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Resumen

Esta tesis se centra en el estudio riguroso de la seguridad demostrable en criptografia, con
un enfoque particular en los cédigos de autenticacion de mensajes (MAC). La tesis se erige
sobre una base solida de conceptos tedricos provenientes de la probabilidad, la teoria de la
informacion y la criptografia simétrica. Estos fundamentos proporcionan el marco necesario
para abordar los temas centrales de la investigacion.

Asimismo, se realiza un estudio exhaustivo de los cifradores por bloques entonables, que
son considerados la piedra angular de muchos sistemas criptograficos modernos. Se introdu-
ce el concepto de ordculo como una herramienta tedrica para modelar la interaccién entre un
adversario y un sistema criptografico.

Se define formalmente el concepto de familia de funciones, que es fundamental para las fun-
ciones pseudoaleatorias y las estrategias que pueden emplear los adversarios para distinguirlas
de funciones verdaderamente aleatorias. Se presta especial interés en el concepto de seguridad
incondicional, que se basa en la teoria de la informacién y no depende de supuestos compu-
tacionales.

Adicionalmente, se explica con alto grado de detalle la técnica de los coeficientes H, una
herramienta poderosa para demostrar la seguridad de construcciones criptograficas. Se ofrecen
demostraciones rigurosas de los teoremas principales y se generaliza la definicion de transcrito
bueno, proporcionando asi una medida de seguridad para cualquier sistema probabilistico.

Por altimo, se muestra la aplicacion de la técnica H al anélisis del esquema ZMAC, un MAC
basado en cifradores por bloques entonables. Se identifican las propiedades de seguridad de
ZMAC y se demuestra su resistencia a diversos tipos de ataques. Ademads, se proponen mejoras
para optimizar la eficiencia computacional de ZMAC sin comprometer su seguridad.
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Abstract

This dissertation delves into a rigorous examination of provable security in cryptography,
with a particular focus on Message Authentication Codes (MAC). The thesis is grounded in a
solid foundation of theoretical concepts drawn from probability theory, information theory, and
symmetric cryptography. These underpinnings provide the necessary framework to address the
core research topics.

Furthermore, a comprehensive study of block ciphers, which are widely regarded as the cor-
nerstone of many modern cryptographic systems, is undertaken. The concept of an oracle is
introduced as a theoretical tool to model the interaction between an adversary and a crypto-
graphic system.

The concept of a function family is formally defined, which is fundamental to understanding
pseudorandom functions and the strategies adversaries may employ to distinguish them from
truly random functions. Particular attention is paid to the notion of unconditional security, which
is grounded in information theory and independent of computational assumptions.

Furthermore, the thesis provides a highly detailed explanation of the H-coefficient technique,
a powerful tool for proving the security of cryptographic constructions. Rigorous proofs of the
main theorems are presented, and the definition of a good transcript is generalized, providing a
security measure for any probabilistic system.

Finally, the application of the H-coefficient technique to the analysis of the ZMAC scheme,
a MAC based on block ciphers, is demonstrated. The security properties of ZMAC are identi-
fied, and its resistance to various attacks is proven. Additionally, improvements are proposed to
optimize the computational efficiency of ZMAC without compromising its security.
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Capitulo 1

Introduccion

1.1. Antecedentes

La criptografia moderna es la piedra angular de las comunicaciones y la seguridad informati-
ca, con productos finales que son inmensamente practicos. En el esquema basico se presentan
tres entidades: el remitente, el receptor y el adversario. El remitente y el receptor desean comu-
nicarse entre si, pero no existen canales ideales que conecten a las partes. El problema principal
de la criptografia es garantizar la seguridad de la comunicacién a través de un medio insegu-
ro, considerando distintas caracteristicas como la integridad, la discrecion, la privacidad, el no
repudio y la autenticidad de un mensaje (Bellare & Rogaway, [2005).

Los cddigos de autenticacion de mensajes (MAC, por sus siglas en inglés) son uno de los
aspectos mas importantes de la criptografia. En pocas palabras, los MAC son una version de la
firma digital de clave secreta para autenticar mensajes. Los MAC estdn disefiados para proveer
integridad al mensaje y autenticidad del emisor. Esto se logra al detectar cudndo un adversario
inserta o modifica la informacién transmitida. De esta manera, s6lo el emisor esta en posibilidad
de enviar mensajes que seran considerados como auténticos por parte del receptor. Esto significa
que una pareja (M, S) siempre satisface Vi, (M, S) = 1 siy s6lo si esta fue enviada por el emisor.
Note que en este caso el adversario trata de falsificar la pareja (M, S). La ventaja que se tiene
para falsificar la pareja es mayor a la ventaja que se tiene en recuperar la llave secreta. Asi, la
falsificacion es mds importante que la recuperacion de la llave.

En la criptografia moderna, los esquemas criptograficos deben contar con una demostracion
matematica rigurosa que garantice la seguridad del esquema. El objetivo de cualquier esquema
de clave secreta es lograr una especie de “indistinguibilidad” entre el sistema real (una instancia
de una familia de funciones) y un sistema ideal (usualmente, una funcion aleatoria). Si un ad-
versario no es capaz de distinguir el sistema real del ideal, podemos garantizar las propiedades
criptograficas de la familia, por lo tanto, deseable a ser utilizado como un cifrado por bloques.
Para esto, se considera un adversario, el cual cuenta con un ordculo que responde a sus pregun-
tas, obteniendo asi un conjunto de pares de textos en claro y textos cifrados. Dependiendo de
estas parejas, se puede tener la distincidon de encontrarse en el mundo de la familia especifica o
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de la familia de las funciones aleatorias, denotando estos mundos como mundo 1 y mundo 0,
respectivamente.

Mundo 0: La funcién O es un ordculo ideal elegido uniformemente al azar de una distribu-
ciéon D.

Mundo 1: La funcién O es una funcién criptografica, es decir, una instancia de la familia F’
dada por una clave k.

Para probar la seguridad utilizando el enfoque de secuencia de juegos, se construye una serie
de experimentos en pseudocédigo, donde el adversario se encuentra en un mundo b € {0,1}.
La técnica de los juegos de distincion desarrollada por Bellare y Rogaway (2005) comienza con
el adversario A interactuando con un retador por medio de preguntas y respuestas iterativas.
Este experimento puede entenderse de manera mas sencilla, considerdndolo como un algorit-
mo (oraculo) O que retorna una secuencia de pares entrada-salida. Después de esta interaccion,
A obtiene una muestra del comportamiento de O que puede estudiar para tomar una decision
sobre el valor de b y terminar el juego.

El acto de decidir en cual mundo se localiza se formaliza con la idea de un “distinguidor”,
i.e. un algoritmo con acceso a una funcién O que intenta decidir en cudl de ambos mundos se
encuentra. Generalmente, el objeto es identificar si O es un objeto idealizado o una funcién
criptografica. De este modo, la ventaja del distinguidor se calcula de la diferencia en el evento
b = 1 entre ambos mundos.

Advg®(A) :=Pr[Mundo 1: b=1]— Pr[Mundo 0: b= 1] (1.1)

Con base en cada juego, se realiza un andlisis probabilistico para acotar la ventaja del distin-
guidor o la ecuacion (I.1). Esta es la técnica contemporanea desarrollada por Bellare y Rogaway
(2006)), donde los juegos se representan como un pseudocodigo con variables y banderas que re-
presenta la decision del adversario. Por ello, el paradigma actual para disefiar MAC iterativas de
clave simétrica es la construccion de PRFs basadas en cifradores por bloques como CBC-MAC,
PMAC, OMAC y LightMAC (Iwata & Kurosawa, 2003). Algunas de las construcciones mas
comunes proveen seguridad de hasta 2"/2 consultas de un adversario, en donde n es el tamafio
del bloque del cifrador. No obstante, estas construcciones solo aseguran alcanzar el limite de
seguridad conocido como “La cota de cumpleafios” (Birthday Bound).

En los dltimos afios, se ha utilizado una herramienta mds robusta introducida por Patarin
(2009) en el SAC 2008 (aunque ya utilizada en trabajos anteriores) denominada “La técnica de
Coeficientes H”. En resumen, la técnica H consiste en un adversario y un oraculo interactuando,
a través de secuencias llamadas transcritos. La técnica establece que la ventaja para distinguir el
ordculo real del ideal estd limitada por la probabilidad de encontrar cierto transcrito en el com-
portamiento del ordculo real. A diferencia de la técnica de juego, la técnica de Coeficientes H no
asume distribuciones de probabilidad implicitas en los ordculos y requiere cdlculos explicitos
de probabilidad en ambos casos para limitar la relacién entre ellos.
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1.1.1. Motivacion

En la era digital actual, la comunicacion segura se ha vuelto esencial en diversos dmbitos,
desde las transacciones bancarias hasta las comunicaciones gubernamentales. La integridad y
autenticidad de los mensajes son aspectos fundamentales para garantizar la confianza en las
comunicaciones electrénicas. Los cédigos de autenticacidon de mensajes desempefian un papel
crucial en este contexto, proporcionando un mecanismo para verificar la integridad y autentici-
dad de los datos transmitidos.

Sin embargo, a medida que aumentan las sofisticadas amenazas cibernéticas, es cada vez més
importante contar con garantias formales sobre la seguridad de los esquemas criptogréficos. La
seguridad demostrable ofrece un marco riguroso para analizar y evaluar la resistencia de los
sistemas criptograficos ante nuevos ataques.

Para garantizar esto, mostraremos que la indistinguibilidad de una funcién pseudoaleatoria es
una de las mayores medidas de seguridad que nos protege contra cualquier clase de ataque que
busque recuperar la llave, o hasta falsificar firmas digitales. Si bien el objetivo principal de un
MAC es la inalterabilidad del mensaje y la verificacién del emisor, la indistinguibilidad de bits
aleatorios puede ser una meta de reemplazo valiosa para evaluar la seguridad. Si las etiquetas
son indistinguibles de valores aleatorios, es dificil predecir el valor de la firma que un MAC
pueda generar (Moch & List, 2019).

En un alto nivel, muchas de las construcciones MAC siguen el paradigma de disefio Hash-
then-PRF (HtPRF): el mensaje M se mapea primero en una secuencia de bloques que garantice
que cada bloque tenga la misma longitud (éste se logra gracias a una operacion de padding).
Enseguida, se obtiene un hash corto de toda la secuencia de bloques, a través de una funcion
hash universal. Por ultimo, este hash se cifra a través de una PRF de longitud de entrada fija para
obtener una firma corta correspondiente a todo el mensaje. Este método es simple (en particular
es determinista y sin estado); sin embargo, tiene limites de seguridad dados por la cota del
cumpleaiios en la ecuacion @[) Cualquier colision, en la salida de la funcién hash, se traduce
en una posibilidad de falsificar las etiqueta que entrega el MAC. Esto suele ser suficiente para
romper la seguridad del esquema:

AdVFORGE(A) < Q(q_l) < q2

UHF = W = 2_n (1.2)

La cota de cumpleafios es el limite que invalida la garantia de privacidad cuando ocurre
una colision interna, con probabilidad dada por , después de procesar 2"/ bloques con la
misma clave. El ataque ocurre en una construccion MAC que toma valores con longitud de n
bits y requiere no mds de O(q¢?/2") consultas de un adversario inteligente, lo que significa que
es posible realizar una falsificacién de la firma (forgery). Este es un problema severo para los
cifradores ligeros (64 bits) derivados del Triple-DES y, en menor medida, para los cifradores de
128 bits como GCM u OCB3 (Yasuda, 2011).

En particular, es de nuestro interés emplear cifradores por bloques para generar cddigos de
autenticacién de mensajes con seguridad més alla de la cota de cumpleafios (Beyond-Birthday-
Bound). Este limite es un problema intrinseco al uso de familias de permutaciones pseudo-
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aleatorias (Bhattacharjee et al., 2020). No obstante, en los tltimos 10 anos los investigadores
han lanzado propuestas novedosas que logran superar este limite a través de distintas técnicas,
como los cifradores entonables o el uso de bloque con doble HASH. La importancia de este
trabajo radica en estudiar dichas construcciones, analizarlas y entender sus propiedades, puesto
que la busqueda de nuevos codigos de autenticacion o el disefio de modos de operacion efi-
cientes (computacionalmente) son uno de los asuntos de actualidad mds importantes que varios
miembros de la comunidad criptografica investigan.

1.2. Objetivos de la Tesis

Objetivo General

= Encontrar las propiedades necesarias en esquemas basados en cifradores por bloques pa-
ra garantizar codigos de autenticacion de mensajes seguros mas alla de la cota de cum-
pleafios.

Objetivos especificos

1. Entender las distintas técnicas de demostracion de seguridad incondicional.
2. Analizar la construccién de las funciones pseudoaleatorias.

3. Definir un nuevo marco de trabajo para los sistemas probabilisticos,

4. Estudiar el esquema de autenticacion ZMAC.

5. Realizar la demostracion de seguridad de ZMAC.

6. Elaborar un documento sobre los resultados obtenidos.

1.2.1. Estructura de la Tesis

El cuerpo de este documento estd dividido por los siguientes capitulos con sus respectivas
secciones, de la siguiente manera:

1. Introduccion: se presenta el contexto, los objetivos y las contribuciones. Ademas, pre-
sentamos brevemente el contendido de cada capitulo y afiadimos una seccidn sobre cono-
cimientos bésicos de probabilidad.
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2. Cifradores por bloques entonables: explicamos el funcionamiento de una de las pri-
mitivas criptograficas mds populares, los esquemas simétricos. Explicamos brevemente
algunos conceptos sobre seguridad y problemas que pueden presentarse en su construc-
cién

3. Oraculos y familias de funciones: definimos de manera rigurosa las bases para desarro-
llar sistemas criptogréficos desde la perspectiva de las familias de funciones y el compor-
tamiento de sistemas probabilisticos.

4. Adversarios y pseudo-aleatoriedad: introducimos el concepto de funcién pseudoalea-
toria, asi como las estrategias y ataques que puede realizar un adversario para poder dis-
tinguirla de una funcién aleatoria.

5. Seguridad incondicional: desarrollamos con profundidad los distintos conceptos de se-
guridad, enfocdndonos en el analisis bajo teoria de la informacion. Adicionalmente, sefiala-
mos algunas propiedades importantes como la seguridad perfecta, la indistingubilidad
derecha-izquierda y la privacidad de los esquemas simétricos.

6. Codigos de autenticacion de mensajes: introducimos los conceptos y propiedades mas
importantes para los esquemas de autenticacion, asi como algunos resultados importantes
sobre los MAC. Demostramos de manera rigurosa los teoremas sobre ”La paradoja de
cumpleafios”, la construccion MAC como PRF y el Lema PRF-PRP.

7. Técnica de los coeficientes H: estudiamos de forma detallada los teoremas principales
descritos por Patarin (2009). Ofrecemos demostraciones mds extendidas de cada resultado
y describimos algunas equivalencias entre las distintas maneras de emplear la técnica
H dadas por Jha y Nandi (2022), Hoang y Tessaro (2016). Generalizamos la definicion
de transcrito bueno para ser consistente con el estudio del comportamiento descrito por
Polderman y Willems (1997).

8. ZMAC: por ultimo, desarrollamos un estudio de caso con ZMAC para demostrar como
aplicar la técnica H con mucho detalle y detenimiento en cada propiedad. Como con-
clusién de nuestro andlisis, entregamos algunas propuestas de mejora para implementar
ZMAC con mayor eficiencia computacional.

1.3. Contribuciones

Entregamos un documento que recopila los resultados principales de varios articulos, princi-
palmente los expuestos por Jha y Nandi (2022) y Patarin (2009). Asimismo, ampliamos la teoria
sobre seguridad demostrable, homogeneizando los conceptos de Bellare y Rogaway (2003)) y
Katz y Lindell (2014), con la formalizacién del comportamiento introducida por Polderman y
Willems (1997).
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Ofrecemos pruebas rigurosas sobre como estudiar la seguridad de cualquier esquema crip-
togréfico a partir de su comportamiento entrada-salida (observable). Originalmente, el propdsito
de introducir este marco de trabajo era generalizar los resultados de los coeficientes H para sis-
temas mas complejos como autdmatas celulares, redes neuronales u osciladores cadticos. Esto
con el fin de introducir los sistemas dindmicos en el paradigma moderno de la criptografia.

Hoy por hoy, la teoria de sistemas dindmicos para disefiar generadores de nimeros pseu-
doaleatorios y funciones pseudoaleatorias se basa principalmente en pruebas experimentales
y carecen de las propiedades de los cifradores por bloques tales como la indistinguibilidad
derecha-izquierda o su cota de seguridad incondicional.

Por este motivo, exponemos con gran detalle los resultados de la técnica H y entregamos una
definicion de transcrito bueno al comportamiento de cualquier sistema probabilistico.

Por dltimo, exponemos un estudio de caso sobre ZMAC para demostrar como los teoremas
expuestos en este documento nos permiten garantizar la seguridad de un cédigo de autenticacion
de mensajes mas alla de la cota de cumpleafios. A su vez, mientras examinamos el esquema de

autenticacion, encontramos varias observaciones que agrupamos como una propuesta de mejora
de ZMAC.

1.4. Preliminares

1.4.1. Notacion

Escribimos {0, 1}* a las cadenas con longitud de ¢-bits cuya cardinalidad es | {0,1}*| = 2",
Usualmente, usamos las letras i, j, k,m,n, ¢ € N para denotar indices. Asimismo, la suce-
sién estrictamente creciente de todos los indices menores que m la denotamos como J,, =
{1,2,...,m}.

Para un elemento X € {0, 1}" de una cadena de n-bits, escribimos x;x3 . .. X, como cada
uno de los bits en la cadena X. También, denotamos | X | como la longitud en bits de una cadena
y X[i] como el i-ésimo elemento de la cadena. En este caso, |X| = ny X[i] = x;.

Dado ¢ < n, denotamos HXW = X1X3 . ..Xy como la operacion de tomar los primeros ¢ bits
en orden lexicografico. De manera similar, || X||,,_s = X/X¢41 ... X,, representa la operacion de
tomar los dltimos n — ¢ bits en orden lexicografico. Sean Y, Z € {0, 1}*. Entonces, escribimos
X||Y||Z como la concatenacién de las tres cadenas.

Para un conjunto X, escribimos X(? como el conjunto de todas las tuplas de ¢ elementos
(o g-uplas) y denotamos simplemente z¢ = (x1, Za,...,x,) € X (@) como una g-upla. Ademis,
decimos que una secuencia z1, . . . , x4 es distinta por pares si x; # x; para todo j > 1.

Habitualmente, dado un valor fijo a € A y una funcién f : A x B — Z con multiples
entradas, escribimos f,(b) = f(a, b) para todo valor b € B.
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1.4.2. Probabilidad

Introducimos algunos conceptos fundamentales de probabilidad para preparar al lector con
el rigor que emplearemos a lo largo de este documento.

