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Resumen

El algoritmo de optimizacion mediante cimulos de particulas (Particle Swarm Optimization o
PSO) es una metaheuristica cuyo principio de funcionamiento se inspira en el comportamiento
de ciertos animales que se mueven en grupo, tales como las aves o los peces. Estos animales son
capaces de resolver, de forma conjunta, problemas complejos como el buscar fuentes de alimento.
Al realizar esta tarea de forma cooperativa, se incrementa el drea de busqueda cubierta y con ello
la probabilidad de éxito. Esto contrasta con realizar una bisqueda individual que tomaria mucho
tiempo y que, posiblemente, terminaria con un final negativo. Desde la primera version del algo-
ritmo de PSO publicada en 1995, hasta la fecha, se contintian desarrollando mejoras al algoritmo.
Esto se debe, principalmente, al surgimiento de problemas de optimizacion cada vez méas complejos.
Uno de ellos es precisamente la optimizacion global de alta dimensionalidad (100 o mas variables),
que es un dominio en el que la mayoria de las metaheuristicas utilizadas para optimizacion suelen
tener un rendimiento pobre. Si bien el principio de funcionamiento del PSO original ayuda en gran
medida a que el algoritmo sea robusto, a medida que aumenta la dimensionalidad del problema, el
tamano del espacio de busqueda crece exponencialmente, lo cual incrementa considerablemente la
dificultad de encontrar el 6ptimo global. A este fenémeno se le denomina “maldicién de la dimen-
sionalidad” e implica un mayor consumo de los recursos necesarios para encontrar una solucion
aceptable, ya que resulta mas dificil y costoso (computacionalmente hablando) recorrer el espacio
de busqueda. En especifico, en este trabajo nos concentramos en mejorar una de las versiones de
PSO creadas para resolver problemas de optimizacion global de alta dimensionalidad. El algoritmo
propuesto utiliza una especie de rastro que guardara informacién sobre como se comportan las
particulas en determinado momento en el medio en el que se encuentran (espacio de buisqueda).
Esto tiene el proposito de ir adaptando en tiempo real el comportamiento social y cognitivo de
cada particula y hacer mas eficiente la exploracion y la explotacion de soluciones prometedoras.
Para validar el algoritmo propuesto se utilizo el conjunto de problemas del 2013 IEEE Congress
on Evolutionary Computation (CEC’2013), el cual contiene problemas de optimizacion global de
gran escala. El conjunto consta de quince problemas que involucran diversos desafios que se pre-
sentan en problemas del mundo real, tales como el que haya multiples 6ptimos locales o la no
separabilidad entre variables. Este conjunto constituye un buen punto de referencia para probar el
rendimiento de nuestro algoritmo frente a otros del estado del arte. Los resultados reportados en
esta tesis indican que el algoritmo propuesto proporciona mejores resultados que los algoritmos con
respecto a los que fue comparado, ademas de mantener un funcionamiento relativamente simple,
lo cual facilita su implementacion y uso.
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Abstract

Particle Swarm Optimization (PSO) is a metaheuristic which is inspired on the behavior of some
animals that move in groups, such as birds and fish. Such animales are capable of solving, collecti-
vely, complex problems such as finding food sources. When performing this task in a cooperative
way, the search area covered gets increased and this also increases the probability of success. This
contrasts with performing individual searches, which would take a lot of time and would probably
have a negative ending. Since the original version of PSO published in 1995 to date, a variety of
improved versions of the algorithm have been developed. This has been motivated by the rise of
problems of increased complexity. Large scale global optimization (100 or more decision variables)
is precisely one of such complex problems. Since this is a domain in which most of the existing
optimization metaheuristics have a poor performance.

Although the working principle of the original PSO algorithm contributes to its robustness, as
we increase the dimensionality of a problem, the size of the search space grows exponentially, which
considerably increases the difficulty of finding the global optimum. This phenomenon is known as
“the curse of dimensionality” and implies a greater consumption of the resources required to find
an acceptable solution, since it becomes more difficult and costly (computationally speaking) to
traverse the search space. Specifically, in this work, we focus on improving PSO versions designed
to solve large scale global optimization problems.

The proposed algorithm uses some sort of trail that stores information about the behavior of
the particles in a given moment in the medium in which they are located (the search space). This
aims to adapt, in real time, the social and cognitive behavior of each particle, in order to make
more efficient the exploration and the exploitation of promising solutions. In order to validate the
proposed algorithm, we adopted the test problems from the 2013 IEEE Congress on Evolutionary
Computation (CEC’2013), which consist of large scale global optimization problems. This set
contains fifteen problems that involve several challenges that arise in real-world problems such as
the presence of local optima, or non-separability of the decision variables. This set constitutes a
good reference to test the performance of our proposed algorithm with respect to others from the
state of the art. The results reported in this thesis indicate that the proposed algorithm provides
better results than those of the algorithms with respect to which it was compared, while keeping
a relatively simple behavior, which facilitates its implementation and use.
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Capitulo 1

Introduccion

1.1. Antecentes

Desde la primera version del algoritmo de optimizacion por cumulos de particulas (PSO por

sus siglas en inglés) publicada en 1995 [2], distintos autores han buscado mejorar la eficiencia y
eficacia de este algoritmo. Para ello, se ha hecho uso de diversas técnicas como por ejemplo: la
modificacion de parametros del modelo (ya sea de forma manual o dindmica), combinar el PSO
con otras técnicas como algoritmos genéticos, etc. Todo esto para mejorar la exploracion y la
explotacion del camulo en el espacio de biisqueda y asi obtener la mejor soluciéon posible.
Mas recientemente, se han aplicado técnicas de aprendizaje sobre cumulos de particulas [3]| para
hacer frente a problemas con alta dimensionalidad. Una de estas estrategias consiste en modificar
una particula elegida bajo algin criterio. Esta particula tomaria todas o algunas caracteristicas
de una particula con mejor aptitud, es decir, aprenderia de otra particula cual es la mejor po-
sicibn por adoptarse. De forma general, todas estas técnicas buscan hacer eficiente la relacion
entre la biisqueda de posibles soluciones y la convergencia al mejor resultado posible y con ello
mitigar un poco el problema provocado por el gran ntimero de variables en un problema de alta
dimensionalidad.

Algunos algoritmos como CSO [4], SLPSO [5] y MSLPSOI3], utilizan el aprendizaje en individuos
del ciimulo para encontrar mejores aproximaciones al 6ptimo global. En una primera etapa se
evita la exploracion excesiva del espacio de busqueda aprendiendo directamente de los mejores
individuos a través de competencias o identificando cuales aprenden mejor y que a su vez puedan
ensenar a otros. Una segunda etapa evita perder diversidad en las posibles soluciones a través
de mecanismos que hagan que se aprenda de un cierto grupo de individuos sin que éstos sean
necesariamente los mejores. La investigacion aqui propuesta busca mejorar la eficiencia y eficacia
del algoritmo de PSO en problemas de alta dimensionalidad. Para esto, tomamos como base el
algoritmo del optimizador de camulos competitivo [4], en donde los individuos compiten por pares
y el individuo perdedor actualiza su posicion tomando como referencia la del ganador.

Los resultados esperados podrian tener un impacto significativo en diversas areas como la opti-
mizacion de redes neuronales, el diseno de sistemas complejos, la planificacion de rutas y la gestion
de recursos.



Capitulo 1. Introducciéon

1.2. Estructura de la tesis

Esta tesis esta organizada en seis capitulos. El primero de ellos es esta breve introduccion en la
que hablamos de forma general del algoritmo de PSO, la motivacién que nos lleva a realizar este
trabajo y los objetivos que deseamos lograr al finalizarlo.

En el capitulo dos presentamos conceptos basicos sobre optimizacion y algunas nociones de
computo evolutivo que pueden ser aplicadas al algoritmo de PSO. Ademas profundizamos en el
principio y funcionamiento de dicho algoritmo con el fin de comprender mejor sus propiedades y
la importancia que tiene su uso en la optimizacion de problemas.

El tercer capitulo lo dedicamos a hablar acerca de la alta dimensionalidad y de como ésta afecta
al algoritmo de PSO. Por otro lado, mencionamos algunas estrategias comtunmente utilizadas
para mitigar este efecto y describimos algunos de los algoritmos del estado del arte especialmente
disenados para intentar atacar esta caracteristica que se presenta al incrementar las variables de
un problema propuesto.

En el cuatro capitulo nos adentramos en la optimizacion global a gran escala, la cual intenta
realizar busquedas mucho mas eficientes sin incrementar los recursos que se ocupan para resolver
un problema. También hacemos mencién de algunos eventos que ayudan a la popularizacion y
estandarizacion tanto de los problemas de prueba como de la evaluacion de la calidad en dichos
algoritmos. Con relaciéon a los conjuntos de problemas de prueba, describimos los que fueron
especialmente disenados para probar el desempeno de los algoritmos de optimizacion global de
gran escala.

En el capitulo cinco comenzamos con el diseno de nuestro algoritmo. Para ello iniciamos con
la evaluacion de tres algoritmos del estado del arte basados en PSO para optimizaciéon global
a gran escala. Utilizamos cada uno de los conjuntos de problemas de pruebas especializados en
optimizacion global a gran escala en cada algoritmo con el fin de elegir el que presentara el mejor
comportamiento y asi tener un buen punto de partida para mejorarlo ain mas. Una vez elegido
el algoritmo de referencia se implementé nuestra estrategia de mejora y se realizé la comparacion
de resultados usando varios problemas de prueba y algoritmos del estado del arte.

Por tltimo, en el capitulo seis se presentan las conclusiones y las posibles lineas de investigacion
futura.

1.3. Planteamiento del problema

El algoritmo de optimizacién mediante ctimulos de particulas es computacionalmente sencillo y
eficiente de implementar. Sin embargo, a medida que el niimero de dimensiones aumenta, su efi-
ciencia se degrada rapidamente porque el algoritmo de PSO no cuenta con operador de cruza (como
el algoritmo genético) ni mecanismos que preserven la diversidad. Por ello, es relevante desarrollar
versiones del algoritmo de PSO que sean competitivas en problemas de alta dimensionalidad.

Aunque ya existen versiones de PSO que trabajan con alta dimensionalidad, alginas solo pueden
lidiar con un maximo de cien dimensiones o no se cuenta con su codigo fuente. A la fecha, se sigue
trabajando en nuevas versiones del PSO para aumentar la eficiencia del algoritmo y mejorar sus
resultados.
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1.4. Objetivos

1.4.1. General

= Disenar e implementar un algoritmo basado en optimizacién por cimulos de particulas mono-
objetivo que resuelva problemas de alta dimensionalidad.

1.4.2. Particulares

= Implementar el algoritmo de PSO y modificarlo para poder resolver problemas de alta di-
mensionalidad (hasta 1000 variables).

= Validar el algoritmo propuesto usando varios conjuntos de prueba estdndar del area de
optimizacion global de alta dimensionalidad y comparar resultados con respecto a algoritmos
basados en PSO del estado del arte.

s Presentar un anélisis estadistico de los resultados obtenidos.
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Capitulo 2

Conceptos basicos

Los conceptos que se presentan en este capitulo tienen como fin brindar una mejor comprension
de la importancia de este trabajo en su campo. En este capitulo se presentan diversos conceptos
bésicos que responden a preguntas tales como: jqué es la optimizacion?, jqué tipos y métodos para
optimizar existen? y jen qué casos se utilizan dichos métodos para encontrar la mejor solucién a un
problema planteado?. En la segunda parte del capitulo se describen las caracteristicas del algoritmo
de Optimizacion mediante Camulos de Particulas (Particle Swarm Optimization o PSO). Dicho
algoritmo es la base para el diseno de nuestra propuesta, la cual mejora las soluciones a problemas
de alta dimensionalidad, en especifico para el conjunto de problemas del CEC-LSGO 2013.

2.1. Optimizacion

La optimizaciéon es un proceso que se utiliza para encontrar la mejor soluciéon posible en todo
un espacio de posibles soluciones. Para esto se modela el problema en términos de una funciéon
objetivo y se utiliza un algoritmo de busqueda para minimizar o maximizar la funciéon modelada
[6]. Para la optimizacion de la funcién objetivo se ajustan las variables de decision que pueden ser
continuas o discretas; ademas, la funcién a resolver puede o no tener restricciones.

2.2. Tipos de optimizacién

Al intentar optimizar un problema, éste puede ser analizado desde distintas perspectivas. Por
ejemplo, se puede buscar minimizar algin costo, maximizar la eficiencia de un proceso o producto,
tomar la mejor decision de entre un grupo de opciones, etc. Las caracteristicas particulares de
cada problema implican tomar un enfoque méas especializado para lograr la solucién mas efectiva.
De tal forma, existen distintas caracteristicas a tomar en cuenta en un problema para clasificarlo
en algtin tipo de optimizacién segin su naturaleza. Esto se muestra en el diagrama de la figura
2.1l

Por ejemplo, la naturaleza del algoritmo en el que se basa este trabajo, es la exploracion de
espacios de busqueda continuos. En especifico, adoptamos al algoritmo de optimizaciéon mediante
camulos de particulas (PSO por sus siglas en inglés), el cual también es una técnica de optimizacion
estocastica ya que se basa en el uso de nimeros generados aleatoriamente para realizar la busqueda.
Pero veamos primero mas detalles de los diferentes tipos de optimizacion descritos en la figura [2.1].
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Figura 2.1: Diagrama de caracteristicas a tomar en cuenta en los diferentes tipos de optimizacion

2.2.1. Optimizaciéon global

Este tipo de optimizacion busca encontrar la mejor soluciéon en todo el espacio de soluciones del
problema. Para ello, es necesario evaluar la funcién objetivo. Dependiendo del tipo de problema,
se busca el minimo o maximo valor f,(z) en el espacio de soluciones. Este valor es llamado 6ptimo
global. También se busca evitar quedar atrapado en un 6ptimo local (éste es un punto en el que
se tiene una fj(x) como solucion, y en el cual, todas las soluciones vecinas son peores que la f;(z)
dada, pero, siempre se cumple que fy(x) < fi(z) para el caso de minimos y f,(z) > fi(x) para
cuando se busca un maximo).

2.2.2. Optimizacién mono-objetivo

En este tipo de optimizacion se busca encontrar la mejor soluciéon posible de un problema
modelado con una sola funcién objetivo. Adicionalmente, pueden o no existir restricciones que
deban cumplirse para que una solucién se considere valida.

2.2.3. Optimizacién continua

En este tipo de problemas, las variables de decision de la funcién objetivo pueden tomar cualquier
valor dentro de un intervalo continuo (un nimero real). Evidentemente, en este caso el numero de
posibles soluciones se vuelve infinito.

2.2.4. Optimizacién estocastica

Este tipo de optimizacion utiliza aleatoriedad para intentar mejorar la exploracion en un espacio
de busqueda extenso. Esto produce que en cada ejecuciéon se pueda encontrar una posible mejor
solucion diferente. Sin embargo, esta misma caracteristica requiere mayor poder de computo para
realizar dicha exploraciéon en el menor tiempo posible.

2.3. Meétodos de optimizacién

Como podemos ver, un problemas de optimizacién puede contar con varias caracteristicas como
las ya mencionadas anteriormente. De la misma forma, existen diferentes técnicas para resolver
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de la mejor manera posible dicho problema. Como se menciona en [7], al enfrentarnos a espacios
de busqueda muy grandes y en donde los algoritmos maés eficientes que existen para resolver el
problema requieren tiempo exponencial, resulta obvio que las técnicas clasicas de busqueda y
optimizacion son insuficientes, por lo que el uso de las metaheuristicas es una opcion viable.

A continuacién describimos a méas detalle los métodos de optimizaciéon considerados en este estudio.

2.3.1. Heuristicas

Son estrategias cominmente utilizadas para realizar una bisqueda en un problema de optimi-
zacion. El uso de esta estrategia no pretende obtener una solucién exacta, si no mas bien, busca
obtener una solucién suficientemente buena en un tiempo razonablemente corto. Més especifica-
mente, podemos definir una heuristica de la forma siguiente:

“Una heuristica es una técnica que busca soluciones buenas (es decir, cercanas al 6ptimo) a un
costo computacional razonable, sin poder garantizar ni la viabilidad ni la optimalidad, o incluso
en muchos casos, sin poder indicar qué tan cerca esta una soluciéon particular del 6ptimo” [§].

Cabe mencionar que, al irse desarrollando esta area, han surgido nuevas caracteristicas asociadas
a las heuristicas que no se ven reflejadas en su definicion, tales como las estrategias de aprendizaje
adaptativo [§].

2.3.2. Metaheuristica

El principio de una metaheuristica es el mismo que el de una heuristica, con la diferencia de que
en este caso se aplican varias heuristicas, las cuales definen una estrategia de busqueda general
para resolver problemas de optimizacion.

El término fue propuesto por Fred Glover en 1986 y gan6 popularidad dentro de la comunidad
cientifica a partir de 1997. Su definiciéon es la siguiente:

“Una metaheuristica se refiere a una estrategia principal que guia y modifica otras heuristicas
para producir soluciones més allad de aquellas que normalmente se generan en la biisqueda de
un O6ptimo local. Las heuristicas guiadas por tal meta-estrategia pueden ser procedimientos de
alto nivel o no ser mas que una descripcion de los movimientos disponibles para transformar una
solucion en otra, junto con una regla de evaluacion asociada” [6].

En el diagrama de la figura mostramos una segunda clasificacion dado el método utilizado
para resolver un problema de optimizacion. En dicho diagrama se remarca el tipo de método
empleado en esta tesis.

A continuaciéon hablaremos brevemente del computo evolutivo. Esta area de la computacién nos
ofrece una amplia variedad de herramientas que pueden usarse como métodos de optimizacion di-
recta (por ejemplo, en la literatura encontramos una version de PSO que hace uso de mutacion [9])
para aproximar el 6ptimo a un problema con un espacio de busqueda complejo (p.ej., accidentado
o altamente multimodal).

2.4. Nociones de computo evolutivo

El computo evolutivo es un area de la computacion que se inspira en los principios de la evolucion
bioloégica para simularlos y utilizarlos como una herramienta para el aprendizaje y la optimizacion.
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Figura 2.2: Diagrama de métodos de optimizacion

Los algoritmos evolutivos son especialmente tutiles en dominios donde las soluciones 6ptimas no se
pueden encontrar utilizando métodos deterministas o analiticos. De manera general, existen tres
paradigmas principales que se utilizan en la computacion evolutiva, los cuales son: las estrategias
evolutivas, la programacion evolutiva y los algoritmos genéticos [10]. Primero se explicara cada
paradigma y luego describiremos los mecanismos principales que utilizan los algoritmos genéticos
y que hacen posible su funcionamiento.

2.4.1. Programaciéon evolutiva

Esta técnica fue propuesta por Lawrence J. Fogel [I1] y se us6 inicialmente para hacer evolu-
cionar autématas de estados finitos para que fueran capaces de predecir las secuencias futuras de
simbolos que recibirian. Fogel usé una funcion de “pago” que indicaba qué tan bueno era un cierto
autémata para predecir un simbolo, y usdé un operador inspirado en la mutacién para efectuar
cambios en las transiciones y en los estados de los autéomatas que tenderian a hacerlos mas aptos
para predecir secuencias de simbolos.

Esta técnica no consideraba el uso de un operador de recombinacién sexual ya que su fin era
modelar el proceso evolutivo a nivel de las especies y no a nivel de los individuos.
La programacion evolutiva se aplico originalmente a problemas de prediccion, control automatico,
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identificacion de sistemas y teoria de juegos, entre otros [12].

2.4.2. Estrategias evolutivas

Ingo Rechenberg desarrolld6 un método que le ayudara a resolver problemas de optimizacion en
mecanica de fluidos. Particularmente, queria optimizar la geometria de un tubo, la minimizacion
del arrastre de una placa de uniéon y la optimizacion estructural de una boquilla intermitente de
dos fases.

Debido a la imposibilidad de describir y resolver estos problemas de optimizacion analiticamente
o usando métodos tradicionales como el del gradiente [13], Ingo Rechenberg desarroll6 un método
de ajustes discretos aleatorios inspirado en el mecanismo de mutacién que ocurre en la naturaleza
[10].

2.4.3. Algoritmos genéticos

A principios de la década de los sesentas, John H. Holland, inspirado por los estudios realizados
en aquella época con automatas celulares [14] y redes neuronales [15], se percato de que el uso de
reglas simples podria generar comportamientos flexibles, y visualiz6 la posibilidad de estudiar la
evolucion de comportamientos en un sistema complejo. Esto lo llevé a desarrollar una nueva técni-
ca que denominé “planes reproductivos y adptativos”, la cual utilizé para aprendizaje de méquina.
Con el tiempo, esta técnica seria conocida como el algoritmo genético.

Un algoritmo genético requiere los componentes siguientes:

= Una representacion de las soluciones potenciales del problema

Una forma de crear una poblacién inicial

Una funciéon de evaluaciéon

Operadores genéticos

Valores para los diferentes parametros que utiliza el algoritmo genético

El operador principal en los algoritmos genéticos es la cruza. La mutaciéon es un operador
secundario que, sin embargo, es necesario para mantener el espacio de bisqueda completamente
conectado.

Hacemos énfasis especialmente en el operador de mutacion ya que éste garantiza que sea posible
explorar todo el espacio de busqueda, y es posible adaptarlo en otros algoritmos, tales como el
PSO [9).

2.4.4. QOperador de cruza

La cruza es un operador que simula el proceso de reproducciéon sexual. La cruza crea descen-
dientes con caracteristicas de ambos padres y fomenta la diversidad de una poblacion [10]. Las
tres técnicas basicas de cruza para representacion binaria son:

» Cruza de un punto
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= Cruza de dos puntos
» Cruza uniforme

La cruza suele aplicarse con una frecuencia que va del 60 % al 100 %.

2.4.5. Cruza usando niimeros reales

En su version original, el algoritmo genético utilizé una codificacion binaria (es decir, todas las
variables del problema se convierten a numeros binarios). Con el tiempo, se usaron otros tipos
de representacion, tales como los niimeros reales. Cuando utilizamos niimeros reales en nuestra
representacion, es deseable definir operadores de cruza més acordes que puedan “romper” un cierto
valor real, de manera analoga a como la cruza ordinaria “rompe” segmentos de cromosoma al usarse
representacion binaria. Las técnicas mas usadas para lograrlo, son las siguientes [10]:

s Intermedia

Aritmética simple

Aritmética total

Simulated Binary Crossover

Cruza basada en direccion

2.4.6. Mutacion para representaciéon binaria

La mutacién es un operador que se utiliza con menos frecuencia que la cruza, Se suelen reco-
mendar porcentajes de mutacion entre 0.001 y 0.01 para representaciones binarias [10].

Pese a que el operador de mutaciéon se suele usar con menos frecuencia que el de cruza, se ha
sugerido que el usar porcentajes altos de mutacion al inicio de la biisqueda y luego decrementarlos
exponencialmente favorece el desempeno global del algoritmo genético [16].

2.4.7. Mutacién para representacion real

Si se utilizan ntimeros reales para representar las variables del problema, se debe tomar en cuenta
esto para disenar operadores de mutaciéon que sean analogos a los usados con la representacion
binaria. El operador de mutaciéon juega un papel clave en la variabilidad de la poblaciéon de un
algoritmo evolutivo [10]. Algunas técnicas de mutacion para representacion real son:

» No Uniforme
s De Limite
= Uniforme

= Mutacion basada en pardmetros

10
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2.5. Optimizacion mediante caimulos de particulas

2.5.1. Fundamentos socio-cognitivos del PSO

Los sistemas naturales como los enjambres de abejas, las colonias de hormigas y los bancos de
peces, muestran comportamientos colectivos emergentes que permiten que el grupo pueda resolver
problemas de manera eficiente sin la necesidad de un control centralizado. Esto se conoce como
inteligencia de enjambre [17]

Los algoritmos de inteligencia de enjambre utilizan como base el proceso de adaptacion cultural.
Este comprende dos componentes: uno de alto nivel que se refiere a la capacidad de los individuos
para formar patrones y resolver problemas a nivel de grupo (por ejemplo, la creacion de normas
culturales o comportamientos colectivos que surgen de la interaccion entre individuos). El segundo
componente, de bajo nivel, se asocia a los comportamientos individuales que son universales,
probablemente innatos de cada individuo y que de igual forma influyen en el grupo. Estos tltimos
consisten en tres principios [18]:

= Evaluar
= Comparar
= [mitar

A continuacion describiremos brevemente cada uno de ellos.

2.5.1.1. Evaluar

Quizas la caracteristica de comportamiento mas comtun en los organismos vivos es la tendencia
a evaluar los estimulos que perciben. El aprendizaje no ocurre a menos que un organismo pueda
evaluar las caracteristicas del entorno que le son favorables, con respecto a las que no lo son. En
el PSO esta caracteristica se cumple evaluando una funcién que describe el problema a resolver.

2.5.1.2. Comparar

En 1954, Leon Festinger postul6 una teoria social [19] en la que propone que los individuos tien-
den a evaluarse a si mismos, comparandose con los demas. Algunas de las predicciones generadas
por dicha teoria no han sido confirmadas por investigaciéon empirica, ya que las comparaciones
sociales son més complejas de lo que Festinger predijo (por ejemplo, Fisteger predice que los in-
dividuos siempre se comparan con individuos similares, pero otras investigaciones dicen que los
individuos también se comparan con otros muy distintos). Dichas predicciones han servido como
base en la inteligencia de enjambre. En dichos modelos, un agente evaliia su aptitud y se compara
con todo el cimulo para establecer un lider que dirija la trayectoria del ciimulo hacia la mejor
solucion posible dentro de un espacio de busqueda.

2.5.1.3. Imitar

Konrad Lorenz [20] menciona que muy pocos animales son capaces de una imitacion real. De
hecho, la mayoria de los animales no imitan en el sentido estricto del término, sino que, a menudo,
aprenden a través de otros mecanismos, como el condicionamiento o la observaciéon. Sin embargo,

11
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no logran el nivel de imitaciéon compleja que se observa en los humanos y algunas aves. La imita-
cion como la entendemos es principalmente humana [2I]. En el PSO, el mejor individuo guia la
busqueda, es decir los otros individuos tratan de imitar su trayectoria.

