_time;

Evaluación en pares de la integral multidimensional usando el calendari-
zador estático concurrente

Una vez completada esta etapa, la función principal del sistema de calendarización
inicia el proceso de evaluación de la integral multidimensional (Algoritmo 4). Para
ello, se recorre cada punto de integración mediante un ciclo for. En cada iteración,
para el punto i, se consulta en el arreglo array[i] qué módulo de ejecución debe
encargarse del cálculo; el identificador obtenido se almacena en la variable mod_id.

Con el identificador, el codelet (GL[]) invoca al módulo con los parámetros nece-
sarios para su ejecución:

sum: variable para acumular resultado parcial de la integración.
func_id: identificador de la función.
DIM: dimensión de la integral.
i+1: índice del punto actual.
X1 y X2: límites de integración.
ERR: error tolerado.

Capítulo 3 47

El resultado parcial correspondiente se guarda en el arreglo t[] para su posterior
análisis.

Algoritmo 4: Evaluación punto a punto de la integral multidimensional
usando el calendarizador estático secuencial
Entrada: número de puntos n, arreglo de los identificadores de módulos

array[], parámetros de integración sum, func_id, DIM, n, X1,
X2, ERR

Salida: resultados parciales de la integral t[]
1 for i← 0 to n− 1 do
2 mod_id← array[i];
3 GL[mod_id](&sum, func_id,DIM, i+ 1, X1, X2, ERR);
4 Guardar el resultado parcial en t[i · n]← sum;
5 end

En este proceso:

array[i]: indica qué módulo de ejecución debe calcular la integral para el punto
i.
GL[mod_id]: invoca módulo de ejecución (SEC, CUDA, OMP, AVX) correspon-
diente (véase Sección 3.4.1).

De esta manera, el calendarizador estático secuencial garantiza que cada punto de
integración sea procesado por el módulo más adecuado.

Este calendarizador no realiza ningún análisis dinámico en tiempo de ejecución,
lo que lo hace ideal en situaciones donde el comportamiento computacional de los
módulos es predecible y las condiciones de ejecución no varían significativamente.

Esta estrategia presenta las siguientes ventajas:

Bajo costo computacional: no se requieren decisiones en tiempo de ejecución.
Determinismo: la asignación de módulos es fija y repetible.
Simplicidad de implementación: no requiere sincronización ni estructuras de
control complejas.

Sin embargo, su principal desventaja radica en su incapacidad para adaptarse a
cambios en el entorno de ejecución, lo cual puede derivar en subutilización de recursos
si las condiciones reales difieren de las medidas durante la generación de la tabla, en
otras palabra, no se aprovecharía al máximo la capacidad potencial de cada módulo.

3.5.2 Dinámico secuencial

El calendarizador dinámico secuencial presenta una estrategia similar al calendariza-
dor estático secuencial, con la diferencia fundamental de que no realiza una planifica-
ción previa completa. En lugar de almacenar los identificadores de los módulos antes

48 Implementación

de la ejecución, este calendarizador mantiene en memoria una copia completa de la
tabla con los tiempos de ejecución, y realiza la comparación cada vez que el code-
let solicita una nueva evaluación durante las iteraciones del bucle for en la función
principal del sistema de calendarización.

El calendarizador recibe como entrada los mismos argumentos que el calendariza-
dor estático secuencial: nombre de la plataforma, número de dimensiones y número
de puntos de integración. En la fase de inicialización (Algoritmo 5), lee y almacena en
memoria la tabla con los tiempos de ejecución, lo que le permite al sistema comparar
estos valores de forma dinámica durante la evaluación de la integral, con el fin de
seleccionar el módulo más adecuado en cada punto.

Algoritmo 5: Inicialización del calendarizador dinámico secuencial
Entrada: nombre de la plataforma PLAT, número de dimensiones DIM,

número de puntos de integración n
Salida: tabla de tiempos almacenada en memoria table[]

1 Construir el nombre del archivo: f_name← PLAT/DIM.txt;
2 Leer el archivo f_time;
3 Reservar memoria para la matriz table[n ·m];
4 for i← 0 to n− 1 do
5 for j ← 0 to m− 1 do
6 Leer valor desde el archivo y almacenarlo en table[i][j];
7 end
8 end
9 Cerrar el archivo f_time;

En este proceso:

n: representa el número de puntos de integración.
m: representa el número de módulos de ejecución disponibles (secuencial, CUDA,
OpenMP y AVX).
table[n ·m]: almacenada la tabla con los tiempos de ejecución.

El proceso de evaluación de la integral, en la función principal del sistema de ca-
lendarización (Algoritmo 6), es casi igual al proceso del Algoritmo 4. Sin embargo,
a diferencia del calendarizador estático secuencial que usa un arreglo, este calendari-
zador invoca de forma dinámica una función especializada: sched() (Algoritmo 7).
Esta función recibe como entrada el punto de integración i que será evaluado y con
base en la tabla almacenada en memoria, determina el módulo más adecuado para la
ejecución, devolviendo a la salida el identificador de dicho módulo para almacenarlo
en la variable mod_id.

Para ello, la función sched() selecciona, dentro de la tabla de tiempos table[], la
fila i correspondiente al punto de integración recibido como entrada. Luego, mediante
un bucle, compara los tiempos registrados para cada módulo en dicha fila y selecciona

Capítulo 3 49

Algoritmo 6: Evaluación punto a punto de la integral multidimensional
usando el calendarizador dinámico secuencial
Entrada: número de puntos n, parámetros de integración sum, func_id,

DIM, n, X1, X2, ERR
Salida: resultados parciales de la integral t[]

1 for i← 0 to n− 1 do
2 mod_id← sched[i];
3 GL[mod_id](&sum, func_id,DIM, i+ 1, X1, X2, ERR);
4 t[i · n]← sum;
5 end

aquel con el menor tiempo de ejecución; este módulo será el encargado de evaluar la
integral en el punto i. El valor retornado, mod, indica el identificador que recibirá el
codelet durante el proceso de evaluación de la integral.

El Algoritmo 7 muestra la implementación de la función sched(i). Donde:

n: representa el punto solicitado en la región actual.
m: representa el número de módulos de ejecución disponibles (secuencial, CUDA,
OpenMP y AVX).
table[n · j]: contiene el tiempo estimado para el módulo de ejecución j en el
punto n.
mod: representa el identificador del módulo con el menor tiempo para ese punto.

Algoritmo 7: Selección dinámica del módulo más adecuado: sched()
Entrada: número del punto de integración n, número de módulos m, tabla

con los tiempos de ejecución table[]
Salida: identificador del modulo de ejecución mod

1 i← table[n][0];
2 mod← 0;
3 for j ← 1 to m do
4 if table[n][j] < i then
5 i← table[n][j];
6 mod← j;
7 end
8 end
9 return mod;

Este enfoque evita la necesidad de generar un arreglo auxiliar, como en el ca-
lendarizador estático, y permite una toma de decisiones más ajustada al contexto
inmediato de ejecución.

Esta estrategia presenta las siguientes ventajas:

50 Implementación

Mayor adaptabilidad: se selecciona el módulo más adecuado en el momento
preciso en que se requiere.
Reutilización de la tabla completa: permite evaluar nuevos escenarios sin generar
el arreglo auxiliar.

Sin embargo, la estrategia no está exenta de desventajas:

Sobrecarga ligera: al hacer comparaciones cada vez que se requiere un cálculo,
se incurre en un pequeño costo adicional respecto al enfoque estático.
Requiere acceso constante a memoria: es necesario mantener la tabla de tiempos
en memoria para acceder a ella en cada evaluación.

En resumen, el calendarizador dinámico secuencial ofrece un balance entre simpli-
cidad y adaptabilidad, siendo especialmente útil en escenarios donde la distribución
de cargas es irregular o donde las decisiones deben responder a condiciones cambiantes
en la ejecución.

3.5.3 Estático concurrente

En el calendarizador estático concurrente, al igual que el calendarizador estático se-
cuencial, la distribución de las tareas se realiza de forma predeterminada antes de
la ejecución y se mantiene fija durante todo el proceso, no varía dinámicamente en
función de la carga. Sin embargo, la diferencia radica en su diseño, que aprovecha la
ejecución concurrente de tareas en plataformas heterogéneas, siguiendo un enfoque
similar a la regla de Johnson (Garey y Johnson, 1976) para calendarización en parejas.

Con el objetivo de aprovechar la concurrencia a nivel de tareas, se implementó
un esquema de ejecución por lotes de dos puntos (pares) con espera activa. En cada
iteración del bucle for de la función principal del sistema de calendarización (Algo-
ritmo 8), se seleccionan dos puntos consecutivos de la integral multidimensional y se
organiza la ejecución para calcular la integral en esos puntos, mediante la creación de
dos hilos independientes usando OpenMP.

Para evitar conflictos de acceso a recursos compartidos, se crean candados (locks)
independientes para cada módulo de ejecución disponible. Estos candados garantizan
exclusión mutua en el uso de los recursos, evitando conflictos cuando dos hilos intentan
acceder simultáneamente al mismo módulo.

Antes de iniciar la evaluación de un punto, el hilo correspondiente intenta adquirir
el candado del módulo asignado:

Si el módulo está libre, el candado se adquiere de inmediato y el hilo comienza
la evaluación del punto.
Si el módulo ya está ocupado, el hilo debe esperar hasta que el candado sea
liberado. De este modo, se garantiza que dos puntos asignados al mismo mó-
dulo se ejecuten de forma secuencial, incluso dentro de un bloque que intenta
ejecutarse de manera concurrente.

Capítulo 3 51

Este comportamiento reproduce una espera activa controlada sobre el módulo,
pero sin bloquear el avance de otras tareas en módulos diferentes.

El calendarizador inicializa los candados correspondientes a cada módulo (líneas
1–3):

for i← 0 to m− 1 do
Inicializar candado mod_lock[i];

donde m: representa el número de módulos de ejecución disponibles (secuencial, CU-
DA, OpenMP y AVX).

Después, se lanza una región paralela de OpenMP con dos hilos, cada uno res-
ponsable de procesar diferentes puntos de integración (línea 6). El acceso al siguiente
punto a procesar se controla mediante una operación atómica, de modo que cada hilo
obtiene un identificador único sin riesgo de colisiones:

#pragma omp atomic capture
{ idx ← next_idx; next_idx++; }

Para cada punto de integración (líneas 7–12):

Se consulta el módulo asignado en el arreglo array[idx].
Se adquiere el candado correspondiente al módulo antes de su ejecución. Si el
módulo está ocupado, el hilo debe esperar activamente hasta que el candado
sea liberado.
Una vez que el módulo está disponible, se ejecuta la función correspondiente
mediante el codelet (GL[mod_id](...)).
Se libera el candado para que otro hilo puedo acceder al módulo.
El resultado parcial local_sum se almacenan en el arreglo global t[].

Finalmente, al concluir la ejecución de todos los puntos, los candados se destruyen
para liberar los recursos asociados (líneas 14–16):

for i← 0 to m− 1 do
Destruir candado mod_lock[i];

Este mecanismo permite que el sistema de calendarización ejecute de manera
concurrente distintos puntos de integración sobre módulos diferentes, manteniendo
la coherencia en el uso de los recursos. De esta forma, se logra una concurrencia
controlada sin introducir condiciones de carrera o bloqueos innecesarios. El Algoritmo
8 muestra la implementación de lo descrito anteriormente. Donde:

idx: representa el identificador del hilo, que a la vez esta asociado al punto de
integración.
n: representa el número de puntos de integración.
m: representa el número de módulos de ejecución disponibles (secuencial, CUDA,
OpenMP y AVX).

52 Implementación

array[i]: indica qué módulo de ejecución debe calcular la integral para el punto
i.
mod_id: identificador del módulo de ejecución.
local_sum: almacena el resultado parcial de la integración.
t[]: guarda los resultados parciales acumulados para su posterior análisis.

Algoritmo 8: Evaluación en pares de la integral multidimensional usando
el calendarizador estático concurrente
Entrada: número de puntos n, arreglo de los identificadores de módulos

array[], parámetros de la integración sum, func_id, DIM, n,
X1, X2, ERR

Salida: resultados parciales de la integral t[]
1 for i← 0 to m− 1 do
2 Inicializar candado mod_lock[i];
3 end
4 Paralelizar con 2 hilos usando OpenMP ;
5 for cada hilo do

// Obtener los identificadores de forma atómica
6 #pragma omp atomic capture {idx← next_idx; next_idx++; }
7 Determinar módulo asignado mod_id← array[idx];
8 Inicializar variable local local_sum← 0;
9 Adquirir candado mod_lock[mod_id];

10 GL[mod_id](&local_sum, func_id,DIM, idx+ 1, X1, X2, ERR);
11 Liberar candado mod_lock[mod_id];
12 Guardar los resultados parciales t[i · n]← local_sum;
13 end
14 for i← 0 to m− 1 do
15 Destruir candado mod_lock[i];
16 end

Optimización mediante búsqueda tabú

Previo a la ejecución, el calendarizador genera la asignación de módulos usando una
estrategia basada en búsqueda tabú (véase Sección 2.6.2). Esta técnica permite ex-
plorar el espacio de soluciones (asignaciones posibles) en busca de una que minimice
el tiempo total de ejecución, conocido como makespan. La implementación combina:

1. Lectura de la tabla con los tiempos de ejecución.

2. Construcción de las dos mejores opciones para evaluar cada punto de integración
(mejor y segundo mejor módulo).

3. Búsqueda metaheurística basada en búsqueda tabú para encontrar una asig-
nación (uso de la segunda mejor opción en algunos puntos) que reduzca el
makespan.

Capítulo 3 53

4. Función simulación del makespan que respeta las restricciones de emparejado y
exclusión por módulo.

Selección de los dos mejores módulos de ejecución por cada punto de in-
tegración

En la fase de inicialización, el calendarizador almacena en memoria la tabla con los
tiempos de ejecución de la misma forma que lo hace el Algoritmo 5. Después el
Algoritmo 9 identifica los dos mejores módulos de ejecución para cada punto de la
integral, basándose en los tiempos de ejecución registrados en la tabla.

Algoritmo 9: Selección de los dos mejores módulos por punto:
build_top2()
Entrada: número del punto de integración n, número de módulos m, tabla

con los tiempos de ejecución table[]
Salida: arreglo con los dos mejores módulos y sus tiempos por cada punto

array_top2[]
1 for i← 0 to n− 1 do
2 Inicializa los identificadores de los módulos b← −1, s← −1;
3 Inicializa el mejor bt←∞, y segundo mejor tiempo st←∞;
4 for j ← 0 to m− 1 do
5 t← table[i][j];
6 if t < bt then
7 st← bt; s← b ; /* Segundo mejor tiempo y módulo */
8 bt← t; b← j ; /* Mejor tiempo y módulo */

9 end
10 else if t < st then
11 st← t; s← j;
12 end
13 end
14 Guardar en array_top2[i]: best_mod← b, second_mod← s,

best_t← bt, second_t← bt;
15 end

Para cada punto, el algoritmo construye un registro con:

best_mod: identificador del módulo con el menor tiempo de ejecución para ese
punto.

best_t: tiempo de ejecución de best_mod.

second_mod: segundo módulo con el menor tiempo de ejecución para ese punto
(si existe; -1 si no).

second_t: tiempo de ejecución de second_mod.

54 Implementación

Como salida devuelve un arreglo (array_top2) de longitud n, que contiene todos
los registros. En el algoritmo:

n: representa el números de puntos.
m: representa el número de módulos de ejecución disponibles (secuencial, CUDA,
OpenMP y AVX).
table[n · j]: contiene la tabla con los tiempos de ejecución;

Asignación óptima de módulos de ejecución usando búsqueda tabú

Posteriormente, el Algoritmo 10 determina, por cada punto, cuál de los dos módu-
los seleccionados será el encargado de evaluarlo, con el propósito de optimizar la
asignación mediante una metaheurística de búsqueda tabú. El objetivo principal es
minimizar el tiempo total de ejecución (makespan) del sistema, explorando diversas
combinaciones de asignación y evitando quedar atrapado en óptimos locales.

El algoritmo recibe como entrada:

table[n ·m]: tabla con los tiempos de ejecución.
array_top2[n]: arreglo con los dos mejores módulos por punto.
tenure: parámetros de configuración del algoritmo tabú.

El procedimiento comienza al crear un arreglo de asignaciones (assign), donde
cada posición indica si cada punto i usa el mejor módulo (0) o el segundo mejor
(1). En la asignación inicial cada punto se asocia a su mejor módulo disponible y se
calcula el makespan llamando a la función simulate_makespan (Algoritmo 11), ese
valor se guarda como el costo actual y mejor costo inicial (líneas 3 y 4):

cur_cost, best_cost ← simulate_makespan(table, array_top2, assign);

El algoritmo examina los posibles movimientos para cada punto i de la integral
(líneas 10–20). Primero, reasigna cada punto a su segundo mejor módulo:

assign[i] ← not(assign[i]);

Cada movimiento temporal se prueba llamando nuevamente a la función simulate_makespan
para estimar el nuevo makespan. Si el cambio mejora el tiempo total y no está prohibi-
do por la lista tabú, se considera como el mejor movimiento candidato (líneas 17–19):

if cost < best_move_cost or best_move == -1 then
Actualizar best_move ← i, best_move_cost ← cost;

Durante la búsqueda, cada movimiento realizado se marca como tabú durante
un cierto número de iteraciones, evitando así regresar a soluciones ya exploradas
o generar ciclos. Este periodo está determinado por la variable tenure, que indica
cuántas iteraciones deben pasar antes de que el movimiento vuelva a ser considerado
(línea 28).

