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Resumen
El algoritmo de optimización mediante cúmulos de partículas (Particle Swarm Optimization o

PSO) es una metaheurística cuyo principio de funcionamiento se inspira en el comportamiento
de ciertos animales que se mueven en grupo, tales como las aves o los peces. Estos animales son
capaces de resolver, de forma conjunta, problemas complejos como el buscar fuentes de alimento.
Al realizar esta tarea de forma cooperativa, se incrementa el área de búsqueda cubierta y con ello
la probabilidad de éxito. Esto contrasta con realizar una búsqueda individual que tomaría mucho
tiempo y que, posiblemente, terminaría con un final negativo. Desde la primera versión del algo-
ritmo de PSO publicada en 1995, hasta la fecha, se continúan desarrollando mejoras al algoritmo.
Esto se debe, principalmente, al surgimiento de problemas de optimización cada vez más complejos.
Uno de ellos es precisamente la optimización global de alta dimensionalidad (100 o más variables),
que es un dominio en el que la mayoría de las metaheurísticas utilizadas para optimización suelen
tener un rendimiento pobre. Si bien el principio de funcionamiento del PSO original ayuda en gran
medida a que el algoritmo sea robusto, a medida que aumenta la dimensionalidad del problema, el
tamaño del espacio de búsqueda crece exponencialmente, lo cual incrementa considerablemente la
dificultad de encontrar el óptimo global. A este fenómeno se le denomina “maldición de la dimen-
sionalidad” e implica un mayor consumo de los recursos necesarios para encontrar una solución
aceptable, ya que resulta más difícil y costoso (computacionalmente hablando) recorrer el espacio
de búsqueda. En específico, en este trabajo nos concentramos en mejorar una de las versiones de
PSO creadas para resolver problemas de optimización global de alta dimensionalidad. El algoritmo
propuesto utiliza una especie de rastro que guardará información sobre cómo se comportan las
partículas en determinado momento en el medio en el que se encuentran (espacio de búsqueda).
Esto tiene el propósito de ir adaptando en tiempo real el comportamiento social y cognitivo de
cada partícula y hacer más eficiente la exploración y la explotación de soluciones prometedoras.
Para validar el algoritmo propuesto se utilizó el conjunto de problemas del 2013 IEEE Congress
on Evolutionary Computation (CEC’2013), el cual contiene problemas de optimización global de
gran escala. El conjunto consta de quince problemas que involucran diversos desafíos que se pre-
sentan en problemas del mundo real, tales como el que haya múltiples óptimos locales o la no
separabilidad entre variables. Este conjunto constituye un buen punto de referencia para probar el
rendimiento de nuestro algoritmo frente a otros del estado del arte. Los resultados reportados en
esta tesis indican que el algoritmo propuesto proporciona mejores resultados que los algoritmos con
respecto a los que fue comparado, además de mantener un funcionamiento relativamente simple,
lo cual facilita su implementación y uso.
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Abstract
Particle Swarm Optimization (PSO) is a metaheuristic which is inspired on the behavior of some

animals that move in groups, such as birds and fish. Such animales are capable of solving, collecti-
vely, complex problems such as finding food sources. When performing this task in a cooperative
way, the search area covered gets increased and this also increases the probability of success. This
contrasts with performing individual searches, which would take a lot of time and would probably
have a negative ending. Since the original version of PSO published in 1995 to date, a variety of
improved versions of the algorithm have been developed. This has been motivated by the rise of
problems of increased complexity. Large scale global optimization (100 or more decision variables)
is precisely one of such complex problems. Since this is a domain in which most of the existing
optimization metaheuristics have a poor performance.

Although the working principle of the original PSO algorithm contributes to its robustness, as
we increase the dimensionality of a problem, the size of the search space grows exponentially, which
considerably increases the difficulty of finding the global optimum. This phenomenon is known as
“the curse of dimensionality” and implies a greater consumption of the resources required to find
an acceptable solution, since it becomes more difficult and costly (computationally speaking) to
traverse the search space. Specifically, in this work, we focus on improving PSO versions designed
to solve large scale global optimization problems.

The proposed algorithm uses some sort of trail that stores information about the behavior of
the particles in a given moment in the medium in which they are located (the search space). This
aims to adapt, in real time, the social and cognitive behavior of each particle, in order to make
more efficient the exploration and the exploitation of promising solutions. In order to validate the
proposed algorithm, we adopted the test problems from the 2013 IEEE Congress on Evolutionary
Computation (CEC’2013), which consist of large scale global optimization problems. This set
contains fifteen problems that involve several challenges that arise in real-world problems such as
the presence of local optima, or non-separability of the decision variables. This set constitutes a
good reference to test the performance of our proposed algorithm with respect to others from the
state of the art. The results reported in this thesis indicate that the proposed algorithm provides
better results than those of the algorithms with respect to which it was compared, while keeping
a relatively simple behavior, which facilitates its implementation and use.
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Capítulo 1

Introducción

1.1. Antecentes

Desde la primera versión del algoritmo de optimización por cúmulos de partículas (PSO por
sus siglas en inglés) publicada en 1995 [2], distintos autores han buscado mejorar la eficiencia y
eficacia de este algoritmo. Para ello, se ha hecho uso de diversas técnicas como por ejemplo: la
modificación de parámetros del modelo (ya sea de forma manual o dinámica), combinar el PSO
con otras técnicas como algoritmos genéticos, etc. Todo esto para mejorar la exploración y la
explotación del cúmulo en el espacio de búsqueda y así obtener la mejor solución posible.
Más recientemente, se han aplicado técnicas de aprendizaje sobre cúmulos de partículas [3] para
hacer frente a problemas con alta dimensionalidad. Una de estas estrategias consiste en modificar
una partícula elegida bajo algún criterio. Esta partícula tomaría todas o algunas características
de una partícula con mejor aptitud, es decir, aprendería de otra partícula cuál es la mejor po-
sición por adoptarse. De forma general, todas estas técnicas buscan hacer eficiente la relación
entre la búsqueda de posibles soluciones y la convergencia al mejor resultado posible y con ello
mitigar un poco el problema provocado por el gran número de variables en un problema de alta
dimensionalidad.

Algunos algoritmos como CSO [4], SLPSO [5] y MSLPSO[3], utilizan el aprendizaje en individuos
del cúmulo para encontrar mejores aproximaciones al óptimo global. En una primera etapa se
evita la exploración excesiva del espacio de búsqueda aprendiendo directamente de los mejores
individuos a través de competencias o identificando cuáles aprenden mejor y que a su vez puedan
enseñar a otros. Una segunda etapa evita perder diversidad en las posibles soluciones a través
de mecanismos que hagan que se aprenda de un cierto grupo de individuos sin que éstos sean
necesariamente los mejores. La investigación aquí propuesta busca mejorar la eficiencia y eficacia
del algoritmo de PSO en problemas de alta dimensionalidad. Para esto, tomamos como base el
algoritmo del optimizador de cúmulos competitivo [4], en donde los individuos compiten por pares
y el individuo perdedor actualiza su posición tomando como referencia la del ganador.

Los resultados esperados podrían tener un impacto significativo en diversas áreas como la opti-
mización de redes neuronales, el diseño de sistemas complejos, la planificación de rutas y la gestión
de recursos.
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1.2. Estructura de la tesis

Esta tesis está organizada en seis capítulos. El primero de ellos es esta breve introducción en la
que hablamos de forma general del algoritmo de PSO, la motivación que nos lleva a realizar este
trabajo y los objetivos que deseamos lograr al finalizarlo.

En el capítulo dos presentamos conceptos básicos sobre optimización y algunas nociones de
cómputo evolutivo que pueden ser aplicadas al algoritmo de PSO. Además profundizamos en el
principio y funcionamiento de dicho algoritmo con el fin de comprender mejor sus propiedades y
la importancia que tiene su uso en la optimización de problemas.

El tercer capítulo lo dedicamos a hablar acerca de la alta dimensionalidad y de como ésta afecta
al algoritmo de PSO. Por otro lado, mencionamos algunas estrategias comúnmente utilizadas
para mitigar este efecto y describimos algunos de los algoritmos del estado del arte especialmente
diseñados para intentar atacar esta característica que se presenta al incrementar las variables de
un problema propuesto.

En el cuatro capítulo nos adentramos en la optimización global a gran escala, la cual intenta
realizar búsquedas mucho más eficientes sin incrementar los recursos que se ocupan para resolver
un problema. También hacemos mención de algunos eventos que ayudan a la popularización y
estandarización tanto de los problemas de prueba como de la evaluación de la calidad en dichos
algoritmos. Con relación a los conjuntos de problemas de prueba, describimos los que fueron
especialmente diseñados para probar el desempeño de los algoritmos de optimización global de
gran escala.

En el capítulo cinco comenzamos con el diseño de nuestro algoritmo. Para ello iniciamos con
la evaluación de tres algoritmos del estado del arte basados en PSO para optimización global
a gran escala. Utilizamos cada uno de los conjuntos de problemas de pruebas especializados en
optimización global a gran escala en cada algoritmo con el fin de elegir el que presentara el mejor
comportamiento y así tener un buen punto de partida para mejorarlo aún más. Una vez elegido
el algoritmo de referencia se implementó nuestra estrategia de mejora y se realizó la comparación
de resultados usando varios problemas de prueba y algoritmos del estado del arte.

Por último, en el capítulo seis se presentan las conclusiones y las posibles líneas de investigación
futura.

1.3. Planteamiento del problema

El algoritmo de optimización mediante cúmulos de partículas es computacionalmente sencillo y
eficiente de implementar. Sin embargo, a medida que el número de dimensiones aumenta, su efi-
ciencia se degrada rápidamente porque el algoritmo de PSO no cuenta con operador de cruza (como
el algoritmo genético) ni mecanismos que preserven la diversidad. Por ello, es relevante desarrollar
versiones del algoritmo de PSO que sean competitivas en problemas de alta dimensionalidad.

Aunque ya existen versiones de PSO que trabajan con alta dimensionalidad, algúnas solo pueden
lidiar con un máximo de cien dimensiones o no se cuenta con su código fuente. A la fecha, se sigue
trabajando en nuevas versiones del PSO para aumentar la eficiencia del algoritmo y mejorar sus
resultados.
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1.4. Objetivos

1.4.1. General

Diseñar e implementar un algoritmo basado en optimización por cúmulos de partículas mono-
objetivo que resuelva problemas de alta dimensionalidad.

1.4.2. Particulares

Implementar el algoritmo de PSO y modificarlo para poder resolver problemas de alta di-
mensionalidad (hasta 1000 variables).

Validar el algoritmo propuesto usando varios conjuntos de prueba estándar del área de
optimización global de alta dimensionalidad y comparar resultados con respecto a algoritmos
basados en PSO del estado del arte.

Presentar un análisis estadístico de los resultados obtenidos.
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Capítulo 2

Conceptos básicos

Los conceptos que se presentan en este capítulo tienen como fin brindar una mejor comprensión
de la importancia de este trabajo en su campo. En este capítulo se presentan diversos conceptos
básicos que responden a preguntas tales como: ¿qué es la optimización?, ¿qué tipos y métodos para
optimizar existen? y ¿en qué casos se utilizan dichos métodos para encontrar la mejor solución a un
problema planteado?. En la segunda parte del capítulo se describen las características del algoritmo
de Optimización mediante Cúmulos de Partículas (Particle Swarm Optimization o PSO). Dicho
algoritmo es la base para el diseño de nuestra propuesta, la cual mejora las soluciones a problemas
de alta dimensionalidad, en específico para el conjunto de problemas del CEC-LSGO 2013.

2.1. Optimización

La optimización es un proceso que se utiliza para encontrar la mejor solución posible en todo
un espacio de posibles soluciones. Para esto se modela el problema en términos de una función
objetivo y se utiliza un algoritmo de búsqueda para minimizar o maximizar la función modelada
[6]. Para la optimización de la función objetivo se ajustan las variables de decisión que pueden ser
continuas o discretas; además, la función a resolver puede o no tener restricciones.

2.2. Tipos de optimización

Al intentar optimizar un problema, éste puede ser analizado desde distintas perspectivas. Por
ejemplo, se puede buscar minimizar algún costo, maximizar la eficiencia de un proceso o producto,
tomar la mejor decisión de entre un grupo de opciones, etc. Las características particulares de
cada problema implican tomar un enfoque más especializado para lograr la solución más efectiva.
De tal forma, existen distintas características a tomar en cuenta en un problema para clasificarlo
en algún tipo de optimización según su naturaleza. Esto se muestra en el diagrama de la figura
2.1.

Por ejemplo, la naturaleza del algoritmo en el que se basa este trabajo, es la exploración de
espacios de búsqueda continuos. En específico, adoptamos al algoritmo de optimización mediante
cúmulos de partículas (PSO por sus siglas en inglés), el cual también es una técnica de optimización
estocástica ya que se basa en el uso de números generados aleatoriamente para realizar la búsqueda.
Pero veamos primero más detalles de los diferentes tipos de optimización descritos en la figura 2.1.
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Tipos de
Optimi-
zación

Por Tipo de
Problema

Global Local

Por Número
de Objetivos
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objetivo
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objetivo

Por Mé-
todo de

Resolución

Determinista Estocástica

Por Tipo de
Espacio de
Soluciones

Continua Discreta
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plejidad del
Espacio de
Búsqueda

Convexa No Convexa

Por Dimen-
sionalidad

Baja
Dimensio-
nalidad

Alta Dimen-
sionalidad

Figura 2.1: Diagrama de características a tomar en cuenta en los diferentes tipos de optimización

2.2.1. Optimización global

Este tipo de optimización busca encontrar la mejor solución en todo el espacio de soluciones del
problema. Para ello, es necesario evaluar la función objetivo. Dependiendo del tipo de problema,
se busca el mínimo o máximo valor fg(x) en el espacio de soluciones. Este valor es llamado óptimo
global. También se busca evitar quedar atrapado en un óptimo local (éste es un punto en el que
se tiene una fl(x) como solución, y en el cual, todas las soluciones vecinas son peores que la fl(x)
dada, pero, siempre se cumple que fg(x) < fl(x) para el caso de mínimos y fg(x) > fl(x) para
cuando se busca un máximo).

2.2.2. Optimización mono-objetivo

En este tipo de optimización se busca encontrar la mejor solución posible de un problema
modelado con una sola función objetivo. Adicionalmente, pueden o no existir restricciones que
deban cumplirse para que una solución se considere válida.

2.2.3. Optimización continua

En este tipo de problemas, las variables de decisión de la función objetivo pueden tomar cualquier
valor dentro de un intervalo continuo (un número real). Evidentemente, en este caso el número de
posibles soluciones se vuelve infinito.

2.2.4. Optimización estocástica

Este tipo de optimización utiliza aleatoriedad para intentar mejorar la exploración en un espacio
de búsqueda extenso. Esto produce que en cada ejecución se pueda encontrar una posible mejor
solución diferente. Sin embargo, esta misma característica requiere mayor poder de cómputo para
realizar dicha exploración en el menor tiempo posible.

2.3. Métodos de optimización
Como podemos ver, un problemas de optimización puede contar con varias características como

las ya mencionadas anteriormente. De la misma forma, existen diferentes técnicas para resolver
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de la mejor manera posible dicho problema. Como se menciona en [7], al enfrentarnos a espacios
de búsqueda muy grandes y en donde los algoritmos más eficientes que existen para resolver el
problema requieren tiempo exponencial, resulta obvio que las técnicas clásicas de búsqueda y
optimización son insuficientes, por lo que el uso de las metaheurísticas es una opción viable.
A continuación describimos a más detalle los métodos de optimización considerados en este estudio.

2.3.1. Heurísticas

Son estrategias comúnmente utilizadas para realizar una búsqueda en un problema de optimi-
zación. El uso de esta estrategia no pretende obtener una solución exacta, si no más bien, busca
obtener una solución suficientemente buena en un tiempo razonablemente corto. Más específica-
mente, podemos definir una heurística de la forma siguiente:

“Una heurística es una técnica que busca soluciones buenas (es decir, cercanas al óptimo) a un
costo computacional razonable, sin poder garantizar ni la viabilidad ni la optimalidad, o incluso
en muchos casos, sin poder indicar qué tan cerca está una solución particular del óptimo” [8].

Cabe mencionar que, al irse desarrollando esta área, han surgido nuevas características asociadas
a las heurísticas que no se ven reflejadas en su definición, tales como las estrategias de aprendizaje
adaptativo [8].

2.3.2. Metaheurística

El principio de una metaheurística es el mismo que el de una heurística, con la diferencia de que
en este caso se aplican varias heurísticas, las cuales definen una estrategia de búsqueda general
para resolver problemas de optimización.

El término fue propuesto por Fred Glover en 1986 y ganó popularidad dentro de la comunidad
científica a partir de 1997. Su definición es la siguiente:

“Una metaheurística se refiere a una estrategia principal que guía y modifica otras heurísticas
para producir soluciones más allá de aquellas que normalmente se generan en la búsqueda de
un óptimo local. Las heurísticas guiadas por tal meta-estrategia pueden ser procedimientos de
alto nivel o no ser más que una descripción de los movimientos disponibles para transformar una
solución en otra, junto con una regla de evaluación asociada” [6].

En el diagrama de la figura 2.2 mostramos una segunda clasificación dado el método utilizado
para resolver un problema de optimización. En dicho diagrama se remarca el tipo de método
empleado en esta tesis.

A continuación hablaremos brevemente del cómputo evolutivo. Esta área de la computación nos
ofrece una amplia variedad de herramientas que pueden usarse como métodos de optimización di-
recta (por ejemplo, en la literatura encontramos una versión de PSO que hace uso de mutación [9])
para aproximar el óptimo a un problema con un espacio de búsqueda complejo (p.ej., accidentado
o altamente multimodal).

2.4. Nociones de cómputo evolutivo

El cómputo evolutivo es un área de la computación que se inspira en los principios de la evolución
biológica para simularlos y utilizarlos como una herramienta para el aprendizaje y la optimización.
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Métodos de
Optimización

Exactos

Gradiente Programación
lineal

Programación
dinámica

Directos

Heurísticas

Inteligencia
de enjambre

PSO

Algoritmos
Evolutivos

Simplex

Figura 2.2: Diagrama de métodos de optimización

Los algoritmos evolutivos son especialmente útiles en dominios donde las soluciones óptimas no se
pueden encontrar utilizando métodos deterministas o analíticos. De manera general, existen tres
paradigmas principales que se utilizan en la computación evolutiva, los cuales son: las estrategias
evolutivas, la programación evolutiva y los algoritmos genéticos [10]. Primero se explicará cada
paradigma y luego describiremos los mecanismos principales que utilizan los algoritmos genéticos
y que hacen posible su funcionamiento.

2.4.1. Programación evolutiva

Esta técnica fue propuesta por Lawrence J. Fogel [11] y se usó inicialmente para hacer evolu-
cionar autómatas de estados finitos para que fueran capaces de predecir las secuencias futuras de
símbolos que recibirían. Fogel usó una función de “pago” que indicaba qué tan bueno era un cierto
autómata para predecir un símbolo, y usó un operador inspirado en la mutación para efectuar
cambios en las transiciones y en los estados de los autómatas que tenderían a hacerlos más aptos
para predecir secuencias de símbolos.
Esta técnica no consideraba el uso de un operador de recombinación sexual ya que su fin era
modelar el proceso evolutivo a nivel de las especies y no a nivel de los individuos.
La programación evolutiva se aplicó originalmente a problemas de predicción, control automático,
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identificación de sistemas y teoría de juegos, entre otros [12].

2.4.2. Estrategias evolutivas

Ingo Rechenberg desarrolló un método que le ayudara a resolver problemas de optimización en
mecánica de fluidos. Particularmente, quería optimizar la geometría de un tubo, la minimización
del arrastre de una placa de unión y la optimización estructural de una boquilla intermitente de
dos fases.

Debido a la imposibilidad de describir y resolver estos problemas de optimización analíticamente
o usando métodos tradicionales como el del gradiente [13], Ingo Rechenberg desarrolló un método
de ajustes discretos aleatorios inspirado en el mecanismo de mutación que ocurre en la naturaleza
[10].

2.4.3. Algoritmos genéticos

A principios de la década de los sesentas, John H. Holland, inspirado por los estudios realizados
en aquella época con autómatas celulares [14] y redes neuronales [15], se percató de que el uso de
reglas simples podría generar comportamientos flexibles, y visualizó la posibilidad de estudiar la
evolución de comportamientos en un sistema complejo. Esto lo llevó a desarrollar una nueva técni-
ca que denominó “planes reproductivos y adptativos”, la cual utilizó para aprendizaje de máquina.
Con el tiempo, esta técnica sería conocida como el algoritmo genético.

Un algoritmo genético requiere los componentes siguientes:

Una representación de las soluciones potenciales del problema

Una forma de crear una población inicial

Una función de evaluación

Operadores genéticos

Valores para los diferentes parámetros que utiliza el algoritmo genético

El operador principal en los algoritmos genéticos es la cruza. La mutación es un operador
secundario que, sin embargo, es necesario para mantener el espacio de búsqueda completamente
conectado.

Hacemos énfasis especialmente en el operador de mutación ya que éste garantiza que sea posible
explorar todo el espacio de búsqueda, y es posible adaptarlo en otros algoritmos, tales como el
PSO [9].

2.4.4. Operador de cruza

La cruza es un operador que simula el proceso de reproducción sexual. La cruza crea descen-
dientes con características de ambos padres y fomenta la diversidad de una población [10]. Las
tres técnicas básicas de cruza para representación binaria son:

Cruza de un punto
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Cruza de dos puntos

Cruza uniforme

La cruza suele aplicarse con una frecuencia que va del 60 % al 100 %.

2.4.5. Cruza usando números reales

En su versión original, el algoritmo genético utilizó una codificación binaria (es decir, todas las
variables del problema se convierten a números binarios). Con el tiempo, se usaron otros tipos
de representación, tales como los números reales. Cuando utilizamos números reales en nuestra
representación, es deseable definir operadores de cruza más acordes que puedan “romper” un cierto
valor real, de manera análoga a como la cruza ordinaria “rompe” segmentos de cromosoma al usarse
representación binaria. Las técnicas más usadas para lograrlo, son las siguientes [10]:

Intermedia

Aritmética simple

Aritmética total

Simulated Binary Crossover

Cruza basada en dirección

2.4.6. Mutación para representación binaria

La mutación es un operador que se utiliza con menos frecuencia que la cruza, Se suelen reco-
mendar porcentajes de mutación entre 0.001 y 0.01 para representaciones binarias [10].

Pese a que el operador de mutación se suele usar con menos frecuencia que el de cruza, se ha
sugerido que el usar porcentajes altos de mutación al inicio de la búsqueda y luego decrementarlos
exponencialmente favorece el desempeńo global del algoritmo genético [16].

2.4.7. Mutación para representación real

Si se utilizan números reales para representar las variables del problema, se debe tomar en cuenta
esto para diseñar operadores de mutación que sean análogos a los usados con la representación
binaria. El operador de mutación juega un papel clave en la variabilidad de la población de un
algoritmo evolutivo [10]. Algunas técnicas de mutación para representación real son:

No Uniforme

De Límite

Uniforme

Mutación basada en parámetros
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2.5. Optimización mediante cúmulos de partículas

2.5.1. Fundamentos socio-cognitivos del PSO

Los sistemas naturales como los enjambres de abejas, las colonias de hormigas y los bancos de
peces, muestran comportamientos colectivos emergentes que permiten que el grupo pueda resolver
problemas de manera eficiente sin la necesidad de un control centralizado. Esto se conoce como
inteligencia de enjambre [17]

Los algoritmos de inteligencia de enjambre utilizan como base el proceso de adaptación cultural.
Éste comprende dos componentes: uno de alto nivel que se refiere a la capacidad de los individuos
para formar patrones y resolver problemas a nivel de grupo (por ejemplo, la creación de normas
culturales o comportamientos colectivos que surgen de la interacción entre individuos). El segundo
componente, de bajo nivel, se asocia a los comportamientos individuales que son universales,
probablemente innatos de cada individuo y que de igual forma influyen en el grupo. Estos últimos
consisten en tres principios [18]:

Evaluar

Comparar

Imitar

A continuación describiremos brevemente cada uno de ellos.

2.5.1.1. Evaluar

Quizás la característica de comportamiento más común en los organismos vivos es la tendencia
a evaluar los estímulos que perciben. El aprendizaje no ocurre a menos que un organismo pueda
evaluar las características del entorno que le son favorables, con respecto a las que no lo son. En
el PSO esta característica se cumple evaluando una función que describe el problema a resolver.