2.5.2. Optimizaciéon mediante cimulos de particulas

El algoritmo de optimizacion mediante camulos de particulas (PSO por sus siglas en inglés)
fue propuesto en 1995 por James Kennedy y Russell Eberhart [22] y esta inspirado en el compor-
tamiento social de ciertos grupos de animales. Este comportamiento es simulado a través de un
modelo en el que un grupo de agentes, en vez de intentar resolver un problema en si, solo siguen
reglas simples planteadas al inicio del algoritmo. A su vez, las reglas no dicen nada acerca de la
existencia de un problema, sino que éste se resuelve a través de la influencia social reciproca, con
base en el modelo de cultura adaptativa [I7]. De tal forma, los agentes son capaces de mejorar
caracteristicas como la aptitud.

El algoritmo comienza inicializando de forma aleatoria (con distribucion uniforme) la velocidad
y posicion de n agentes (a los cuales llamamos particulas). La posicién de una particula i en el
espacio de busqueda representa una posible soluciéon al problema y la velocidad de una particula ¢
determina como cambiaré su posicion. Luego, se define un niimero de iteraciones méaximo con una
condicion de parada establecida por el usuario. En cada iteracion se evaluara la funciéon objetivo
para cada particula y se actualizaran las posiciones y velocidades para cada una de ellas. Para
simplificar lo anterior, podemos ver la figura [2.3| que muestra una representacion del movimiento
y de la posicion de una particula ¢ en un plano bidimensional que tiende a moverse hacia el mejor
global y hacia el mejor personal.

Optimo local
(pBest)

[

pBest; — x;(t)

X-;(?f + ].)

xi(t) v(z‘+1}

am.

(e :

particula 1

gBest — x;(t) o L:.

] Optimo global
V*(t) (gBest)

Figura 2.3: Representacion esquemética del movimiento de una particula i (en el algoritmo de
PSO) que se desplaza hacia el mejor global y el mejor local

Basicamente, el algoritmo de PSO va ajustando las trayectorias de cada particula para explorar
el espacio de busqueda en funciéon de la posicion de pBest y gBest. El movimiento de la particula

12
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1 en el camulo consta de dos componentes principales: uno que atrae a la particula hacia la mejor
posicion del cimulo gBest y un segundo componente que la atrae a su mejor ubicaciéon historica
pBest. Al mismo tiempo, tiende a moverse de forma aleatoria [I8] como lo muestra la ecuacion

ED.

vi(t + 1) = wvy(t) + c1r1 (pBest; — x;(t)) + caro(gBest — x;(¢)) (2.1)
donde:

= w es el factor de inercia. Un valor distinto de cero hace que la particula no altere su direccién
de movimiento, Es una especie de desplazamiento o sumador lineal aplicado a la velocidad
de la particula. Cuando su valor es grande, tiende a mover a la particula mas lejos, con
el objetivo de explorar regiones alrededor de la particula (es comun aplicarlo al comienzo).
Cuando el valor es pequeno, la particula busca mejores soluciones en un area mas cercana
al valor anterior de ésta (es comin aplicarlo al final).

= ¢ es el coeficiente de aprendizaje personal. Este parametro se relaciona con el comportamien-
to individual. Cuanto mayor sea este parametro, la influencia de la mejor posicién personal
serd mas grande. Esto favorece la exploracion individual, evitando la agrupacion prematura
del ctiimulo.

= ¢, es el coeficiente de aprendizaje global. Este parametro se relaciona con el comportamiento
social. Cuanto mayor sea este parametro, la influencia de la mejor posicion global sera més
grande. Esto favorece la exploracion colectiva, ayudando a la exploracion del ciimulo.

= 71 y o son numeros aleatorios (agregan aleatoriedad al comportamiento de las particulas)
con una distribucién uniforme, en el intervalo [0,1].

» pBest es la mejor posicion conocida por la particula i (mejor posicién personal).
» gBest es la mejor posicion conocida por el ctiimulo (mejor posicion global).

Para identificar mejor el ctimulo, podemos asignar el simbolo vectorial algebraico x; para repre-
sentar la posicion de cualquier cantidad de particulas 7. Ademaés, cada vector puede tener cualquier
dimension d. A la velocidad le asignamos el simbolo vectorial vj.

Una vez que tenemos la velocidad de la particula 7 en el tiempo t 4+ 1, obtenemos su nueva

posicion. La actualizacion de la posicion de una particula 7 en el tiempo ¢ + 1 esta dada por la
ecuacion (2.2)).

x;(t+ 1) = x,(t) + vi(t + 1) (2.2)

El algoritmo de PSO se puede aplicar en espacios de busqueda continuos [22] y discretos [23].
Sin embargo, es mas comun utilizarlo para resolver problemas de optimizacién en espacios de
busqueda continuos, es decir, en problemas en los cuales todas las variables son ntimeros reales.

En este trabajo utilizaremos la version continua del algoritmo de PSO. La motivacion para ello
es la precision que nos puede llegar a proporcionar en las soluciones, ademéas de que es sencillo
implementarlo en un lenguaje de alto nivel como C'. Por otra parte, la motivaciéon principal para
utilizar este método de optimizacion es su simplicidad con relacién a otros métodos como los
algoritmos genéticos. Esto es debido a que el principio de funcionamiento del algoritmo base (ver
el algoritmo (1)) no requiere operadores como la cruza o la mutaciéon, por lo que podria utilizarse
en aplicaciones en las que los recursos de computo disponibles son muy limitados.
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Algoritmo 1 Optimizaciéon mediante camulos de particulas

1: Inicializar posiciones x; y velocidades v; de las particulas aleatoriamente (distribucion unifor-
me) en el espacio de buisqueda para cada particula i.

2: Inicializar la mejor posicién conocida de cada particula (mejor personal) pBest; = x

3: Inicializar la mejor posicién global gBest como la mejor posicion entre todas las particulas.

4: Mientras no se cumpla el criterio de parada hacer

5: Para cada cada particula ¢« hacer

6: Actualizar la velocidad de la particula i:

vi(t+ 1) = wvy(t) + crr (pBest; — x;(t)) + cara(gBest — x;(t))

7: Actualizar la posicion de la particula i:

8: Evaluar la nueva posicion x;(t + 1).

9: Si f(xi(t+ 1)) < f(pBest;) entonces

10: Actualizar la mejor posicion personal:
pBest; = x;(t + 1)

11: Fin Si

12: Si f(x;(t+ 1)) < f(gBest) entonces

13: Actualizar la mejor posicion global:
gBest = x;(t +1)

14: Fin Si

15: Fin Para cada

16: Fin Mientras

Cabe aclarar que por su naturaleza, el PSO en su versién original no permite garantizar con-
vergencia al 6ptimo global, sino tnicamente a la mejor particula en el camulo [2].

Trabajos mas recientes han podido demostrar convergencia global de algunas variantes del PSO
bajo ciertas condiciones iniciales y para ciertas clases de problemas (ver por ejemplo [24][25][26] [27]).

Ademas, aunque en este trabajo no utilizaremos la version discreta de PSO, hacemos una breve
mencion del funcionamiento de ambas versiones.

2.5.2.1. Funcionamiento del modelo discreto del PSO

El principio de funcionamiento en la versiéon discreta es el mismo que en la versién continua
descrita en la seccion anterior. En [23] se describe una reformulacion del algoritmo para operar
con variables discretas (en especifico, nimeros binarios). Pero ahora las trayectorias se interpretan
como cambios en la probabilidad de que una coordenada tome un valor de cero o uno.

Esta version puede ser utilizada en problemas donde se requieren soluciones en espacios discretos.
De igual forma, es comin reformular problemas de punto flotante en términos binarios y resolverlos
en un espacio numérico discreto.
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En un espacio binario se puede considerar que una particula se mueve al cambiar diversos
nimeros de bits. Por lo tanto, la velocidad de la particula en general puede describirse como el
ntmero de bits cambiados por iteracion o la distancia de Hamming entre la particula en el tiempo
t y en t + 1. Por ejemplo, una particula con cero bits invertidos no se mueve, mientras que al
invertir todas sus coordenadas binarias, una particula se mueve a la posiciéon mas lejana.

La velocidad se define en términos de cambios en las probabilidades de que un bit esté en un
estado u otro. Esto implica que una particula se mueve en un espacio de estados restringido a 0 y
1 para cada dimension d. Entonces, cada v;4 representa la probabilidad de que el bit x;4 tome el
valor de 1. Por ejemplo, si v;g = 0.20, entonces hay un 20 % de probabilidad de que z;4 sea 1 y un
80 % de probabilidad de que sea 0.

El término (pBest;; — x;q) puede tener valores —1, 0 6 1 y se utiliza para ponderar el cambio en
la probabilidad v;y en £+ 1. Entonces, pBest y x;4 son enteros en 0,1 y v;4 al ser una probabilidad,
debe estar restringida al intervalo [0, 1]. Para lograr esta ultima modificacion, se puede utilizar
una transformacion (sigmoidal) s(v;g).

Para obtener la posicion se utiliza la siguiente condicion:

if (rand() < s(Vig)) rand () es pseudo aleatorio en [0.0,1.0] con distribucion
uniforme.

then X,q = 1;

else

Xig = 03

Codigo 2.1: Criterio de decision para actualizar la posicion X4 en el PSO discreto

Con relacion a la velocidad maxima que puede presentar el PSO discreto, una V., alta (por
ejemplo 10.0) hace que sea menos probable probar nuevos vectores ya que reduce el rango de
respuesta de s(v;q). Por lo tanto, parte de la funcion de v,,,, es establecer un limite para la
exploracion adicional una vez que la poblaciéon converge. Cabe senalar también que, mientras que
un valor alto de v,,,, en la versiéon con valores continuos aumenta el rango explorado por una
particula, en la version binaria ocurre lo contrario: un v,,,, més pequeno permite una mayor tasa
de mutacion.

2.5.2.2. Funcionamiento del modelo continuo del PSO

En esta version de PSO se utilizan nimeros reales R? donde d es el nimero de dimensiones de
un vector, al que llamamos particula y que puede ser representada como un punto en un espacio
multidimensional. En una poblacién de puntos, nétese que al estar en un espacio de soluciones
continuo, los individuos pueden ser mas parecidos entre si (tienen mayor precisién). Por otra
parte, el cambio en la posicion de cada individuo a lo largo del tiempo t se ve afectado por la
velocidad de éste y la posicion que tenga en un tiempo anterior ¢ — 1. Dependiendo de cémo
sea la comunicacion entre los integrantes del cimulo, puede haber una rapida convergencia o una
tendencia a la exploracion del espacio de busqueda por parte del grupo. No obstante, los individuos
tenderan a moverse unos hacia otros (ver figura , para influenciarse mutuamente, a medida
que los individuos buscan acuerdos con sus vecinos.
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Iteracion 1/100 Iteracion 2/100

Iteracion 3/100
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Figura 2.4: Funcionamiento del algoritmo de PSO utilizando 40 individuos y tres dimensiones en
la funciéon esfera usando 100 iteraciones

La velocidad es un vector de ntimeros reales que se suma a las coordenadas de posicion para

mover la particula a una posicion z;(t + 1). La actualizacion de la posicion de una particula ¢ en
el tiempo t + 1 esta dada por la ecuacion ((2.2)) .
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Como se puede deducir, cada individuo se vera influenciado por su propio comportamiento
anterior y por los éxitos de sus vecinos, quienes, no necesariamente son individuos cercanos a él,
en el espacio de los parametros. Sus vecinos son aquellos que estan cerca en un espacio topologico
(hablaremos acerca de las topologias en la siguiente seccion), o estructura establecida para que los
individuos puedan socializar o compartir conocimiento, sin importar la distancia que exista entre
ellos.

La direccion del movimiento (bajo el concepto de locomocion de Lewin [17]) esta en funcion de
la posicion y velocidad actual, asi como por ubicacién del éxito previo méas grande del individuo
y la mejor posiciéon encontrada por cualquier miembro del vecindario, la cual podemos definir de
forma general como la funcion:

zi(t + 1) = f(x;(t),vi(t), [ Best;, gBest) (2.3)

PSO utiliza el modelo gbest que conecta conceptualmente a todos los miembros de la poblacion
entre si. El efecto de esto es que cada particula estd influenciada por el mejor rendimiento de
cualquier miembro de toda la poblaciéon. El segundo modelo, llamado pbest, crea un vecindario
para cada individuo que comprende a si mismo y a sus k vecinos mas cercanos en la poblacion.
Por ejemplo, si k = 2, entonces cada individuo ¢ estard influenciado por el mejor rendimiento
entre un grupo formado por las particulas ¢ — 1, 7 e 7 4+ 1. Las diferentes topologias de vecindario
pueden resultar en diferentes tipos de efectos. La velocidad se obtiene de la diferencia entre la
mejor posicion previa del individuo y su posicién actual, asi como de la diferencia entre la mejor
posicion del vecindario y la posicion actual del individuo (ver linea 6 del algoritmo |1| en la que se
utiliza la ecuacion (2.1)).

Una parte importante a tomar en cuenta en el algoritmo de PSO es controlar las trayectorias que
pueden tomar las particulas a lo largo de las iteraciones. Si no se realiza esto, pueden expandirse
en ciclos cada vez mas amplios hasta llegar a salirse del espacio de bisqueda valido. Para evitar
esto se puede aplicar algin método de constriccion [24]. Cabe aclarar que la velocidad méaxima
(Vinaz) que debe alcanzar una particula esté acotada a fin de mantener su movimiento dentro de
un rango util [I7]. Ademas, el valor del parametro depende de cierto conocimiento del problema
para evitar quedar atrapado en un 6ptimo local o al acercarse a un valor prometedor reducirlo
para dar pasos mas pequenos.

2.5.3. Topologias para PSO

Como ya hemos mencionado anteriormente, un grupo se ve afectado por la estructura de la
red social que lo contiene [I7]. En la investigacion sobre enjambres de particulas, normalmente
se utilizan redes en donde se da una interacciéon de los individuos con sus vecinos inmediatos y
de todos los individuos con el mejor desempeno dentro de la poblacién. Sin embargo, se puede
utilizar cualquier otra red que ayude al algoritmo a encontrar mejores resultados. En [28] se indica
que una topologia adecuada puede mitigar la convergencia prematura y mejorar la eficiencia del
algoritmo [29].

Algunas de las topologias mas comtnmente utilizadas [17][28][30] [31] se describen a continua-
cion.
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2.5.3.1. Topologia totalmente conectada

En este tipo de interaccion, cada particula tiene acceso a la mejor soluciéon global encontrada
por todo el camulo. Esta topologia puede conducir a una convergencia prematura en problemas
complejos, como los multimodales.

2.5.3.2. Topologia de anillo

En este tipo de interaccion, las particulas solo interactian con un subconjunto de vecinos cer-
canos. Es adecuada para problemas con miltiples 6ptimos.

2.5.3.3. Topologia en estrella

En este tipo de interaccion, todas las particulas se conectan a una particula que actiia como
lider central.

2.5.3.4. Topologia en malla

En este tipo de interaccion, las particulas solo interactiian con vecinos directos, formando una
especie de malla.

En la figura se representan los tipos de topologias mas comunes.
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Topologia en Anillo Topologia en Estrella

Particula 2

Particula 2

Particula 3

Particula 1 Particula 1

Particula 4 Particula 4

Particula 5

Topologia en Malla Topologia Totalmente Conectada

Particula 3 Particula 6 Particula 9 Particula 2

Particula 3

S
’ ‘Part icula 1
.‘ 5

Particula 2 Particula 5 Particula 8

Particula 4

Particula 1 Particula 4 Particula 7 Particula 5

Figura 2.5: Diferentes topologias de particulas para el PSO

2.5.4. Ventajas del PSO

» Simplicidad de su implementacion: El algoritmo de PSO es facil de entender y programar.
Tiene una estructura simple que permite adaptarlo rapidamente a diferentes problemas sin
necesidad de recurrir a implementaciones complejas.

= Es un método de bisqueda directa: A diferencia de otros métodos de optimizacion, PSO no
necesita calcular derivadas de las funciones, lo que lo hace apto para problemas no lineales
o discontinuos o cuando las derivadas no estan disponibles.

» Capacidad de Evitar Minimos Locales: Gracias a su enfoque basado en miltiples particulas
que exploran simultaneamente diferentes partes del espacio de busqueda, PSO tiene una
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mayor capacidad para evitar quedarse atrapado en minimos locales.

» Fécilmente paralelizable: Las particulas se mueven de manera independiente, lo que facilita
la implementacion paralela de PSO. Esto es ideal para aprovechar arquitecturas de computo
distribuidas o multi ntucleo, lo que permite acelerar el proceso de optimizacion.

= Adaptabilidad: El algoritmo de PSO se puede ajustar facilmente para adaptarse a diferen-
tes tipos de problemas y dominios. Se pueden modificar los parametros y las funciones de
evaluacion para mejorar su rendimiento en distintas aplicaciones.

2.5.5. Desventajas de PSO

» Convergencia prematura: En problemas con paisajes de busqueda complejos, PSO puede
converger prematuramente a una soluciéon subéptima si todas las particulas se acercan rapi-
damente a un mismo punto sin explorar el espacio de bisqueda de forma adecuada.

= Dependencia de parametros: El rendimiento de PSO es altamente sensible a la configura-
cion de sus pardmetros, tales como los coeficientes de aceleracion, la inercia y el limite de
velocidad. Encontrar la combinacién adecuada de estos parametros puede ser complicado.

= Escalabilidad en problemas de alta dimensionalidad: PSO funciona bien en problemas de
pequena a mediana escala, pero su rendimiento tiende a disminuir en problemas de alta di-
mensionalidad, donde el tamano del espacio que debe explorarse es inmenso y la probabilidad
de encontrar una buena soluciéon disminuye considerablemente.

= Oscilacion de particulas: Si no se controlan adecuadamente, las particulas pueden oscilar o
moverse indefinidamente sin converger a un punto éptimo, especialmente en problemas donde
las soluciones 6ptimas estan cercanas pero la inercia y la aceleracién estan mal ajustadas.

= Dificultad para problemas con restricciones complejas: PSO puede ser menos eficiente en
aquellos problemas donde las restricciones son dificiles de manejar.
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Alta dimensionalidad

La alta dimensionalidad es un fenémeno que se presenta cuando un problema matemético tiene
un numero elevado de variables de decision. Del mismo modo, esta situacion se presenta en areas
en las que se manejan grandes cantidades de datos [32] o se busca una solucion a problemas con un
gran numero de caracteristicas, por ejemplo, en aprendizaje automético, procesamiento de senales,
analisis de datos, optimizacion, etc.

La alta dimensionalidad se puede interpretar como un espacio euclidiano R representado como
X1, To, X3, ..., p (un vector x), donde el niimero de variables D es muy grande (por ejemplo, mayor
a 100).

Vale la pena comentar, que en alta dimensionalidad, las propiedades geométricas del espacio
cambian de forma radical. Por ejemplo, en un espacio de alta dimensionalidad cambia la forma en
la que se distribuyen las distancias a medida que D aumenta. En ese caso, la mayoria de los puntos
(aleatorios, con distribucion uniforme e independientes) tienden a estar a la misma distancia con
respecto de un punto de referencia cualquiera (ver figura .

Distribucion de Distancias (2D) Distribucion de Distancias (1000D)

Frecuencia
Frecuencia

17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0
Distancia Distancia

0.6 0.8

Figura 3.1: El histograma 1000D muestra que la mayoria de las distancias estan agrupadas cerca de
un valor medio, mientras que en 2D (histograma de la derecha) la distribucion de distancias muestra
mayor variabilidad. Para este ejemplo se generaron 1000 puntos aleatorios con una distribucion
uniforme en el espacio y se calcularon las distancias euclidianas de cada punto respecto al origen
para cada caso.
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Otro aspecto a considerar es que en alta dimensionalidad, la densidad de los puntos baja dras-
ticamente. Es decir, la distancia entre los puntos aumenta (se dispersan) ya que hay méas espacio
por cubrir (ver figura (3.2)).

Puntos en 2D Proyeccién de Puntos 1000D a 2D
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Figura 3.2: Se muestran las graficas de 1000 puntos generados aleatoriamente con distribucion
uniforme para 2D y 1000D. Para el caso de 1000D se utiliz6 la técnica de analisis de componentes
principales (Principal Component Analysis) para visualizarlos en 2D.

En las siguientes secciones explicaremos los efectos de la alta dimensionalidad en los algoritmos
de optimizacion estocasticos, en especifico, para el algoritmo de PSO. Ademas, mencionaremos
algunas estrategias que intentan hacer frente a los problemas asociados a este hecho. Cabe aclarar
que solo algunos de estos métodos seran utilizados en este trabajo de tesis.

3.1. Maldicién de la dimensionalidad

En 1957, Richard Bellman [33] abord6 la complejidad de los problemas de decision y optimizacion
donde el niimero de posibles decisiones es extremadamente grande. En 1961 publicé un articulo
donde describe “la maldicion de la dimensionalidad”, en el cual, describe el problema que causa
el aumento exponencial del volumen asociado con la adicién de dimensiones extra a un espacio
euclidiano.

Por ejemplo, en RP (donde D es la dimensionalidad), el volumen de un cubo con lado 2 es 2 més
grande que el volumen del cubo unidad [34], a pesar que los lados de los cubos solo difieren por
un factor de 2, como se puede ver en la figura |3.3|
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Cubo Unitario (L=1) Cubo L=2 (L~d mas grande que el unitario)

Figura 3.3: A la derecha se muestra un cubo unitario. Al aumentar su longitud solo una unidad,
su volumen se incrementa ocho veces (22 veces) como lo muestra la segunda figura

3.1.1. Maldiciéon de la alta dimensionalidad en PSO

PSO es un algoritmo facil de entender y sencillo de implementar. Sin embargo cuando se trabaja
con altas dimensiones (arriba de 100), se presenta la llamada “maldicion de la dimensinalidad”,
ya que conforme aumentan las dimensiones del problema a resolver, el espacio de busqueda crece
exponencialmente y los datos se vuelven mas dispersos (ver ﬁgura. Esto provoca que se vuelva
complicado explorar de forma eficiente dicho espacio (en la ﬁgurapodemos ver que las distancias
en altas dimensiones son mayores que en bajas, lo que significa un aumento en la dispersion). En
consecuencia, aumenta el riesgo de caer en minimos locales, sin mencionar el incremento en la
complejidad computacional, debido al aumento del ntimero de evaluaciones de la funcién objetivo
realizadas para buscar una buena solucion.

3.2. Estrategias en PSO para manejar alta dimensionalidad

Existen distintas estrategias que se pueden utilizar para intentar mitigar los efectos negativos de
la alta dimensionalidad en el algoritmo de PSO, a fin de mejorar su rendimiento. Las principales
se describen a continuacion.
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3.2.1. Reduccién de dimensionalidad por anilisis de componentes prin-
cipales

El analisis de componentes principales ( Principal Component Analysis) es un método estadistico
que se utiliza para reducir la dimensionalidad de un conjunto de datos. Esto lo hace eliminando
las variables redundantes o irrelevantes y manteniendo la mayor cantidad de informaciéon posible.

Basicamente, funciona encontrando componentes que maximizan la varianza, y proyectando los
datos originales sobre estos componentes [35].

Los objetivos que se busca resolver al aplicar este método son [36]:

Extraer la informacién més importante de los datos.

= Comprimir el tamano del conjunto de datos manteniendo solo esta informacién importante.

Simplificar la descripcion del conjunto de datos.

Analizar la estructura de las variables.

Por ejemplo, en la ﬁgura se utilizo PCA (por sus siglas en inglés) para proyectar 1000 puntos
aleatorios en 2D para visualizarlos y poder comparar algunos comportamientos como la reduccion
de la densidad de puntos contra un espacio en 2D.

Este método no es aplicable en esta tesis, ya que se trata de una técnica lineal y la mayoria de
los problemas que vamos a resolver son “no lineales”. Ademas, se tendrian que realizar calculos de
covarianza de datos y eso resultaria altamente costoso.

3.2.2. Adaptacion de parametros

Esta técnica consiste en ajustar de forma inicial o dindmicamente los pardmetros del PSO
(por ejemplo, la velocidad o la inercia) para mejorar el equilibrio entre exploracion y explotacion
en un espacio de alta dimensionalidad [4]. Es decir, el ajuste controlado de estos pardmetros
puede disminuir la velocidad de las particulas e intentar encontrar una mejor soluciéon cuando se
encuentren en una zona prometedora y por el contrario, incrementarla en la etapa de exploracion.
Ademas, se puede limitar la velocidad para evitar que las particulas salgan del espacio de busqueda
valido.

Con relacion a los coeficientes de aprendizaje ¢; v ¢ también se pueden modificar para incre-
mentar la dominancia cognitiva o social del individuo.

Asi mismo, se puede modificar el valor de la inercia (w), para que las particulas exploren al
principio (con mayor inercia) y exploten cuando se acercan a una soluciéon prometedora.

Por ejemplo, en [4] se mencionan diferentes técnicas para adaptar los parametros de control
del PSO, que van desde el peso de inercia w propuesto por Shi y Eberhart [37], pasando por una
implementacion de un sistema difuso para adaptar dinAmicamente w [16], hasta un mecanismo de
control mas reciente de multiples pardmetros para cambiar adaptativamente w, ¢; y ¢z en [3§].
Para el presente trabajo, se realiza un ajuste en tiempo real de estos parametros, tomando como
referencia el comportamiento de las evaluaciones de la funcién de aptitud con relacién al espacio
de busqueda.
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3.2.3. Uso de topologias

Esta técnica tiene como principio el hecho de que la comunicacién dentro de un grupo se ve
afectada por la estructura de la red social [I7]. En [2], por ejemplo, se utilizan estructuras sociales
simples, como la interaccién de los individuos con sus vecinos inmediatos y la interaccion de
todos los individuos con el individuo de mejor desempeno en la poblacién. Sin embargo, se podria
utilizar cierto niimero de integrantes u otro tipo de estructuras sociales, que afecten el intercambio
de informacién de forma positiva para alcanzar un mejor consenso que convenga a todos.