Capítulo 3 55

Algoritmo 10: Búsqueda tabú para asignación óptima de módulos:
tabu_assign_top2()

Entrada: tabla con los tiempos de ejecución table[], arreglo con los dos mejores
módulos y sus tiempos por cada punto array_top2[], parámetros de
configuración del algoritmo tabú tenure

Salida: registro que contiene el tiempo de ejecución estimado y el arreglo con la
mejor asignación de módulos encontrada tabu_search

1 Inicializar arreglo assign← 0 todos los puntos usan su mejor módulo
2 Inicializar contador de prohibiciones tabu[N]← 0;
3 Calcular costo inicial cur_cost← simulate_makespan(table, array_top2, assign);
4 Guardar como mejor costo best_cost← cur_cost;
5 for iter ← 1 to max_iters do
6 if supera límite sin mejora then
7 terminar búsqueda
8 end
9 Inicializar best_move← −1, best_move_cost←∞;

10 for i← 0 to n− 1 do
11 if módulo es tabú o no existe segundo módulo then
12 continuar
13 end
14 Intercambiar asignación assign[i]← not(assign[i]);
15 Evaluar costo cost← simulate_makespan(table, array_top2, assign);
16 Revertir cambio assign[i]← not(assign[i]);
17 if cost < best_move_cost or best_move == −1 then
18 Actualizar best_move← i, best_move_cost← cost;
19 end
20 end
21 if no hay movimientos válidos: best_move == −1 then
22 for cada punto i do
23 Decrementar contadores tabu[i]−−
24 end
25 end

// Aplicar mejor movimiento encontrado
26 Invertir asignación: assign[best_move]← not(assign[best_move]);
27 Actualizar cur_cost← best_move_cost;
28 Marcar tarea como tabú tabu[best_move] = tenure;
29 Decrementar todos los contadores tabú mayores a 0;

// Si mejora el mejor costo global, actualizar best_cost y guardar
asignación

30 if cur_cost < best_cost then
31 Actualizar best_cost← cur_cost;
32 Copiar asignación actual a best_a[i]← assign[i];
33 end
34 end
35 Guardar en tabu_search← TSOut(best_cost, best_a);

56 Implementación

En este caso, se estableció tenure ← 7, con el propósito de favorecer la explora-
ción de nuevas regiones del espacio de búsqueda sin perder eficiencia ni agilidad en el
proceso.

tabu[best_move] ← tenure;

En cada iteración, los contadores tabú se reducen gradualmente hasta liberar las
soluciones marcadas como tabú (líneas 21–25):

if no hay movimientos válidos: best_move == -1 then
for cada punto i do

Decrementar contadores tabu[i]–;

Si se encuentra una asignación con menor makespan, se guarda como mejor asig-
nación global (líneas 30–33).

if cur_cost < best_cost then
best_cost ← cur_cost;
best_a[i] ← assign[i];

Si no hay mejora durante varias iteraciones consecutivas, el algoritmo puede de-
tenerse anticipadamente (líneas 6–8).

if supera límite sin mejora then
Terminar búsqueda;

Finalmente, el algoritmo devuelve un registro tabu_search que contiene el tiempo
de ejecución estimado y el arreglo con la mejor asignación de módulos encontrada.

Función de simulación del makespan

La función simulate_makespan (Algoritmo 11) tiene como objetivo estimar el tiempo
total de ejecución (makespan) que resultaría de una determinada asignación de los
puntos de integración a los módulos. Es decir, simula cómo se comportaría el sistema
de calendarización de manera concurrente, usando solamente los tiempos medidos, lo
que permite que el Algoritmo 10 pueda evaluar diferentes estrategias de asignación
hasta encontrara la más optima.

Para simular el esquema de ejecución por lotes de dos puntos (pares) con espera
activa, se incluyen las siguientes restricciones:

Exclusión por módulo de ejecución: un mismo módulo no puede ejecutar dos
tareas simultáneamente.
Restricción de paralelismo máximo: sólo 2 puntos pueden estar en ejecución al
mismo tiempo.

Como entradas, el Algoritmo 11 de la función recibe:

n: número de puntos de integración.

Capítulo 3 57

m: número de módulos de ejecución disponibles (secuencial, CUDA, OpenMP y
AVX).

array_top2[n]: arreglo con los dos mejores módulos por punto.

assign[n] arreglo con la asignación de los módulos para cada punto.

El algoritmo inicializa los tiempos de liberación de cada módulo, es decir, el ins-
tante en el que cada módulo estará disponible para ejecutar la evaluación de un nuevo
punto:

mod_free[mod_id] ← 0

Después, simula el comportamiento del sistema de calendarización al ejecutar, por
pares, los puntos de la integral. La selección del módulo de ejecución para cada punto
se realiza con base en el plan de asignación contenido en el arreglo assign[], que
determina si se emplea el módulo con el mejor tiempo estimado o el módulo con
el segundo mejor tiempo. Para ello, ejecuta el bucle principal while mientras haya
puntos pendientes por calcular next < n o haya puntos que todavía no terminan de
calcularse running > 0 (líneas 3–25). Dentro del bucle principal hay otro bucle que
intenta calcular nuevos puntos, pero con una restricción: sólo puede se pueden evaluar
dos puntos al mismo tiempo (líneas 4–17).

While{running < 2 and next < N}{...}

Si se cumplen las condiciones, se toma el siguiente punto use_second ← assign[next]
y se verifica si debe ejecutarse en su mejor o segundo mejor módulo, de acuerdo con
el valor almacenado en assign[next]. A partir de esta selección, se obtiene el iden-
tificador del módulo elegido, mod_id, junto con su tiempo de ejecución esperado, dur
(líneas 5 y 6).

La evaluación del punto sólo puede empezar si el módulo está libre y el tiempo
actual ya lo permite, para ello se calcula el momento en el que puede iniciar (línea 7):

start ← max(mod_free[mod_id], cur_time);

Para evitar conflictos entre procesos, si ya hay un punto siendo evaluado (running
== 1), se verifica que la nueva evaluación que se lanzará no use el mismo módulo que
usa la que ya está activa (líneas 8–10):

if d == used_mod then break;

En el caso de que sea el mismo módulo, la nueva evaluación no puede comenzar
aún, por lo que el bucle interno se detiene hasta que dicho módulo se libere. Si no
existen conflictos, se calcula el tiempo de finalización de la nueva evaluación (endt
← start + dur) y se determina en cuál de los dos slots disponibles se colocará: A
o B (líneas 11 y 12). El sistema dispone únicamente de dos espacios de ejecución en
paralelo, siguiendo un esquema por pares.

58 Implementación

endA ← endt;
modA ← d;

o endB ← endt;
modB ← d;

Se marca el módulo como ocupado hasta ese momento mod_free[d] ← endt y
se incrementan los contadores (líneas 14–15):

running++; (una tarea más en ejecución)
next++; (pasar a la siguiente tarea)

Si esto ocurre, la variable progressed se pone en 1, indicando que hubo progreso
en la simulación (línea 15). Si no se pudo lanzar ninguna tarea progressed = 0, eso
significa que todos los módulos requeridos están ocupados. Por lo tanto, el algoritmo
avanza al siguiente evento, es decir, al momento en que un punto termina de calcularse
(líneas 18–24:

next_event ← min(endA, endB);
cur_time ← next_event;

Si una evaluación termina (por ejemplo, endA ← cur_time), se marca como libre
(líneas 21–23):

endA ← ∞;
modA ← -1;
running–;

Así, el simulador “avanza” hasta que haya espacio para lanzar nuevas tareas. Cuan-
do todas las tareas han sido ejecutadas next >= n y no hay tareas corriendo running
== 0, el bucle termina.

Finalmente, el valor de cur_time representa el tiempo total que habría tardado el
sistema en completar todas las tareas, cumpliendo con las restricciones establecidas.
Dicho valor se devuelve como el makespan simulado.

En el Algoritmo 11:

mod_free[d]: representa el instante en que el módulo mod_id queda libre (ini-
cialmente 0).

cur_time: representa el tiempo actual de simulación.

running: representa el número de puntos evaluados en curso (0, 1 o 2).

next: representa el índice del siguiente punto sin evaluar.

endA, endB: representan los tiempos de finalización de las dos evaluaciones ac-
tualmente en ejecución.

modA, modB: representa el módulo asociado a cada slot en ejecución.

Capítulo 3 59

Algoritmo 11: Simulación del makespan: simulate_makespan()
Entrada: número de puntos de integración n, número de módulos m, arreglo

con los dos mejores dispositivos por punto array_top2[], arreglo
con la asignación de los módulos para cada punto assign[]

Salida: tiempo total de ejecución cur_time
1 Inicializar arreglo mod_free[m]← 0 para cada módulo;
2 Inicializar cur_time← 0, running ← 0, next← 0;
3 while running > 0 or next < n do
4 while running < 2 and next < n do
5 use_second← assign[next] ; /* Determinar el módulo a usar */
6 Obtener módulo mod_id y duración dur;
7 Calcular start← max(mod_free[mod_id], cur_time);
8 if mod_id == used_mod then
9 break ; /* Romper bucle para esperar disponibilidad */

10 end
11 Calcular tiempo de finalización endt← start+ dur;
12 Registrar mod_id y endt en un slot libre: A o B
13 Actualizar mod_free[d]← endt;
14 Registrar tarea como en ejecución running ++;
15 Incrementar next++;
16 progressed← 1;
17 end
18 if progressed == 0 then

// Avanzar al siguiente evento
19 next_event← min(endA, endB);
20 cur_time← next_event;

// Liberar tareas que terminen en ese instante
21 endA←∞;
22 devA← −1;
23 running −−;
24 end
25 end
26 Retornar cur_time como tiempo total de ejecución (makespan);

Función principal del calendarizador estático concurrente

El Algoritmo 12 coordina la ejecución de los Algoritmos 9, 10 y 11, integrándolos para
conformar el calendarizador estático concurrente. Su propósito es asignar el módulo
encargado de evaluar cada punto, con el objetivo de minimizar el tiempo total de
ejecución (makespan).

Primero, carga en memoria la tabla con los tiempos de ejecución registrados para
cada módulo y cada punto de integración. Luego, analiza los tiempos de cada fila de
la tabla para identificar, por punto el mejor y segundo mejor módulo de ejecución

60 Implementación

y almacena los datos en un arreglo array_top2 (Función build_top2() correspon-
diente al Algoritmo 9). Esta etapa reduce el espacio de búsqueda, permitiendo que
la optimización se centre sólo en las dos mejores opciones por punto, en lugar de
considerar todos los módulos posibles.

Posteriormente, el algoritmo usa una metaheurística de búsqueda tabú (Función
tabu_assign_top2() correspondiente al Algoritmo 10) para decidir, entre las dos
opciones de cada punto, cuál asignación global produce el menor tiempo total de
ejecución (makespan). Con los resultados de la búsqueda tabú, el algoritmo construye
el arreglo final de asignación, array[i], donde cada elemento contiene el identificador
del módulo que ejecutará el punto i. Este arreglo se guarda en memoria y luego es
utilizado por el sistema de calendarización (líneas 6–9).

Algoritmo 12: Función principal del calendarizador estático concurrente
Entrada: nombre de la plataforma PLAT, número de dimensiones DIM,

número de puntos de integración n
Salida: arreglo con los identificadores de los módulos más adecuados por

punto array[]
1 Leer tabla con tiempos de ejecución table = read_table(PLAT,DIM, n);
2 Construir array_top2 con los dos mejores módulos por punto:

array_top2 = build_top2(tabla);
3 tenure← 7
4 Ejecutar búsqueda tabú

tabu_search = tabu_assign_top2(table, array_top2, tenure);
5 Reservar memoria para array;
6 for i← 0 to n− 1 do
7 Seleccionar módulo d según asignación óptima (best o second);
8 Guardar en array[i]← d;
9 end

Esta estrategia presenta las siguientes ventajas:

Concurrencia: explota la concurrencia de forma sencilla, evitando la sobrecarga
de un calendarizador dinámico.

Espera activa: incluir candados por módulo garantiza que no se produzcan ac-
cesos simultáneos no controlados a un mismo recurso.

Sin embargo, presenta ciertas limitaciones:

Si el tiempo de ejecución de los puntos asignados a un módulo es significati-
vamente mayor que en otros, el sistema de calendarización puede experimentar
desequilibrios de carga.

Al no replanificar dinámicamente, no se corrige la asignación inicial aunque se
detecten ineficiencias durante la ejecución.

Capítulo 3 61

La creación de hilos genera un overhead en el tiempo de ejecución.

Los procesos generados pueden crear retrasos en la ejecución al competir por el
tiempo de la CPU.

Por lo anterior, el esquema estático concurrente resulta especialmente adecuado
cuando: se dispone de una planificación previa de alta calidad, los tiempos de ejecución
presentan una variabilidad reducida o predecible y existe certeza de que los procesos
no competirán por recursos de CPU.

3.5.4 Tabla de características

La Tabla 3.3 presenta una comparación entre los tres calendarizadores desarrollados,
sintetizando sus diferencias de manera estructurada. Cada uno de los calendarizadores
representa una estrategia distinta de asignación y evaluación de puntos sobre los mó-
dulos de ejecución disponibles, variando principalmente en su nivel de optimización,
adaptabilidad y grado de paralelismo.

Tabla 3.3: Características de los tres calendarizadores implementados.

Característica Estático
secuencial

Dinámico
secuencial

Estático
concurrente

Tipo de planifica-
ción

Previa y fija En tiempo de ejecu-
ción

Previa optimizada por bús-
queda tabú

Asignación de mó-
dulos

Se guarda en un arre-
glo auxiliar

Se calcula al momen-
to de cada llamada

Se guarda en arreglo opti-
mizado

Uso de recursos Secuencial Secuencial Paralelo, dos módulos en
ejecución sin conflicto

Modelo de ejecu-
ción

Punto por punto Punto por punto Ejecución en pares simultá-
neos

Adaptabilidad Nula: depende solo de
la tabla de tiempos

Alta: decide el mejor
módulo en cada paso

Media: depende de planifi-
cación previa (búsqueda ta-
bú)

Sincronización No requerida No requerida Requiere candados por mó-
dulo para evitar conflictos

El calendarizador estático secuencial basa su funcionamiento en una planificación
previa y fija. Las asignaciones de cada punto a un módulo se calculan una sola vez
antes de la ejecución y se almacenan en un arreglo auxiliar. Debido a su naturaleza
determinista y su ejecución punto por punto, este esquema no requiere sincronización
ni toma de decisiones durante el proceso, aunque su aprovechamiento de recursos es
limitado, ya que sólo utiliza un módulo a la vez.

Por otro lado, el calendarizador dinámico secuencial realiza la selección del módulo
más adecuado en tiempo de ejecución. En cada paso, evalúa las opciones disponibles y
elige el módulo que ofrece el menor tiempo de procesamiento para el punto actual. Esta
característica proporciona una mayor adaptabilidad, ya que el calendarizador puede
reaccionar ante variaciones en los tiempos de ejecución. Sin embargo, al igual que el

62 Implementación

calendarizador estático secuencial, su ejecución permanece totalmente secuencial, sin
explotar la posible concurrencia entre módulos de ejecución.

Finalmente, el calendarizador estático concurrente representa una evolución del
enfoque estático. Aunque también se basa en una planificación previa, ésta se obtiene
mediante un proceso de optimización con búsqueda tabú. Dicha técnica explora múl-
tiples combinaciones de asignación para encontrar una configuración que minimice el
tiempo total de ejecución (makespan), considerando la posibilidad de evaluar dos pun-
tos de forma simultánea en distintos módulos sin generar conflictos. Este método logra
un mejor aprovechamiento de los recursos al permitir concurrencia, aunque requiere
mecanismos de sincronización (como candados) para garantizar que los módulos no
se asignen de manera conflictiva.

Capítulo 4

Pruebas

En este capítulo se presentan las pruebas realizadas para evaluar el desempeño, la
precisión y la adaptabilidad del sistema de calendarización implementado. El objetivo
principal es analizar la eficiencia de los módulos de ejecución y las estrategias de
calendarización propuestas bajo diferentes condiciones de hardware y configuraciones
de prueba. Es decir, diferentes números de puntos de integración y dimensiones. Las
pruebas se dividieron en dos grandes apartados: pruebas preliminares y pruebas de
calendarización.

En la primera sección se describen las plataformas utilizadas para ambos tipos de
pruebas, junto con las funciones a evaluar y las principales condiciones consideradas
para su ejecución.

En la segunda sección, correspondiente a las pruebas preliminares, se valida el
funcionamiento correcto de los módulos de ejecución y se establecen los parámetros
base necesarios para las pruebas que evaluarán el rendimiento de los calendarizadores.
Se analizan tres aspectos fundamentales: la complejidad computacional de las funcio-
nes del benchmark de integrales multidimensionales, con el fin de seleccionar la más
adecuada para las pruebas posteriores; la estimación del número mínimo de puntos
de integración necesarios para alcanzar un error aceptable; y la aplicación de la extra-
polación de Romberg para reducir el número de puntos requeridos y, en consecuencia,
el tiempo de ejecución, sin comprometer la precisión.