2.5.1.2. Comparar

En 1954, Leon Festinger postuló una teoría social [19] en la que propone que los individuos tien-
den a evaluarse a sí mismos, comparándose con los demás. Algunas de las predicciones generadas
por dicha teoría no han sido confirmadas por investigación empírica, ya que las comparaciones
sociales son más complejas de lo que Festinger predijo (por ejemplo, Fisteger predice que los in-
dividuos siempre se comparan con individuos similares, pero otras investigaciones dicen que los
individuos también se comparan con otros muy distintos). Dichas predicciones han servido como
base en la inteligencia de enjambre. En dichos modelos, un agente evalúa su aptitud y se compara
con todo el cúmulo para establecer un líder que dirija la trayectoria del cúmulo hacia la mejor
solución posible dentro de un espacio de búsqueda.

2.5.1.3. Imitar

Konrad Lorenz [20] menciona que muy pocos animales son capaces de una imitación real. De
hecho, la mayoría de los animales no imitan en el sentido estricto del término, sino que, a menudo,
aprenden a través de otros mecanismos, como el condicionamiento o la observación. Sin embargo,
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no logran el nivel de imitación compleja que se observa en los humanos y algunas aves. La imita-
ción como la entendemos es principalmente humana [21]. En el PSO, el mejor individuo guía la
búsqueda, es decir los otros individuos tratan de imitar su trayectoria.

2.5.2. Optimización mediante cúmulos de partículas

El algoritmo de optimización mediante cúmulos de partículas (PSO por sus siglas en inglés)
fue propuesto en 1995 por James Kennedy y Russell Eberhart [22] y está inspirado en el compor-
tamiento social de ciertos grupos de animales. Este comportamiento es simulado a través de un
modelo en el que un grupo de agentes, en vez de intentar resolver un problema en sí, solo siguen
reglas simples planteadas al inicio del algoritmo. A su vez, las reglas no dicen nada acerca de la
existencia de un problema, sino que éste se resuelve a través de la influencia social recíproca, con
base en el modelo de cultura adaptativa [17]. De tal forma, los agentes son capaces de mejorar
características como la aptitud.

El algoritmo comienza inicializando de forma aleatoria (con distribución uniforme) la velocidad
y posición de n agentes (a los cuales llamamos partículas). La posición de una partícula i en el
espacio de búsqueda representa una posible solución al problema y la velocidad de una partícula i
determina cómo cambiará su posición. Luego, se define un número de iteraciones máximo con una
condición de parada establecida por el usuario. En cada iteración se evaluará la función objetivo
para cada partícula y se actualizarán las posiciones y velocidades para cada una de ellas. Para
simplificar lo anterior, podemos ver la figura 2.3 que muestra una representación del movimiento
y de la posición de una partícula i en un plano bidimensional que tiende a moverse hacia el mejor
global y hacia el mejor personal.

Figura 2.3: Representación esquemática del movimiento de una partícula i (en el algoritmo de
PSO) que se desplaza hacia el mejor global y el mejor local

Básicamente, el algoritmo de PSO va ajustando las trayectorias de cada partícula para explorar
el espacio de búsqueda en función de la posición de pBest y gBest. El movimiento de la partícula
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i en el cúmulo consta de dos componentes principales: uno que atrae a la partícula hacia la mejor
posición del cúmulo gBest y un segundo componente que la atrae a su mejor ubicación histórica
pBest. Al mismo tiempo, tiende a moverse de forma aleatoria [18] como lo muestra la ecuación
(2.1).

vi(t+ 1) = ωvi(t) + c1r1(pBesti − xi(t)) + c2r2(gBest− xi(t)) (2.1)

donde:

ω es el factor de inercia. Un valor distinto de cero hace que la partícula no altere su dirección
de movimiento, Es una especie de desplazamiento o sumador lineal aplicado a la velocidad
de la partícula. Cuando su valor es grande, tiende a mover a la partícula más lejos, con
el objetivo de explorar regiones alrededor de la partícula (es común aplicarlo al comienzo).
Cuando el valor es pequeño, la partícula busca mejores soluciones en un área más cercana
al valor anterior de ésta (es común aplicarlo al final).

c1 es el coeficiente de aprendizaje personal. Este parámetro se relaciona con el comportamien-
to individual. Cuanto mayor sea este parámetro, la influencia de la mejor posición personal
será más grande. Esto favorece la exploración individual, evitando la agrupación prematura
del cúmulo.

c2 es el coeficiente de aprendizaje global. Este parámetro se relaciona con el comportamiento
social. Cuanto mayor sea este parámetro, la influencia de la mejor posición global será más
grande. Esto favorece la exploración colectiva, ayudando a la exploración del cúmulo.

r1 y r2 son números aleatorios (agregan aleatoriedad al comportamiento de las partículas)
con una distribución uniforme, en el intervalo [0,1].

pBest es la mejor posición conocida por la partícula i (mejor posición personal).

gBest es la mejor posición conocida por el cúmulo (mejor posición global).

Para identificar mejor el cúmulo, podemos asignar el símbolo vectorial algebraico xi para repre-
sentar la posición de cualquier cantidad de partículas i. Además, cada vector puede tener cualquier
dimensión d. A la velocidad le asignamos el símbolo vectorial vi.

Una vez que tenemos la velocidad de la partícula i en el tiempo t + 1, obtenemos su nueva
posición. La actualización de la posición de una partícula i en el tiempo t + 1 está dada por la
ecuación (2.2).

xi(t+ 1) = xi(t) + vi(t+ 1) (2.2)

El algoritmo de PSO se puede aplicar en espacios de búsqueda continuos [22] y discretos [23].
Sin embargo, es más común utilizarlo para resolver problemas de optimización en espacios de
búsqueda continuos, es decir, en problemas en los cuales todas las variables son números reales.

En este trabajo utilizaremos la versión continua del algoritmo de PSO. La motivación para ello
es la precisión que nos puede llegar a proporcionar en las soluciones, además de que es sencillo
implementarlo en un lenguaje de alto nivel como C. Por otra parte, la motivación principal para
utilizar este método de optimización es su simplicidad con relación a otros métodos como los
algoritmos genéticos. Esto es debido a que el principio de funcionamiento del algoritmo base (ver
el algoritmo 1) no requiere operadores como la cruza o la mutación, por lo que podría utilizarse
en aplicaciones en las que los recursos de cómputo disponibles son muy limitados.
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Algoritmo 1 Optimización mediante cúmulos de partículas
1: Inicializar posiciones xi y velocidades vi de las partículas aleatoriamente (distribución unifor-

me) en el espacio de búsqueda para cada partícula i.
2: Inicializar la mejor posición conocida de cada partícula (mejor personal) pBesti = x
3: Inicializar la mejor posición global gBest como la mejor posición entre todas las partículas.
4: Mientras no se cumpla el criterio de parada hacer
5: Para cada cada partícula i hacer
6: Actualizar la velocidad de la partícula i:

vi(t+ 1) = ωvi(t) + c1r1(pBesti − xi(t)) + c2r2(gBest− xi(t))

7: Actualizar la posición de la partícula i:

xi(t+ 1) = xi(t) + vi(t+ 1)

8: Evaluar la nueva posición xi(t+ 1).
9: Si f(xi(t+ 1)) < f(pBesti) entonces

10: Actualizar la mejor posición personal:

pBesti = xi(t+ 1)

11: Fin Si
12: Si f(xi(t+ 1)) < f(gBest) entonces
13: Actualizar la mejor posición global:

gBest = xi(t+ 1)

14: Fin Si
15: Fin Para cada
16: Fin Mientras

Cabe aclarar que por su naturaleza, el PSO en su versión original no permite garantizar con-
vergencia al óptimo global, sino únicamente a la mejor partícula en el cúmulo [2].

Trabajos más recientes han podido demostrar convergencia global de algunas variantes del PSO
bajo ciertas condiciones iniciales y para ciertas clases de problemas (ver por ejemplo [24][25][26][27]).

Además, aunque en este trabajo no utilizaremos la versión discreta de PSO, hacemos una breve
mención del funcionamiento de ambas versiones.

2.5.2.1. Funcionamiento del modelo discreto del PSO

El principio de funcionamiento en la versión discreta es el mismo que en la versión continua
descrita en la sección anterior. En [23] se describe una reformulación del algoritmo para operar
con variables discretas (en específico, números binarios). Pero ahora las trayectorias se interpretan
como cambios en la probabilidad de que una coordenada tome un valor de cero o uno.

Esta versión puede ser utilizada en problemas donde se requieren soluciones en espacios discretos.
De igual forma, es común reformular problemas de punto flotante en términos binarios y resolverlos
en un espacio numérico discreto.
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En un espacio binario se puede considerar que una partícula se mueve al cambiar diversos
números de bits. Por lo tanto, la velocidad de la partícula en general puede describirse como el
número de bits cambiados por iteración o la distancia de Hamming entre la partícula en el tiempo
t y en t + 1. Por ejemplo, una partícula con cero bits invertidos no se mueve, mientras que al
invertir todas sus coordenadas binarias, una partícula se mueve a la posición más lejana.

La velocidad se define en términos de cambios en las probabilidades de que un bit esté en un
estado u otro. Esto implica que una partícula se mueve en un espacio de estados restringido a 0 y
1 para cada dimensión d. Entonces, cada vid representa la probabilidad de que el bit xid tome el
valor de 1. Por ejemplo, si vid = 0.20, entonces hay un 20% de probabilidad de que xid sea 1 y un
80% de probabilidad de que sea 0.

El término (pBestid−xid) puede tener valores −1, 0 ó 1 y se utiliza para ponderar el cambio en
la probabilidad vid en t+1. Entonces, pBest y xid son enteros en 0, 1 y vid al ser una probabilidad,
debe estar restringida al intervalo [0, 1]. Para lograr esta última modificación, se puede utilizar
una transformación (sigmoidal) s(vid).

Para obtener la posición se utiliza la siguiente condición:

1 i f ( rand ( ) < s (Vid ) ) // rand ( ) es pseudo a l e a t o r i o en [ 0 . 0 , 1 . 0 ] con d i s t r i b u c i o n
uniforme .

2 then Xid = 1 ;
3 else
4 Xid = 0 ;

Código 2.1: Criterio de decisión para actualizar la posición Xid en el PSO discreto

Con relación a la velocidad máxima que puede presentar el PSO discreto, una Vmax alta (por
ejemplo 10.0) hace que sea menos probable probar nuevos vectores ya que reduce el rango de
respuesta de s(vid). Por lo tanto, parte de la función de vmax es establecer un límite para la
exploración adicional una vez que la población converge. Cabe señalar también que, mientras que
un valor alto de vmax en la versión con valores continuos aumenta el rango explorado por una
partícula, en la versión binaria ocurre lo contrario: un vmax más pequeño permite una mayor tasa
de mutación.

2.5.2.2. Funcionamiento del modelo continuo del PSO

En esta versión de PSO se utilizan números reales Rd donde d es el número de dimensiones de
un vector, al que llamamos partícula y que puede ser representada como un punto en un espacio
multidimensional. En una población de puntos, nótese que al estar en un espacio de soluciones
continuo, los individuos pueden ser más parecidos entre sí (tienen mayor precisión). Por otra
parte, el cambio en la posición de cada individuo a lo largo del tiempo t se ve afectado por la
velocidad de éste y la posición que tenga en un tiempo anterior t − 1. Dependiendo de cómo
sea la comunicación entre los integrantes del cúmulo, puede haber una rápida convergencia o una
tendencia a la exploración del espacio de búsqueda por parte del grupo. No obstante, los individuos
tenderán a moverse unos hacia otros (ver figura 2.4), para influenciarse mutuamente, a medida
que los individuos buscan acuerdos con sus vecinos.
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Figura 2.4: Funcionamiento del algoritmo de PSO utilizando 40 individuos y tres dimensiones en
la función esfera usando 100 iteraciones

La velocidad es un vector de números reales que se suma a las coordenadas de posición para
mover la partícula a una posición xi(t + 1). La actualización de la posición de una partícula i en
el tiempo t+ 1 está dada por la ecuación (2.2) .
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Como se puede deducir, cada individuo se verá influenciado por su propio comportamiento
anterior y por los éxitos de sus vecinos, quienes, no necesariamente son individuos cercanos a él,
en el espacio de los parámetros. Sus vecinos son aquellos que están cerca en un espacio topológico
(hablaremos acerca de las topologías en la siguiente sección), o estructura establecida para que los
individuos puedan socializar o compartir conocimiento, sin importar la distancia que exista entre
ellos.

La dirección del movimiento (bajo el concepto de locomoción de Lewin [17]) está en función de
la posición y velocidad actual, así como por ubicación del éxito previo más grande del individuo
y la mejor posición encontrada por cualquier miembro del vecindario, la cual podemos definir de
forma general como la función:

xi(t+ 1) = f(xi(t), vi(t), lBesti, gBest) (2.3)

PSO utiliza el modelo gbest que conecta conceptualmente a todos los miembros de la población
entre sí. El efecto de esto es que cada partícula está influenciada por el mejor rendimiento de
cualquier miembro de toda la población. El segundo modelo, llamado pbest, crea un vecindario
para cada individuo que comprende a sí mismo y a sus k vecinos más cercanos en la población.
Por ejemplo, si k = 2, entonces cada individuo i estará influenciado por el mejor rendimiento
entre un grupo formado por las partículas i− 1, i e i+ 1. Las diferentes topologías de vecindario
pueden resultar en diferentes tipos de efectos. La velocidad se obtiene de la diferencia entre la
mejor posición previa del individuo y su posición actual, así como de la diferencia entre la mejor
posición del vecindario y la posición actual del individuo (ver línea 6 del algoritmo 1 en la que se
utiliza la ecuación (2.1)).

Una parte importante a tomar en cuenta en el algoritmo de PSO es controlar las trayectorias que
pueden tomar las partículas a lo largo de las iteraciones. Si no se realiza esto, pueden expandirse
en ciclos cada vez más amplios hasta llegar a salirse del espacio de búsqueda válido. Para evitar
esto se puede aplicar algún método de constricción [24]. Cabe aclarar que la velocidad máxima
(Vmax) que debe alcanzar una partícula está acotada a fin de mantener su movimiento dentro de
un rango útil [17]. Además, el valor del parámetro depende de cierto conocimiento del problema
para evitar quedar atrapado en un óptimo local o al acercarse a un valor prometedor reducirlo
para dar pasos más pequeños.

2.5.3. Topologías para PSO

Como ya hemos mencionado anteriormente, un grupo se ve afectado por la estructura de la
red social que lo contiene [17]. En la investigación sobre enjambres de partículas, normalmente
se utilizan redes en donde se da una interacción de los individuos con sus vecinos inmediatos y
de todos los individuos con el mejor desempeño dentro de la población. Sin embargo, se puede
utilizar cualquier otra red que ayude al algoritmo a encontrar mejores resultados. En [28] se indica
que una topología adecuada puede mitigar la convergencia prematura y mejorar la eficiencia del
algoritmo [29].

Algunas de las topologías más comúnmente utilizadas [17][28][30] [31] se describen a continua-
ción.
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2.5.3.1. Topología totalmente conectada

En este tipo de interacción, cada partícula tiene acceso a la mejor solución global encontrada
por todo el cúmulo. Esta topología puede conducir a una convergencia prematura en problemas
complejos, como los multimodales.

2.5.3.2. Topología de anillo

En este tipo de interacción, las partículas solo interactúan con un subconjunto de vecinos cer-
canos. Es adecuada para problemas con múltiples óptimos.

2.5.3.3. Topología en estrella

En este tipo de interacción, todas las partículas se conectan a una partícula que actúa como
líder central.

2.5.3.4. Topología en malla

En este tipo de interacción, las partículas solo interactúan con vecinos directos, formando una
especie de malla.

En la figura 2.5 se representan los tipos de topologías más comunes.
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Topología en Anillo

Partícula 1

Partícula 2

Partícula 3

Partícula 4

Partícula 5

Topología en Estrella

Centro Partícula 1

Partícula 2

Partícula 3

Partícula 4

Partícula 5

Topología en Malla

Partícula 1

Partícula 2

Partícula 3

Partícula 4

Partícula 5

Partícula 6

Partícula 7

Partícula 8

Partícula 9

Topología Totalmente Conectada

Partícula 1

Partícula 2

Partícula 3

Partícula 4

Partícula 5

Figura 2.5: Diferentes topologías de partículas para el PSO

2.5.4. Ventajas del PSO

Simplicidad de su implementación: El algoritmo de PSO es fácil de entender y programar.
Tiene una estructura simple que permite adaptarlo rápidamente a diferentes problemas sin
necesidad de recurrir a implementaciones complejas.

Es un método de búsqueda directa: A diferencia de otros métodos de optimización, PSO no
necesita calcular derivadas de las funciones, lo que lo hace apto para problemas no lineales
o discontinuos o cuando las derivadas no están disponibles.

Capacidad de Evitar Mínimos Locales: Gracias a su enfoque basado en múltiples partículas
que exploran simultáneamente diferentes partes del espacio de búsqueda, PSO tiene una
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mayor capacidad para evitar quedarse atrapado en mínimos locales.

Fácilmente paralelizable: Las partículas se mueven de manera independiente, lo que facilita
la implementación paralela de PSO. Esto es ideal para aprovechar arquitecturas de cómputo
distribuidas o multi núcleo, lo que permite acelerar el proceso de optimización.

Adaptabilidad: El algoritmo de PSO se puede ajustar fácilmente para adaptarse a diferen-
tes tipos de problemas y dominios. Se pueden modificar los parámetros y las funciones de
evaluación para mejorar su rendimiento en distintas aplicaciones.

2.5.5. Desventajas de PSO

Convergencia prematura: En problemas con paisajes de búsqueda complejos, PSO puede
converger prematuramente a una solución subóptima si todas las partículas se acercan rápi-
damente a un mismo punto sin explorar el espacio de búsqueda de forma adecuada.

Dependencia de parámetros: El rendimiento de PSO es altamente sensible a la configura-
ción de sus parámetros, tales como los coeficientes de aceleración, la inercia y el límite de
velocidad. Encontrar la combinación adecuada de estos parámetros puede ser complicado.

Escalabilidad en problemas de alta dimensionalidad: PSO funciona bien en problemas de
pequeña a mediana escala, pero su rendimiento tiende a disminuir en problemas de alta di-
mensionalidad, donde el tamaño del espacio que debe explorarse es inmenso y la probabilidad
de encontrar una buena solución disminuye considerablemente.

Oscilación de partículas: Si no se controlan adecuadamente, las partículas pueden oscilar o
moverse indefinidamente sin converger a un punto óptimo, especialmente en problemas donde
las soluciones óptimas están cercanas pero la inercia y la aceleración están mal ajustadas.

Dificultad para problemas con restricciones complejas: PSO puede ser menos eficiente en
aquellos problemas donde las restricciones son difíciles de manejar.
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Alta dimensionalidad

La alta dimensionalidad es un fenómeno que se presenta cuando un problema matemático tiene
un número elevado de variables de decisión. Del mismo modo, esta situación se presenta en áreas
en las que se manejan grandes cantidades de datos [32] o se busca una solución a problemas con un
gran número de características, por ejemplo, en aprendizaje automático, procesamiento de señales,
análisis de datos, optimización, etc.
La alta dimensionalidad se puede interpretar como un espacio euclidiano Rd representado como
x1, x2, x3, ..., xD (un vector x), donde el número de variables D es muy grande (por ejemplo, mayor
a 100).
Vale la pena comentar, que en alta dimensionalidad, las propiedades geométricas del espacio
cambian de forma radical. Por ejemplo, en un espacio de alta dimensionalidad cambia la forma en
la que se distribuyen las distancias a medida que D aumenta. En ese caso, la mayoría de los puntos
(aleatorios, con distribución uniforme e independientes) tienden a estar a la misma distancia con
respecto de un punto de referencia cualquiera (ver figura 3.1).

Figura 3.1: El histograma 1000D muestra que la mayoría de las distancias están agrupadas cerca de
un valor medio, mientras que en 2D (histograma de la derecha) la distribución de distancias muestra
mayor variabilidad. Para este ejemplo se generaron 1000 puntos aleatorios con una distribución
uniforme en el espacio y se calcularon las distancias euclidianas de cada punto respecto al origen
para cada caso.
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Otro aspecto a considerar es que en alta dimensionalidad, la densidad de los puntos baja drás-
ticamente. Es decir, la distancia entre los puntos aumenta (se dispersan) ya que hay más espacio
por cubrir (ver figura 3.2).

Figura 3.2: Se muestran las gráficas de 1000 puntos generados aleatoriamente con distribución
uniforme para 2D y 1000D. Para el caso de 1000D se utilizó la técnica de análisis de componentes
principales (Principal Component Analysis) para visualizarlos en 2D.

En las siguientes secciones explicaremos los efectos de la alta dimensionalidad en los algoritmos
de optimización estocásticos, en especifico, para el algoritmo de PSO. Además, mencionaremos
algunas estrategias que intentan hacer frente a los problemas asociados a este hecho. Cabe aclarar
que solo algunos de estos métodos serán utilizados en este trabajo de tesis.

3.1. Maldición de la dimensionalidad

En 1957, Richard Bellman [33] abordó la complejidad de los problemas de decisión y optimización
donde el número de posibles decisiones es extremadamente grande. En 1961 publicó un artículo
donde describe “la maldición de la dimensionalidad”, en el cual, describe el problema que causa
el aumento exponencial del volumen asociado con la adición de dimensiones extra a un espacio
euclidiano.
Por ejemplo, en RD (donde D es la dimensionalidad), el volumen de un cubo con lado 2 es 2D más
grande que el volumen del cubo unidad [34], a pesar que los lados de los cubos solo difieren por
un factor de 2, como se puede ver en la figura 3.3.
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Figura 3.3: A la derecha se muestra un cubo unitario. Al aumentar su longitud solo una unidad,
su volumen se incrementa ocho veces (23 veces) como lo muestra la segunda figura

3.1.1. Maldición de la alta dimensionalidad en PSO

PSO es un algoritmo fácil de entender y sencillo de implementar. Sin embargo cuando se trabaja
con altas dimensiones (arriba de 100), se presenta la llamada “maldición de la dimensinalidad”,
ya que conforme aumentan las dimensiones del problema a resolver, el espacio de búsqueda crece
exponencialmente y los datos se vuelven más dispersos (ver figura 3.2). Esto provoca que se vuelva
complicado explorar de forma eficiente dicho espacio (en la figura 3.1 podemos ver que las distancias
en altas dimensiones son mayores que en bajas, lo que significa un aumento en la dispersión). En
consecuencia, aumenta el riesgo de caer en mínimos locales, sin mencionar el incremento en la
complejidad computacional, debido al aumento del número de evaluaciones de la función objetivo
realizadas para buscar una buena solución.

3.2. Estrategias en PSO para manejar alta dimensionalidad

Existen distintas estrategias que se pueden utilizar para intentar mitigar los efectos negativos de
la alta dimensionalidad en el algoritmo de PSO, a fin de mejorar su rendimiento. Las principales
se describen a continuación.
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3.2.1. Reducción de dimensionalidad por análisis de componentes prin-
cipales

El análisis de componentes principales (Principal Component Analysis) es un método estadístico
que se utiliza para reducir la dimensionalidad de un conjunto de datos. Esto lo hace eliminando
las variables redundantes o irrelevantes y manteniendo la mayor cantidad de información posible.

Básicamente, funciona encontrando componentes que maximizan la varianza, y proyectando los
datos originales sobre estos componentes [35].

Los objetivos que se busca resolver al aplicar este método son [36]:

Extraer la información más importante de los datos.

Comprimir el tamaño del conjunto de datos manteniendo solo esta información importante.

Simplificar la descripción del conjunto de datos.

Analizar la estructura de las variables.

Por ejemplo, en la figura 3.2 se utilizó PCA (por sus siglas en inglés) para proyectar 1000 puntos
aleatorios en 2D para visualizarlos y poder comparar algunos comportamientos como la reducción
de la densidad de puntos contra un espacio en 2D.

Este método no es aplicable en esta tesis, ya que se trata de una técnica lineal y la mayoría de
los problemas que vamos a resolver son “no lineales”. Además, se tendrían que realizar cálculos de
covarianza de datos y eso resultaría altamente costoso.

3.2.2. Adaptación de parámetros

Esta técnica consiste en ajustar de forma inicial o dinámicamente los parámetros del PSO
(por ejemplo, la velocidad o la inercia) para mejorar el equilibrio entre exploración y explotación
en un espacio de alta dimensionalidad [4]. Es decir, el ajuste controlado de estos parámetros
puede disminuir la velocidad de las partículas e intentar encontrar una mejor solución cuando se
encuentren en una zona prometedora y por el contrario, incrementarla en la etapa de exploración.
Además, se puede limitar la velocidad para evitar que las partículas salgan del espacio de búsqueda
válido.