Definicion 1.4.1. Un espacio de probabilidad es una tripleta (), S, i) conformada por un con-
Jjunto distinto del vacio 2, denominado el espacio muestral, y una coleccion de subconjuntos
S C 29 del espacio muestral, tal que

1. El total estd incluido:
QesS

2. Es cerrado bajo complementos:

SeS= Stes

3. Es cerrado bajo uniones numerables:

S1,8 ..., 5, €S = | JS. €S

neN

donde cada S € S es llamado evento o suceso. También, estd definida una métrica | sobre el
espacio §) con imagen en el intervalo [0, 1], denominada funcién de probabilidad.

1. La medida del vacio es cero:
2. La medida del total es uno:

3. La aditividad satisface:
VRIS it
neN neN

Definicion 1.4.2. El soporte de una funcion f sobre un conjunto <) es el conjunto de todos los
elementos cuya imagen es distinta de la nulidad,

Sopf:={weQ] f(w)#0}

Definicion 1.4.3. Una variable aleatoria X : () — R es una funcion real definida sobre un
espacio muestral, tal que para todo [a,b] € R se tiene quE X! ([a, b]) € S es un evento. Se
denota

PriX=z]=p({weS| X(w)=z})

como la probabilidad de los eventos tales que X es igual a x.
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T T2 Ty

P(xy) | P(zg) | -+ | P(ws)

Tabla 1.1: Distribucién de la variable aleatoria X
Silaimagen de la variable aleatoria X (2) = {z1, z9, ..., x,} es finita, entonces X (£2) define
un espacio de probabilidad tal que P(x;) := Pr [ X = z;] esla probabilidad de cada z; € X (w).

Definicion 1.4.4. La funcion de probabilidad P relacionada con una variable aleatoria X ~ P
se conoce como la distribucion de X y se puede expresar como la tabla

Considerando la distribucién anterior, entonces:

Definicion 1.4.5. Las variables aleatorias X1, X, . .., X,, son llamadas mutuamente indepen-
dientes o independientes si

P(X1, X2, ..., Xn) = P(X1) - P(X3) -+ P(X,,)

Deje que X sea una variable aleatoria. Entonces se define la esperanza o el valor esperado
como

=0
para toda x; € X (). Advierta como la esperanza es una funcion lineal.

Definicion 1.4.6. Sean dos funciones de probabilidad P, y P, sobre §). Entonces, la distancia
estadistica entre P, y P, se define como
1
| P — P ::§Z\P1(w)—P2(w)\

we

Si en lugar de dos funciones de probabilidad se tienen dos variables aleatorias X,Y sobre (),
(X,Y) = [ X () = Y(€) |

Las siguientes propiedades de la distancia estadistica aseguran que la variacion total sobre un
conjunto de distribuciones es una métrica acotada.

Lema 1.4.7. Para cualquier funcion de probabilidad P; indexada por i se cumple

1. La no negatividad:
| A= P =0

2. La simetria:
| PA—=P|=]P-PP|
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3. La identificacion:
"}% —-FE]\::O <~ Zﬂ Zifé

4. La desigualdad triangular:

n—1

1P =Pl <D I 2= P |

i=1
5. El supremo es 1 siy solo si los soportes son disjuntos:

||}% —'PEH <1l<& SOF)PHFWSC“)}Eiziz

Es evidente que la distancia estadistica cumple con este lema, puesto que por definicion, estas
propiedades se heredan del valor absoluto y la distribucion.

Lema 1.4.8. Dadas las distribuciones de probabilidad P, y P, sobre ), entonces

mgiX[Pl(S) — P(9)] = Zméx{(), P(w) — Py(w)} = || PL— P |

we

El mdximo es alcanzado con un conjunto S si'y solo si 25 C S C Q, donde
Q. :={weQ| P(w) > Py(w)}
g)zizi{U)E Q ‘I%(UO Z FEQU)}

Demostracion. Para cualquier w ¢ Q> se tiene que la diferencia P;(w) — Py(w) < 0. Luego,
por hipdtesis,

> max{ 0, Pi(w) — Py(w) } = Y max{0,Pi(w) — Py(w) } + Y médx{0, Pi(w) — Py(w)}

weN wEN> wE>
=Y |Pi(w) — Py(w)| = méx [ P1(5) — P (S)]

Esta igualdad se satisface debido a que S es superconjunto de {2.. Para la otra parte de la
ecuacion, primero se parte el espacio en dos clases 2 = Q.UQS . Asi, por simetria del valor
absoluto se sigue que

Yo IPw) = P(w)[ = Y [Pi(w) = Po(w) [+ Y | Pa(w) = Pi(w)]

we? weN> wEN>
= P1(s) = Pa(Qs) + P(Q5) — Pi(Q2)
= Pi(Qs) — Py(2s) + Pi(Q) — Pa(Q)
:2-mséx[P1(S)—P2(S)]

Por la Definicién[1.4.6] se concluyen ambas partes de la ecuacién. O
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Corolario 1.4.9. Sean P, ~ X5y P, ~ X, variables aleatorias con sus respectivas distribu-
ciones sobre (). Para toda w en el soporte de P, deje que

, P
€opt(W) = mAax { 0,1— %}
Entonces, la distancia estadistica entre las distribuciones es

| PL— Py || = Ex [eop (X1)]

Demostracion.
Ex [eop (X1)] = Z €opt(w) * PL(w) + Z Eopt(w) * P1(w)
weSop P; w¢Sop Py
P

= Z méX{O,l—M}'Pl(w)
wESop Py Pl ('IU)

= Y mix{0,Pi(w) - P(w)} + Y mix{0,Pi(w)— Py(w)}
wESop P; w¢Sop Py

= Z méx{ 0, Pl(UJ) — PQ(’LU) }
weN

=P - P

Observe que méax{ 0, P;(w) — Pa(w) } = 0siw ¢ Sop P;.



Capitulo 2

Cifradores por bloques

Los cifradores por bloques (BC por sus siglas en inglés) son herramientas fundamentales
en la criptografia de clave privada (simétrica), la principal tecnologia disponible para este ti-
po de criptografia. Este capitulo explora estas herramientas y describe el estado actual de su
desarrollo.

Es importante destacar que los cifrados por bloques son unicamente ingredientes crudos para
construir soluciones mads ttiles, primitivas criptograficas empleadas en la construccion de dis-
tintos esquemas criptograficos. Como en cualquier herramienta poderosa, hay que aprender a
usarlos correctamente. Incluso, un cifrado por bloques mal empleado podria generar vulnerabi-
lidades en un esquema perfectamente seguro.

Definicion 2.0.1. Un cifradores por bloques, denotado £ : {0,1}* x {0,1}* — {0,1}", es
una permutacion indexada al conjunto de claves {0, 1}*. Esto significa que para cada clave K
se tiene una permutacion del conjunto {0, 1}", representada por la funcion Ek. Las entradas
de Ex se denominan Textos planos y las salidas, Textos cifrados.

Un BC so6lo puede cifrar mensajes que corresponden a su tamafio de bloque. En la practica,
la longitud m de un mensaje a cifrar es un mdaltiplo positivo del tamafio n del bloque. De
lo contrario, se puede realizar un proceso para rellenar (padding) apropiadamente el mensaje
hasta conseguir una longitud divisible por el tamafo del bloque, n|m. Generalmente, un BC
es un algoritmo publico bien especificado y mas adelante se hablard de estas permutaciones
indexadas, vistas ademas como una familia de funciones.

Dados un texto cifrado C € {0, 1}", un texto plano M € {0,1}" y una clave K € {0, 1}*,
calcular Ex (M) y E'(C) es relativamente rdpido. Por el principio de Kerckhoff, definido por
Shannon (1949), la seguridad del cifrador depende inicamente de la eleccién de la clave se-
creta K. Por este motivo, el cifrador por bloques debe estar disefiado para que esta tarea sea
computacionalmente dificil de lograr.

En consecuencia, como primera aproximacion, podriamos pensar que el objetivo del adver-
sario es recuperar la clave K, dados algunos ejemplos de entrada-salida del cifrador. Posterior-
mente, refinaremos la idea de seguridad en el Capitulo [5] mostrando que la seguridad contra la

11
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recuperacion de la clave secreta es una condicién necesaria pero no suficiente para la seguridad
de un BC.

2.1. Ataques en cifradores por bloques

Histoéricamente, el estudio de ataques a las primitivas criptogréficas es conocido como crip-
toandlisis. El criptoanélisis de un BC empieza considerando el siguiente problema:

Sea ¢ > 0 un pardmetro entero y sea T una clave secreta de £ bits elegida al azar. Permita
que el adversario tenga una secuencia de ¢ ejemplos de entrada-salida del cifrador, digamos:
(My,Cy), ..., (M, C,) tales que C; = Ex(M,) para cada i < ¢. Asi, el objetivo del adversa-
rio es encontrar la clave aleatoria T.

La estrategia més obvia que puede emplear un adversario es la bisqueda exhaustiva de claves.
El ataque consiste en recorrer todas las claves posibles K € {0, 1}* hasta encontrar una que
explique los pares de entrada-salida. Cabe mencionar que nunca consideramos un adversario
que realice consultas redundantes, por lo que la secuencia de textos planos es distinta por pares,
formalmente, M; # M, para todo j > i.

A continuacién, considere un atacante con un ejemplo unico de entrada-salida del cifrador,
esto es ¢ = 1. Para cada iteracién i € {1,...,2*}, sea T la i-ésima cadena de k bits en orden
lexicografico.

ALGORITMO A (M, Cy):
fori =1,...,2" haz
L si & (M; = C,) entonces regresa T’

Algoritmo 2.1.1: Bisqueda ingenua de clave secreta

Por lo tanto, T es la supuesta clave secreta que buscamos. Cabe mencionar que este ata-
que siempre devuelve una clave consistente con el ejemplo de entrada-salida (M, C;). Sin
embargo, que la clave devuelta sea correcta, T/ = T, depende del cifrador por bloques. Esta
manera de atacar un cifrador es bastante ingenua, pero nos ayuda a entender un par de conceptos
importantes sobre la seguridad computacional.

Ejemplo 2.1.1. Supongamos que se cifra por bloques la palabra FELINO (un bloque por
letra) y se obtiene el cifrado ONILEF con la clave T,. Entonces, dado el par entrada-salida
(F, O) el algoritmo puede arrojar los resultados de la Tabla [2.1]

Note c6mo existen varias claves consistentes (precisamente 120) para la muestra (F, O), que
pueden ser obtenidas con el ataque representado por el Algoritmo|[2.1.1

Si asumimos un BC con un comportamiento uniformemente aleatorio, entonces la longitud
de la clave k y la longitud del bloque n son pardmetros relevantes para evaluar si el ataque sera



2.1. ATAQUES EN CIFRADORES POR BLOQUES 13

T() T1 T2 T3 T4 T5 Tﬁ T7
Flo, 0 0|0 |0|0)|O0O
EN|E|L| I |F | N|N
L\~ |L|F|F|N|F|F
1 | F | I |1 |N|LE|E|I
N| I |F | N|E|L|L|L
O|L|N|E|L|I | I |FE

Tabla 2.1: Posibles textos cifrados obtenidos por AN*

exitoso. La probabilidad de que un ataque devuelva la clave secreta puede aumentar evaluando
mas muestras de pares entrada-salida.

ALGORITMO A**( (M4, Cy), ..., (M,,C,)):
fori =1,...,2% haz
L si &r,(M;)=CiA---AEr,(M,) =C, entonces regresa T,

Algoritmo 2.1.2: Recuperacion exhaustiva de clave secreta

Un valor bastante pequeiio, digamos g = k/n, es suficiente para que este ataque devuelva la
clave correcta. Para una permutacion pseudoaleatoria como DES (Bellare & Rogaway, 2005),
q = 2 muestras son suficientes. Por lo tanto, ningiin BC es perfectamente seguro, ya que un ata-
cante siempre puede recuperar una clave consistente con suficiente tiempo. A pesar de ello, un
buen cifrador por bloques estd disefiado para que esta tarea sea computacionalmente prohibitiva.

Supongamos una cantidad de muestras ¢ lo suficientemente pequefia e ignoremos el costo
computacional de AXR. En el peor de los casos, el ataque podria utilizar 2% calculos del cifrador
por bloques. No obstante, podrian ser menos; si tuviéramos suerte y la clave secreta se encon-
trard en la primera mitad del espacio de busqueda, entonces sélo harfan falta 2*~) célculos.
Por lo tanto, una mejor medida de seguridad considera el costo promedio de cualquier ataque:

2k

2k . 2k k ok
EX[AKR] :ZZ'.PT[TZ,:T]:Z%:%.Zi:%.w%ﬁ:—l
=1 =1

i=1

Esta aproximacion nos indica un resultado bastante evidente. Una clave secreta T, elegida uni-
formemente al azar, tiene una probabilidad de 1/2* de ser igual a la clave que devuelve nuestro
algoritmo.

Ahora, tomando en cuenta el costo computacional, observe que A*® realiza i calculos del ci-
frador £ para encontrarla. Por lo tanto, el costo de la recuperacion de la clave mediante bisqueda
exhaustiva es proporcional al tamaifio de la clave. Por esto, el pardmetro k estéd relacionado con
la seguridad del cifrador.
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2.2. Limitaciones en la recuperacion de clave secreta

La seguridad de los BC ha sido tradicionalmente evaluada en términos de la dificultad para
recuperar la clave secreta. Este enfoque se ejemplifica con el Algoritmo [2.1.2] Sin embargo, la
seguridad contra la recuperacion de claves es limitada como concepto, ya que no garantiza la
seguridad en todos los usos précticos en los que se emplean cifradores por bloques.

Considere el cifrador por bloques £ : {0,1}'%% x {0,1}*¢ — {0,1}?* y defina el texto
cifrado como C = (€k (X;)||X,) donde el bloque izquierdo X; = [[M]]'* son los primeros 128
bits del texto plano y el bloque derecho X, = || M ||125 son los dltimos 128 bits. La recuperacion
de claves es tan dificil como el experimento anterior, pero el texto cifrado revela la segunda
mitad del texto plano.

Esto podria parecer artificial, puesto que revelar la mitad del texto no es una condicién para un
buen cifrado. Es mas, podriamos enumerar todas las propiedades deseadas para un buen cifrador
(incluido no revelar ningun bit del texto plano). Sin embargo, tnicamente terminariamos con
una larga lista de condiciones insuficientes, sin ninguna pista sobre como disefiar cifradores
para todo uso préctico.

Esto es uno de los problemas del enfoque clasico: construcciones improvisadas, sin andlisis y
con soluciones ad hoc. A lo largo de esta tesis veremos como el paradigma moderno explorado
por los pioneros Bellare y Rogaway (2005) y Katz y Lindell (2014) consiste en definiciones
generales, teoremas s6lidos y demostraciones rigurosas, que nos otorgan garantias sobre todas
las propiedades que deseamos en nuestras aplicaciones criptogréficas.



Capitulo 3

Familias de funciones

Una manera de analizar la seguridad de los cifradores por bloque es por medio de las fun-
ciones pseudoaleatorias. La indistinguibilidad entre una funcién aleatoria y una funcion pseu-
doaleatoria es lo que nos permite medir la seguridad de nuestras construcciones criptograficas.
Antes de estudiar las funciones pseudoaleatorias, es importante definir algunos conceptos que
nos ayudaran a entender de manera mas intuitiva el proposito de las demostraciones de seguri-
dad y la importancia de dichas funciones.

En este capitulo se introducen las definiciones de funcion aleatoria, permutacion aleatoria,
sistemas aleatorios, entre otras. Estas son herramientas esenciales para el disefio de primiti-
vas criptograficas, como los cifradores de bloques y otras aplicaciones utiles como codigos de
autenticacion de mensajes, que abordaremos en los siguientes capitulos.

Todos estos objetos criptogrificos pueden ser entendidos como familias, debido a lo cual, pri-
mero introduciremos lo que significa una familia de funciones, antes de modelar estos sistemas
criptograficos.

Definicion 3.0.1. Una familia de funciones es un mapa F : K x X — Y, donde K, X, Y
son conjuntos finitos distintos del vacio. De modo alterno, se visualiza como una coleccion de
funciones indexadas

(FR:X =Y |keK)}

Se denota Y~ a la familia de todas las funciones con dominio X (espacio de entradas) y rango
Y (espacio de salidas). También, es posible expresar como Dom(F) al espacio de entradas,
Ran(F) al espacio de salidas y Key(F') al espacio de claves de la familia.

En criptografia, los sistemas criptogrificos como un BC o un MAC se modelan a partir de
una familia de funciones con buenas propiedades criptograficas. Esto implica estudiar varias
familias de funciones distintas.

En particular, la familia de todas las funciones con dominio {0, 1}" y rango {0, 1}™ es de-
notada Func (n,m). Observe que la cantidad de todas las funciones Fy : {0,1}" — {0,1}™
indexadas por £ y, por tanto, la cantidad de sus claves es

|Key(F)| = [Func (n,m) | = 27

15
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Por anadidura, podemos construir un espacio de claves asociado al conjunto Func (n, m) para
modelarlo como una familia de funciones. Para definir este espacio, debemos considerar el
conjunto de todas las sucesiones de longitud 2" generadas por todas las posibles entradas de
{0, 1}™, formalmente descritas como

Key (Func (n,m)) = {(Y1,Y2,...,Y2) | Y; € {0,1}™, i € Tom }

Ejemplo 3.0.1. Considere la familia Func (3,2). Observe que para una instancia Fy de la
familia, se puede representar su comportamiento entrada-salida con la siguiente tabla:

X 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111
F(X) | 11 | 01 | 00 | 00 | 10 | 11 | O1 | 11

En este caso, la clave especifica para esta funcion es
k = (11,01, 00, 00, 10, 11,01, 11)

Se puede apreciar la correspondencia de las imagenes de Fj, con las Y;. Asi, el espacio de
claves de Func (3, 2) corresponde con el conjunto de todas las 8-tuplas cuyos componentes son
cadenas de 2-bit. Exactamente, existen

222 — 916 — 65 536

tuplas dentro del espacio de claves.

3.1. Funciones aleatorias

Una funcion aleatoria es muy distinta de una funcidn, puesto que dada una entrada z, la
funcidn siempre retorna una salida especifica . No obstante, una funcién aleatoria no es deter-
minista, i.e., dada una entrada x, el resultado de una funcion aleatoria es incierto y lo tinico que
podemos saber es que y ocurre con cierta probabilidad.

El comportamiento de una funcion aleatoria no es predecible, pero puede ser modelado e
incluso mejor comprendido a través de una funcion probabilistica.

o os ., oy 4 ] . .
Definicion 3.1.1. Una funcion probabilistica { : X — Y es una variable aleatoria cuyos
valores son funciones X — Y. Se puede modelar una funcion probabilistica como una familia
f 8 x X — Y indexada por un conjunto finito £, denominado el espacio de monedas.

Dada una entrada x € X y una moneda R € E3, se define la variable aleatoria f(x) para toda
saliday € Y como

Pr [f(z)=y] = Pr[f(R,x):y‘Ri]: Z Pr[r =7

R [
reld:

f(hz) =y
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Cabe mencionar que usualmente no especificaremos la naturaleza del espacio de monedas 3,
de tal modo que emplearemos la notacion de la izquierda, en vez de la notacién de Jha y Nandi
(2022).