Como vimos en el capitulo anterior, existen diferentes topologias como la de anillo o estrella,
las cuales, pueden ayudar a explorar de forma maés eficiente un espacio de busqueda [39].

También se puede modificar la topologia cuando se presente una circunstancia determinada,
para aprovechar la propiedad de ésta. Por ejemplo, en lugar de usar la estructura de ciimulo global
(donde todas las particulas interactian entre si) siempre, se puede optar por una topologia local
en la que las particulas solo interactiian con sus vecinos mas cercanos para evitar la exploracion
innecesaria en una iteracion, o incluso se puede hacer formando subctimulos de particulas. Esto
ultimo se realiza en [40], en donde distintas partes del espacio de busqueda son optimizadas de
forma independiente por diferentes subctimulos, para luego reagruparse y configurar una nueva
vecindad con base en la informacion compartida de cada subctmulo.

En [41], se desarrollé un PSO completamente informado, donde la actualizacion de cada particula
se basa en las posiciones de varios vecinos. También tenemos el Comprehensive Learning PSO
(CLPSO) introducido en [42], en el cual las particulas actualizan cada dimension aprendiendo de
diferentes posiciones locales 6ptimas.

3.2.4. Métodos hibridos

El algoritmo de PSO puede combinarse con otros algoritmos de optimizacién para mejorar su
rendimiento en alta dimensionalidad. Por ejemplo, se puede combinar con algoritmos genéticos
o solo con algunos operadores como el de mutacién para ayudar a mantener la diversidad en el
cumulo, evitando que las particulas converjan demasiado rapido a soluciones suboptimas.

Se puede utilizar un buscador local combinado con PSO (como el Recocido Simulado o un
algoritmo basado en el gradiente de la funcion) para mejorar la explotacion [43]

Otra técnica consiste en descomponer el problema en partes mas pequenas, para optimizar cada
parte por separado para luego combinar los resultados. Un ejemplo de este tipo de esquema es la
coevolucion cooperativa, en la cual se divide el espacio de biisqueda en varios grupos y se aplica
PSO a cada grupo de manera cooperativa. Es decir, cada subctimulo optimiza solo un subconjunto
de las variables, y las interacciones entre los subctimulos permiten encontrar soluciones globales
[44].

Para esta tesis, no utilizamos esta técnica, ya que no mezclamos la version base que tomamos
como referencia para nuestra mejora [4] con ninguna otra version de PSO o con algiun operador
de algoritmos genéticos. Solo intentamos mejorar el equilibrio entre diversidad y convergencia a
través de la informaciéon de la posible forma del espacio de busqueda que la particula aporta al
explorarlo.
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3.2.5. Estrategias de aprendizaje

Se puede hacer uso de aprendizaje adquirido en una etapa previa de optimizacién en un espacio
de menor dimensién que sirve como un preprocesamiento que mejora la eficiencia del algoritmo al
transferir el conocimiento sobre los patrones de biisqueda exitosos a la fase de alta dimensionalidad
[45]. Se debe tomar en cuenta que esta estrategia es 1til cuando se tiene acceso a varios problemas
similares; por ejemplo, el mismo problema en distintas dimensionalidades. Ademés, el éxito de la
estrategia depende de la calidad del aprendizaje transmitido, por lo que incluso puede perjudicar
a la solucién principal.

Otra estrategia consiste en utilizar miltiples estrategias de busqueda adaptativas que ayuden a
mejorar la exploracion y explotacion del espacio de soluciones que se adapten a las necesidades de
éste en cada momento [3].

En nuestro trabajo, la tinica estrategia de aprendizaje que se utiliza es la propuesta en el
algoritmo de referencia que se adopt6 como base para el algoritmo desarrollado en esta tesis [4].

3.2.6. Aleatoriedad controlada

Este método consiste en introducir elementos de aleatoriedad de forma controlada en algunos
parametros del PSO, permitiendo que las particulas exploren diferentes regiones del espacio de
busqueda sin tener que recorrer todas las dimensiones de manera exhaustiva. Esto mejora la
exploracion en espacios de busqueda muy grandes (este método ya es utilizado en el algoritmo de
PSO original, en donde se introduce aleatoriedad para los componentes cognitivo y social) [2] [46].

En general, existe una gran variedad de estrategias o métodos que pueden mitigar los efectos
negativos de la alta dimensionalidad en el PSO. Todas las estrategias tienen sus limitaciones segtin
las caracteristicas del problema a resolver. Sin embargo, no hay restricciones de uso, siempre y
cuando preserven los principios socio-cognitivos del algoritmo.

3.3. Algoritmos para resolver problemas de optimizacién a
gran escala

Como hemos mencionado, la popularizacion de los algoritmos de gran escala se ha visto reflejada
en el desarrollo de algoritmos que incorporan distintas técnicas que buscan encontrar la mejor
solucion posible. A continuacion se mencionan algunos ejemplos de estos algoritmos.
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3.3.1. Optimizador de Ctimulos Competitivos para Optimizacién a Gran
Escala

El algoritmo CSO (A Competitive Swarm Optimizer for Large Scale Optimization) [4] fue pro-
puesto en el 2015, por Ran Cheng y Yaochu Jin. Los autores se inspiraron en la version original
de PSO de Kennedy y Eberhart [2], con la diferencia de que en este algoritmo no se utiliza el
mejor personal (pBest) ni el mejor global (gBest) para actualizar el movimiento de las particulas.
En lugar de esto, se introduce un mecanismo de competencia por pares, con el cual, la particula
perdedora actualiza su velocidad y posiciéon aprendiendo de la ganadora.

A continuacion se explica més detalladamente como funciona el algoritmo:

» Se inicializa de forma aleatoria (como en el algoritmo original de PSO) un cimulo m de n
particulas. Luego, se actualiza de manera iterativa. Cada particula tiene una posicion de D
dimensiones x;(t) = (z;1(t), zi2(t), ..., 2in(t)) y un vector de velocidad de D dimensiones,

vi(t) = (via(t), vialt),. .., vin(t)).

» En cada generacion (t), el cimulo se revuelve y se asignan parejas (se asume que el tamano
del ciimulo m es un numero par). Luego se realiza una competencia entre las dos particulas
que forman el par.

= Como resultado de cada competencia, la particula con una mejor aptitud, denominada “ga-
nadora”, sera pasada directamente a la siguiente generacion del camulo (¢ + 1)

» La particula que pierde la competencia, denominada “perdedora”; actualizara su posicion y
velocidad aprendiendo de la ganadora.

= Después de aprender de la ganadora, la particula perdedora también sera pasada a la siguiente
generacion del camulo (¢ + 1)

» Fl algoritmo termina cuando se llegue a un méaximo de evaluaciones (maz F'E) de la funcion
de aptitud

Cada particula participara en una competencia solo una vez, es decir, para un cimulo m ocurren
m/2 competencias y la velocidad y posicion de las m/2 particulas seran actualizadas. La figura
ilustra este funcionamiento.
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Perdedora

\ 4

Competencia Aprendizaje
4.?\_»

Ganadora Actualizar particula
perdedora

Cumulo P(t+1)

t=t+1

Figura 3.4: La competencia inherente al algoritmo fomenta la exploracién en las primeras etapas
y la explotacion mas refinada en etapas posteriores del algoritmo CSO.

La velocidad del perdedor se actualizara utilizando la estrategia de aprendizaje de la ecuacion

(3.1)
Vip(t+1) = Ry(k, t)vi(t) + Ro(k, t)(Xwi(t) — x1x(t)) + 0Rs(k, 1) (Tr(t) — x1x(2)) (3.1)

donde:

= X, (t) Es la posicién del ganador en la k-ésima ronda de competencia en la generacion ¢
» x;.(t) Es la posicion del perdedor en la k-ésima ronda de competencia en la generacion ¢
» v, ,(t) Es la velocidad del ganador en la k-ésima ronda de competencia en la generacion ¢
» v, .(t) Es la velocidad del perdedor en la k-ésima ronda de competencia en la generacion ¢
» Ri(k,t), Rao(k,t), y R3(k,t) Son factores aleatorios € [0, 1]¢

» ¢ Es un parametro de aprendizaje que controla la influencia de 7y ()

» 74 (t) Es el valor medio de la posicion de las particulas relevantes. El control de vecindario
puede ayudar a mejorar el rendimiento del PSO en funciones multimodales al mantener un
mayor grado de diversidad en el ctimulo [47]. Se puede adoptar una version global y una
version local:
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e 77(t) Denota la posicion media global de todas las particulas en el cimulo

° f%}k(t) Significa la posicion media local de las particulas en un vecindario predefinido
de la particula [.

La posicion del perdedor se puede actualizar ahora con la nueva velocidad, utilizando la ecuacion

(3-2),

Xl,k(t -+ 1) = Xl,k(t) + V”g(t + 1) (32)

Para el parametro Z(t) se suele introducir el control de vecindario para aumentar la diversidad
del camulo, lo que potencialmente mejora el rendimiento de busqueda del CSO (se adopta como
configuracion predeterminada z(t)).

La primera parte de la ecuacion (3.1)) asegura la estabilidad del proceso de busqueda y es similar
al término de inercia w en el PSO original. También puede interpretarse como que w = 1 y se
agrega un vector aleatorio R (t).

La segunda parte es la componente cognitiva. En esta parte de la ecuacion se da el aprendizaje
de la particula perdedora con respecto a la ganadora en lugar de hacerlo de la mejor personal
pBest.

La tercera parte es el componente social en donde la particula perdedora aprende de la posicion
media del cimulo actual Z(¢) en lugar del mejor global gBest.

De forma general, podemos decir que el algoritmo del CSO (ver algoritmo [2)) es sencillo y no
muy distinto a la version original del PSO (ver algoritmo .
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Algoritmo 2 Algoritmo del CSO
1: Inicializar una poblacion m de n particulas con posiciones aleatorias x; y velocidades v; en el
espacio de busqueda.
2: Evaluar la aptitud de cada particula f(x;) con base en la funcién objetivo.
3: Mientras no se cumpla el criterio de parada hacer

4: Emparejar las particulas aleatoriamente en m/2 pares.

5: Para cada cada par (xj, x;) hacer

6: Si f(x;) < f(x;) entonces > Para problemas de minimizacion
7: Marcar x; como el ganador y x; como el perdedor.

8: else

9: Marcar x; como el ganador y x; como el perdedor.

10: Fin Si

11: Reincorporar la particula ganadora al cimulo

12: Actualizar la velocidad del perdedor usando la ecuacion (3.1)
13: Actualizar la posiciéon del perdedor usando la ecuacion (13.2))
14: Borrar o sobreescribir x; y x;;

15: Fin Para cada

16: Reincorporar la particula actualizada al ciimulo

17: Fin Mientras
18: Devolver la mejor solucion encontrada x* = arg min f(x;).

3.3.2. Un algoritmo de optimizacién mediante cimulos de particulas
con aprendizaje social para optimizacion escalable

El SL-PSO (A social learning particle swarm optimization algorithm for scalable optimization)
fue desarrollado por Ran Cheng y Yaochu Jin en 2014 [5]. En esta version los autores utilizan
mecanismos de aprendizaje social en un PSO. Cada particula aprende de cualquier otra particula
que sea mejor (denominada “demostradora”) en el cimulo actual. Ademas, se simplifica la confi-
guracion de parametros, ya que se adopta un método de control de parametros dependiente de la
dimensionalidad.

A continuacion se detalla la forma en que funciona este algoritmo (ver figura [3.5)):

» Se inicializa un ciamulo P(t) de m particulas (m es el tamano del camulo y ¢ es el indice de
la generacion). Para cada particula ¢ en P(t), se tiene al igual que en el PSO original, un
vector x;(t) inicializado aleatoriamente.

= A cada particula se le asigna un valor de aptitud calculado a partir de la funcién objetivo

f(X).

» El cimulo se ordena de forma ascendente (segin la aptitud de cada individuo). Posterior-
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mente, cada particula (excepto aquella con el mejor valor de aptitud) corregira sus compor-
tamientos aprendiendo de aquellas particulas (demostradoras) que tengan mejores valores
de aptitud.

Evaluacion de aptitud Ordenarmiento del cimula —— aprendizaje

QO /OOO

O O
O O t=t+1 \O O O
u -"'-—_._,_,_._-aﬂ"’;/
Camulo P(t) Camulo P(t+1)

Figura 3.5: El ctiimulo se ordenara segtn la aptitud de las particulas y todas, excepto la mejor, se
actualizaran aprendiendo de cualquier particula cuya aptitud sea mejor. El aprendizaje individual
es un proceso de ensayo y error, mientras que el aprendizaje social aprovecha mecanismos como
la imitacion, el refuerzo y el condicionamiento

Este algoritmo tiene como base la imitacion. Sus autores la describen como un proceso en el
cual un imitador copia parte de un comportamiento de un demostrador a través de la observacion.
Por tanto, los componentes mas importantes en SL-PSO son el ordenamiento del ciimulo y el
aprendizaje de comportamientos. También se debe tomar en cuenta lo siguiente:

= En cada generacion, una particula podria servir como demostrador para diferentes imitadores
méas de una vez.

» En un camulo ordenado, para cualquier imitador (particula i, donde 1 < i < m), su demos-
trador puede ser cualquier particula k& que cumpla con i < k < m.

= Por ejemplo, para la particula 1, las particulas 2, 3, ..., m pueden ser sus demostradores,
mientras que para la particula (m — 1), solo la particula m puede ser su demostrador. Como
resultado, la particula 1 (la peor) nunca puede ser un demostrador y la particula m (la mejor)
nunca serd un imitador. Es decir, la mejor particula en el cimulo actual no se actualizara.
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Un imitador aprendera los comportamientos de diferentes demostradores utilizando la ecuacion
(3.3).
Xi,j(t) + AXZJ(t + 1), sl pz(t) S _PZ»L,

ij(t), en caso contrario,

donde:

» Pl Es una probabilidad de aprendizaje para cada particula i. En [5] se asume que cuan-
to mayor sea la dimensionalidad del problema, mas dificil seré resolverlo y, por lo tanto,
menos probable serd que una particula esté dispuesta a aprender de otras. Por ende, se re-
comienda una relacién inversamente proporcional entre la probabilidad de aprendizaje y la
dimensionalidad del problema como lo muestra la ecuacion ((3.4)).

Pl = (1 - 1)a'log(fiW) .

m

donde:

e m e¢s el tamano del camulo. Se define como una funciéon de la dimensionalidad de
busqueda como lo muestra la ecuacion ((3.5).
J-d

sz—i-T (35)

donde:

o M es el tamano base del cimulo, necesario para que el algoritmo SL-PSO funcione
adecuadamente. En [5] utilizan M = 100, (un tamano pequeno de ctimulo suele
ser suficiente para problemas de optimizacién unimodales, mientras que un tamano
mayor es necesario para problemas de optimizacién multimodales, a fin de permitir
una exploracién méas intensiva [48], [49]).

o 1— % indica que la probabilidad de aprendizaje es inversamente proporcional al indice
de la particula ¢ en un ciimulo ordenado. Es decir, cuanto mayor sea la aptitud de una
particula, menor sera su probabilidad de aprendizaje.

e o -log ((%}) indica que la probabilidad de aprendizaje es inversamente proporcional a
la dimensionalidad de bisqueda (se mantendria una mejor diversidad del enjambre para
problemas a gran escala debido a la tasa de aprendizaje reducida). « - log(-) se utiliza
para suavizar la influencia de n%. Empiricamente [5], recomiendan que el coeficiente

a < 1. En particular, utilizaron o = 0.5.
= p; es una probabilidad generada aleatoriamente.

» X ;(t) esla j-ésima dimension del vector de comportamiento de la particula i en la generacion
t,conie{1,2,3,....m}yje{l,23,...,d}
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= AX;,;(t+1) es la correccion del comportamiento en ¢ 4+ 1. Ver la ecuacion (3.6)).

AXZ'J' (t + 1) =T (t) : AXZ'J' (t) + T’g(t) : I@j(lﬁ) + Tg(t) € Ci,j (t) (36)

donde:

o AX;;(t) acttia de forma similar al componente de inercia del PSO original.

e I, ;(t) es el componente de imitacion. Es equivalente a la parte cognitiva del PSO origi-
nal, solo que en lugar de aprender de pbest, la particula ¢ aprende de cualquiera de sus
demostradoras como lo muestra la ecuacion . Especificamente, el j-ésimo elemento
en el vector de comportamiento de la particula i, X;;(¢), imita a Xy ;(t), que es el
j-ésimo elemento en el vector de comportamiento de la particula k (demostradora de
la particula 7). Notese que i < k < m, y k se genera independientemente para cada
elemento j. Ver la figura [3.6]

I5(t) = Xy (6) — Xy (1) (3.7)

Cumulo desordenado

1 2 3 A 5 6 | ... | m

acuerdo al valor de aptitud

Jl Ordenamiento descendente de
de cada particula

peor Camulo ordenado mejor

1 2 i k e | M

] [
demostradores

Figura 3.6: El cimulo se ordena segtn los valores de aptitud (lo hacemos en orden descendente ya
que se estd minimizando). Después, cada particula (excepto la mejor) aprende de sus demostra-
dores, los cuales tienen mejores valores de aptitud.

e C;;(t) es el componente de influencia social (ver ecuacion (3.9)). La particula ¢ no
aprende de gbest. En realidad, lo hace del comportamiento colectivo de todo el ciimulo,
es decir, del comportamiento promedio de todas las particulas en el ciimulo actual,
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denotado por la ecuacién ([3.8]).

X0 = 3 X0 (33
ademas,
Cuilt) = K1) — Xy 1) (3.9

e ces el factor de influencia social, (ver ecuacion (3.10))) y es proporcional a la dimensio-
nalidad del problema.

e=0X%X — (3.10)

donde:

o 8 =0.01

e (w, ¢ y ¢2) son reemplazados por los coeficientes 7 (t), r2(t) y r3(t), que se generaran
aleatoriamente dentro del intervalo [0, 1].

El algoritmo [3] describe de forma general el funcionamiento del SL-PSO.
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Algoritmo 3 Algoritmo del SL-PSO
=0
M =100, « = 0.5,  =0.01
m= M + %1
€= X %
Para cada i = 1 to m hacer
inicializar de forma aleatoria X; en el cimulo
P = (1 - sty
Fin Para cada
/*comienza ciclo como en la figura /
Mientras no es satisfecha la condicion de parada hacer
Para cada i = 1 to m hacer
F; = f(X;(t)) /*f(X) es la funcion objetivo™/
Fin Para cada
actualizar la mejor solucion X*
aprendizaje:*/
ordenar el cimulo de acuerdo al valor de la aptitud en F
Para cada i =1 to m — 1 hacer
. corregir el comportamiento de X;(t)
pi(t) = randr(0,1) /*randr(a, b) genera un ntmero real aleatorio entre a y b*/
Si p;(t) < P entonces
Para cada j =1 to n hacer
k < rand(i + 1,m) /*rand(A, B) genera un nimero entero aleatorio entre Ay

[ I R e T e e e e e T
Y 229 0Ty 22

B*/
23: AX,L"]' (t + 1) =T (t) . AX,L"]' (t) + 7"2(t> . IZJ(t) + Tg(t) c€- Czyj(t)
24: Xiij(t+1)=X,,;(t)+ AX;;(t+1)
25: Fin Para cada
26: Fin Si
27: Fin Para cada
28: t=t+1
29: Fin Mientras
30: Salida: X*

3.3.3. Optimizacién mediante cimulos de particulas con aprendizaje
de maltiples estrategias para problemas de optimizacién a gran
escala

El algoritmo MSL-PSO (Multiple-strategy learning particle swarm optimization for large-scale
optimization problems), fue desarrollado en 2018 por Hao Wang [3]. En dicho trabajo, se verifica
la efectividad del algoritmo en la resolucion de problemas de optimizaciéon a gran escala para el
conjunto de problemas del CEC 2008 utilizando 100, 500 y 1000 dimensiones y problemas del
CEC"2010 con 1000 dimensiones en comparaciéon a algoritmos como el SL-PSO y CSO. En el
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MSL-PSO se adopta la idea del aprendizaje social del SLPSO [5] para actualizar la posicion de
cada individuo en la poblacion. Sin embargo, se agregan dos etapas con diferentes estrategias de
aprendizaje.

La primera etapa se utiliza para mejorar la capacidad de exploracion. Cada individuo explora
aprendiendo de los demostradores que tienen mejor desempeno. Para esto, el cimulo se ordenara
del peor al mejor individuo y cada uno explorara diferentes posiciones aprendiendo de sus demos-
tradores y de la posicion media de la poblacion actual. Todas las mejores posiciones de entre todas
las exploradas por su individuo correspondiente, seran parte de una nueva poblacién temporal. La
nueva poblacion temporal se ordenara en orden descendente segtin las aptitudes y seréd utilizada
por cada individuo para encontrar sus demostradores, basandose en el rango de la mejor solucion
explorada en la poblacién temporal y el rango del individuo en la poblacién actual. Se espera que
la segunda etapa equilibre la convergencia y la diversidad de la poblacién, para poder actualizar
la velocidad y la posicion de cada individuo

A continuacion describimos a mayor detalle el funcionamiento del algoritmo:

Se inicializa una poblaciéon Pop y se obtiene la aptitud inicial de cada individuo.

Luego se establece una condiciéon de paro del algoritmo. Mientras no se cumpla esta condicion,
el proceso se seguira repitiendo.

Todos los individuos se ordenaran segtin su aptitud en orden descendente. Es decir, los valores
maés altos (peores) quedaran al principio, mientras que los menores quedaran al final de la
lista (esto es asi porque se estd minimizando el problema).

Cada individuo explorara K., posiciones aprendiendo de sus demostradores y de la posicion
media de la poblacion actual siguiendo la idea del SL-PSO [5]. Para esto se utiliza el algoritmo
[}, el cual hace la exploracion de 1 a K, posiciones y a su vez recorre las D dimensiones
de cada posiciéon. Se selecciona aleatoriamente un demostrador para actualizar la velocidad
en la d-ésima dimension utilizando la ecuacién (3.11). Al finalizar el recorrido de las D
dimensiones se generara la k-ésima posicion candidata utilizando la ecuaciéon . Cada
una de estas K,,q, posiciones tienen poca probabilidad de ser iguales. Esto agrega diversidad
y la oportunidad de encontrar una mejor solucion.

voig = 17 - via(t) + 75 - (254(t) = ia(t)) + ¢ - 15 - (Ta(t) — zia(t)) (3.11)
donde:
o K4 es el nimero maximo de pruebas para cada individuo (k =1,2,..., Kpaz)-
e vk, es la velocidad actualizada (con aprendizaje) de la particula i en la d-ésima dimen-
sion, utilizando el demostrador k-ésimo (VVF = (vl vvly, ... vok))).
e v;4(t) es la velocidad del individuo i en el tiempo t (V;(t) = (v, vz, - - ., Uip)).
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e e¢s la media o posicion promedio del ctimulo en el tiempo ¢, como se indica en la ecuacion

(3-8) del SL-PSO.

o ¢, ¥ r5 y rf¥ son nimeros aleatorios generados uniformemente en el rango [0, 1] en la
k-ésima iteracion.

e ¢ es la probabilidad de aprendizaje social utilizada para definir el grado de aprendizaje
a partir de la posiciéon media de la poblacion.

xrk, = 2i4(t) + ool (3.12)

e 1% es la posicion actualizada (con aprendizaje) de la particula i en la d-ésima dimen-
sion, utilizando el demostrador k-ésimo (XX = (vok w0k, ... X XE)).
e 1;4(t) es la posicion del individuo i en el tiempo ¢ (X;(t) = (zs1, iz, - - -, Tip))-
Al finalizar el ciclo de K,,,, se evalta la aptitud de cada una de las posiciones candidatas

XX¥ y se elige la particula con la mejor aptitud. Esta sera guardada y denotada con z, para
su posiciéon y v, para su velocidad.

= Al finalizar el recorrido de NP tendremos una nueva poblaciéon N Pop compuesta de las
mejores posiciones probadas de cada individuo en Pop, que ahora se ordenaréan de forma

descendente.

= Luego se realiza la segunda etapa. En ésta, los demostradores de cada individuo se seleccionan
de dos subconjuntos de NPop (NPop = x.,Zea, ..., Tynp) Para actualizar la velocidad y
posicion de cada individuo en Pop como lo muestra la ecuacion (3.13)) y (3.14).

Vig(t + 1) =11 - vea(t) +ro - (xcjq — xcig(t)) + ¢ - 13 - (cka — xCiat)) (3.13)

donde:

e v, es la velocidad de la mejor posicion explorada para el individuo i (ve; = (Veit, Veins - - - s VeiD))-

e j vy k representan a los dos demostradores en N Pop de los cuales el individuo ¢ aprende
en la dimension d.

e ¢ es la probabilidad de aprendizaje social.
Tia(t + 1) = xcig + vig(t + 1) (3.14)
donde:
e 1.es la posicion de la mejor posicion explorada para el individuo @ (x; = (Zei1, Teiz, - - -, TeiD))-

En la figura se puede observar un ejemplo de como se pueden seleccionar dos demostra-
dores en la segunda etapa.
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peor Xi mejor
Pop 1 2 i .. | NP
T
demostradores
XCi
NPop 1 2 k .. | NP

conjunto 1 (demostradores)

|
conjunto 2 (demostradores)

Figura 3.7: Un individuo ¢ elige los demostradores para aprender. Para Pop elegira del conjunto
demostradores, mientras que para Npop el individuo puede elegir del conjunto 1 y del con-
junto 2. El rango de zc; en NPop es k, y el rango de x;(t) en Pop es j. Si k < j, entonces los
demostradores entre k y j se utilizaran para guiar al individuo a explotar una mejor solucién. De
lo contrario, cuando el rango de la mejor posicién explorada de un individuo ¢ en N Pop es mejor
que el del individuo 7 en Pop, significa que la mejor posicion explorada tiene un mejor rendimiento
entre N Pop que el individuo ¢ en Pop.

peor Xi mejor
Pop 1 2 j .. | NP
T
demostradores
XCi
NPop 1 2 k | .. .. | NP
N— T

conjunto 1 (demostradores)  conjunto 2 (demostradores)

Figura 3.8: Para evitar una convergencia prematura, también aprendemos de algunos perdedores
de la mejor solucion explorada. Si j < k, los perdedores entre j y k seran seleccionados como uno
de los demostradores. El otro demostrador se selecciona del conjunto 2, que esta compuesto por
todos los individuos que tienen mejor aptitud que la mejor posicion explorada

El algoritmo [4] describe de forma general el funcionamiento del MSL-PSO. El algoritmo [5 des-
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cribe la primera etapa de aprendizaje que proporciona la diversidad y el algoritmo [ describe la
segunda etapa para lograr el equilibrio entre diversidad y convergencia.