La última sección, correspondiente a las pruebas de calendarización, evalúa el de-
sempeño de las tres estrategias implementadas: estático secuencial, dinámico secuen-
cial y estático concurrente. En primer lugar se construyen las tablas de tiempo que
sirven para alimentar a los calendarizadores. Posteriormente se presentan las pruebas
realizadas con los calendarizadores en dos plataformas con diferentes capacidades de
cómputo: una estación de trabajo CUDA y una Jetson TX2. Estas pruebas permiten
comparar la eficiencia de cada estrategia en entornos heterogéneos, identificando las
ventajas y limitaciones de cada estrategia, así como su capacidad para adaptarse a
las restricciones de hardware.

En resumen, este capítulo establece los fundamentos experimentales que permi-
ten valorar la efectividad del sistema de calendarización propuesto, proporcionando
evidencia cuantitativa sobre su precisión numérica, eficiencia computacional y flexi-

63

64 Pruebas

bilidad frente a distintos entornos de ejecución.

4.1 Funciones, dispositivos y condiciones base

Como se mencionó anteriormente, las pruebas fueron diseñadas para validar el com-
portamiento, la eficiencia y la adaptabilidad del sistema de calendarización propuesto.
Para ello, se utilizaron las funciones del benchmark de integrales multidimensionales,
debido a su variabilidad en complejidad y precisión numérica. Estas funciones permi-
ten evaluar de forma robusta el rendimiento de los distintos módulos de ejecución y
calendarizadores implementados.

En el módulo de ejecución OMP las pruebas no se ejecutaron sobre todos los
procesadores de manera simultánea. En cambio, se definieron dos configuraciones:
(1) OMP-P, emplea únicamente los núcleos de rendimiento (performance cores) y (2)
OMP-E, utiliza los núcleos de eficiencia (efficient cores). El objetivo de esta separación
es permitir que cada núcleo alcance su frecuencia máxima de operación, sin verse
limitado por la necesidad de sincronizarse con otros núcleos de distinta naturaleza.

Cada prueba que mide el tiempo de ejecución fue repetida diez veces consecutivas,
con el objetivo de mitigar posibles fluctuaciones ocasionadas por factores externos
al sistema de calendarización; como procesos en segundo plano o gestión dinámica
de recursos por parte del sistema operativo. Como medida representativa de cada
conjunto de ejecuciones se tomó la mediana, debido a que proporciona una estimación
más robusta frente a valores atípicos que podrían sesgar el resultado si se utilizaran
(e. g., el promedio).

Las pruebas se llevaron a cabo en dos plataformas heterogéneas diferentes: una
estación de trabajo con sistema operativo Rocky Linux 9 y un sistema embebido
Jetson TX2 con sistema operativo Ubuntu 18.04. Esta decisión responde a la nece-
sidad de validar el sistema de calendarización bajo entornos heterogéneos. Por ello,
es necesario contar con plataformas que representen extremos opuestos en cuanto a
potencia de cómputo, disponibilidad de módulos de ejecución, arquitecturas de CPU
y capacidades de vectorización y paralelismo.

Emplear una estación de trabajo CUDA y una Jetson TX2 proporciona un con-
traste claro entre un sistema de escritorio de alto rendimiento y un sistema embebido
con recursos limitados. Además, ambas plataformas difieren en los módulos de ejecu-
ción que pueden utilizar.

La estación de trabajo permite emplear todos los módulos disponibles: secuencial,
AVX, OpenMP y CUDA. En cambio, la Jetson TX2 incorpora una CPU ARM que
no soporta instrucciones AVX, por lo que no puede ejecutar dicho módulo; adicional-
mente, sus capacidades de paralelismo son diferentes a las de la estación de trabajo, lo
que modifica el comportamiento del módulo OMP. Estas diferencias permiten verificar
que el sistema de calendarización detecta automáticamente los módulos disponibles
en cada plataforma, evita el uso de módulos incompatibles (como el módulo AVX) y
redistribuye la carga de trabajo sin requerir intervención del usuario.

Capítulo 4 65

En resumen, la combinación seleccionada de plataformas permite validar el siste-
ma de calendarización en condiciones de alto rendimiento, recursos limitados, hete-
rogeneidad arquitectónica extrema, disponibilidad desigual de módulos y diferentes
sistemas operativos.

Esta diversidad asegura una evaluación realista y sólida del desempeño del sistema
de calendarización implementado. A continuación, se presentan las especificaciones
técnicas de las plataformas:

Estación de trabajo CUDA:

• GPU: GA104 [GeForce RTX 3070 Lite Hash Rate] 64-bits
• CPU: 13th Gen Intel® Core i9-13900K 64-bits
• Memoria RAM: 31 GB 64-bits SRAM

NVIDIA Jetson TX2:

• GPU: Arquitectura NVIDIA Pascal con 256 NVIDIA CUDA cores
• CPU: Dual-Core Nvidia Denver 2 64-bits CPU y Procesador Quad-Core

Arm® Cortex®-A57 MPCore
• Memoria RAM: 8 GB 128-bits LPDDR4 59.7 GB/s

4.2 Pruebas preliminares
Antes de realizar las pruebas de calendarización, fue necesario llevar a cabo un conjun-
to de pruebas preliminares destinadas a validar la correcta operación de los módulos
de ejecución con y sin la extrapolación de Romberg, así como establecer algunas con-
diciones para los experimentos posteriores. Estas pruebas se enfocan en analizar tres
aspectos fundamentales: la complejidad computacional de las funciones del bench-
mark, el mínimo número de puntos de integración para obtener un error numérico
aceptable, y el efecto de la extrapolación de Romberg en la precisión numérica y la
reducción del tiempo de ejecución.

En conjunto, estas pruebas proporcionan una base sólida para comprender el com-
portamiento numérico de la biblioteca de integrales multidimensionales, asegurando
que las configuraciones elegidas para las etapas posteriores representen un equilibrio
adecuado entre precisión y eficiencia computacional.

4.2.1 Pruebas para evaluar la complejidad de las funciones del
benchmark de integrales multidimensionales

Con el objetivo de seleccionar una función adecuada para realizar las pruebas de
calendarización, se evaluó la complejidad computacional de cada una de las cinco
funciones contenidas en el benchmark de integrales multidimensionales, las cuales
poseen estructuras algebraicas y grados de dificultad diferentes. Para ello, se realizaron
ejecuciones utilizando exclusivamente los módulos implementados con la regla de

66 Pruebas

cuadratura de Gauss-Kronrod, sin aplicar la extrapolación de Romberg, dentro de un
rango de 40 a 50 puntos de integración. Las pruebas se efectuaron únicamente en seis
dimensiones, con el propósito de observar con mayor claridad la complejidad de cada
función, dado que aumentar las dimensiones incrementa significativamente el costo
computacional. El análisis de estos resultados permitió comparar de forma objetiva
el tiempo requerido por cada función bajo condiciones controladas y homogéneas.

La Tabla 4.1 presenta las funciones del benchmark y el tiempo (s) que tardaron
en evaluarse en cada módulo de ejecución en relación con el número de puntos. Cada
columna (Función 1.1 – Función 1.5) corresponde a una función y los resultados se
agrupan por módulo:

Secuencial: implementación pura en CPU sin paralelismo ni vectorización.
CUDA: ejecución paralela en GPU utilizando cómputo masivamente paralelo.
OMP-E: ejecución paralela en CPU empleando únicamente los núcleos de efi-
ciencia.
OMP-P: ejecución paralela en CPU empleando únicamente los núcleos de ren-
dimiento.
AVX: implementación vectorizada por hardware SIMD usando instrucciones
AVX.

Cada sección presenta los tiempos correspondientes a cinco puntos de integración
consecutivos (46–50), lo que permite comparar la complejidad y el comportamiento
de las funciones en todos los módulos de ejecución, evitando sesgos que podrían surgir
si se evaluaran únicamente en un módulo.

A partir de los datos presentados en la Tabla 4.1, se determinó que:

La Función 1.1 presenta los tiempos de ejecución más bajos en todos los mó-
dulos. Su crecimiento, con respecto al número de puntos, es casi perfectamente
proporcional, lo que confirma que el costo por evaluación es mínimo y estable.
La Función 1.5 resulta ser ligeramente más costosa que la Función 1.1, pero
claramente menos costosa que las demás funciones. Esto indica que el integrando
de la Función 1.5 agrega cierta complejidad adicional respecto a la Función 1.1,
pero no presenta términos altamente costosos. El patrón se mantiene estable en
todas las arquitecturas, lo que confirma una complejidad baja a media.
La Función 1.4 ocupa un punto intermedio entre las funciones. Su crecimiento
es suave y coherente, lo cual apunta a una complejidad estable y relativamente
menor en comparación con las Funciones 1.2 y 1.3.
Los tiempos de la Función 1.3 son sistemáticamente mayores que los de las Fun-
ciones 1.1, 1.4 y 1.5, y son cercanos a los de la Función 1.2, aunque ligeramente
menores. Esto indica una complejidad aritmética elevada pero no extrema.
La Función 1.2 es consistentemente la función más costosa en la mayoría de los
módulos. La marcada diferencia en tiempo respecto a otras funciones evidencia
que su complejidad aritmética es significativamente mayor.

Capítulo 4 67

Tabla 4.1: Funciones del benchmark de integrales multidimensionales evaluadas en
6 dimensiones, en estación de trabajo CUDA. Tiempo de ejecución (s).

Puntos Función 1.1 Función 1.2 Función 1.3 Función 1.4 Función 1.5
SECUENCIAL
46 75.3996625 936.0831740 809.1952620 238.0729600 276.2268660
47 85.7801670 1072.7830750 918.7347710 272.3382770 311.3526115
48 97.2724690 1215.6837025 1041.5524930 308.9656615 354.3307145
49 109.9852875 1379.2441440 1177.5097000 349.2575320 401.5813935
50 124.1955935 1549.0077680 1329.3573790 394.9378110 447.0571705
CUDA
46 3.3083423 43.8635459 46.9730884 11.1234946 8.3254663
47 3.8602425 47.9857967 52.0492519 12.8510994 9.1125629
48 4.1145525 51.1187600 55.4455836 13.6634206 9.6894928
49 5.0105843 66.9855101 71.7827684 17.3861715 12.7275292
50 5.3468530 71.0629356 76.2570657 18.4159402 13.5162827
OMP-E
46 17.5718030 154.2491160 114.4462040 40.8227235 47.5153235
47 19.3367120 172.0041920 127.7702755 47.0031900 55.1497895
48 20.9470510 190.2397720 141.4722120 50.5358580 59.6946905
49 27.9068520 281.7533230 210.9048005 71.9929870 87.9230165
50 32.3194350 310.0759610 230.7351250 79.7889495 94.8209015
OMP-P
46 8.7982325 101.4547705 87.9471200 28.6811405 32.2358530
47 9.8808690 114.4845110 98.4313410 32.4126835 36.1624040
48 11.0473450 127.7699575 109.9139960 36.2801730 40.5722820
49 14.5778090 170.1227050 146.5415880 47.6676100 53.2759140
50 16.2536900 189.5077510 163.3546610 53.1579585 58.9326380
AVX
46 70.2210900 929.1938370 813.6420780 232.5348960 268.7045565
47 80.0087370 1062.7284845 923.7070030 264.1679865 304.7978095
48 90.2645070 1206.1304360 1044.9015930 298.0131675 343.3589055
49 102.2595550 1355.8468980 1180.5045915 337.5464170 391.4487065
50 115.5569825 1536.1999955 1334.8980040 381.4114960 438.6309785

La elevada complejidad de la Función 1.2 se debe a su comportamiento altamen-
te oscilatorio, como se muestra en la Figura 4.1a. Esta característica la convierte,
en principio, en una candidata adecuada para las pruebas de calendarización y pa-
ra la estimación del error numérico: al tratarse de la función más compleja, lograr
una reducción en el tiempo de ejecución y obtener un error aceptable implicaría que
las demás funciones, de menor complejidad, también podrían evaluarse de manera
eficiente sin perder precisión numérica.

Sin embargo, se observó que, debido a su elevada complejidad, los algoritmos de
integración empleados en este trabajo no permiten reducir de forma significativa el
tiempo de ejecución sin comprometer la precisión del resultado. Como consecuencia,
esta función fue descartada como caso de prueba principal para los calendarizadores
implementados, ya que no ofrece una mejora tangible en términos de optimización
del desempeño.

68 Pruebas

(a) Función 1.2 (b) Función 1.3

Figura 4.1: Funciones del benchmark de integrales multidimensionales.

En su lugar, se eligió la Función 1.3 como representante de una función lo su-
ficientemente compleja pero abordable. Su comportamiento presenta una oscilación
más suave, como se ilustra en la Figura 4.1b, lo que permite observar reducciones
significativas en el tiempo de ejecución sin comprometer la precisión del resultado.
Si el sistema de calendarización propuesto es capaz de optimizar correctamente la
evaluación de la Función 1.3, también podrá manejar de manera eficiente las otras
tres funciones restantes del benchmark (Funciones 1.1, 1.4 y 1.5), las cuales presentan
un menor grado de complejidad.

4.2.2 Pruebas para estimar el mínimo número de puntos para
un error aceptable

El propósito de estas pruebas es estimar el número mínimo de puntos de integra-
ción necesarios para alcanzar un error numérico aceptable en el cálculo de integrales
multidimensionales. En función del dominio del problema, el error puede ser ⩽ 10−4,
tomando como referencia la convergencia de los resultados obtenidos en los distintos
módulos de ejecución.

Se realizaron pruebas independientes con los módulos de ejecución (CUDA, OMP y
AVX) disponibles en la biblioteca de integrales multidimensionales, usando la Función
1.3, sin aplicar la extrapolación de Romberg, con el fin de determinar la precisión del
resultado que ofrece la cuadratura de Gauss-Kronrod. El rango de prueba comprendió
desde 125 hasta 129 puntos de integración, permitiendo observar la evolución del error
conforme se incrementa el número de puntos.

La Tabla 4.2 presenta los resultados de la integral para cada número de puntos.
Los datos están organizados en bloques, cada bloque corresponde a una dimensión
específica: 3, 4, 5 y 6 dimensiones. Las filas de cada bloque corresponden a los números
de puntos evaluados (125–129) y reportan el resultado numérico resultante al aplicar

Capítulo 4 69

la cuadratura de Gauss-Kronrod con ese número de puntos. Por último, cada columna
representa el módulo de ejecución que evaluó la integral (CUDA, OMP y AVX).

Tabla 4.2: Error numérico de la Función 1.3, evaluada en estación de trabajo
CUDA usando la cuadratura de Gauss-Kronrod.

Puntos CUDA OMP AVX
3 Dimensiones
125 0.166292299805 0.166292299805 0.166292299805
126 0.166292235618 0.166292235618 0.166292235618
127 0.166292172938 0.166292172938 0.166292172938
128 0.166292111719 0.166292111719 0.166292111719
129 0.166292051917 0.166292051917 0.166292051917
4 Dimensiones
125 0.090418755438 0.090418755438 0.090418755437
126 0.090418698747 0.090418698746 0.090418698746
127 0.090418643388 0.090418643388 0.090418643387
128 0.090418589320 0.090418589320 0.090418589320
129 0.090418536503 0.090418536503 0.090418536503
5 Dimensiones
125 0.048806937502 0.048806937495 0.048806937499
126 0.048806884346 0.048806884339 0.048806884318
127 0.048806832464 0.048806832457 0.048806832400
128 0.048806781811 0.048806781803 0.048806781808
129 0.048806732352 0.048806732344 0.048806732349
6 Dimensiones
125 0.025751755724 0.025751754079 0.025751754869
126 0.025751706296 0.025751704559 0.025751705400
127 0.025751658139 0.025751656314 0.025751657183
128 0.025751611139 0.025751609216 0.025751564539
129 0.025751565567 0.025751563564 0.025751520330

En todos los casos, los resultados numéricos obtenidos por los módulos son idén-
ticos o prácticamente idénticos (sólo hay diferencias en el último dígito debido al
redondeo de doble precisión). Esto indica que:

Todos los módulos de ejecución implementan correctamente la regla de cuadra-
tura de Gauss-Kronrod.

No existe pérdida de precisión atribuible a diferencias en paralelismo o vectori-
zación.

El cálculo de la integral es estable y depende únicamente del número de puntos,
no del módulo empleado.

Al comparar los resultados, fue posible analizar la evolución del error numérico
para los distintos números de puntos de integración. En particular, se observó que:

Para 125, 126 y 127 puntos, el error disminuye, pero lo hace en el orden de 10−7

a 10−8 por incremento de un punto.

70 Pruebas

A partir de 128 puntos, las mejoras adicionales se reducen prácticamente al
orden del sexto decimal.
Las diferencias entre CUDA, OMP y AVX se mantienen iguales hasta el sexto
decimal, lo que indica que el resultado ya se encuentra en una zona de estabilidad
numérica.

Este comportamiento sugiere que el método de integración alcanza una región en
la que incrementar el número de puntos deja de generar mejoras significativas en la
precisión. Por ello, se seleccionó como referencia el número mínimo de puntos a partir
del cual el error deja de disminuir de manera apreciable: 128. Este número de puntos
proporciona una precisión de 10−6, dentro del margen aceptable, sin necesidad de
incrementar el costo computacional. Además, es un punto de equilibrio óptimo entre
exactitud y eficiencia.