Supongamos que el espacio de monedas E¥ es un espacio degenerado, i.e., un singleton. En-
tonces la funcion probabilistica es simplemente una funcién X — Y . Por otro lado,

Definicion 3.1.2. Si la cantidad de monedas es |E3| = |YX| y la distribucién de f es uniforme,

entonces la funcion probabilistica f : X Y denota una funcion aleatoria f <~ Y~ .

El término funcion aleatoria puede ser engafioso, ya que podria dar la impresion de que algu-
nas funciones son intrinsecamente “aleatorias” y otras no; sin embargo, esto es incorrecto. La
aleatoriedad de una funcion se refiere a como fue seleccionada, no a una caracteristica inherente
de la funcion en si.

Por ejemplo, al elegir una funcién al azar entre todas las funciones, siempre es posible ob-
tener la funcidn constante que devuelve 0 para cualquier elemento del dominio. En resumen,
la aleatoriedad de una funcidn individual carece de sentido; una funcidn aleatoria simplemente
significa una funcién seleccionada al azar de la familia total de funciones.

A continuacién, discutiremos una serie de afirmaciones sobre las funciones aleatorias, que
son de suma importancia recordarlas para capitulos posteriores. Ahora, considere una funcién

aleatoria f &YX con cardinalidad Y| = My |X| = N para las siguientes proposiciones:

Proposicion 3.1.3. Seanz € X yy € Y fijos. Entonces

Demostracion. Dada una funcién f, la probabilidad de que ésta coincida con otro elemento
del espacio Y* es 1/M¥. Ademds, si f(x) = v, entonces cualquier funcién que cumpla esta
condicion no puede enviar = a otra imagen. Asi,

o By | fa) =y}

es el conjunto de todos los eventos favorables.

O

Dado el procedimiento y el resultado, se observa que la probabilidad no depende del dominio,
asi como tampoco depende de los valores x 0 .
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Proposicion 3.1.4. Sean z1,x5 € X yseay € Y. Entonces,

Pr[ flar) = s Flas) = y)] ={ M7

T = T2
M—2 1 7é To
Demostracion. Si zy = x9, la justificacién del primer caso es idéntica a la Proposicion [3.1.3]

En caso contrario, la cantidad de eventos en el espacio de distribucion es la cardinalidad del
conjunto de todas las funciones con dominio X \ {z1, x5} y rango Y.

=yl= ) Pr[fz }

f1$1'—>y1$2’—>y

- ¥ 1

MN

Pr[f(z1) =y, f(x2)

fﬁlewaHy
MN—2 1

MN T M2

[
Advierta que en la proposicion anterior se obtiene el mismo resultado, incluso si se conside-
ran imagenes y; # y» distintas para x; # o distintos.
Proposicion 3.1.5. Considere 1,15 € X yy1,y2 € Y fijos, tal que x1 # xo. Entonces

1
Pr[ f(z1) =i | f(z2) = 2] o
Demostracion. De la Proposicién y por definicién de la probabilidad condicional, se tiene
que

Pr[f(xl):yl‘f(azz):yz]— =]

_ Prf(z) =y, f(x2)
Pr[f(z2) = y2]

1
M
das de una funcién aleatoria.

]
De la proposicion anterior, observamos la independencia entre las parejas de entradas y sali-

Proposicion 3.1.6. Sea x1,x5 € X yy €Y fijos. Luego,

= 0
M—l

1 SI.I'l:I'Q, y:O
Pr{f(z1) ® f(x2) = y]

y#0

S1 21 = 29,
ST x4 7£ To
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Demostracion. Sea x1 = 5. Entonces, f(z1) = f(x2) < ¢ = f(21) @ f(z2) = 0. Esto
implica que la probabilidad es nula para cualquier ¢ # 0, y es uno en caso contrario.

Ahora, suponga x; # =z, y tome en cuenta todas las posibles parejas de imagenes en .
Entonces, se escribe el siguiente sistema de ecuaciones

Yy
flz) = ¥

Luego, la probabilidad deseada es la probabilidad de elegir una funcién f aleatoriamente que
satisfaga una de las posibles parejas (y, y') . Por consiguiente,

Pr{f(z1) ® f(22) = y] ZPY (z1) =y, fla2) =y @y |

y'eY 1)

=) Prf(a)=6|f(x1)=y] Pr[f(z:1) =]
y'eY

11 M

_y,eyﬁﬁ M

Por cerradura de la operacién § € Y se puede aplicar la Proposicion [3.1.5
]

En particular, este teorema serd de importancia para los resultados probabilisticos con la
operacion XOR o para cualquier resultado definido sobre el campo de Galois GF(2").

Proposicion 3.1.7. Sea g : Y — Z una funcion de particion que envia los elementos de su
dominio de manera uniforme a su rango, con | Z | = L < |Y'|. Dados 1, xs € X distintos con
y €Y yz € Zfijos, se tiene que
1
Pr [Q(f(%)) =z ‘ fx1) = y} -7
Demostracion. Primero, analizamos la composicién X Ly % Z Ya que |Z| < |Y], en-
tonces la probabilidad para g(f(z2)) = z es mayor o igual que antes. Debido a que g es una

funcién uniforme que particiona el dominio Y en M /L partes, para cada imagen en Z se deduce
que

Pl"[g(f(xg)):z|f(x1):y] - Z Pr[f($2):@|f($1):y}:—:

geY/Z
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La proposicion anterior afirma que, si se particiona el rango de una funcién aleatoria de
manera uniforme, se obtiene una composicion con una distribucién uniforme pero con un menor
rango. Para mayor claridad sobre g, vea el siguiente ejemplo:

Ejemplo 3.1.1. Sea g : {0,1}* — {0, 1}* una funcién que toma sélo los dltimos 2 bits de
cada cadena, entonces se tiene la Tabla

Y | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | O111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
g(Y) | 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Tabla 3.1: Truncamiento de los 2 bits menos significativos

Advierta cémo g mapea la misma cantidad de elementos a 00 del mismo modo que a cualquier
otro elemento de {0, 1}2, generando asf una particion del conjunto {0, 1}* dividida por los 2 bits
mds significativos. En especifico, g(Y) es la funcién [[YT?.

3.2. Permutaciones aleatorias

Como se habia mencionado, los BC pueden ser considerados familias de permutaciones, un
caso especifico de las familias de funciones. Con el fin de entender una permutacién como una
funcion, imagine un mazo de naipes con 52 cartas ordenadas de la manera usual. Al barajar el
mazo de naipes, hemos mezclado las 52 cartas sin eliminar ni agregar ninguna al mazo. Esto
conserva la cantidad de elementos en el mazo, pero el proceso ha cambiado completamente
el orden de las cartas. Tenemos, entonces, una regla de asociacion entre el orden original y el
nuevo.

Una familia de permutaciones busca modelar este principio, mezclar los mismos elemen-
tos dentro de un conjunto. Dentro de las familias de permutaciones existen familias que son
de mayor interés para la criptografia, conocida como permutaciones aleatorias, las cuales se
formalizaran en esta seccion.

Definicion 3.2.1. Una permutacion w es una funcion biyectiva con el mismo dominio y rango.
Por lo tanto, una familia

P:={P:Y Y |keK}

es una familia de permutaciones si cada instancia de Py, es una permutacion. Del mismo modo,
la familia de todas las permutaciones sobre Y es denotada Y'1.

Observe como una familia de permutaciones P tiene rango Dom(P) = Ran(P). Se denota
Perm (m) al conjunto de todas las permutaciones de {0, 1}" tal que |Perm (m) | = 2™!.
En general, la cantidad de permutaciones de /V elementos tomados 7 a la vez satisface

(N), == N(N = 1)(N —2)--- (N —r — 1)
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A continuacion, se ilustra con mds detalle algunas caracteristicas de las permutaciones inde-
xadas y las permutaciones aleatorias. En Perm (m), el espacio de claves se puede interpretar
como el conjunto de todas las sucesiones de longitud 2™, en donde todas las entradas de cada
sucesion son distintas y son elementos de {0, 1}".

Key (Perm (m)) = {(Yl, Yo, ..., Yom) | Y; € {0, 1}™ distintas por pares, i € Jom }
Asi, podemos considerar al conjunto de todas las permutaciones de la cadena {0, 1}"" como

una familia de permutaciones, ya que podemos hablar de sus permutaciones indexadas.

Ejemplo 3.2.1. Considere la familia Perm (3) cuyos valores estdn en el conjunto {0, 1}®. Ad-
vierta que dada una instancia Py de la familia se puede representar su comportamiento entrada-
salida con la siguiente tabla:

Y 000 | 001 | 010 | O11 | 100 | 101 | 110 | 111
P(Y) || 111 | 001 | 100 | 101 | 100 | O11 | 000 | 110

En este caso, la clave especifica para esta funcion es
k = (111,001, 100, 101, 100, 011, 000, 110)

Se puede observar que el espacio de claves de Perm (3) consta de las 8-tuplas que corresponde
con la secuencia de todas las cadenas de 3-bit sin repeticiones, con algin orden dado. Exacta-

mente, existen
231 = 81 = 40, 320

tuplas dentro del espacio de claves.

A continuacion, una serie de resultados probabilisticos de las permutaciones. Para las siguien-

tes proposiciones se utilizard una permutacién aleatoria p <— YT con rango Y de cardinalidad
M.

Proposicion 3.2.2. Sean z,y € Y elementos fijos. Entonces,

Demostracion. El anlisis es similar a elegir p aleatoriamente de Y.

Prip(s) =yl = 3 Prip=p]= M- L

Py

]

El resultado coincide con las familias de funciones en general, no obstante, las similitudes se
desvanecen cuando se tienen més de dos elementos en el rango.
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Proposicion 3.2.3. Dados los elementos fijos x1, x5,y € Y, se tiene

Prp(z1) = v, p(:vg):y]:{ ?\4*1 = 27:2

Demostracion. Se sabe que x1 # x5 siy s6lo si la permutacién p tiene imagenes distintas. Por
lo tanto, dado y = p(z1) = p(x2), la probabilidad es cero. Por el contrario, dado x; = x5 la
demostracion se reduce a la Proposicion[3.2.2] O

Proposicion 3.2.4. Sean los elementos fijos x1,T2,Yy1,y2 € Y con x1 # To,Yy1 7 Yyo. Se tiene

que
1

Pr{p(z1) = y1, p(z2) = y2] = MM —1)

Demostracion. Sea p tal que p(x1) = y1 y p(x2) = y2. Observe que y; # 1o, asi la cantidad de
variaciones de p son todas las permutaciones sobre el conjunto (Y \ {z1, z2}). Entonces,

Prip(z) =y, plra) =)= Y  Prlp=p]

DiT1 > Y1, T2 > Y2

1
-y

(M\{z1,22})t
(M —=2)! 1
O M! O M(M-1)

Proposicion 3.2.5. Considere x1,x3,y1,y2 € Y elementos fijos, x1 # xo. Entonces

0 Y1 = Y2
Pr|p(x,) = To) = = “=
[p(z1) = w1 | p(a2) = 12 ] { 1 v

Demostracion. Se sabe que x1 # x5 si y s6lo si p(x1) # p(x9). Por lo tanto, no es posible que
ocurra p(x1) = y1 = yo = p(x3). Por el contrario, dado y; # s se tiene que

Pr{p(z1) = y1, p(2) = y2]
Pr[p(z2) = y2|

Pr [p(xl) = ‘ p(a2) = yQ] =

gracias a la Proposicion (3.2.4



3.2. PERMUTACIONES ALEATORIAS 23

Proposicion 3.2.6. Sean x1, x5 € X elementos fijos yy € Y. Luego

1 T, = To, y:O
0 xzy=z9, y#0
PI‘[p(LL’l) +p(l’2) :y} = 0 xi #xz y i 0

M_l xl#x% y7é0

Demostracion. Ya que p es una permutacion, se deduce que p(z1) @ p(z2) = 0 si y sélo si
x1 = To. Dado x1 = w9, la probabilidad es nula para y # 0y uno de otro modo. Asimismo, si
x1 # x4, entonces no es posible que p(z1) + p(xs2) = 0.

En consecuencia, dadas entradas x; # x5 con salida no nula y # 0 se sigue

Pr(p(x1) =u | pla2) =1] = Y Pr|pa) =y pla) =y @y
y'eY\{0} s

= 3 Prlp(es) =6 pla) =y ] Prpa) =]

y'eY'\{0}

- >

N M—-1M-1
y'eY\{0}

o M-1 1

(M -12  M-1

Gracias a la cerradura de la operacién 0 € Y, y la igualdad se satisface acorde a la Proposicion
3.2.5

]

Proposicién 3.2.7. Sea Y -5 Z una funcion que particiona el dominio y mapea sus elementos
de manera uniforme a su rango, con | Z | = L < M. Dados x1,xs € Y distintos cony € Yy
2 € Z fijos, se tiene que

Prg(p(z2)) = z | p(x1) =y] = § ¥

ks z=g(y)

{H%34¢2#9@

Demostracion. Aunque p es una permutacion, se puede apreciar que g no lo es necesariamen-
te. A pesar de ello, sabemos que g particiona al conjunto Y y por consiguiente, tenemos la
equivalencia:

vy 2y Lz e vy

tal que Y/Z es el conjunto de elementos que cumplen g(p(z3)) = z.
Cuando y # y, existen a lo mucho | Y/Z | = M/ L elementos que cumplen con la condicion.
Por el contrario, si § = y, entonces no es posible que la imagen de g(p(x2)) coincida con z, por



24 CAPITULO 3. FAMILIAS DE FUNCIONES

lo que tenemos M /L — 1 eventos favorables.

Pr r2)) = %2, pP\T1) =
Pr[g(p(z2)) = 2 | p(a1) = y] = [g@l(ar [2(:::1) =p;] =
B Pr[p(zs) = 9, p(z1) = y |
_Q§Z Prip(z1) = y]
B 1 M/L-1
_er/ZM_l_ M—=1

Esto se concluye de la Proposicién y

3.2.1. Permutaciones entonables

Recientemente, se han publicado nuevos disefios de esquemas criptograficos basados en una
nueva primitiva descubierta por Rogaway (2004), conocida como cifradores por bloques en-
tonables o TBC (Tweakable Block Cipher). Esta propuesta es lo suficientemente flexible para
varias funcionalidades criptogréficas, y a su vez, brinda una mayor resistencia a las colisiones
que los cifradores BC tradicionales. Un TBC consiste en una familia de permutaciones con
dos espacios de entrada: uno para textos planos y otro para seleccionar configuraciones, deno-
minadas tonos. De esta manera, se comprime mas informacién por bloque y se afiade mayor
variabilidad al texto cifrado.

Este espacio de tonos permite configurar de manera dindmica la relacion entre el espacio
de claves y las permutaciones posibles de un cifrador por bloques. A continuacién, mostramos
como modelar un TBC a partir de una familia de funciones, tal como hemos estado modelando
otros objetos criptograficos a lo largo de este capitulo.

Definicion 3.2.8. Una permutacion entonable es una permutacion criptogrdfica, extendida por
el espacio adjunto T, tal que

P:={P| (kit)e K xT}

donde T se denomina espacio de tonos. Se denota P}, a la instancia P(k,t) y espacio de tonos

Twk(P).

El propésito de una permutacion entonable es afiadir mayor variabilidad a la cantidad de
permutaciones que pueden ser instanciadas por una familia de permutaciones.

Ejemplo 3.2.2. Sea P una permutacién entonable con rango Y = Ran(P) = {0, 1} y espacio
de tonos T. Dada una clave K < K ey(P), observe los resultados de la Tabla :
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T Ty T,
Y 000 001 010 011 100 101 110 111
PE(Y) | 001 010 110 100 001 010 100 110

Tabla 3.2: Permutacion Py para los tonos Ty y T

Advierta que al anadir un espacio adjunto extra, se pueden seleccionar dos permutaciones
distintas Pgo y Pfg ! para dos tonos T # T}.

De esta manera, el comportamiento de la familia P(T) puede mapear el par (T, Y) a imdge-
nes repetidas de 3 bits, asemejando el comportamiento de una familia de funciones. Esto sera
de suma importancia para los siguientes capitulos, donde hablaremos de seguridad e indistin-
guibilidad de funciones pseudoaleatorias.

3.3. Sistemas de respuesta

Un sistema probabilistico es un modelo matemético para estudiar el comportamiento de un
algoritmo probabilistico interactivo como caja negra. Un algoritmo interactivo (probabilistico)
es usualmente modelado como un autémata (probabilistica). El concepto de sistema latente de
Polderman y Willems (1997), que se describe en este documento, busca generalizar la inter-
accion que existe entre el ordculo y el adversario para capturar el comportamiento de estos
algoritmos. De manera andloga a las propuestas de Maurer et al. (2006), buscamos estudiar la
integracidn de varios sistemas complejos con fines utiles para la criptografia.

Definicion 3.3.1. Un modelo matemdtico es una tripleta (2,8, E) conformada por un espacio
muestral €}, un espacio finito E'y un subconjunto del universo 8 C () denominado el compor-
tamiento tal que

B:={we ]| filw) = fow)}

donde f, fs : Q@ — FE son funciones que mapean una muestra w a un elemento de E.

Cabe mencionar que el comportamiento estd conformado por tuplas w = (z,y) € Qo
muestras de entrada-salida obtenidas por los algoritmos que deseamos modelar. Usualmente,
fi(w) = f2(w) es una condicién de equilibrio para un sistema dindmico, pero en este caso la
empleamos como cualquier ecuacion de interés dada por nuestro andlisis de seguridad.

De esta manera, el comportamiento nos permite formalizar el estudio de los algoritmos co-
mo cajas negras, y nos da un enfoque para analizar los algoritmos interactivos de la siguiente
manera:

Definicion 3.3.2. Un sistema latente o autémata es una tupla (T,€), L,*B) conformada por
un conjunto de indices T, un espacio muestral <), un espacio de variables latentes L y un
comportamiento interno B C (2 x L)T.
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Un autémata estd asociado a un modelo matemdtico (2,°B;,,) cuyo comportamiento (obser-
vable) es
B ={w:T—Q|3:T—L ral que (w,l) € B}

Advierta como ‘B representa un mapa
t — (wl,ﬁl), (WQ,EQ), cey (wt,f)

que describe la totalidad del funcionamiento de un sistema o algoritmo, mientras que el com-
portamiento ‘B (observable) es la generalizacion del sistema visto como una caja negra. De este
modo, *B estd conformado por todas las tuplas w? ~ (4 relacionadas con una variable latente.
Rememore que una tupla w? € € se escribe w! = wy, wo, ..., wy Vg > 1.

Es relevante destacar, que las variables latentes ¢; representan la incertidumbre implicita y
directamente inobservable de una caja negra. Adicionalmente, es posible clasificar dos tipos de
sistemas de acuerdo a su naturaleza:

= Un sistema determinista: es un modelo mateméatico muy util para describir distintos
algoritmos iterativos. El autdmata descrito por Maurer (2002) puede ser modelado como
un sistema de (Z*, €2, S, Y) indexado por ¢ € Z" con un espacio muestral 2 = X x Yy
espacio de variables latentes S. El comportamiento (observable) de un autémata se define
como

Ei/o: {(xlayl)a"'v(wqmyq) ds: (xhyi)‘gi) € i}
y su comportamiento latente,
Y= {(1’17%, 51)s- -, (xquyqa Sq) | (Y 8i) = f($i75i71>}

con estado inicial sy fijo. Observe cémo el comportamiento describe una secuencia de
funciones indexadas mediante tuplas (z;, y;) funcionalmente compatibles.