Algoritmo 4 Optimizacion de Cimulo de Particulas con Aprendizaje de Multiples Estrategias

(MSL-PSO)

1:

1%

10:

11:
12:

13:
14:
15:
16:

Entrada: Tamano de la poblacion NP, ntmero maximo de evaluaciones de aptitud
MAX FES
Inicializar una poblacion Pop
Evaluar la aptitud de cada individuo en Pop, fes = NP
Mientras fes < MAX FFES hacer
Ordenar la poblacién en orden descendente
Para cada i = 1 to NP hacer
Sondear K,,,, posiciones usando la técnica de aprendizaje social propuesta en [5] para
el individuo ¢ (ver Algoritmo
Evaluar estas K,,q, posiciones y mantener la mejor solucion entre estas K., soluciones
Fin Para cada
Ordenar la nueva poblacion N Pop, compuesta por la mejor posicion sondeada de cada
individuo en Pop, en orden descendente
Para cada : =1 to NP hacer
Encontrar dos subconjuntos en la nueva poblacion N Pop para el aprendizaje social del
individuo 7, y actualizar la poblacion Pop (ver Algoritmo @
Fin Para cada
fes = fes+ (Kpae +1) X NP
Fin Mientras
Salida: La mejor solucién y su valor de aptitud

Algoritmo 5 Sondeo de Posicion

10:

11

1
2
3
4
5:
6
7
8
9

: Entrada: Individuo ¢

: Para cada k=1 a K,,,,; hacer

Para cada d =1 a D hacer
Seleccionar aleatoriamente un individuo de sus demostradores
Actualizar la velocidad en la dimension d usando la ecuacion ((3.11))

Fin Para cada

Generar la posicion candidata k-ésima usando la ecuacion ((3.12))

: Fin Para cada

: Evaluar los valores de aptitud de estas posiciones candidatas

X = argmin{ f(x1), f(X2), ..., f(Xk,,..)}

: Salida: La mejor posicion sondeada x,;
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Algoritmo 6 Actualizaciéon de posicion

Entrada: La mejor posicién probada del individuo i (x);

Actualizar la velocidad y posiciéon utilizando las egs. y (3.14)), respectivamente;
Evaluar el valor de aptitud (fitness) del individuo i;
Si f(xi(t+ 1)) < f(grest) entonces
Gbest = Xz(t + 1)7
f(goest) = f(xi(t +1));
Fin Si
Salida: la posicion del individuo ¢ en la generacion ¢ + 1;
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Optimizacién global de gran escala

Los adelantos tecnologicos de los tltimos anos han dejado al descubierto la necesidad de encon-
trar mejores soluciones a problemas de optimizaciéon mas complejos. En este capitulo trataremos
con el tipo de problemas que cuentan con un gran nimero de variables. Si bien el aumento en la
capacidad de procesamiento de computo ha sido continuo, la “maldicién de la dimensionalidad”
continiia siendo una limitante al momento de buscar los mejores resultados. Por esta razom, a
principios de este siglo se popularizé la optimizacion global de gran escala (Large-Scale Global
Optimization, LSGO por sus siglas en inglés), la cual, a través de mecanismos novedosos, realiza
una bisqueda mucho mas eficiente para explorar la mayor cantidad de soluciones posibles, sin que
esto impacte significativamente en la cantidad de tiempo requerida [50]. Eventos como el IEEE
Congress on Evolutionary Computation (CEC), la Genetic and Evolutionary Computation Con-
ference (GECCO) y Parallel Problem Solving from Nature (PPSN), entre otros, han ayudado a
popularizar atiin més la optimizacion global de gran escala.

Un primer objetivo de los eventos antes mencionados fue crear una referencia para la evaluacion
de la calidad en los algoritmos para optimizacion a gran escala, ya que un problema cumun que se
presentaba, era que el trabajo existente estaba limitado a los problemas de prueba utilizados en
estudios individuales. Sin embargo, esta desventaja se ha resuelto al proponer pruebas estandar
disenadas especificamente para probar el rendimiento de algoritmos de optimizacion de gran escala.
Por ejemplo, el 2008 IEEE Congress on Evolutionary Computation (CEC’2008) [51] fue el primer
congreso donde se propuso un conjunto de problemas de referencia disenados especialmente para
optimizacion global de gran escala.
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Capitulo 4. Optimizacion global de gran escala

4.1. Definiciones utilizadas en los conjuntos de problemas
para optimizacién de alta dimensionalidad

Antes de presentar los principales conjuntos de problemas especializados para probar los algorit-
mos basados en ctimulos de particulas para optimizacion de alta dimensionalidad, proporcionamos
algunos conceptos relacionados con las caracteristicas generales de las funciones utilizadas para
tal objetivo.

Podemos expresar un problema de ecuaciones no lineales simultaneas como lo muestra la ecua-
cion donde, R™ denota el espacio euclidiano de n dimensiones. La ecuacion (4.1)) es la forma
estandar de representar un sistema de n ecuaciones no lineales con n incoégnitas, con la convencion
de que el lado derecho de cada ecuacion es cero [52], y donde x, es la variable con la que se alcanza
el valor optimo F(x.).

Dado: F': R" — R", encontrar: x, € R", para el cual F(x,) =0 ¢ R" (4.1)

Definicion 1. Una funcion f(x) es separable si y solo si:

arg min f('xly"'vxD):(argml’nf<xla"')7'”argminf(”'al‘D))a
zp

(z1,,xp T;

Es decir, una funciéon de D variables es separable si puede reescribirse como una suma de D
funciones de una sola variable. Si una funcion f(z) es separable, sus parametros x; se llaman
independientes [53].

Definicién 2. Una funcion f(x) es parcialmente separable con m subcomponentes indepen-
dientes si y solo si:

argmin f(x) = (argmfnf(a:l,...),...,argmfnf(. . ,xm)) ,
T 1 T

m

donde x = (z1,...,2p)" es un vector de decision de D dimensiones, y x, ..., x,, son subvectores
disjuntos de x, con 2 < m < D.

Como un caso especial de la definiciéon 2, una funciéon es completamente separable si los subvec-
tores w1, ..., &, son unidimensionales (es decir, m = D).

Definicion 3. Una funcion f(x) es completamente no separable si cada par de sus variables de
decision interacttian entre si.
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Definiciéon 4. Una funcién es parcialmente aditiva separable si tiene la siguiente forma general:
m
Fx) = filxi),
i=1

donde z; son vectores de decision mutuamente excluyentes de f;, x = (z1,...,2p)' es un vector
de decision global de D dimensiones, y m es el nimero de subcomponentes independientes.

4.2. Conjuntos de problemas para optimizaciéon de alta di-
mensionalidad
4.2.1. Conjunto de problemas de prueba del CEC’2008

Tang et al. [54] disenaron el conjunto de problemas del CEC’2008. Estos problemas fueron
creados especificamente para probar algoritmos de optimizacion global para espacios de alta di-
mensionalidad, como parte de una sesion especial y una competencia que se centré en optimizacion
a gran escala (de 100, 500 y 1000 dimensiones). Los autores mencionan dos posibles causas del
deterioro del rendimiento de los algoritmos cuando se incrementa la dimensionalidad del espacio
de busqueda. La primera es el aumento de la complejidad del problema cuando aumenta su ta-
mano y la otra es que el espacio de soluciones del problema aumenta exponencialmente cuando se
incrementa la dimensionalidad.

Los problemas de prueba son basicamente funciones que se basan en los propuestos para la
competencia de optimizacion global realizada durante el CEC’2005 y que pueden ser unimodales o
multimodales y que a su vez, pueden ser separables o no separables buscando parecerse a problemas
del mundo real. En la tabla se listan los problemas utilizados.

Tabla 4.1: Para realizar cada prueba se asign6 un nimero fijo de evaluaciones de 5000 x
dimensionalidad. El rendimiento del algoritmo lo indica el valor de la funcién objetivo al finalizar
dichas evaluaciones. Cada prueba se ejecutd 25 veces para obtener una media del rendimiento.
(puede verse a mayor detalle cada funcion del CEC’2008 en el apéndice [A

Nombre de la funcién Tipo Separabilidad
f1  Funcién esfera desplazada Unimodal Separable
fo  Problema de Schwefel desplazado ~ Unimodal No separable
f3  Funcion de Rosenbrock desplazada Multi-modal No separable
f1 Funciéon de Rastrigin desplazada Multi-modal Separable
f5 Funciéon de Griewank desplazada Multi-modal No separable
fe Funcion de Ackley desplazada Multi-modal Separable
fr  Funciéon FastFractal “DoubleDip” Multi-modal No separable
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El conjunto de problemas disenado para el CEC’2008 probé la eficiencia de distintas metaheu-
risticas tales como evolucion diferencial, PSO y los algoritmos genéticos [55]. Con relacion a las
variantes de PSO para optimizacion global de gran escala, los que reportaron los mejores resulta-
dos fueron: Efficient Population Utilization Strategy for Particle Swarm Optimizer (EPUS-PSO)
[56] v Dynamic multi-swarm particle swarm optimizer with local search for Large Scale Global
Optimization (DMS-PSO, por sus siglas en inglés) [57]. Asi mismo, el conjunto de problemas del
CEC’2008 fue utilizado en el articulo donde se propuso el algoritmo de CSO [4] el cual, utilizamos
como base para aplicar nuestra mejora. En la tabla mostramos los resultados reportados con
estos tres algoritmos antes mencionados.

Tabla 4.2: Comparacion del rendimiento de los algoritmos basados en PSO que concursaron en
el CEC’2008 (EPUS-PSO y DMS-PSO) y el algoritmo base que utilizamos para nuestra mejora
(CSO).
Algoritmo f; fy f3 f4 fs fe f7
EPUS-PSO 5.53E+02 4.66E+01 8.37E+05 7.58E+03 5.89E+00 1.89E+01 -6.62E-+03
DMS-PSO 0.00E+00 9.15E+01 8.98E+09 3.84E+03 0.00E+00 7.66E+00 -7.51E-+03
CSO 1.09E-21 4.15E+01 1.01E+03 6.89E+02 2.26E-16 1.21E-12 -3.83E+06

En la clasificacion final, el primer lugar lo obtuvo el Multiple Trajectory Search for Multiobjetive
Optimization (MTS, por sus siglas en inglés) [58], mientras que el DMS-PSO tuvo el lugar 5 y el
EPUS-PSO tuvo el lugar 8 [59].

4.2.2. Conjunto de problemas de prueba del CEC’2010

En el conjunto de problemas de prueba del CEC’2010, presentado por Ke Tang, Xiaodong Li,
P. N. Suganthan, Zhenyu Yang y Thomas Weise [59] se menciona otra posible causa del deterioro
que sufren los métodos de optimizacion a medida que aumenta la dimensionalidad del espacio de
busqueda. Esta se refiere al cambio de las caracteristicas de una funciéon cuando aumenta la escala.
Por ejemplo, la funcién de Rosenbrock (ver figura es unimodal en dos dimensiones, pero se
convierte en una funcién multimodal cuando el nimero de dimensiones aumenta (Hansen y Deb
descubrieron que la funcién de Rosenbrock no es una funcién unimodal en dimensiones superiores
[1]). Esto provoca que el método de optimizacion pueda dejar de funcionar a medida que aumenta
la dimensionalidad.
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Figura 4.1: La funcién de Rosenbrock es una funciéon muy utilizada en optimizaciéon numérica y
se caracteriza por su valle parabdlico estrecho, donde se encuentra su 6ptimo global [I].

Este conjunto de problemas de prueba fue disenado con base en el concepto de separabilidad y
no separabilidad (en este contexto, lo comparan con la epistasis en biologia).

El conjunto de problemas de prueba tiene cuatro tipos de problemas de alta dimensionalidad:

= Funciones separables

= Funciones parcialmente separables, con un pequeno nimero de variables dependientes, y las
restantes independientes

» Funciones parcialmente separables con miltiples subcomponentes independientes, cada uno
de los cuales es m no separable

» Funciones completamente no separables

Para generar funciones con distintos grados de separabilidad, los autores proponen dividir las
variables en grupos. Después, para cada grupo deciden si se mantienen independientes o se provoca
una interaccion entre las variables por medio de alguna técnica de rotaciéon de coordenadas [60]
y finalmente se aplica una funcion de aptitud de las mostradas en la tabla [£.3] a cada grupo de
variables.
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Tabla 4.3: Funciones base utilizadas en el conjunto de problemas de prueba del CEC "2010. Solo
la primera funcién es separable y es utilizada a modo de demostracion. Ver el apéndice [B| para
mayor informacion.

Funcién base

Funcién esférica

Funcioén eliptica rotada
Problema 1.2 de Schwefel
Funcién de Rosenbrock
Funcién de Rastrigin rotada
Funcion de Ackley rotada

O T b= | W DN+~

Con relacion al conjunto de problemas de prueba, éste tiene 20 funciones (ver tabla para ser
utilizadas con D = 1000. Se propone un parametro m para controlar el nimero de variables en cada
grupo y definir el grado de separabilidad. Se establece m = 50 pero este parametro es modificable.
Ademas, esta version es una mejora de los problemas de prueba utilizados para la competencia de
optimizacion global a gran escala del CEC’2008 que no tenia funciones parcialmente no separables
que ayudaran para saber mas del comportamiento del algoritmo en estos escenarios.

Tabla 4.4: Funciones de prueba utilizadas en el CEC’2010. Puede verse a mayor detalle cada

funcion en el apéndice

Nombre de la funcién Tipo Separabilidad
fi Funcién eliptica desplazada Unimodal Separable
fo Funcién de Rastrigin desplazada Multi-modal Separable
f3  Funcién de Ackley desplazada Multi-modal Separable
f1 Funcién eliptica desplazada y m-rotada de grupo simple Unimodal m no separable
f5  Funciéon de Rastrigin desplazada y m-rotada de grupo simple Multi-modal m no separable
fe  Funcién de Ackley desplazada y m-rotada de grupo simple Multi-modal m no separable
fr Problema de Schwefel 1.2 desplazado y m-dimensional de grupo simple Unimodal m no separable
fs Funcién de Rosenbrock desplazada y m-dimensional de grupo simple Multi-modal m no separable
fo  Funcién eliptica desplazada y m-rotada grupo % Unimodal m no separable
fio Funcién de Rastrigin desplazada y m-rotada grupo % Multi-modal m no separable
fi1  Funcién de Ackley desplazada y m-rotada grupo % Multi-modal m no separable
fi2  Problema de Schwefel 1.2 desplazado y m-dimensional grupo % Unimodal m no separable
fi3 Funcion de Rosenbrock desplazada y m-dimensional grupo 5 Multi-modal m no separable
f14 Funcién eliptica desplazada y m-rotada grupo % Unimodal m no separable
fis Funcién de Rastrigin desplazada y m-rotada grupo 7% Multi-modal m no separable
fie  Funcién de Ackley desplazada y m-rotada grupo % Multi-modal m no separable
fir  Problema de Schwefel 1.2 desplazado y m-dimensional grupo % Unimodal m no separable
fis Funcién de Rosenbrock desplazada y m-dimensional grupo % Multi-modal m no separable
fio Problema de Schwefel 1.2 desplazado Unimodal No separable
f20  Funcién de Rosenbrock desplazada Multi-modal No separable

El conjunto de problemas disenado para el CEC’2010 probo la eficiencia de distintas metaheuris-
ticas tales como evolucion diferencial, PSO y algoritmos genéticos [61]. Con relacion a las variantes
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de PSO para optimizacion global de gran escala, fue probado el Dynamic Multi-Swarm Particle
Swarm Optimizer with Subregional Harmony Search (DMS-PSO-SHS) [62]. Asi mismo, el conjunto
de problemas del CEC’2010 fue utilizado en el algoritmo de MSLPSO |[3] el cual, forma parte de un
grupo de algoritmos que tomamos como referencia para elegir uno como base para nuestra mejora.
En la tabla 4.5 mostramos los resultados reportados con los algoritmos antes mencionados.

Tabla 4.5: Comparaciéon del rendimiento de los algoritmos en las funciones de la 1 a la 20 del
conjunto de problemas de prueba del CEC’2010.
Funcion DMS-PSO-SHS MSLPSO

f 2.6144E-19 8.31E-19
£y 7.1637E+01 7.92E102
1, 1.2825E-12 1.45F-13
£ 2.0411E+11 5.30E+11
s 6.1023E+07 5.98E106
s 5.8392E-05 9.07E-08
fr 1.3440E+03 9.12E-02
f 1.0250E+07 8.16E106
o 7.3404E+06 1.23E+07
f10 5.2594E+03 6.55E4+03
fu 3.4766E+01 5.83E-12
f1o 6.0203E+02 1.06E-+04
fia 1.0087E+03 4726402
fia 1.6726E4+07 1.38E-+07
fis 4.0071E+03 7.06E 102
fi6 6.4927E-+01 711E-12
fir 1.1444E 103 5.56E 104
fis 2.0402E+03 1.27E+03
f1o 1.1031E+06 8.01E+06
Fao 2.8414F 102 9.37E103

En la clasificacion final del concurso, el primer lugar lo obtuvo el Memetic algorithm based on
local search chains for large scale continuous global optimization (MA-SW-Chains por sus siglas
en inglés) [63], mientras que el DMS-PSO-SHS tuvo el tercer lugar [62].

4.2.3. Conjunto de problemas de prueba del CEC’2013

En el conjunto de prueba del CEC 2013 [59], se propusieron problemas atin mas desafiantes
para los algoritmos de optimizacion global a gran escala. Se introdujeron obstéculos adicionales y
configuraciones més complejas en los problemas para poner a prueba la capacidad de los algoritmos
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para superar barreras y explorar eficientemente todo el espacio de busqueda. El conjunto de prueba
del CEC 2013 hizo énfasis en problemas de 1000 dimensiones.

Se incluyeron funciones en las cuales se requeria que los algoritmos utilizaran diferentes estrate-
gias de busqueda en distintas fases del proceso de optimizacion, lo que permitié poner a prueba la
capacidad de los algoritmos para adaptarse y cambiar de estrategia segin fuera necesario. Ademas,

se incluyen problemas de alta dimensionalidad mencionados tanto en el conjunto de problemas del
CEC’2008 como en el conjunto del CEC’2010:

= El espacio de busqueda crece exponencialmente a medida que el nimero de variables de
decision crece

= Las propiedades del espacio de biisqueda pueden cambiar a medida que el nimero de dimen-
siones crece

= La evaluacion de los problemas de gran escala es muy costosa

= En algunos problemas la interacciéon entre las variables hace que no puedan optimizarse
de manera independiente para obtener el 6éptimo global de una funcién objetivo, es decir,
pueden ser no separables.

Para hacer el conjunto de problemas méas cercano a problemas reales se han introducido las
siguientes caracteristicas:

= Tamanos no uniformes de subcomponentes: Las funciones con subcomponentes uniformes, no
son representativas de muchos problemas del mundo real. Para representar mejor esta carac-
teristica, las funciones en el conjunto de problemas contienen subcomponentes de diferentes
tamanos.

= Desequilibrio en la contribuciéon de los subcomponentes: En muchos problemas del mundo
real, es probable que los subcomponentes de una funcién objetivo sean diferentes en su na-
turaleza, y por lo tanto, su contribucion al valor global de la funciéon objetivo puede variar.
Al introducir tamanos de subcomponentes no uniformes, la contribucién de los diferentes
subcomponentes sera automéaticamente diferente, siempre que tengan tamanos distintos. Sin
embargo, la contribucién de un subcomponente puede ser amplificada o atenuada al multi-
plicar un coeficiente con el valor de cada funcién subcomponente.

= Funciones con subcomponentes superpuestos: En el conjunto de problemas del CEC’2010
los subcomponentes son subconjuntos disjuntos de las variables de decisién por lo que es
tedricamente posible descomponer un problema de gran escala en un agrupamiento ideal
de las variables de decisién. Sin embargo, cuando existe algiin grado de superposicion entre
los subcomponentes, no habra un agrupamiento 6ptimo tnico de las variables de decision.
Esto representa un desafio para los algoritmos de descomposicion, ya que deben detectar
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la superposicion y disenar una estrategia adecuada para optimizar dichos subcomponentes
parcialmente interdependientes.

= Nuevas transformaciones a las funciones base: Las funciones del CEC’2010 son muy regulares
y simétricas, por lo que se les aplicaron algunas transformaciones no lineales con el objetivo
de romper la simetria e introducir ciertas irregularidades en el paisaje de aptitud [13|. Las
transformaciones aplicadas no alteran las propiedades de separabilidad y modalidad de las
funciones. Las tres transformaciones aplicadas son:

e Mal condicionamiento: El mal condicionamiento se refiere al cuadrado de la relacion
entre la direccion méas grande y la mas pequena de las lineas de contorno [13|. En el
caso de un elipsoide, si éste se estira en la direccién de uno de sus ejes mas que en los
demés, se dice que la funcién esta mal condicionada.

e Ruptura de simetria: La mayoria de las funciones de referencia tienen patrones regulares.
Es deseable introducir cierto grado de irregularidad aplicando alguna transformacion.

e Irregularidades: Algunos operadores que generan variaciones genéticas, especialmente
aquellos basados en una distribucién gaussiana, son simétricos, y si las funciones tam-
bién son simétricas, existe un sesgo a favor de los operadores simétricos. Para eliminar
dicho sesgo, es deseable una transformacion que rompa la simetria.

Se han definido cuatro categorias principales de problemas a gran escala (ver tabla :

= Funciones completamente separables:

e f; : funcioén eliptica
o f5 : funcién Rastrigin

e f3 : funcion Ackley
= Dos tipos de funciones parcialmente separables:

e Funciones parcialmente separables con un conjunto de subcomponentes no separables
y un subcomponente completamente separable.
o f4 : funcioén eliptica
o f5 : funcion Rastrigin
o fg : funcién Ackley
o f7 : problema de Schwefel 1.2
e Funciones parcialmente separables con solo un conjunto de subcomponentes no separa-
bles y sin subcomponentes completamente separables.
o fg : funcién eliptica
o fo : funcion Rastrigin

o fio : funcién Ackley
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o fi1 : problema de Schwefel 1.2
= Funciones con subcomponentes superpuestos:

e fio : funcion de Rosenbrock

e Funciones superpuestas con subcomponentes conformes: en este tipo de funciones, las
variables de decisiéon compartidas entre dos subcomponentes tienen el mismo valor
6ptimo con respecto a ambas funciones de subcomponentes. En otras palabras, la opti-
mizacion de un subcomponente puede mejorar el valor del otro subcomponente debido
a la optimizacion de las variables de decisiéon compartidas.

o fi3 : funcién de Schwefel con subcomponentes superpuestos conformes

e Funciones superpuestas con subcomponentes conflictivos: en este tipo de funciones,
las variables de decision compartidas tienen un valor 6éptimo diferente con respecto a
cada una de las funciones de subcomponentes. Esto significa que la optimizacion de un
subcomponente puede tener un efecto perjudicial en el otro subcomponente superpuesto
debido a la naturaleza conflictiva de las variables de decisién compartidas.

o fi4 : funcién de Schwefel con subcomponentes superpuestos conflictivos

= Funciones completamente no separables

e fi5 : problema de Schwefel 1.2

Tabla 4.6: Funciones base utilizadas en el CEC’2013. Pueden verse mas detalles de cada funcién
en el Apéndice [C]

Nombre de la funcién Tipo Separabilidad
f1 Funcioén eliptica Unimodal Completamnte separable
fa Funcién de Rastrigin Unimodal Completamnte separable
f3 Funcién de Ackley Unimodal Completamnte separable
f1 Funcién eliptica Unimodal Separable con subcomponentes separables
f5 Funcion de Rastrigin Multi-modal Separable con subcomponentes separables
fe Funcién de Ackley Multi-modal Separable con subcomponentes separables
fr Problema de Schwefel 1.2 Multi-modal Separable con subcomponentes separables
fs Funcioén eliptica Multi-modal Separable con subcomponentes no separables
fo Funciéon de Rastrigin Multi-modal Separable con subcomponentes no separables
f1o Funcién de Ackley Multi-modal Separable con subcomponentes no separables
fn Problema de Schwefel 1.2 Multi-modal Separable con subcomponentes no separables
fi2 Funcion de Rosenbrock Multi-modal Funciones Superpuestas

f13  Funcién de Schwefel con subcomponentes Multi-modal Funciones Superpuestas
superpuestos sin conflicto

fia  Funcién de Schwefel con subcomponentes Multi-modal Funciones Superpuestas
superpuestos con conflicto

fis Problema de Schwefel 1.2 Multi-modal Completamente no separable

El conjunto de problemas disenado para el concurso del CEC’2013 probo la eficiencia del algo-
ritmo para optimizacion global de gran escala denominado Large scale global optimization: Experi-
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mental results with MOS-based hybrid algorithms [64] [3]. En la tabla 1.7 mostramos los resultados
reportados para el algoritmo antes mencionado.

En la clasificacion final del concurso, el primer lugar lo obtuvo el Large scale global optimization:
Ezperimental results with MOS-based hybrid algorithms [64].