Estimación del error numérico aplicando la extrapolación de Romberg

Una vez obtenido el error numérico usando la cuadratura de Gauss-Kronrod, se pro-
cedió a realizar una segunda serie de pruebas añadiendo el método de extrapolación
de Romberg, con el objetivo de evaluar su impacto en la precisión y el tiempo de
ejecución. Este conjunto de experimentos utilizó la misma función de prueba y los
mismos módulos de ejecución, manteniendo las condiciones de prueba previamente
establecidas para asegurar una comparación justa de los resultados.

La extrapolación de Romberg se implementó con el fin de reducir el tiempo de eje-
cución, manteniendo una precisión aceptable en los resultados al evaluar las integrales
multidimensionales. A partir de las aproximaciones calculadas mediante la cuadratu-
ra de Gauss-Kronrod con distintos números de puntos, el método de Romberg estima
un valor límite que se aproxima al resultado exacto mediante una secuencia de re-
finamientos sucesivos. De esta manera, se logra una corrección sistemática del error
de truncamiento, permitiendo alcanzar niveles de precisión comparables a los de una
cuadratura más densa, pero con un número considerablemente menor de evaluaciones
de la función.

En estas pruebas, se redujo el número de puntos de integración a un rango de 36
a 40, con el propósito de evaluar si la extrapolación de Romberg permite conservar
una precisión aceptable, al mismo tiempo que disminuye el tiempo de ejecución.

La Tabla 4.3 presenta los resultados al integrar la Función 1.3 mediante la cuadra-
tura de Gauss-Kronrod combinada con la extrapolación de Romberg. La tabla sigue
la misma estructura de la Tabla 4.2, se divide en cuatro bloques correspondientes a 3,
4, 5 y 6 dimensiones. Las filas, de cada bloque, corresponden a los números de puntos
utilizados (36–40) y las columnas representan los módulos de ejecución que evaluaron
la integral (CUDA, OMP y AVX).

Esta organización permite observar con claridad que el error numérico comienza
a estabilizarse a partir de 40 puntos de integración. En ese punto, la extrapolación
de Romberg produce un error aproximado de 10−4, valor que, aunque ligeramente
superior al obtenido sin aplicar extrapolación, se considera aceptable dentro de los

Capítulo 4 71

márgenes definidos en esta tesis para mantener un equilibrio entre precisión y eficien-
cia computacional.

Tabla 4.3: Error numérico de la Función 1.3, evaluada en estación de trabajo
CUDA usando la cuadratura de Gauss-Kronrod y la extrapolación de Romberg.

Puntos CUDA OMP AVX
3 Dimensiones
36 0.166335717828 0.166335717828 0.166335717828
37 0.166333229263 0.166333229263 0.166333229263
38 0.166330931258 0.166330931258 0.166330931258
39 0.166328804849 0.166328804849 0.166328804849
40 0.166326833371 0.166326833371 0.166326833371
4 Dimensiones
36 0.090457281921 0.090457281921 0.090457281921
37 0.090455062320 0.090455062320 0.090455062320
38 0.090453014013 0.090453014013 0.090453014013
39 0.090451119806 0.090451119806 0.090451119806
40 0.090449364567 0.090449364567 0.090449364567
5 Dimensiones
36 0.048844879520 0.048844879520 0.048844879520
37 0.048842446717 0.048842446717 0.048842446717
38 0.048841175414 0.048841175414 0.048841175414
39 0.048838629778 0.048838629778 0.048838629778
40 0.048837194702 0.048837194702 0.048837194702
6 Dimensiones
36 0.025778016783 0.025778016785 0.025778016785
37 0.025776259169 0.025776259164 0.025776259164
38 0.025775398725 0.025775398727 0.025775398717
39 0.025774084951 0.025774084950 0.025774084940
40 0.025773357342 0.025773357345 0.025773357345

El error obtenido (10−4) confirma que el método de extrapolación de Romberg
permite obtener una precisión adecuada con un número de puntos considerablemente
menor, lo cual representa una reducción significativa en el costo computacional. El
tiempo de ejecución registrado para 40 puntos con la extrapolación de Romberg fue
notablemente inferior al correspondiente a 128 puntos sin ella, lo que sugiere una
ganancia de eficiencia importante. No obstante, el análisis detallado de estos tiempos
y de la influencia de las estrategias de calendarización sobre dicho rendimiento se
aborda en el siguiente capítulo (véase Sección 5.1).

4.3 Pruebas de calendarización
Una vez verificado que el error numérico se encuentra dentro del margen aceptable
y determinado el número de puntos necesarios para alcanzarlo (128 puntos producen
un error de 10−6 y 40 puntos alcanzan un error de 10−4), se procedió a evaluar el
comportamiento de las diferentes estrategias de calendarización implementadas. El
objetivo de estas pruebas es analizar la eficiencia de cada estrategia en la asignación de

72 Pruebas

puntos de integración entre los distintos módulos disponibles, considerando escenarios
con diferentes dimensiones y arquitecturas de hardware.

Cada calendarizador fue probado tanto en la estación de trabajo CUDA como en la
Jetson TX2, lo que permitió analizar su comportamiento en plataformas heterogéneas
con diferentes capacidades de cómputo. Todas las pruebas se realizaron usando la
misma función de prueba (Función 1.3).

4.3.1 Tablas de tiempo para alimentar los calendarizadores

Con el propósito de generar información de referencia que permita a los calenda-
rizadores seleccionar de forma automática el módulo de ejecución más eficiente. Se
construyeron tablas de tiempos de ejecución específicas para cada plataforma: esta-
ción de trabajo CUDA y Jetson TX2. Estas tablas alimentan las tres estrategias de
calendarización, implementadas y descritas en el capítulo anterior, ya que permiten
identificar, para cada punto de integración, qué módulo ofrece el mejor desempeño en
relación a las dimensiones de la integral y a la plataforma utilizada.

Para crear dichas tablas se realizaron pruebas de tiempo en los cuatro módulos
de ejecución (Secuencial, CUDA, OpenMP y AVX), realizando las mediciones desde
el punto 1 hasta el punto 40. Todas las pruebas se efectuaron sin aplicar la extrapo-
lación de Romberg, con el fin de evaluar el tiempo de ejecución de la cuadratura de
Gauss-Kronrod en cada módulo sin el costo de tiempo computacional que agrega la
extrapolación.

Las plataformas permitieron analizar el comportamiento del sistema bajo entornos
heterogéneos, donde las capacidades de cómputo y los módulos disponibles varían sig-
nificativamente. En particular, la Jetson TX2 no cuenta con soporte para instrucciones
AVX, lo que representa un escenario ideal para observar cómo los calendarizadores se
adaptan automáticamente ante la ausencia de un módulo específico.

Con los tiempos de ejecución obtenidos, se generaron las tablas de tiempo con es-
tructura N ·M , donde N representa el número de puntos de integración (del 1 al 40)
y M el número de módulos de ejecución disponibles. Estas tablas fueron construidas
individualmente para cada plataforma (Estación de trabajo CUDA y Jetson TX2) y
a su vez para cada dimensión (3D, 4D, 5D y 6D), con el fin de capturar las variacio-
nes de desempeño asociadas tanto al crecimiento dimensional como a las diferencias
arquitectónicas del hardware. En el caso de la Jetson TX2, las tablas diseñadas para
esta plataforma no incluyen el módulo AVX.

Los calendarizadores utilizan esta información como entrada para determinar el
módulo de ejecución más eficiente para cada punto. De este modo, el proceso de
integración se optimiza.

A continuación, se muestra un fragmento de cada tabla construida. La Tabla 4.4
presenta las tablas de tiempo diseñadas para la estación de trabajo CUDA. Su es-
tructura permite comparar, para un mismo número de puntos, el desempeño de los
módulos de ejecución (SEC, CUDA, OMP-E, OMP-P y AVX). La primera columna
indica el número de puntos y las demás columnas indican los módulos de ejecución

Capítulo 4 73

empleados. La tabla se divide en cuatro bloques, correspondientes a 3, 4, 5 y 6 di-
mensiones, cada bloque representa el fragmento de una tabla de tiempo. Dentro de
cada bloque se muestran los tiempos obtenidos para cinco puntos de integración con-
secutivos (36–40). Esto permite identificar patrones importantes:

El módulo CUDA es el más rápido, especialmente en altas dimensiones.
Los módulos AVX y SEC muestran tiempos similares, ya que las operaciones
vectoriales no son lo suficientemente explotadas en este caso.
Los módulos OMP-E y OMP-P presentan una aceleración moderada respecto
al módulo secuencial, pero inferior al módulo CUDA.
La diferencia entre 3 y 6 dimensiones ilustra el crecimiento exponencial del costo
computacional al aumentar la dimensionalidad.

Tabla 4.4: Fragmento de las tablas de tiempo (s) para alimentar los
calendarizadores en estación de trabajo CUDA.

Puntos SEC CUDA OMP-E OMP-P AVX
3 Dimensiones
36 0.0081250 0.0005965 0.0011250 0.0007960 0.0027980
37 0.0058765 0.0006365 0.0011495 0.0008070 0.0027135
38 0.0039605 0.0006535 0.0011470 0.0008675 0.0030305
39 0.0102905 0.0006735 0.0011780 0.0008685 0.0031190
40 0.0129425 0.0006700 0.0012575 0.0009020 0.0033490
4 Dimensiones
36 0.1081705 0.0063280 0.0201370 0.0144610 0.1051795
37 0.1230435 0.0083885 0.0217275 0.0157150 0.1173515
38 0.1318860 0.0086055 0.0235115 0.0168765 0.1338460
39 0.1460755 0.0092070 0.0253470 0.0182765 0.1454455
40 0.1614300 0.0094480 0.0271755 0.0196750 0.1615425
5 Dimensiones
36 4.5701550 0.2528100 0.8296870 0.5664170 4.6040615
37 5.2374090 0.3386130 0.9451825 0.6310175 5.2247210
38 5.9664955 0.3576945 1.0418870 0.6998535 5.9626540
39 6.8116815 0.3928375 1.1676685 0.7778680 6.8369160
40 7.7493995 0.4155625 1.2766010 0.8599085 7.7826535
6 Dimensiones
36 188.1915175 9.7744500 33.8972150 23.2697750 188.7730510
37 221.3589945 13.9541845 38.5375195 26.6600405 221.5038270
38 259.1308680 15.1307505 43.8080475 30.4321160 259.7708710
39 302.2779010 17.0622010 50.5999200 34.5655860 302.2110690
40 351.6011680 18.4122340 56.5778165 39.2335565 350.7724255

En conjunto, esta tabla cumple dos funciones fundamentales en el sistema:

1. Proveer los datos necesarios para que los calendarizadores puedan decidir qué
módulo utilizar para cada punto, en la estación de trabajo CUDA.

2. Permitir analizar el comportamiento relativo de cada módulo en función del
número de puntos, la dimensión del problema y los recursos de la plataforma.

74 Pruebas

La Tabla 4.5 presenta un fragmento de cada tabla de tiempo generada específica-
mente para la Jetson TX2. La organización de la tabla mantiene la misma estructura
empleada para la Tabla 4.4, con la diferencia de que no incluye el módulo AVX, ya que
la plataforma no soporta instrucciones vectoriales AVX. Esta organización facilitar la
comparación entre plataformas.

El módulo CUDA posee una aceleración con respecto al módulo SEC, pero de
forma menos marcada que en la estación de trabajo CUDA, debido a la menor
capacidad de cómputo de la GPU integrada en la Jetson TX2.
Los módulos OMP-E y OMP-P muestran mejoras moderadas, expresando las
limitaciones del procesador ARM en cómputo intensivo.
El módulo SEC presenta tiempos altos en dimensiones elevadas, evidenciando
el crecimiento exponencial del costo de la integral.
La ausencia del módulo AVX modifica la distribución de tiempos respecto a
la estación de trabajo, generando un escenario más restringido en términos de
heterogeneidad.

Tabla 4.5: Fragmento de las tablas de tiempo (s) para alimentar los
calendarizadores en Jetson TX2.

Puntos SEC CUDA OMP-E OMP-P
3 Dimensiones
36 0.0283380 0.0822570 0.0147250 0.0287100
37 0.0308645 0.0843120 0.0164210 0.0313865
38 0.0332555 0.0908845 0.0171880 0.0335250
39 0.0361240 0.0863445 0.0191180 0.0362610
40 0.0387175 0.0837800 0.0199990 0.0390635
4 Dimensiones
36 1.3844420 0.1363845 0.5233365 1.3850520
37 1.5470000 0.1641760 0.6049235 1.5471000
38 1.7177325 0.1738900 0.6496380 1.7177350
39 1.9148380 0.1883555 0.7182320 1.9102840
40 2.1073190 0.1852710 0.7936845 2.1065165
5 Dimensiones
36 63.5042890 4.0377040 22.0294770 63.3678255
37 72.8950990 5.3386920 25.3700260 72.7052670
38 83.5235035 5.5025570 29.4548390 83.3140820
39 95.0809615 6.0663860 32.7650515 94.8652030
40 107.4584325 6.3487945 36.9740870 107.3620445
6 Dimensiones
36 2798.6301325 155.2763245 940.2878875 2795.7039895
37 3286.2258590 218.5440930 1147.9061050 3278.4770255
38 3872.0503585 237.0778720 1333.7556295 3859.5540160
39 4524.1764865 269.5824400 1513.0280615 4509.6641820
40 5250.9282605 290.8073185 1761.0665985 5241.1169100

Capítulo 4 75

Los propósitos de esta tabla son:

1. Proveer los tiempos de ejecución necesarios para que los calendarizadores pue-
dan decidir qué módulo utilizar para cada punto, considerando únicamente los
módulos disponibles en la Jetson TX2. De este modo, el sistema se adapta
automáticamente a las limitaciones de hardware sin intervención del usuario.

2. Permitir analizar el impacto del entorno embebido sobre el rendimiento de la
biblioteca de integrales multidimensionales.

Estos fragmentos representan sólo una parte de las tablas completas almacenadas
para el sistema de calendarización, las cuales contienen los tiempos de ejecución para
todos los puntos de integración requeridos (1–40).

Las Figuras 4.2 presentan las curvas de tiempo de ejecución obtenidas al evaluar
la Función 1.3 utilizando los módulos de ejecución disponibles en la estación de tra-
bajo CUDA. Todas las gráficas fueron generadas a partir de las tablas de tiempos
completas, por lo que reflejan el comportamiento real de cada módulo para todos los
puntos de integración considerados.

Las figuras organizan los resultados por dimensión: 3D (Figura 4.2a), 4D (Figura
4.2b), 5D (Figura 4.2c) y 6D (Figura 4.2d), permitiendo observar de manera clara
cómo crece el tiempo de ejecución conforme aumentan los puntos de integración y las
dimensiones. A partir de las figuras, se observa que:

El módulo CUDA presenta los menores tiempos conforme el número de puntos
aumenta en todas las dimensiones, evidenciando la ventaja de una GPU de alto
rendimiento cuando se trata de cargas altamente paralelizables.

El módulo AVX presenta un desempeño superior al del módulo SEC en 3D
(Figura 4.2a); sin embargo, a medida que aumenta la dimensionalidad, su ren-
dimiento se aproxima al del módulo SEC y deja de ofrecer mejoras apreciables.
Esto se debe a que su implementación no es completamente paralelizable.

Los módulos OMP-E y OMP-P alcanzan mejoras moderadas respecto los mó-
dulos SEC y AVX, pero no logran superar al módulo CUDA.

El módulo SEC exhibe el crecimiento de tiempo más pronunciado.

Por otro lado, las Figuras 4.3 muestran el comportamiento de los módulos de
ejecución disponibles en la Jetson TX2. La organización es la misma: 3D (Figura
4.3a), 4D (Figura 4.3b), 5D (Figura 4.3c) y 6D (Figura 4.3d). En las figuras se observa
que:

El módulo CUDA posee los tiempos de ejecución más grandes en 3D (Figura
4.3a), pero ofrece una aceleración notable respecto al módulo SEC en las demás
dimensiones, no obstante, la separación entre ambas curvas es significativamente
menor que en la estación de trabajo. Esto refleja la diferencia entre una GPU
integrada (Jetson TX2) y una GPU dedicada de escritorio.

76 Pruebas

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.2: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 en
estación de trabajo CUDA.

Capítulo 4 77

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.3: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 en
Jetson TX2.

78 Pruebas

El módulo OMP-P no proporcionan mejoras significativas, su desempeño es
bastante cercano al módulo SEC, debido a las restricciones del procesador ARM
en tareas de cómputo intensivo con núcleos de rendimiento.
El módulo OMP-E presenta el mejor desempeño en 3D (Figura 4.3a) y un
desempeño superior al de los módulos OMP-P y SEC, pero sin superar el módulo
CUDA, en las demás dimensiones.
El tiempo del módulo SEC crece rápidamente con el número de dimensiones,
volviéndose demasiado grande en 5D (Figura 4.3c) y 6D (Figura 4.3d).

En todas las gráficas, tanto en la estación de trabajo como en la Jetson TX2, se
observa un patrón común: el tiempo de ejecución crece de forma acelerada a medi-
da que aumentan los puntos de integración y las dimensiones. Las curvas permiten
identificar visualmente las diferencias entre plataformas y muestran cómo la dispo-
nibilidad o ausencia de módulos especializados (como CUDA o AVX) condiciona el
rendimiento general del sistema de calendarización.

4.3.2 Pruebas de tiempo de ejecución usando el calendariza-
dor estático secuencial

En esta sección se presentan los resultados obtenidos al realizar las pruebas con el
calendarizador estático secuencial (SCHED SS). Las mediciones se realizaron en am-
bas plataformas, utilizando la Función 1.3 y el rango de 1 a 40 puntos de integración,
aplicando la extrapolación de Romberg.