= Un sistema probabilistico: es andlogo a un autémata probabilistico cuyo sistema (7', 2, E3, 3)
estd relacionado con un espacio de probabilidad (£2,B, Pr | -]). Usualmente, se denota

P(B;/,) = Pr[w’ € B, |

como el comportamiento de un sistema probabilistico o como variable aleatoria. En un
sistema determinista, las variables latentes representan los estados internos que no son
observables. En cambio, en un sistema probabilistico, el espacio de monedas 3 representa
la incertidumbre que tenemos del sistema en cuestion.

Visto lo anterior, se define de la siguiente manera los ordculos sobre la base del comporta-
miento.
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Definicion 3.3.3. Un ordculo O o sistema de respuesta es un sistema probabilistico indexado
por i € J, consultas, cuyo comportamiento es una funcion probabilistica F' : X Y tal que
para todo (z;,y;) € Q

q

PR.(y") == PriO@?) =y'] = [[PrlF(z:)=wl Flz;) =y, Vj <i]

=1

Asi, un sistema de respuesta se entiende como un sistema cuyo comportamiento es una se-
cuencia de variables aleatorias dependientes entre si.

3.3.1. Oraculos deterministas

En ciencias de la computacion, un ordculo es el concepto formal para modelar una caja negra
(una méquina hipotética). Para ser especifico, un ordculo es un sistema que responde de manera
univoca cada consulta que se le realice. La naturaleza del ordculo no es importante, lo esencial
es que el comportamiento del ordculo puede variar dependiendo de las necesidades de nuestras
pruebas o experimentos a estudiar.

El comportamiento de un ordculo puede estar asociado a un experimento Exp. En particular,
para un experimento de distincion, el comportamiento de un ordculo puede variar dependiendo
del mundo en el que se encuentre. No obstante, antes de hablar més sobre los experimentos, es
importante explicar algunos ejemplos de sistemas de respuesta.

Sean (x1,y1), ..., (x4, y,) € € una secuencia de muestras entrada-salida y sea K el espacio
de claves. Entonces:

Definicion 3.3.4. Un ordculo IF puede comportarse como una familia {Fk XD Y@ | ke K },
denominada funcién criptogrdfica, de tal manera que para una clave k € K,

F(k,29) = (Fi(z1), F(x2), ..., Fr(z,) Va?e X@
Cabe mencionar que X9 representa el conjunto de tuplas x9.

Definicion 3.3.5. Un ordculo P puede comportarse como una familia {Pk YD Y@ | ke K }
En este escenario, es necesario definir la siguiente funcion criptogrdfica:

PE{1,-1} xYW —y@

de tal manera que (1,x%) mapea a la funcion Py(x?) mientras que (—1,x9) mapea a la funcion
inversa P, ' (z9).

Se define P(+1,27) := PF(x?) para el sistema de respuesta P*, mientras que la familia
{P,j[ | ke K } asociada al sistema se denomina permutacion fuertemente criptografica.

Es posible interpretar el comportamiento de un ordculo cuando actiia como permutacion crip-
tografica o cuando actiia como su inversa, a través de un concepto introducido por Jha y Nandi
(2022) conocido como representacion unidireccional.
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Definicion 3.3.6. Una representacion unidireccional (o9, x%,y?) es una tripleta asociada a
una tripleta de tuplas (a4, 29,y9) € {1, —1} X Y* dada, tal que para cada i € 3,

oy @y, a=1
(a“bz) o { (yi7$i); a; = —1

La representacion unidireccional es una forma equivalente de la forma original, puesto que la
tripleta original se puede reconstruir de forma vinica a partir de la definicion.

3.3.2. Oraculos aleatorios

El modelo de ordculo aleatorio aparecié en primer lugar en el contexto de la teoria de la
complejidad que permite estudiar algoritmos elaborados a través de esta abstraccion (Bennett
& Gill, 1981). Gracias a Bellare y Rogaway (1993), los ordculos fueron empleados en las de-
mostraciones de seguridad para facilitar las pruebas mediante reduccion.

En estas pruebas de reduccién se evalida como las construcciones reales pueden asemejar
el comportamiento de los objetos ideales con cierto error acotado. Deje que X,Y y T sean
conjuntos finitos con |Y'| = N. Entonces:

Proposicion 3.3.7. Un ordculo p es una funcion aleatoria uniforme(URF ) si su comportamiento

es una funcion aleatoria p S VX qal que para todo y? € Y@ y 29 ¢ X@

1

Prlp(a?) =] = -

donde d es la cantidad de x; distintos por pares dentro de x?. Para cualquier otro x9 o y? la
probabilidad es cero.

Antes de introducir la demostracion primero consideré el siguiente ejemplo:

Ejemplo 3.3.1. Consideremos un ordculo y una funcién aleatoria p S yXeony = {0,1}2
Luego, para visualizar las posibilidades de 7 consultas, supongamos la siguiente respuesta del
ordculo (10, 11,00, 10,01, 11,10) € YD,

X(q) ‘ Ty T2 X3 X4 Tz Tg T7
p(x?) [10 11 00 10 0L Il 10

Tabla 3.3: Comportamiento del ordculo como funcién aleatoria uniforme

Luego, para calcular la probabilidad de la primera entrada tenemos que

1 1
Pr[ﬂ(ﬂfl)zlo]:Z—Q:Z
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De hecho, la probabilidad para cada entrada es exactamente igual debido a la naturaleza de p,
ver Enseguida, observe la Tabla|3.3|y considere la Proposicion|3.1.4

1 1
Pr[p(a”) = (10,11,00,10,01,11,10)] = 3z = e

Demostracion. Por la Definicion de un sistema de respuesta, para cualquier cantidad ¢ <
| X'| de consultas y una cardinalidad | X| = N, es evidente que se tendrd una probabilidad de
1/N%. Ademads, tenga en cuenta que para cualquier z¢ ¢ Y'(q) el evento p(z?) = z? no puede
OCUITIT.

[
Proposicion 3.3.8. Un ordculo 1 es una permutacion aleatoria uniforme(URP) si su compor-
. ., . $
tamiento es una permutacion aleatoria Y <— Y tal que para todo a?,0? € Y1
1
(N)a

donde d es la cantidad de x; distintos por pares dentro de x9. En cualquier otro caso la proba-
bilidad es cero.

Pr[n(a?) =] =

Ejemplo 3.3.2. Consideremos un ordculo y una permutacién aleatoria 7 S yteony =
{0,1}3. Luego, para visualizar las posibilidades de 7 consultas, supongamos la siguiente res-
puesta del ordculo (100, 000, 101,001, 011,010, 110) € Y™,

YO | yi w w3 oy Y Yo Y
7(2%) [ 100 0000 101 001 011 010 110

Tabla 3.4: Comportamiento del ordculo como permutacién aleatoria uniforme

Asi, la probabilidad de la primera entrada tenemos que

1 1

Como es de esperar, de acuerdo a la naturaleza de 7 (Proposicién[3.2.2)). A continuacion, vea la

Tabla[3.4]y recuerde las Proposiciones y

1 1
p ) = (100,000, 101,001,011,010,110) | = —— = ———
T [T[(y ) ( ’ ) ) ) ) ; )} (8)7 40 320
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Demostracion. Por la Definicion [3.2.3] vea que para cualquier cantidad ¢ < |Y'| de consultas y
una cardinalidad |Y'| = NV, se tendrd una probabilidad 1/(N),,.

]

En general, sea (79, a?, b?) una representacion unidireccional de (x4, y?). Entonces, para cual-
quier URP su probabilidad como permutacién aleatoria fuerte es:

1
(N)a
tal que d es la cantidad de a; distintos de a?, los cuales son el mismo nimero de b; distintos de
b4. Por udltimo, para una permutacién entonable tenemos que:

Pr [ﬂi(yq,mq) = yq} =

Proposicion 3.3.9. Un ordculo Tt es una permutacion entonable aleatoria uniforme(TURP) si

su comportamiento es una permutacion entonable aleatoria T Sorx YT, tal que para toda
ad, bl e Y@,

|

Pr|7(t?, a?) = 07| =

mietat) =] = [T

donde cada o; es la cantidad de indices j < i tales que x; # xj para cada t; = t;.

Ejemplo 3.3.3. Consideremos un ordculo y una permutacién entonable aleatoria 7 Erxyt
conT xY = {0,1} x {0,1}3. Luego, para visualizar las posibilidades de 7 consultas, se

supone la siguiente respuesta del oraculo (100, 000,101,001, 011,010, 110) € Yy, Enseguida,
para entender el proceso del calculo:

Yy (@ Vi Y2 Y3 Ys Ys Y  Yr
7 0 0 1 1 0 1 0

7(t",27) | 100 000 101 001 011 010 110

Tabla 3.5: Comportamiento del ordculo como permutacién aleatoria uniforme

Para calcular la probabilidad de una permutacién entonable, por la Proposicion[3.2.3] se sabe
que dos pares (t;,y;) = (t;,y;) no pueden tener imdgenes distintas. Por lo tanto, podemos
ordenar las probabilidades juntando los tonos idénticos ¢; = ¢; de la Tabla (3.5} asi

7(t", y7) = (100,000, 101, (0%, a*) = (100,000, 011,110),
Pr =Pr| _ 13"
001,011,010, 110) (1°,6%) = (101,001, 010)
Es posible realizar esto porque las instancias 7° y ! son independientes. Note cémo existen 4

indices correspondientes al tono 0 y 3 indices para el tono 1, tales que las tuplas a* = y,y2y5y~
y b = y3y4ys corresponden a las entradas de cada sistema, respectivamente.

p, | (0% a!) =(100,000,011,110), ] _ 1 1 1
7i(1%,0%) = (101,001, 010) S (23), (2%)3 564480
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Demostracion. En general, para un sistema [P cuyo comportamiento es una permutacion en-
tonable, es posible desacoplarlo en sistemas independientes P! cuyo comportamiento es una
permutacion, tal que

Pr[P(t%2%) =y?] = HPr [P'(a") = b"]

t=0

donde ) es la cantidad de tonos t; en t? distintos por pares y (a®,b*) es el par de tuplas co-
rrespondientes al comportamiento de IP* para cada tono fijo ¢. Por definicién de sistema de
respuesta, se concluye la prueba.

]

Con esta ultima conclusion, hemos introducido todos los conceptos de probabilidad fun-
damentales para estudiar cualquier primitiva criptografica. Enseguida abordaremos en los si-
guientes capitulos, algunos fundamentos para disefiar aplicaciones reales tales como esquemas
criptograficos.
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Capitulo 4

Pseudoaleatoriedad y adversarios

Las funciones aleatorias son los objetos ideales para fines criptograficos. Debido a su na-
turaleza, es imposible predecir con precision algin valor concreto de ésta, incluso para el ad-
versario més poderoso e inteligente que imaginemos. Este es el motivo que impulsa a estudiar
las funciones pseudoaleatorias para sus aplicaciones en esquemas de cifrados con seguridad
incondicional.

Antes de definir una funcién pseudoaleatoria, es importante entender otros conceptos. En par-
ticular, qué es un adversario, qué es un distinguidor y cudles son sus objetivos. A continuacion,
describimos al antagonista principal de nuestros esquemas de cifrado.

4.1. Adversarios

En criptografia y en ciencias de la computacion, el hablar de un adversario 4 se refiere a
un algoritmo iterativo capaz de ejecutar otro algoritmo B como subrutina, denotado A”. De
tal manera que el adversario interactia con B hasta obtener la respuesta deseada. Podriamos
considerar al adversario como un sistema de respuesta, cuyo comportamiento interno esta re-
lacionado con la estrategia que emplea para solucionar un algoritmo. Este, generalmente, es
un sistema criptogrifico y dependiendo del objetivo del adversario, pudiera contestar con un
modelo de la primitiva, una clave secreta, un texto plano o simplemente con un bit.

Un adversario puede comportarse de distintas maneras, por lo que es importante tener en
cuenta las siguientes estrategias:

Ataque de texto plano conocido (KPA): un adversario posee una cantidad fija de muestras
de texto plano y cifrado recolectadas del sistema criptogréfico.

Ataque de texto plano elegido (CPA): se considera un adversario con mayor poder, pues-
to que se le permite tener acceso al cifrador como caja negra, y obtener los textos cifrados
correspondientes de cualquier texto plano de su eleccion.

Ataque de texto cifrado elegido (CCA): se le permite al adversario no solamente obtener
textos cifrados de la caja negra, sino también consultar textos cifrados y observar sus textos
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planos correspondientes.

Para cualquiera de estos ataques, podemos considerar un comportamiento adaptativo o no
adaptativo. Un adversario no adaptativo selecciona a priori todas las consultas que desea rea-
lizar a la caja negra, después espera la respuesta de la caja negra y por ultimo evalua todas las
muestra que tiene a su disposicion.

Un adversario adaptativo es capaz de realizar una consulta a la vez, evaluando cada respuesta
de manera iterativa para seleccionar mejores consultas cada vez. Esto a veces es denominado
como un ataque de texto bien elegido.

Definicion 4.1.1. Un adversario A es un sistema probabilistico cuyo comportamiento es com-
. ., T ] .
patible con una funcion probabilistica Y — X. Un adversario es llamado:

= No adaptativo: si A(y?) es independiente de cualquier entrada y?. Es decir, el comporta-
miento del adversario depende tnicamente del espacio de monedas (3.

= Determinista: si el espacio de monedas (3 es degenerado. En este caso, el adversario se
comporta como un autémata.

Definicion 4.1.2. Una funcién de decisién b : A(Y9) — {0, 1} es una funcion binaria que
toma la imagen de un adversario y devuelve un bit. Al adversario A ~ b, relacionado con una
funcion de decision, se le denomina distinguidor.

La clase de los distintos ataques posibles que puede ejecutar un distinguidor se denota
ATK :={KPA,CPA,CCA}

y escribimos A € AT K como un adversario bajo alguna clase de ataque.

4.2. Funcion pseudoaleatoria

Una funcién pseudoaleatoria (PRF) es una funcién indexada tal que una instancia elegida
aleatoriamente es computacionalmente indistinguible de cualquier funcion aleatoria. Esto sig-
nifica que observar el comportamiento de entradas y salidas de una funcién no es suficiente
para decidir si la funcion pertenece a una familia dada. Para poder verificar que una familia
de funciones cumple con los criterios de ser una funcion pseudoaleatoria se tiene el siguiente
experimento.

Imagine que usted tiene acceso a una funcién g como caja negra, i.e., no posee ningin mo-
delo ni conocimiento sobre los estados internos de la funcién. Lo tUnico que puede realizar es
estudiar el comportamiento entrada-salida de la caja ¢ al ingresar entradas vélidas y observar
las respuestas. Suponga que el comportamiento de la caja varia de dos maneras posibles, de-
pendiendo del mundo en que se encuentre. Estos mundos posibles se definen de la siguiente
manera:
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s Mundo 0: el ordculo O es tomado uniformemente al azar de la gamilia de todas las fun-
ciones X — Y, es decir, el sistema de respuesta es una URF p «— Yy¥X.

= Mundo 1: el ordculo O es un sistema determinista que se comporta como una instancia

de la familia /' generada por una clave k Sk ey(F') tomada al azar.

El propésito de este experimento es medir la probabilidad de que una persona o entidad
(formalmente un distinguidor) sea capaz de resolver si se encuentra interactuando con la caja
en el mundo 0 o el mundo 1. Intuitivamente, este experimento es andlogo a una prueba de
Turing para funciones pseudoaleatorias.

Un distinguidor puede realizar cualquier nimero de preguntas a la caja y terminar el expe-
rimento cuando esté seguro sobre el mundo en que se encuentra. Este proceso estd basado en
los juegos de indistinguibilidad propuestos por Shoup (2004), y nos permite definir la calidad
de F' como funcién pseudoaleatoria, a partir de la dificultad que encuentra un distinguidor en
este experimento. Formalmente, se define la indistinguibilidad computacional con el siguiente
algoritmo:

Definicion 4.2.1. Sea F : K x X — Y una familia y A® un distinguidor con acceso a un
ordculo. Se definen los siguientes experimentos:

EXPERIMENTO Exp{( A; p): EXPERIMENTO Expi*"( A; F):
) Soyx kK
b A” b« APk
regresa b regresa b

Algoritmo 4.2.1: Experimento PRF: Mundo 0 y Mundo 1

La probabilidad de éxito de un distinguidor se define como
Adv ;Y (A) :=Pr[Expi"(A; F) = 1] — Pr[Exp;"(A4;p) = 1]

Este experimento formaliza el concepto de mundo, que hablamos anteriormente, al introducir
dos oraculos totalmente independientes. Se denota .A” como un distinguidor que ejecuta al
ordculo ideal como subrutina y A** cuando ejecuta al ordculo real. De esta manera, el Mundo 0
corresponde al experimento que estudia el comportamiento del ordculo (objeto) ideal, mientras
que el Mundo 1, estudia el comportamiento del ordculo (objeto) real. Reflexione, como la idea
detras de estos experimentos es andloga a un examen de Turing.

Es importante resaltar que un distinguidor inteligente .4 interactuando con el oraculo real, en
el Mundo 1, tendrd una probabilidad muy alta de retornar 1. Mientras tanto, el mismo distin-
guidor, en el Mundo 0, tendrd una probabilidad muy baja de hacerlo. Por lo tanto, es posible
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calcular la diferencia entre ambos experimentos mediante el estudio del comportamiento de
ambos oraculos.

Un punto importante de esta definicién es que el adversario A no tiene conocimiento sobre
la clave k € Key(F'). No tiene sentido experimentar con una funcién pseudoaleatoria si k es
conocida, a priori, por un adversario. De lo contrario, el distinguidor puede diferenciar el objeto
real del ideal de manera trivial sin necesidad de estudiar sus comportamientos.

Cada tipo de adversario tendra diferentes probabilidades de éxito, principalmente por dos
motivos. Un adversario muy inteligente puede consultar menos preguntas, pero consiguiendo
mayor informacién. Mientras que un adversario con mas recurso realizard tantas consultas como
sea posible hasta eventualmente obtener la respuesta deseada de su ordculo. En general, espe-
ramos que a medida que un adversario obtenga mds muestras de entrada-salida, su capacidad
para determinar en qué mundo se encuentra aumentard.

En criptografia, una funcién pseudoaleatoria puede no ser segura para aplicaciones crip-
togréficas, ya que el experimento por si solo no garantiza que la ventaja de un distinguidor
cualquiera esté limitada por ciertos recursos informaticos especificos. En los siguientes capitu-
los estudiaremos a mas detalle la relacion entre los adversarios y la seguridad de un esquema
criptografico.