El conjunto de problemas del CEC’13 también fue utilizado para la competencia sobre Opti-
mizacion Global a Gran Escala del CEC’15. En esta ocasion se probo la eficiencia de distintas
metaheuristicas tales como evolucion diferencial, PSO y algoritmos genéticos [65]. Para la seccion
de optimizacion global a gran escala al parecer no compitieron algoritmos basados en ctimulos de
particulas. Sin embargo, se probaron algoritmos como el Smoothing and Auxiliary Functions Based
Cooperative Coevolution for Global Optimization (SACC) [66], el Large Scale Global Optimization:
Experimental Results with MOS-based Hybrid Algorithms (MOS) [64], el Scaling Up Covariance
Matriz Adaptation Evolution Strategy using Cooperative Coevolution (CC-CMA-ES) [67]. En la
tabla [4.7] mostramos los resultados reportados con estos algoritmos antes mencionados.

Tabla 4.7: Comparaciéon del rendimiento de los algoritmos en las funciones de la 1 a la 15 del

conjunto de problemas de prueba del CEC’2013 en el concurso del CEC’2015.
Funciéon SACC MOS CC-CMA-ES

fi 2.73E-24  0.00E+00 5.77E- 09
f 7.06E+02 8.32E+02  1.33E+ 03
3 L.11IE+00 9.17E-13 1.51E-13
fa 4.56E+10 1.74E-+08 2.19E+09
fs 7.74E4+06  6.94E406 7.28E+14
T 2.47E+05 1.48E+05 5.83E+05
fr 8.98E-+07 1.62E+04  7.44E+06
fs 1.20E+15 8.00E+12 3.88E+14
fo 5.98E-+08 3.83E-+08 3.71E+08
f10 2.95E4+07 9.02E+05 7.55E-+05
fi1 2.78E+09 5.22E+07 1.59E408
fi2 8.73E+02 2.47TE+02 1.27E403
f13 1.78E+09 3.40E+06 6.69E-+08
fia 1.75E+10 2.56E+07  7.10E-+07
J15 2.01E+06 2.35E+06 3.03E+07

En el la clasificacion final del concurso, el primer lugar lo obtuvo el Large scale global optimiza-
tion: Ezxperimental results with MOS-based hybrid algorithms [64].
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4.2.4. Conjuntos de Problemas del CEC para problemas de optimiza-
cion global de gran escala (LSGO)

A medida que avanza el desarrollo de los métodos de optimizacion global a gran escala, ha
sido necesario agregar distintos comportamientos que se presentan en altas dimensiones. Esto ha
ayudado a mejorar los problemas de prueba propuestos en el sentido de que se asemejan mas a
problemas del mundo real. Desde la publicaciéon del primer conjunto de problemas de prueba para
altas dimensiones (del CEC’2008) éstos se han ido actualizando constantemente. Sin embargo,
existe la necesidad de contar con mas divulgacion, coédigo fuente disponible, repositorios publicos
nuevos, etc. que faciliten la generacion de problemas de gran escala para poner a prueba los
algoritmos que son desarrollados constantemente. En la tabla podemos ver los conjuntos de
problemas utilizados en las distintas ediciones del CEC especialmente disenados para LSGO.

Tabla 4.8: Caracteristicas de los conjuntos de prueba con problemas de gran escala utilizados en
diferentes ediciones del IEEE CEC

Edicion Nombre del Conjunto de Dimensionalidad Caracteristicas Principa-

Problemas utilizado les

2008 CEC’2008 Competition on 100, 500 y 1000 Siete funciones que deben uti-
Large Scale Global Optimiza- lizarse con 100, 500 y 1000
tion dimensiones (21 problemas de

minimizacion)

2010 Benchmark Functions for the 1000 variables 20 problemas. Se utilizaron
CEC’2010 Special Session and funciones totalmente separa-
Competition on Large-Scale bles, no separables y parcial-
Global Optimization mente separables

2012 CEC2010 Benchmark for 1000 variables Optimizacién con restricciones
Constrained Optimization lineales y no lineales, aplicados

en problemas de gran escala.
2013 CEC2013 Large-Scale Bench- 1000 variables Mejora del conjunto  del
mark Functions CEC2010, con funciones més
dificiles, no separables y
complejas en alta dimensiona-

lidad.
2015 CEC2013 Large-Scale Bench- 1000 variables Se utiliz6 el mismo conjunto
mark Functions de problemas del CEC "2013.

En ediciones mas recientes como por ejemplo en el concurso del CEC’2021 [68|, encontramos
el algoritmo A Modified APSODEE for Large Scale Optimization [69] el cual, presenta mejores
resultados que sus antecesores. Aunque no se encontro registro de algin concurso sobre LSGO, los
resultados son competitivos y los presentamos en la tabla [4.9]
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Tabla 4.9: Resultados de la media en cada una de las funciones del conjunto de pruebas del
CEC’2013 que se utiliz6 en el concurso del CEC’2021.
Funcion MAPSODEE

f 1.53E-21
f 5.67TE+02
s 2.16E+01
f4 7.85E+08
fs 6.18E+05
o 1.06E-+06
fq 4.93E+04
s 3.05E+13
fo 3.63E+07
fio 9.39E+07
fin 1.80E+07
fro 9.95E+02
J13 6.38E+06
fra 1.50E+07
fis 2.36E+06
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Capitulo 5

Diseno de un algoritmo de PSO para alta
dimensionalidad

El algoritmo disenado en la presente tesis tiene como finalidad mejorar los resultados hasta
ahora obtenidos por otras versiones basadas en PSO para problemas de gran escala (es decir, para
problemas de 100 o mas variables). Por otro lado, también se busca tener en lo posible un algoritmo
sencillo. Una forma en que este objetivo puede llevarse a cabo es, tomar como base un algoritmo del
estado del arte que muestre resultados competitivos y modificarlo o aplicarle nuevas estrategias
de busqueda que le ayuden a obtener mejores soluciones (nosotros intentaremos manipular la
exploracion y explotacion del cimulo de particulas segtn el tipo de espacio de biisqueda en el que
se crea ésta). Una vez realizada la mejora, usaremos el conjunto de problemas del CEC’2013 para
verificarla.

5.1. Un diseno mejorado, con base en el algoritmo CSO

Para la eleccion del CSO (ver algoritmo [2)) como base de nuestro trabajo, lo primero que se hizo
fue comparar el rendimiento de varios algoritmos del estado del arte y luego, seleccionamos aquel
que consideramos que era la mejor opcion. El criterio para la eleccion del algoritmo deba cumplir
con tres aspectos importantes:

= Proporcionar resultados competitivos.
= Implementacion sencilla con relacion a la mejora que proporcionaba.

» Funcionar en alta dimensionalidad.
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Para la comparacion se utilizo el CSO [4], el SL-PSO [5] y el MSL-PSO [3], pues todos ellos
son representativos del estado del arte en el area. En la tabla se muestra un resumen de las

caracteristicas de estos algoritmos.

Tabla 5.1: Comparaciéon de los algoritmos CSO, SL-PSO y MSL-PSO.

Algoritmo Ano y Autor Caracteristicas Ventajas Desventajas Conjunto de
principales problemas y
pruebas con
1000 dimensio-
nes
CSO [ 2013, Cheng y Shi - Se basa en - Mejor rendi- - Sensible a la - Conjunto de
competencias miento en pro- inicializacion problemas del
entre particulas blemas de alta - Puede reque- CEC’2008
- Introduce la dimensionalidad rir ajuste ma- - Pruebas en fun-
idea de lider y - Buena explora- nual de parame- ciones: F1-F7
seguidor cion y explota- tros
- Principio de cién
funcionamiento
sencillo
SL-PSO [5] 2015, Zheng et al. - Integra apren- - Mejora la - Mayor com- - Conjunto de
dizaje social convergencia plejidad compu- problemas del
para mejorar el en problemas tacional debido CEC2008
comportamiento escalables al calculo del - Pruebas en fun-
del cimulo - Reduce la aprendizaje ciones: F1-F7
- Cada parti- probabilidad de social
cula adapta su convergencia
comportamiento prematura
basédndose en
experiencias
compartidas
MSL-PSO [3] 2017, Cheng et al. - Combina estra- -  Flexible y - Complejo de - Conjunto de
tegias multiples adaptable a implementar de- problemas del
en el aprendizaje diversas configu- bido a la gestion CEC’2008 y del
- Uso eficiente de raciones de multiples es- CEC’2010

diferentes méto-
dos de aprendi-
zaje en paralelo

- Resuelve pro-
blemas grandes
con mayor efica-
cia

trategias

- F1-F7 y F1-F20

Después, se obtuvieron los programas de cada algoritmo propuesto (el codigo fuente del algo-
ritmo MSL-PSO no se pudo obtener, por tal motivo, se desarroll6 una implementaciéon propia con
base en [3]).

Una vez se tuvieron los programas (en C), se ejecutaron para poder hacer una comparativa de
resultados. Primero se ejecutaron los programas para el conjunto de problemas CEC’2008 y se
compararon los resultados con lo reportado por los autores de cada articulo. Con esto, se verifico
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que el funcionamiento del codigo fuera el correcto, lo cual se puede apreciar en la tabla [5.2
Con respecto a la comparacion de resultados de las tres versiones propuestas, pudimos verificar
que para el conjunto de problemas CEC’2008, se presenta una ligera ventaja del algoritmo CSO
(gana en tres problemas), frente al SL-PSO (gana en dos problemas) y el MSL-PSO (gana solo
en un problema) como puede verse también en la tabla . Podemos decir que las estrategias
utilizadas por los diferentes algoritmos tienen un efecto similar en las caracteristicas del conjunto
de problemas de gran escala del CEC’2008.

Tabla 5.2: Comparacion de la media(u) de los algoritmos de PSO de alta dimensionalidad utili-
zando el conjunto de problemas del CEC’2008. Se marcaron con color verde los mejores resultados
obtenidos de los programas proporcionados por cada autor (con excepcion del MSL-PSO, el cual
se implement6 ya que no se disponia del codigo fuente por parte del autor).

Problema Optimo CSO CSO SL-PSO SL-PSO (MSLPSO) (MSLPSO)
(10004) Global (Resultados (Implementacion) (Resultados (Implementacion) (Resultados (Implementacion)
de Articulo [4]) CEC2008) de Articulo [5]) CEC2008) de Articulo [3]) (CEC’2008)
I 1.09E-21 1.07E-21 7.10E-23 7.11E-23 9.33E-25 8.12E-19
F 0 o? 9.30E-46 3.94E-48 1.73E-36
o 3.05E-23 1.98E-24 1.31E-18
o 4.15E+01 3.87E+01 8.87TE+01 1.65E+02 1.61E+01 8.80E+03
B 0 o’ 1.29607 8.14472 5.03E+04
o 1.13845 2.8539 224.300
Iz 1.01E+403 9.94E+02 1.04E403 2.59E+03 9.75E+02 2.20E+01
F 0 o? 481.466 10216300 2.12E-05
o 21.9423 3196.29 0.004610
7 6.89E+02 7.07TE+02 5.89E+02 9.82E+03 5.50E+02 1.31E+10
Ey 0 o’ 1421.7 13288.7 1.22E+19
o 37.7054 115.277 3.48E+09
n 2.26E-16 2.22E-16 4.44E-16 4.66E-16 1.10E-16 8.78E+05
Fy 0 o? 6.78E-42 1.97E-33 1.43E+10
o 2.60E-21 4.44E-17 120000
n 1.21E-12 1.19E-12 3.44E-13 3.44E-13 1.11E-14 1.07TE+06
Fy 0 o? 4.38E-28 2.63E-29 1.81E+06
o 2.09E-14 5.13E-15 1345.00
I -3.83E+406 -3.83E+06 -1.30E+04 -1.66E+06 -3.00E+4-04 -1.12E+408
F; 0 o? 2.33E+09 4.33E+09 3.15E+16
o 48309.5 65841.6 1.77E+08

Una segunda prueba consistié en comparar los resultados obtenidos de la ejecuciéon de cada
algoritmo, esta vez, utilizando el conjunto de problemas del CEC’2010. Pudimos observar que la
implementacion de MSL-PSO ya no sigui6 los resultados reportados por sus autores [3]. Aun asi,
a modo de referencia, se decidi6é continuar con el codigo fuente disponible y reportar los resultados
obtenidos. Otra observacion es que comenzamos por obtener mejores resultados con el algoritmo
CSO que con el SL-PSO, como lo muestra la tabla [5.3]
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Tabla 5.3: Comparacion de la media(u) de los algoritmos de PSO de alta dimensionalidad (CSO,
SLPSO y MSLPSO). En verde se marca la mejor solucion a cada problema para el conjunto de
problemas del CEC’2010. Como se puede observar, el algoritmo CSO obtiene los mejores resultados.

Problema o6ptimo CSO SL-PSO MSLPSO
(10004) global (codigo base) (codigo base) (codigo base)

CEC’2010 CEC’°2010 CEC’2010
0 4.29E-17 2.20E-18 1.14796e-19
Fy o2 9.39E-36 3.50E-39 1.43212e-40
o 3.06E-18 5.92E-20 1.19671e-20

0 7.52E+03 9.73E+4-03 1.37E-+04

Fy o2 35703.4 7976.23 4858.23

o 188.953 89.3097 69.701

0 2.40E-09 3.64E-13 2.12E+01

F3 o2 3.92E-20 1.32E-29 0.0016986
o 1.98E-10 3.64E-15 0.0412141

[ 8.90E+11 6.79E+11 6.79E+14

Fy o2 3.72E+-22 1.46E-+22 6.12E+4-27
o 1.93E+11 1.21E+11 7.82E+13

0 8.75E-+06 1.18E-+07 7.99E4-07

F5 o2 2.53E+412 9.98E+12 2.87TE+14
o 1.59E+-06 3.16E+4-06 1.69E-+07

0 9.00E-07 2.16E+401 1.32E-+07

Fy o2 8.70E-16 2.68E-05 6.24E+4-12
o 2.95E-08 0.00518325 2.49E-+06

0 1.84E-+04 1.21E+04 1.38E+11

F7 o2 18625900 41117500 3.35E+420
o 4315.77 6412.29 1.83E+10
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Problema o6ptimo CSO SL-PSO MSLPSO
(10004) (codigo base) (codigo base) (codigo base)
CEC’2010 CEC’’2010 CEC’2010
i 3.86E+07 2.78E+07 6.02E+07
Fy o2 3.95E+09 3.98E+10 1.34E-+15
o 62917 199600 3.66E-+07
i 1.52E+11 2.94E+07 2.79E+07
Fy o2 1.34E-+10 7.04E+11 2.16E+12
o 15796 839301 1.46E+-06
0 1.07E+04 1.06E-+04 1.44E-+04
Fi o2 2201.13 0091.92 3689.5
o 46.9162 71.3577 60.7413
0 7.42E+401 2.36E+02 2.37E+402
Fiq o2 757.825 0.0248536 0.015176
o 27.5286 0.15765 0.123191
0 3.98E-+05 2.47E406 1.11E+07
Fiq o2 2085220000 3.02E+11 6.363E+10
o 45664.2 549806 252251
0 6.33E-+02 1.98E-+03 5.11E+09
Fis o2 65547 3847010 1.18E-+19
o 256.021 1961.38 3.43E-+09
0 2.40E+08 2.39E-+08 1.28E+08
Fiy o2 1.77E-+14 3.66E+-14 2.26E+14
o 1.33E+07 1.91E+07 1.50E+07
i 1.08E+04 1.11E+04 9.84E+03
Fi5 o2 3296.64 0596.12 4.85E+07
o 57.4164 74.8072 6965.9

Finalmente, se realiz6 una tercera comparacion utilizando los mismos algoritmos, sin embargo,
esta vez para el conjunto de problemas del CEC’2013. En este caso, se pudo observar que comienza
a ser mas notoria la robustez del algoritmo CSO frente a sus competidores, ya que aunque en
general disminuye su rendimiento, el CSO entrega los mejores resultados como lo muestra la tabla

b.4l
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Tabla 5.4: Comparacion de la media(u) de los algoritmos de PSO de alta dimensionalidad (CSO,
SLPSO y MSLPSO). En verde se marca la mejor solucién a cada problema, para el conjunto de
problemas del CEC 2013

Problema o6ptimo CSO SL-PSO (MSLPSO)
(10004) global (codigo base) (codigo base) (codigo base)
CEC’2013 CEC’2013 CEC’2013
0 3.61E-17 8.55E-19 2.70E-+03
F o2 1.06E-36 1.58E-36 3.99E-+06
o 1.03E-18 1.25E-18 1.99E+03
0 8.59E+-03 8.75E+4-03 9.65E+-03
Fy o2 107574 49596.3 8.77TE+05
o 327.985 222.702 9.36E-+02
14 2.10E+01 2.16E+01 2.16E+01
F3 o2 1.79E-05 2.10E-05 2.01E-05
o 0.0042358 0.00459078 4.48E-03
0 1.13E+10 1.30E+10 7.49E+10
F, o? 2.15E+18 1.21103e+19 1.99E+20
o 1.46E+09 3.47999e+09 1.41E+10
0 7.69E+05 8.76E+405 8.95E+4-06
F5 o2 1.40E-+10 1.42184e+-10 2.24FE+11
o 1.40E-+10 119241 4.74E+05
0 1.06E-+06 1.06E-+06 1.06E+06
Fg o2 821433 1793620 7.05E-+05
o 906.329 1339.26 8.40E-+02
1 5.21E+06 1.11E-+08 1.19E+10
F7 o2 1.40E-+12 3.13E+16 1.25E+19
o 1.18E-+06 1.76E-+08 3.54E+09
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Problema o6ptimo CSO SL-PSO (MSLPSO)
(10004) global (codigo base) (codigo base) (codigo base)
CEC’2013 CEC’2013 CEC’2013
0 2.70E+14 3.11716e+-14 2.57TE+15
Fy o2 3.96 1427 3.57986e+28 2.015E+30
o 6.29E+13 1.89205e+14 1.41E+15
0 3.13E+4-07 9.34E4-07 4.74E+08
Fy o2 5.67E+13 2.52064e+15 1.99E-+16
o 7.53E+06 5.0206e+07 1.41E+08
v 9.41E+07 6.60E+07 9.40E+07
Fi o2 4.27TE+10 1.1595e+15 7.16E-+10
o 206841 3.40514e+07 2.67E+05
0 3.27E+09 1.0495E+14 1.72E-+12
Fiq o2 6.35E-+18 8.36527e+27 1.81E+24
o 6.30E+18 9.14618e+13 1.34E+12
0 1.05E-+03 1.01E+03 2.45E405
Fiq o2 434.222 1411.85 1.12E+10
o 20.838 37.5746 1.05E+05
0 9.80E+08 1.91771e+13 3.44E+11
Fis o2 1.75E-+17 1.10233e+27 1.77TE+22
o 4.19E+-08 3.32014e+13 1.33E+11
7 3.09E+-09 1.07014e+14 3.20E+412
Fiy o2 1.13E-+18 7.73263e+27 5.38E+24
o 1.06E-+09 8.79354e+13 2.32E+12
7 7.56E+07 2.17E-+10 4.81E+09
Fis o2 2.27TE+13 4.95E+20 1.90E+19
o 4.76E+06 2.22E-+10 4.36E+09

Al finalizar las comparaciones y observar los resultados (como ya comentamos al principio de
este capitulo) elegimos al CSO [4] como la mejor opcion para utilizarlo como base para nuestra
mejora. Ademés, otro aspecto positivo de este algoritmo y que apoya la decision de elegirlo, es
que no difiere mucho con respecto a la version original [18], lo que lo vuelve sencillo y rapido en
comparacion a versiones méas complejas [3]. E1 CSO, solo agrega un mecanismo de competencia
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entre las particulas y actualiza a la particula perdedora de la competencia, ésta, a su vez, aprende
de la ganadora (como ya se mencioné anteriormente). Por lo tanto, se puede ver que el mecanismo
utilizado por CSO no anade mayor complejidad en comparaciéon a los recursos que utilizaria su
version original.

5.2. Estrategias utilizadas para mejorar al CSO

Una vez que se eligio el algoritmo base, se le incorpor6 una estructura de datos (una cola),
la cual, tiene el proposito de censar el comportamiento del ciimulo sobre la regiéon del espacio
de busqueda en el que éste se encuentre en el tiempo t,. Cuando el camulo esta explorando el
espacio de busqueda puede ser que una particula encuentre una mejor posicion local. Este hecho
se almacenaréd como un “cero” en la cola; de otro modo, se guardara un “uno”. Lo anterior se realiza
después de actualizar la particula que perdié la competencia. En cuanto al ntimero de elementos
que puede almacenar la estructura para censar el comportamiento del camulo, es igual al namero
total de particulas en el grupo. Esto es asi, a modo de tener una ventana de informaciéon lo mas
completa posible, acerca de alguna tendencia que se esté presentando al explorar el espacio de
basqueda. Asi mismo, la estructura se mantiene actualizada debido a que en cada iteracion se
ingresa la nueva lectura y se desecha la mas antigua. En la figura 5.1 se muestra el diagrama de
la estructura de datos que se utiliza.

Final Cola de Datos Frente
—> | 1|l0/|1|1]|1|l0]|. |0 =
Entrada Salida
de
de I1I o IOI
l1l 0 IOI

Figura 5.1: Diagrama que representa la estructura de datos que guardaréd ‘0’ cuando se encuentra
un mejor local y ‘1’ en caso contrario (esto para cada particula), lo que crea un rastro de compor-
tamiento de mejores locales en un rango de tiempo.

Ya que el censado es a cada s iteraciones, donde s > tame,, (para permitir que la estructura
tenga tiempo de llenarse), la informacion que proporcione la cola (si encuentra o nd mejores
resultados) se va almacenando y actualizando hasta que llega el nuevo tiempo de censar (t5 + 1).
En este tiempo (¢s + 1), se tiene una especie de rastro del comportamiento de la posicion de las
ultimas n particulas en ese momento, el cual podemos utilizar como fuente de informaciéon para
suponer el tipo de espacio de buisqueda en el que se encuentra el camulo. A partir de esto, se
podrian modificar los parametros del algoritmo para ajustar su comportamiento social o cognitivo
seglin se requiera para establecer un equilibrio entre la exploracion y la explotacion del espacio de
bisqueda.
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Como se ha mencionado, cada s iteraciones, se realiza un conteo de los “ceros” que se encuentran
almacenados en la cola. Este conteo nos indica cuantos minimos estan encontrando las particulas de
forma local. Si el conteo es alto, nos indicaria que el cimulo es bastante diverso y esta encontrando
bastantes posiciones mejores, o que tal vez la funcién sea altamente multimodal, lo cual nos hace
pensar que se puede mantener la exploraciéon o el componente social como en el algoritmo base.

Si el namero de “ceros” es bajo, podria ser que se tratara de una funciéon unimodal o que el
cimulo pudiera estar atrapado en un 6ptimo local. En este caso se hace uso de un operador de
varianza, el cual se calcula a partir de las mejores posiciones locales de cada particula del ctiimulo.
Si la varianza es alta, entonces suponemos que el cimulo esta atrapado en un 6ptimo local, por lo
que incrementamos el parametro social Rs(k,t).

Por ahora solo se esta utilizando la informacién que proporciona la cola de datos para favorecer
la exploracion del ciimulo, pero creemos que un analisis méas detallado podria ayudar a equilibrar
mejor los componentes social y cognitivo de esta nueva version para obtener atin mejores resultados.
Con esta simple modificaciéon podemos ver una mejora en nuestra versiéon en comparacion con la
version base de CSO. Esto se muestra més adelante en la seccion de resultados en la tabla [5.8]

Una segunda mejora se encontré a partir del componente social del CSO. Este fomenta que las
particulas aprendan de la media de las posiciones del camulo en lugar de gbest como se hace en
el PSO original. En el articulo de CSO [4], los autores utilizan la media de todo el cimulo como
una version global (la influencia de todas las particulas) y comentan que es posible mejorar la
diversidad a partir de una media local de las particulas en un vecindario predefinido, (esto mejora
el rendimiento en funciones multimodales). Por lo que nosotros elegimos solo las cinco mejores
particulas para obtener una media de ellas. Esto de igual forma mejor6 al algoritmo como se vera
mas adelante en la seccion de resultados en la tabla 510l

5.3. Pseudocédigo del CSO mejorado

A continuacién mostramos mas detalladamente la nueva version del algoritmo:

» Se inicializa de forma aleatoria (como en PSO) un cimulo m de n particulas. Luego, se
actualiza de manera iterativa. Cada particula tiene una posicion de D dimensiones x;(t) =

(i1(t),mia(t), ..., z;n(t)) y un vector de velocidad de D dimensiones, v;(t) = (v;1(t),v;2(t), ...

;5 (t)) como en CSO.
= Se inicializa la cola de datos (tamce, = m).

» Obtener la varianza de las mejores posiciones locales del cumulo.
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= Obtener la media de las posiciones de las mejores cinco particulas del ctiimulo.

» En cada generacion (t), el cimulo se revuelve y se asignan parejas (se asume que el tamano
del ciimulo m es un namero par), luego se realiza una competencia entre las dos particulas
que forman el par.

= Como resultado de cada competencia, la particula con una mejor aptitud, denominada “ga-
nadora”, sera pasada directamente a la siguiente generacion del camulo (¢ + 1)

» Cada s = 10000 (evaluaciones de funcion (EF)) se realizara un conteo de “ceros” almacenados
en la cola de datos. Inicialmente, la estructura esta vacia por lo que se usa la condiciéon que
s > taMeolq-

= La particula que pierde la competencia, denominada “perdedora”, actualizara su posicion y
velocidad aprendiendo de la ganadora. Durante la actualizacion de la particula modificaremos
los factores aleatorios que tienen que ver con la actualizacion de la velocidad v;:

e Ry := Factor aleatorio en el primer componente Ry (k,t)V;x(t). Esté relacionado con el
factor de inercia w y da estabilidad al algoritmo.

e R, := Factor aleatorio en el segundo componente Ry(k,t)(zy,x(t) — 214(2)). Se asocia
al aprendizaje cognitivo de la particula.

e Rj3 := Factor aleatorio en el tercer componente ¢pRs(k,t)(Zx(t) — 1 .(t)). Se asocia al
aprendizaje social de la particula.