El objetivo de estas pruebas es cuantificar el tiempo total de ejecución y analizar el
comportamiento del sistema de calendarización, contrastando el desempeño individual
de cada módulo de ejecución con el obtenido por el calendarizador estático secuencial.

Las Figuras 4.4 y 4.5 muestran los tiempos de ejecución al evaluar la Función 1.3
en la estación de trabajo CUDA y en la Jetson TX2.

Las Figuras 4.4, correspondientes a los tiempos de ejecución en la estación de
trabajo CUDA, organizan las gráficas por dimensión: 3D (Figura 4.4a), 4D (Figura
4.4b), 5D (Figura 4.4c) y 6D (Figura 4.4d), lo que facilita analizar cómo se comporta
el calendarizador en distintas dimensiones. A partir de esto, se observa que:

El módulo CUDA continúa mostrando el mejor rendimiento individual, siendo
la curva más baja en todas las dimensiones.
El calendarizador SCHED-SS sigue de cerca el desempeño del módulo CUDA
cuando la carga computacional crece considerablemente, lo cual ocurre princi-
palmente en 5D (Figura 4.4c) y 6D (Figura 4.4d). Además, su desempeño es
mejor comparado con los módulos SEC, AVX, OMP-P y OMP-E.

Las Figuras 4.5, organizadas por dimensión: 3D (Figura 4.5a), 4D (Figura 4.5b),
5D (Figura 4.5c) y 6D (Figura 4.5d), muestran los tiempos de ejecución en la Jetson TX2,
donde el comportamiento cambia significativamente debido a las restricciones de la
plataforma:

Capítulo 4 79

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.4: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador estático secuencial,
en estación de trabajo CUDA.

80 Pruebas

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.5: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizador estático secuencial,
en Jetson TX2.

Capítulo 4 81

El módulo CUDA continúa siendo más eficiente que los módulos que usan la
CPU en 4D(Figura 4.5b), 5D (Figura 4.5c) y 6D (Figura 4.5d), sin embargo
continua teniendo tiempos de ejecución elevados en 3D (Figura 4.5a).
El calendarizador SCHED-SS se ajusta al rendimiento de la Jetson, combinan-
do los módulos disponibles. No obstante, su desempeño queda limitado por la
menor capacidad de procesamiento de la CPU ARM y de la GPU integrada.
En 3D (Figura 4.5a) el calendarizador SCHED-SS posee el menor tiempo de
ejecución, cumpliendo el objetivo de reducir el tiempo a través de una estrategia
de calendarización.
En 5D (Figura 4.5c) y 6D (Figura 4.5d), el calendarizador SCHED-SS mantiene
un mejor desempeño en comparación con el módulo SEC, pero sigue de cerca
el rendimiento del módulo CUDA.

Estas figuras resultan fundamentales para validar el funcionamiento del calenda-
rizador estático secuencial, ya que permiten comparar la estrategia de asignación con
los tiempos de cada módulo individual y muestran cómo el rendimiento del sistema
de calendarización surge de la adecuada combinación de los recursos disponibles.

La Tabla 4.6 presenta los tiempos de ejecución obtenidos con el calendarizador
estático secuencial en un rango de 36 a 40 puntos. Estos valores corresponden única-
mente a un subconjunto de puntos de integración y a las cuatro dimensiones evaluadas
(3D–6D), seleccionados con el propósito de ilustrar de manera compacta el compor-
tamiento del calendarizador en ambas plataformas: la estación de trabajo CUDA y
la Jetson TX2.

Todos los datos mostrados en esta tabla provienen directamente de las mismas
mediciones utilizadas para construir las gráficas de las Figuras 4.4 y 4.5. En las figuras,
los valores de tiempo se representan de forma visual para todos los puntos evaluados
(1–40), mientras que la tabla ofrece una vista concentrada que permite observar de
forma más clara la tendencia del calendarizador para un intervalo específico de puntos
de integración (36–40).

La tabla sirve como referencia numérica directa del comportamiento que aparece
representado en las curvas del calendarizador SCHED-SS dentro de las gráficas, mos-
trando cómo el tiempo de ejecución crece conforme aumenta el número de puntos de
integración y la dimensionalidad del dominio.

En general, las pruebas confirman que esta estrategia es adecuada para entornos
donde las condiciones de ejecución son estables y el costo de calendarización previa
se compensa con la reducción del tiempo total de cómputo.

4.3.3 Pruebas de tiempo de ejecución usando el calendariza-
dor dinámico secuencial

Los resultados obtenidos usando el calendarizador dinámico secuencial (SCHED DS)
muestran que este enfoque logra un desempeño muy similar al del calendarizador
estático secuencial en condiciones estables, con una ligera penalización en tiempo

82 Pruebas

Tabla 4.6: Pruebas realizadas en calendarizador estático secuencial usando la
Función 1.3 y la extrapolación de Romberg. Tiempo de ejecución (s)

Puntos Estación de
trabajo CUDA Jetson TX2

3 Dimensiones
36 0.0058130 0.0611985
37 0.0059520 0.0684210
38 0.0062590 0.0754485
39 0.0065900 0.0831530
40 0.0069075 0.0913880
4 Dimensiones
36 0.0583350 0.9736850
37 0.0661450 1.0948180
38 0.0746965 1.2114875
39 0.0772280 1.3468675
40 0.0838085 1.4856400
5 Dimensiones
36 1.7585130 28.1786615
37 2.0808835 33.4708585
38 2.4203720 39.0795090
39 2.7959825 45.2268855
40 3.1883440 51.7129405
6 Dimensiones
36 64.2720825 1029.1366955
37 78.3937330 1261.2886605
38 93.7072915 1512.0529185
39 111.0044350 1796.3995345
40 129.6988870 2104.5626530

debido al proceso de comparación que se realiza en cada iteración. Sin embargo,
dicha sobrecarga es mínima y se mantiene constante a lo largo de toda la ejecución.

Las Figuras 4.6 y 4.7 muestran la comparación de los tiempos de ejecución en la
estación de trabajo CUDA y en la Jetson TX2, contrastando los módulos individuales
frente al calendarizador dinámico secuencial.

En la estación de trabajo CUDA (Figuras 4.6), donde las gráficas están ordenadas
por dimensión: 3D (Figura 4.6a), 4D (Figura 4.6b), 5D (Figura 4.6c) y 6D (Figura
4.6d), el calendarizador SCHED-DS tiende a comportarse de manera similar al mó-
dulo CUDA, el cual tiene los menores tiempos de ejecución en cada dimensión. No
obstante, en 3D (Figura 4.6a) presenta ligeras irregularidades, debido a la variabilidad
introducida por la asignación dinámica. A partir de 4D (Figura 4.6b) y en adelante, la
curva del calendarizador SCHED-DS converge hacia una tendencia suave, dominada
por el costo acumulado de las evaluaciones.

En la Jetson TX2 (Figuras 4.7), donde las gráficas están ordenadas por dimensión:
3D (Figura 4.7a), 4D (Figura 4.7b), 5D (Figura 4.7c) y 6D (Figura 4.7d), el compor-
tamiento del calendarizador SCHED-DS en 3D (Figura 4.7a) es mejor en comparación
con los módulos individuales, cumpliendo el objetivo de reducir el tiempo.

Capítulo 4 83

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.6: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 usando
la extrapolación de Romberg: módulos VS calendarizador dinámico secuencial, en
estación de trabajo CUDA.

84 Pruebas

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.7: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 usando
la extrapolación de Romberg: módulos VS calendarizador dinámico secuencial, en
Jetson TX2.

Capítulo 4 85

Sin embargo, en dimensiones altas (5D (Figura 4.7c) y 6D (Figura 4.7d)), la curva
del calendarizador SCHED-DS muestra un desempeño similar al módulo CUDA, sin
agregar mejoras.

La Tabla 4.7 presenta un fragmento de los tiempos de ejecución obtenidos con el
calendarizador dinámico secuencial. Estos valores corresponden a los mismos datos
que se utilizaron para generar las gráficas mostradas en las Figuras 4.6 y 4.7; sin
embargo, aquí se resume únicamente el intervalo de puntos de integración de 36 a
40, con el fin de observar claramente el comportamiento del calendarizador en ambas
plataformas: la estación de trabajo CUDA y la Jetson TX2.

La estructura de la tabla se organiza por bloques, uno por cada dimensión del
problema (3D, 4D, 5D y 6D), permitiendo comparar directamente el crecimiento
del tiempo de ejecución conforme aumenta el número de puntos de integración y la
dimensionalidad del dominio.

En conjunto, esta tabla ofrece una vista sintetizada pero representativa del de-
sempeño del calendarizador dinámico, permitiendo relacionar cuantitativamente los
valores que se compararon visualmente en las figuras.

Tabla 4.7: Pruebas realizadas en calendarizador dinámico secuencial usando la
Función 1.3 y la extrapolación de Romberg. Tiempo de ejecución (s)

Puntos Estación de
trabajo CUDA Jetson TX2

3 Dimensiones
36 0.0057150 0.0846915
37 0.0059625 0.0937825
38 0.0062490 0.1205385
39 0.0065820 0.1324245
40 0.0069380 0.1258805
4 Dimensiones
36 0.0577000 0.9707205
37 0.0672020 1.0892880
38 0.0754635 1.2144655
39 0.0771860 1.3475005
40 0.0824145 1.4838455
5 Dimensiones
36 1.8011205 28.1653055
37 2.0921675 33.4641705
38 2.4201670 39.0657690
39 2.7949995 45.2000950
40 3.1875860 51.7072995
6 Dimensiones
36 64.2837270 1033.4060260
37 78.3934990 1265.6574855
38 93.7225400 1517.8290865
39 111.0416065 1804.1610285
40 129.7061360 2113.3271530

En términos generales, las pruebas confirman que el calendarizador dinámico se-
cuencial constituye una estrategia flexible y confiable, capaz de mantener una distri-

86 Pruebas

bución eficiente de las tareas con un costo computacional adicional despreciable, lo
que lo convierte en una alternativa viable cuando se busca adaptabilidad sin compro-
meter el rendimiento global.

4.3.4 Pruebas de tiempo de ejecución usando el calendariza-
dor estático concurrente

El calendarizador estático concurrente (SCHED SC) fue diseñado con el propósito de
aprovechar la concurrencia a nivel de hilos, evaluando dos puntos consecutivos de la
integral multidimensional en distintos módulos con espera activa, es decir, siempre
que los módulos correspondientes estuvieran disponibles. Sin embargo, durante las
pruebas se observó que este enfoque no logró mejorar los tiempos de ejecución con
respecto a los calendarizadores secuenciales. Por el contrario, en la mayoría de los casos
el rendimiento fue inferior, especialmente en las configuraciones de mayor dimensión.

Las Figuras 4.8 y 4.9 presentan los tiempos de ejecución obtenidos al usar el
calendarizador estático concurrente, tanto en la estación de trabajo CUDA como en
la Jetson TX2. Estas gráficas permiten analizar el desempeño de dicho calendarizador
frente a los módulos individuales.

El desempeño en la estación de trabajo CUDA (Figuras 4.8), donde las gráficas
están ordenadas por dimensión: 3D (Figura 4.8a), 4D (Figura 4.8b), 5D (Figura 4.8c)
y 6D (Figura 4.8d), muestra que:

El calendarizador SCHED-SC supera en rendimiento a los módulos SEC y AVX.
Esto se debe a que la concurrencia entre dos módulos de ejecución permite
repartir la carga de forma más equilibrada.
Los módulos CUDA, OMP-P y OMP-E tienen mejores tiempos de ejecución
a diferencia del calendarizador SCHED-SC, debido al overhead inherente a la
sincronización entre módulos concurrentes y a las restricciones de exclusión
mutua del calendarizador, lo que incrementa ligeramente su tiempo respecto a
los módulos paralelos individuales.

En la Jetson TX2 (Figuras 4.9), donde las gráficas están ordenadas por dimensión:
3D (Figura 4.9a), 4D (Figura 4.9b), 5D (Figura 4.9c) y 6D (Figura 4.9d), los resultados
muestran que:

En 3D (Figura 4.9a) el calendarizador SCHED-SC muestra un bajo desempeño,
siguiendo de cerca el comportamiento de los módulos SEC y OMP-P.
En 4D (Figura 4.9b), 5D (Figura 4.9c) y 6D (Figura 4.9d), donde el costo
computacional se incrementa considerablemente, el calendarizador SCHED-SC
supera a los módulos SEC y OMP-P y en algunos casos, al módulo OMP-E.
El módulo CUDA continua siendo el módulo con los mejores tiempos de eje-
cución, el calendarizador SCHED-SC no logra superarlo, la separación entre
ambas curvas es significativamente grande.

Capítulo 4 87

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.8: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 usando
la extrapolación de Romberg: módulos VS calendarizador estático concurrente, en
estación de trabajo CUDA.

88 Pruebas

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 4.9: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3 usando
la extrapolación de Romberg: módulos VS calendarizador estático concurrente, en
Jetson TX2.

Capítulo 4 89

La Tabla 4.8 presenta un fragmento representativo de los tiempos de ejecución
obtenidos con el calendarizador estático concurrente, tanto en la estación de trabajo
CUDA como en la Jetson TX2. Estos valores corresponden a los mismos datos que
se utilizaron para generar las gráficas mostradas en las Figuras 4.8 y 4.9.

El objetivo de esta tabla es mostrar de manera estructurada cómo se comporta
el calendarizador cuando combina dos módulos de ejecución de forma concurrente
para resolver las integrales multidimensionales. Los resultados se presentan para cinco
puntos de integración consecutivos (36–40), permitiendo observar la tendencia del
tiempo de cómputo conforme aumenta la carga y crece la complejidad del problema
en 3D, 4D, 5D y 6D.

Tabla 4.8: Pruebas realizadas en calendarizador estático concurrente usando la
Función 1.3 y la extrapolación de Romberg. Tiempo de ejecución (s)

Puntos Estación de
trabajo CUDA Jetson TX2

3 Dimensiones
36 0.0151475 0.2023605
37 0.0181585 0.2254015
38 0.0181555 0.2499150
39 0.0216875 0.2771290
40 0.0216970 0.3054160
4 Dimensiones
36 0.3653950 2.8283780
37 0.3733455 4.0554185
38 0.3819945 4.1832000
39 0.5252940 4.3109860
40 0.5363515 4.4378590
5 Dimensiones
36 13.2290310 122.3459580
37 13.5906915 127.6760570
38 13.9398545 133.4473490
39 20.7490085 139.5041090
40 21.1865920 145.8986720
6 Dimensiones
36 497.7480595 6279.4874210
37 513.7554920 6513.4717390
38 536.2696760 6775.9281455
39 850.6828590 7049.9691395
40 867.9491250 7359.7395700

90 Pruebas

Capítulo 5

Análisis

En este capítulo se presenta el análisis detallado de los resultados obtenidos a partir
de las pruebas descritas en el capítulo anterior. El objetivo es evaluar el desempeño
de los distintos módulos de ejecución, así como la efectividad de las estrategias de
calendarización implementadas para la integración multidimensional. El análisis se
centra en comparar la eficiencia, escalabilidad y adaptabilidad del sistema de calen-
darización en las plataformas heterogéneas utilizadas: una estación de trabajo CUDA
y una Jetson TX2.

La primera sección compara el cálculo de las integrales multidimensionales utili-
zando los módulos de ejecución con 128 puntos sin extrapolación frente al método de
extrapolación de Romberg aplicado con sólo 40 puntos. En esta parte se analiza la re-
ducción del tiempo de ejecución y el impacto en la precisión del resultado, destacando
cómo la extrapolación permite mantener errores dentro de márgenes aceptables con
un costo computacional significativamente menor.

La segunda sección aborda el desempeño de los calendarizadores propuestos. Se
realiza una comparación general entre las tres estrategias: estático secuencial, diná-
mico secuencial y estático concurrente, evaluando sus tiempos de ejecución en ambas
plataformas y resaltando sus ventajas y limitaciones. Finalmente, se analiza el im-
pacto de las estrategias de calendarización frente a la ejecución individual de los
módulos, considerando las aceleraciones obtenidas y su comportamiento frente a la
heterogeneidad de las plataformas.

En conjunto, este capítulo permite comprender la relación entre la complejidad
del método, la carga computacional y la arquitectura de ejecución, ofreciendo una
visión integral del desempeño del sistema de calendarización implementado.

5.1 Comparación: 128 puntos vs extrapolación de
Romberg

Las pruebas preliminares tuvieron como propósito evaluar la precisión y el compor-
tamiento de la biblioteca de integrales multidimensionales antes de aplicar las estra-
tegias de calendarización. Para este fin, se compararon dos enfoques distintos para el

91

92 Análisis

cálculo de las integrales: el primero utilizando 128 puntos de integración sin aplicar
la extrapolación de Romberg, y el segundo reduciendo el número de puntos a 40,
incorporando dicho método.

El enfoque con 128 puntos de integración utiliza únicamente la cuadratura de
Gauss-Kronrod, la cual garantiza una mayor precisión numérica, a diferencia de otras
cuadraturas. Sin embargo, este enfoque presenta un mayor tiempo de ejecución, de-
bido al elevado número de puntos. En contraste, el método con 40 puntos emplea,
además de la cuadratura de Gauss-Kronrod, la extrapolación de Romberg, una técni-
ca que permite disminuir el número de puntos. Esto mejora los tiempos de ejecución
y mantiene un error aceptable dentro de los margenes establecidos en esta tesis.