4.3. Permutacion pseudoaleatoria

Una familia de funciones £ : K X Y — Y es una permutacion pseudoaleatoria si el com-
portamiento de entrada-salida de una instancia aleatoria de la familia es “‘computacionalmente
indistinguible” de una permutacion aleatoria de Y.

En este contexto, hay dos tipos de experimentos que se pueden considerar. El primero, como
antes, consiste en un adversario con acceso a un oraculo para estudiar el comportamiento de
la familia que estd siendo probada. Sin embargo, cuando £ es una familia de permutaciones,
también se puede considerar el caso en que el adversario recibe, ademds, un ordculo para £~ 1.
Consideramos estas configuraciones en orden. La primera es la configuracion de ataques de
texto en claro elegido, mientras que la segunda es la configuracién de ataques de texto cifrado
elegido.

Considere el siguiente experimento, tome una familia de funciones F' sin exigir que F' sea
una familia de permutaciones. Luego, se definen los mundos de la siguiente manera:

= Mundo 0: El ordculo O es tomado uniformemente al azar de la familia de t%das las
permutaciones Y — Y, i.e., su comportamiento es una permutacion aleatoria g +— Y X,

= Mundo 1: El ordculo O es un sistema determinista que se comporta como una instancia
de la familia F : {Fk | k € IC} generada por una clave tomada al azar k Sk
Observe que el Mundo 1 es idéntico al mundo (ordculo) real para una PRF. Igual que antes,

se considera un distinguidor que estudia el comportamiento de dos objetos para determinar con
cudl estd interactuando. Este experimento se formaliza de la siguiente manera:
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Definicion 4.3.1. Sea ' : K XY — Y una familia de funciones, y A un distinguidor con
acceso a un ordculo O para realizar consultas hasta retornar un bit b. Se definen los siguientes
experimentos:

EXPERIMENTO Exp(*’(A, F): EXPERIMENTO Expi*’(A, F):
m v kK
O« O« F},
b+ AT b+ ALk
regresa » regresa b

Algoritmo 4.3.1: Experimento PRP: Mundo 0 y Mundo 1

La probabilidad de éxito de un distinguidor bajo CPA se define como
Adv'(A) .= Pr[Exp]*"(A; F) — 1] — Pr[Exp{*"(A;7) — 1]

De esta manera el experimento es andlogo a la Definiciéon 4.2.1] La diferencia principal es
que el ordculo ideal con el que se compara F', ya no es una funcion aleatoria, sino una permuta-
cion aleatoria. Sin embargo, esta definicién puede no ser suficiente para definir una permutacion
pseudoaleatoria criptograficamente segura, puesto que un adversario mds inteligente podria ha-
cer uso de una estrategia no trivial que consiste en consultar la inversa de la permutacién alea-
toria.

Como una familia de funciones no estd obligada a tener una funcidn inversa, esta evaluacién
no es posible bajo la manera en que estd definido el experimento. Por ello, una familia de
funciones que sea indistinguible de una permutacién aleatoria bajo este experimento es conocida
como una permutacion pseudoaleatoria bajo ataque de texto plano elegido (CPA por sus siglas
en inglés).

4.3.1. Permutacion pseudoaleatoria fuerte

Como se menciond, el experimento PRP bajo CPA esta limitado a considerar un adversario
que estrictamente consulta pares de texto plano y cifrado, conforme interroga a un oraculo. Un
adversario més astuto puede seleccionar textos cifrados para encontrar sus respectivos textos
planos asociados y de esta manera obtener un par de texto cifrado-plano congruente que le
permita decidir si esta interactuando con el oraculo real o el ideal.

Lo anterior, se obtiene al emplear familias de permutaciones (como los BC) en lugar de una
familia de funciones usual. Esto permite que un adversario en el mundo 1, ahora pueda consultar
la funcién inversa de la permutacion. De lo contrario, no se puede garantizar que la funcién dada
por la familia posea una inversa, ocasionando problemas por la manera en que esté disefiado el
experimento. Formalmente, se define el experimento de la siguiente manera:
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Definicién 4.3.2. Sea P : K x Y — Y una familia de permutaciones y sea A® un distingui-
dor con acceso a un ordculo O, para realizar consultas hasta retorna un bit b. Se definen los
siguientes experimentos:

EXPERIMENTO Exp{™"(A, P): EXPERIMENTO Expi™"(A, P):
Tyt ke K
O+ O+ P,
b AT b APePe!
regresa b regresa b

Algoritmo 4.3.2: Experimento SPRP: Mundo 0 y Mundo 1

La probabilidad de éxito del distinguidor bajo CCA se define como
AdvyE® = Pr[Expy™(A;7) — 1] — Pr[Expi™"(A; P) — 1]

Observe que en el mundo 0, el ordculo ideal se comporta del mismo modo que en el Experi-
mento[4.3.1] Sin embargo, ahora si requerimos que P sea una familia de permutaciones para que
el adversario puede consultar la funcién inversa P_ !, si asi lo desea. Este experimento se co-
noce como permutacion pseudoaleatoria bajo ataque de texto cifrado elegido o de permutacion
pseudoaleatoriamente fuerte.

4.3.2. Relacion entre el experimento PRP y SPRP

Debido a que un adversario bajo CCA puede decidir no realizar ninguna consulta a la inversa
de su ordculo, en ese caso, parece evidente que el adversario estd practicamente realizando un
ataque CPA. Para evaluar este concepto consideré la siguiente proposicion:

Proposicion 4.3.3. Sea P : {Pk | ke K } una familia de permutaciones y sea A° un dis-
tinguidor bajo el experimento Exp®™" que realiza a lo mds q consultas. Entonces, existe un
adversario B bajo el experimento Exp™" realizando la misma cantidad q de consultas de tex-
tos planos, sin consultar P_ ", tal que

AdVST® (B) > Advi¥(A)

Demostracion.
Si un adversario .4 bajo CCA no realiza ninguna consulta de texto cifrado, entonces A tendra
la misma ventaja bajo CPA.

Adv™(A) = AdvP™(A)

Se asume que B es un adversario bajo CCA que tiene la misma inteligencia que .4, pero realiza
al menos una consulta de texto cifrado. Debido a que la ventaja de los adversarios también
depende de la cantidad de consultas que realicen:

Adv™(A) = Adv™(A) < Adv™(B)
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O

Este resultado implica que el conjunto de adversarios bajo CPA estd incluido en el conjunto
de adversarios bajo CCA. Por ello, la Definicion (referente a una permutacion) es bastante
general para hablar de cualquier permutacion pseudoaleatoria.

Con todo lo dicho, en el siguiente capitulo estudiaremos el enfoque moderno referente a la
seguridad de los esquemas de cifrado simétrico. Es importante recordar las propiedades de una
funcién pseudoaleatoria, puesto que mds adelante veremos como se emplean para la construc-
cion de un MAC.
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Capitulo 5

Seguridad e Indistinguibilidad

En los capitulos anteriores se mencionaron varios objetos importantes en la criptografia, por
ejemplo, funciones pseudoaleatorias, permutaciones pseudoaleatorias y el modelo de ordculo
aleatorio. El propdsito del modelo de Bellare y Rogaway (2005) es estudiar los objetos crip-
togréficos a partir de las propiedades de ciertos objetos perfectos. Ademads, se planted la idea
de medir la ventaja de un adversario como su probabilidad de éxito en un experimento bien de-
finido. Cada experimento especifico tiene sus propias condiciones de éxito para un adversario
dado y el éxito del adversario crece de acuerdo a la capacidad de computo que posea: tiempo
de ejecucion, espacio de memoria y cantidad de consultas.

Para los esquemas simétricos se utiliza un concepto de indistinguibilidad mas general ba-
sado en la teoria de la informacién conocido como seguridad incondicional. La seguridad
incondicional o de complejidad tedrica de informacion se basa informalmente en considerar un
adversario con capacidad de computo infinita. Lo que significa que se ignoran los parametros
del tiempo de ejecucion y el espacio de memoria en nuestro andlisis, para enfocarnos sélo en
la cantidad de consultas ¢ y su tamaifio u. Este enfoque precisa acotar la informacién pertinente
que puede obtener un adversario con cada consulta, para adivinar con qué objeto se encuentra
interactuando. Antes de entrar en mas detalle sobre el significado de seguridad incondicional,
es esencial repasar las definiciones fundamentales.

5.1. Esquema de cifrado

En el esquema cldsico tenemos a un grupo conformado por un emisor y un receptor que se
comunican a través de un canal inseguro, en donde se encuentra a un “hombre en el medio”
conocido como el adversario. La solucién es emplear una clave secreta, la cual permite ocultar
sus mensajes a través del canal inseguro, de esta manera pueden establecer un protocolo de co-
municacién privado entre los dos. Debido a que tanto el emisor como el receptor deben tener el
mismo conocimiento (comparten la misma clave) estos esquemas son denominados simétricos.

El esquema simétrico especifica un algoritmo de cifrado que indica al emisor cémo procesar
el texto plano utilizando la clave, produciendo asi el texto cifrado que se transmite realmente. Un
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esquema de cifrado también especifica un algoritmo de descifrado que indica al receptor como
recuperar el texto plano original de la transmision, posiblemente realizando también alguna
verificacion. Finalmente, hay un algoritmo de generacion de claves, la cual produce una clave
que las partes necesitan compartir. La descripcion formal se enuncia a continuacion.

Definicion 5.1.1. Un esquema de cifrado simétrico es una tripleta (IC, €, D) que consta de tres
algoritmos eficientes:

1. Generacion de claves aleatorias: el algoritmo IC genera una clave secreta tomada al
$
azar k +— K.

2. Cifrado de mensaje: dado un mensaje m € My y una clave secreta k, el algoritmo £
genera un texto cifrado ¢ < Ex(m)

3. Descifrado determinista: dado un texto cifrado ¢ € Cy, y una clave secreta k, el algoritmo
D regresa un mensaje m = Dy(c).

De manera andloga a una familia de funciones, un esquema de cifrado estd asociado a un
espacio de claves Ky, un espacio de mensajes My, y un espacio de cifrados Cs. Estos algoritmos
estan definidos sobre los espacios antes nombrados, pero puede existir el caso de que tomemos
un mensaje m ¢ My o un texto cifrado ¢ ¢ Cy invélido. Por lo tanto, denotamos | como el
resultado para un valor indefinido en un esquema.

Cabe destacar que £ puede ser un algoritmo probabilistico (con estado o sin estado) que ge-
nera un texto cifrado ¢ «— &(m), mientras que D estd obligado a ser un algoritmo determinista
que siempre devuelve Dy (c) = m. Estos algoritmos pueden estar basados en cifradores por blo-
ques o permutaciones publicas. De esta manera, un equipo conformado por un emisor y receptor
pueden establecer la comunicacion en un canal inseguro.

Disefiar estos algoritmos a través de un enfoque informal s6lo genera varios problemas (dis-
cutidos en el capitulo acerca de cifradores por bloques) al disefar esquemas complejos y hablar
de su seguridad. Esta es la filosoffa con la que se han creado los sistemas mds antiguos como
“El cifrado Vigenere” hasta la construccion de la maquina enigma (Shimeall & Spring, 2014).

No obstante, lo que la historia ha mostrado es que todos estos esquemas han sido rotos y
a pesar de proponer soluciones para repararlos, estas soluciones se confian de tener la ven-
taja tecnoldgica. Creer que un sistema siempre va a estar al borde de la vanguardia y que el
adversario es incapaz de superarnos en inteligencia o poder de cOmputo es una aproximacion
muy ingenua para garantizar la seguridad de un esquema. La criptografia moderna actualmente
estd fundamentada sobre definiciones, hipdtesis y pruebas matemaéticas s6lidas. Este enfoque
riguroso constituye la diferencia entre la filosofia cldsica, basada en propuestas Ad hoc, y el
formalismo moderno (Goldwasser & Micali, |1984; Savage, [2013; Shannon, 1949).
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5.2. Seguridad perfecta

Imaginemos un adversario que conoce la distribucion de probabilidad sobre M, asi como
el esquema de cifrado empleado por un grupo conformado de un emisor y de un receptor. Si
el emisor manda al receptor un mensaje cifrado, el adversario puede interceptar el mensaje y
observarlo. Esto se denomina un ataque bajo texto cifrado tnico, y es el esquema de seguridad
clasico de la criptografia (Bellare & Rogaway, 2005; Shannon, 1949).

Asumimos un esquema clasico en donde un emisor envia mensajes ocultos a un receptor a
través de un canal inseguro, y un adversario se encuentra en medio, interfiriendo en los mensajes
que se envian. Para que este esquema de seguridad sea perfectamente seguro, un adversario en
posesion de un texto cifrado ¢ no puede ganar alglin conocimiento sobre la distribucion de los
mensajes en M.

Definicion 5.2.1. Sea k € K una llave secreta y sean m,m’ € My, dos mensajes distintos.
Entonces, Y. es un esquema perfectamente seguro si la probabilidad para todo texto cifrado
ceCyes

Pr[&(m) =c] =Pr[&(m') = ¢] 5.1

Repare en como esta definicion de seguridad exige que la distribucion & (M) sea precisa-
mente la distribucion uniforme. El concepto de seguridad perfecta es muy poderoso. Debido a
que un adversario, sin conocimiento de la clave secreta, tiene la misma ventaja escuchando un
texto cifrado que escuchando todos. Estos conceptos de indistinguibilidad entre textos, ventaja
de un adversario y distribucion uniforme serdn muy importante para encontrar una condicion
de suficiencia para la seguridad de cualquier esquema criptogréfico.

Viendo este teorema desde la teoria de la informacion, la conclusion es bastante evidente,
puesto que Shannon (1949) pide que la entropia de un esquema sea méxima para garantizar que
su seguridad. Un adversario al obtener un texto cifrado ¢ no es capaz de conocer algo sobre
cualquier otro texto cifrado ¢ = &£ (m/). Es pertinente resaltar que esto es muy problematico,
ya que el adversario podria buscar todos los mensajes en el espacio My. y aun asi no tener
alguna pista sobre qué mensaje m fue cifrado para obtener c. Para asimilar mejor este resultado,
se analiza el esquema de Un-s6lo-uso (One-time-pad).

5.2.1. One-Time-Pad

El esquema de cifrado de Un-s6lo-uso (One-time-pad) es un esquema de cifrado determinista,
cuyo algoritmo de generacion de claves K devuelve una cadena aleatoria de K € {0, 1}*. El
algoritmo de cifrado mantiene un contador estédtico ctr que inicialmente es cero. Entonces, los
algoritmos de cifrado y descifrado operan de la siguiente manera:
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ALGORITMO £(M,K) ALGORITMO D(C', K, ctr)
ctr <0 Qvalor estdtico m < |C'|
m < |M| si ctr + m > |K| entonces
si ctr +m > |K| entonces . regresa |
. regresa | M+—C Dkeir [ - [ Ketim
C+~MPkey[] - - [ Ketrim regresa M
ctr < ctr +m
.~ regresa ctr —m, C

Algoritmo 5.2.1: Esquema de cifrado One-time-pad

En este caso, cada K|, representa el i-ésimo bit dentro de la clave secreta K. El contador
ctr consiste en un parametro que permite variar y seleccionar la cantidad de bits que se usaran
como una mascara para el mensaje IM. Después, el cifrador realiza una operacién XOR bit por
; entre la llave y el mensaje. Para un bit del cifrado C; sélo existen dos posibles
resultados: 1 o 0, por lo que la probabilidad de adivinar la llave correcta es 1/2. Por lo tanto,
para cualquier indice entre ctr 4+ 1y ctr + m, se tiene que

Priéx(M H%:—m

Como la llave K es tomada al azar de las cadenas de {0, 1}* distribuidas de manera uniforme,
es posible que el mensaje sea mas grande que la clave. Por ello, el algoritmo siempre verifica el
tamafo de la clave K, el contador ctr y el mensaje m para asegurar que el cifrado sea posible

|K + ctr| = |M]. La seguridad de este esquema se hace evidente al notar que la operacion XOR
preserva la uniformidad en la distribucion de los bits de llave tomada al azar.
1

Observe como el esquema One-time-pad cumple con la Definicién Antes de concluir,
advierta que la naturaleza de este algoritmo implica la necesidad de poseer una clave de la
misma longitud (incluso mayor) que el mensaje a cifrar para garantizar seguridad perfecta. No
obstante, este problema no es exclusivo del esquema One-time-pad. El Teorema 2.10 de Katz
y Lindell (2014), demuestra que todo esquema . perfectamente seguro requiere un espacio
de claves |Ky| > |M;|. Esta clase de resultados, nos revela la naturaleza entre la seguridad
informadtica y los recursos computacionales.

5.3. Seguridad computacional

Como se discutid, es posible obtener un esquema con un enorme nivel de seguridad, pero a un
costo muy alto, que es factible s6lo para algunas agencias gubernamentales o multinacionales.
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Sin embargo, para cualquier uso préctico de la criptografia, ;es necesario tal nivel de seguridad?
Es obvio que la Definicion |5.2.1|es una condicién suficiente, pero quizds no necesaria.

El ideal de seguridad perfecta es la meta a alcanzar para cualquier criptégrafo, pero en cien-
cias de la computacion se busca un compromiso entre los objetivos y el costo. Esto es de suma
importancia para aplicaciones de bajos recursos: el drea de salud, el hogar, el campo, para me-
jorar la eficiencia energética o combatir el cambio climatico.

A continuacion, se estudia un concepto de seguridad, posiblemente més débil que el pro-
puesto por Shannon aunque més general, que nos permite contemplar todo tipo de adversarios
siempre y cuando especifiquemos la cantidad de recursos a los que se tiene acceso.

5.3.1. Enfoque asintético

La seguridad computacional se basa en el enfoque de la teoria de complejidad algoritmica.
Introducimos una variable n que parametriza la seguridad de un esquema de cifrado 3, asi como
los recursos del equipo emisor-receptor. Cuando un equipo ejecuta el esquema de cifrado, se
asume que ellos asignan un valor para n (generalmente el tamafio de la llave) y este valor es
conocido por el adversario.

Recordemos que un adversario es un algoritmo, por lo tanto podemos definir un adversario
eficiente como un algoritmo que rompe un esquema en tiempo polindmico (dado por el pardme-
tro de seguridad n, es decir, p(n)). En teoria de la complejidad, se sabe que un problema facil es
un problema que es resuelto en tiempo polindmico, mientras que un problema dificil se resuelve
en tiempo no polinémico. Por ello se define:

Definicion 5.3.1. Una funcion negligible es una funcion £ : N — [0, 00) tal que para toda
funcion polinémica positiva p € Rn| existe un n tal que

Yn > ng : f(n)<L
p(n)

De este modo, se puede hacer uso de la notacién de complejidad para medir los recursos
de cualquier adversario. Es importante mencionar que cualquier esquema de cifrado practico
requiere emplear algoritmos que se ejecuten en tiempo polindmico. Asi, la teoria de la comple-
jidad es una manera de estudiar los esquemas de cifrado para su implementacion real.

Se retomardn las funciones negligibles durante el siguiente capitulo. Por el momento, enun-
ciamos lo siguiente: 27", 27V y n=1°¢" son ejemplos de funciones negligibles y la combinacién
lineal de funciones negligibles sigue siendo negligible.