Lo anterior se hace con relacion a la cantidad de “ceros” que se encuentren en el conteo (ver

algoritmo [7)).

= Después de la actualizacion, la nueva aptitud de la particula “perdedora” es comparada con
su mejor posicion local historica. Si ésta es menor que la mejor local de la que se tiene registro
(es decir, se encontré una mejor aptitud), se pondra un cero en la estructura de datos. En
caso contrario, esta nueva aptitud es peor y se pondra un 1. Esta operacién ira llenando la
estructura a medida que pasan las competencias durante un rango de 10000 evaluaciones

= Después de aprender de la ganadora, la particula perdedora también sera pasada a la siguiente
generacion del camulo (¢ + 1)

» El algoritmo termina cuando se llegue a un méaximo de evaluaciones (mazxF'E) de la funcion
de aptitud

La forma en que se realizan las competencias es igual que en el CSO. Es decir, para un camulo
m ocurren m/2 competencias y la velocidad y posicion de las m /2 particulas seran actualizadas.
La figura [3.4) ilustra este funcionamiento.

La velocidad del perdedor se actualizara utilizando la estrategia de aprendizaje de la ecuacion

(3.1), como en CSO, donde:
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= X, (t) Es la posicién del ganador en la k-ésima ronda de competencia en la generacion ¢
» x;4(t) Es la posicion del perdedor en la k-ésima ronda de competencia en la generacion ¢
» v, (t) Es la velocidad del ganador en la k-ésima ronda de competencia en la generacion ¢
» v, ;(t) Es la velocidad del perdedor en la k-ésima ronda de competencia en la generacion ¢

» Ry(k,t), Ro(k,t), y R3(k,t) Son factores aleatorios € [0, 1]¢ determinados por la cantidad de
“ceros” que contenga la cola de datos, como lo muestra el algoritmo [7]

» ¢ Es un parametro de aprendizaje que controla la influencia de z(t)

» 7x(t) Es el valor medio de la posicion de las particulas relevantes. Para nuestra mejora
se utilizaron las posiciones de las mejores cinco particulas. Se adoptoé una version local a

diferencia de CSO:

° jﬁk(t) Significa la posicion media local de las particulas en un vecindario predefinido
de la particula [, con (k = 5).

La posicion del perdedor se puede actualizar ahora con la nueva velocidad, utilizando la misma
ecuacion que en el CSO (ver ecuacion (3.2))).

La primera parte de la ecuacion (3.1)) asegura la estabilidad del proceso de busqueda y es similar
al término de inercia w en el PSO original. También puede interpretarse como que w = 1y se
agrega un vector aleatorio R (t).

La segunda parte es la componente cognitiva. En esta parte de la ecuacion se da el aprendizaje
de la particula perdedora con respecto a la ganadora en lugar de hacerlo de la mejor personal
pBest.

La tercera parte es el componente social en donde la particula perdedora aprende de la posiciéon
media del camulo actual Z(t) en lugar del mejor global gBest.

A continuacion se presenta el algoritmo de nuestra version mejorada:
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Algoritmo de CSO mejorado

La nueva version del CSO se describe en el algoritmo [7]

Algoritmo 7 Competitive Swarm Optimizer for Large Scale Optimization with Data Queue
(CSOQ), por sus siglas en inglés )

1: Inicializar una poblaciéon m de n particulas x; y vj.

O I I I N N I N N N N S e S S T G Ty T S et

34:

Inicializa cola de datos (tamee, = m).

Obtener varianza de las mejores posiciones locales var.
Obtener la media de las mejores cinco particulas del ciamulo.
Evaluar la aptitud de cada particula f(x;) con base en la funcién objetivo.
Mientras no se cumpla el criterio de parada hacer

Si FEs %10000 == 0 entonces
contadorCeros = contarCeros(q)
Fin Si
Emparejar las particulas aleatoriamente en m/2 pares.
Para cada cada par (xj,x;) hacer
Si f(x;) < f(x;) entonces
Marcar x; como el ganador y x; como el perdedor.
else
Marcar x; como el ganador y x; como el perdedor.
Fin Si
Reincorporar la particula ganadora al cimulo
Si contadorCeros < ((upper — lower)/4) entonces

Si velocidadyocentaje == 0 entonces
R3 =14 Rg3
else
Ro=14 Ry
Ri=1+R;
Fin Si
else
Si war > 100000000000000 entonces
R3 =1+ R3
Fin Si
Fin Si

Actualizar la velocidad del perdedor usando ecuacion
Actualizar la posiciéon del perdedor usando ecuacion
Borrar o sobreescribir x; y xj;

Fin Para cada

Reincorporar la particula actualizada al cimulo

35: Fin Mientras
36: Devolver la mejor soluciéon encontrada x* = arg min f(x;).

> Para problemas de minimizacion

> Hacer ajuste dindmico

> Puede estar en un 6ptimo local

> Puede ser una funcién unimodal;
> Puede ser una funcién unimodal;

> Se fomenta la exploracion
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5.4. Resultados Experimentales

En esta seccion mostramos los resultados experimentales de la ejecucién de nuestro algoritmo
mejorado. Para ello, tomamos como referencia la metodologia propuesta en las competencias del
Congreso sobre Computacion Evolutiva (Conference on Evolutionary Computation), organizado
por la sociedad de inteligencia Computacional del IEEE (Institute of Electrical and Electronics
Engineers). Ademas, comparamos el funcionamiento de nuestra version con respecto al CSO [4],
al SLPSO [5] y al MSLPSO [3]. Como hemos mencionado anteriormente, estos tres algoritmos del
estado de arte se enfocan en resolver problemas de optimizaciéon con un gran niimero de variables.
Para hacer las comparaciones, utilizamos los conjuntos de problemas de prueba del CEC (por sus
siglas en inglés) en sus ediciones 2008, 2010 y 2013, cuya prioridad es evaluar el desempefio de
algoritmos de optimizacion global a gran escala.

5.4.1. Conjunto de problemas de prueba del CEC’2013

Para la evaluacion de nuestro algoritmo, hemos adoptado el conjunto de problemas de prueba
utilizados para la sesion especial y competencia de optimizacion global a gran escala organizados
en el CEC’2013. Son 15 problemas (ver tabla y son una extension del conjunto de prueba del
CEC?2010 cuyo objetivo es representar mejor las caracteristicas de un mayor niimero de problemas
del mundo real. De igual forma, este conjunto de problemas proporciona flexibilidad para comparar
los algoritmos disenados. En especial, los realizados para la optimizaciéon global a gran escala.
Como ya se habia mencionado, las principales caracteristicas de esta nueva extension de problemas
son la introduccion de desequilibrio entre la contribuciéon de varios subcomponentes (tamanos no
uniformes) y funciones superpuestas.
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Tabla 5.5: Conjunto de problemas de prueba utilizados para la Sesion Especial y Competencia de
optimizacion global a gran escala organizados en el CEC’2013 (puede verse mas a detalle cada
funcion del CEC’2008 en el apéndice [C)).

Funcién Nombre Rango Global Optimo Propiedades
fi Funcién eliptica [-100, 100]P7 0 Unimodal, separable,
desplazada, con irre-
gularidades locales
suaves
fo Funcion de Rastrigin [—5,5]P 0 Multimodal, sepa-
desplazada rable, desplazada,
irregularidades locales
suaves
f3 Funcion de Ackley [—32,32]P 0 Multimodal, sepa-
desplazada. rable, desplazada,
irregularidades locales
suaves
fa Funcién eliptica des- [—100, 100]P 0 Unimodal,  parcial-
plazada y rotada mente separable,
desplazada, irregulari-
dades locales suaves
fs Funcion de Rastrigin [—5,5]P 0 Multimodal, parcial-
desplazada y rotada mente separable, des-
plazada, irregularida-
des locales suaves;
fo  Funcion de Ackley [—32,32]P 0 Multimodal, parcial-
desplazada y rotada mente separable, des-
plazada, irregularida-
des locales suaves;
f  Funcién Schwefel des- [—100, 100]” 0 Multimodal, parcial-
plazada mente separable, des-
plazada, irregularida-
des locales suaves
fs  Funcién eliptica des- [—100,100]” 0 Unimodal,  parcial-
plazada y rotada mente separable,
desplazada, irregulari-
dades locales suaves
fo  Funcién de Rastrigin [-5,5]P 0 Multimodal, parcial-
desplazada y rotada mente separable, des-
plazada, irregularida-
des locales suaves
fio  Funcién de Ackley [-32,32]" 0 Multimodal, parcial-
desplazada y rotada mente separable, des-
plazada, irregularida-
des locales suaves
fin Funcién Schwefel des- [—100, 100]” 0 Unimodal, parcial-
plazada mente separable,
desplazada, irregulari-
dades locales suaves
fiz Funciéon de Rosen- [—100,100])” 0 Multimodal, sepa-
brock desplazada rable, desplazada,
irregularidades locales
suaves
fis Schwefel ~ desplazada [—100, 100]” 0 Unimodal, no separa-
con subcomponentes ble, superpuesto, des-
superpuestos plazado, irregularida-
des locales suaves;
fia Schwefel ~desplazada [—100, 100]” 0 Unimodal, no separa-
con subcomponentes ble, subcomponentes
superpuestos en con- en conflicto, desplaza-
flicto. do, irregularidades lo-
cales suaves;
fis Funcion Schwefel des- [—100, 100]” 0 Unimodal, totalmen-

plazada

te no separable, des-
plazada, irregularida-
des locales suaves;
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5.4.2. Metodologia

La metodologia empleada para realizar los experimentos al nuevo algoritmo sigue el procedi-
miento propuesto en el CEC’2013. Esto, con la finalidad de hacer mas justa y estandarizada la
comparacion contra otros algoritmos similares. La prueba consistié en utilizar un conjunto de 15
problemas de minimizaciéon (ver tabla . Para todos los problemas de utilizaron 1000 dimen-
siones. Ademas, se realizaron 25 ejecuciones por funcién y para cada problema se establecié un
nimero méaximo de 3 x 10° evaluaciones de la funcion objetivo. El criterio de finalizacién para
cada problema se presenta cuando Max FFE alcance el valor 3 x 106.

5.4.3. Comparacién de resultados

Un primer experimento para evaluar el comportamiento de nuestro algoritmo mejorado, fue
ejecutarlo con el conjunto de problemas del CEC’2008. Estos resultados se presentan en la tabla
y se comparan con respecto a las dos versiones del estado del arte utilizadas como referencia.
Se puede observar en la columna de nuestro algoritmo (CSOQ) que solo gana en la funcion fyy f7.
Sin embargo, con excepcion de los resultados para f5 vy fg, los otros resultados son muy similares
a su version base (CSO). Se esperaba que el algoritmo CSOQ fuera mucho mejor que sus contrin-
cantes. Sin embargo, esto no ocurri6 y creemos que esto puede deberse a que nuestro algoritmo se
comporta mejor para funciones multimodales, ya que da preferencia a la exploracion del espacio de
busqueda para intentar no quedar atrapado en 6ptimos locales. La funciéon f; (funcién de Rastrigin
desplazada) es multimodal separable y la funcion f; (Double Deep) es multimodal separable con
un espacio de biisqueda pequeiio (de x € [—5,5]” y x € [—1, 1]” respectivamente). Las funciones
f5 (Griewank desplazada) y fs (Ackley desplazada) tal vez mostraron peores resultados debido al
desplazamiento y a la forma de la funciéon que no presenta muchas irregularidades y se tiene que
explorar mas sin encontrar resultados buenos.
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Tabla 5.6: Comparaciéon de los algoritmos del estado del arte contra nuestro nuevo algoritmo
utilizando el conjunto de problemas CEC’2008. En verde se pueden observar los mejores resultados
obtenidos del experimento. En gris remarcamos los resultados del algoritmo MSLPSO debido a
que estos resultados se usan solo como referencia para nuestro estudio comparativo

Problema Optimo €SO €SO SL-PSO SL-PSO (MSLPSO0) (MSLPSO) CS0Q
(10004)  Global (Resultados  (Implementacién  (Resultados  (Implementacién  (Resultados  (Implementacion (Implementacion)
Ideal de Articulo [4])  CEC2008)  de Articulo [5])  CEC2008)  de Articulo [3])  CEC2008) CEC2008)
Ju 1.09E-21 LO7E-21 7.10E-23 7.11E-23 9.33E-25 8.12E-19 2.15E-22
F 0 o 9.30E-46 3.94E-48 1.73E-36 8.86E-47
o 3.05E-23 1.98E-24 L31E-18 9.41E-24
Ju 4.15E+01 3.87E+01 8.87E+01 1.63E+02 L61E+01 8.80E+03 8.35E 01
) 0 o 1.29607 8.14472 5.03E+04 2.93
o 1.13845 2.8539 224.300 1.71
7 LO1E+03 9.94E+02 L04E-03 2.59E+03 9.75E+02 2.20E+01 1L12E-03
F 0 o 481.466 10216300 2.12E-05 6.64-+03
o 21.9423 3196.29 0.004610 81.51
i 6.89E-+02 7.07E+02 5.89E-+02 9.82E403 5.50E+02 1.31E+10 5.83E+02
Fy 0 o 1421.7 13283.7 1.22E-+19 4.93E+02
o 37.7054 115.277 3A48E-+09 2221
Ju 2.26E-16 2.22E-16 4.44E-16 4.66E-16 1.10E-16 8.78E+05 4.88E-02
F 0 o 6.78E-42 1.97E-33 143E+10 4.39E-03
o 2.60E-21 4 44E-17 120000 6.63E-02
W L21E-12 1.19E-12 3A4E-13 344E-13 L11E-14 LOTE--06 5.73E-01
Fy 0 o 4.38E-28 2.63E-29 1.81E-+06 2.03E-01
o 2.09E-14 5.13E-15 1345.00 4.51E-01
po -3.83E4+06 -3.83E-+-06 -1.30E-+04 -1.66E+06 -3.00E+04 L12E+08 -7.20E+06
F 0 o 2.33E+09 4.33E-+09 3.15E+16 2.30E+10
o 48309.5 (5841.6 L77TE-08 1.51E+05

Se realiz6 un segundo experimento. En este caso, comparamos los resultados de nuestro algoritmo
(utilizando el conjunto de problemas del CEC’2010), contra los otros dos algoritmos del estado
del arte utilizando el mismo conjunto de problemas. Los resultados son mostrados en la tabla [5.7}
Para este conjunto de problemas, nuestro algoritmo es mejor para mas funciones. Particularmente,
obtiene mejores resultados para los problemas multimodales fy (funcion de Rastrigin desplazada
de x € [—5,5]P), f5 (funcién de Rastrigin desplazada y rotada de x € [—5,5]"), fio (funcién de
Rastrigin desplazada y rotada de grupo %, x € [-5,5]P) v fi2 (problema de Schwefel despalzado
de x € [—~100,100]”) y para los unimodales fi; (funcién de Ackley desplazada y rotada de x €
[—32,32]P) v fi5 (funcién de Rastrigin desplazada y rotada de x € [—5,5]”). Como se puede
observar, la mayoria de los buenos resultados se obtienen para funciones con espacios de buisqueda
pequeiios (x € [—5,5]”), con excepcion de la funcion fi; y fi2 cuyo espacio de busqueda es més
grande, Pero aiin asi es mejor que las otras versiones. Esto demuestra que el algoritmo CSOQ), es
robusto en el conjunto de problemas del CEC’2010.
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Tabla 5.7:  Comparacion de la media(u) de dos algoritmos del estado del arte, contra el nuestro, utilizando el conjunto de
problemas del CEC’2010. En verde se pueden observar los mejores resultados obtenidos del experimento.

Problema 4ptimo CSO SL-PSO MSLPSO CSOQ
(10004) global (Implementacién (Implementacion (Implementacion (Implementacién
CEC’2010) CEC’2010) CEC’2010) CEC’2010)
4.29E-17 2.20E-18 1.14796e-19 1.07E-17
F 0 o? 9.39E-36 3.50E-39 1.43212e-40 5.23E-37
o 3.06E-18 5.92E-20 1.19671e-20 7.23E-19
W 7.52E+03 9.73E+03 1.37E+04 5.27E+03
E, 0 o? 35703.4 7976.23 4858.23 3.85E+4-02
o 188.953 89.3097 69.701 1.96E+01
n 2.40E-09 3.64E-13 2.12E+01 5.48E-13
F3 0 o? 3.92E-20 1.32E-29 0.0016986 1.08E-28
o 1.98E-10 3.64E-15 0.0412141 1.03E-14
L 8.90E+11 6.79E+11 6.79E+14 7.23E+11
Fy 0 o? 3.72E+22 1.46E+22 6.12E+27 6.00E+21
o 1.93E+11 1.21E+11 7.82E+13 7.74E+10
W 8.75E+06 1.18E+4-07 7.99E-+07 8.65E+06
F5 0 o? 2.53E+12 9.98E+12 2.87TE+14 2.18E+12
o 1.59E+-06 3.16E+06 1.69E+07 1.47E+06
7 9.00E-07 2.16E+01 1.32E+-07 1.05E+01
F 0 o2 8.70E-16 2.68E-05 6.24F+12 2.41857
o 2.95E-08 0.00518325 2.49E+06 1.55518
W 1.84E+04 1.21E+04 1.38E+11 3.21E+04
F 0 o? 18625900 41117500 3.35E+20 1.45E+08
o 4315.77 6412.29 1.83E+10 1.20+04
W 3.86E-+07 2.78E+07 6.02E+07 3.52E+07
Fy 0 o? 3.95E+09 3.98E+10 1.34E+15 4.80E+09
o 62917 199600 3.66E+07 6.93E+04
I 1.52E+11 2.94E+07 2.79E+07 1.52E+11
Fy 0 o? 1.34E+10 7.04E+11 2.16E+12 1.34E+10
o 15796 839301 1.46E+06 1.15E+05
" 1.07TE+04 1.06E+04 1.44E+04 5.05E+02
Fi 0 o? 2201.13 5091.92 3689.5 4.97E+02
o 46.9162 71.3577 60.7413 2.23E+01
W 7.42E+01 2.36E-+02 2.37E+02 3.42E+01
1y 0 o? 757.825 0.0248536 0.015176 2.45E+02
o 27.5286 0.15765 0.123191 1.56E+01
W 3.98E-+05 2.47E+06 1.11E+07 5.64E+04
Fio 0 o? 2085220000 3.02E+11 6.363E+10 2.65E+06
o 45664.2 549806 252251 1.62E+4-03
W 6.33E-+02 1.98E+03 5.11E+09 7.76E+402
Fis 0 o? 65547 3847010 1.18E+19 2.28E+05
o 256.021 1961.38 3.43E+09 4.78E+02
I 2.40E-+08 2.39E+08 1.28E+08 1.47E+08
Fyy 0 o? 1.77E+14 3.66E+14 2.26E+14 3.91E+13
o 1.33E+07 1.91E+07 1.50E+07 6.25E+06
W 1.08E+-04 1.11E+04 9.84E+03 7.43E4-02
Fis 0 o? 3296.64 5596.12 4.85E+07 2.19E+03
o 57.4164 74.8072 6965.9 4.68E+01
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Finalmente, se realiz6 una tercera comparacion de resultados de nuestro algoritmo
utilizando el conjunto de problemas del CEC’2013 (para el cual fue disenado), contra
los otros algoritmos del estado del arte. Los resultados se muestran en la tabla [5.8|

Como se puede observar, en esta tltima comparacion, nuestra nueva version mantiene
su buen desempeno e incluso mejora algunos resultados. Por ejemplo, para los problemas
fo (funcion Rastrigin desplazada, x € [—5,5]"), f5 (Rastrigin desplazada y rotada de 7
no separable, 1 separable, x € [—5,5]"), fi1 (Schwefel desplazada y rotada de 20 no sepa-
rable, x € [—100,100]P) y fi5 (Schwefel desplazada, x € [—100,100]P) presenta un buen
desempeno en contraste con el decremento en la eficiencia de los otros algoritmos contra
los que se compara. Por tanto, el algoritmo propuesto resulta ser robusto y mas eficiente
frente a las caracteristicas incorporadas en el conjunto de problemas del CEC’2013, como
se aprecia en la tabla[5.§8

Nuestro algoritmo también obtiene ligeramente mejores resultados para los problemas
multi-modales f3 (funcién Ackley desplazada, x € [—32,32]") y f¢ (Ackley Desplazada y
Rotada de 7 no separable, 1 separable, x € [—32,32]P) y para los unimodales f; (elip-
tica desplazada y rotada de 7 no separable, 1 separable, x € [—100,100]?), fs (eliptica
desplazada y rotada de 20 no separable, x € [—100, 100]”), fi3 (Schwefel desplazada con
subcomponentes superpuestos sin conflicto, x € [—100, 100]7). De estos resultados tal vez
los mas relevantes son fy, fs v fe va que su espacio de bisqueda es grande y ademés
tienen componentes separables y no separables, una caracteristica nueva en los problemas
de este conjunto. Asi mismo, la funcién fi3 que tiene componentes superpuestos.
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Tabla 5.8: Comparacion de la media(p) de los resultados obtenidos por nuestro algoritmo CSOQ. En verde se marca la
mejor solucién a cada problema comparando con respecto a CSO, SLPSO y MSLPSO para el conjunto de problemas del
CEC’2013

Problema o6ptimo CSO SL-PSO (MSLPSO) CSOQ
(10004) global (Implementacion (Implementacion (Implementaciéon (Implementacion
CEC’2013) CEC’2013) CEC’2013) CEC’2013)
I 3.61E-17 8.55E-19 2.70E+03 1.15E-17
F 0 o? 1.06E-36 1.58E-36 3.99E+06 9.80E-37
o 1.03E-18 1.25E-18 1.99E+03 9.90E-19
Iz 8.59E+03 8.75bE+03 9.65E+03 5.89E+02
E 0 o? 107574 49596.3 8.77E+05 1.07E+03
o 327.985 222.702 9.36E+02 3.28E+01
1 2.10E+01 2.16E+01 2.16E+01 2.02E+01
Es 0 o? 1.79E-05 2.10E-05 2.01E-05 1.87E-04
o 0.0042358 0.00459078 4.48E-03 1.37E-02
7 1.13E+10 1.30E+10 7.49E+10 1.01E+10
Ey 0 o? 2.15bE+18 1.21103e+19 1.99E+20 2.96E+18
o 1.46E+09 3.47999¢+-09 1.41E+10 1.72E+09
I 7.69E+05 8.76E+05 8.95E+06 6.66E+05
E 0 o? 1.40E+10 1.42184e+10 2.24E+11 7.12E+09
o 1.40E+10 119241 4.74E+4-05 8.44E+04
I 1.06E+06 1.06E+06 1.06E+06 9.96E+05
Es 0 o? 821433 1793620 7.05E+05 3.62E+04
o 906.329 1339.26 8.40E+02 1.90E+02
o 5.21E+06 1.11E+08 1.19E+10 1.074E+07
Er 0 o? 1.40E+12 3.13E+16 1.25E+19 3.92E+12
o 1.18E+06 1.76E+08 3.54E+09 1.98E+06
1 2.70E+14 3.11716e+14 2.57E+15 2.39E+14
Fy 0 o? 3.96E+27 3.57986e+28 2.015E+-30 4.63E+27
o 6.29E+13 1.89205e+14 1.41E+15 6.81E+13
o 3.13E+07 9.34E+07 4.74E408 4.55E+07
Ey 0 o? 5.6TE+13 2.52064e+15 1.99E+16 3.86E+13
o 7.53E+06 5.0206e+07 1.41E+08 6.22E+4-06
I 9.41E+07 6.60E+07 9.40E+07 9.05E+407
Fi 0 o? 4.27E+10 1.1595e+15 7.16E+10 9.27TE+07
o 206841 3.40514e+-07 2.67TE+05 9.63E+03
I 3.27E+09 1.0495E+-14 1.72E+12 3.95E+08
1 0 o? 6.35E+18 8.36527e+-27 1.81E+24 9.31E+15
o 6.35E+18 9.14618e+13 1.34E+12 9.65E+07
1 1.06E+03 1.01E+03 2.45E+05 1.15E+03
Fis 0 o? 434.222 1411.85 1.12E+10 9.29E+03
o 20.838 37.5746 1.06E+05 9.64E+01
1 9.80E+08 1.91771e+13 3.44E+11 6.67E+08
Fis 0 o? 1.75E+17 1.10233e+27 1.77E+22 1.88E+16
o 4.19E+-08 3.32014e+13 1.33E+11 1.37E-+08
o 3.09E+09 1.07014e+14 3.20E+12 4.19E+09
Fyy 0 o? 1.13E+18 7.73263e+27 5.38E+24 4.93E+18
o 1.06E+09 8.79354e+13 2.32E+12 2.22E409
I 7.56E+07 2.17TE+10 4.81E+09 4.056E+06
Fis 0 o? 2.27TE+13 4.95E+20 1.90E+19 8.01E+10
o 4.76E-+06 2.22E+10 4.36E+09 2.83E+05
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Capitulo 5. Diseno de un algoritmo de PSO para alta dimensionalidad

A continuaciéon mostramos un resumen de los resultados obtenidos

Tabla 5.9: Cantidad de funciones en las que cada algoritmo obtuvo el mejor rendimiento
en diferentes conjuntos de problemas de prueba del CEC.

Algoritmo Gané (CEC’2008) Ganoé (CEC’2010) Gané (CEC’2013)

CSO 2 (fo, f5) 2 (fs, f13) 3 (f7, fo, fra)

SL-PSO 2 (f1, fs) 4 (fs, fa, fr, fs) 3 (fr, fio, f12)
MSLPSO L (fs) 3 (f1, fo, fra) 0

CsoQ 2 (fa, f7) 6 (f2, f5, fro-frz, fi5) 9 (fo-fs, fs,fu1s fiss fis)
Total 7 15 15

Como podemos observar en la tabla 4.9, nuestro algoritmo gana en la mayoria de
problemas de prueba del CEC’2013 (gan6 en nueve de quince). En principio suponemos
que el algoritmo trabaja bien en espacios de biisqueda con rangos pequenos, por ejemplo
x € [—5,5]P). Esta caracteristica es observable desde que se realizaron las comparaciones
con el CEC’2008. Para los siguientes conjuntos de prueba, el algoritmo mejorado (CSOQ)
comienza a distinguirse de los otros debido a que las mejoras realizadas funcionan cuando
la cola de datos incorporada al CSO detecta un espacio de busqueda regular (con pocos
minimos). Esto hace que se incremente el componente que fomenta la exploracion.