Como se muestra en las Tablas 4.2 y 4.3 (Sección 4.2.2), al reducir el número de
puntos e incorporar la extrapolación de Romberg se obtiene un error ligeramente su-
perior, 10−4, en comparación con el error de 10−6 obtenido al integrar con 128 puntos.
No obstante, esta diferencia se considera aceptable, debido a que la disminución en el
número de puntos produce una reducción notable en el tiempo de ejecución. En par-
ticular, el tiempo requerido para la integración usando la extrapolación de Romberg
corresponde sólo a una fracción del necesario para la versión de 128 puntos, lo que
representa una mejora significativa en eficiencia computacional sin comprometer en
exceso la exactitud del resultado.

Para evaluar el impacto de la extrapolación de Romberg en el desempeño de los
módulos de ejecución, se calcularon las aceleraciones relativas (Ecuación 5.1) de cada
módulo respecto al módulo CUDA evaluando 128 puntos, ya que éste representa la
referencia más rápida dentro de los módulos con 128 puntos.

A =
TCUDA, 128

TMOD,R40

, (5.1)

donde TCUDA,,128 corresponde al tiempo de ejecución del módulo CUDA al evaluar 128
puntos sin aplicar la extrapolación de Romberg, mientras que TMOD,,R40 representa
el tiempo de ejecución de los distintos módulos al evaluar 40 puntos con la extrapo-
lación de Romberg. El término MOD hace referencia a los módulos de la biblioteca
de integrales multidimensionales (Secuencial, CUDA, OpenMP y AVX).

El valor del parámetro A permite cuantificar el cambio en el rendimiento. Si A > 1,
el módulo presenta aceleración respecto al caso base; si A = 1, no se observa variación
en el tiempo de ejecución; y si A < 1, se produce una desaceleración, lo que indica
que el nuevo método es menos eficiente.

La Tabla 5.1 presenta las aceleraciones obtenidas para las distintas dimensiones.
La tabla se divide en dos secciones principales, correspondientes a las dos plataformas
de prueba: estación de trabajo CUDA y Jetson TX2. Cada fila de la tabla corresponde
a un módulo de ejecución, mientras que cada columna representa una dimensión del
problema (3D, 4D, 5D y 6D). De esta forma, las celdas contienen los valores numéricos
de aceleración alcanzados en cada caso.

Capítulo 5 93

Tabla 5.1: Aceleraciones de los módulos de ejecución usando la extrapolación de
Romberg tomando como referencia el módulo de ejecución CUDA con 128 puntos.

Módulos 3D 4D 5D 6D
Estación de trabajo CUDA

SEC 0.187 0.606 2.286 8.938
CUDA 1.034 9.924 40.558 152.259
OMP-P 0.809 3.296 13.181 51.595
OMP-E 1.156 4.718 19.083 75.638
AVX 0.156 0.602 2.284 8.958

Jetson TX2
SEC 0.524 0.928 3.473 13.447
CUDA 1.163 9.259 42.207 172.011
OMP-P 1.037 2.404 9.746 38.980
OMP-E 0.516 0.923 3.453 13.364

De acuerdo con los datos presentados en la Tabla 5.1, en la estación de trabajo
CUDA se observa que el módulo de ejecución CUDA alcanza una aceleración supe-
rior a 150× en seis dimensiones. Asimismo, los módulos OMP-P y OMP-E presentan
incrementos de rendimiento significativos, particularmente a partir de las cuatro di-
mensiones. Sin embargo, el módulo AVX, no alcanzó aceleraciones significativas y, en
algunos casos, incluso presentó tiempos de ejecución mayores que el módulo SEC. Es-
to se debe a que las instrucciones AVX permiten paralelizar únicamente operaciones
vectoriales a nivel de registro, es decir, procesar varios elementos en un mismo ciclo
de reloj, pero no aprovechan múltiples núcleos, ni dispositivos de cómputo. Además,
la sobrecarga asociada a la preparación de los datos y a la alineación de memoria
puede anular los beneficios del procesamiento vectorial cuando el número de puntos
es grande o las operaciones no son completamente vectorizables, como es el caso de
la función a integrar (véase Sección 22). El módulo AVX resulta ventajoso sólo para
integraciones de baja dimensionalidad o con un número reducido de puntos, donde el
acceso a memoria y el tamaño del vector no penalizan el rendimiento del módulo.

Por otro lado, en la Jetson TX2 se observan tendencias similares: el módulo de
ejecución CUDA presenta las mayores aceleraciones. No obstante, se identificó que el
módulo OMP-E, que emplea exclusivamente los núcleos de eficiencia, obtuvo tiem-
pos de ejecución inferiores a los del módulo OMP-P, el cual utiliza los núcleos de
rendimiento. Esta tendencia se explica por las características particulares de la ar-
quitectura heterogénea de la plataforma, donde los núcleos de eficiencia presentan un
consumo energético y una frecuencia más estables bajo cargas prolongadas. En con-
traste, los núcleos de rendimiento tienden a operar a frecuencias más altas durante
intervalos cortos, pero experimentan una rápida reducción de velocidad debido a la
gestión térmica y las limitaciones de energía del sistema integrado. Como resultado,
las ejecuciones paralelas en los núcleos de eficiencia mantienen un desempeño más
constante y sostenido, mientras que el uso intensivo de los núcleos de rendimiento
introduce variaciones y penalizaciones que aumentan el tiempo total de cómputo.

Las Figuras 5.1 y 5.2 muestran la comparación de los tiempos de ejecución obte-
nidos al evaluar la Función 1.3 en las dos plataformas de prueba: estación de trabajo
CUDA y Jetson TX2. En ambos casos, se contrastan los resultados de los módulos de

94 Análisis

ejecución al usar 128 puntos sin extrapolación frente a la extrapolación de Romberg
con 40 puntos.

(a) 3D (b) 4D

(c) 5D (d) 6D

Figura 5.1: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3: 128
puntos VS extrapolación de Romberg en estación de trabajo CUDA.

En la estación de trabajo CUDA (Figuras 5.1), las gráficas ordenadas por dimen-
sión: 3D (Figura 5.1a), 4D (Figura 5.1b), 5D (Figura 5.1c) y 6D (Figura 5.1d), indican
que la extrapolación de Romberg reduce de manera notable los tiempos de ejecución
para la mayoría de los módulos, en comparación con la integración realizada mediante
los módulos con 128 puntos.

En 3D (Figura 5.1a), los módulos SEC, OMP-P y AVX reducen su tiempo de
ejecución al emplear extrapolación de Romberg, mientras que el módulo CUDA
no presenta una disminución a considerar.
En 4D (Figura 5.1b), el beneficio es aún más evidente: los módulos paralelos
reducen su tiempo en un rango aproximado del 80 % al 90 %, destacando CUDA
y OMP-P, que logran los menores tiempos absolutos.
En 5D (Figura 5.1c) y 6D (Figura 5.1d), donde la carga computacional crece
exponencialmente con la dimensionalidad, la extrapolación de Romberg permi-
te mantener tiempos de ejecución controlados. Los módulos CUDA y OMP-P
muestran una reducción superior al 90 %, lo que confirma la eficacia del mé-
todo para disminuir el número de evaluaciones requeridas sin comprometer la
precisión del resultado.

En general, la extrapolación de Romberg demostró ser una estrategia efectiva
para acelerar los cálculos en entornos de alta capacidad computacional como la esta-

Capítulo 5 95

ción de trabajo CUDA, logrando reducciones notables en el tiempo de ejecución en
comparación con el uso directo de 128 puntos.

(a) 3D (b) 4D

(c) 5D (d) 6D

Figura 5.2: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3: 128
puntos VS extrapolación de Romberg en Jetson TX2.

En la Jetson TX2 (Figuras 5.2), las gráficas ordenadas por dimensión: 3D (Figu-
ra 5.2a), 4D (Figura 5.2b), 5D (Figura 5.2c) y 6D (Figura 5.2d), muestran que los
tiempos de ejecución son mayores debido a las limitaciones del hardware embebido,
pero la tendencia de mejora se mantiene en comparación con la integración realizada
mediante los módulos con 128 puntos.

En 3D (Figura 5.2a) y 4D (Figura 5.2b), los módulos CUDA y OMP-E reducen
sus tiempos de ejecución entre un 70 % y 85 %, evidenciando que la extrapola-
ción de Romberg también es beneficiosa en plataformas con menor número de
núcleos o menor frecuencia de reloj.
En 5D (Figura 5.2c) y 6D (Figura 5.2d), la diferencia entre ambas configura-
ciones se amplía considerablemente: el tiempo de ejecución del módulo CUDA,
con 40 puntos y extrapolación de Romberg, es entre 10 y 20 veces menor que el
módulo con 128 puntos.
El módulo secuencial SEC también se ve beneficiado, aunque en menor pro-
porción, ya que no aprovecha el paralelismo para distribuir las evaluaciones del
integrando.

96 Análisis

El análisis comparativo muestra que la extrapolación de Romberg reduce de ma-
nera significativa el tiempo de ejecución en todos los módulos de prueba, siendo
especialmente eficiente en los módulos paralelos CUDA, OMP-P y OMP-E. Esta me-
jora es consistente tanto en la estación de trabajo como en la Jetson TX2, lo que
demuestra que la estrategia es portable y efectiva en diferentes arquitecturas.

Caída en los tiempos de ejecución de los módulos OMP-E y OMP-P

Los tiempos de ejecución de los módulos al evaluar la integral en un rango de 1 a 40
puntos de integración, utilizando la extrapolación de Romberg para las dimensiones
3D (Figura 5.3a), 4D (Figura 5.3b), 5D (Figura 5.3c) y 6D (Figura 5.3d), mostraron
en la estación de trabajo CUDA una caída en los tiempos de ejecución de los módulos
OMP-E y OMP-P alrededor del punto 33 para las dimensiones 3D y 4D. En las
Figuras 5.4a y 5.4b se puede observar mejor esta caída.

Este comportamiento no se manifestó en la Jetson TX2, lo que sugiere que está
asociado a características propias de la arquitectura x86 de la estación de trabajo
CUDA y del calendarizador del sistema operativo. Entre las posibles causas se en-
cuentra:

La arquitectura híbrida del procesador Intel, que combina núcleos de rendimien-
to (P-cores) y de eficiencia (E-cores);

El runtime de OpenMP puede redistribuir dinámicamente los hilos entre estos
núcleos en función de la carga y del número de iteraciones, generando cambios
abruptos en el rendimiento.

El compilador puede aplicar diferentes estrategias de vectorización y desenro-
llado de bucles, según el tamaño del conjunto de datos, activando en ciertos
puntos versiones del código más eficientes.

El mecanismo de Turbo Boost de Intel, que ajusta dinámicamente la frecuencia
de reloj en función del consumo y la carga térmica, podría contribuir a esta
variación: en cargas cortas o con menor número de hilos activos, algunos núcleos
pueden alcanzar frecuencias más altas, reduciendo temporalmente el tiempo de
ejecución.

En resumen, estos factores explican por qué la caída de tiempo se presenta única-
mente en configuraciones específicas y no en plataformas ARM como la Jetson TX2,
donde la gestión de energía y la arquitectura de los núcleos es diferente.

5.2 Desempeño de los calendarizadores

En esta sección se analizan los tiempos de ejecución obtenidos al aplicar las tres
estrategias de calendarización propuestas: estático secuencial (SCHED SS), dinámico
secuencial (SCHED DS) y estático concurrente (SCHED SC).

Capítulo 5 97

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 5.3: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg, en estación de trabajo CUDA.

98 Análisis

(a) 3D

(b) 4D

Figura 5.4: Caída atípica en el tiempo de ejecución del módulo OMP alrededor del
punto de integración 33 al evaluar la Función 1.3 en la estación de trabajo CUDA.

El objetivo principal de este análisis es comparar la eficiencia de cada estrategia
en la asignación de módulos de ejecución, considerando su comportamiento tanto en
la estación de trabajo CUDA como en la plataforma Jetson TX2.

5.2.1 Comparación general

La implementación de los tres calendarizadores presenta diferentes niveles de comple-
jidad, tanto en su construcción como en su comportamiento computacional.

El calendarizador estático secuencial es el más sencillo de implementar, ya que
sigue una estructura determinista donde las tareas se asignan de forma fija y lineal.
Cada punto de integración se ejecuta de manera consecutiva sin depender de la sin-
cronización entre entre hilos o procesos. La simplicidad del diseño permite minimizar
el uso de estructuras auxiliares, empleando únicamente un arreglo para almacenar los
identificadores de los módulos de ejecución. Esto resulta en una implementación más
limpia y de bajo costo computacional.

La implementación del calendarizador dinámico secuencial presenta una comple-
jidad ligeramente superior a la del calendarizador estático secuencial; sin embargo,
sigue siendo manejable debido a que conserva una ejecución completamente secuen-
cial. No obstante, requiere un mayor consumo de memoria, ya que necesita almacenar

Capítulo 5 99

estructuras auxiliares, como la tabla de tiempos de ejecución, para realizar compara-
ciones cada vez que se efectúa un cálculo.

El calendarizador estático concurrente es el más complejo de implementar debido
a la inclusión de múltiples funciones auxiliares necesarias para manejar la ejecución
paralela. Entre ellas destaca la búsqueda tabú, empleada para optimizar la asignación
de tareas y evitar repeticiones en la distribución de subregiones. Además, es necesario
incorporar un control de sincronización, candados y comunicación entre hilos concu-
rrentes, lo cual incrementa notablemente la dificultad de programación y el consumo
de recursos.

En términos de implementación, el calendarizador estático concurrente presenta
la mayor complejidad debido a la cantidad de funciones de control y mecanismos de
optimización requeridos. Por otro lado, los calendarizadores secuenciales resultan más
simples, con un menor costo de mantenimiento.

Análisis de tiempos de ejecución de los calendarizadores

En las Figuras 5.5 y 5.6 se presentan los tiempos de ejecución correspondientes a
los calendarizadores estático secuencial (SCHED SS), dinámico secuencial (SCHED
DS) y estático concurrente (SCHED SC). Estos resultados provienen de las pruebas
descritas en el capítulo anterior (Secciones 4.3.2, 4.3.3 y 4.3.4).

Las gráficas se encuentran organizadas por dimensión: 3D (Figuras 5.5a y 5.6a),
4D (Figuras 5.5b y 5.6b), 5D (Figuras 5.5c y 5.6c) y 6D (Figuras 5.5d y 5.6d). En
general, los resultados indican que los calendarizadores secuenciales, tanto el estático
como el dinámico, mantienen un desempeño estable y predecible, obteniendo tiempos
de ejecución muy similares entre sí.

El calendarizador estático secuencial presenta la ventaja de una selección previa
de módulos, basada en las tablas de tiempos, lo que minimiza la sobrecarga compu-
tacional en tiempo de ejecución. Aunque no emplea paralelismo, su desempeño en las
pruebas resulta notablemente eficiente, registrando tiempos de ejecución inferiores a
los del calendarizador estático concurrente. Esto se debe a que evita el costo asociado
a la creación y sincronización de hilos, permitiendo una ejecución continua, ligera y
estable.

El calendarizador dinámico realiza la selección de módulos de manera directa
durante la ejecución, lo que introduce una ligera sobrecarga computacional. Sin em-
bargo, esta estrategia ofrece una mayor adaptabilidad ante posibles variaciones en el
rendimiento de los módulos. A pesar del costo adicional, el calendarizador dinámico
secuencial superó al calendarizador estático secuencial en las pruebas de 4D (Figuras
5.5b y 5.6b) y 5D (Figuras 5.5c y 5.6c) en ambas plataformas. Aunque las diferencias
fueron de sólo una fracción de segundo, este comportamiento resultó inesperado. Una
posible explicación es la naturaleza adaptable de la estrategia, que permite seleccio-
nar en cada iteración el módulo más adecuado con base en los valores actualizados de
la tabla de tiempos. Esto reduce los sesgos asociados a la asignación fija del método
estático y puede favorecer ligeras mejoras en el tiempo total de ejecución.

100 Análisis

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 5.5: Comparación de tiempos de ejecución (s) de calendarizadores al evaluar
la Función 1.3 en estación de trabajo CUDA.

Capítulo 5 101

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 5.6: Comparación de tiempos de ejecución (s) de calendarizadores al evaluar
la Función 1.3 en Jetson TX2.

102 Análisis

En contraste, el calendarizador estático concurrente no logró superar el desempeño
de las estrategias secuenciales. A pesar de estar diseñado para ejecutar dos módulos
en paralelo mediante hilos independientes, la sobrecarga generada por la creación
y sincronización de los hilos, así como la competencia de los hilos por el uso del
procesador, redujo significativamente su eficiencia. En consecuencia, los tiempos de
ejecución resultaron mayores que los obtenidos con los esquemas secuenciales, lo que
sugiere que su implementación sólo sería ventajosa en sistemas con mayor cantidad
de núcleos físicos y soporte de hardware para concurrencia intensiva.

En la estación de trabajo CUDA (Figuras 5.5), tanto el calendarizador estático
secuencial como el dinámico secuencial mostraron un rendimiento muy similar, mien-
tras que el calendarizador estático concurrente presenta una penalización significativa
en el tiempo de ejecución a partir de los 20 puntos de integración, especialmente en
5D (Figura 5.5c) y 6D (Figura 5.5d).