5.3.2. Ataque de recuperacion de llave

Uno de los ataques mds simples es la recuperacion de la clave en un esquema de cifrado.
Como estudiamos en el capitulo de cifradores por bloques, la recuperacion de clave es un expe-
rimento basico, pero no es suficiente garantia para la seguridad de un esquema simétrico.
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Ahora, empleando el enfoque asintético, se definird un experimento més general (por lo tanto
mads fuerte) para estudiar la seguridad de un esquema contra cualquier adversario. Es oportuno
sefalar, que podemos clasificar la seguridad de este experimento como condicional o incondi-
cional.

Un experimento (prueba) de seguridad condicional toma en cuenta los recursos compu-
tacionales de un adversario, por ejemplo: tiempo de ejecucion ¢, memoria de almacenamiento
1, cantidad de consultas ¢ de una subrutina y la longitud ¢ de las cadenas de bits empleadas en
cada consulta.

La seguridad incondicional, por el contrario, asume adversarios con capacidad de compu-
tacion ilimitada. Este tipo de pruebas no busca delimitar los recursos computacionales que posee
un adversario, sino cuantificar sus recursos informaticos, principalmente la cantidad de consul-
tas q que requiere de un ordculo. Debido a que un adversario con infinita capacidad de cémputo
es mas peligroso, concentraremos nuestros esfuerzos inicamente en la seguridad incondicional.

Definicion 5.3.2. Sea F' : K x X — Y una familia de funciones y sea B un adversario que
interactia con un ordculo F' : X — Y hasta adivinar una clave k' secreta. Entonces, considere
el siguiente experimento:

EXPERIMENTO Exp**(B, F):
ke K
k' < Bk
si k& =Fk' entonces regresa 1
si no regresa 0

Algoritmo 5.3.1: Experimento de recuperacién de clave secreta

La ventaja del adversario B para la recuperacion de la clave secreta es
Advi¥(B) := Pr[Exp** (B, F) = 1]

Esta definicién es lo suficientemente general como para considerar todo tipo de ataque. Cual-
quiera de los ataques clasicos contra esquemas como busqueda exhaustiva, criptoandlisis dife-
rencial, criptoandlisis lineal y cualquier método heuristico, corresponden a estrategias especifi-
cas que selecciona el adversario B. En general, el adversario puede considerar cualquier algo-
ritmo de busqueda para encontrar la clave secreta k y emplear muestras del comportamiento de
la instancia Fj,.

Ademads, este experimento logra capturar de manera parcial el concepto de seguridad perfecta.
Un adversario con probabilidad negligible de éxito, en este experimento, garantiza seguridad
perfecta si y solo si la distribucion de la familia de funciones F' estd uniformemente distribuida.
Debido a que el enfoque asint6tico no garantiza uniformidad, no se puede concluir nada mas al
respecto.

Por el contrario, un esquema perfectamente seguro puede ser roto si un adversario consigue
las suficientes muestras de entrada-salida como para deducir unicamente una clave posible.
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Debido a la naturaleza del esquema One-time-pad (Algoritmo|[5.2.1)), es trivial deducir la clave
correcta a partir de un mensaje y su correspondiente texto cifrado. Como se menciona en el
segundo capitulo, se requieren sélo dos muestras para garantizar la recuperacién de la clave
secreta en el AES y el DES.

Para entender mejor el experimento de recuperacion de clave, consideremos el siguiente
ejemplo:

Ejemplo 5.3.1. Sea F': {0,1}* x {0,1}™ — {0, 1}™ una funcién indexada tal que k = m - n
y considere una clave K de k-bits que forma una matriz de m renglones por n columnas. Sea
X = x3 - - X,, una secuencia de n-bits de entrada, y defina F'(K, X):

kii kg ... ki, X1 Y1
kot koo ... ko, X2 Yo
Fx(X) = : .. : B R :
kml km2 cee kmn Xn Ym
es decir,
yi = ki-xi © kigrxao @D ki Xy

Yo = koro-xy @ kaxe @@ koy-x,

Y = kml'xl S¥ km2'X2 b---D kmn'xn

Donde la clave K es el conjunto de todos los bits k;; en la matriz y la aritmética de la operacion
se realiza modulo dos.

Sea B un adversario que ejecuta el siguiente ataque para recuperar la clave:

ALGORITMO B( F):
K<+«
paracada : € J, haz
X<+ 0" X|;+1
Y «+ F(X)
K+ [KY]
regresa K

Al inicio del algoritmo, K es una cadena vacia. En este ataque, el adversario B genera una
cadena X y la inicializa en ceros, excepto en la i-ésima posicién en donde se la asigna X|; = 1.
De esta manera, con cada iteracidn se obtiene una columna de la matriz K al consultar la imagen
F(X). Note como

F(Oi_l H 1 |:| On_i+2) = kli |:| kgi ” .. I] kmz

Este ejemplo puede parecer trivial, sin embargo, no lo es. Es importante resaltar que la vul-
nerabilidad de F' radica en su fuerte linealidad. Cualquier cifrado homomorfico es vulnerable a
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este ataque, puesto que sus operaciones conservan un nucleo invariante (en este caso 0™). Asi,
el adversario recupera la clave secreta con probabilidad de éxito.

Pr{Exp"(B,F)=1] =1

No obstante, advierta que este algoritmo requiere al menos de n consultas al ordculo . Esto
significa que conforme el tamafio de la clave aumenta, la complejidad de encontrar la clave se
torna lineal O(q) con la cantidad de consultas g.

5.4. Privacidad

Suponga que se tiene un equipo conformado por un par de emisor y receptor. Ambos miem-
bros son honestos y ejecutan un esquema de cifrado simétrico, de tal manera que ellos conocen
una clave secreta tomada al azar. El adversario no conoce la clave secreta que selecciona el
equipo, pero puede ver cualquier mensaje enviado entre ellos, ;Cémo puede el adversario apro-
vecharse de esto?

Por ejemplo, es evidente que el adversario con suficientes pares de mensaje-cifrado, pue-
de adivinar la clave secreta y descifrar cualquier otro texto cifrado futuro que se mande. Sin
embargo, ;existe alguna otra manera en que el adversario podria beneficiarse? De hecho, si.

Supongamos que el equipo emisor-receptor decide ingenuamente usar un formato fijo, en
donde el dltimo bit corresponde con un voto a la opcién 0 o a la opcion 1. Luego, empleando el
esquema One-time-pad empiezan a mandar sus respectivos votos cifrados. En este caso, nuestro
adversario podria obtener informacion parcial del mensaje y violar el derecho al voto an6nimo
del equipo con alta probabilidad.

El problema aqui no es culpa realmente del equipo, puesto que un esquema criptografico debe
proteger la informacién del equipo independientemente del formato que elijan. Debido a que un
tinico bit s6lo puede ser adivinado con 1/2 de probabilidad, tampoco es problema del Esquema
ya que éste es el maximo nivel de seguridad para un bit.

Como se ha mencionado varias en ocasiones, podriamos empezar a enlistar requerimientos
como mezclar los bits del cifrado antes de ser enviado, usar miquinas de estados para variar
los valores de cada bit, y demds propuestas, pero esto nunca es suficiente. La seguridad contra
la recuperacion de la clave e incluso la seguridad perfecta es una forma especifica de lo que en
criptografia se denomina seguridad semadntica.

5.4.1. Seguridad Semantica

El concepto de privacidad, formalmente definido como seguridad semdntica. La idea de Gold-
wasser y Micali (1984) mezcla la intuicion de la seguridad perfecta con el enfoque asintético.
Originalmente, este enfoque fue introducido para la seguridad de esquemas asimétricos o de
llave publica. Estas pruebas consisten en un andlisis de seguridad condicional en donde se con-
sideran adversarios con recursos computacionales finitos.
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El experimento consiste en un adversario que escoge de manera iterativa una secuencia
My, My, ..., M, de espacios de mensajes y al mismo tiempo se selecciona al azar una clave

$ . . . .
secreta k <— K. Para cada espacio de mensajes M; seleccionado por el adversario, se toman
$ . .
dos elementos al azar X;, X! <— M;. Luego, existen dos casos posibles:

= Mensaje Izquierdo: Se le devuelve al adversario el texto cifrado Y; correspondiente a
X.

= Mensaje Derecho: Se le devuelve al adversario el texto cifrado Y; correspondiente a X,

El adversario desconoce cudl de los dos mensajes generd Y,;. No obstante, puede seleccionar
de manera cuidadosa un nuevo espacio M, ; cada vez que obtiene un cifrado. Una vez que
el adversario termina de analizar las muestras (Y1, ...,Y,) toma una decision de la siguiente
manera: primero, el adversario selecciona un elemento Z € Cy; luego, crea un sistema deter-
minista [ funcionalmente compatible con las muestras obtenidas, y por tltimo, devuelve 1 si
F(Xy,...,X,) = Z, de lo contrario, 0. Formalmente,

Definicion 5.4.1. Sea ¥ = (K, &, D) un esquema de cifrado y deje que A sea un adversario
con acceso a un ordculo. Se considera el experimento:

EXPERIMENTO Exp®* (%, A): EXPERIMENTO Exp®*“®(%, A):
EEK Se o FEK Se o
paracada i€ J, haz paracada i € J, haz
(M;, S) < A(S5) (M;, S) < A(S)
si | X;|#|X}| entonces si | X;|#|X!| entonces
regresa X; < X/ < ¢ . regresa X; «+ X/ ¢
Y, « E(X;) Y; + &(X])
S+ SuUY,; S« SUY,;
(F,Z) < A(S) (F,Z) < A(S)
regresa I'(X,,...,X,) =7  regresa I'(X,... X]) =17

Algoritmo 5.4.1: Experimento de seguridad semantica: Mensaje Izquierdo y Mensaje Derecho

La seguridad semdntica de Y (la ventaja de A € CPA) se define
SecS™(A) := Pr[Exp)*“®(A) = 1] — Pr[Exp)*“™(A) = 1]

Como es habitual en estos experimentos, el primer algoritmo inicia el esquema al seleccio-
nar una clave al azar del espacio de claves K, y un espacio de estados S inicialmente vacio.
Enseguida, se realiza un proceso iterativo para las ¢ consultas. Observe cémo en cada iteracién
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se verifica que el tamafo de las cadenas X; y X! sean iguales, de lo contrario, se borran las
cadenas y las lineas consecutivas practicamente no se ejecutan; mientras tanto, el estado S se
actualiza en cada iteracion. Asi, podemos percatarnos de como este adversario es necesariamen-
te adaptativo.

Al finalizar la iteracion, el adversario calcula ' y verifica que se cumpla la igualdad. El
objetivo del adversario es seleccionar Z y ' de tal manera que pueda diferenciar los mensajes
izquierdos de los mensajes derechos. Advierta como este experimento es mucho mas facil de
ganar para un adversario que el Experimento [5.3.1]

Es importante mencionar, que la seguridad semdntica describe una nocién de seguridad mu-
cho mads fuerte en términos computacionales. En este experimento, el adversario no requiere
obtener informacion especifica del esquema, sino que puede emplear cualquier tipo de informa-
cién parcial a su conveniencia. De hecho, le otorgamos al adversario la habilidad de consultar
adaptativamente los mensajes que crea conveniente y de disefiar el mejor modelo para predecir
el texto cifrado que desee.

Las limitaciones de seguridad del esquema dependen de la capacidad de computo que se
considere. Por ejemplo, el espacio de almacenamiento para todas la muestras obtenidas puede
ser muy costoso, asi como el tiempo de ejecucion que se requiere para encontrar el modelo de
prediccion. Esta definicion de seguridad es muy empleada en esquemas de llave publica que
consideran problemas dificiles como la factorizacion de primos o la inversion del algoritmo
discreto. Aun asi, nuestra meta es alcanzar un nivel de seguridad incondicional para garantizar
una seguridad casi perfecta en nuestros esquemas simétricos.

5.4.2. Experimento de Indistinguibilidad

Nuestro objetivo en esta seccidon es definir un experimento que garantice seguridad en un
sentido tan fuerte como la seguridad semadntica y que a su vez considere un adversario con
capacidad de computo ilimitada como en el enfoque de seguridad incondicional. La propiedad
fundamental que emplea este enfoque es conocido como indistinguibilidad.

La idea detras de este experimento consiste en poner a prueba a un adversario, que no posee
la clave secreta, a superar un desafio. Este consiste en la seleccién de dos mensajes distintos de
la misma longitud. Luego, a través de un ordculo, la obtencién de un texto cifrado dependiendo
de cada mundo:

= Mundo 0: El comportamiento del ordculo izquierdo es & (LR(*, *, O)) Siempre que el
adversario haga una consulta (¢, z1), el ordculo calcula y = £ (xo), y devuelve y como
la respuesta.

= Mundo 1: El comportamiento del oraculo derecho es & (LR(*, *, 1)) Siempre que el

adversario haga una consulta (xg, 21 ), el oraculo calcula y & Er(x1), y devuelve y como
la respuesta.
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El adversario consulta hasta g veces al ordculo, antes de tomar una decision. El objetivo del
ordculo es bastante simple, solamente tiene que adivinar en cudl de los dos mundos est4, i.e.,
tiene que decidir cudl de los dos mensajes fue cifrado: el derecho o el izquierdo. Antes de
formalizar el experimento es necesario definir el oradculo con el que se interactia.

Definicion 5.4.2. Sea un esquema de cifrado %, b € {0,1} un bit y deje que v, 17 € M
sean mensajes distintos. Entonces, se define el ordculo Izquierdo-Derecho como un sistema
funcionalmente compatible con LR : My x My, x {0,1} — M tal que

b=0
LR(xq,x1,b) ::{ i? =

También llamamos al mundo (oraculo) “izquierdo”, el mundo (ordculo) 0. Mientras que al
mundo (ordculo) “derecho”, lo denominamos el mundo (ordculo) 1. El problema para el ad-
versario es interrogar a su ordculo de la manera mas eficiente, para que de esta manera pueda
decidir con cudl de los dos oraculos interactia. Esto es andlogo a la prueba de Turing, en don-
de una persona se encuentra interrogado a dos participantes (una persona y una maquina que
finge ser una persona) sin conocimiento previo de quién es la persona y cudl es la maquina.
Formalmente,

Definicion 5.4.3. Sea > = (K, &, D) un esquema de cifrado simétrico y sea A sea un distin-
guidor con acceso a un ordculo. Considere el siguiente experimento:

EXPERIMENTO Exp®™ (¥, A): EXPERIMENTO Exp“™ (3, A):
ket K ket K
b« AEk(LR(%0)) b« AEK(ERGxD)
regresa b regresa b

Algoritmo 5.4.2: Experimento de indistinguibilidad: Mensaje Izquierdo y Derecho

Por lo tanto, la indistinguibilidad del esquema . se define como

Ind§$™(A) := Pr [ Expy™'(A) = 1] — Pr[ExpS™°(A) = 1]

Observe que este experimento es bastante general, asi como lo deseamos. Debido a que nues-
tro adversario tiene acceso a un oraculo para interactuar con distintos textos cifrados, producidos
por el sistema, se permite ignorar el costo computacional de cada respuesta del ordculo y el en-
foque es unicamente en la informacion obtenida por cada consulta. De hecho, se puede reducir
el experimento con el siguiente algoritmo equivalente:

Teorema 5.4.4. Sea > = (K,&,D) un esquema de cifrado simétrico y deje que A sea un
distinguidor con acceso a un ordculo. Considere el siguiente experimento:
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EXPERIMENTO Exp“™* ™ (3, A):
k< K, b {0,1)
B(_Afk(LR(*,*,b))
regresa b = b

Algoritmo 5.4.3: Experimento de indistinguibilidad Izquierda-Derecha

Por lo tanto, la ventaja del distinguidor A € C' PA se resume en
Advi® .= 2-Pr[Exps(A) = 1] -1
Demostracion. Resolviendo, se tienen las siguientes desigualdades:

Pr[Expit(A) = 1] =Pr[b= B]

:Pr:b:B bzl]Pr[bzl]+Pr[b:b\b:O]Pr[b:O]
—Pr[b=b b:1]é+m[b:6 b:o]é

~Pr E:1|b:1}-%+Pr[B:o\b:0]é
:%.pr[521\b:1]+%-<1—Pr[6=1|b=0}>
:%.pr[gzl\b:1]+%—%.Pr[B:1|b:0}
:%+%-(Pr[ﬁzl]bzl}—Pr[le\b: )

=5+ 5 (Pr[BxpS™ 6 = 1] — Pr[BxpS™ 0o = 1])

_% N %.(pr [ExpSP I (4) = 1] — Pr[ExpS™0(4) = 1])

Aprecie como para un b = 0 fijo, la probabilidad se calcula sobre los mensajes izquierdos,
mientras que para b = 1, la probabilidad se calcula sobre los mensajes derechos.

Pr[Bxpif(A) = 1] =

O

Esta conclusion no es dificil de seguir, puesto que al considerar adversarios bajo la teoria de
la informacion, podriamos considerar una estrategia trivial en donde el adversario simplemente
adivina el mundo de manera aleatoria, sin ni siquiera realizar una consulta al ordculo. Esta
estrategia trivial, en promedio, tendria éxito el 50 % de las veces. De esta manera, el Teorema
[5.4.4es un algoritmo reducido del experimento anterior.
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5.4.3. Indistinguibilidad implica Seguridad Semantica

Por ultimo, para garantizar que la propiedad de indistinguibilidad Izquierda-Derecha sea la
definicion de seguridad que se busca, se necesita saber si es lo suficientemente general como la
seguridad semdntica.

Teorema 5.4.5. Sea Y un esquema simétrico y A un adversario bajo el experimento de segu-
ridad semdntica. Entonces, existe un distinguidor B bajo el experimento de indistinguibilidad
Izquierda-Derecha, tal que

Advi®t(B) > Secs™(A)

Demostracion. Considere un distinguidor 3 bajo el experimento de indistinguibilidad Izquierda-
Derecha, cuya estrategia es

ALGORITMO B°(X):
S+ o
paracada : c J, haz
(M;, S) < A(S)
X,, X <& M,
si | X;|#|X!| entonces
regresa X, «+ X/ ¢
S+ SuUY;
(F,Z) « A(S)
regresa (X, X,,...,X,)=2Z

Algoritmo 5.4.4: Indistinguibilidad contra seguridad seméntica

Suponga que B consulta al oraculo izquierdo. Entonces, & (LR(X;, X}, 0)) = &(X;) =Y.
Por lo tanto, el Mundo 0 del Experimento es igual al Mensaje Izquierdo del Experimento
Luego, para un adversario .4 en el experimento de seguridad semantica, se deduce que

Pr [Expg™*(B) = 1] = Pr[Exp}*“™(A) = 1]

Ahora deje que B consulte al ordculo derecho. Entonces &, (LR(X;, X}, 1)) = (X)) =Y.
De este modo, el Mundo 1 es igual al Mensaje Derecho del Experimento [5.4.1] Asf,

Pr [Expi™'(B) = 1] = Pr[Exp{™*(4) = 1]

Ya que el experimento de indistinguibilidad Izquierda-Derecha considera adversarios con infi-
nita capacidad de computo, se concluye que B tiene mayor ventaja que A.
O]
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Esto comprueba que la indistinguibilidad de un esquema es la condicién de suficiencia que
buscamos para estudiar la seguridad de los esquemas simétricos o de llave privada. Cabe men-
cionar, que podriamos considerar adversarios A € C'C'A al considerar un ordculo que nos
permita acceder tanto al cifrado £, como al descifrado D; mediante una representacion unidi-
reccional, recuerde la Definicion No obstante, aunque el andlisis no es muy complejo,
esto se sale de los alcances de la tesis referente a los MAC.