Como habiamos comentado en secciones anteriores, tenemos una segunda version que
mejora un poco mas a nuestro algoritmo. Los resultados se muestran en la tabla[5.10} De
igual forma, utilizamos el conjunto de problemas del CEC’2013.
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Tabla 5.10: Comparacion de la media(u) de los resultados obtenidos por la version mejorada de nuestro algoritmo llamada
CSOQ*. En verde se marca la mejor solucion a cada problema comparando con respecto a CSO, CSOQ, SLPSO y MSLPSO
para el conjunto de problemas del CEC’2013

Problema o6ptimo CsO SL-PSO (MSLPSO) Cs0Q CsoQ*
(10004) global (Implementacion (Implementacién (Implementacion (Implementacién
CEC’2013) CEC’2013) CEC’2013) CEC’2013) CEC’2013)

I 3.61E-17 8.55E-19 2.70E+03 1.15E-17 3.43E-20

£ 0 o? 1.06E-36 1.58E-36 3.99E+06 9.80E-37 2.06E-41
o 1.03E-18 1.25E-18 1.99E+03 9.90E-19 4.54E-21

I 8.59E-+03 8.75E+03 9.65E+03 5.89E+402 7.97E+02

F, 0 o? 107574 49596.3 8.7TTE+05 1.07E+03 1.22E+03
o 327.985 222.702 9.36E+02 3.28E+01 3.49E+01

7 2.10E+01 2.16E+01 2.16E+01 2.02E+01 2.03E+01

Fy 0 o? 1.79E-05 2.10E-05 2.01E-05 1.87E-04 4.39E-04
o 0.0042358 0.00459078 4.48E-03 1.37E-02 2.09E-02

I 1.13E+10 1.30E+10 7.49E+10 1.01E+10 2.59E+09

Fy 0 o? 2.15E+18 1.21103e+19 1.99E-+20 2.96E+18 4.68E+17
o 1.46E-+09 3.47999¢+09 1.41E+10 1.72E+09 6.84E+08

Iz 7.69E-+05 8.76E+05 8.95E+06 6.65E+05 6.29E+05

Fy 0 o? 1.40E+10 1.42184e+10 2.24E+11 7.12E+09 1.10E+10
o 1.40E+10 119241 4.74E+05 8.44E+04 1.05E+05

I 1.06E-+06 1.06E+06 1.06E+-06 9.96E+405 9.98E+05

Fs 0 o? 821433 1793620 7.05E+05 3.62E+04 6.37E+06
o 906.329 1339.26 8.40E+02 1.90E+02 2.52E+03

m 5.21E+06 1.11E+08 1.19E+10 1.074E4-07 2.97E+06

F 0 o? 1.40E+12 3.13E+16 1.25E+19 3.92E+12 9.64E+11
o 1.18E-+06 1.76E+08 3.54E+09 1.98E-+06 9.82E+05

I 2.70E+14 3.11716e+14 2.57TE+15 2.39E+14 5.26E+13

Fy 0 o? 3.96E-+27 3.57986e+28 2.015E+30 4.63E+27 3.43E+26
o 6.29E+13 1.89205¢e+-14 1.41E+15 6.81E+13 1.85E+13

I 3.13E-+07 9.34E-+07 4.74E+08 4.55E+07 4.25E+407

Fy 0 o? 5.67E+13 2.52064e+15 1.99E+16 3.86E+13 3.43E+13
o 7.53E+06 5.0206e+07 1.41E+08 6.22E+06 5.86E+06

I 9.41E+07 6.60E+07 9.40E+07 9.05E+07 9.06E+07

Fio 0 o? 4.27E+10 1.1595e+15 7.16E+10 9.27TE+07 1.90E+09
o 206841 3.40514e+07 2.67TE+05 9.63E+03 4.36E+04

I 3.27E-+09 1.0495E+14 1.72E+12 3.95E+08 1.72E+08

i 0 o? 6.35E-+18 8.36527e+27 1.81E+24 9.31E+15 2.13E+15
o 6.35E+18 9.14618e+13 1.34E+12 9.65E+07 4.62E+07

I 1.05E+03 1.01E+03 2.45E+05 1.15E+03 1.10E+03

Fip 0 o? 434.222 1411.85 1.12E+10 9.29E+03 3.51E+03
o 20.838 37.5746 1.05E-+05 9.64E+01 5.93E+01

i 9.80E-+08 1.91771e+13 3.44E+11 6.67E-+08 3.26E-+08

Fisz 0 o? 1.75E+17 1.10233e+-27 1.77TE+22 1.88E-+16 2.10E+16
o 4.19E+408 3.32014e+13 1.33E+11 1.37E-+08 1.45E+08

I 3.09E+09 1.07014e+14 3.20E+12 4.19E+09 5.14E-+07

Fuy 0 o? 1.13E+18 7.73263e+27 5.38E+24 4.93E+18 1.75E+14
o 1.06E+09 8.79354e+13 2.32E+12 2.22E+09 1.32E+07

Iz 7.56E-+07 2.17E+10 4.81E+09 4.05E+06 3.85E+06

Fis 0 o? 2.27TE+13 4.95E+20 1.90E+19 8.01E+10 3.66E+10
o 4.76E+06 2.22E+10 4.36E+09 2.83E+405 1.91E+05
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Capitulo 5. Diseno de un algoritmo de PSO para alta dimensionalidad

La tabla [5.11] muestra un resumen de los nuevos resultados obtenidos.

Tabla 5.11: Cantidad de funciones en las que cada algoritmo obtuvo el mejor rendimiento
en diferentes conjuntos de problemas de prueba del CEC.

Algoritmo Gané (CEC’2008) Gané (CEC’2010) Gané (CEC’2013)

CSO 2 (fz, f5) 2 (fG; f13) 1 (f9)

SL-PSO 2 (f1, fo) 4 (fs, fa, fr, fs) 2 (fro, f12)

MSLPSO 1 (fs) 3 (f1, fo, fia) 0

CSOQ* 2 (fa, f7) 6 (fo, fs, fro-fiz, f15) 12 (fi-fs,f11, fiz-fis)
Total 7 15 15

Como puede observarse, esta version de CSOQ solo perdio en las funciones fo (Rastrigin
desplazada y rotada de 20-no separable, x € [—5,5]"), fio (Ackley desplazada y rotada
de 20-no separable, x € [—32,32]") y fi» (Rosenbrock desplazada, x € [—100, 100]”). En
las primeras dos se puede deber a los componentes no separables que anaden complejidad
para obtener buenas soluciones. En el caso de fi crefmos que podiamos obtener un mejor
resultado. Sin embargo, el resultado obtenido no difiere mucho de los obtenidos por las
otras versiones.

5.4.4. Andalisis Estadistico

Para poder determinar la confiabilidad estadistica de los resultados obtenidos en nuestra
mejora, utilizaremos el método de bootstrap. Esta técnica estadistica es muy utilizada para
obtener estimaciones precisas a partir de muestras de x datos observados (en nuestro caso
son 25 valores resultantes de 25 ejecuciones por cada problema de prueba, n = 25).

Se define una muestra bootstrap como x* = (27,23, ...,x}). A partir de x se generaran
B submuestras de tamafio n (x*,x*2, ..., x*B normalmente B = 1000). El ntimero de
submuestras es elevado para mitigar el sesgo de los resultados. En nuestro caso, queremos

obtener un intervalo de confianza de la media estadistica.

Para formar cada x*B submuestra (de tamaifio n), se elige cada valor de forma aleatoria
(con reemplazo) de la muestra de valores reales del experimento (x). La probabilidad de
obtener cada valor para formar la submuestra x*® a partir de la muestra real es %
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Capitulo 5. Diseno de un algoritmo de PSO para alta dimensionalidad

Para todos los problemas, se tom6 un intervalo de confianza de 95 por ciento. En la
tabla se muestran los intervalos de confianza para cada problema.

Tabla 5.12: Intervalos de confianza para diferentes funciones en 1000 dimensiones.

Funcién 1000 dim

fi [3.26E—20, 3.61E—20|
fo [7.86E+02, 8.18E+02]
f3 [2.0319E+01, 2.0335E+01]
fa [2.31E+09, 2.86+E09]
fs [5.89E-+05, 6.71+E05]
fe [9.97E-+05, 9.99E-+05]
fr [2.59E+06, 3.37E+06]
fs [4.54E+13, 6.00E+13]
fo [4.02E+07, 4.48E+07]
f1o [9.05E+07, 9.06E+07]
fi1 [1.53E-+08, 1.89E+08]
fi2 [1.08E-+03, 1.13E+03]
fi3 [2.71E+08, 3.86E+08]
f1a [4.67TE+07, 5.71E+07]
fis [3.78E-+06, 3.93E-+06]

Derivado de los resultados que se presentan en la tabla [5.12] presentamos la tabla [5.13]
con el anélisis de cada funcion.

Podemos observar que las funciones fi, fa, f3, f6, fio v fi2 tienen intervalos muy
estrechos, lo que indica alta estabilidad en los resultados y por ende, son mas confiables
en términos de optimizacion. Las funciones fy, fo v fi5 tienen un intervalo moderado,
mientras que las funciones f5, f7, fs, fi1, fi3 ¥ fia tienen intervalos mas amplios, lo que
sugiere mayor variabilidad. Estas funciones tienen la caracteristica de ser no separables,
lo que incrementa la dificultad para encontrar una buena solucién. Cabe aclarar que estas
funciones presentan los mejores resultados del grupo de algoritmos con los cuales fueron

comparados (ver tabla |5.10)).
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Capitulo 5. Diseno de un algoritmo de PSO para alta dimensionalidad

Tabla 5.13: Analisis de estabilidad basado en los intervalos de confianza de bootstrap para
diferentes funciones utilizando 1000 dimensiones.

Funcion 1000 dim

Analisis

h
/2
fs
Ja
s

fo
f7

fe
fo
10
fll

fi2
Jis

Jfia
fis

[3.26E-20,3.61E-20]

[7.86E+02, 8.18E+02]

[2.0319E+01, 2.0335E+01]

[2.31E409, 2.86E09)
[5.89E+05, 6.71E+05]

[9.97E+05, 9.99E+05]
[2.59E+06, 3.37E+06]

[4.54E+13, 6.00E+13]
[4.02E+07, 4.48E+07]
[9.05E+07, 9.06E+07]
[1.53E+08, 1.89E+08]

[1.08E+03, 1.13E+03]
[2.71E+4-08, 3.86E+08|

[4.67E+407, 5.71E+07|

[3.78E+06, 3.93E06]

Excelente. El intervalo es extremadamente pequeno,
muy estable.

Bueno. El intervalo es pequeno, estabilidad alta.
Bueno. El intervalo es estrecho, estabilidad alta.
Bueno. Alta variabilidad, sin embargo muestra

los mejores resultados contra otros algoritmos.
Preocupante. Alta variabilidad, sin embargo muestra
los mejores resultados contra otros algoritmos.

Bueno. Variaciéon minima, buena estabilidad.
Preocupante. Alta variabilidad, sin embargo muestra
los mejores resultados contra otros algoritmos.
Preocupante. Muy alta variabilidad,sin embargo muestra
los mejores resultados contra otros algoritmos.

Bueno. Variaciéon moderada, buena estabilidad.
Bueno. El intervalo es estrecho, estabilidad alta.
Preocupante. Alta variabilidad, sin embargo muestra
los mejores resultados contra otros algoritmos.

Bueno. El intervalo es estrecho, estabilidad alta.
Preocupante. Alta variabilidad, sin embargo muestra
los mejores resultados contra otros algoritmos.
Preocupante. Muy alta variabilidad, sin embargo muestra
los mejores resultados contra otros algoritmos.

Bueno. Variaciéon moderada, buena estabilidad.
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Capitulo 6

Conclusiones y trabajo futuro

Si bien, existe una gran variedad de metaheuristicas que podemos utilizar para resolver
un problema de optimizacién, y aun si nos limitamos solo al PSO, vimos que hasta la fecha
siguen surgiendo nuevas versiones, debemos tomar en cuenta que la eleccion de un método
para optimizar, estd estrechamente relacionado con el tipo de problema que se quiera
resolver. En esta tesis, nuestro interés fue resolver problemas de optimizacion global de
alta dimensionalidad. El algoritmo propuesto, llamado CSOQ), funciona bien y obtiene los
mejores resultados de entre un grupo de algoritmos representativos del estado del arte en el
area (el conjunto de problemas del CEC’2013 el cual consiste de problemas de optimizacion
global a gran escala). El algoritmo CSOQ consiste basicamente en dos mejoras al CSO. En
la primera, se incorpord una especie de rastro que registra el tipo de espacio de buisqueda
en el cual esta el ciimulo y a partir de éste se guia la buisqueda. La segunda, es la eleccion
de los individuos en los cuales se aplicara el aprendizaje social, en particular se eligen
los mejores cinco particulas. Con estas dos mejoras se logré superar a los algoritmos
con respecto a los cuales fue comparado. La mayor ventaja de nuestro algoritmo es que
mantiene su principio de funcionamiento simple, lo cual implica que el consumo de recursos
sea bajo. Ademas, la nueva estrategia que se agregd, influye en tiempo real para que el
algoritmo vaya adaptando sus parametros con relacion al posible comportamiento que
detecta el rastro de particulas que puede tener el espacio de bisqueda.

79



Capitulo 6. Conclusiones y trabajo futuro

6.1. Trabajo a futuro

A pesar de que nuestro algoritmo mejor6 los resultados de un grupo de algoritmos
tomados del estado del arte, creemos que se puede mejorar la forma en la que se obtiene
la informacién que permite definir mejor el espacio de busqueda sobre el cual se encuentra
el cimulo. Ademés, el rastro en si podria aportar més informaciéon para tomar acciones
en ese momento y guiar la bisqueda conforme sea requerido. De igual forma, debido al
bajo consumo de recursos, muy parecidos a los de la version original del PSO, se puede
utilizar en dispositivo pequenos o implementar en hardware.
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Apéndice A

Definiciones de los Problemas de
Prueba del CEC’2008

A.1. Funciones unimodales:

f1: Funcion esfera desplazada

D
fl(X) :ZZiQ_I'fbiaslaZZX_O,XZ [331,%2,...737[)

=1

s D: dimensiones

" 0=[01,09,...,0p] : el 6ptimo global desplazado.

Propiedades:
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Apéndice A. Definiciones de los Problemas de Prueba del CEC’2008

= Unimodal

= Desplazada

= Separable

= Escalable

» Dimensiones (D): 100, 500 y 1000

= x € [—100,100]7, Optimo global: x* = 0, F}(*) = fyias, (¥) = —450

= Unimodal

= Separable

= Desplazada

= [rregularidades locales suaves

= Problema mal condicionado. Es muy sensible a errores de redondeo y pequenas
perturbaciones, lo que hace que la soluciéon sea mas dificil de encontrar o menos
precisa (ntimero de condicion & 10°) .

f2: Problema de Schwefel desplazada

Fy(x) =max {|Z;|,1 <i < D} + foiasy, Z2=X—0, X=[21,%,...,%p

s D: dimensiones

" 0=01,09,...,0p| : el 6ptimo global desplazado.

Propiedades:

s Unimodal

= Desplazada
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= No separable
= Escalable
» Dimensiones (D): 100, 500 y 1000

= x € [—~100,100]”, Optimo global: X* = 0, F5(X*) = fijas, (X) = —450

= Unimodal

= No separable

= Desplazada

» Irregularidades locales suaves

» Problema mal condicionado (ntimero de condicién ~ 10°)

A.2. Funciones multimodales:

f3: Funciéon de Rosenbrock desplazada

)

-1
f3(x) = [1()0(Zi2 —Zin)*+ (Z; — 1)2] + foiass, Z=X—0+1, x=|x1,29,...,2p]

i=1

= D: dimensiones

" 0=1[01,09,...,0p] : el 6ptimo global desplazado.

Propiedades:

s Multi-modal

= Desplazada
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Apéndice A. Definiciones de los Problemas de Prueba del CEC’2008

No separable
Escalable

= Tiene un valle muy estrecho entre el 6ptimo local y el 6ptimo global

Dimensiones (D): 100, 500 y 1000
x € [~100, 100]”, Optimo global: x* = 0, F3(X*) = fpias, (X) = 390

f4: Funciéon de Rastrigin desplazada

D

fa(x) = Z (27 —10cos(27Z;) 4+ 10] + foias;, Z=X—0, X=[11,20,...

=1

s D: dimensiones

" 0=1[01,09,...,0p| : el 6ptimo global desplazado.

Propiedades:

Multi-modal

= Desplazada

= Separable

» FEscalable

= El nimero de 6ptimos locales es enorme

» Dimensiones (D): 100, 500 y 1000

» x € [-5,5]P, Optimo global: x* = 0, Fj(X*) = fiias;(X) = —330

f5: Funcion de Griewank desplazada

D/ D 7
X) = ) — | cos | =% ) + foinses Zz=%x—0, XxX=][11,20,...

=1
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Apéndice A. Definiciones de los Problemas de Prueba del CEC’2008

s D: dimensiones

" 0=1[01,09,...,0p] : el 6ptimo global desplazado.

Propiedades:

Multi-modal

Desplazada

No-separable

Escalable

Dimensiones (D): 100, 500 y 1000

x € [—600,600]P, Optimo global: x* = 0, F5(X*) = fiias, (x) = —180

f6: Funcion Ackley desplazada

D D

1 1

) E Z? | —exp <5 E cos(27rZi)> +20+e+ friasg, Z=X—0
i—1 i—1

» X = [21,Z9,...,2p)]
s D: dimensiones

" 0=[01,09,...,0p] : el 6ptimo global desplazado.

Propiedades:

s Multi-modal

= Desplazada
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Apéndice A. Definiciones de los Problemas de Prueba del CEC’2008

Separable

Escalable

Dimensiones (D): 100, 500 y 1000

x € [-32,32]", Optimo global: x* = 0, F5(X*) = fhjass(X) = —140

f7: Funcion FastFractal "DoubleDip"

D
fr(x) = Z fractallD(z; + twist(x; msd py+1))
i=1
twist(y) = 4(y* — 2y + y?)

2k=1 ran2(o)

3
fractallD(z) ~ Z Z Z doubledip(z,ranl(o), S|
11

k=1

1
2 — ranl(o))

)

—6144(z — ) + 3088(x — ¢)* — 392(x — )2 +1)s si — 0.5 <z < 0.5
doubledz’p(m,c,s):{é (x—c)®+ (x —¢) (x—c)*+1)s si <z

en otro caso.

" X = [21,Z9,...,2p]

D: dimensiones

" 0=[01,09,...,0p| : el 6ptimo global desplazado.

» ranl(o): namero doble pseudoaleatorio generado con semilla o con distribucion
uniforme entre 0 y 1.

» ran2(o): ntmero entero pseudoaleatorio generado con semilla o con distribuciéon
uniforme para el conjunto {0, 1,2}.

» fractallD(x): aproximacion a un algoritmo recursivo.

Propiedades:

86



Apéndice A. Definiciones de los Problemas de Prueba del CEC’2008

» Multi-modal

= No separable

» Escalable

» Dimensiones (D): 100, 500 y 1000

= x € [-1,1]P, Optimo global desconocido Fy(x*) desconocido

= La funcién tiene un comportamiento fractal con irregularidades notables en diferen-
tes escalas.

= Se recomienda el uso de un ejecutable proporcionado debido a las caracteristicas de
la generacion aleatoria.
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Apéndice B

Definiciones de los Problemas de
Prueba del CEC’2010

B.1. Funciones base

B.1.1. Funcidén esfera

D

fsphere (X) = Z 3712

Propiedades:

» X es un vector de decision, x = (1, 2o, . . ., xp)

D dimensiones

Es comletamente separable

Es muy simple y se utiliza generalmente para fines de demostracion
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» Se utiliza como subcomponente completamente separable para algunas de las fun-
ciones parcialmente separables definidas en este conjunto.

B.1.2. Funcién eliptica

La funcién eliptica original es separable y esta dada por:

§ : 6-i=L
felliptlc 10 D= lx

Propiedades:

x es un vector de decision, x = (x1, Z2,...,xp)

D dimensiones

= Para hacer que esta funcién sea no separable, se usard una matriz ortogonal para
rotar las coordenadas

= 10° se llama ntmero de condicién y se utiliza para transformar una funcioén esfera
en una funcion eliptica [38]

= La funcién eliptica rotada se define como fior eniptic () = feniptic(2), 2 = - M, donde
D es la dimension, M es una matriz ortogonal de D x D,y x = (x1,22,...,Zp) €s
un vector fila de D dimensiones (es decir, una matriz de 1 x D)

B.1.3. Funcién de Rastrigin

La funcion de Rastrigin original es separable y esta dada por:

D
frastrigm Z SC — 10 cos 27?'5171) + 10)
i=1

Propiedades:
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x es un vector de decision, x = (z1,22,...,Zp)
D dimensiones

Para hacer que esta funciéon sea no separable, se usard una matriz ortogonal para
rotar las coordenadas

Para hacer que esta funcion sea no separable, se usarda una matriz ortogonal para
rotar las coordenadas. La funcion Rastrigin rotada se define como frot_rastrigin(x) =
frastrigin (2), 2 = x- M, donde D es la dimension, M es una matriz ortogonal de D x D,
y X = (x1,22,...,xp) es un vector fila de D dimensiones (es decir, una matriz de
1 x D)

La funciéon de Rastrigin es un problema multimodal clasico. Es dificil porque el
numero de 6ptimos locales crece exponencialmente con el aumento de la dimensio-
nalidad

B.1.4. Funciéon de Ackley

La funcién de Ackley original es separable y esta dada por:

fackley(x) = —20exp | —0.2

D
1
—exp (5 Z cos(27r:z:i)) +20+e
i=1

Propiedades:

x es un vector de decision, x = (x1, z2,...,2p)
D dimensiones

Para hacer que esta funcién sea no separable, se usard una matriz ortogonal para
rotar las coordenadas

Para hacer que esta funcion sea no separable, se usara una matriz ortogonal para
rotar las coordenadas. La funcién Ackley rotada se define como fior ackley(X) =
fackley(2),2z = x-M, donde D es la dimensién, M es una matriz ortogonal de D x D,
y X = (21,22,...,2p) es un vector fila de D dimensiones (es decir, una matriz de
1 x D)
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B.1.5. Problema de Schwefel 1.2

El problema de Schwefel 1.2 es no separable y esta dado por:

fschwefel(x) = Z (Z mz)

=1

Propiedades:

= X es un vector de decision, x = (z1,x2,...,2Zp)

s D dimensiones

B.1.6. Funciéon de Rosenbrock

La funcion de Rosenbrock original es no separable y estd dada por:

)

-1
frosenbrock(x) = (1()0(3712 - l’i+1)2 + (iIZ’l — 1)2)

i=1

Propiedades:

» X es un vector de decision, x = (z1,x2,...,2Zp)

s D dimensiones
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B.2. Funciones de prueba

B.2.1. Funciones Separables:

B.2.1.1. F1: Funcién eliptica desplazada

D
Fl(x) = Feh’ptica(z) = 2(106)ﬁ23

=1

Dimension: D = 1000

» = (21,%9,...,2p): la solucién candidata — un vector fila de dimensiéon D
= 0= (01,09,...,0p): el 6ptimo global (desplazado)
" z=x—0, z=(21,2,...,2p): la solucion candidata desplazada — un vector fila

de dimension D

Propiedades:

1. Unimodal

2. Desplazada

3. Separable

4. Escalable

5. x € [—100, 100]”

6. Optimo global: z* =0, Fi(z*) =0
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B.2.1.2. F2: Funcién de Rastrigin desplazada

D
FQ(:L') = rastngln Z Z — 10 cos 27TZZ) + 10}

=1

Dimensiéon: D = 1000

» © = (21,%s,...,2p): la solucion candidata — un vector fila de dimension D
» 0= (01,09,...,0p): el 6ptimo global (desplazado)
" z=1x—0, z=(21,%,...,2p): la soluciéon candidata desplazada — un vector fila

de dimension D

Propiedades:

1. Multimodal
2. Desplazada

Separable

- W

Escalable
€ [-5,5]P
6. Optimo global: 2* = 0, Fy(z*) =0

B.2.1.3. F3: Funciéon de Ackley desplazada

F3(x) = Faeney(2) = —20exp | —0.2

D
1
(5 Z COS(27TZZ')> +20+e
i=1
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Dimensién: D = 1000

» = (x1,%9,...,2p): la solucién candidata — un vector fila de dimensiéon D
= 0= (01,09,...,0p): el 6ptimo global (desplazado)
" 2=x—0, z=(2,2,...,2p): la solucién candidata desplazada — un vector fila

de dimension D

Propiedades:

1. Multimodal
2. Desplazada
3. Separable

4. Escalable

5. x € [-32,32)P

6. Optimo global: z* =0, F3(x*) =0

B.2.2. Funciones m no separables grupo simple

B.2.2.1. F4: Funcién eliptica desplazada y m-rotada de un solo grupo

F4(;C) = Frot elliptic [Z(Pl . Pm)] X 106 + Felliptic [Z(Perl . PD)]

Dimensiéon: D = 1000

Tamano del grupo: m = 50
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» © = (x1,%9,...,2p): la solucion candidata — un vector fila de dimension D
» 0= (01,09,...,0p): el 6ptimo global (desplazado)
m 2 =x—0, z=(2,2,...,2p): la solucién candidata desplazada — un vector fila

de dimensién D

P: una permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Unimodal
2. Desplazada
3. Rotada m-de un solo grupo

4. m-no separable de un solo grupo
5. x € [—100,100]”

6. Optimo global: z* =0, Fy(z*) =0

B.2.2.2. F5: Funciéon Rastrigin desplazada y m rotada de un Solo grupo

FS(x) = Frot rastrigin [Z(Pl . Pm)] X 106 + Frastrigin [Z(Perl . PD)]

Dimensiéon: D = 1000

Tamano del grupo: m = 50

» © = (x1,%9,...,2p): la solucion candidata — un vector fila de dimension D

» 0= (01,09,...,0p): el 6ptimo global (desplazado)
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m 2=x—0, z=(2,2,...,2p): la solucién candidata desplazada — un vector fila
de dimensiéon D

» P: una permutacion aleatoria de {1,2,...,D}

Propiedades:

1. Multimodal

2. Desplazada

3. Rotada m-de un solo grupo

4. m-no separable de un solo grupo
5. x € [-5,5]P

6. Optimo global: z* = 0, F5(z*) =0

B.2.2.3. F6: Funciéon Ackley desplazada y m rotada de un solo grupo

F6<x> = Frot ackley [Z(Pl . Pm)] X 106 + Fackley [Z<Pm+1 : PD)]

Dimensiéon: D = 1000

Tamano del grupo: m = 50

» © = (21,%s,...,2p): la solucion candidata — un vector fila de dimension D
= 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z2=x—0, z=(21,%,...,2p): lasolucion candidata desplazada — un vector fila

de dimensién D
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» P: una permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal
2. Desplazada
3. Rotada m-de un solo grupo

4. m-no separable de un solo grupo
5. x € [-32,32)P

6. Optimo global: 2* =0, Fs(x*) =0

B.2.2.4. F7: Problema de Schwefel 1.2 desplazado m dimensional de un solo
grupo

F?(I) - Fschwefel [Z(Pl : Pm)] X 106 + Fsphere [Z(Pm—f—l . PD)]

Dimensiéon: D = 1000

Tamano del grupo: m = 50

» = (21,%9,...,2p): la solucion candidata — un vector fila de dimension D
" 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z=x—0, z=(21,2,...,2p): la soluciéon candidata desplazada — un vector fila

de dimension D

P: permutacion aleatoria de {1,2,..., D}
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Propiedades:

1. Unimodal

2. Desplazada

3. m-no separable de un solo grupo
4. x € [—100,100]?