Con relación a los coeficientes de aprendizaje c1 y c2 también se pueden modificar para incre-
mentar la dominancia cognitiva o social del individuo.

Así mismo, se puede modificar el valor de la inercia (ω), para que las partículas exploren al
principio (con mayor inercia) y exploten cuando se acercan a una solución prometedora.

Por ejemplo, en [4] se mencionan diferentes técnicas para adaptar los parámetros de control
del PSO, que van desde el peso de inercia ω propuesto por Shi y Eberhart [37], pasando por una
implementación de un sistema difuso para adaptar dinámicamente ω [16], hasta un mecanismo de
control más reciente de múltiples parámetros para cambiar adaptativamente ω, c1 y c2 en [38].
Para el presente trabajo, se realiza un ajuste en tiempo real de estos parámetros, tomando como
referencia el comportamiento de las evaluaciones de la función de aptitud con relación al espacio
de búsqueda.
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3.2.3. Uso de topologías

Esta técnica tiene como principio el hecho de que la comunicación dentro de un grupo se ve
afectada por la estructura de la red social [17]. En [2], por ejemplo, se utilizan estructuras sociales
simples, como la interacción de los individuos con sus vecinos inmediatos y la interacción de
todos los individuos con el individuo de mejor desempeño en la población. Sin embargo, se podría
utilizar cierto número de integrantes u otro tipo de estructuras sociales, que afecten el intercambio
de información de forma positiva para alcanzar un mejor consenso que convenga a todos.

Como vimos en el capítulo anterior, existen diferentes topologías como la de anillo o estrella,
las cuales, pueden ayudar a explorar de forma más eficiente un espacio de búsqueda [39].

También se puede modificar la topología cuando se presente una circunstancia determinada,
para aprovechar la propiedad de ésta. Por ejemplo, en lugar de usar la estructura de cúmulo global
(donde todas las partículas interactúan entre sí) siempre, se puede optar por una topología local
en la que las partículas solo interactúan con sus vecinos más cercanos para evitar la exploración
innecesaria en una iteración, o incluso se puede hacer formando subcúmulos de partículas. Esto
último se realiza en [40], en donde distintas partes del espacio de búsqueda son optimizadas de
forma independiente por diferentes subcúmulos, para luego reagruparse y configurar una nueva
vecindad con base en la información compartida de cada subcúmulo.

En [41], se desarrolló un PSO completamente informado, donde la actualización de cada partícula
se basa en las posiciones de varios vecinos. También tenemos el Comprehensive Learning PSO
(CLPSO) introducido en [42], en el cual las partículas actualizan cada dimensión aprendiendo de
diferentes posiciones locales óptimas.

3.2.4. Métodos híbridos

El algoritmo de PSO puede combinarse con otros algoritmos de optimización para mejorar su
rendimiento en alta dimensionalidad. Por ejemplo, se puede combinar con algoritmos genéticos
o solo con algunos operadores como el de mutación para ayudar a mantener la diversidad en el
cúmulo, evitando que las partículas converjan demasiado rápido a soluciones subóptimas.

Se puede utilizar un buscador local combinado con PSO (como el Recocido Simulado o un
algoritmo basado en el gradiente de la función) para mejorar la explotación [43]

Otra técnica consiste en descomponer el problema en partes más pequeñas, para optimizar cada
parte por separado para luego combinar los resultados. Un ejemplo de este tipo de esquema es la
coevolución cooperativa, en la cual se divide el espacio de búsqueda en varios grupos y se aplica
PSO a cada grupo de manera cooperativa. Es decir, cada subcúmulo optimiza solo un subconjunto
de las variables, y las interacciones entre los subcúmulos permiten encontrar soluciones globales
[44].

Para esta tesis, no utilizamos esta técnica, ya que no mezclamos la versión base que tomamos
como referencia para nuestra mejora [4] con ninguna otra versión de PSO o con algún operador
de algoritmos genéticos. Solo intentamos mejorar el equilibrio entre diversidad y convergencia a
través de la información de la posible forma del espacio de búsqueda que la partícula aporta al
explorarlo.
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3.2.5. Estrategias de aprendizaje

Se puede hacer uso de aprendizaje adquirido en una etapa previa de optimización en un espacio
de menor dimensión que sirve como un preprocesamiento que mejora la eficiencia del algoritmo al
transferir el conocimiento sobre los patrones de búsqueda exitosos a la fase de alta dimensionalidad
[45]. Se debe tomar en cuenta que esta estrategia es útil cuando se tiene acceso a varios problemas
similares; por ejemplo, el mismo problema en distintas dimensionalidades. Además, el éxito de la
estrategia depende de la calidad del aprendizaje transmitido, por lo que incluso puede perjudicar
a la solución principal.

Otra estrategia consiste en utilizar múltiples estrategias de búsqueda adaptativas que ayuden a
mejorar la exploración y explotación del espacio de soluciones que se adapten a las necesidades de
éste en cada momento [3].

En nuestro trabajo, la única estrategia de aprendizaje que se utiliza es la propuesta en el
algoritmo de referencia que se adoptó como base para el algoritmo desarrollado en esta tesis [4].

3.2.6. Aleatoriedad controlada

Este método consiste en introducir elementos de aleatoriedad de forma controlada en algunos
parámetros del PSO, permitiendo que las partículas exploren diferentes regiones del espacio de
búsqueda sin tener que recorrer todas las dimensiones de manera exhaustiva. Esto mejora la
exploración en espacios de búsqueda muy grandes (este método ya es utilizado en el algoritmo de
PSO original, en donde se introduce aleatoriedad para los componentes cognitivo y social) [2] [46].

En general, existe una gran variedad de estrategias o métodos que pueden mitigar los efectos
negativos de la alta dimensionalidad en el PSO. Todas las estrategias tienen sus limitaciones según
las características del problema a resolver. Sin embargo, no hay restricciones de uso, siempre y
cuando preserven los principios socio-cognitivos del algoritmo.

3.3. Algoritmos para resolver problemas de optimización a
gran escala

Como hemos mencionado, la popularización de los algoritmos de gran escala se ha visto reflejada
en el desarrollo de algoritmos que incorporan distintas técnicas que buscan encontrar la mejor
solución posible. A continuación se mencionan algunos ejemplos de estos algoritmos.
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3.3.1. Optimizador de Cúmulos Competitivos para Optimización a Gran
Escala

El algoritmo CSO (A Competitive Swarm Optimizer for Large Scale Optimization) [4] fue pro-
puesto en el 2015, por Ran Cheng y Yaochu Jin. Los autores se inspiraron en la versión original
de PSO de Kennedy y Eberhart [2], con la diferencia de que en este algoritmo no se utiliza el
mejor personal (pBest) ni el mejor global (gBest) para actualizar el movimiento de las partículas.
En lugar de esto, se introduce un mecanismo de competencia por pares, con el cual, la partícula
perdedora actualiza su velocidad y posición aprendiendo de la ganadora.

A continuación se explica más detalladamente cómo funciona el algoritmo:

Se inicializa de forma aleatoria (como en el algoritmo original de PSO) un cúmulo m de n
partículas. Luego, se actualiza de manera iterativa. Cada partícula tiene una posición de D
dimensiones xi(t) = (xi,1(t), xi,2(t), . . . , xi,n(t)) y un vector de velocidad de D dimensiones,
vi(t) = (vi,1(t), vi,2(t), . . . , vi,n(t)).

En cada generación (t), el cúmulo se revuelve y se asignan parejas (se asume que el tamaño
del cúmulo m es un número par). Luego se realiza una competencia entre las dos partículas
que forman el par.

Como resultado de cada competencia, la partícula con una mejor aptitud, denominada “ga-
nadora”, será pasada directamente a la siguiente generación del cúmulo (t+ 1)

La partícula que pierde la competencia, denominada “perdedora”, actualizará su posición y
velocidad aprendiendo de la ganadora.

Después de aprender de la ganadora, la partícula perdedora también será pasada a la siguiente
generación del cúmulo (t+ 1)

El algoritmo termina cuando se llegue a un máximo de evaluaciones (maxFE) de la función
de aptitud

Cada partícula participará en una competencia solo una vez, es decir, para un cúmulo m ocurren
m/2 competencias y la velocidad y posición de las m/2 partículas serán actualizadas. La figura
3.4 ilustra este funcionamiento.
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Figura 3.4: La competencia inherente al algoritmo fomenta la exploración en las primeras etapas
y la explotación más refinada en etapas posteriores del algoritmo CSO.

La velocidad del perdedor se actualizará utilizando la estrategia de aprendizaje de la ecuación
(3.1)

vl,k(t+ 1) = R1(k, t)vl,k(t) +R2(k, t)(xw,k(t)− xl,k(t)) + ϕR3(k, t)(x̄k(t)− xl,k(t)) (3.1)

donde:

xw,k(t) Es la posición del ganador en la k-ésima ronda de competencia en la generación t

xl,k(t) Es la posición del perdedor en la k-ésima ronda de competencia en la generación t

vw,k(t) Es la velocidad del ganador en la k-ésima ronda de competencia en la generación t

vl,k(t) Es la velocidad del perdedor en la k-ésima ronda de competencia en la generación t

R1(k, t), R2(k, t), y R3(k, t) Son factores aleatorios ∈ [0, 1]d

ϕ Es un parámetro de aprendizaje que controla la influencia de x̄k(t)

x̄k(t) Es el valor medio de la posición de las partículas relevantes. El control de vecindario
puede ayudar a mejorar el rendimiento del PSO en funciones multimodales al mantener un
mayor grado de diversidad en el cúmulo [47]. Se puede adoptar una versión global y una
versión local:

28



Capítulo 3. Alta dimensionalidad

• x̄g
k(t) Denota la posición media global de todas las partículas en el cúmulo

• x̄l
l,k(t) Significa la posición media local de las partículas en un vecindario predefinido

de la partícula l.

La posición del perdedor se puede actualizar ahora con la nueva velocidad, utilizando la ecuación
(3.2),

xl,k(t+ 1) = xl,k(t) + vl,k(t+ 1). (3.2)

Para el parámetro x̄k(t) se suele introducir el control de vecindario para aumentar la diversidad
del cúmulo, lo que potencialmente mejora el rendimiento de búsqueda del CSO (se adopta como
configuración predeterminada x̄k(t)).

La primera parte de la ecuación (3.1) asegura la estabilidad del proceso de búsqueda y es similar
al término de inercia ω en el PSO original. También puede interpretarse como que ω = 1 y se
agrega un vector aleatorio R1(t).

La segunda parte es la componente cognitiva. En esta parte de la ecuación se da el aprendizaje
de la partícula perdedora con respecto a la ganadora en lugar de hacerlo de la mejor personal
pBest.

La tercera parte es el componente social en donde la partícula perdedora aprende de la posición
media del cúmulo actual x̄k(t) en lugar del mejor global gBest.

De forma general, podemos decir que el algoritmo del CSO (ver algoritmo 2) es sencillo y no
muy distinto a la versión original del PSO (ver algoritmo 1).
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Algoritmo 2 Algoritmo del CSO
1: Inicializar una población m de n partículas con posiciones aleatorias xi y velocidades vi en el

espacio de búsqueda.
2: Evaluar la aptitud de cada partícula f(xi) con base en la función objetivo.
3: Mientras no se cumpla el criterio de parada hacer
4: Emparejar las partículas aleatoriamente en m/2 pares.
5: Para cada cada par (xi,xj) hacer
6: Si f(xi) < f(xj) entonces ▷ Para problemas de minimización
7: Marcar xi como el ganador y xj como el perdedor.
8: else
9: Marcar xj como el ganador y xi como el perdedor.

10: Fin Si
11: Reincorporar la partícula ganadora al cúmulo
12: Actualizar la velocidad del perdedor usando la ecuación (3.1)
13: Actualizar la posición del perdedor usando la ecuación (3.2)
14: Borrar o sobreescribir xi y xj;
15: Fin Para cada
16: Reincorporar la partícula actualizada al cúmulo
17: Fin Mientras
18: Devolver la mejor solución encontrada x∗ = argmı́n f(xi).

3.3.2. Un algoritmo de optimización mediante cúmulos de partículas
con aprendizaje social para optimización escalable

El SL-PSO (A social learning particle swarm optimization algorithm for scalable optimization)
fue desarrollado por Ran Cheng y Yaochu Jin en 2014 [5]. En esta versión los autores utilizan
mecanismos de aprendizaje social en un PSO. Cada partícula aprende de cualquier otra partícula
que sea mejor (denominada “demostradora”) en el cúmulo actual. Además, se simplifica la confi-
guración de parámetros, ya que se adopta un método de control de parámetros dependiente de la
dimensionalidad.

A continuación se detalla la forma en que funciona este algoritmo (ver figura 3.5):

Se inicializa un cúmulo P (t) de m partículas (m es el tamaño del cúmulo y t es el índice de
la generación). Para cada partícula i en P (t), se tiene al igual que en el PSO original, un
vector xi(t) inicializado aleatoriamente.

A cada partícula se le asigna un valor de aptitud calculado a partir de la función objetivo
f(X).

El cúmulo se ordena de forma ascendente (según la aptitud de cada individuo). Posterior-
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mente, cada partícula (excepto aquella con el mejor valor de aptitud) corregirá sus compor-
tamientos aprendiendo de aquellas partículas (demostradoras) que tengan mejores valores
de aptitud.

Figura 3.5: El cúmulo se ordenará según la aptitud de las partículas y todas, excepto la mejor, se
actualizarán aprendiendo de cualquier partícula cuya aptitud sea mejor. El aprendizaje individual
es un proceso de ensayo y error, mientras que el aprendizaje social aprovecha mecanismos como
la imitación, el refuerzo y el condicionamiento

Este algoritmo tiene como base la imitación. Sus autores la describen como un proceso en el
cual un imitador copia parte de un comportamiento de un demostrador a través de la observación.
Por tanto, los componentes más importantes en SL-PSO son el ordenamiento del cúmulo y el
aprendizaje de comportamientos. También se debe tomar en cuenta lo siguiente:

En cada generación, una partícula podría servir como demostrador para diferentes imitadores
más de una vez.

En un cúmulo ordenado, para cualquier imitador (partícula i, donde 1 ≤ i < m), su demos-
trador puede ser cualquier partícula k que cumpla con i < k ≤ m.

Por ejemplo, para la partícula 1, las partículas 2, 3, ..., m pueden ser sus demostradores,
mientras que para la partícula (m− 1), solo la partícula m puede ser su demostrador. Como
resultado, la partícula 1 (la peor) nunca puede ser un demostrador y la partícula m (la mejor)
nunca será un imitador. Es decir, la mejor partícula en el cúmulo actual no se actualizará.
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Un imitador aprenderá los comportamientos de diferentes demostradores utilizando la ecuación
(3.3).

Xi,j(t+ 1) =

{
Xi,j(t) + ∆Xi,j(t+ 1), si pi(t) ≤ PL

i ,

Xi,j(t), en caso contrario,
(3.3)

donde:

PL
i Es una probabilidad de aprendizaje para cada partícula i. En [5] se asume que cuan-

to mayor sea la dimensionalidad del problema, más difícil será resolverlo y, por lo tanto,
menos probable será que una partícula esté dispuesta a aprender de otras. Por ende, se re-
comienda una relación inversamente proporcional entre la probabilidad de aprendizaje y la
dimensionalidad del problema como lo muestra la ecuación (3.4).

PL
i =

(
1− i− 1

m

)α·log(⌈ d
m
⌉)

(3.4)

donde:

• m es el tamaño del cúmulo. Se define como una función de la dimensionalidad de
búsqueda como lo muestra la ecuación (3.5).

m = M +
j · d
k

(3.5)

donde:

◦ M es el tamaño base del cúmulo, necesario para que el algoritmo SL-PSO funcione
adecuadamente. En [5] utilizan M = 100, (un tamaño pequeño de cúmulo suele
ser suficiente para problemas de optimización unimodales, mientras que un tamaño
mayor es necesario para problemas de optimización multimodales, a fin de permitir
una exploración más intensiva [48, 49]).

• 1− i−1
m

indica que la probabilidad de aprendizaje es inversamente proporcional al índice
de la partícula i en un cúmulo ordenado. Es decir, cuanto mayor sea la aptitud de una
partícula, menor será su probabilidad de aprendizaje.

• α · log
(
⌈ d
m
⌉
)

indica que la probabilidad de aprendizaje es inversamente proporcional a
la dimensionalidad de búsqueda (se mantendría una mejor diversidad del enjambre para
problemas a gran escala debido a la tasa de aprendizaje reducida). α · log(·) se utiliza
para suavizar la influencia de d

m
. Empíricamente [5], recomiendan que el coeficiente

α < 1. En particular, utilizaron α = 0.5.

pi es una probabilidad generada aleatoriamente.

Xi,j(t) es la j-ésima dimensión del vector de comportamiento de la partícula i en la generación
t, con i ∈ {1, 2, 3, . . . ,m} y j ∈ {1, 2, 3, . . . , d}.
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∆Xi,j(t+ 1) es la corrección del comportamiento en t+ 1. Ver la ecuación (3.6).

∆Xi,j(t+ 1) = r1(t) ·∆Xi,j(t) + r2(t) · Ii,j(t) + r3(t) · ϵ · Ci,j(t) (3.6)

donde:

• ∆Xi,j(t) actúa de forma similar al componente de inercia del PSO original.

• Ii,j(t) es el componente de imitación. Es equivalente a la parte cognitiva del PSO origi-
nal, solo que en lugar de aprender de pbest, la partícula i aprende de cualquiera de sus
demostradoras como lo muestra la ecuación (3.7). Específicamente, el j-ésimo elemento
en el vector de comportamiento de la partícula i, Xi,j(t), imita a Xk,j(t), que es el
j-ésimo elemento en el vector de comportamiento de la partícula k (demostradora de
la partícula i). Nótese que i < k ≤ m, y k se genera independientemente para cada
elemento j. Ver la figura 3.6.

Ii,j(t) = Xk,j(t)−Xi,j(t) (3.7)

Figura 3.6: El cúmulo se ordena según los valores de aptitud (lo hacemos en orden descendente ya
que se está minimizando). Después, cada partícula (excepto la mejor) aprende de sus demostra-
dores, los cuales tienen mejores valores de aptitud.

• Ci,j(t) es el componente de influencia social (ver ecuación (3.9)). La partícula i no
aprende de gbest. En realidad, lo hace del comportamiento colectivo de todo el cúmulo,
es decir, del comportamiento promedio de todas las partículas en el cúmulo actual,
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denotado por la ecuación (3.8).

X̄j(t) =
1

m

m∑
i=1

Xi(t) (3.8)

además,

Ci,j(t) = X̄j(t)−Xi,j(t) (3.9)

• ϵ es el factor de influencia social, (ver ecuación (3.10)) y es proporcional a la dimensio-
nalidad del problema.

ϵ = β × n

M
(3.10)

donde:

◦ β =0.01

• (ω, c1 y c2) son reemplazados por los coeficientes r1(t), r2(t) y r3(t), que se generarán
aleatoriamente dentro del intervalo [0, 1].

¸

El algoritmo 3, describe de forma general el funcionamiento del SL-PSO.
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Algoritmo 3 Algoritmo del SL-PSO
1: t = 0
2: M = 100, α = 0.5, β = 0.01
3: m = M + j·d

10

4: ϵ = β × d
M

5: Para cada i = 1 to m hacer
6: inicializar de forma aleatoria Xi en el cúmulo
7: PL

i =
(
1− i−1

m

)α·log(⌈ d
m
⌉)

8: Fin Para cada
9: /*comienza ciclo como en la figura 3.5*/

10: Mientras no es satisfecha la condición de parada hacer
11: Para cada i = 1 to m hacer
12: Fi = f(Xi(t)) /*f(X) es la función objetivo*/
13: Fin Para cada
14: actualizar la mejor solución X∗

15: aprendizaje:*/
16: ordenar el cúmulo de acuerdo al valor de la aptitud en F
17: Para cada i = 1 to m− 1 hacer
18: corregir el comportamiento de Xi(t)
19: pi(t) = randr(0, 1) /*randr(a, b) genera un número real aleatorio entre a y b*/
20: Si pi(t) ≤ P i

L entonces
21: Para cada j = 1 to n hacer
22: k ← rand(i + 1,m) /*rand(A, B) genera un número entero aleatorio entre A y

B*/
23: ∆Xi,j(t+ 1) = r1(t) ·∆Xi,j(t) + r2(t) · Ii,j(t) + r3(t) · ϵ · Ci,j(t)
24: Xi,j(t+ 1) = Xi,j(t) + ∆Xi,j(t+ 1)
25: Fin Para cada
26: Fin Si
27: Fin Para cada
28: t = t+ 1
29: Fin Mientras
30: Salida: X∗

3.3.3. Optimización mediante cúmulos de partículas con aprendizaje
de múltiples estrategias para problemas de optimización a gran
escala

El algoritmo MSL-PSO (Multiple-strategy learning particle swarm optimization for large-scale
optimization problems), fue desarrollado en 2018 por Hao Wang [3]. En dicho trabajo, se verifica
la efectividad del algoritmo en la resolución de problemas de optimización a gran escala para el
conjunto de problemas del CEC´2008 utilizando 100, 500 y 1000 dimensiones y problemas del
CEC´2010 con 1000 dimensiones en comparación a algoritmos como el SL-PSO y CSO. En el

35



Capítulo 3. Alta dimensionalidad

MSL-PSO se adopta la idea del aprendizaje social del SLPSO [5] para actualizar la posición de
cada individuo en la población. Sin embargo, se agregan dos etapas con diferentes estrategias de
aprendizaje.

La primera etapa se utiliza para mejorar la capacidad de exploración. Cada individuo explora
aprendiendo de los demostradores que tienen mejor desempeño. Para esto, el cúmulo se ordenará
del peor al mejor individuo y cada uno explorará diferentes posiciones aprendiendo de sus demos-
tradores y de la posición media de la población actual. Todas las mejores posiciones de entre todas
las exploradas por su individuo correspondiente, serán parte de una nueva población temporal. La
nueva población temporal se ordenará en orden descendente según las aptitudes y será utilizada
por cada individuo para encontrar sus demostradores, basándose en el rango de la mejor solución
explorada en la población temporal y el rango del individuo en la población actual. Se espera que
la segunda etapa equilibre la convergencia y la diversidad de la población, para poder actualizar
la velocidad y la posición de cada individuo

A continuación describimos a mayor detalle el funcionamiento del algoritmo:

Se inicializa una población Pop y se obtiene la aptitud inicial de cada individuo.

Luego se establece una condición de paro del algoritmo. Mientras no se cumpla esta condición,
el proceso se seguirá repitiendo.

Todos los individuos se ordenarán según su aptitud en orden descendente. Es decir, los valores
más altos (peores) quedarán al principio, mientras que los menores quedarán al final de la
lista (esto es así porque se está minimizando el problema).

Cada individuo explorará Kmax posiciones aprendiendo de sus demostradores y de la posición
media de la población actual siguiendo la idea del SL-PSO [5]. Para esto se utiliza el algoritmo
5, el cual hace la exploración de 1 a Kmax posiciones y a su vez recorre las D dimensiones
de cada posición. Se selecciona aleatoriamente un demostrador para actualizar la velocidad
en la d-ésima dimensión utilizando la ecuación (3.11). Al finalizar el recorrido de las D
dimensiones se generará la k-ésima posición candidata utilizando la ecuación (3.12). Cada
una de estas Kmax posiciones tienen poca probabilidad de ser iguales. Esto agrega diversidad
y la oportunidad de encontrar una mejor solución.

vvkid = rk1 · vid(t) + rk2 · (xjd(t)− xid(t)) + ϕ · rk3 · (x̄d(t)− xid(t)) (3.11)

donde:

• Kmax es el número máximo de pruebas para cada individuo (k = 1, 2, . . . , Kmax).

• vvkid es la velocidad actualizada (con aprendizaje) de la partícula i en la d-ésima dimen-
sión, utilizando el demostrador k-ésimo (VVk

i = (vvki1, vv
k
i2, . . . , vv

k
iD)).

• vid(t) es la velocidad del individuo i en el tiempo t (Vi(t) = (vi1, vi2, . . . , viD)).
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• es la media o posición promedio del cúmulo en el tiempo t, como se indica en la ecuación
(3.8) del SL-PSO.

• t, rk1 , rk2 y rk3 son números aleatorios generados uniformemente en el rango [0, 1] en la
k-ésima iteración.