Capitulo 6

Codigos de autenticacion de mensajes

Uno de los objetivos basicos en criptografia es permitir a dos entidades (emisor y receptor)
comunicarse de forma segura utilizando un canal abierto. La privacidad es una meta muy im-
portante en la criptografia, pero la autenticacion de mensajes es incluso mas importante. De este
modo, es de suma importancia asegurar la integridad y autenticidad de un mensaje a través de
un canal inseguro, de tal manera que cada entidad pueda validar que el mensaje ha sido enviado
por la entidad que afirma haberlo hecho, ademas de verificar que el mensaje recibido no ha sido
modificado.

Un cédigo de autenticacion de mensajes (MAC por sus siglas en inglés) es la version de
clave secreta de la firma digital. Un MAC puede ser visto como una funcién que comprime la
informacion de un mensaje y genera una firma asociada a una clave secreta. Formalmente,

Definicion 6.0.1. Un MAC H : {0,1}* x {0,1}* — {0,1}" es una funcién indexada por un
espacio de llaves {0, 1}, un espacio de mensajes {0,1}* de tamaiio arbitrario y un espacio de
firmas {0,1}". Cada instancia H;. de un cdédigo de autenticacion de mensajes es una funcion
de compresion que toma un mensaje M de tamario arbitrario y (usualmente) genera una firma
T de tamario fijo.

En la literatura, se suele hablar de un MAC no solamente como una funcidn, sino ademas
como la firma o el cédigo generado por el MAC. En general, hablaremos de un MAC para
cualquiera de estos casos, a excepcion de que el contexto lo especifique.

La mayoria de los MAC se construyen a partir de una funcién HASH, la cual comprime el
mensaje dividiéndolo en bloques y realizando operaciones entre ellos, usualmente operaciones
XOR como PMAC (Yasuda, 2011). Los MAC pueden ser deterministas, con estado, aleatoriza-
dos, pipelineables (CBC-MAC y OMAC), entre otros (Bellare & Rogaway, 2005} Bellare et al.,
1999; Iwata & Kurosawa, [2003)).

Ineludiblemente, obtener aleatoriedad criptograficamente segura es muy costoso para varios
escenarios. Por lo tanto, se suelen utilizar construcciones sin estado y basadas en nonce, donde el
remitente es responsable de proporcionar un nonce Unico para cada mensaje a autenticar (Moch
& List,[2019).

55
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Antiguamente, los mensajes eran enviados en cartas o rollos de papiro sellados con cera, lacre
o incluso tinta invisible, formando una figura o firma que permitiera identificar al remitente.
Este sello protegia el mensaje de ser visto por terceros, ya que algun intruso que deseara ver su
contenido tendria que romper el sello. Si el sello llega intacto, el receptor puede estar seguro de
la integridad del mensaje y de la privacidad de la comunicacion. A continuacion, se describe el
protocolo de autenticaciéon moderno.

Definicion 6.0.2. Un esquema de autenticacion A es una tripleta (KC, H,V) que consta de tres
algoritmos eficientes:

1. Generacion de claves aleatorias : el algoritmo K genera una clave secreta tomada al

$
azar k +— K.

2. Algoritmo MAC: dado un mensaje m € M y una clave secreta k, el algoritmo H com-
prime el mensaje y genera una firma t < Hy(m). Si el mensaje no puede ser procesado
por el MAC, el algoritmo entrega un error de generacion | <— H.

3. Verificacion determinista: dada una firma t € T y una clave secreta k, el algoritmo
V entrega de manera determinista un bit. Se dice que el MAC ha sido autenticado si
Vi(m,t) = 1y es rechazado en cualquier otro caso.

De la definicion anterior, se observa que un esquema de autenticacion es similar a un esquema
de cifrado simétrico. La funcion de validacion tiene que ser determinista, mientras que la fun-
cion MAC puede no serlo. Andlogamente, se denota K, como el espacio de claves del esquema,
M, como el espacio de mensaje y T'y como el espacio de firmas. Asi mismo, un esquema de au-
tenticacion también se construye con base en primitivas criptograficas: cifradores por bloques,
permutaciones publicas, funciones digesto (HASH) y cifradores por bloques entonables.

En los esquemas asimétricos basta con demostrar por reduccién que falsificar la firma es tan
dificil como romper la primitiva criptografica del sistema. No obstante, cabe hacerse la pregunta,
[existe una manera de falsificar esta firma sin necesidad de romper la primitiva? En el caso de
los esquemas simétricos, la respuesta es clara, pero para entenderla es necesario explicar en
primer lugar el significado de seguridad para un MAC.

6.1. Seguridad para MAC

En el capitulo anterior, se menciond la definiciéon de seguridad y como ésta garantiza la
privacidad de las comunicaciones al no exponer nada de informacion parcial del esquema. No
obstante, el objetivo de un MAC no es garantizar la privacidad de la comunicacion per se, sino
permitir autenticar los mensajes emitidos por un remitente. Para entender mejor la relacion de
seguridad entre las firmas MAC vy la privacidad, empezaremos explicando el experimento de
falsificacion.
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En este experimento, el objetivo del adversario es falsificar la firma MAC del emisor, pero
la firma depende del mensaje enviado, el algoritmo MAC y la clave secreta. Para demostrar
la seguridad de un esquema de autenticacion, se asume que el mensaje estd bajo control del
adversario. Ademas el adversario conoce el algoritmo MAC, y peor atn, tiene acceso a un
oraculo que permite interactuar con el MAC para obtener ejemplos de pares mensaje-firma.

Un adversario puede proponer mensajes falsos y consultar a su oraculo para obtener su firma
respectiva. Si la respuesta del ordculo es una firma distinta a la firma original, el adversario
propone un nuevo mensaje falso y vuelve a consultar al ordculo. Este proceso se repite hasta
que el adversario logre encontrar una firma igual a la original. De esta manera, el receptor no
puede distinguir el mensaje falso del real. Formalmente, definimos la seguridad como sigue:

Definicion 6.1.1. Sea un esquema de autenticacion A = (IC,H,V) y sea A un adversario con
acceso a un ordculo O. Considere el siguiente experimento:

EXPERIMENTO Exp™r°F( A, A):
K S+ o
paracada i € J, haz
(m/, ') + A(S)
si (m/,t') ¢ S entonces regresa V,(m',t') =1
si no regresa (

Algoritmo 6.1.1: Experimento de falsificacion

La seguridad del esquema A se define como
Forgey™ (A) = Pr [ Exp,™®(A) = 1]

En este experimento, se permite que un adversario consulte a un ordculo #H; para probar
cualquier par de mensajes (m, t) hasta que el distinguidor A" devuelva 1. Cada mensaje con-
sultado se guarda en un estado S que es retroalimentado al adversario para proponer nuevos
mensajes.

Se dice que el MAC ha sido roto, si el adversario encuentra un par (m/’, t') tal que Vi (M’ ') =
1. Formalmente, pedimos que el par (m/,t’) no pertenezca al conjunto de mensajes consulta-
dos S, esto para evitar victorias triviales para el adversario. Fijese como esta definicién es
lo suficientemente general para incluir cualquier ataque que involucre encontrar una imagen
Fk (m’) = t,.

En primer lugar, se le permite al adversario consultar mensaje de cualquier longitud. Esto no
es trivial, puesto que un MAC que no genera una firma dependiente del tamafio del mensaje, se
considera insegura.

En segundo lugar, el adversario no estd obligado a consultar mensajes M’ coherentes con
ningun lenguaje, por lo que es mds fécil encontrar falsificaciones en este experimento que en el
uso practico de un MAC.
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Definicion 6.1.2. Dado un esquema de autenticacion A = (K, H, V). Se dice que un MAC H
es infalsificable (o simplemente seguro), si la ventaja para cualquier adversario A € CPA es
negligible.

Advy""(A) := Forgei™(A) < e(q)

Gracias al Experimento se entiende la estrecha relacién entre un esquema de autenti-
cacion y su correspondiente MAC. Esto es importante, debido a que no podemos hablar de la
seguridad de H sin tomar en cuenta su algoritmo V' correspondiente. Note como esta definicion
de seguridad es muy distinta a la indistinguibilidad Izquierda-Derecha que se escribi6 al final
del capitulo anterior.

Para poder garantizar la seguridad de un MAC para todo uso préctico, no es suficiente con
asegurar que cada firma sea indistinguible entre si. Dado que un MAC puede tener un dominio
mucho mayor que su rango, debemos considerar la facilidad con que se pueden encontrar firmas
iguales para mensajes distintos, i.e., su resistencia a las colisiones.

6.1.1. PRF como medida de seguridad

El motivo de haber estudiado tan minuciosamente la indistinguibilidad de una funcién pseu-
doaleatoria en los capitulos anteriores, se debe a que su naturaleza es muy {til para construir
codigos de autenticacion de mensajes. En principio, si un MAC genera una firma empleando
una PRF, entonces falsificar la firma implica calcular una nueva entrada en la PRF tal que ge-
nere una salida idéntica a la firma. Debido a que una PRF es indistinguible de una funcion
aleatoria, es dificil adivinar el comportamiento de una PRF mas alla de simplemente conocer su
distribucion.

Para demostrar que la indistinguibilidad es una fuerte condicioén de seguridad, considere el
siguiente resultado:

Teorema 6.1.3. Sea F' una funcion pseudoaleatoria asociada al esquema de autenticacion A.
Entonces, A\ es indistinguible bajo el experimento Exp“™™" para cualquier adversario A &

CPA.
Advi}(A) < AdviET(B)

Demostracion. Sea F' : K x X — Y una funcién pseudoaleatoria y deje que A ~ F' sea un
esquema simétrico que emplea esta funciéon como algoritmo de cifrado. Asi,

Ind{™(A) = Pr [Exp{™'(A) = 1] — Pr [Exp{™°(4) = 1]
=Pr [A%) = 1] - Pr [ A% = 1]

Sin perdida de generalidad, considere una funcidn aleatoria p Sy Xl que

Pr [AFIQ(:L"O)=>1} > Pr [AP(IL"O) = 1}
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Podemos asumir esto, gracias a que F' es también un sistema determinista. Dado un x fijo, un
adversario A con suficientes recursos tendra una ventaja mayor contra cualquier instancia Fj,
que para un p.

Suponga ahora un adversario 5 que pude seleccionar las entradas z1, .

Ind{™(A) < Pr[A%C) = 1] — Pr [ A7) = 1]
<Pr[B™ = 1] —Pr[B’ = 1]
< Advy"(B)

Aplicando el Teorema se concluye la prueba. O

Es importante advertir de que en esta demostracion, se ha llegado a la conclusion de que la
seguridad del esquema A se reduce a la seguridad de la funcion F' relacionada con al algoritmo
de cifrado. Es necesario recordar esto, porque a partir de ahora se demostraré la seguridad de
un esquema a través de pruebas por reduccién. Ademds, esto nos permite apreciar la estrecha
relacion entre los esquemas de seguridad y sus primitivas.

Mais atin, este resultado plantea una cuestion bastante interesante. Usualmente, asegurar la
privacidad de la comunicacion (seguridad semdntica) parecia ser una de las metas mas impor-
tantes y, sobre todo, dificiles de lograr para un criptégrafo. Sin embargo, aqui se argumenta que,
de hecho, garantizar la autenticidad de un mensaje es una meta mucho mas dificil de lograr.

La indistinguibilidad Izquierda-Derecha s6lo garantiza que un adversario no pueda conocer
algo de informacion parcial sobre algin mensaje, pero esto indica nada sobre la integridad de
cada mensaje. No obstante, es evidente que asegurar la privacidad de las comunicaciones no
implica que seamos capaces de verificar la autenticidad de éstas. Ademas, robar informacion no
es la inica manera en que un adversario puede hacer dafio con nuestros mensajes.

6.1.2. Cota de cumpleanos

Recordemos que un adversario, en el experimento de falsificacion, es capaz de interceptar
los mensajes y reemplazarlos con mensajes manipulados. Ingenuamente, se podria pensar: un
esquema de autenticacion que no filtra nada de informacion parcial sobre el mensaje es sufi-
ciente para ser seguro; pero ;acaso existe una manera de falsificar un mensaje sin necesidad de
informacion alguna sobre el mensaje?

Imagine que se tiene un MAC basado en cifradores por bloques y un adversario que desea
encontrar una colision entre dos mensajes distintos. Ademas, deje que el adversario consulte a
un oréaculo en distintas entradas 1, zs, . . ., x4, tales que cada entrada es de la longitud maxima
del BC. Debido a que un cifrador por bloques es una familia de permutaciones, se sabe que
cualquiera de sus instancias siempre genera una secuencia ¥, ¥, . . . , ¥, distinta por pares. Por
el contrario, si el adversario estuviera interactuando con una funcidn aleatoria, entonces existe
la posibilidad de que ocurra alguna colision y; = y; dentro de la secuencia y4.

En teoria de la probabilidad, existe una ley que describe la facilidad de encontrar una coli-
sién, para un dominio dado, denominada “La paradoja del cumpleafios”. Esta puede entenderse
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mejor al pensar sobre la cantidad de gente necesaria para encontrar dos personas con el mismo
cumpleaiios. Cabe sefalar que es una paradoja contra-intuitiva, no veridica. La intuicion sugiere
que la probabilidad de encontrar esas personas crece linealmente, sin embargo, no es asi. Antes
de enunciar el teorema principal, se considera resolver una serie de resultados importantes:

Lema 6.1.4. Sea 0 < x < 1. Entonces

1
(1——)-x§1—e_$§x
e

Demostracion. Dado que e” es una funcién continua, por el teorema del valor intermedio se
deduce que

e —e® 1-21 1
== € = — < 1
0—=x - e

para cualquier @ > 0. Ya que e* < e para toda = € [0, 1], entonces
1 1 1
>l—-——2>z-1—-——)>z-(1—-
rzl-Zze(-5)ze(1-2)

Simplificando, se obtiene el resultado deseado. 0

El resultado anterior nos permite comprobar la cota de cumpleafios.

Lema 6.1.5. Sea C(N, q) la probabilidad de que exista alguna colisién en una secuencia w! =
wi,...,w, de elementos de un conjunto |} = N. Entonces, la probabilidad de colision estd
acotada asintoticamente por

a(q — 1)>

C(N,q) :@( -

para todo ¢ < /2N.
Demostracion.

(<) Primero, considere ¢ = 2. Dado ws fijo, entonces la probabilidad de que ocurra al menos

una colision es 1
C(N,2) :PI'[UJQ :wl] = N
Ahora, suponga que C(N, k) < k(k —1)/(2N) para todo N > k. Dados wy, ws, . . ., Wy,

entonces

k
C(Nk+1)=Pr[3j <k: wpy = wj] SZPr[uJHl :wi|wi7éwj]

7<1

k .
i k(k—1) k k
< _— =/ — = _
D5 N Ty TR

6.1)
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(>) Para la cota inferior, considere la probabilidad de que la secuencia wy, ..., wy sea dis-
tinta por pares, i.e., €l evento de que no exista ninguna colisién en una secuencia de k
elementos. Sea j < i. Entonces,

Prwips #wi |w; #£w;] =1-C(N,i+1) :1—% (6.2)
Observe como este evento es complemento del caso anterior. Luego, dados wq, ws, . . . , wy,

se tiene que

1 —C(2,k) = Pr[wy,...,w distinta por pares |

k-1
= H PI‘ |:(A)Z‘+1 %wi | Wi 7&(,&)]‘]

1< j<i

k-1 ; k-1 .
H(l_ﬁ) :H<1—(1—e—fv))
i=1 i=1

q—1
— H e~ TiC1 /N _ o—alg=1)/2N

=1

Ya que i/N < 1, se puede aplicar el Lema También, sea g < V2N.
(e 1) alg—1)
C(Qk) =1—e 2N > (1 _) 2L _—2 6.3
(€2, k) e = o) TN (6.3)
En conclusion, de (6.3) y (6.1) se sigue la inclusion ©.
[

Sorprendentemente, un adversario aplicando el principio de la cota de cumpleafios puede
crear un ataque muy eficiente y barato, pues solamente tiene que consultar a su oraculo en dife-
rentes entradas hasta encontrar una colision. A continuacién, se muestra el resultado principal
en el ataque de la cota de cumpleafios.

Teorema 6.1.6. Sea £ : {Ey; | k € K } una familia de permutaciones con | Dom(€)| = |Ran(€)| =
N. Entonces, existe un adversario A realizando a lo mds q < v2N consultas, cuya ventaja en

el experimento Exp™" es
_ ]_)
Ad PRF — @ q<q
Vi) = e (145

Demostracion. Sea A® un distinguidor que consulta entradas distintas z; € Dom/(&) y detecta
colisiones en las respuestas y; € Ran(€) de un ordculo. Su estrategia consiste de la siguiente
manera: si después de ¢ consultas 4 detecta una colision, entonces retorna 0; de otro modo, A
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retorna 1. Adicionalmente, deje que el ordculo se comporte como una familia de permutaciones

Eenel Mundo 1y p < VY en el Mundo 0.
Dada una secuencia (z7,y?) de pares entrada-salida (z;,y;) € 2 compatibles para ambos
ordculos, se presentan los siguientes casos para el Experimento [4.2.1}

Para el mundo real, £, es una permutacion. Por lo tanto, el distinguidor siempre retornara 1.

Pr[Expi*(A4) = 1] =Pr[A" = 1]
= Pr [ Ex(z?) = y? distinto por pares |
=1

Para el mundo ideal, p es una funcién aleatoria. Debido a esto, la probabilidad de que el dis-
tinguidor retorne 1 depende de la existencia de una colisién en (29, y?), i.e., retorna 1 si y? es
distinto por pares.

Pr[Exp)t"(A) = 1] =Pr[A” = 1]
= Pr[p(z?) = y? distinto por pares |
=1- C<Y7 Q)

Percatese de que la probabilidad de este evento estd dada por la cota de cumpleafios. Por dltimo,
el Teorema [6.1.5]implica que la ventaja del adversario es

Advy"(A) = Pr[Exp"(A) = 1] — Pr[Exp;"(A) = 1]
=1-(1-C(,q)
=C(Y.q)

De esta manera, se concluye la demostracion. O]

6.2. Construccion MAC

Intuitivamente, nos damos cuenta de que las funciones pseudoaleatorias son objetos muy
utiles para disefiar un MAC. Imagine un equipo de emisor-receptor que conoce una familia F'

y selecciona al azar una clave secreta k S K ey(F). Lo unico que debe hacer el emisor para
enviar un mensaje m es firmar el mensaje como y = Fj(x), y luego, enviarlo por un canal
inseguro al receptor. Sin importar que tipo de mensaje-firma (z’, y') reciba el receptor, él s6lo
tiene que verificar que F(z') = y para asegurar que el mensaje llego integro y garantizar que
fue enviado por el emisor, el otro miembro que conoce la clave secreta.