5. Optimo global: 2* =0, Fy(z*) =0

B.2.2.5. F8: Funciéon de Rosenbrock desplazada m dimensional de un solo
grupo

FS(-I) = Frosenbrock [Z(Pl : Pm)] X 106 + Fsphere [Z<Pm+1 . PD)]

Dimension: D = 1000

Tamano del grupo: m = 50

» = (21,%9,...,2p): la solucién candidata — un vector fila de dimensiéon D
» 0=(01,09,...,0p): el 6ptimo global (desplazado)
" 2=x—0, z=(2,2,...,2p): la solucién candidata desplazada — un vector fila

de dimension D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal
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2. Desplazada
3. m-no separable de un solo grupo
4. x € [—100,100]?

5. Optimo global: z*(P, : P,) = o(P : Pn) + 1, 2*(Pny1 : Pp) = o(Ppy1 -
PD), Fg(l'*) = O

B.2.3. Funciones m no separables grupo %

D

B.2.3.1. F9: Funcién eliptica desplazada y m rotada de grupo 5~

D
2m

FQ(ZE) = ZFmt elliptic [Z (P((l{? — 1) X m + 1) . Pk X m)] + Felliptic [Z (P%_H : PD>]
k=1

Dimensién: D = 1000

Tamano del grupo: m = 50

» © = (x1,%9,...,2p): la solucion candidata — un vector fila de dimension D
» 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z2=x—0, z=(2,2,...,2p): la solucién candidata desplazada — un vector fila

de dimension D

P: permutacién aleatoria de {1,2,...,D}

Propiedades:
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1. Unimodal

2. Desplazada

3. %—grupo m-rotado

4. %—grupo m-no separable
5. x € [—100, 100]”

6. Optimo global: 2* =0, Fy(z*) =0

B.2.3.2. F10: Funcién Rastrigin desplazada y m rotada de grupo %

D
2m

FIO(x) = Z Frot rastrigin [Z (P ((k - 1) X m + 1) : Pk X m)] + Frastrigin [Z <P%+1 : PD)]
k=1

Dimensién: D = 1000

Tamano del grupo: m = 50

» = (21,29,...,2p): la solucién candidata — un vector fila de dimensiéon D
= 0= (01,09,...,0p): el 6ptimo global (desplazado)
m 2=x—0, z=(2,%,...,2p): la solucién candidata desplazada — un vector fila

de dimensiéon D

P: permutacion aleatoria de {1,2,...,D}

Propiedades:

1. Multimodal
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2. Desplazada

%— grupo m-rotado

- W

%—grupo m-no separable
5. x € [-5,5]P

6. Optimo global: 2* = 0, Fio(z*) =0

D

B.2.3.3. F11: Funcion Ackley desplazada y m rotada de grupo 5~

Fua@) = > Faot sty [ (P (F = 1) X 1+ 1) 2 P x )] + Pty = (Poyy o Po)]
k=1

Dimensién: D = 1000

Tamano del grupo: m = 50

» = (r1,%9,...,2p): la solucion candidata — un vector fila de dimension D
» 0= (01,09,...,0p): el 6ptimo global (desplazado)
» z=x—0, z=(21,%,...,2p): la soluciéon candidata desplazada — un vector fila

de dimensién D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal

2. Desplazada
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3. %—grupo m-rotado
4. %—grupo m-no separable
5. r € [-32,32|P

6. Optimo global: 2* =0, Fj;(z*) =0

B.2.3.4. F12: Problema de Schwefel 1.2 desplazado y m rotado de grupo %

D
Fia(w) = 3 Fanweta [2 (P (k= 1) xm +1) 2 e x m)] + Fapere |2 (P41 Pp) |
k=1

Dimensién: D = 1000

Tamano del grupo: m = 50

» © = (z1,%s,...,2p): la solucion candidata — un vector fila de dimension D
= 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z2=x—0, z=(21,%,...,2p): la solucion candidata desplazada — un vector fila

de dimension D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Unimodal
2. Desplazada

3. %—grupo m-no separable
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4. z € [~100,100)”
5. Optimo global: 2* =0, Fiy(z*) =0

D

B.2.3.5. F13: Funcion de Rosenbrock desplazada y m rotada de grupo 5

D
2m

Fig(w) = 3 Frosenbron [2 (P (k = 1) xm 1) 1 P x m)] + Fppere |2 (P41 2 Po) |
k=1

Dimensiéon: D = 1000

Tamano del grupo: m = 50

» © = (x1,%s,...,2p): la solucion candidata — un vector fila de dimension D
= 0= (01,09,...,0p): el 6ptimo global (desplazado)
" 2=x—0, z=(2,2,...,2p): la solucién candidata desplazada — un vector fila

de dimensiéon D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal
2. Desplazada

D
5,--Erupo m-no separable

L

z € [~100, 100)”

5. Optimo global: z*(P; : Ppjs) = o(Py : Ppp) + 1, *(Ppjay1 : Pp) = o(Ppjays
PD)7 Flg(x*) =0
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B.2.4. Funciones m no separables grupo %

B.2.4.1. F14: Funcioén eliptica desplazada y m rotada de grupo %

NgEE

F14<33‘) = Frot elliptic [Z (P ((k‘ — 1) X m + 1) : Pk X m)]

e
Il
—

Dimensiéon: D = 1000

Tamano del grupo: m = 50

» © = (z1,%s,...,2p): la solucion candidata — un vector fila de dimension D
= 0= (01,09,...,0p): el 6ptimo global (desplazado)
m 2 =x—0, z=(2,2%,...,2p): la solucién candidata desplazada — un vector fila

de dimensién D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Unimodal

2. Desplazada

3. %—grupo m-rotado

4. %—grupo m-no separable
5. x € [—100, 100]”

6. Optimo global: 2* =0, Fi(z*) =0
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B.2.4.2. F15: Funcién Rastrigin desplazada y m rotada de grupo %
D
Fi5(x) = Frot rastrigin [2 (P ((k — 1) x m + 1) : P x m)]
k=1
Dimensiéon: D = 1000
Tamano del grupo: m = 50
» = (r1,%9,...,2p): la solucion candidata — un vector fila de dimension D
» 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z=x—0, z=(21,%,...,2p): la soluciéon candidata desplazada — un vector fila

de dimensién D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal

2. Desplazada

3. %—grupo m-rotado

4. %—grupo m-no separable

5. x € [-5,5P

6. Optimo global: 2* =0, Fi5(z*) =0
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B.2.4.3. F16: Funcién Ackley desplazada y m rotada de grupo 2

m

NgEE

Fig(z) = Frot ackley [2 (P (k= 1) x m+ 1) : P, x m)]

£
Il
—

Dimensién: D = 1000

Tamano del grupo: m = 50

» = (x1,%9,...,2p): la solucién candidata — un vector fila de dimensiéon D
» 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z2=x—0, z=(2,%,...,2p): lasolucion candidata desplazada — un vector fila

de dimensién D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal

2. Desplazada

3. %—grupo m-rotado

4. %—grupo m-no separable

5. x € [-32,32)P

6. Optimo global: 2* =0, Fig(z*) =0
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B.2.4.4. F17: Problema de Schwefel desplazado y m dimensional de grupo %

NEE

Fiz(z) = Finwetel [2 (P ((k—1) x m + 1) : P, x m)]

i
I

Dimension: D = 1000

Tamano del grupo: m = 50

» = (r1,%9,...,2p): la solucion candidata — un vector fila de dimension D
» 0= (01,09,...,0p): el 6ptimo global (desplazado)
m 2 =x—0, z=(21,2,...,2p): la solucién candidata desplazada — un vector fila

de dimensién D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Unimodal

2. Desplazada

3. L_grupo m-no separable

4. z € [~100,100]”

5. Optimo global: 2* =0, Fi7(z*) =0
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B.2.4.5. F18: Funcién de Rosenbrock desplazada y m dimensional de grupo
D

m

Fig(z) = Frosenbrock |2 (P (K — 1) x m+ 1) : P, x m)]

NEE

i
I

Dimensiéon: D = 1000

Tamano del grupo: m = 50

» © = (z1,%s,...,2p): la solucion candidata — un vector fila de dimension D
= 0= (01,02,...,0p): el 6ptimo global (desplazado)
" 2 =x—0, z=(2,%,...,2p): la solucién candidata desplazada — un vector fila

de dimensién D

P: permutacion aleatoria de {1,2,..., D}

Propiedades:

1. Multimodal

2. Desplazada

3. %—grupo m-no separable

4. x € [-100,100]?

5. Optimo global: z* =0+ 1, Fig(z*) =0
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B.2.5. Funciones no separables

B.2.5.1. F19: Problema de Schwefel desplazado 1.2

F19(x) = Fschwefel(z) = : (Z xz)

Dimensiéon: D = 1000

» © = (x1,%9,...,2p): la solucion candidata — un vector fila de dimension D
» 0=(01,09,...,0p): el 6ptimo global (desplazado)
" z=x—0, z=(21,%,...,2p): la soluciéon candidata desplazada — un vector fila

de dimensién D

Propiedades:

1. Unimodal

Desplazada

Totalmente no separable
x € [—100, 100]”

Optimo global: z* =0, Fig(z*) =0

AT

B.2.5.2. F20: Funcién de Rosenbrock desplazada

)

-1

FQO(:E) - Frosenbrock(2> - [100(2:12 - Zi+1)2 + (Zi - 1)2}
1

1
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Dimensién: D = 1000

» = (x1,%9,...,2p): la solucion candidata — un vector fila de dimensiéon D
= 0= (01,09,...,0p): el 6ptimo global (desplazado)
m 2 =x—0, z=(2,%,...,2p): la solucién candidata desplazada — un vector fila

de dimensiéon D

Propiedades:

1. Multimodal

2. Desplazada

3. Totalmente no separable
4. x € [-100,100]”

5. Optimo global: z* =0+ 1, Fy(z*) =0
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Apéndice C

Definiciones de los Problemas de
Prueba del CEC’2013

C.1. Funciones base

C.1.1. Funcion esfera

fsphere(gj) = 2%2

donde x es un vector de decision de D dimensiones. La funcién esfera es una funciéon
unimodal y completamente separable que se utiliza como subcomponente completamente
separable para algunas de las funciones parcialmente separables definidas en este conjunto.
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C.1.2. Funcioén eliptica
D
feniptic(x) = Z 106(P=D ;2
=1
C.1.3. Funci6én de Rastrigin
D
frastrigln Z $ — 10 cos 271'37@) + 10)
=1

C.1.4. Funcién de Ackley

D D
1 1
_ 2
Jackley () = —20 exp <0.2 D E_l .:1:2) — exp (5 E_l cos(?wxﬂ) + 20 4 exp(1)

C.1.5. Problema de Schwefel 1.2

D i 2
fschwefel E E X
1 \j=1

1=
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C.1.6. Funcion de Rosenbrock

D—-1

frosenbrock(x) = Z (100(1'? - $i+1)2 + (:L‘Z - 1)2)

i=1

C.2. Diseno

C.2.1. Simbolos

A continuacion se describen los simbolos y nomenclaturas utilizadas en este apéndice.
Los vectores se escriben en mintsculas en negrita y representan vectores columna (por

ejemplo, x = (1,...,2p)

7). Las matrices se escriben en maytsculas en negrita (por

ejemplo, R).

S: Un multiconjunto que contiene los tamanos de los subcomponentes para una
funcion. Por ejemplo, S = {50,25,50,100} indica que hay 4 subcomponentes con
50, 25, 50 y 100 variables de decision, respectivamente.

|S|: Namero de elementos en S. Representa la cantidad de subcomponentes en una
funcion.

Ci = >_;-1S;: La suma de los primeros i elementos de S. Para conveniencia, se
define Cj como cero. C; se utiliza para construir el vector de decision de diferentes
funciones de subcomponentes con el tamano correcto.

D: La dimensionalidad de la funcién objetivo.
P: Una permutacion aleatoria de los indices de las dimensiones {1,..., D}.

w;: Un peso generado aleatoriamente que se utiliza como el coeficiente del i-ésimo
subcomponente no separable para generar el efecto de desequilibrio. Los pesos se
generan de la siguiente manera:

w; = 103N(0,1)’

donde N(0,1) es una distribucion gaussiana con media cero y varianza unitaria.
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x°Pt: El vector de decision 6ptimo para el cual el valor de la funcién objetivo es
minimo. Este también se utiliza como un vector de desplazamiento para cambiar la
ubicacion del 6ptimo global.

Tosz: Una funcion de transformacion para crear irregularidades locales suaves [70].

Tos, : RP = RP 2, v sign(a;) exp(2;40.049(sen(c12;)+sen(cod;))), parai=1,...

donde:
R log(|x;|) siz; #0,
Tr; =
0 de lo contrario,
-1 siz <0,
sign(z) =<0 siz =0,
sixz >0,
~J10 six >0, _J79 stz >0,
e 5.5 de otra manera ~13.1 de lo contrario

Tf,: Una funcién de transformacion para romper la simetria de las funciones simé-

tricas [70].

14+B == /T
vD-1 :
T, siz; >0
Taﬁsy:RD_)RDv Ti— v ’ ’

x; de lo contrario

parai=1,...,D.
. . . ) 11

A%: Una matriz de D-dimensiones con elementos diagonales \; = a2D-1. Esta

matriz se utiliza para crear mal condicionamiento [70]. El parametro « es el niimero
de condicion.

R: Una matriz de rotaciéon ortogonal que se utiliza para rotar aleatoriamente el
paisaje de aptitud alrededor de varios ejes, como se sugiere en [71].

m: El tamano de solapamiento entre subcomponentes.

1

1= |:]: Un vector columna de unos.
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C.2.2. Diseno de las funciones parcialmente separables

Este tipo de funciones tienen la siguiente forma general:

1S]—1

f(X) = Z wifnonsep(zi) + fsep(Z|S|)7

=1

donde w; es un peso generado aleatoriamente para crear el efecto de desequilibrio, y
fsep €s una funcion que puede ser la funcion Esfera o la version no rotada de las funciones
de Rastrigin o Ackley. Para generar una version no separable de estas funciones, puede
usarse una matriz de rotacion.

El vector z se forma transformando, desplazando y finalmente reordenando las dimen-
siones del vector x. Una transformacion tipica se muestra a continuacion:

y = AIOTO.Q(TOSZ(X _ Xopt))7

asy

z; = y(Po_+1) : Pey),

Como se describié anteriormente, el vector z°P* es la ubicacion del 6éptimo desplazado,
que se utiliza como vector de desplazamiento. El conjunto de permutaciéon P se utiliza
para modificar el orden de las variables de decision, y C; se usa para construir cada uno
de los vectores de subcomponentes (z;) con el tamafno correspondiente (S;) especificado
en el multiconjunto S.

117



Apéndice C. Definiciones de los Problemas de Prueba del CEC’2013

C.3. Definicién de los problemas de prueba

C.3.1. Funciones completamente separables

f1: Funcion eliptica desplazada

D

j—1
= 10512
j=1

w7 =T, (x — X7
- x € [~100,100]”

= Optimo global: f;(x) =0
Propiedades:

= Unimodal

= Separable

= Desplazada

= [rregularidades locales suaves

= Problema mal condicionado. Es muy sensible a errores de redondeo y pequenas
perturbaciones, lo que hace que la soluciéon sea mas dificil de encontrar o menos
precisa (ntimero de condicién =~ 109) .

f2: Funcién Rastrigin desplazada

[27 — 10 cos(272;) + 10]

Mu

=1
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"z = AlOTgﬁJ(TOSZ(X — x°P1))

» x € [—5,5)P

» Optimo global: f,(x%!) =0

Propiedades:

= Multimodal

= Separable

= Desplazada

» [Irregularidades locales suaves

= Problema mal condicionado. Es muy sensible a errores de redondeo y pequenas
perturbaciones, lo que hace que la soluciéon sea mas dificil de encontrar o menos
precisa (ntmero de condicién ~ 10)

f3: Funcion Ackley desplazada

D

D
1 1
2
E 22| —exp ( El cos(27rzz-)> +20+e

f3(z) = —20exp [ —0.2

"mzZ= A10T3é32/<Tosz (x —x7))

» x € [—32,32]P

= Optimo global: f3(x!) =0
Propiedades:

s Multimodal

= Separable
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= Desplazada
» [rregularidades locales suaves

» Mal condicionado (nimero de condiciéon ~ 10)

C.3.2. Funciones parcialmente aditivas separables I

f1: Funcion eliptica desplazada y rotada de 7-no separable, 1-separable

1S]-1

f4(Z) - Z wifelliptic(zi) + felliptic(Z|S|)

=1

= S = {50,25,25,100,50, 25,25, 700}
= D=5 =1000

Ry =X— xoPt
» y;, =y(P[Ci—1+1]: P[Ci]), i€ {1,...,|S|}
= 2 = Toso(Riyi), 1 € {1,...,[S| — 1}

= 215 = Tos:(y)s))

» R;: una matriz de rotacion de |S;| x | S|

= x € [~100,100]”

= Optimo global: f,(x") =0
Propiedades:

= Unimodal
= Parcialmente separable

= Desplazada
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= [rregularidades locales suaves

» Problema mal condicionado (ntimero de condicion ~ 10°)

f5: Funcion Rastrigin Desplazada y Rotada de 7-no separable, 1-separable

IS]—1

fS(Z) = Z wifrastrigin(zi) + frastrigin(z|5|)

i=1

= S = {50,25,25,100,50, 25,25, 700}
« D=5 =1000

my=X— xOPt
» y, =y(P[Ci—1+41]: P[Ci]),ie{1,...,|S]}
w2 = NoTosy(Tos:(Riyi)), i € {1,...,]S| — 1}
w25 = AoTasy(Tos:=(ys)))

» R;: una matriz de rotacion de |S;| x | S|

= x € [-5,5]

= Optimo global: f;(x%!) =0
Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (niumero de condiciéon ~ 10)
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f6: Funcion Ackley Desplazada y Rotada de 7-no separable, 1-separable

1S]—1

f6<z) = Z wifackley(zi) + fackley(z|5'|)

i=1

S = {50, 25, 25,100, 50, 25, 25, 700}

D =555 — 1000

S ——

» y = y(P[Ci—1+1]: P[Ci]), i € {1,...,[S]}
w2 = NoTosy(Tos:(Riyi)), i € {1,...,|S| — 1}
251 = M0T sy (Tos:(y)51))

R;: una matriz de rotacion de |S;| x |.S;]

x € [—32,32]"

Optimo global: fg(x?") = 0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (nimero de condiciéon ~ 10)

f7: Funcion Schwefel Desplazada y Rotada de 7-no separable, 1-separable

1S]—1

f7(z) = Z W; fschwe fet(Zi) + fsphere(z|5'|)

=1
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S = {50, 25, 25, 100, 50, 25, 25, 700}

D =Y 5 =1000

»y =x—x%

yi = y(P[Ci —1+1]: P[C]]), i € {1,....]S]}
" Z= Tasy(Tosz(Riyi))a (S {17 ceey |S‘ - 1}
215 = Tasy(TOSZ(ylsl))

R;: una matriz de rotacion de |S;| x |.S;|

x € [~100,100]?

Optimo global: f;(x!) = 0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

C.3.3. Funciones parcialmente aditivamente separables 11

f8: Funcién eliptica desplazada y rotada de 20-no separable

|5

fs(Z) = Z wifelliptic(zi)

= S = {50, 50,25, 25,100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

= D=5 =1000
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L] y:X—XOPt

yi = y(P[Ci—1+1]: P[Ci]), i € {1,...,|S]|}

= 2= Tosz<Riyi)7 (NS {17 R ‘S|}

R;: una matriz de rotacion de |S;| x |.S;]

x € [~100,100]7

Optimo global: fg(x") = 0
Propiedades:

= Unimodal

= Parcialmente separable

= Desplazada

» [rregularidades locales suaves

» Problema mal condicionado (nimero de condicién ~ 10°)

f9: Funcion Rastrigin Desplazada y Rotada de 20-no separable

S|

f9(z> = Z wifrastrigin(zi)
=1

= S = {50,50,25,25,100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}
« D=3V 5 =1000

»y=x—x7%

= y; = y(P[Ci—141]: P[Cq)), i € {1,...,|S|}

o 2 = ATy (Tose(Riws)), i € {1,...,|S]}

» R;: una matriz de rotacion de |S;| x | S|
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» x € [-5,5)P

= Optimo global: fy(x!) =0

Propiedades:

Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (ntmero de condiciéon ~ 10)

f10: Funcion Ackley Desplazada y Rotada de 20-no separable

S|

flO (Z) = Z wifackley(zi)
i=1

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D=5, = 1000

R ——

w g =y(P[Ci—1+1]: P[C]), i € {1,...,|S|}
w 2 = NioTosy(Tos(Riys)), 1 € {1,...,|S|}

R;: una matriz de rotacion de |S;| x |.S;|

x € [—32,32]P

Optimo global: fi,(x) = 0

Propiedades:
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Multimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves

Problema mal condicionado (ntiimero de condicion == 10)

f11: Funcion Schwefel Desplazada y Rotada de 20-no separable

S|

fll (Z) = Z wifschwefel<zi)

i=1

S = {50, 50, 25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D =155, — 1000

n y:X—XOPt

v = y(P[Ci —1+1]: P[C]), i € {1,...,|S]}

Zi = Tasy(Tosz(Riyi))a (NS {17 SR |S|}

R;: una matriz de rotacion de |S;| x |.S;]

x € [~100,100]?

Optimo global: fi;(x?!) =0

Propiedades:

Unimodal

Parcialmente separable

Desplazada

Irregularidades locales suaves
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C.3.4. Funciones superpuestas

f12: Funcion Rosenbrock Desplazada

D-1

fr2(z) = Z [100(%‘2 — zip1)" + (2 — 1>2]

i=1

= D = 1000
- x € [~100,100]”
= Optimo global: fi5(x' 4 1) =0

Propiedades:

Multimodal

Separable

Desplazada

Irregularidades locales suaves

f13: Funcion Schwefel Desplazada con Subcomponentes Superpuestos Con-

forme
S|

fl?:(z) = Z wifschwefel(zi)
=1

S = {50, 50,25, 25,100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

C’i = Z;’:l Sj, CO == O

D =505 5 —m(|S] — 1) = 905

1=

n y:X—XOPt
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w y,=y(P[Cici—(i—1)m+1:C;— (i —1)m]), i €{1,...,|5]|}

zi = Ay Tasy(Tosz(Ry:)), i € {1,...,|S] — 1}

m = 5: tamano de solapamiento

R;: matriz de rotacion |S;| x |.S;|

x € [~100,100]7

Optimo global: fi3(x") = 0

Propiedades:

Unimodal

No-separable

Solapada

Desplazada

Irregularidades locales suaves

f14: Funcion Schwefel Desplazada con Subcomponentes Superpuestos Con-

flictivos
S|

f14(Z) = Z w’ifschwefel(zi)
=1

S = {50, 50,25, 25, 100, 100, 25, 25, 50, 25, 100, 25, 100, 50, 25, 25, 25, 100, 50, 25}

D=3 8 — (m(]S] - 1)) = 905

yi =x(P[C;_y — (i —)m +1:C; — (i — 1)m]) — x*

(3

t . ~ o, .
x:7": vector de desplazamiento de tamano |S;| para el i-ésimo subcomponente

zi = Mo Tasy(Tosz(R;y;))

m = 5: tamano de solapamiento
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» R;: matriz de rotacion |S;| x |S;]
« x € [~100,100]°
= Optimo global: fi4(x) =0

Propiedades:

Unimodal

No-separable

Subcomponentes conflictivos

Desplazada

Irregularidades locales suaves

C.3.5. Funciones totalmente no separables

f15: Funcion Schwefel Desplazada

D
flS(Z) = Z wifschwefel(zi)

=1

D = 1000

z = AyoTasy(Tosz(x — xP*))

x € [~100,100]?

Optimo global: fi5(x") = 0

Propiedades:
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Unimodal

Totalmente no-separable

Desplazada

Irregularidades locales suaves
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