• ϕ es la probabilidad de aprendizaje social utilizada para definir el grado de aprendizaje
a partir de la posición media de la población.

xxk
id = xid(t) + vvkid (3.12)

• xxk
id es la posición actualizada (con aprendizaje) de la partícula i en la d-ésima dimen-

sión, utilizando el demostrador k-ésimo (XXk
i = (vvki1, vv

k
i2, . . . , XXk

iD)).

• xid(t) es la posición del individuo i en el tiempo t (Xi(t) = (xi1, xi2, . . . , xiD)).

Al finalizar el ciclo de Kmax se evalúa la aptitud de cada una de las posiciones candidatas
XXk

i y se elige la partícula con la mejor aptitud. Ésta será guardada y denotada con xc para
su posición y vc para su velocidad.

Al finalizar el recorrido de NP tendremos una nueva población NPop compuesta de las
mejores posiciones probadas de cada individuo en Pop, que ahora se ordenarán de forma
descendente.

Luego se realiza la segunda etapa. En ésta, los demostradores de cada individuo se seleccionan
de dos subconjuntos de NPop (NPop = xc1, xc2, . . . , xnNP ) para actualizar la velocidad y
posición de cada individuo en Pop como lo muestra la ecuación (3.13) y (3.14).

vid(t+ 1) = r1 · vcid(t) + r2 · (xcjd − xcid(t)) + ϕ · r3 · (xckd − xcid(t)) (3.13)

donde:

• vci es la velocidad de la mejor posición explorada para el individuo i (vci = (vci1, vci2, . . . , vciD)).

• j y k representan a los dos demostradores en NPop de los cuales el individuo i aprende
en la dimensión d.

• ϕ es la probabilidad de aprendizaje social.

xid(t+ 1) = xcid + vid(t+ 1) (3.14)

donde:

• xcies la posición de la mejor posición explorada para el individuo i (xci = (xci1, xci2, . . . , xciD)).

En la figura 3.7 se puede observar un ejemplo de cómo se pueden seleccionar dos demostra-
dores en la segunda etapa.
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Figura 3.7: Un individuo i elige los demostradores para aprender. Para Pop elegirá del conjunto
demostradores, mientras que para Npop el individuo puede elegir del conjunto 1 y del con-
junto 2. El rango de xci en NPop es k, y el rango de xi(t) en Pop es j. Si k < j, entonces los
demostradores entre k y j se utilizarán para guiar al individuo a explotar una mejor solución. De
lo contrario, cuando el rango de la mejor posición explorada de un individuo i en NPop es mejor
que el del individuo i en Pop, significa que la mejor posición explorada tiene un mejor rendimiento
entre NPop que el individuo i en Pop.

Figura 3.8: Para evitar una convergencia prematura, también aprendemos de algunos perdedores
de la mejor solución explorada. Si j < k, los perdedores entre j y k serán seleccionados como uno
de los demostradores. El otro demostrador se selecciona del conjunto 2, que está compuesto por
todos los individuos que tienen mejor aptitud que la mejor posición explorada

El algoritmo 4 describe de forma general el funcionamiento del MSL-PSO. El algoritmo 5 des-
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cribe la primera etapa de aprendizaje que proporciona la diversidad y el algoritmo 6 describe la
segunda etapa para lograr el equilibrio entre diversidad y convergencia.

Algoritmo 4 Optimización de Cúmulo de Partículas con Aprendizaje de Múltiples Estrategias
(MSL-PSO)
1: Entrada: Tamaño de la población NP , número máximo de evaluaciones de aptitud

MAX_FES
2: Inicializar una población Pop
3: Evaluar la aptitud de cada individuo en Pop, fes = NP
4: Mientras fes ≤MAX_FES hacer
5: Ordenar la población en orden descendente
6: Para cada i = 1 to NP hacer
7: Sondear Kmax posiciones usando la técnica de aprendizaje social propuesta en [5] para

el individuo i (ver Algoritmo 5)
8: Evaluar estas Kmax posiciones y mantener la mejor solución entre estas Kmax soluciones
9: Fin Para cada

10: Ordenar la nueva población NPop, compuesta por la mejor posición sondeada de cada
individuo en Pop, en orden descendente

11: Para cada i = 1 to NP hacer
12: Encontrar dos subconjuntos en la nueva población NPop para el aprendizaje social del

individuo i, y actualizar la población Pop (ver Algoritmo 6)
13: Fin Para cada
14: fes = fes+ (Kmax + 1)×NP
15: Fin Mientras
16: Salida: La mejor solución y su valor de aptitud

Algoritmo 5 Sondeo de Posición
1: Entrada: Individuo i
2: Para cada k = 1 a Kmax hacer
3: Para cada d = 1 a D hacer
4: Seleccionar aleatoriamente un individuo de sus demostradores
5: Actualizar la velocidad en la dimensión d usando la ecuación (3.11)
6: Fin Para cada
7: Generar la posición candidata k-ésima usando la ecuación (3.12)
8: Fin Para cada
9: Evaluar los valores de aptitud de estas posiciones candidatas

10: xci = argmı́n{f(x1), f(x2), . . . , f(xKmax)}
11: Salida: La mejor posición sondeada xci
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Algoritmo 6 Actualización de posición
Entrada: La mejor posición probada del individuo i (xci);

1: Actualizar la velocidad y posición utilizando las eqs. (3.13) y (3.14), respectivamente;
2: Evaluar el valor de aptitud (fitness) del individuo i;
3: Si f(xi(t+ 1)) < f(gbest) entonces
4: gbest = xi(t+ 1);
5: f(gbest) = f(xi(t+ 1));
6: Fin Si
7: Salida: la posición del individuo i en la generación t+ 1;
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Optimización global de gran escala

Los adelantos tecnológicos de los últimos años han dejado al descubierto la necesidad de encon-
trar mejores soluciones a problemas de optimización más complejos. En este capítulo trataremos
con el tipo de problemas que cuentan con un gran número de variables. Si bien el aumento en la
capacidad de procesamiento de cómputo ha sido continuo, la “maldición de la dimensionalidad”
continúa siendo una limitante al momento de buscar los mejores resultados. Por esta razón, a
principios de este siglo se popularizó la optimización global de gran escala (Large-Scale Global
Optimization, LSGO por sus siglas en inglés), la cual, a través de mecanismos novedosos, realiza
una búsqueda mucho más eficiente para explorar la mayor cantidad de soluciones posibles, sin que
esto impacte significativamente en la cantidad de tiempo requerida [50]. Eventos como el IEEE
Congress on Evolutionary Computation (CEC), la Genetic and Evolutionary Computation Con-
ference (GECCO) y Parallel Problem Solving from Nature (PPSN), entre otros, han ayudado a
popularizar aún más la optimización global de gran escala.

Un primer objetivo de los eventos antes mencionados fue crear una referencia para la evaluación
de la calidad en los algoritmos para optimización a gran escala, ya que un problema cumún que se
presentaba, era que el trabajo existente estaba limitado a los problemas de prueba utilizados en
estudios individuales. Sin embargo, esta desventaja se ha resuelto al proponer pruebas estándar
diseñadas específicamente para probar el rendimiento de algoritmos de optimización de gran escala.
Por ejemplo, el 2008 IEEE Congress on Evolutionary Computation (CEC’2008) [51] fue el primer
congreso donde se propuso un conjunto de problemas de referencia diseñados especialmente para
optimización global de gran escala.
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Capítulo 4. Optimización global de gran escala

4.1. Definiciones utilizadas en los conjuntos de problemas
para optimización de alta dimensionalidad

Antes de presentar los principales conjuntos de problemas especializados para probar los algorit-
mos basados en cúmulos de partículas para optimización de alta dimensionalidad, proporcionamos
algunos conceptos relacionados con las características generales de las funciones utilizadas para
tal objetivo.

Podemos expresar un problema de ecuaciones no lineales simultáneas como lo muestra la ecua-
ción (4.1) donde, Rn denota el espacio euclidiano de n dimensiones. La ecuación (4.1) es la forma
estándar de representar un sistema de n ecuaciones no lineales con n incógnitas, con la convención
de que el lado derecho de cada ecuación es cero [52], y donde x∗ es la variable con la que se alcanza
el valor óptimo F(x∗).

Dado: F : Rn −→ Rn, encontrar: x∗ ∈ Rn, para el cual F(x∗) = 0 ∈ Rn (4.1)

Definición 1. Una función f(x) es separable si y solo si:

arg mı́n
(x1,··· ,xD)

f(x1, · · · , xD) =

(
argmı́n

xi

f(x1, · · · ), · · · argmı́n
xD

f(· · · , xD)

)
,

Es decir, una función de D variables es separable si puede reescribirse como una suma de D
funciones de una sola variable. Si una función f(x) es separable, sus parámetros xi se llaman
independientes [53].

Definición 2. Una función f(x) es parcialmente separable con m subcomponentes indepen-
dientes si y solo si:

argmı́n
x

f(x) =

(
argmı́n

x1

f(x1, . . . ), . . . , argmı́n
xm

f(. . . , xm)

)
,

donde x = (x1, . . . , xD)
⊤ es un vector de decisión de D dimensiones, y x1, . . . , xm son subvectores

disjuntos de x, con 2 ≤ m ≤ D.

Como un caso especial de la definición 2, una función es completamente separable si los subvec-
tores x1, . . . , xm son unidimensionales (es decir, m = D).

Definición 3. Una función f(x) es completamente no separable si cada par de sus variables de
decisión interactúan entre sí.
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Definición 4. Una función es parcialmente aditiva separable si tiene la siguiente forma general:

f(x) =
m∑
i=1

fi(xi),

donde xi son vectores de decisión mutuamente excluyentes de fi, x = (x1, . . . , xD)
⊤ es un vector

de decisión global de D dimensiones, y m es el número de subcomponentes independientes.

4.2. Conjuntos de problemas para optimización de alta di-
mensionalidad

4.2.1. Conjunto de problemas de prueba del CEC’2008

Tang et al. [54] diseñaron el conjunto de problemas del CEC’2008. Estos problemas fueron
creados especificamente para probar algoritmos de optimización global para espacios de alta di-
mensionalidad, como parte de una sesión especial y una competencia que se centró en optimización
a gran escala (de 100, 500 y 1000 dimensiones). Los autores mencionan dos posibles causas del
deterioro del rendimiento de los algoritmos cuando se incrementa la dimensionalidad del espacio
de búsqueda. La primera es el aumento de la complejidad del problema cuando aumenta su ta-
maño y la otra es que el espacio de soluciones del problema aumenta exponencialmente cuando se
incrementa la dimensionalidad.

Los problemas de prueba son básicamente funciones que se basan en los propuestos para la
competencia de optimización global realizada durante el CEC’2005 y que pueden ser unimodales o
multimodales y que a su vez, pueden ser separables o no separables buscando parecerse a problemas
del mundo real. En la tabla 4.1 se listan los problemas utilizados.

Tabla 4.1: Para realizar cada prueba se asignó un número fijo de evaluaciones de 5000 ×
dimensionalidad. El rendimiento del algoritmo lo indica el valor de la función objetivo al finalizar
dichas evaluaciones. Cada prueba se ejecutó 25 veces para obtener una media del rendimiento.
(puede verse a mayor detalle cada función del CEC’2008 en el apéndice A)

Nombre de la función Tipo Separabilidad

f1 Función esfera desplazada Unimodal Separable
f2 Problema de Schwefel desplazado Unimodal No separable
f3 Función de Rosenbrock desplazada Multi-modal No separable
f4 Función de Rastrigin desplazada Multi-modal Separable
f5 Función de Griewank desplazada Multi-modal No separable
f6 Función de Ackley desplazada Multi-modal Separable
f7 Función FastFractal “DoubleDip” Multi-modal No separable
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El conjunto de problemas diseñado para el CEC’2008 probó la eficiencia de distintas metaheu-
rísticas tales como evolución diferencial, PSO y los algoritmos genéticos [55]. Con relación a las
variantes de PSO para optimización global de gran escala, los que reportaron los mejores resulta-
dos fueron: Efficient Population Utilization Strategy for Particle Swarm Optimizer (EPUS-PSO)
[56] y Dynamic multi-swarm particle swarm optimizer with local search for Large Scale Global
Optimization (DMS-PSO, por sus siglas en inglés) [57]. Así mismo, el conjunto de problemas del
CEC’2008 fue utilizado en el artículo donde se propuso el algoritmo de CSO [4] el cual, utilizamos
como base para aplicar nuestra mejora. En la tabla 4.2 mostramos los resultados reportados con
estos tres algoritmos antes mencionados.

Tabla 4.2: Comparación del rendimiento de los algoritmos basados en PSO que concursaron en
el CEC’2008 (EPUS-PSO y DMS-PSO) y el algoritmo base que utilizamos para nuestra mejora
(CSO).
Algoritmo f1 f2 f3 f4 f5 f6 f7
EPUS-PSO 5.53E+02 4.66E+01 8.37E+05 7.58E+03 5.89E+00 1.89E+01 -6.62E+03
DMS-PSO 0.00E+00 9.15E+01 8.98E+09 3.84E+03 0.00E+00 7.66E+00 -7.51E+03
CSO 1.09E-21 4.15E+01 1.01E+03 6.89E+02 2.26E-16 1.21E-12 -3.83E+06

En la clasificación final, el primer lugar lo obtuvo el Multiple Trajectory Search for Multiobjetive
Optimization (MTS, por sus siglas en inglés) [58], mientras que el DMS-PSO tuvo el lugar 5 y el
EPUS-PSO tuvo el lugar 8 [59].

4.2.2. Conjunto de problemas de prueba del CEC’2010

En el conjunto de problemas de prueba del CEC’2010, presentado por Ke Tang, Xiaodong Li,
P. N. Suganthan, Zhenyu Yang y Thomas Weise [59] se menciona otra posible causa del deterioro
que sufren los métodos de optimización a medida que aumenta la dimensionalidad del espacio de
búsqueda. Ésta se refiere al cambio de las características de una función cuando aumenta la escala.
Por ejemplo, la función de Rosenbrock (ver figura 4.1) es unimodal en dos dimensiones, pero se
convierte en una función multimodal cuando el número de dimensiones aumenta (Hansen y Deb
descubrieron que la función de Rosenbrock no es una función unimodal en dimensiones superiores
[1]). Esto provoca que el método de optimización pueda dejar de funcionar a medida que aumenta
la dimensionalidad.
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Figura 4.1: La función de Rosenbrock es una función muy utilizada en optimización numérica y
se caracteriza por su valle parabólico estrecho, donde se encuentra su óptimo global [1].

Este conjunto de problemas de prueba fue diseñado con base en el concepto de separabilidad y
no separabilidad (en este contexto, lo comparan con la epistasis en biología).

El conjunto de problemas de prueba tiene cuatro tipos de problemas de alta dimensionalidad:

Funciones separables

Funciones parcialmente separables, con un pequeño número de variables dependientes, y las
restantes independientes

Funciones parcialmente separables con múltiples subcomponentes independientes, cada uno
de los cuales es m no separable

Funciones completamente no separables

Para generar funciones con distintos grados de separabilidad, los autores proponen dividir las
variables en grupos. Después, para cada grupo deciden si se mantienen independientes o se provoca
una interacción entre las variables por medio de alguna técnica de rotación de coordenadas [60]
y finalmente se aplica una función de aptitud de las mostradas en la tabla 4.3 a cada grupo de
variables.
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Tabla 4.3: Funciones base utilizadas en el conjunto de problemas de prueba del CEC´2010. Solo
la primera función es separable y es utilizada a modo de demostración. Ver el apéndice B para
mayor información.

Función base
1 Función esférica
2 Función elíptica rotada
3 Problema 1.2 de Schwefel
4 Función de Rosenbrock
5 Función de Rastrigin rotada
6 Función de Ackley rotada

Con relación al conjunto de problemas de prueba, éste tiene 20 funciones (ver tabla 4.4) para ser
utilizadas con D = 1000. Se propone un parámetro m para controlar el número de variables en cada
grupo y definir el grado de separabilidad. Se establece m = 50 pero este parámetro es modificable.
Además, esta versión es una mejora de los problemas de prueba utilizados para la competencia de
optimización global a gran escala del CEC’2008 que no tenia funciones parcialmente no separables
que ayudaran para saber más del comportamiento del algoritmo en estos escenarios.

Tabla 4.4: Funciones de prueba utilizadas en el CEC’2010. Puede verse a mayor detalle cada
función en el apéndice B

Nombre de la función Tipo Separabilidad

f1 Función elíptica desplazada Unimodal Separable
f2 Función de Rastrigin desplazada Multi-modal Separable
f3 Función de Ackley desplazada Multi-modal Separable
f4 Función elíptica desplazada y m-rotada de grupo simple Unimodal m no separable
f5 Función de Rastrigin desplazada y m-rotada de grupo simple Multi-modal m no separable
f6 Función de Ackley desplazada y m-rotada de grupo simple Multi-modal m no separable
f7 Problema de Schwefel 1.2 desplazado y m-dimensional de grupo simple Unimodal m no separable
f8 Función de Rosenbrock desplazada y m-dimensional de grupo simple Multi-modal m no separable
f9 Función elíptica desplazada y m-rotada grupo D

2m
Unimodal m no separable

f10 Función de Rastrigin desplazada y m-rotada grupo D
2m

Multi-modal m no separable
f11 Función de Ackley desplazada y m-rotada grupo D

2m
Multi-modal m no separable

f12 Problema de Schwefel 1.2 desplazado y m-dimensional grupo D
2m

Unimodal m no separable
f13 Función de Rosenbrock desplazada y m-dimensional grupo D

2m
Multi-modal m no separable

f14 Función elíptica desplazada y m-rotada grupo D
m

Unimodal m no separable
f15 Función de Rastrigin desplazada y m-rotada grupo D

m
Multi-modal m no separable

f16 Función de Ackley desplazada y m-rotada grupo D
m

Multi-modal m no separable
f17 Problema de Schwefel 1.2 desplazado y m-dimensional grupo D

m
Unimodal m no separable

f18 Función de Rosenbrock desplazada y m-dimensional grupo D
m

Multi-modal m no separable
f19 Problema de Schwefel 1.2 desplazado Unimodal No separable
f20 Función de Rosenbrock desplazada Multi-modal No separable

El conjunto de problemas diseñado para el CEC’2010 probó la eficiencia de distintas metaheurís-
ticas tales como evolución diferencial, PSO y algoritmos genéticos [61]. Con relación a las variantes
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de PSO para optimización global de gran escala, fue probado el Dynamic Multi-Swarm Particle
Swarm Optimizer with Subregional Harmony Search (DMS-PSO-SHS) [62]. Así mismo, el conjunto
de problemas del CEC’2010 fue utilizado en el algoritmo de MSLPSO [3] el cual, forma parte de un
grupo de algoritmos que tomamos como referencia para elegir uno como base para nuestra mejora.
En la tabla 4.5 mostramos los resultados reportados con los algoritmos antes mencionados.

Tabla 4.5: Comparación del rendimiento de los algoritmos en las funciones de la 1 a la 20 del
conjunto de problemas de prueba del CEC’2010.

Función DMS-PSO-SHS MSLPSO
f1 2.6144E-19 8.31E-19
f2 7.1637E+01 7.92E+02
f3 1.2825E-12 1.45E-13
f4 2.0411E+11 5.30E+11
f5 6.1023E+07 5.98E+06
f6 5.8392E-05 9.07E-08
f7 1.3440E+03 9.12E-02
f8 1.0250E+07 8.16E+06
f9 7.3404E+06 1.23E+07
f10 5.2594E+03 6.55E+03
f11 3.4766E+01 5.83E-12
f12 6.0203E+02 1.06E+04
f13 1.0087E+03 4.72E+02
f14 1.6726E+07 1.38E+07
f15 4.0071E+03 7.06E+02
f16 6.4927E+01 7.11E-12
f17 1.1444E+03 5.56E+04
f18 2.0402E+03 1.27E+03
f19 1.1031E+06 8.01E+06
f20 2.8414E+02 9.37E+03

En la clasificación final del concurso, el primer lugar lo obtuvo el Memetic algorithm based on
local search chains for large scale continuous global optimization (MA-SW-Chains por sus siglas
en inglés) [63], mientras que el DMS-PSO-SHS tuvo el tercer lugar [62].

4.2.3. Conjunto de problemas de prueba del CEC’2013

En el conjunto de prueba del CEC 2013 [59], se propusieron problemas aún más desafiantes
para los algoritmos de optimización global a gran escala. Se introdujeron obstáculos adicionales y
configuraciones más complejas en los problemas para poner a prueba la capacidad de los algoritmos
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para superar barreras y explorar eficientemente todo el espacio de búsqueda. El conjunto de prueba
del CEC 2013 hizo énfasis en problemas de 1000 dimensiones.

Se incluyeron funciones en las cuales se requería que los algoritmos utilizaran diferentes estrate-
gias de búsqueda en distintas fases del proceso de optimización, lo que permitió poner a prueba la
capacidad de los algoritmos para adaptarse y cambiar de estrategia según fuera necesario. Además,
se incluyen problemas de alta dimensionalidad mencionados tanto en el conjunto de problemas del
CEC’2008 como en el conjunto del CEC’2010:

El espacio de búsqueda crece exponencialmente a medida que el número de variables de
decisión crece

Las propiedades del espacio de búsqueda pueden cambiar a medida que el número de dimen-
siones crece

La evaluación de los problemas de gran escala es muy costosa

En algunos problemas la interacción entre las variables hace que no puedan optimizarse
de manera independiente para obtener el óptimo global de una función objetivo, es decir,
pueden ser no separables.

Para hacer el conjunto de problemas más cercano a problemas reales se han introducido las
siguientes características:

Tamaños no uniformes de subcomponentes: Las funciones con subcomponentes uniformes, no
son representativas de muchos problemas del mundo real. Para representar mejor esta carac-
terística, las funciones en el conjunto de problemas contienen subcomponentes de diferentes
tamaños.

Desequilibrio en la contribución de los subcomponentes: En muchos problemas del mundo
real, es probable que los subcomponentes de una función objetivo sean diferentes en su na-
turaleza, y por lo tanto, su contribución al valor global de la función objetivo puede variar.
Al introducir tamaños de subcomponentes no uniformes, la contribución de los diferentes
subcomponentes será automáticamente diferente, siempre que tengan tamaños distintos. Sin
embargo, la contribución de un subcomponente puede ser amplificada o atenuada al multi-
plicar un coeficiente con el valor de cada función subcomponente.

Funciones con subcomponentes superpuestos: En el conjunto de problemas del CEC’2010
los subcomponentes son subconjuntos disjuntos de las variables de decisión por lo que es
teóricamente posible descomponer un problema de gran escala en un agrupamiento ideal
de las variables de decisión. Sin embargo, cuando existe algún grado de superposición entre
los subcomponentes, no habrá un agrupamiento óptimo único de las variables de decisión.
Esto representa un desafío para los algoritmos de descomposición, ya que deben detectar
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la superposición y diseñar una estrategia adecuada para optimizar dichos subcomponentes
parcialmente interdependientes.

Nuevas transformaciones a las funciones base: Las funciones del CEC’2010 son muy regulares
y simétricas, por lo que se les aplicaron algunas transformaciones no lineales con el objetivo
de romper la simetría e introducir ciertas irregularidades en el paisaje de aptitud [13]. Las
transformaciones aplicadas no alteran las propiedades de separabilidad y modalidad de las
funciones. Las tres transformaciones aplicadas son:

• Mal condicionamiento: El mal condicionamiento se refiere al cuadrado de la relación
entre la dirección más grande y la más pequeña de las líneas de contorno [13]. En el
caso de un elipsoide, si éste se estira en la dirección de uno de sus ejes más que en los
demás, se dice que la función está mal condicionada.

• Ruptura de simetría: La mayoría de las funciones de referencia tienen patrones regulares.
Es deseable introducir cierto grado de irregularidad aplicando alguna transformación.

• Irregularidades: Algunos operadores que generan variaciones genéticas, especialmente
aquellos basados en una distribución gaussiana, son simétricos, y si las funciones tam-
bién son simétricas, existe un sesgo a favor de los operadores simétricos. Para eliminar
dicho sesgo, es deseable una transformación que rompa la simetría.

Se han definido cuatro categorías principales de problemas a gran escala (ver tabla 4.6):

Funciones completamente separables:

• f1 : función elíptica

• f2 : función Rastrigin

• f3 : función Ackley

Dos tipos de funciones parcialmente separables:

• Funciones parcialmente separables con un conjunto de subcomponentes no separables
y un subcomponente completamente separable.

◦ f4 : función elíptica
◦ f5 : función Rastrigin
◦ f6 : función Ackley
◦ f7 : problema de Schwefel 1.2

• Funciones parcialmente separables con solo un conjunto de subcomponentes no separa-
bles y sin subcomponentes completamente separables.