En la Jetson TX2 (Figuras 5.6), la tendencia general es similar; sin embargo,
la diferencia entre los calendarizadores secuenciales se vuelve más evidente en 3D
(Figura 5.6a). En este caso, el calendarizador estático secuencial obtiene el menor
tiempo de ejecución, seguido por el calendarizador dinámico secuencial y, finalmente,
por el calendarizador estático concurrente. Por lo tanto, para un número reducido de
dimensiones, el calendarizador estático secuencial aprovecha de manera más eficiente
los recursos del sistema de calendarización en esta plataforma.

En resumen, el desempeño general de los calendarizadores demuestra que las es-
trategias secuenciales son más confiables y eficientes bajo las condiciones de prueba
empleadas. La estrategia dinámica, aunque más compleja, demostró una ventaja con-
creta en escenarios de cuatro y cinco dimensiones, lo que sugiere que su aplicación
resulta especialmente efectiva cuando las diferencias de rendimiento entre módulos
varían con la dimensionalidad del problema. La estrategia concurrente, por otro lado,
requiere una revisión más profunda o un entorno de hardware con mayor grado de
paralelismo físico para alcanzar un beneficio real.

5.2.2 Impacto de la estrategia de calendarización

Para evaluar el beneficio real de las estrategias de calendarización, se comparó el
desempeño de los calendarizadores: estático secuencial, dinámico secuencial y estático
concurrente, frente al desempeño obtenido integrando 128 puntos sin extrapolación
utilizando únicamente el módulo CUDA. Este último se tomó como referencia base,
dado que mostró el mejor rendimiento entre todos los módulos individuales.

La Tabla 5.2 presenta las aceleraciones obtenidas para las dos plataformas uti-
lizadas: estación de trabajo CUDA y Jetson TX2. En general, se observa que los
calendarizadores estático secuencial y dinámico secuencial alcanzan las mayores ace-
leraciones en ambas plataformas, especialmente conforme aumenta la dimensionalidad
del problema.

En la estación de trabajo CUDA, ambos calendarizadores presentan comporta-
mientos casi idénticos, con aceleraciones que van desde aproximadamente 10× en 4D

Capítulo 5 103

Tabla 5.2: Aceleraciones de los calendarizadores usando la extrapolación de
Romberg tomando como referencia el módulo de ejecución CUDA con 128 puntos.

Calendarizador 3D 4D 5D 6D
Estación de trabajo CUDA

Estático secuencial 0.994 9.972 40.093 151.869
Dinámico secuencial 0.990 10.141 40.102 151.861
Estático concurrente 0.316 0.536 6.033 22.694

Jetson TX2
Estático secuencial 1.749 8.823 42.213 172.797
Dinámico secuencial 1.270 8.833 42.217 172.080
Estático concurrente 0.523 2.953 14.962 49.412

hasta más de 150× en 6D. Esto indica que la extrapolación de Romberg permitió
reducir significativamente los tiempos de ejecución respecto al módulo CUDA con
128 puntos, manteniendo una eficiencia muy similar entre las variantes estática y di-
námica. Por otro lado, el calendarizador estático concurrente muestra aceleraciones
considerablemente menores. Apenas alcanza una aceleración de 6.03× en 5D y 22.69×
en 6D, valores muy por debajo de los obtenidos por los calendarizadores secuenciales.

En la plataforma Jetson TX2, los resultados mantienen la misma tendencia: los
calendarizadores secuenciales son los más eficientes, alcanzando aceleraciones de hasta
172× en 6D. El calendarizador dinámico secuencial tiene un desempeño muy similar
al calendarizador estático secuencial, mostrando que el manejo dinámico de tareas no
introduce penalizaciones relevantes en esta arquitectura. En contraste, el calendari-
zador estático concurrente vuelve a mostrar un desempeño inferior, con aceleraciones
moderadas entre 0.52× en 3D y 49.4× en 6D, evidenciando que su complejidad no se
ve compensada por una mejora en la velocidad.

Al analizar los tiempos de ejecución de los calendarizadores en comparación con
los módulos individuales, evaluando un rango de 1 a 40 puntos con extrapolación de
Romberg en la estación de trabajo CUDA, para las dimensiones 3D (Figura 5.7a),
4D (Figura 5.7b), 5D (Figura 5.7c) y 6D (Figura 5.7d), se observa que tanto el ca-
lendarizador estático secuencial como el dinámico secuencial presentan un desempeño
muy cercano al del módulo individual CUDA con extrapolación de Romberg. Esto
confirma que ambas estrategias administran de manera eficiente la asignación de mó-
dulos. Las diferencias de tiempo son mínimas, de apenas una fracción de segundo,
lo que indica que el costo adicional asociado al calendarizador dinámico, derivado de
realizar comparaciones en tiempo de ejecución, no afecta de manera significativa su
rendimiento.

Por el contrario, el calendarizador estático concurrente muestra un aumento vi-
sible en los tiempos de ejecución, especialmente en las dimensiones más altas: 5D
(Figura 5.7c) y 6D (Figura 5.7d), debido a que el costo asociado con la creación y
sincronización de hilos, así como el uso compartido del procesador incrementan la
complejidad sin aportar una ganancia de rendimiento.

En la Jetson TX2, para las dimensiones: 3D (Figura 5.8a), 4D (Figura 5.8b), 5D
(Figura 5.8c) y 6D (Figura 5.8d), se repite la misma tendencia general. Sin embargo,

104 Análisis

(a) 3D (b) 4D

(c) 5D (d) 6D

Figura 5.7: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando diferentes técnicas en estación de trabajo CUDA.

(a) 3D (b) 4D

(c) 5D (d) 6D

Figura 5.8: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando diferentes técnicas en Jetson TX2.

es importante destacar los resultados obtenidos en 3D (Figura 5.8a), donde los ca-
lendarizadores secuenciales alcanzan tiempos de ejecución inferiores a los del módulo
CUDA con extrapolación de Romberg y logran aceleraciones de hasta 1.7× respecto
al módulo CUDA con 128 puntos. Esto demuestra que la estrategia de calendarización

Capítulo 5 105

cumple con el objetivo de reducir el tiempo de ejecución.
Este comportamiento se debe principalmente a la heterogeneidad del hardware,

que permite al calendarizador seleccionar los módulos más eficientes de acuerdo a las
capacidades reales de la plataforma. Además, en esta dimensión todas las operaciones
se ejecutan directamente en el CPU, dado que los tiempos de ejecución en el módulo
CUDA son demasiado elevados (Figura 4.3a), lo que lo convierte en una opción no
viable. Esto elimina por completo la transferencia de datos entre CPU y GPU, lo
que contribuye a una reducción significativa en el tiempo de ejecución. A partir de
cuatro dimensiones, aunque las aceleraciones siguen siendo elevadas, los resultados se
asemejan a los obtenidos por los módulos individuales con extrapolación de Romberg,
lo que indica que el beneficio principal de la calendarización radica en su capacidad
de adaptación automática más que en una ganancia directa de velocidad.

Las Figuras 5.9 y 5.10 complementan la comparación de las gráficas de barras al
presentar los tiempos de ejecución de los calendarizadores comparados con los tiempos
de los módulos individuales con la extrapolación de Romberg en el rango de 1 a 40
puntos de integración.

En la estación de trabajo CUDA (Figuras 5.9), se presentan las gráficas organi-
zadas por dimensiones: 3D (Figura 5.9a), 4D (Figura 5.9b), 5D (Figura 5.9c) y 6D
(Figura 5.9d). Los módulos con extrapolación de Romberg mantienen un crecimiento
progresivo del tiempo de ejecución conforme aumenta el número de puntos de inte-
gración. Entre ellos, los módulos CUDA, OMP-E y OMP-P siguen destacando como
los más eficientes, mientras que los módulos SEC y AVX presentan mayores tiempos.

Al comparar los resultados de los calendarizadores, se aprecia que las estrate-
gias secuenciales (SCHED-SS y SCHED-DS) logran tiempos de ejecución equivalen-
tes al módulo individual CUDA. En cambio, el calendarizador estático concurrente
(SCHED-SC) presenta un crecimiento más pronunciado, especialmente en las dimen-
siones 5D (Figura 5.9c) y 6D (Figura 5.9d), debido a los costos asociados a su diseño
concurrente.

En la Jetson TX2 (Figuras 5.10), se presentan las gráficas organizadas por dimen-
siones: 3D (Figura 5.10a), 4D (Figura 5.10b), 5D (Figura 5.10c) y 6D (Figura 5.10d).
Los módulos individuales CUDA y OMP-E conservan el mejor desempeño, mientras
que los calendarizadores secuenciales (SCHED-SS y SCHED-DS) continúan mostran-
do un comportamiento estable y eficiente. Nuevamente, el calendarizador concurrente
(SCHED-SC) exhibe una degradación notable en las dimensiones superiores, reflejan-
do que su estructura paralela no se adapta eficientemente a dispositivos con menor
capacidad de procesamiento paralelo y memoria compartida limitada.

En particular, se esperaba que el calendarizador estático concurrente mostrara un
rendimiento competitivo, especialmente por el manejo de concurrencia y la incorpo-
ración de la búsqueda tabú como estrategia de optimización. En (Morales y Puga,
2022), se propuso un calendarizador para este problema, basado en la búsqueda ta-
bú. Dicho enfoque fue evaluado en un entorno de simulación, donde los resultados
mostraron una mejora significativa en la asignación de módulos y en el equilibrio de
carga entre los módulos disponibles.

106 Análisis

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 5.9: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizadores, en estación de
trabajo CUDA.

Capítulo 5 107

(a) 3D

(b) 4D

(c) 5D

(d) 6D

Figura 5.10: Comparación de tiempos de ejecución (s) al evaluar la Función 1.3
usando la extrapolación de Romberg: módulos VS calendarizadores, en Jetson TX2.

108 Análisis

El algoritmo de búsqueda tabú demostró, en ese contexto, una capacidad eficiente
para evitar soluciones subóptimas y reducir el tiempo total de ejecución simulado.
Sin embargo, al trasladar este enfoque a entornos reales en el presente trabajo, los
resultados difirieron considerablemente.

El calendarizador estático concurrente, que integra la búsqueda tabú para decidir
las asignaciones, presentó un desempeño inferior al esperado. Esto se debe a que, en
las simulaciones del trabajo previo, no se consideraron factores inherentes al hardware
real, como la competencia entre procesos por el tiempo de CPU, la sobrecarga asociada
a la creación y sincronización de hilos y la latencia por acceso concurrente a memoria
compartida. En consecuencia, el comportamiento observado confirma que, aunque la
búsqueda tabú es prometedora en entornos teóricos o simulados, su implementación
directa en sistemas reales puede generar una sobrecarga que anula sus beneficios de
optimización.

En general, los calendarizadores secuenciales alcanzan niveles de desempeño a
la par de los módulos más rápidos ejecutados individualmente, lo que demuestra
que la estrategia de selección automática no introduce penalizaciones significativas
y mantiene un rendimiento competitivo. El calendarizador estático concurrente, a
pesar de su diseño más complejo, no logran superar el rendimiento de las variantes
secuenciales ni de los módulos optimizados en GPU.

Conclusiones

El trabajo desarrollado en esta tesis abordó el problema del cálculo eficiente de in-
tegrales multidimensionales, una tarea de gran relevancia científica y técnica debido
a su presencia en aplicaciones de simulación física, análisis estadístico y modelado
computacional. Sin embargo, este tipo de integrales presenta una alta complejidad
conforme aumentan las dimensiones, lo que exige estrategias de optimización tanto
en el nivel algorítmico como en el uso eficiente de los recursos de hardware disponibles.

En este trabajo se implementó una estrategia de calendarización para aprovechar
de mejor manera dichos recursos. Primero, se realizó una revisión exhaustiva de los
métodos de calendarización utilizados en entornos heterogéneos, identificando que la
mayoría de los trabajos existentes se centran en la distribución de tareas generales, sin
considerar las tareas de propósito especifico, como las integrales multidimensionales,
ni las limitaciones físicas del hardware. El estudio permitió seleccionar tres estrategias
diferentes: calendarizador estático secuencial, calendarizador dinámico secuencial y
calendarizador estático concurrente, que ofrecen distintos grados de adaptabilidad y
complejidad. Asimismo, se analizó la aplicación de heurísticas como la búsqueda tabú
y los árboles de decisiones.

Posteriormente, se amplió la biblioteca de integrales multidimensionales incorpo-
rando tres componentes: (1) un módulo basado en instrucciones vectoriales AVX, (2)
un codelet encargado de la gestión de los módulos y (3) las estrategias de calendari-
zación diseñadas para optimizar la distribución de carga entre los diferentes módulos
de ejecución.

El módulo de ejecución AVX se implementó con el propósito de complementar
los módulos existentes (secuencial, CUDA y OMP), lo que permitió explotar el pa-
ralelismo a nivel de datos. Su incorporación aumentó la flexibilidad de la biblioteca
y la volvió más adecuada para arquitecturas modernas. El codelet actuó como inter-
mediario entre los calendarizadores y la biblioteca de integrales multidimensionales,
además se encargó de abstraer y referenciar la ejecución de los distintos módulos. Esta
estrategia permitió una administración más limpia y eficiente del código, al facilitar
la selección automática del método de ejecución según las necesidades de cada punto
de integración.

Como tercer componente y punto central, las tres estrategias de calendarización
implementadas para mejorar el rendimiento de los módulos fueron:

Estático secuencial: asigna previamente el mejor módulo a cada punto con base
en una tabla de tiempos.

109

110 Conclusiones

Dinámico secuencial: permite una asignación, en tiempo de ejecución, aprove-
chando los recursos disponibles.
Estático concurrente: realiza ejecuciones en pares, optimizadas por la búsqueda
tabú, con control de dispositivos mediante candados, permitiendo el paralelismo
sin conflictos de acceso.

A través de las pruebas preliminares, se comprobó la estabilidad numérica de
los módulos de ejecución, se determinó el número mínimo de puntos necesario para
alcanzar un error aceptable (igual o menor a 10−4) y se verificó la efectividad de la
extrapolación de Romberg para reducir la cantidad de puntos sin comprometer la
precisión del resultado.

Después, se realizaron las pruebas correspondientes a las distintas estrategias de
calendarización, utilizando como base las tablas de tiempo generadas para ambas
plataformas de prueba: la estación de trabajo CUDA y la Jetson TX2. Estas pruebas
permitieron verificar la correcta interacción entre los calendarizadores y el codelet,
así como la capacidad del sistema de calendarización para adaptarse a entornos con
diferentes características de hardware.

El análisis de resultados permitió evaluar de forma integral el comportamiento de
los distintos módulos de ejecución y los calendarizadores propuestos. El desempeño
del módulo AVX resultó limitado para configuraciones con pocos puntos, debido a
su naturaleza parcialmente paralelizable y a la sobrecarga en la administración de
registros vectoriales, lo que impidió que superara al módulo secuencial en la mayoría de
los casos. Por otra parte, en la Jetson TX2 se observó un comportamiento interesante:
el módulo OMP-E, que emplea únicamente núcleos de eficiencia, superó al módulo
OMP-P, que usa núcleos de rendimiento, este comportamiento se atribuye al menor
consumo energético, menor frecuencia térmica y a la mejor coherencia de caché de los
núcleos de eficiencia bajo cargas de trabajo prolongadas.

Respecto a los calendarizadores, los resultados demostraron que las estrategias
secuenciales, tanto estática como dinámica, ofrecen un desempeño similar y estable,
con ligeras ventajas del enfoque dinámico en cuatro y cinco dimensiones. En contraste,
el calendarizador estático concurrente, que integraba un esquema de búsqueda tabú
para la asignación de módulos, presentó un rendimiento inferior al esperado. Debido
a que la creación y sincronización de hilos, así como la competencia por los recursos
del procesador que introduce retardos significativos que anulan los beneficios teóricos
del algoritmo.

Finalmente, se identificaron particularidades específicas del hardware en el com-
portamiento de los módulos, como la caída puntual de tiempo observada en los mó-
dulos OMP en la estación de trabajo Intel, atribuida a la interacción entre el Turbo
Boost, la asignación híbrida de núcleos y la vectorización automática.

En conjunto, los resultados obtenidos permiten concluir que el sistema de calen-
darización propuesto es funcional y adaptable a distintas plataformas, integrando de
manera eficaz las técnicas de extrapolación y calendarización. Sin embargo, aunque
logró reducir el tiempo de ejecución en comparación con el enfoque de 128 puntos, su
desempeño se mantuvo comparable al del módulo individual de CUDA utilizando la

Conclusiones 111

extrapolación de Romberg con 40 puntos, sin alcanzar la mejora esperada en los tiem-
pos de ejecución. No obstante, las estrategias secuenciales implementadas constituyen
una base sólida sobre la cual pueden desarrollarse optimizaciones futuras más espe-
cializadas, tales como la incorporación de técnicas de aprendizaje automático para la
selección dinámica de módulos, el balanceo predictivo de carga entre CPU y GPU, y
mecanismos de autoajuste que adapten la ejecución a las características particulares
de cada plataforma y problema numérico.