◦ f8 : función elíptica
◦ f9 : función Rastrigin
◦ f10 : función Ackley
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◦ f11 : problema de Schwefel 1.2

Funciones con subcomponentes superpuestos:

• f12 : función de Rosenbrock

• Funciones superpuestas con subcomponentes conformes: en este tipo de funciones, las
variables de decisión compartidas entre dos subcomponentes tienen el mismo valor
óptimo con respecto a ambas funciones de subcomponentes. En otras palabras, la opti-
mización de un subcomponente puede mejorar el valor del otro subcomponente debido
a la optimización de las variables de decisión compartidas.
◦ f13 : función de Schwefel con subcomponentes superpuestos conformes

• Funciones superpuestas con subcomponentes conflictivos: en este tipo de funciones,
las variables de decisión compartidas tienen un valor óptimo diferente con respecto a
cada una de las funciones de subcomponentes. Esto significa que la optimización de un
subcomponente puede tener un efecto perjudicial en el otro subcomponente superpuesto
debido a la naturaleza conflictiva de las variables de decisión compartidas.
◦ f14 : función de Schwefel con subcomponentes superpuestos conflictivos

Funciones completamente no separables

• f15 : problema de Schwefel 1.2

Tabla 4.6: Funciones base utilizadas en el CEC’2013. Pueden verse más detalles de cada función
en el Apéndice C

Nombre de la función Tipo Separabilidad

f1 Función elíptica Unimodal Completamnte separable
f2 Función de Rastrigin Unimodal Completamnte separable
f3 Función de Ackley Unimodal Completamnte separable
f4 Función elíptica Unimodal Separable con subcomponentes separables
f5 Función de Rastrigin Multi-modal Separable con subcomponentes separables
f6 Función de Ackley Multi-modal Separable con subcomponentes separables
f7 Problema de Schwefel 1.2 Multi-modal Separable con subcomponentes separables
f8 Función elíptica Multi-modal Separable con subcomponentes no separables
f9 Función de Rastrigin Multi-modal Separable con subcomponentes no separables
f10 Función de Ackley Multi-modal Separable con subcomponentes no separables
f11 Problema de Schwefel 1.2 Multi-modal Separable con subcomponentes no separables
f12 Función de Rosenbrock Multi-modal Funciones Superpuestas
f13 Función de Schwefel con subcomponentes Multi-modal Funciones Superpuestas

superpuestos sin conflicto
f14 Función de Schwefel con subcomponentes Multi-modal Funciones Superpuestas

superpuestos con conflicto
f15 Problema de Schwefel 1.2 Multi-modal Completamente no separable

El conjunto de problemas diseñado para el concurso del CEC’2013 probó la eficiencia del algo-
ritmo para optimización global de gran escala denominado Large scale global optimization: Experi-
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mental results with MOS-based hybrid algorithms [64] [3]. En la tabla 4.7 mostramos los resultados
reportados para el algoritmo antes mencionado.

En la clasificación final del concurso, el primer lugar lo obtuvo el Large scale global optimization:
Experimental results with MOS-based hybrid algorithms [64].

El conjunto de problemas del CEC’13 también fue utilizado para la competencia sobre Opti-
mización Global a Gran Escala del CEC’15. En esta ocasión se probó la eficiencia de distintas
metaheurísticas tales como evolución diferencial, PSO y algoritmos genéticos [65]. Para la sección
de optimización global a gran escala al parecer no compitieron algoritmos basados en cúmulos de
partículas. Sin embargo, se probaron algoritmos como el Smoothing and Auxiliary Functions Based
Cooperative Coevolution for Global Optimization (SACC) [66], el Large Scale Global Optimization:
Experimental Results with MOS-based Hybrid Algorithms (MOS) [64], el Scaling Up Covariance
Matrix Adaptation Evolution Strategy using Cooperative Coevolution (CC-CMA-ES) [67]. En la
tabla 4.7 mostramos los resultados reportados con estos algoritmos antes mencionados.

Tabla 4.7: Comparación del rendimiento de los algoritmos en las funciones de la 1 a la 15 del
conjunto de problemas de prueba del CEC’2013 en el concurso del CEC’2015.

Función SACC MOS CC-CMA-ES
f1 2.73E-24 0.00E+00 5.77E- 09
f2 7.06E+02 8.32E+02 1.33E+ 03
f3 1.11E+00 9.17E-13 1.51E-13
f4 4.56E+10 1.74E+08 2.19E+09
f5 7.74E+06 6.94E+06 7.28E+14
f6 2.47E+05 1.48E+05 5.83E+05
f7 8.98E+07 1.62E+04 7.44E+06
f8 1.20E+15 8.00E+12 3.88E+14
f9 5.98E+08 3.83E+08 3.71E+08
f10 2.95E+07 9.02E+05 7.55E+05
f11 2.78E+09 5.22E+07 1.59E+08
f12 8.73E+02 2.47E+02 1.27E+03
f13 1.78E+09 3.40E+06 6.69E+08
f14 1.75E+10 2.56E+07 7.10E+07
f15 2.01E+06 2.35E+06 3.03E+07

En el la clasificación final del concurso, el primer lugar lo obtuvo el Large scale global optimiza-
tion: Experimental results with MOS-based hybrid algorithms [64].
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4.2.4. Conjuntos de Problemas del CEC para problemas de optimiza-
ción global de gran escala (LSGO)

A medida que avanza el desarrollo de los métodos de optimización global a gran escala, ha
sido necesario agregar distintos comportamientos que se presentan en altas dimensiones. Esto ha
ayudado a mejorar los problemas de prueba propuestos en el sentido de que se asemejan más a
problemas del mundo real. Desde la publicación del primer conjunto de problemas de prueba para
altas dimensiones (del CEC’2008) éstos se han ido actualizando constantemente. Sin embargo,
existe la necesidad de contar con más divulgación, código fuente disponible, repositorios públicos
nuevos, etc. que faciliten la generación de problemas de gran escala para poner a prueba los
algoritmos que son desarrollados constantemente. En la tabla 4.8 podemos ver los conjuntos de
problemas utilizados en las distintas ediciones del CEC especialmente diseñados para LSGO.

Tabla 4.8: Características de los conjuntos de prueba con problemas de gran escala utilizados en
diferentes ediciones del IEEE CEC

Edición Nombre del Conjunto de
Problemas utilizado

Dimensionalidad Características Principa-
les

2008 CEC’2008 Competition on
Large Scale Global Optimiza-
tion

100, 500 y 1000 Siete funciones que deben uti-
lizarse con 100, 500 y 1000
dimensiones (21 problemas de
minimización)

2010 Benchmark Functions for the
CEC’2010 Special Session and
Competition on Large-Scale
Global Optimization

1000 variables 20 problemas. Se utilizaron
funciones totalmente separa-
bles, no separables y parcial-
mente separables

2012 CEC2010 Benchmark for
Constrained Optimization

1000 variables Optimización con restricciones
lineales y no lineales, aplicados
en problemas de gran escala.

2013 CEC2013 Large-Scale Bench-
mark Functions

1000 variables Mejora del conjunto del
CEC2010, con funciones más
difíciles, no separables y
complejas en alta dimensiona-
lidad.

2015 CEC2013 Large-Scale Bench-
mark Functions

1000 variables Se utilizó el mismo conjunto
de problemas del CEC´2013.

En ediciones más recientes como por ejemplo en el concurso del CEC’2021 [68], encontramos
el algoritmo A Modified APSODEE for Large Scale Optimization [69] el cual, presenta mejores
resultados que sus antecesores. Aunque no se encontró registro de algún concurso sobre LSGO, los
resultados son competitivos y los presentamos en la tabla 4.9.
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Tabla 4.9: Resultados de la media en cada una de las funciones del conjunto de pruebas del
CEC’2013 que se utilizó en el concurso del CEC’2021.

Función MAPSODEE
f1 1.53E-21
f2 5.67E+02
f3 2.16E+01
f4 7.85E+08
f5 6.18E+05
f6 1.06E+06
f7 4.93E+04
f8 3.05E+13
f9 3.63E+07
f10 9.39E+07
f11 1.80E+07
f12 9.95E+02
f13 6.38E+06
f14 1.50E+07
f15 2.36E+06
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Capítulo 5

Diseño de un algoritmo de PSO para alta
dimensionalidad

El algoritmo diseñado en la presente tesis tiene como finalidad mejorar los resultados hasta
ahora obtenidos por otras versiones basadas en PSO para problemas de gran escala (es decir, para
problemas de 100 o más variables). Por otro lado, también se busca tener en lo posible un algoritmo
sencillo. Una forma en que este objetivo puede llevarse a cabo es, tomar como base un algoritmo del
estado del arte que muestre resultados competitivos y modificarlo o aplicarle nuevas estrategias
de búsqueda que le ayuden a obtener mejores soluciones (nosotros intentaremos manipular la
exploración y explotación del cúmulo de partículas según el tipo de espacio de búsqueda en el que
se crea ésta). Una vez realizada la mejora, usaremos el conjunto de problemas del CEC’2013 para
verificarla.

5.1. Un diseño mejorado, con base en el algoritmo CSO

Para la elección del CSO (ver algoritmo 2) como base de nuestro trabajo, lo primero que se hizo
fue comparar el rendimiento de varios algoritmos del estado del arte y luego, seleccionamos aquel
que consideramos que era la mejor opción. El criterio para la elección del algoritmo deba cumplir
con tres aspectos importantes:

Proporcionar resultados competitivos.

Implementación sencilla con relación a la mejora que proporcionaba.

Funcionar en alta dimensionalidad.
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Para la comparación se utilizó el CSO [4], el SL-PSO [5] y el MSL-PSO [3], pues todos ellos
son representativos del estado del arte en el área. En la tabla 5.1 se muestra un resumen de las
características de estos algoritmos.

Tabla 5.1: Comparación de los algoritmos CSO, SL-PSO y MSL-PSO.
Algoritmo Año y Autor Características

principales
Ventajas Desventajas Conjunto de

problemas y
pruebas con
1000 dimensio-
nes

CSO [4] 2013, Cheng y Shi - Se basa en
competencias
entre partículas
- Introduce la
idea de líder y
seguidor
- Principio de
funcionamiento
sencillo

- Mejor rendi-
miento en pro-
blemas de alta
dimensionalidad
- Buena explora-
ción y explota-
ción

- Sensible a la
inicialización
- Puede reque-
rir ajuste ma-
nual de paráme-
tros

- Conjunto de
problemas del
CEC’2008
- Pruebas en fun-
ciones: F1-F7

SL-PSO [5] 2015, Zheng et al. - Integra apren-
dizaje social
para mejorar el
comportamiento
del cúmulo
- Cada partí-
cula adapta su
comportamiento
basándose en
experiencias
compartidas

- Mejora la
convergencia
en problemas
escalables
- Reduce la
probabilidad de
convergencia
prematura

- Mayor com-
plejidad compu-
tacional debido
al cálculo del
aprendizaje
social

- Conjunto de
problemas del
CEC’2008
- Pruebas en fun-
ciones: F1-F7

MSL-PSO [3] 2017, Cheng et al. - Combina estra-
tegias múltiples
en el aprendizaje
- Uso eficiente de
diferentes méto-
dos de aprendi-
zaje en paralelo

- Flexible y
adaptable a
diversas configu-
raciones
- Resuelve pro-
blemas grandes
con mayor efica-
cia

- Complejo de
implementar de-
bido a la gestión
de múltiples es-
trategias

- Conjunto de
problemas del
CEC’2008 y del
CEC’2010
- F1-F7 y F1-F20

Después, se obtuvieron los programas de cada algoritmo propuesto (el código fuente del algo-
ritmo MSL-PSO no se pudo obtener, por tal motivo, se desarrolló una implementación propia con
base en [3]).

Una vez se tuvieron los programas (en C), se ejecutaron para poder hacer una comparativa de
resultados. Primero se ejecutaron los programas para el conjunto de problemas CEC’2008 y se
compararon los resultados con lo reportado por los autores de cada artículo. Con esto, se verificó
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que el funcionamiento del código fuera el correcto, lo cual se puede apreciar en la tabla 5.2.
Con respecto a la comparación de resultados de las tres versiones propuestas, pudimos verificar
que para el conjunto de problemas CEC’2008, se presenta una ligera ventaja del algoritmo CSO
(gana en tres problemas), frente al SL-PSO (gana en dos problemas) y el MSL-PSO (gana solo
en un problema) como puede verse también en la tabla 5.2. Podemos decir que las estrategias
utilizadas por los diferentes algoritmos tienen un efecto similar en las características del conjunto
de problemas de gran escala del CEC’2008.

Tabla 5.2: Comparación de la media(µ) de los algoritmos de PSO de alta dimensionalidad utili-
zando el conjunto de problemas del CEC’2008. Se marcaron con color verde los mejores resultados
obtenidos de los programas proporcionados por cada autor (con excepción del MSL-PSO, el cual
se implementó ya que no se disponía del código fuente por parte del autor).
Problema Óptimo CSO CSO SL-PSO SL-PSO (MSLPSO) (MSLPSO)
(1000d) Global (Resultados (Implementación) (Resultados (Implementación) (Resultados (Implementación)

de Artículo [4]) CEC2008) de Artículo [5]) CEC2008) de Artículo [3]) (CEC’2008)

µ 1.09E-21 1.07E-21 7.10E-23 7.11E-23 9.33E-25 8.12E-19
F1 0 σ2 9.30E-46 3.94E-48 1.73E-36

σ 3.05E-23 1.98E-24 1.31E-18

µ 4.15E+01 3.87E+01 8.87E+01 1.65E+02 1.61E+01 8.80E+03
F2 0 σ2 1.29607 8.14472 5.03E+04

σ 1.13845 2.8539 224.300

µ 1.01E+03 9.94E+02 1.04E+03 2.59E+03 9.75E+02 2.20E+01
F3 0 σ2 481.466 10216300 2.12E-05

σ 21.9423 3196.29 0.004610

µ 6.89E+02 7.07E+02 5.89E+02 9.82E+03 5.50E+02 1.31E+10
F4 0 σ2 1421.7 13288.7 1.22E+19

σ 37.7054 115.277 3.48E+09

µ 2.26E-16 2.22E-16 4.44E-16 4.66E-16 1.10E-16 8.78E+05
F5 0 σ2 6.78E-42 1.97E-33 1.43E+10

σ 2.60E-21 4.44E-17 120000

µ 1.21E-12 1.19E-12 3.44E-13 3.44E-13 1.11E-14 1.07E+06
F6 0 σ2 4.38E-28 2.63E-29 1.81E+06

σ 2.09E-14 5.13E-15 1345.00

µ -3.83E+06 -3.83E+06 -1.30E+04 -1.66E+06 -3.00E+04 -1.12E+08
F7 0 σ2 2.33E+09 4.33E+09 3.15E+16

σ 48309.5 65841.6 1.77E+08

Una segunda prueba consistió en comparar los resultados obtenidos de la ejecución de cada
algoritmo, esta vez, utilizando el conjunto de problemas del CEC’2010. Pudimos observar que la
implementación de MSL-PSO ya no siguió los resultados reportados por sus autores [3]. Aún así,
a modo de referencia, se decidió continuar con el código fuente disponible y reportar los resultados
obtenidos. Otra observación es que comenzamos por obtener mejores resultados con el algoritmo
CSO que con el SL-PSO, como lo muestra la tabla 5.3.
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Tabla 5.3: Comparación de la media(µ) de los algoritmos de PSO de alta dimensionalidad (CSO,
SLPSO y MSLPSO). En verde se marca la mejor solución a cada problema para el conjunto de
problemas del CEC’2010. Como se puede observar, el algoritmo CSO obtiene los mejores resultados.

Problema óptimo CSO SL-PSO MSLPSO
(1000d) global (código base) (código base) (código base)

CEC’2010 CEC’´2010 CEC’2010

µ 4.29E-17 2.20E-18 1.14796e-19
F1 0 σ2 9.39E-36 3.50E-39 1.43212e-40

σ 3.06E-18 5.92E-20 1.19671e-20

µ 7.52E+03 9.73E+03 1.37E+04
F2 0 σ2 35703.4 7976.23 4858.23

σ 188.953 89.3097 69.701

µ 2.40E-09 3.64E-13 2.12E+01
F3 0 σ2 3.92E-20 1.32E-29 0.0016986

σ 1.98E-10 3.64E-15 0.0412141

µ 8.90E+11 6.79E+11 6.79E+14
F4 0 σ2 3.72E+22 1.46E+22 6.12E+27

σ 1.93E+11 1.21E+11 7.82E+13

µ 8.75E+06 1.18E+07 7.99E+07
F5 0 σ2 2.53E+12 9.98E+12 2.87E+14

σ 1.59E+06 3.16E+06 1.69E+07

µ 9.00E-07 2.16E+01 1.32E+07
F6 0 σ2 8.70E-16 2.68E-05 6.24E+12

σ 2.95E-08 0.00518325 2.49E+06

µ 1.84E+04 1.21E+04 1.38E+11
F7 0 σ2 18625900 41117500 3.35E+20

σ 4315.77 6412.29 1.83E+10
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Problema óptimo CSO SL-PSO MSLPSO
(1000d) global (código base) (código base) (código base)

CEC’2010 CEC’´2010 CEC’2010

µ 3.86E+07 2.78E+07 6.02E+07
F8 0 σ2 3.95E+09 3.98E+10 1.34E+15

σ 62917 199600 3.66E+07

µ 1.52E+11 2.94E+07 2.79E+07
F9 0 σ2 1.34E+10 7.04E+11 2.16E+12

σ 15796 839301 1.46E+06

µ 1.07E+04 1.06E+04 1.44E+04
F10 0 σ2 2201.13 5091.92 3689.5

σ 46.9162 71.3577 60.7413

µ 7.42E+01 2.36E+02 2.37E+02
F11 0 σ2 757.825 0.0248536 0.015176

σ 27.5286 0.15765 0.123191

µ 3.98E+05 2.47E+06 1.11E+07
F12 0 σ2 2085220000 3.02E+11 6.363E+10

σ 45664.2 549806 252251

µ 6.33E+02 1.98E+03 5.11E+09
F13 0 σ2 65547 3847010 1.18E+19

σ 256.021 1961.38 3.43E+09

µ 2.40E+08 2.39E+08 1.28E+08
F14 0 σ2 1.77E+14 3.66E+14 2.26E+14

σ 1.33E+07 1.91E+07 1.50E+07

µ 1.08E+04 1.11E+04 9.84E+03
F15 0 σ2 3296.64 5596.12 4.85E+07

σ 57.4164 74.8072 6965.9

Finalmente, se realizó una tercera comparación utilizando los mismos algoritmos, sin embargo,
esta vez para el conjunto de problemas del CEC’2013. En este caso, se pudo observar que comienza
a ser más notoria la robustez del algoritmo CSO frente a sus competidores, ya que aunque en
general disminuye su rendimiento, el CSO entrega los mejores resultados como lo muestra la tabla
5.4.
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Tabla 5.4: Comparación de la media(µ) de los algoritmos de PSO de alta dimensionalidad (CSO,
SLPSO y MSLPSO). En verde se marca la mejor solución a cada problema, para el conjunto de
problemas del CEC´2013

Problema óptimo CSO SL-PSO (MSLPSO)
(1000d) global (código base) (código base) (código base)

CEC’2013 CEC’2013 CEC’2013

µ 3.61E-17 8.55E-19 2.70E+03
F1 0 σ2 1.06E-36 1.58E-36 3.99E+06

σ 1.03E-18 1.25E-18 1.99E+03

µ 8.59E+03 8.75E+03 9.65E+03
F2 0 σ2 107574 49596.3 8.77E+05

σ 327.985 222.702 9.36E+02

µ 2.10E+01 2.16E+01 2.16E+01
F3 0 σ2 1.79E-05 2.10E-05 2.01E-05

σ 0.0042358 0.00459078 4.48E-03

µ 1.13E+10 1.30E+10 7.49E+10
F4 0 σ2 2.15E+18 1.21103e+19 1.99E+20

σ 1.46E+09 3.47999e+09 1.41E+10

µ 7.69E+05 8.76E+05 8.95E+06
F5 0 σ2 1.40E+10 1.42184e+10 2.24E+11

σ 1.40E+10 119241 4.74E+05

µ 1.06E+06 1.06E+06 1.06E+06
F6 0 σ2 821433 1793620 7.05E+05

σ 906.329 1339.26 8.40E+02

µ 5.21E+06 1.11E+08 1.19E+10
F7 0 σ2 1.40E+12 3.13E+16 1.25E+19

σ 1.18E+06 1.76E+08 3.54E+09
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Problema óptimo CSO SL-PSO (MSLPSO)
(1000d) global (código base) (código base) (código base)

CEC’2013 CEC’2013 CEC’2013

µ 2.70E+14 3.11716e+14 2.57E+15
F8 0 σ2 3.96E+27 3.57986e+28 2.015E+30

σ 6.29E+13 1.89205e+14 1.41E+15

µ 3.13E+07 9.34E+07 4.74E+08
F9 0 σ2 5.67E+13 2.52064e+15 1.99E+16

σ 7.53E+06 5.0206e+07 1.41E+08

µ 9.41E+07 6.60E+07 9.40E+07
F10 0 σ2 4.27E+10 1.1595e+15 7.16E+10

σ 206841 3.40514e+07 2.67E+05

µ 3.27E+09 1.0495E+14 1.72E+12
F11 0 σ2 6.35E+18 8.36527e+27 1.81E+24

σ 6.35E+18 9.14618e+13 1.34E+12

µ 1.05E+03 1.01E+03 2.45E+05
F12 0 σ2 434.222 1411.85 1.12E+10

σ 20.838 37.5746 1.05E+05

µ 9.80E+08 1.91771e+13 3.44E+11
F13 0 σ2 1.75E+17 1.10233e+27 1.77E+22

σ 4.19E+08 3.32014e+13 1.33E+11

µ 3.09E+09 1.07014e+14 3.20E+12
F14 0 σ2 1.13E+18 7.73263e+27 5.38E+24

σ 1.06E+09 8.79354e+13 2.32E+12

µ 7.56E+07 2.17E+10 4.81E+09
F15 0 σ2 2.27E+13 4.95E+20 1.90E+19

σ 4.76E+06 2.22E+10 4.36E+09

Al finalizar las comparaciones y observar los resultados (como ya comentamos al principio de
este capítulo) elegimos al CSO [4] como la mejor opción para utilizarlo como base para nuestra
mejora. Además, otro aspecto positivo de este algoritmo y que apoya la decisión de elegirlo, es
que no difiere mucho con respecto a la versión original [18], lo que lo vuelve sencillo y rápido en
comparación a versiones más complejas [3]. El CSO, solo agrega un mecanismo de competencia
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entre las partículas y actualiza a la partícula perdedora de la competencia, ésta, a su vez, aprende
de la ganadora (como ya se mencionó anteriormente). Por lo tanto, se puede ver que el mecanismo
utilizado por CSO no añade mayor complejidad en comparación a los recursos que utilizaría su
versión original.

5.2. Estrategias utilizadas para mejorar al CSO

Una vez que se eligió el algoritmo base, se le incorporó una estructura de datos (una cola),
la cual, tiene el propósito de censar el comportamiento del cúmulo sobre la región del espacio
de búsqueda en el que éste se encuentre en el tiempo ts. Cuando el cúmulo está explorando el
espacio de búsqueda puede ser que una partícula encuentre una mejor posición local. Este hecho
se almacenará como un “cero” en la cola; de otro modo, se guardará un “uno”. Lo anterior se realiza
después de actualizar la partícula que perdió la competencia. En cuanto al número de elementos
que puede almacenar la estructura para censar el comportamiento del cúmulo, es igual al número
total de partículas en el grupo. Esto es así, a modo de tener una ventana de información lo más
completa posible, acerca de alguna tendencia que se esté presentando al explorar el espacio de
búsqueda. Así mismo, la estructura se mantiene actualizada debido a que en cada iteración se
ingresa la nueva lectura y se desecha la más antigua. En la figura 5.1 se muestra el diagrama de
la estructura de datos que se utiliza.

Figura 5.1: Diagrama que representa la estructura de datos que guardará ‘0’ cuando se encuentra
un mejor local y ‘1’ en caso contrario (esto para cada partícula), lo que crea un rastro de compor-
tamiento de mejores locales en un rango de tiempo.

Ya que el censado es a cada s iteraciones, donde s > tamcola (para permitir que la estructura
tenga tiempo de llenarse), la información que proporcione la cola (si encuentra o nó mejores
resultados) se va almacenando y actualizando hasta que llega el nuevo tiempo de censar (ts + 1).
En este tiempo (ts + 1), se tiene una especie de rastro del comportamiento de la posición de las
últimas n partículas en ese momento, el cual podemos utilizar como fuente de información para
suponer el tipo de espacio de búsqueda en el que se encuentra el cúmulo. A partir de esto, se
podrían modificar los parámetros del algoritmo para ajustar su comportamiento social o cognitivo
según se requiera para establecer un equilibrio entre la exploración y la explotación del espacio de
búsqueda.
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Como se ha mencionado, cada s iteraciones, se realiza un conteo de los “ceros” que se encuentran
almacenados en la cola. Este conteo nos indica cuántos mínimos están encontrando las partículas de
forma local. Si el conteo es alto, nos indicaría que el cúmulo es bastante diverso y está encontrando
bastantes posiciones mejores, o que tal vez la función sea altamente multimodal, lo cual nos hace
pensar que se puede mantener la exploración o el componente social como en el algoritmo base.

Si el número de “ceros” es bajo, podría ser que se tratara de una función unimodal o que el
cúmulo pudiera estar atrapado en un óptimo local. En este caso se hace uso de un operador de
varianza, el cual se calcula a partir de las mejores posiciones locales de cada partícula del cúmulo.
Si la varianza es alta, entonces suponemos que el cúmulo está atrapado en un óptimo local, por lo
que incrementamos el parámetro social R3(k, t).

Por ahora solo se está utilizando la información que proporciona la cola de datos para favorecer
la exploración del cúmulo, pero creemos que un análisis más detallado podría ayudar a equilibrar
mejor los componentes social y cognitivo de esta nueva versión para obtener aún mejores resultados.
Con esta simple modificación podemos ver una mejora en nuestra versión en comparación con la
versión base de CSO. Esto se muestra más adelante en la sección de resultados en la tabla 5.8.

Una segunda mejora se encontró a partir del componente social del CSO. Éste fomenta que las
partículas aprendan de la media de las posiciones del cúmulo en lugar de gbest como se hace en
el PSO original. En el artículo de CSO [4], los autores utilizan la media de todo el cúmulo como
una versión global (la influencia de todas las partículas) y comentan que es posible mejorar la
diversidad a partir de una media local de las partículas en un vecindario predefinido, (esto mejora
el rendimiento en funciones multimodales). Por lo que nosotros elegimos solo las cinco mejores
partículas para obtener una media de ellas. Esto de igual forma mejoró al algoritmo como se verá
más adelante en la sección de resultados en la tabla 5.10.

5.3. Pseudocódigo del CSO mejorado

A continuación mostramos más detalladamente la nueva versión del algoritmo:

Se inicializa de forma aleatoria (como en PSO) un cúmulo m de n partículas. Luego, se
actualiza de manera iterativa. Cada partícula tiene una posición de D dimensiones xi(t) =
(xi,1(t), xi,2(t), . . . , xi,n(t)) y un vector de velocidad de D dimensiones, vi(t) = (vi,1(t), vi,2(t), . . . ,
vi,n(t)) como en CSO.

Se inicializa la cola de datos (tamcola = m).

Obtener la varianza de las mejores posiciones locales del cúmulo.
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Obtener la media de las posiciones de las mejores cinco partículas del cúmulo.

En cada generación (t), el cúmulo se revuelve y se asignan parejas (se asume que el tamaño
del cúmulo m es un número par), luego se realiza una competencia entre las dos partículas
que forman el par.

Como resultado de cada competencia, la partícula con una mejor aptitud, denominada “ga-
nadora”, será pasada directamente a la siguiente generación del cúmulo (t+ 1)

Cada s = 10000 (evaluaciones de función (EF)) se realizará un conteo de “ceros” almacenados
en la cola de datos. Inicialmente, la estructura está vacía por lo que se usa la condición que
s > tamcola.

La partícula que pierde la competencia, denominada “perdedora”, actualizará su posición y
velocidad aprendiendo de la ganadora. Durante la actualización de la partícula modificaremos
los factores aleatorios que tienen que ver con la actualización de la velocidad vi:

• R1 := Factor aleatorio en el primer componente R1(k, t)Vl,k(t). Está relacionado con el
factor de inercia ω y da estabilidad al algoritmo.

• R2 := Factor aleatorio en el segundo componente R2(k, t)(xw,k(t) − xl,k(t)). Se asocia
al aprendizaje cognitivo de la partícula.

• R3 := Factor aleatorio en el tercer componente ϕR3(k, t)(x̄k(t) − xl,k(t)). Se asocia al
aprendizaje social de la partícula.

Lo anterior se hace con relación a la cantidad de “ceros” que se encuentren en el conteo (ver
algoritmo 7).

Después de la actualización, la nueva aptitud de la partícula “perdedora” es comparada con
su mejor posición local histórica. Si ésta es menor que la mejor local de la que se tiene registro
(es decir, se encontró una mejor aptitud), se pondrá un cero en la estructura de datos. En
caso contrario, esta nueva aptitud es peor y se pondrá un 1. Esta operación irá llenando la
estructura a medida que pasan las competencias durante un rango de 10000 evaluaciones

Después de aprender de la ganadora, la partícula perdedora también será pasada a la siguiente
generación del cúmulo (t+ 1)

El algoritmo termina cuando se llegue a un máximo de evaluaciones (maxFE) de la función
de aptitud

La forma en que se realizan las competencias es igual que en el CSO. Es decir, para un cúmulo
m ocurren m/2 competencias y la velocidad y posición de las m/2 partículas serán actualizadas.
La figura 3.4 ilustra este funcionamiento.

La velocidad del perdedor se actualizará utilizando la estrategia de aprendizaje de la ecuación
(3.1), como en CSO, donde:
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xw,k(t) Es la posición del ganador en la k-ésima ronda de competencia en la generación t

xl,k(t) Es la posición del perdedor en la k-ésima ronda de competencia en la generación t

vw,k(t) Es la velocidad del ganador en la k-ésima ronda de competencia en la generación t

vl,k(t) Es la velocidad del perdedor en la k-ésima ronda de competencia en la generación t

R1(k, t), R2(k, t), y R3(k, t) Son factores aleatorios ∈ [0, 1]d determinados por la cantidad de
“ceros” que contenga la cola de datos, como lo muestra el algoritmo 7.

ϕ Es un parámetro de aprendizaje que controla la influencia de x̄k(t)

x̄k(t) Es el valor medio de la posición de las partículas relevantes. Para nuestra mejora
se utilizaron las posiciones de las mejores cinco partículas. Se adoptó una versión local a
diferencia de CSO:

• x̄l
l,k(t) Significa la posición media local de las partículas en un vecindario predefinido

de la partícula l, con (k = 5).

La posición del perdedor se puede actualizar ahora con la nueva velocidad, utilizando la misma
ecuación que en el CSO (ver ecuación (3.2)).

La primera parte de la ecuación (3.1) asegura la estabilidad del proceso de búsqueda y es similar
al término de inercia ω en el PSO original. También puede interpretarse como que ω = 1 y se
agrega un vector aleatorio R1(t).

La segunda parte es la componente cognitiva. En esta parte de la ecuación se da el aprendizaje
de la partícula perdedora con respecto a la ganadora en lugar de hacerlo de la mejor personal
pBest.

La tercera parte es el componente social en donde la partícula perdedora aprende de la posición
media del cúmulo actual x̄k(t) en lugar del mejor global gBest.

A continuación se presenta el algoritmo de nuestra versión mejorada:
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5.3.1. Algoritmo de CSO mejorado

La nueva versión del CSO se describe en el algoritmo 7.

Algoritmo 7 Competitive Swarm Optimizer for Large Scale Optimization with Data Queue
(CSOQ, por sus siglas en inglés )
1: Inicializar una población m de n partículas xi y vi.
2: Inicializa cola de datos (tamcola = m).
3: Obtener varianza de las mejores posiciones locales var.
4: Obtener la media de las mejores cinco partículas del cúmulo.
5: Evaluar la aptitud de cada partícula f(xi) con base en la función objetivo.
6: Mientras no se cumpla el criterio de parada hacer
7: Si FEs%10000 == 0 entonces
8: contadorCeros = contarCeros(q)
9: Fin Si

10: Emparejar las partículas aleatoriamente en m/2 pares.
11: Para cada cada par (xi,xj) hacer
12: Si f(xi) < f(xj) entonces ▷ Para problemas de minimización
13: Marcar xi como el ganador y xj como el perdedor.
14: else
15: Marcar xj como el ganador y xi como el perdedor.
16: Fin Si
17: Reincorporar la partícula ganadora al cúmulo ▷ Hacer ajuste dinámico
18: Si contadorCeros < ((upper − lower)/4) entonces
19: Si velocidadpocentaje == 0 entonces
20: R3 = 1 +R3 ▷ Puede estar en un óptimo local
21: else
22: R2 = 1 +R2 ▷ Puede ser una función unimodal;
23: R1 = 1 +R1 ▷ Puede ser una función unimodal;
24: Fin Si
25: else
26: Si var > 100000000000000 entonces
27: R3 = 1 +R3 ▷ Se fomenta la exploración
28: Fin Si
29: Fin Si
30: Actualizar la velocidad del perdedor usando ecuación (3.1)
31: Actualizar la posición del perdedor usando ecuación (3.2)
32: Borrar o sobreescribir xi y xj;
33: Fin Para cada
34: Reincorporar la partícula actualizada al cúmulo
35: Fin Mientras
36: Devolver la mejor solución encontrada x∗ = argmı́n f(xi).
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5.4. Resultados Experimentales

En esta sección mostramos los resultados experimentales de la ejecución de nuestro algoritmo
mejorado. Para ello, tomamos como referencia la metodología propuesta en las competencias del
Congreso sobre Computación Evolutiva (Conference on Evolutionary Computation), organizado
por la sociedad de inteligencia Computacional del IEEE (Institute of Electrical and Electronics
Engineers). Además, comparamos el funcionamiento de nuestra versión con respecto al CSO [4],
al SLPSO [5] y al MSLPSO [3]. Como hemos mencionado anteriormente, estos tres algoritmos del
estado de arte se enfocan en resolver problemas de optimización con un gran número de variables.
Para hacer las comparaciones, utilizamos los conjuntos de problemas de prueba del CEC (por sus
siglas en inglés) en sus ediciones 2008, 2010 y 2013, cuya prioridad es evaluar el desempeño de
algoritmos de optimización global a gran escala.

5.4.1. Conjunto de problemas de prueba del CEC’2013

Para la evaluación de nuestro algoritmo, hemos adoptado el conjunto de problemas de prueba
utilizados para la sesión especial y competencia de optimización global a gran escala organizados
en el CEC’2013. Son 15 problemas (ver tabla 5.5) y son una extensión del conjunto de prueba del
CEC’2010 cuyo objetivo es representar mejor las características de un mayor número de problemas
del mundo real. De igual forma, este conjunto de problemas proporciona flexibilidad para comparar
los algoritmos diseñados. En especial, los realizados para la optimización global a gran escala.
Como ya se había mencionado, las principales características de esta nueva extensión de problemas
son la introducción de desequilibrio entre la contribución de varios subcomponentes (tamaños no
uniformes) y funciones superpuestas.
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Tabla 5.5: Conjunto de problemas de prueba utilizados para la Sesión Especial y Competencia de
optimización global a gran escala organizados en el CEC’2013 (puede verse más a detalle cada
función del CEC’2008 en el apéndice C).

Función Nombre Rango Global Óptimo Propiedades
f1 Función elíptica [−100, 100]D 0 Unimodal, separable,

desplazada, con irre-
gularidades locales
suaves

f2 Función de Rastrigin
desplazada

[−5, 5]D 0 Multimodal, sepa-
rable, desplazada,
irregularidades locales
suaves

f3 Función de Ackley
desplazada.

[−32, 32]D 0 Multimodal, sepa-
rable, desplazada,
irregularidades locales
suaves

f4 Función elíptica des-
plazada y rotada

[−100, 100]D 0 Unimodal, parcial-
mente separable,
desplazada, irregulari-
dades locales suaves

f5 Función de Rastrigin
desplazada y rotada

[−5, 5]D 0 Multimodal, parcial-
mente separable, des-
plazada, irregularida-
des locales suaves;

f6 Función de Ackley
desplazada y rotada

[−32, 32]D 0 Multimodal, parcial-
mente separable, des-
plazada, irregularida-
des locales suaves;

f7 Función Schwefel des-
plazada

[−100, 100]D 0 Multimodal, parcial-
mente separable, des-
plazada, irregularida-
des locales suaves

f8 Función elíptica des-
plazada y rotada

[−100, 100]D 0 Unimodal, parcial-
mente separable,
desplazada, irregulari-
dades locales suaves

f9 Función de Rastrigin
desplazada y rotada

[−5, 5]D 0 Multimodal, parcial-
mente separable, des-
plazada, irregularida-
des locales suaves

f10 Función de Ackley
desplazada y rotada

[−32, 32]D 0 Multimodal, parcial-
mente separable, des-
plazada, irregularida-
des locales suaves

f11 Función Schwefel des-
plazada

[−100, 100]D 0 Unimodal, parcial-
mente separable,
desplazada, irregulari-
dades locales suaves

f12 Función de Rosen-
brock desplazada

[−100, 100]D 0 Multimodal, sepa-
rable, desplazada,
irregularidades locales
suaves

f13 Schwefel desplazada
con subcomponentes
superpuestos

[−100, 100]D 0 Unimodal, no separa-
ble, superpuesto, des-
plazado, irregularida-
des locales suaves;

f14 Schwefel desplazada
con subcomponentes
superpuestos en con-
flicto.

[−100, 100]D 0 Unimodal, no separa-
ble, subcomponentes
en conflicto, desplaza-
do, irregularidades lo-
cales suaves;

f15 Función Schwefel des-
plazada

[−100, 100]D 0 Unimodal, totalmen-
te no separable, des-
plazada, irregularida-
des locales suaves;
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5.4.2. Metodología

La metodología empleada para realizar los experimentos al nuevo algoritmo sigue el procedi-
miento propuesto en el CEC’2013. Esto, con la finalidad de hacer más justa y estandarizada la
comparación contra otros algoritmos similares. La prueba consistió en utilizar un conjunto de 15
problemas de minimización (ver tabla 5.5). Para todos los problemas de utilizaron 1000 dimen-
siones. Además, se realizaron 25 ejecuciones por función y para cada problema se estableció un
número máximo de 3 × 106 evaluaciones de la función objetivo. El criterio de finalización para
cada problema se presenta cuando Max_FE alcance el valor 3× 106.

5.4.3. Comparación de resultados

Un primer experimento para evaluar el comportamiento de nuestro algoritmo mejorado, fue
ejecutarlo con el conjunto de problemas del CEC’2008. Estos resultados se presentan en la tabla
5.6 y se comparan con respecto a las dos versiones del estado del arte utilizadas como referencia.
Se puede observar en la columna de nuestro algoritmo (CSOQ) que solo gana en la función f4 y f7.
Sin embargo, con excepción de los resultados para f5 y f6, los otros resultados son muy similares
a su versión base (CSO). Se esperaba que el algoritmo CSOQ fuera mucho mejor que sus contrin-
cantes. Sin embargo, esto no ocurrió y creemos que esto puede deberse a que nuestro algoritmo se
comporta mejor para funciones multimodales, ya que da preferencia a la exploración del espacio de
búsqueda para intentar no quedar atrapado en óptimos locales. La función f4 (función de Rastrigin
desplazada) es multimodal separable y la función f7 (Double Deep) es multimodal separable con
un espacio de búsqueda pequeño (de x ∈ [−5, 5]D y x ∈ [−1, 1]D respectivamente). Las funciones
f5 (Griewank desplazada) y f6 (Ackley desplazada) tal vez mostraron peores resultados debido al
desplazamiento y a la forma de la función que no presenta muchas irregularidades y se tiene que
explorar más sin encontrar resultados buenos.
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Tabla 5.6: Comparación de los algoritmos del estado del arte contra nuestro nuevo algoritmo
utilizando el conjunto de problemas CEC’2008. En verde se pueden observar los mejores resultados
obtenidos del experimento. En gris remarcamos los resultados del algoritmo MSLPSO debido a
que estos resultados se usan solo como referencia para nuestro estudio comparativo
Problema Óptimo CSO CSO SL-PSO SL-PSO (MSLPSO) (MSLPSO) CSOQ
(1000d) Global (Resultados (Implementación (Resultados (Implementación (Resultados (Implementación (Implementación)

Ideal de Artículo [4]) CEC2008) de Artículo [5]) CEC2008) de Artículo [3]) CEC2008) CEC2008)
µ 1.09E-21 1.07E-21 7.10E-23 7.11E-23 9.33E-25 8.12E-19 2.15E-22

F1 0 σ2 9.30E-46 3.94E-48 1.73E-36 8.86E-47
σ 3.05E-23 1.98E-24 1.31E-18 9.41E-24
µ 4.15E+01 3.87E+01 8.87E+01 1.65E+02 1.61E+01 8.80E+03 8.35E+01

F2 0 σ2 1.29607 8.14472 5.03E+04 2.93
σ 1.13845 2.8539 224.300 1.71
µ 1.01E+03 9.94E+02 1.04E+03 2.59E+03 9.75E+02 2.20E+01 1.12E+03

F3 0 σ2 481.466 10216300 2.12E-05 6.64+03
σ 21.9423 3196.29 0.004610 81.51
µ 6.89E+02 7.07E+02 5.89E+02 9.82E+03 5.50E+02 1.31E+10 5.83E+02

F4 0 σ2 1421.7 13288.7 1.22E+19 4.93E+02
σ 37.7054 115.277 3.48E+09 22.21
µ 2.26E-16 2.22E-16 4.44E-16 4.66E-16 1.10E-16 8.78E+05 4.88E-02

F5 0 σ2 6.78E-42 1.97E-33 1.43E+10 4.39E-03
σ 2.60E-21 4.44E-17 120000 6.63E-02
µ 1.21E-12 1.19E-12 3.44E-13 3.44E-13 1.11E-14 1.07E+06 5.73E-01

F6 0 σ2 4.38E-28 2.63E-29 1.81E+06 2.03E-01
σ 2.09E-14 5.13E-15 1345.00 4.51E-01
µ -3.83E+06 -3.83E+06 -1.30E+04 -1.66E+06 -3.00E+04 1.12E+08 -7.20E+06

F7 0 σ2 2.33E+09 4.33E+09 3.15E+16 2.30E+10
σ 48309.5 65841.6 1.77E+08 1.51E+05

Se realizó un segundo experimento. En este caso, comparamos los resultados de nuestro algoritmo
(utilizando el conjunto de problemas del CEC’2010), contra los otros dos algoritmos del estado
del arte utilizando el mismo conjunto de problemas. Los resultados son mostrados en la tabla 5.7.
Para este conjunto de problemas, nuestro algoritmo es mejor para más funciones. Particularmente,
obtiene mejores resultados para los problemas multimodales f2 (función de Rastrigin desplazada
de x ∈ [−5, 5]D), f5 (función de Rastrigin desplazada y rotada de x ∈ [−5, 5]D), f10 (función de
Rastrigin desplazada y rotada de grupo D

2m
, x ∈ [−5, 5]D) y f12 (problema de Schwefel despalzado

de x ∈ [−100, 100]D) y para los unimodales f11 (función de Ackley desplazada y rotada de x ∈
[−32, 32]D) y f15 (función de Rastrigin desplazada y rotada de x ∈ [−5, 5]D). Como se puede
observar, la mayoría de los buenos resultados se obtienen para funciones con espacios de búsqueda
pequeños (x ∈ [−5, 5]D), con excepción de la función f11 y f12 cuyo espacio de búsqueda es más
grande, Pero aún así es mejor que las otras versiones. Esto demuestra que el algoritmo CSOQ, es
robusto en el conjunto de problemas del CEC’2010.
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Tabla 5.7: Comparación de la media(µ) de dos algoritmos del estado del arte, contra el nuestro, utilizando el conjunto de
problemas del CEC’2010. En verde se pueden observar los mejores resultados obtenidos del experimento.

Problema óptimo CSO SL-PSO MSLPSO CSOQ
(1000d) global (Implementación (Implementación (Implementación (Implementación

CEC’2010) CEC’2010) CEC’2010) CEC’2010)

µ 4.29E-17 2.20E-18 1.14796e-19 1.07E-17
F1 0 σ2 9.39E-36 3.50E-39 1.43212e-40 5.23E-37

σ 3.06E-18 5.92E-20 1.19671e-20 7.23E-19

µ 7.52E+03 9.73E+03 1.37E+04 5.27E+03
F2 0 σ2 35703.4 7976.23 4858.23 3.85E+02

σ 188.953 89.3097 69.701 1.96E+01

µ 2.40E-09 3.64E-13 2.12E+01 5.48E-13
F3 0 σ2 3.92E-20 1.32E-29 0.0016986 1.08E-28

σ 1.98E-10 3.64E-15 0.0412141 1.03E-14

µ 8.90E+11 6.79E+11 6.79E+14 7.23E+11
F4 0 σ2 3.72E+22 1.46E+22 6.12E+27 6.00E+21

σ 1.93E+11 1.21E+11 7.82E+13 7.74E+10

µ 8.75E+06 1.18E+07 7.99E+07 8.65E+06
F5 0 σ2 2.53E+12 9.98E+12 2.87E+14 2.18E+12

σ 1.59E+06 3.16E+06 1.69E+07 1.47E+06

µ 9.00E-07 2.16E+01 1.32E+07 1.05E+01
F6 0 σ2 8.70E-16 2.68E-05 6.24E+12 2.41857

σ 2.95E-08 0.00518325 2.49E+06 1.55518

µ 1.84E+04 1.21E+04 1.38E+11 3.21E+04
F7 0 σ2 18625900 41117500 3.35E+20 1.45E+08

σ 4315.77 6412.29 1.83E+10 1.20+04

µ 3.86E+07 2.78E+07 6.02E+07 3.52E+07
F8 0 σ2 3.95E+09 3.98E+10 1.34E+15 4.80E+09

σ 62917 199600 3.66E+07 6.93E+04

µ 1.52E+11 2.94E+07 2.79E+07 1.52E+11
F9 0 σ2 1.34E+10 7.04E+11 2.16E+12 1.34E+10

σ 15796 839301 1.46E+06 1.15E+05

µ 1.07E+04 1.06E+04 1.44E+04 5.05E+02
F10 0 σ2 2201.13 5091.92 3689.5 4.97E+02

σ 46.9162 71.3577 60.7413 2.23E+01

µ 7.42E+01 2.36E+02 2.37E+02 3.42E+01
F11 0 σ2 757.825 0.0248536 0.015176 2.45E+02

σ 27.5286 0.15765 0.123191 1.56E+01

µ 3.98E+05 2.47E+06 1.11E+07 5.64E+04
F12 0 σ2 2085220000 3.02E+11 6.363E+10 2.65E+06

σ 45664.2 549806 252251 1.62E+03

µ 6.33E+02 1.98E+03 5.11E+09 7.76E+02
F13 0 σ2 65547 3847010 1.18E+19 2.28E+05

σ 256.021 1961.38 3.43E+09 4.78E+02

µ 2.40E+08 2.39E+08 1.28E+08 1.47E+08
F14 0 σ2 1.77E+14 3.66E+14 2.26E+14 3.91E+13

σ 1.33E+07 1.91E+07 1.50E+07 6.25E+06

µ 1.08E+04 1.11E+04 9.84E+03 7.43E+02
F15 0 σ2 3296.64 5596.12 4.85E+07 2.19E+03

σ 57.4164 74.8072 6965.9 4.68E+01
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Finalmente, se realizó una tercera comparación de resultados de nuestro algoritmo
utilizando el conjunto de problemas del CEC’2013 (para el cual fue diseñado), contra
los otros algoritmos del estado del arte. Los resultados se muestran en la tabla 5.8.

Como se puede observar, en esta última comparación, nuestra nueva versión mantiene
su buen desempeño e incluso mejora algunos resultados. Por ejemplo, para los problemas
f2 (función Rastrigin desplazada, x ∈ [−5, 5]D), f5 (Rastrigin desplazada y rotada de 7
no separable, 1 separable, x ∈ [−5, 5]D), f11 (Schwefel desplazada y rotada de 20 no sepa-
rable, x ∈ [−100, 100]D) y f15 (Schwefel desplazada, x ∈ [−100, 100]D) presenta un buen
desempeño en contraste con el decremento en la eficiencia de los otros algoritmos contra
los que se compara. Por tanto, el algoritmo propuesto resulta ser robusto y más eficiente
frente a las características incorporadas en el conjunto de problemas del CEC’2013, como
se aprecia en la tabla 5.8.