Trabajo a futuro

Como trabajo a futuro, se propone la optimización del calendarizador estático concu-
rrente. Aunque este enfoque permitió aprovechar múltiples módulos para la ejecución
paralela, su desempeño aún puede mejorarse mediante estrategias más refinadas de
asignación y balanceo de carga. Se buscará reducir la sobrecarga asociada a la coordi-
nación entre hilos y dispositivos, así como explorar técnicas heurísticas más eficientes
que puedan reemplazar o complementar mecanismos como la búsqueda tabú. El ob-
jetivo es obtener un comportamiento más estable y competitivo, especialmente en
integrales de mayor complejidad dimensional.

No obstante, el eje central del trabajo a futuro consistirá en el diseño e implemen-
tación de un calendarizador dinámico concurrente. Esta estrategia de calendarización
combinará la asignación dinámica de tareas con la ejecución paralela, permitiendo
ajustar la calendarización en tiempo de ejecución conforme cambien las característi-
cas del cálculo o del entorno de la plataforma. La idea es desarrollar un sistema capaz
de redistribuir grupos de puntos de la integral entre los distintos módulos disponibles,
reaccionando a variaciones en el rendimiento, latencia o carga del sistema. Esto ofre-
cería una mayor adaptabilidad frente a escenarios heterogéneos, donde las diferencias
entre componentes de cómputo (como la CPU o la GPU) requieren decisiones más
flexibles y eficientes que las que puede ofrecer un enfoque estático.

Finalmente, se propone ampliar el trabajo de tesis hacia nuevas plataformas de
ejecución y entornos distribuidos. Probar los calendarizadores desarrollados en dife-
rentes arquitecturas de hardware permitirá analizar su robustez, portabilidad y es-
calabilidad. Asimismo, la adaptación del sistema a un ambiente distribuido abriría la
posibilidad de coordinar múltiples nodos de cómputo, lo cual resultaría especialmente
relevante para problemas de integración multidimensional de gran escala.

En conjunto, se busca consolidar un sistema de calendarización más flexible, efi-
ciente y adaptable, capaz de responder a las demandas crecientes de aplicaciones
científicas que requieren cálculos de alto rendimiento en entornos cada vez más com-
plejos y diversificados.

112 Conclusiones

Glosario

Codelet

Unidad encargada de referenciar múltiples funciones codificadas, permitiendo
su gestión y ejecución de manera independiente.

Componentes de ejecución

Elementos encargados de realizar las operaciones de procesamiento, específica-
mente la CPU y GPU.

Dimensión

Variable independiente dentro del dominio de integración. Cada dimensión aña-
de un eje adicional al espacio sobre el cual se calcula la integral, de modo que una
integral de n dimensiones corresponde al cálculo del volumen hiperdimensional
bajo una función f(x1, x2, ..., xn) dentro de un dominio definido.

Integrando

Función matemática que a integrar. En el contexto de una integral multidimen-
sional, es una función de varias variables:

∫
f(x1, x2, . . . , xD) dx1 dx2 · · · dxD

Módulos de ejecución

Funciones responsables de ejecutar la extrapolación de Romberg, implementa-
das de manera secuencial y paralela (CUDA, OpenMP y AVX).

Plataformas

Equipos de cómputo y tarjetas programables utilizadas para la ejecución de los
procesos.

Puntos de integración

Cantidad de evaluaciones que realiza el método de integración en cada dimensión
para aproximar el valor de la integral. Un mayor número de puntos generalmente
mejora la precisión, pero incrementa el tiempo de ejecución.

113

114 Glosario

Acrónimos

AVX Advanced Vector Extensions

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DAG Directed Acyclic Graph

E-Cores Efficient Cores

FPGA Field-Programmable Gate Arrays

GPU Graphics Processing Unit

HPC High-Performance Computing

IA Inteligencia Artificial

OMP Open Multi-Processing

P-Cores Performance Cores

SCHED-DS Schedule Dynamic Sequential

SCHED-SC Schedule Static Concurrent

SCHED-SS Schedule Static Sequential

SIMD Single Instruction, Multiple Data

115

116 Referencias

Referencias

Abramowitz, M. (1974). Handbook of mathematical functions, with formulas, graphs,
and mathematical tables (1.a ed.). New York: Dover Publications Inc.

AlEbrahim, S., y Ahmad, I. (2017). Task scheduling for heterogeneous computing
systems. Supercomput , 73 , 2313–2338. doi: 10.1007/s11227-016-1917-2

Al-Khateeb, H., Benkhlifa, E., y Bounceur, A. (2018). An overview of task sche-
duling in cloud computing: Concepts and challenges. Network and Computer
Applications , 113 , 1–18. doi: 10.1016/j.jnca.2018.04.023

Arabnejad, H., y Barbosa, J. G. (2014). List scheduling algorithm for heterogeneo-
us systems by an optimistic cost table. IEEE Transactions on Parallel and
Distributed Systems , 25 (3), 682–694. doi: 10.1109/TPDS.2013.57

Arfken, G. (1985). Mathematical methods for physicists (3.a ed.). Oxford, Ohio:
Academic Press Inc.

Arumugam, K., Godunov, A., Ranjan, D., Terzic, B., y Zubair, M. (2013). An efficient
deterministic parallel algorithm for adaptive multidimensional numerical inte-
gration on gpus. En 2013 42nd international conference on parallel processing
(p. 486-491).

Arzi, Y., y Iaroslavitz, L. (2000). Operating an fmc by a decision-tree-based adap-
tive production control system. International Journal of Production Research,
38 (3), 675–697. doi: 10.1080/002075400189365

Asanović, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K.,
. . . Yelick, K. A. (2006). The landscape of parallel computing research: A view
from berkeley (Inf. Téc. n.o UCB/EECS-2006-183). Berkeley.

Augonnet, C., Thibault, S., Namyst, R., y Wacrenier, P. A. (2009). Starpu: A
unified platform for task scheduling on heterogeneous multicore architectures.
En H. Sips, D. Epema, y H. X. Lin (Eds.), Euro-par 2009 parallel processing
(pp. 863–874). Berlin, Heidelberg: Springer Berlin Heidelberg.

Berntsen, J., Espelid, T. O., y Genz, A. (1991a). An adaptive algorithm for the
approximate calculation of multiple integrals. ACM Trans. Math. Softw., 17 (4),
437-–451. doi: https://doi.org/10.1145/210232.210233

Berntsen, J., Espelid, T. O., y Genz, A. (1991b). Algorithm 698: Dcuhre: an adaptive
multidemensional integration routine for a vector of integrals. ACM Trans.
Math. Softw., 17 (4), 452–456. doi: https://doi.org/10.1145/210232.210234

Brodtkorb, A., Dyken, C., Hagen, T., Hjelmervik, J., y Storaasli, O. (2010). State-
of-the-art in heterogeneous computing. Scientific Programming , 18 , 1-5. doi:
10.1155/2010/540159

Buyya, R., Vecchiola, C., y Selvi, S. (2013). Mastering cloud computing: Foundations
and applications programming. Morgan Kaufmann Publishers.

Coulouris, G., Dollimore, J., Kindberg, T., y Blair, G. (2005). Distributed systems:
Concepts and design (5.a ed.). Amsterdam: Addison-Wesley Longman.

Dahlquist, G., y Björck, A. (2008). Numerical methods in scientific computing (1.a
ed., Vol. 1). Philadelphia: Society for Industrial and Applied Mathematics.

Referencias 117

Dastjerdi, A., Gupta, H., Calheiros, R., Ghosh, S., y Buyya, R. (2016). Chapter 4 -
fog computing: principles, architectures, and applications. En Internet of things
(p. 61-75). Morgan Kaufmann. doi: 10.1016/B978-0-12-805395-9.00004-6

Ding, S., Wu, J., Xie, G., y Zeng, G. (2017). A hybrid heuristic-genetic algorithm
with adaptive parameters for static task scheduling in heterogeneous computing
system. En 2017 ieee trustcom/bigdatase /icess (pp. 761–766). doi: 10.1109/
Trustcom/BigDataSE/ICESS.2017.310

Garey, M. R., y Johnson, D. S. (1976, julio). Scheduling tasks with nonuniform
deadlines on two processors. Association for Computing Machinery , 23 (3),
461–467. doi: 10.1145/321958.321967

Gendreau, M., y Potvin, J. Y. (2005). Parallel tabu search. En E. K. Burke y
G. Kendall (Eds.), Search methodologies: Introductory tutorials in optimization
and decision support techniques (pp. 165–186). Boston, MA: Springer US. doi:
10.1007/0-387-28356-0_6

Genz, A. (1972). An adaptive multidimensional quadrature procedure. Com-
puter Physics Communications , 4 (1), 11-15. doi: https://doi.org/10.1016/
0010-4655(72)90024-0

Gibbs, D. (1915). A course in interpolation and numerical integration for the mathe-
matical laboratory (1st ed.). Cornell University Library.

Hahn, T. (2005). Cuba—a library for multidimensional numerical integration. Com-
puter Physics Communications , 168 (2), 78-95. doi: https://doi.org/10.1016/
j.cpc.2005.01.010

Hansen, P. (1986). The steepest ascent mildest descent heuristic for combinatorial
programming. En Congress on numerical methods in combinatorial optimization
(pp. 70–145). Capri, Italy.

Hill, M. D., y Marty, M. R. (2008). Amdahl’s law in the multicore era. Computer ,
41 (7), 33-38. doi: 10.1109/MC.2008.209

Jeannot, E., y Zilinskas, J. (2014). High-performance computing on complex environ-
ments. Wiley.

Kebaier, A. (2005). Statistical romberg extrapolation: A new variance reduction
method and applications to option pricing. The Annals of Applied Probability ,
15 (4), 2681 – 2705. doi: https://doi.org/10.1214/105051605000000511

Keister, B. D. (1996). Multidimensional quadrature algorithms. Computers in Phy-
sics , 10 (2), 119–128.

Kim, C. O., Min, H. S., y Yih, Y. (2010). Integration of inductive learning and
neural networks for multi-objective fms scheduling. International Journal of
Production Research, 36 (9), 2497–2509. doi: 10.1080/002075498192652

Kim, S. I., y Kim, J. K. (2019). A method to construct task scheduling algorithms
for heterogeneous multi-core systems. IEEE Access , 7 , 142640–142651. doi:
10.1109/ACCESS.2019.2944238

Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence
Review , 39 (4), 261—283. doi: 10.1007/s10462-011-9272-4

Kronrod, A. S. (1964). Nodes and weights of quadrature formulas (1.a ed.). New

118 Referencias

York: Consultants Bureau.
Lavaei, J., Noghabi, B., Chen, Q., y Xue, G. (2018). Online optimization of hete-

rogeneous datacenters with resource-efficient workloads. IEEE Transactions on
Cloud Computing , 8 (4), 1346–1359. doi: 10.1109/TCC.2018.2816479

Liu, E. H. L. (2006). Fundamental methods of numerical extrapolation with appli-
cations. Mitopencourseware, Massachusetts Institute Of Technology , 209 .

Liu, J., Li, J., Li, D., Qian, D., y Zhan, D. (2019). Task scheduling algorithm
for heterogeneous computing based on multi-objective genetic algorithm and
dynamic priority strategy. Journal of Parallel and Distributed Computing , 124 ,
101–112. doi: 10.1016/j.jpdc.2018.10.013

Mollick, E. (2006). Establishing moore’s law. Annals of the History of Computing,
IEEE , 28 (3), 62–75. doi: 10.1109/MAHC.2006.45

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electro-
nics , 38 (8), 114–117. doi: 10.1109/N-SSC.2006.4785860

Morales, A. I., y Puga, J. J. (2022). Planificador inteligente para integración numérica
multidimensional en ambientes heterogéneos (Tesis de Master no publicada).
Instituto Politécnico Nacional, Ciudad de México, México.

Nilsson, N. J. (1933). Principles of artificial intelligence. Los Altos, CA.: Morgan
Kaufmann.

Notaris, S. E. (2016). Gauss-kronrod quadrature formulae-a survey of fifty years of
research. Electronic Transactions on Numerical Analysis , 45 (1), 371–404.

Park, S. C., Raman, N., y Shaw, M. J. (1997). Adaptive scheduling in dynamic flexible
manufacturing systems: a dynamic rule selection approach. IEEE Transactions
on Robotics and Automation, 13 (4), 486–502. doi: 10.1109/70.611301

Patterson, T. (1968). The optimum addition of points to quadrature formulae. Mathe-
matics of Computation, 22 , 847–856.

Piessens, R., y Branders, M. (1974). A note on the optimal addition of abscissas to
quadrature formulas of gauss and lobatto type. Mathematics of Computation,
28 (125), 135-139.

Quintero-Monsebaiz, R., Meneses-Viveros, A., Carranza, F., Cortés, C. G., González-
Zamudio, A., y Vela, A. (2021). Multidimensional adaptative and deterministic
integration in cuda and openmp. Supercomputing , 77 , 12075–12097.

Salas-González, R. (2023). Caracterización de tareas y recursos para la simulación
de un calendarizador en un ambiente heterogéneo (Tesis de Master no publica-
da). Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Nacional.

Shaw, M. J., Park, S., y Raman, N. (1992). Intelligent scheduling with machine
learning capabilities: The induction of scheduling knowledge. IIE Transactions ,
24 (2), 156–168. doi: 10.1080/07408179208964213

Shiue, Y.-R., y Su, C.-T. (2003). An enhanced knowledge representation for decision-
tree based learning adaptive scheduling. International Journal of Computer
Integrated Manufacturing , 16 (1), 48–60. doi: 10.1080/713804978

Silberschatz, A., Galvin, P. B., y Gagne, G. (2012). Operating system concepts (9th

Referencias 119

ed.). Wiley Publishing.
Song, Y., Li, C., Tian, L., y Song, H. (2023). A reinforcement learning based job

scheduling algorithm for heterogeneous computing environment. Computers
and Electrical Engineering , 107 . doi: https://www.sciencedirect.com/science/
article/pii/S0045790623000782

Sotiriades, E., Petraki, E., Kartsakli, E., Souravlias, D., y Bouganis, C.-S. (2015).
A survey of task scheduling in multicore and accelerator-based systems. ACM
Computing Surveys , 48 (1).

Sterling, T., Anderson, M., y Brodowicz, M. (2017). High performance computing:
Modern systems and practices. Elsevier. doi: 10.1016/C2013-0-09704-6

Szegö, G. (1935). Über gewisse orthogonale polynome, die zu einer oszillierenden
belegungsfunktion gehören. Mathematische Annalen, 110 (1), 501–513.

Szegő, G. (1975). Orthogonal polynomials (4.a ed., Vol. 23). Rhode Island: American
Mathematical Society.

Topcuoglu, H., Hariri, S., y W., M.-Y. (2002). Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems , 13 (3), 260–274. doi: 10.1109/71.993206

Zheng, S., Liang, Y., Wang, S., Chen, R., y Sheng, K. (2020). Flextensor: An automa-
tic schedule exploration and optimization framework for tensor computation on
heterogeneous system. En Proceedings of the twenty-fifth international confe-
rence on architectural support for programming languages and operating systems
(p. 859–873). New York, NY, USA: Association for Computing Machinery. doi:
https://doi.org/10.1145/3373376.3378508

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Planteamiento del problema
	Propuesta
	Objetivos generales y específicos del proyecto
	Antecedentes
	Paralelización del cálculo de integrales multidimensionales
	Calendarizadores en ambientes heterogéneos

	Descripción del documento

	Fundamentos
	Integrales multidimensionales
	Bibliotecas para la resolución de integrales multidimensionales
	DCUHRE
	CUHRE

	Plataformas heterogéneas
	Calendarizadores
	Calendarizadores estáticos
	Calendarizadores dinámicos
	Ejecución secuencial y concurrente

	Trabajos relacionados
	Planificador inteligente para integración numérica multidimensional en ambientes heterogéneos
	FlexTensor: un framework de exploración y optimización de calendarización automática para el cálculo de tensores
	StarPU: una plataforma unificada para la calendarización de tareas
	Algoritmo de calendarización de tareas basado en aprendizaje por refuerzo
	Regla de Johnson para la calendarización de n tareas en dos máquinas
	Algoritmo híbrido heurístico-genético con parámetros adaptativos para la calendarización estática de tareas
	Calendarización de tareas
	Método para construir algoritmos de calendarización de tareas
	Resumen de los trabajos relacionados

	Estrategias de Inteligencia Artificial para calendarizadores
	Árbol de decisiones
	Búsqueda tabú

	Implementación
	Introducción a la implementación propuesta
	Arquitectura del sistema de calendarización
	Detalles de la implementación del sistema de calendarización

	Módulo de ejecución AVX
	Arquitectura del módulo de ejecución AVX

	Codelet
	Arquitectura del codelet

	Calendarizadores
	Estático secuencial
	Dinámico secuencial
	Estático concurrente
	Tabla de características

	Pruebas
	Funciones, dispositivos y condiciones base
	Pruebas preliminares
	Pruebas para evaluar la complejidad de las funciones del benchmark de integrales multidimensionales
	Pruebas para estimar el mínimo número de puntos para un error aceptable

	Pruebas de calendarización
	Tablas de tiempo para alimentar los calendarizadores
	Pruebas de tiempo de ejecución usando el calendarizador estático secuencial
	Pruebas de tiempo de ejecución usando el calendarizador dinámico secuencial
	Pruebas de tiempo de ejecución usando el calendarizador estático concurrente

	Análisis
	Comparación: 128 puntos vs extrapolación de Romberg
	Desempeño de los calendarizadores
	Comparación general
	Impacto de la estrategia de calendarización

	Conclusiones
	Glosario
	Acrónimos
	Bibliografía
	Referencias