Nuestro algoritmo también obtiene ligeramente mejores resultados para los problemas
multi-modales f3 (función Ackley desplazada, x ∈ [−32, 32]D) y f6 (Ackley Desplazada y
Rotada de 7 no separable, 1 separable, x ∈ [−32, 32]D) y para los unimodales f4 (elíp-
tica desplazada y rotada de 7 no separable, 1 separable, x ∈ [−100, 100]D), f8 (elíptica
desplazada y rotada de 20 no separable, x ∈ [−100, 100]D), f13 (Schwefel desplazada con
subcomponentes superpuestos sin conflicto, x ∈ [−100, 100]D). De estos resultados tal vez
los más relevantes son f4, f8 y f6 ya que su espacio de búsqueda es grande y además
tienen componentes separables y no separables, una característica nueva en los problemas
de este conjunto. Así mismo, la función f13 que tiene componentes superpuestos.
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Tabla 5.8: Comparación de la media(µ) de los resultados obtenidos por nuestro algoritmo CSOQ. En verde se marca la
mejor solución a cada problema comparando con respecto a CSO, SLPSO y MSLPSO para el conjunto de problemas del
CEC’2013

Problema óptimo CSO SL-PSO (MSLPSO) CSOQ
(1000d) global (Implementación (Implementación (Implementación (Implementación

CEC’2013) CEC’2013) CEC’2013) CEC’2013)

µ 3.61E-17 8.55E-19 2.70E+03 1.15E-17
F1 0 σ2 1.06E-36 1.58E-36 3.99E+06 9.80E-37

σ 1.03E-18 1.25E-18 1.99E+03 9.90E-19

µ 8.59E+03 8.75E+03 9.65E+03 5.89E+02
F2 0 σ2 107574 49596.3 8.77E+05 1.07E+03

σ 327.985 222.702 9.36E+02 3.28E+01

µ 2.10E+01 2.16E+01 2.16E+01 2.02E+01
F3 0 σ2 1.79E-05 2.10E-05 2.01E-05 1.87E-04

σ 0.0042358 0.00459078 4.48E-03 1.37E-02

µ 1.13E+10 1.30E+10 7.49E+10 1.01E+10
F4 0 σ2 2.15E+18 1.21103e+19 1.99E+20 2.96E+18

σ 1.46E+09 3.47999e+09 1.41E+10 1.72E+09

µ 7.69E+05 8.76E+05 8.95E+06 6.65E+05
F5 0 σ2 1.40E+10 1.42184e+10 2.24E+11 7.12E+09

σ 1.40E+10 119241 4.74E+05 8.44E+04

µ 1.06E+06 1.06E+06 1.06E+06 9.96E+05
F6 0 σ2 821433 1793620 7.05E+05 3.62E+04

σ 906.329 1339.26 8.40E+02 1.90E+02

µ 5.21E+06 1.11E+08 1.19E+10 1.074E+07
F7 0 σ2 1.40E+12 3.13E+16 1.25E+19 3.92E+12

σ 1.18E+06 1.76E+08 3.54E+09 1.98E+06

µ 2.70E+14 3.11716e+14 2.57E+15 2.39E+14
F8 0 σ2 3.96E+27 3.57986e+28 2.015E+30 4.63E+27

σ 6.29E+13 1.89205e+14 1.41E+15 6.81E+13

µ 3.13E+07 9.34E+07 4.74E+08 4.55E+07
F9 0 σ2 5.67E+13 2.52064e+15 1.99E+16 3.86E+13

σ 7.53E+06 5.0206e+07 1.41E+08 6.22E+06

µ 9.41E+07 6.60E+07 9.40E+07 9.05E+07
F10 0 σ2 4.27E+10 1.1595e+15 7.16E+10 9.27E+07

σ 206841 3.40514e+07 2.67E+05 9.63E+03

µ 3.27E+09 1.0495E+14 1.72E+12 3.95E+08
F11 0 σ2 6.35E+18 8.36527e+27 1.81E+24 9.31E+15

σ 6.35E+18 9.14618e+13 1.34E+12 9.65E+07

µ 1.05E+03 1.01E+03 2.45E+05 1.15E+03
F12 0 σ2 434.222 1411.85 1.12E+10 9.29E+03

σ 20.838 37.5746 1.05E+05 9.64E+01

µ 9.80E+08 1.91771e+13 3.44E+11 6.67E+08
F13 0 σ2 1.75E+17 1.10233e+27 1.77E+22 1.88E+16

σ 4.19E+08 3.32014e+13 1.33E+11 1.37E+08

µ 3.09E+09 1.07014e+14 3.20E+12 4.19E+09
F14 0 σ2 1.13E+18 7.73263e+27 5.38E+24 4.93E+18

σ 1.06E+09 8.79354e+13 2.32E+12 2.22E+09

µ 7.56E+07 2.17E+10 4.81E+09 4.05E+06
F15 0 σ2 2.27E+13 4.95E+20 1.90E+19 8.01E+10

σ 4.76E+06 2.22E+10 4.36E+09 2.83E+05

73



Capítulo 5. Diseño de un algoritmo de PSO para alta dimensionalidad

A continuación mostramos un resumen de los resultados obtenidos

Tabla 5.9: Cantidad de funciones en las que cada algoritmo obtuvo el mejor rendimiento
en diferentes conjuntos de problemas de prueba del CEC.

Algoritmo Ganó (CEC’2008) Ganó (CEC’2010) Ganó (CEC’2013)

CSO 2 (f2, f5) 2 (f6, f13) 3 (f7, f9, f14)
SL-PSO 2 (f1, f6) 4 (f3, f4, f7, f8) 3 (f1, f10, f12)
MSLPSO 1 (f3) 3 (f1, f9, f14) 0
CSOQ 2 (f4, f7) 6 (f2, f5, f10-f12, f15) 9 (f2-f6, f8,f11, f13, f15)

Total 7 15 15

Como podemos observar en la tabla 4.9, nuestro algoritmo gana en la mayoría de
problemas de prueba del CEC’2013 (ganó en nueve de quince). En principio suponemos
que el algoritmo trabaja bien en espacios de búsqueda con rangos pequeños, por ejemplo
x ∈ [−5, 5]D). Esta característica es observable desde que se realizaron las comparaciones
con el CEC’2008. Para los siguientes conjuntos de prueba, el algoritmo mejorado (CSOQ)
comienza a distinguirse de los otros debido a que las mejoras realizadas funcionan cuando
la cola de datos incorporada al CSO detecta un espacio de búsqueda regular (con pocos
mínimos). Esto hace que se incremente el componente que fomenta la exploración.

Como habíamos comentado en secciones anteriores, tenemos una segunda versión que
mejora un poco más a nuestro algoritmo. Los resultados se muestran en la tabla 5.10. De
igual forma, utilizamos el conjunto de problemas del CEC’2013.
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Tabla 5.10: Comparación de la media(µ) de los resultados obtenidos por la versión mejorada de nuestro algoritmo llamada
CSOQ*. En verde se marca la mejor solución a cada problema comparando con respecto a CSO, CSOQ, SLPSO y MSLPSO
para el conjunto de problemas del CEC’2013

Problema óptimo CSO SL-PSO (MSLPSO) CSOQ CSOQ*
(1000d) global (Implementación (Implementación (Implementación (Implementación

CEC’2013) CEC’2013) CEC’2013) CEC’2013) CEC’2013)

µ 3.61E-17 8.55E-19 2.70E+03 1.15E-17 3.43E-20
F1 0 σ2 1.06E-36 1.58E-36 3.99E+06 9.80E-37 2.06E-41

σ 1.03E-18 1.25E-18 1.99E+03 9.90E-19 4.54E-21

µ 8.59E+03 8.75E+03 9.65E+03 5.89E+02 7.97E+02
F2 0 σ2 107574 49596.3 8.77E+05 1.07E+03 1.22E+03

σ 327.985 222.702 9.36E+02 3.28E+01 3.49E+01

µ 2.10E+01 2.16E+01 2.16E+01 2.02E+01 2.03E+01
F3 0 σ2 1.79E-05 2.10E-05 2.01E-05 1.87E-04 4.39E-04

σ 0.0042358 0.00459078 4.48E-03 1.37E-02 2.09E-02

µ 1.13E+10 1.30E+10 7.49E+10 1.01E+10 2.59E+09
F4 0 σ2 2.15E+18 1.21103e+19 1.99E+20 2.96E+18 4.68E+17

σ 1.46E+09 3.47999e+09 1.41E+10 1.72E+09 6.84E+08

µ 7.69E+05 8.76E+05 8.95E+06 6.65E+05 6.29E+05
F5 0 σ2 1.40E+10 1.42184e+10 2.24E+11 7.12E+09 1.10E+10

σ 1.40E+10 119241 4.74E+05 8.44E+04 1.05E+05

µ 1.06E+06 1.06E+06 1.06E+06 9.96E+05 9.98E+05
F6 0 σ2 821433 1793620 7.05E+05 3.62E+04 6.37E+06

σ 906.329 1339.26 8.40E+02 1.90E+02 2.52E+03

µ 5.21E+06 1.11E+08 1.19E+10 1.074E+07 2.97E+06
F7 0 σ2 1.40E+12 3.13E+16 1.25E+19 3.92E+12 9.64E+11

σ 1.18E+06 1.76E+08 3.54E+09 1.98E+06 9.82E+05

µ 2.70E+14 3.11716e+14 2.57E+15 2.39E+14 5.26E+13
F8 0 σ2 3.96E+27 3.57986e+28 2.015E+30 4.63E+27 3.43E+26

σ 6.29E+13 1.89205e+14 1.41E+15 6.81E+13 1.85E+13

µ 3.13E+07 9.34E+07 4.74E+08 4.55E+07 4.25E+07
F9 0 σ2 5.67E+13 2.52064e+15 1.99E+16 3.86E+13 3.43E+13

σ 7.53E+06 5.0206e+07 1.41E+08 6.22E+06 5.86E+06

µ 9.41E+07 6.60E+07 9.40E+07 9.05E+07 9.06E+07
F10 0 σ2 4.27E+10 1.1595e+15 7.16E+10 9.27E+07 1.90E+09

σ 206841 3.40514e+07 2.67E+05 9.63E+03 4.36E+04

µ 3.27E+09 1.0495E+14 1.72E+12 3.95E+08 1.72E+08
F11 0 σ2 6.35E+18 8.36527e+27 1.81E+24 9.31E+15 2.13E+15

σ 6.35E+18 9.14618e+13 1.34E+12 9.65E+07 4.62E+07

µ 1.05E+03 1.01E+03 2.45E+05 1.15E+03 1.10E+03
F12 0 σ2 434.222 1411.85 1.12E+10 9.29E+03 3.51E+03

σ 20.838 37.5746 1.05E+05 9.64E+01 5.93E+01

µ 9.80E+08 1.91771e+13 3.44E+11 6.67E+08 3.26E+08
F13 0 σ2 1.75E+17 1.10233e+27 1.77E+22 1.88E+16 2.10E+16

σ 4.19E+08 3.32014e+13 1.33E+11 1.37E+08 1.45E+08

µ 3.09E+09 1.07014e+14 3.20E+12 4.19E+09 5.14E+07
F14 0 σ2 1.13E+18 7.73263e+27 5.38E+24 4.93E+18 1.75E+14

σ 1.06E+09 8.79354e+13 2.32E+12 2.22E+09 1.32E+07

µ 7.56E+07 2.17E+10 4.81E+09 4.05E+06 3.85E+06
F15 0 σ2 2.27E+13 4.95E+20 1.90E+19 8.01E+10 3.66E+10

σ 4.76E+06 2.22E+10 4.36E+09 2.83E+05 1.91E+05
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La tabla 5.11 muestra un resumen de los nuevos resultados obtenidos.

Tabla 5.11: Cantidad de funciones en las que cada algoritmo obtuvo el mejor rendimiento
en diferentes conjuntos de problemas de prueba del CEC.

Algoritmo Ganó (CEC’2008) Ganó (CEC’2010) Ganó (CEC’2013)

CSO 2 (f2, f5) 2 (f6, f13) 1 (f9)
SL-PSO 2 (f1, f6) 4 (f3, f4, f7, f8) 2 (f10, f12)
MSLPSO 1 (f3) 3 (f1, f9, f14) 0
CSOQ* 2 (f4, f7) 6 (f2, f5, f10-f12, f15) 12 (f1-f8,f11, f13-f15)

Total 7 15 15

Como puede observarse, esta versión de CSOQ solo perdió en las funciones f9 (Rastrigin
desplazada y rotada de 20-no separable, x ∈ [−5, 5]D), f10 (Ackley desplazada y rotada
de 20-no separable, x ∈ [−32, 32]D) y f12 (Rosenbrock desplazada, x ∈ [−100, 100]D). En
las primeras dos se puede deber a los componentes no separables que añaden complejidad
para obtener buenas soluciones. En el caso de f12 creímos que podíamos obtener un mejor
resultado. Sin embargo, el resultado obtenido no difiere mucho de los obtenidos por las
otras versiones.

5.4.4. Análisis Estadístico

Para poder determinar la confiabilidad estadística de los resultados obtenidos en nuestra
mejora, utilizaremos el método de bootstrap. Esta técnica estadística es muy utilizada para
obtener estimaciones precisas a partir de muestras de x datos observados (en nuestro caso
son 25 valores resultantes de 25 ejecuciones por cada problema de prueba, n = 25).

Se define una muestra bootstrap como x∗ = (x∗
1, x

∗
2, ..., x

∗
n). A partir de x se generarán

B submuestras de tamaño n (x∗1,x∗2, ...,x∗B normalmente B = 1000). El número de
submuestras es elevado para mitigar el sesgo de los resultados. En nuestro caso, queremos
obtener un intervalo de confianza de la media estadística.

Para formar cada x∗B submuestra (de tamaño n), se elige cada valor de forma aleatoria
(con reemplazo) de la muestra de valores reales del experimento (x). La probabilidad de
obtener cada valor para formar la submuestra x∗B a partir de la muestra real es 1

n
.
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Para todos los problemas, se tomó un intervalo de confianza de 95 por ciento. En la
tabla 5.12 se muestran los intervalos de confianza para cada problema.

Tabla 5.12: Intervalos de confianza para diferentes funciones en 1000 dimensiones.
Función 1000 dim

f1 [3.26E−20, 3.61E−20]
f2 [7.86E+02, 8.18E+02]
f3 [2.0319E+01, 2.0335E+01]
f4 [2.31E+09, 2.86+E09]
f5 [5.89E+05, 6.71+E05]
f6 [9.97E+05, 9.99E+05]
f7 [2.59E+06, 3.37E+06]
f8 [4.54E+13, 6.00E+13]
f9 [4.02E+07, 4.48E+07]
f10 [9.05E+07, 9.06E+07]
f11 [1.53E+08, 1.89E+08]
f12 [1.08E+03, 1.13E+03]
f13 [2.71E+08, 3.86E+08]
f14 [4.67E+07, 5.71E+07]
f15 [3.78E+06, 3.93E+06]

Derivado de los resultados que se presentan en la tabla 5.12, presentamos la tabla 5.13
con el análisis de cada función.

Podemos observar que las funciones f1, f2, f3, f6, f10 y f12 tienen intervalos muy
estrechos, lo que indica alta estabilidad en los resultados y por ende, son más confiables
en términos de optimización. Las funciones f4, f9 y f15 tienen un intervalo moderado,
mientras que las funciones f5, f7, f8, f11, f13 y f14 tienen intervalos más amplios, lo que
sugiere mayor variabilidad. Estas funciones tienen la característica de ser no separables,
lo que incrementa la dificultad para encontrar una buena solución. Cabe aclarar que estas
funciones presentan los mejores resultados del grupo de algoritmos con los cuales fueron
comparados (ver tabla 5.10).
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Tabla 5.13: Análisis de estabilidad basado en los intervalos de confianza de bootstrap para
diferentes funciones utilizando 1000 dimensiones.
Función 1000 dim Análisis

f1 [3.26E-20,3.61E-20] Excelente. El intervalo es extremadamente pequeño,
muy estable.

f2 [7.86E+02, 8.18E+02] Bueno. El intervalo es pequeño, estabilidad alta.
f3 [2.0319E+01, 2.0335E+01] Bueno. El intervalo es estrecho, estabilidad alta.
f4 [2.31E+09, 2.86E+09] Bueno. Alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
f5 [5.89E+05, 6.71E+05] Preocupante. Alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
f6 [9.97E+05, 9.99E+05] Bueno. Variación mínima, buena estabilidad.
f7 [2.59E+06, 3.37E+06] Preocupante. Alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
f8 [4.54E+13, 6.00E+13] Preocupante. Muy alta variabilidad,sin embargo muestra

los mejores resultados contra otros algoritmos.
f9 [4.02E+07, 4.48E+07] Bueno. Variación moderada, buena estabilidad.
f10 [9.05E+07, 9.06E+07] Bueno. El intervalo es estrecho, estabilidad alta.
f11 [1.53E+08, 1.89E+08] Preocupante. Alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
f12 [1.08E+03, 1.13E+03] Bueno. El intervalo es estrecho, estabilidad alta.
f13 [2.71E+08, 3.86E+08] Preocupante. Alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
f14 [4.67E+07, 5.71E+07] Preocupante. Muy alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
f15 [3.78E+06, 3.93E+06] Bueno. Variación moderada, buena estabilidad.
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Conclusiones y trabajo futuro

Si bien, existe una gran variedad de metaheurísticas que podemos utilizar para resolver
un problema de optimización, y aun si nos limitamos solo al PSO, vimos que hasta la fecha
siguen surgiendo nuevas versiones, debemos tomar en cuenta que la elección de un método
para optimizar, está estrechamente relacionado con el tipo de problema que se quiera
resolver. En esta tesis, nuestro interés fue resolver problemas de optimización global de
alta dimensionalidad. El algoritmo propuesto, llamado CSOQ, funciona bien y obtiene los
mejores resultados de entre un grupo de algoritmos representativos del estado del arte en el
área (el conjunto de problemas del CEC’2013 el cual consiste de problemas de optimización
global a gran escala). El algoritmo CSOQ consiste básicamente en dos mejoras al CSO. En
la primera, se incorporó una especie de rastro que registra el tipo de espacio de búsqueda
en el cual está el cúmulo y a partir de éste se guía la búsqueda. La segunda, es la elección
de los individuos en los cuales se aplicará el aprendizaje social, en particular se eligen
los mejores cinco partículas. Con estas dos mejoras se logró superar a los algoritmos
con respecto a los cuales fue comparado. La mayor ventaja de nuestro algoritmo es que
mantiene su principio de funcionamiento simple, lo cual implica que el consumo de recursos
sea bajo. Además, la nueva estrategia que se agregó, influye en tiempo real para que el
algoritmo vaya adaptando sus parámetros con relación al posible comportamiento que
detecta el rastro de partículas que puede tener el espacio de búsqueda.
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Capítulo 6. Conclusiones y trabajo futuro

6.1. Trabajo a futuro

A pesar de que nuestro algoritmo mejoró los resultados de un grupo de algoritmos
tomados del estado del arte, creemos que se puede mejorar la forma en la que se obtiene
la información que permite definir mejor el espacio de búsqueda sobre el cual se encuentra
el cúmulo. Además, el rastro en sí podría aportar más información para tomar acciones
en ese momento y guiar la búsqueda conforme sea requerido. De igual forma, debido al
bajo consumo de recursos, muy parecidos a los de la versión original del PSO, se puede
utilizar en dispositivo pequeños o implementar en hardware.

80



Apéndice A

Definiciones de los Problemas de
Prueba del CEC’2008

A.1. Funciones unimodales:

f1: Función esfera desplazada

f1(x) =
D∑
i=1

Z2
i + fbias1 , z = x− o,x = [x1, x2, . . . , xD]

.

D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

Propiedades:
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Unimodal

Desplazada

Separable

Escalable

Dimensiones (D): 100, 500 y 1000

x ∈ [−100, 100]D, Optimo global: x∗ = o, F1(x
∗) = fbias1(x) = −450

Unimodal

Separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado. Es muy sensible a errores de redondeo y pequeñas
perturbaciones, lo que hace que la solución sea más difícil de encontrar o menos
precisa (número de condición ≈ 106) .

f2: Problema de Schwefel desplazada

F2(x) = máx
i
{|Zi|, 1 ≤ i ≤ D}+ fbias2 , z = x− o, x = [x1, x2, . . . , xD]

D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

Propiedades:

Unimodal

Desplazada
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No separable

Escalable

Dimensiones (D): 100, 500 y 1000

x ∈ [−100, 100]D, Óptimo global: x∗ = o, F2(x
∗) = fbias2(x) = −450

Unimodal

No separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 106)

A.2. Funciones multimodales:

f3: Función de Rosenbrock desplazada

f3(x) =
D−1∑
i=1

[
100(Z2

i − Zi+1)
2 + (Zi − 1)2

]
+ fbias3 , z = x− o+1, x = [x1, x2, . . . , xD]

D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

Propiedades:

Multi-modal

Desplazada
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No separable

Escalable

Tiene un valle muy estrecho entre el óptimo local y el óptimo global

Dimensiones (D): 100, 500 y 1000

x ∈ [−100, 100]D, Óptimo global: x∗ = o, F3(x
∗) = fbias3(x) = 390

f4: Función de Rastrigin desplazada

f4(x) =
D∑
i=1

[
z2i − 10 cos(2πZi) + 10

]
+ fbias4 , z = x− o, x = [x1, x2, . . . , xD]

D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

Propiedades:

Multi-modal

Desplazada

Separable

Escalable

El número de óptimos locales es enorme

Dimensiones (D): 100, 500 y 1000

x ∈ [−5, 5]D, Óptimo global: x∗ = o, F4(x
∗) = fbias4(x) = −330

f5: Función de Griewank desplazada

f5(x) =
D∑
i=1

(
Z2

i

4000

)
−

D∏
i=1

cos

(
Zi√
i

)
+ fbias5 , z = x− o, x = [x1, x2, . . . , xD]
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D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

Propiedades:

Multi-modal

Desplazada

No-separable

Escalable

Dimensiones (D): 100, 500 y 1000

x ∈ [−600, 600]D, Óptimo global: x∗ = o, F5(x
∗) = fbias5(x) = −180

f6: Función Ackley desplazada

f6(x) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

Z2
i

−exp( 1

D

D∑
i=1

cos(2πZi)

)
+20+e+fbias6 , z = x−o

x = [x1, x2, . . . , xD]

D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

Propiedades:

Multi-modal

Desplazada
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Separable

Escalable

Dimensiones (D): 100, 500 y 1000

x ∈ [−32, 32]D, Óptimo global: x∗ = o, F6(x
∗) = fbias6(x) = −140

f7: Función FastFractal "DoubleDip"

f7(x) =
D∑
i=1

fractal1D(xi + twist(x(i mód D)+1))

twist(y) = 4(y4 − 2y3 + y2)

fractal1D(x) ≈
3∑

k=1

2k−1∑
1

ran2(o)∑
1

doubledip(x, ran1(o),
1

2k+1(2− ran1(o))
)

doubledip(x, c, s) =

{
(−6144(x− c)6 + 3088(x− c)4 − 392(x− c)2 + 1)s si − 0.5 < x < 0.5

0 en otro caso.

x = [x1, x2, . . . , xD]

D: dimensiones

o = [o1, o2, . . . , oD] : el óptimo global desplazado.

ran1(o): número doble pseudoaleatorio generado con semilla o con distribución
uniforme entre 0 y 1.

ran2(o): número entero pseudoaleatorio generado con semilla o con distribución
uniforme para el conjunto {0, 1, 2}.

fractal1D(x): aproximación a un algoritmo recursivo.

Propiedades:
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Multi-modal

No separable

Escalable

Dimensiones (D): 100, 500 y 1000

x ∈ [−1, 1]D, Óptimo global desconocido F7(x
∗) desconocido

La función tiene un comportamiento fractal con irregularidades notables en diferen-
tes escalas.

Se recomienda el uso de un ejecutable proporcionado debido a las características de
la generación aleatoria.
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Apéndice B

Definiciones de los Problemas de
Prueba del CEC’2010

B.1. Funciones base

B.1.1. Función esfera

fsphere(x) =
D∑
i=1

x2
i

Propiedades:

x es un vector de decisión, x = (x1, x2, . . . , xD)

D dimensiones

Es comletamente separable

Es muy simple y se utiliza generalmente para fines de demostración
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Se utiliza como subcomponente completamente separable para algunas de las fun-
ciones parcialmente separables definidas en este conjunto.

B.1.2. Función elíptica

La función elíptica original es separable y está dada por:

felliptic(x) =
D∑
i=1

106
i−1
D−1x2

i

Propiedades:

x es un vector de decisión, x = (x1, x2, . . . , xD)

D dimensiones

Para hacer que esta función sea no separable, se usará una matriz ortogonal para
rotar las coordenadas

106 se llama número de condición y se utiliza para transformar una función esfera
en una función elíptica [38]

La función elíptica rotada se define como frot_elliptic(x) = felliptic(z), z = x ·M , donde
D es la dimensión, M es una matriz ortogonal de D ×D, y x = (x1, x2, . . . , xD) es
un vector fila de D dimensiones (es decir, una matriz de 1×D)

B.1.3. Función de Rastrigin

La función de Rastrigin original es separable y está dada por:

frastrigin(x) =
D∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)
Propiedades:
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x es un vector de decisión, x = (x1, x2, . . . , xD)

D dimensiones

Para hacer que esta función sea no separable, se usará una matriz ortogonal para
rotar las coordenadas

Para hacer que esta función sea no separable, se usará una matriz ortogonal para
rotar las coordenadas. La función Rastrigin rotada se define como frot_rastrigin(x) =
frastrigin(z), z = x·M , donde D es la dimensión, M es una matriz ortogonal de D×D,
y x = (x1, x2, . . . , xD) es un vector fila de D dimensiones (es decir, una matriz de
1×D)

La función de Rastrigin es un problema multimodal clásico. Es difícil porque el
número de óptimos locales crece exponencialmente con el aumento de la dimensio-
nalidad

B.1.4. Función de Ackley

La función de Ackley original es separable y está dada por:

fackley(x) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

x2
i

− exp

(
1

D

D∑
i=1

cos(2πxi)

)
+ 20 + e

Propiedades:

x es un vector de decisión, x = (x1, x2, . . . , xD)

D dimensiones

Para hacer que esta función sea no separable, se usará una matriz ortogonal para
rotar las coordenadas

Para hacer que esta función sea no separable, se usará una matriz ortogonal para
rotar las coordenadas. La función Ackley rotada se define como frot_ackley(x) =
fackley(z), z = x ·M, donde D es la dimensión, M es una matriz ortogonal de D×D,
y x = (x1, x2, . . . , xD) es un vector fila de D dimensiones (es decir, una matriz de
1×D)
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B.1.5. Problema de Schwefel 1.2

El problema de Schwefel 1.2 es no separable y está dado por:

fschwefel(x) =
D∑
i=1

(
i∑

j=1

xi

)2

Propiedades:

x es un vector de decisión, x = (x1, x2, . . . , xD)

D dimensiones

B.1.6. Función de Rosenbrock

La función de Rosenbrock original es no separable y está dada por:

frosenbrock(x) =
D−1∑
i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2

)

Propiedades:

x es un vector de decisión, x = (x1, x2, . . . , xD)

D dimensiones
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B.2. Funciones de prueba

B.2.1. Funciones Separables:

B.2.1.1. F1: Función elíptica desplazada

F1(x) = Felíptica(z) =
D∑
i=1

(106)
i−1
D−1 z2i

Dimensión: D = 1000

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

Propiedades:

1. Unimodal

2. Desplazada

3. Separable

4. Escalable

5. x ∈ [−100, 100]D

6. Óptimo global: x∗ = o, F1(x
∗) = 0
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B.2.1.2. F2: Función de Rastrigin desplazada

F2(x) = Frastrigin(z) =
D∑
i=1

[
z2i − 10 cos(2πzi) + 10

]

Dimensión: D = 1000

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

Propiedades:

1. Multimodal

2. Desplazada

3. Separable

4. Escalable

5. x ∈ [−5, 5]D

6. Óptimo global: x∗ = o, F2(x
∗) = 0

B.2.1.3. F3: Función de Ackley desplazada

F3(x) = Fackley(z) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

z2i

− exp

(
1

D

D∑
i=1

cos(2πzi)

)
+ 20 + e
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Dimensión: D = 1000

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

Propiedades:

1. Multimodal

2. Desplazada

3. Separable

4. Escalable

5. x ∈ [−32, 32]D

6. Óptimo global: x∗ = o, F3(x
∗) = 0

B.2.2. Funciones m no separables grupo simple

B.2.2.1. F4: Función elíptica desplazada y m-rotada de un solo grupo

F4(x) = Frot elliptic [z(P1 : Pm)]× 106 + Felliptic [z(Pm+1 : PD)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

95



Apéndice B. Definiciones de los Problemas de Prueba del CEC’2010

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : una permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Unimodal

2. Desplazada

3. Rotada m-de un solo grupo

4. m-no separable de un solo grupo

5. x ∈ [−100, 100]D

6. Óptimo global: x∗ = o, F4(x
∗) = 0

B.2.2.2. F5: Función Rastrigin desplazada y m rotada de un Solo grupo

F5(x) = Frot rastrigin [z(P1 : Pm)]× 106 + Frastrigin [z(Pm+1 : PD)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)
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z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : una permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada

3. Rotada m-de un solo grupo

4. m-no separable de un solo grupo

5. x ∈ [−5, 5]D

6. Óptimo global: x∗ = o, F5(x
∗) = 0

B.2.2.3. F6: Función Ackley desplazada y m rotada de un solo grupo

F6(x) = Frot ackley [z(P1 : Pm)]× 106 + Fackley [z(Pm+1 : PD)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D
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P : una permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada

3. Rotada m-de un solo grupo

4. m-no separable de un solo grupo

5. x ∈ [−32, 32]D

6. Óptimo global: x∗ = o, F6(x
∗) = 0

B.2.2.4. F7: Problema de Schwefel 1.2 desplazado m dimensional de un solo
grupo

F7(x) = Fschwefel [z(P1 : Pm)]× 106 + Fsphere [z(Pm+1 : PD)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}
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Propiedades:

1. Unimodal

2. Desplazada

3. m-no separable de un solo grupo

4. x ∈ [−100, 100]D

5. Óptimo global: x∗ = o, F7(x
∗) = 0

B.2.2.5. F8: Función de Rosenbrock desplazada m dimensional de un solo
grupo

F8(x) = Frosenbrock [z(P1 : Pm)]× 106 + Fsphere [z(Pm+1 : PD)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal
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2. Desplazada

3. m-no separable de un solo grupo

4. x ∈ [−100, 100]D

5. Óptimo global: x∗(P1 : Pm) = o(P1 : Pm) + 1, x∗(Pm+1 : PD) = o(Pm+1 :
PD), F8(x

∗) = 0

B.2.3. Funciones m no separables grupo D
2m

B.2.3.1. F9: Función elíptica desplazada y m rotada de grupo D
2m

F9(x) =

D
2m∑
k=1

Frot elliptic [z (P ((k − 1)×m+ 1) : Pk ×m)] + Felliptic

[
z
(
PD

2
+1 : PD

)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:
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1. Unimodal

2. Desplazada

3. D
2m

-grupo m-rotado

4. D
2m

-grupo m-no separable

5. x ∈ [−100, 100]D

6. Óptimo global: x∗ = o, F9(x
∗) = 0

B.2.3.2. F10: Función Rastrigin desplazada y m rotada de grupo D
2m

F10(x) =

D
2m∑
k=1

Frot rastrigin [z (P ((k − 1)×m+ 1) : Pk ×m)] + Frastrigin

[
z
(
PD

2
+1 : PD

)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal
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2. Desplazada

3. D
2m

-grupo m-rotado

4. D
2m

-grupo m-no separable

5. x ∈ [−5, 5]D

6. Óptimo global: x∗ = o, F10(x
∗) = 0

B.2.3.3. F11: Función Ackley desplazada y m rotada de grupo D
2m

F11(x) =

D
2m∑
k=1

Frot ackley [z (P ((k − 1)×m+ 1) : Pk ×m)] + Fackley

[
z
(
PD

2
+1 : PD

)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada
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3. D
2m

-grupo m-rotado

4. D
2m

-grupo m-no separable

5. x ∈ [−32, 32]D

6. Óptimo global: x∗ = o, F11(x
∗) = 0

B.2.3.4. F12: Problema de Schwefel 1.2 desplazado y m rotado de grupo D
2m

F12(x) =

D
2m∑
k=1

Fschwefel [z (P ((k − 1)×m+ 1) : Pk ×m)] + Fsphere

[
z
(
PD

2
+1 : PD

)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Unimodal

2. Desplazada

3. D
2m

-grupo m-no separable
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4. x ∈ [−100, 100]D

5. Óptimo global: x∗ = o, F12(x
∗) = 0

B.2.3.5. F13: Función de Rosenbrock desplazada y m rotada de grupo D
2m

F13(x) =

D
2m∑
k=1

Frosenbrock [z (P ((k − 1)×m+ 1) : Pk ×m)] + Fsphere

[
z
(
PD

2
+1 : PD

)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada

3. D
2m

-grupo m-no separable

4. x ∈ [−100, 100]D

5. Óptimo global: x∗(P1 : PD/2) = o(P1 : PD/2) + 1, x∗(PD/2+1 : PD) = o(PD/2+1 :
PD), F13(x

∗) = 0
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B.2.4. Funciones m no separables grupo D
m

B.2.4.1. F14: Función elíptica desplazada y m rotada de grupo D
m

F14(x) =

D
m∑

k=1

Frot elliptic [z (P ((k − 1)×m+ 1) : Pk ×m)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Unimodal

2. Desplazada

3. D
m

-grupo m-rotado

4. D
m

-grupo m-no separable

5. x ∈ [−100, 100]D

6. Óptimo global: x∗ = o, F14(x
∗) = 0
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B.2.4.2. F15: Función Rastrigin desplazada y m rotada de grupo D
m

F15(x) =

D
m∑

k=1

Frot rastrigin [z (P ((k − 1)×m+ 1) : Pk ×m)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada

3. D
m

-grupo m-rotado

4. D
m

-grupo m-no separable

5. x ∈ [−5, 5]D

6. Óptimo global: x∗ = o, F15(x
∗) = 0
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B.2.4.3. F16: Función Ackley desplazada y m rotada de grupo D
m

F16(x) =

D
m∑

k=1

Frot ackley [z (P ((k − 1)×m+ 1) : Pk ×m)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada

3. D
m

-grupo m-rotado

4. D
m

-grupo m-no separable

5. x ∈ [−32, 32]D

6. Óptimo global: x∗ = o, F16(x
∗) = 0
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B.2.4.4. F17: Problema de Schwefel desplazado y m dimensional de grupo D
m

F17(x) =

D
m∑

k=1

Fschwefel [z (P ((k − 1)×m+ 1) : Pk ×m)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Unimodal

2. Desplazada

3. D
m

-grupo m-no separable

4. x ∈ [−100, 100]D

5. Óptimo global: x∗ = o, F17(x
∗) = 0
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B.2.4.5. F18: Función de Rosenbrock desplazada y m dimensional de grupo
D
m

F18(x) =

D
m∑

k=1

Frosenbrock [z (P ((k − 1)×m+ 1) : Pk ×m)]

Dimensión: D = 1000

Tamaño del grupo: m = 50

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

P : permutación aleatoria de {1, 2, . . . , D}

Propiedades:

1. Multimodal

2. Desplazada

3. D
m

-grupo m-no separable

4. x ∈ [−100, 100]D

5. Óptimo global: x∗ = o+ 1, F18(x
∗) = 0
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B.2.5. Funciones no separables

B.2.5.1. F19: Problema de Schwefel desplazado 1.2

F19(x) = Fschwefel(z) =
n∑

i=1

(
i∑

j=1

xi

)2

Dimensión: D = 1000

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

Propiedades:

1. Unimodal

2. Desplazada

3. Totalmente no separable

4. x ∈ [−100, 100]D

5. Óptimo global: x∗ = o, F19(x
∗) = 0

B.2.5.2. F20: Función de Rosenbrock desplazada

F20(x) = Frosenbrock(z) =
D−1∑
i=1

[
100(z2i − zi+1)

2 + (zi − 1)2
]
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Dimensión: D = 1000

x = (x1, x2, . . . , xD): la solución candidata – un vector fila de dimensión D

o = (o1, o2, . . . , oD): el óptimo global (desplazado)

z = x − o, z = (z1, z2, . . . , zD): la solución candidata desplazada – un vector fila
de dimensión D

Propiedades:

1. Multimodal

2. Desplazada

3. Totalmente no separable

4. x ∈ [−100, 100]D

5. Óptimo global: x∗ = o+ 1, F20(x
∗) = 0
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Apéndice C

Definiciones de los Problemas de
Prueba del CEC’2013

C.1. Funciones base

C.1.1. Función esfera

fsphere(x) =
D∑
i=1

x2
i

donde x es un vector de decisión de D dimensiones. La función esfera es una función
unimodal y completamente separable que se utiliza como subcomponente completamente
separable para algunas de las funciones parcialmente separables definidas en este conjunto.
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C.1.2. Función elíptica

felliptic(x) =
D∑
i=1

106(D−i)x2
i

C.1.3. Función de Rastrigin

frastrigin(x) =
D∑
i=1

(
x2
i − 10 cos(2πxi) + 10

)

C.1.4. Función de Ackley

fackley(x) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

x2
i

− exp

(
1

D

D∑
i=1

cos(2πxi)

)
+ 20 + exp(1)

C.1.5. Problema de Schwefel 1.2

fschwefel(x) =
D∑
i=1

(
i∑

j=1

xj

)2

114



Apéndice C. Definiciones de los Problemas de Prueba del CEC’2013

C.1.6. Función de Rosenbrock

frosenbrock(x) =
D−1∑
i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2

)

C.2. Diseño

C.2.1. Símbolos

A continuación se describen los símbolos y nomenclaturas utilizadas en este apéndice.
Los vectores se escriben en minúsculas en negrita y representan vectores columna (por
ejemplo, x = (x1, . . . , xD)

T ). Las matrices se escriben en mayúsculas en negrita (por
ejemplo, R).

S: Un multiconjunto que contiene los tamaños de los subcomponentes para una
función. Por ejemplo, S = {50, 25, 50, 100} indica que hay 4 subcomponentes con
50, 25, 50 y 100 variables de decisión, respectivamente.

|S|: Número de elementos en S. Representa la cantidad de subcomponentes en una
función.

Ci =
∑i

j=1 Sj: La suma de los primeros i elementos de S. Para conveniencia, se
define C0 como cero. Ci se utiliza para construir el vector de decisión de diferentes
funciones de subcomponentes con el tamaño correcto.

D: La dimensionalidad de la función objetivo.

P : Una permutación aleatoria de los índices de las dimensiones {1, . . . , D}.

wi: Un peso generado aleatoriamente que se utiliza como el coeficiente del i-ésimo
subcomponente no separable para generar el efecto de desequilibrio. Los pesos se
generan de la siguiente manera:

wi = 103N(0,1),

donde N(0, 1) es una distribución gaussiana con media cero y varianza unitaria.
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xopt: El vector de decisión óptimo para el cual el valor de la función objetivo es
mínimo. Éste también se utiliza como un vector de desplazamiento para cambiar la
ubicación del óptimo global.

Tosz: Una función de transformación para crear irregularidades locales suaves [70].

Tosz : RD → RD, xi 7→ sign(xi) exp(x̂i+0.049(sen(c1x̂i)+sen(c2x̂i))), para i = 1, . . . , D

donde:

x̂i =

{
log(|xi|) si xi ̸= 0,

0 de lo contrario,

sign(x) =


−1 si x < 0,

0 si x = 0,

1 si x > 0,

c1 =

{
10 si xi > 0,

5.5 de otra manera
c2 =

{
7.9 si xi > 0,

3.1 de lo contrario

T β
asy: Una función de transformación para romper la simetría de las funciones simé-

tricas [70].

T β
asy : RD → RD, xi 7→

{
x
1+β i−1√

D−1

√
xi

i si xi > 0,

xi de lo contrario

para i = 1, . . . , D.

Λα: Una matriz de D-dimensiones con elementos diagonales λii = α
1
2

i−1
D−1 . Esta

matriz se utiliza para crear mal condicionamiento [70]. El parámetro α es el número
de condición.

R: Una matriz de rotación ortogonal que se utiliza para rotar aleatoriamente el
paisaje de aptitud alrededor de varios ejes, como se sugiere en [71].

m: El tamaño de solapamiento entre subcomponentes.

1 =

1...
1

: Un vector columna de unos.
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C.2.2. Diseño de las funciones parcialmente separables

Este tipo de funciones tienen la siguiente forma general:

f(x) =

|S|−1∑
i=1

wifnonsep(zi) + fsep(z|S|),

donde wi es un peso generado aleatoriamente para crear el efecto de desequilibrio, y
fsep es una función que puede ser la función Esfera o la versión no rotada de las funciones
de Rastrigin o Ackley. Para generar una versión no separable de estas funciones, puede
usarse una matriz de rotación.

El vector z se forma transformando, desplazando y finalmente reordenando las dimen-
siones del vector x. Una transformación típica se muestra a continuación:

y = Λ10T 0.2
asy(Tosz(x− xopt)),

zi = y(P[Ci−1+1] : P[Ci]),

Como se describió anteriormente, el vector xopt es la ubicación del óptimo desplazado,
que se utiliza como vector de desplazamiento. El conjunto de permutación P se utiliza
para modificar el orden de las variables de decisión, y Ci se usa para construir cada uno
de los vectores de subcomponentes (zi) con el tamaño correspondiente (Si) especificado
en el multiconjunto S.
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C.3. Definición de los problemas de prueba

C.3.1. Funciones completamente separables

f1: Función elíptica desplazada

f1(z) =
D∑
j=1

106
j−1
D−1 z2j

z = Tosz(x− xopt)

x ∈ [−100, 100]D

Óptimo global: f1(xopt) = 0

Propiedades:

Unimodal

Separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado. Es muy sensible a errores de redondeo y pequeñas
perturbaciones, lo que hace que la solución sea más difícil de encontrar o menos
precisa (número de condición ≈ 106) .

f2: Función Rastrigin desplazada

f2(z) =
D∑
i=1

[
z2i − 10 cos(2πzi) + 10

]
118



Apéndice C. Definiciones de los Problemas de Prueba del CEC’2013

z = Λ10T 0.2
asy(Tosz(x− xopt))

x ∈ [−5, 5]D

Óptimo global: f2(xopt) = 0

Propiedades:

Multimodal

Separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado. Es muy sensible a errores de redondeo y pequeñas
perturbaciones, lo que hace que la solución sea más difícil de encontrar o menos
precisa (número de condición ≈ 10)

f3: Función Ackley desplazada

f3(z) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

z2i

− exp

(
1

D

D∑
i=1

cos(2πzi)

)
+ 20 + e

z = Λ10T 0.2
asy(Tosz(x− xopt))

x ∈ [−32, 32]D

Óptimo global: f3(xopt) = 0

Propiedades:

Multimodal

Separable
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Desplazada

Irregularidades locales suaves

Mal condicionado (número de condición ≈ 10)

C.3.2. Funciones parcialmente aditivas separables I

f4: Función elíptica desplazada y rotada de 7-no separable, 1-separable

f4(z) =

|S|−1∑
i=1

wifelliptic(zi) + felliptic(z|S|)

S = {50, 25, 25, 100, 50, 25, 25, 700}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Tosz(Riyi), i ∈ {1, . . . , |S| − 1}

z|S| = Tosz(y|S|)

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−100, 100]D

Óptimo global: f4(xopt) = 0

Propiedades:

Unimodal

Parcialmente separable

Desplazada
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Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 106)

f5: Función Rastrigin Desplazada y Rotada de 7-no separable, 1-separable

f5(z) =

|S|−1∑
i=1

wifrastrigin(zi) + frastrigin(z|S|)

S = {50, 25, 25, 100, 50, 25, 25, 700}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Λ10Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S| − 1}

z|S| = Λ10Tasy(Tosz(y|S|))

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−5, 5]D

Óptimo global: f5(xopt) = 0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 10)
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f6: Función Ackley Desplazada y Rotada de 7-no separable, 1-separable

f6(z) =

|S|−1∑
i=1

wifackley(zi) + fackley(z|S|)

S = {50, 25, 25, 100, 50, 25, 25, 700}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Λ10Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S| − 1}

z|S| = Λ10Tasy(Tosz(y|S|))

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−32, 32]D

Óptimo global: f6(xopt) = 0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 10)

f7: Función Schwefel Desplazada y Rotada de 7-no separable, 1-separable

f7(z) =

|S|−1∑
i=1

wifschwefel(zi) + fsphere(z|S|)
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S = {50, 25, 25, 100, 50, 25, 25, 700}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S| − 1}

z|S| = Tasy(Tosz(y|S|))

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−100, 100]D

Óptimo global: f7(xopt) = 0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

C.3.3. Funciones parcialmente aditivamente separables II

f8: Función elíptica desplazada y rotada de 20-no separable

f8(z) =

|S|∑
i=1

wifelliptic(zi)

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =
∑|S|

i=1 Si = 1000
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y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Tosz(Riyi), i ∈ {1, . . . , |S|}

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−100, 100]D

Óptimo global: f8(xopt) = 0

Propiedades:

Unimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 106)

f9: Función Rastrigin Desplazada y Rotada de 20-no separable

f9(z) =

|S|∑
i=1

wifrastrigin(zi)

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Λ10Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S|}

Ri: una matriz de rotación de |Si| × |Si|
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x ∈ [−5, 5]D

Óptimo global: f9(xopt) = 0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 10)

f10: Función Ackley Desplazada y Rotada de 20-no separable

f10(z) =

|S|∑
i=1

wifackley(zi)

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Λ10Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S|}

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−32, 32]D

Óptimo global: f10(xopt) = 0

Propiedades:
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Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (número de condición ≈ 10)

f11: Función Schwefel Desplazada y Rotada de 20-no separable

f11(z) =

|S|∑
i=1

wifschwefel(zi)

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =
∑|S|

i=1 Si = 1000

y = x− xopt

yi = y(P [Ci− 1 + 1] : P [Ci]), i ∈ {1, . . . , |S|}

zi = Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S|}

Ri: una matriz de rotación de |Si| × |Si|

x ∈ [−100, 100]D

Óptimo global: f11(xopt) = 0

Propiedades:

Unimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves
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C.3.4. Funciones superpuestas

f12: Función Rosenbrock Desplazada

f12(z) =
D−1∑
i=1

[
100(z2i − zi+1)

2 + (zi − 1)2
]

D = 1000

x ∈ [−100, 100]D

Óptimo global: f12(xopt + 1) = 0

Propiedades:

Multimodal

Separable

Desplazada

Irregularidades locales suaves

f13: Función Schwefel Desplazada con Subcomponentes Superpuestos Con-
forme

f13(z) =

|S|∑
i=1

wifschwefel(zi)

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

Ci =
∑i

j=1 Sj, C0 = 0

D =
∑|S|

i=1 Si −m(|S| − 1) = 905

y = x− xopt
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yi = y(P [Ci−1 − (i− 1)m+ 1 : Ci − (i− 1)m]), i ∈ {1, . . . , |S|}

zi = Λ10Tasy(Tosz(Riyi)), i ∈ {1, . . . , |S| − 1}

m = 5: tamaño de solapamiento

Ri: matriz de rotación |Si| × |Si|

x ∈ [−100, 100]D

Óptimo global: f13(xopt) = 0

Propiedades:

Unimodal

No-separable

Solapada

Desplazada

Irregularidades locales suaves

f14: Función Schwefel Desplazada con Subcomponentes Superpuestos Con-
flictivos

f14(z) =

|S|∑
i=1

wifschwefel(zi)

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =
∑|S|

i=1 Si − (m(|S| − 1)) = 905

yi = x(P [Ci−1 − (i− 1)m+ 1 : Ci − (i− 1)m])− xopt
i

xopt
i : vector de desplazamiento de tamaño |Si| para el i-ésimo subcomponente

zi = Λ10Tasy(Tosz(Riyi))

m = 5: tamaño de solapamiento

128



Apéndice C. Definiciones de los Problemas de Prueba del CEC’2013

Ri: matriz de rotación |Si| × |Si|

x ∈ [−100, 100]D

Óptimo global: f14(xopt) = 0

Propiedades:

Unimodal

No-separable

Subcomponentes conflictivos

Desplazada

Irregularidades locales suaves

C.3.5. Funciones totalmente no separables

f15: Función Schwefel Desplazada

f15(z) =
D∑
i=1

wifschwefel(zi)

D = 1000

z = Λ10Tasy(Tosz(x− xopt))

x ∈ [−100, 100]D

Óptimo global: f15(xopt) = 0

Propiedades:
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Unimodal

Totalmente no-separable

Desplazada

Irregularidades locales suaves
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