Simultdneamente, un adversario que atrapa el par («’,y’) se enfrenta con el siguiente proble-
ma. Suponga que en lugar de obtener mensajes con firmas producidas por una funcién pseu-
doaleatoria, obtiene firmas producidas por una funcion aleatoria. Reflexione sobre lo siguiente:

) $ ) ) )
si un modelo es entrenado con datos 3’ <— Y como ruido aleatorio, entonces un adversario
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usando ese modelo nunca mejora sus probabilidades de lograr falsificar una firma y. Esto se
debe a que los datos son basura, ya que todos los valores 3’ son obtenidos de una distribucion
uniforme completamente al azar. Contemple como esta conclusion es similar a las mencionadas
en el Teorema 5.2 1] sobre la seguridad perfecta.

Teorema 6.2.1. Sea A un esquema de autenticacion cuyo MAC F : K x X — Y es una funcion
pseudoaleatoria y sea A un adversario, bajo el experimento Exp"°*°", que realiza a lo mds q
consultas de longitud 1. Por lo tanto, existe un adversario B bajo el experimento Exp™" tal
que

AdVEORE(4) < AdVIE(B) + %

Demostracion. Sea A € C'PA un adversario bajo el Experimento [6.1.1|y deje que p Soyx
sea el algoritmo de cifrado relacionado con el esquema A. Por consiguiente,

1
Y|
Esto es directo, dada la Proposicion Suponga ahora que el algoritmo de cifrado ' ~ A
es una funcion pseudoaleatoria. Entonces, existe un adversario 53 bajo el Experimento tal
que

Adv,*(A) =Pr[Vi(z,y) =1] =Prp(z)=y] =

p

Adv" ™ (A) = Pr[Vi(z,y) = 1] = Pr[Fi(z) = y] < Pr[Exp}"(B) = 1]
Observe cémo calcular la probabilidad del evento Fj.(x) = y es una estrategia particular que
puede emplear B, no obstante, pueden existir mejores estrategias que retornen 1 para Fj,.

AdViRF(A) — AdVNF(A) < Pr [B™ = 1] —Pr[B’ = 1]
Asi, por definicion de funcidn pseudoaleatoria,
1
Yl

En conclusion, si la ventaja de B es negligible, entonces F' es un MAC infalsificable. [l

Advi*F(A) < AdviT(B) +

El resultado anterior es bastante estrecho, pues la seguridad del MAC estd reducida a la
seguridad de una PRF. No obstante, para garantizar este nivel de seguridad es necesario que la
PRF tenga una entrada de tamafio arbitrario. Los MAC generalmente se disefian haciendo uso
de primitivas criptograficas como los BC que sélo pueden procesar un bloque de tamafio fijo
a la vez. Debido a esto, un algoritmo MAC debe considerar como comprimir un mensaje a un
tamafo de bloque facil de procesar para el cifrador por bloques, y que a su vez el algoritmo
tenga un comportamiento indistinguible de una funcién aleatoria.

Cuando los mensajes son més grandes que la longitud de los bloques, se procesa el mensa-
je empleando modos de operacion para cifradores por bloques. Los principales modos de
operacion, es decir, libro de cédigo electronico (Electronic Code Book, ECB), cadena de blo-
ques cifrados (Cipher Block Chaining, CBC) y el modo contador (Counter mode, CTR), nos
indican la manera en que un cifrador por bloques puede ser utilizado para cifrar mensajes muy
grandes sin comprometer su seguridad.
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6.2.1. Relacion entre funciones y permutaciones pseudoaleatorias

Como discutimos en la seccion anterior, la construccion habitual de un MAC emplea cifrado-
res por bloques y permutaciones publicas que se pueden modelar como familias de permutacio-
nes. Entre las permutaciones y las funciones pseudoaleatorias existe una estrecha relacion muy
importante de conocer al disefiar un MAC. La relacién PRP-PRF es un resultado que se refleja
del teorema del ataque de cumpleaiios, el cual estipula que

Lema 6.2.2. [Lema PRF-PRP] Sea E : {Ek Y =>Y | keK } una familia de funciones con

|Y | = N y sea A un adversario que realiza a lo mds q consultas. Dado k &K yp & YY,
entonces

(g — 1)
AP — AP || <
H | <2
Como consecuencia, para cualquier adversario bajo Exp™" se tiene que,
q(q —1)

| AdvE"(A) — AdvE"(A) | < N
Demostracion. Para demostrar esta proposicion se hard uso de la técnica de coeficientes H
enunciada por Patarin (2009). En el siguiente capitulo, se abordard con mds detalle qué son
estos coeficientes, por el momento considere lo siguiente:

Sea O el comportamiento del ordculo como una permutacion aleatoria 7 Syt y sea Og

. .z . $ .
su comportamiento como funcién aleatoria p <— Y7V, |Y| = N. Entonces, dado un transcrito
w = (z9,y7) € 0,

Pr[(DO:w]:Pr[ﬂ(xq):yq] :(N)q 1 2 N-¢g-1
Pr(O; =w] Pr[p(z?) =y9] Na N N N

:ﬁ(NN_@> <1-C(N,q)

Note como se ha empleado el resultado de la cota de cumpleaiios (6.2), y que una permutacién
sOlo genera una secuencia y? de elementos distintos por pares. Por lo tanto, el cociente entre
una funcidn aleatoria sobre una permutacion aleatoria resulta en la cota de cumpleafios.

Ahora, suponga que A® es un distinguidor para un experimento PRF y PRP respectivamente.
Entonces,

q(q—1)

Pr[A? = 1] Z(N)q o) zl_T

PrlA® = 1] = N9

Luego, al despejar la variable aleatoria .A” se sigue que

PriA? = 1] > (1—%) ‘Pr[A™ = 1] >Pr[A" = 1]——q(q2;[1)
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Al aplicar las propiedades de la distancia estadistica|l.4.6|

b q(q—1)
A" = AT || < =55

Por tltimo, considere un distinguidor para una familia de funciones £ compatible con los trans-
critos.

%EPHAP = 1] - Pr[A™ = 1]
>Pr[A” = 1]-Pr[AF = 0] — (Pr[A” = 1] -Pr[A” = 0])

> Advy" A — AdviTA

Es notorio que
—q(qg—1)
2N
Por lo tanto, la indistingubilidad de una PRP como PRF esté acotada. ]

< AdvET (A) — Advi (A)

Este resultado es bastante ttil, pues asegura que una funcién pseudoaleatoria y una permu-
tacion pseudoaleatoria (que modelan un BC) pueden ser empleados para construir un MAC,
ademds de que cualquier MAC basado en un cifrador por bloques tiene una seguridad limitada
por el teorema del cumpleafios.

6.3. Mas alla de la cota de cumpleanos

El lema PRP-PRF declara que la ventaja del adversario crece de manera asintética al cua-
drado de las consultas O(g*/N). Esto implica que una clave de 128 bits solamente garantiza
64 bits de seguridad. Normalmente, lo anterior no es un problema, ya que solamente hay que
considerar claves de 256 para obtener la seguridad deseada de 128 bits. El problema es que
existen entornos de recursos limitados que no tienen el lujo de poder gastar més en recursos de
los que ya usan sus aplicaciones, como para permitirse almacenar claves mucho mds grandes.
Los dispositivos como relojes, marcapasos, sensores inteligentes, accesorios “wearables” y en
general “El internet de las cosas” son entornos de bajos recursos (Dar et al., 2021} Naito, 2017).

La comunidad criptogrifica ha hecho grandes esfuerzos para mejorar la seguridad de los
MAUC, sin degradar el rendimiento del proceso de autenticacidn, a través de construcciones se-
guras “mads alld de la cota de cumpleanos” (BBB por sus siglas en inglés). Esto significa que las
construcciones MAC BBB son confiables para més de 21/2 consultas, donde 7 es el tamaifio de
bloque del cifrador subyacente. La primera solucion para superar la limitacion de cumpleafios
es incorporar una estructura aleatoria para el procesamiento de cada parte del mensaje. Sin
embargo, los esquemas existentes requieren propiedades de cifrado de bloque muy sélidas: un
patrén de cifrado perfecto, resistencia a los ataques de claves asociadas o una cantidad relati-
vamente grande de entropia (Cogliati & Seurin, 2016). Una opcién es implementar el método
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de transformacion de PRP a PRF, como la construccién pEDM, que utiliza una sola permuta-
cién de n nits para construir una PRF con dos llamadas que no requieren la invertibilidad de la
permutacién (Dutta et al., [2021)).

6.3.1. Estado del arte

El primer MAC BBB demostrable conocido como SUM-ECBC fue propuesto por Yasuda
(2010). Este MAC esta basado en un disefio genérico llamado “Digesto de Doble bloque luego
Suma” o DbHtS (Doble-block Hash then Sum), que genera dos digestos Gy H de un mensaje
M, para luego sumar los dos bloques cifrados y entregar la salida DbHtS (M) = G(M)® H (M).
A partir de este disefio genérico, se propusieron distintos disefios de MAC BBB, por ejem-
plo: PMACH, una version modificada de PMAC que opera con tres claves; LightMAC+ (Naito,
2017), una modificacion de LightMAC independiente de la longitud del mensaje y con un rendi-
miento mejorado, y GCM-SIV2, un modo de operacién con memoria (stateful) o MACRX (Be-
llare et al.,|1999), una construccién que suma bits entre mensajes de manera aleatoria.

Una generalizacion del disefio DbHtS conocida como “Digesto de Doble bloque luego Fun-
cion” o DbHtF (Double-block Hash-then-Function) calcula la salida a partir de una funcién
F que toma 2 digestos G 'y H de entrada, para obtener DbHtF (M) = F(G(M), H(M)). Por
ejemplo: NI+MAC (Dutta et al., 2015), una modificacion del NI MAC basada en una funcion
de comprension, con dos tuberias en paralelo para calcular la firma, y 3kf9 (Zhang et al., 2012),
una construccién basada en el modo CBC que emplea la estructura f9 para calcular la salida.
En general, todos los cifradores mencionados anteriormente se consideran DbHtF, de acuerdo
a Guo et al. (2020).

Un disefio genérico descubierto por Liskov et al. (201 1)) consiste en crear un MAC basado en
un TBC. Un TBC puede ser construido a través de emplear el modo de operacion Xor-Encrypt-
Xor (XEX) con un BC, y al mismo tiempo, un TBC puede generar un MAC a partir de un disefio
dedicado como el propuesto por Iwata et al. (2017). Estos disefios suelen ser mds seguros que
PMAC y logran procesar bloques de n+t-bits por llamada de cifrador. En general, es importante
encontrar funciones MAC mds seguras y eficientes, que brinden seguridad mas all4 del limite
de cumpleafios, por lo tanto, los TBC son una propuesta sobresaliente.

La Tabla resume las caracteristicas y las construcciones MAC BBB relacionadas con
las funciones pseudoaleatorias. Las primitivas de subyacentes de cada sistema se denotan PP
(permutacion publica), BC (cifrador por bloques), CF (Funcién de compresion) y las recientes
TBC (Cifrador por bloques entonable). Cabe mencionar que la seguridad mostrada en las tablas
son las cotas mds estrechas demostradas para el momento, en especifico, para la seguridad de
CLRW?2 que fue demostrada por Jha y Nandi (2020).

Se describe la seguridad de cada MAC con la notacion de complejidad, el nimero de consul-
tas ¢, el tamafio de bits n por bloque, la longitud del mensaje [ y, particularmente para MACRX,
la cantidad de ¢ bits tomados al azar (Bellare et al.,|[1999). Todas estas construcciones se utilizan
para proteger los datos en entornos con recursos limitados que exceden de manera confiable el
limite de cumpleafios.
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MAC Llaves | Complejidad | Seguridad | Paralelo | Primitiva Referencia
SUM-ECBC | 4 O(l*¢*/2%) 2n/3 X BC (Yasuda, 2010) |
PMAC+ 3 O(B¢? /22 2n/3 v BC (Yasuda, 2011)
GCM-SIV2 2 O(1%q3/2%™) 2n/3 X BC (Iwata & Minematsu, 2016)
3kf9 3 O(13¢3/2%™) 2n/3 X BC (Zhang et al.,[2012)
CLRW2 3 O(g3/2m*) (n+1t)/3 X TBC (Landecker et al., 2012)
NI+ 1 O(I?¢*/2%) 2n/3 X CF (Dutta et al., 2015)
LightMAC+ | 3 0(¢3/22) /3 v BC (Naito, 2017)
ZMAC 1 0(q/2"tt) (n+1t)/2 v TBC (Iwata et al.,|[2017)
HPxHP 2 O(¢*/2*") 2n/3 v PP (Moch & List,[2019)
nEHM 2 0(q3 /22 2n/3 x PP (Dutta et al., 2019)
pEDM 2 0(q®/2%) 2n/3 X PP (Dutta et al.,[2021)
EliIMAC 1 0(/@?/2*3) | (n—s)/2 v BC (Dobraunig et al., 2023)

6.3.2. Funciones HASH universales

Como ya se menciond, existen distintas propuestas para mejorar la indistinguibilidad de una
construccion basada en BC como PRF. A continuacion se describe una construccion genérica
bastante importante que nos permitird disefiar un modo de operacion resistente a las colisiones
denominada “casi xor universal”, o AXU por sus siglas en inglés.

SeaH : {H v | ke K } una familia de funciones con dominio X y rango Y para las siguien-
tes definiciones.

Proposicion 6.3.1. La funcion H es llamada hash-casi-universal (¢—AU), si para todo x, 1z’ €
X se satisface que
[Hy(x) = Hy(a')] <€

max Pr
T/ FEr kK

donde € es una funcion negligible.
En tal caso, si el valor de € es nulo, entonces H es una funcion hash universal.

Proposicion 6.3.2. Sea (Y, ®) un grupo abeliano. Luego, H es llamada una funcién casi-xor-
universal (e—AXU), si para todo A € Yy cualesquiera x,x’' € X se tiene que

[Hy(z) & Hi(2') = A] < e(n)

max Pr
r/F#r kK

Observe que si una funcién es AX U, entonces también es e—AU. Por tdltimo,

Proposicion 6.3.3. Sea Y = {0,1}" x {0,1}". Entonces H es llamada una funcién casi-
parcial-xor-universal ((n,t,e)—pAXU), si para todo x,x’ € X y A € {0,1}" se cumple que
méx Pr [Hy(z) ® Hy(2') = (A, 0] < e(n,t)
v/ Fr kK
Las funciones AXU y pAXU son requerimientos esenciales para la construccién de los MAC

BBB. Sin embargo, es pertinente hacer las preguntas ;Existen funciones AXU y pAXU que su-
peren la cota de cumpleanos? ;En qué casos pueden existir? ;Si existen, como las construimos?
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En los siguientes capitulos, se dard respuesta a estas preguntas mediante el estudio de la técnica
de los coeficientes H (que se mencion brevemente en el Lema|6.2.2) y al analizar una pAXU
empleado por el esquema ZMAC dado mas adelante.



Capitulo 7

Herramientas de la técnica-H

En el capitulo anterior, se hizo uso practico de la técnica propuesta de los coeficientes H
para demostrar el Lema PRF-PRP. Ahora, se estudiard de manera minuciosa los teoremas de
suficiencia descubiertos por Patarin (2009)). Esta técnica es uno de los logros mds importantes
del enfoque moderno, sobre todo para el desarrollo de esquemas simétricos.

En este capitulo, vamos a unir todos las ideas estudiadas hasta ahora para entender por fin
la técnica principal que tanto buscdbamos. Como se mencion¢ al final del Capitulo |2} no se
buscan listas de condiciones inagotables sobre como disefiar cifradores por bloques o c6digos
de autenticacion. Lo que se busca es una condicién muy fuerte, que al cumplirse obtenga un
esquema con todas las propiedades de seguridad que hemos estudiado a lo largo de los Capitulos

Blylel

7.1. Condiciones de suficiencia

Antes de abordar los resultados principales de esta teoria, es importante tener en claro algunos
conceptos que enunciamos a continuacion:

Definicion 7.1.1. Sea A un adversario y O un ordculo. Un transcrito es una variable aleatoria
7(A®) := (29, y9), tal que para toda i < q cada instancia x;, y; es dada recursivamente como

(21, 5:) = (Aly™), 0(2"))
Podemos advertir que para cualquier transcrito (27, y?) € €Q,
Pr[7(A%) = (a%,y") | = Pr[A(y") = 2%, O(2") = y"]

Recuerde que un orédculo y un adversario se modelan como sistemas probabilisticos, ambos
con sus respectivos espacios de probabilidad asociados a un espacio de monedas en particular.
Aunque no sea evidente en la definicion, estd implicito que tanto el adversario .4 como el
oraculo O son sistemas independientes.

69
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El transcrito es una abstraccion que permite entender la interaccién entre ambos sistemas
como un sélo conjunto de tuplas que conforman su comportamiento de entrada-salida (x?, y7)
de €). De esta manera, se puede hacer un anélisis puramente probabilistico para realizar pruebas
de seguridad incondicional.

Definicion 7.1.2. Deje que A° € ATK sea un distinguidor genérico. Para dos funciones
distintas F'y G, la ventaja incondicional del distinguidor es

(F,G) = |Pr[A™ = 1] —=Pr[AY = 1] |
Ademds, para cada experimento de pseudoaletoriedad se tiene que

PRF . ¢ .
Advy" = max A(F;p)
PRP ,__ 4 .
Advy" = mAx A(F;p)
SPRP ,__ z +. +
Advy;" = Icr'ngA(F i p™)

TPRP . . RN
Adv ;™ = mAx A(F;p)

AV = max A(FE; ot

F con ( P )

es la seguridad incondicional de F como PRF, o como PRP en sus respectivas versiones fuertes
y entonables.

Contemple como la seguridad incondicional es la ventaja maxima con la que se puede dis-
tinguir una familia. Esta ventaja se calcula sobre el mejor de los distinguidores posibles en
un modo de ataque, el cual estd definido previamente por alguno de los experimentos vistos
en el Capitulo ] Cabe agregar, que la seguridad incondicional de una funcion pseudoaleatoria
es andloga al concepto de indiferenciabilidad de una funcion quasi-aleatoria introducida por
Maurer (2002).

Encontrar al més poderoso de los adversarios bajo teoria de la informacién podria parecer
una tarea bastante dificil, sin embargo, es aqui en donde aplicaremos los resultados obtenidos
sobre la distancia estadistica en el Capitulo|[I]

Corolario 7.1.3. Sea Q; el soporte del distinguidor A. Dado un transcrito T(A®). Entonces,
para cualesquiera dos familias F'y G, se tiene que

(F,G) < | Tw = T6 |
Mas aiin, la ventaja del distinguidor es optima cuando

(x4, y?) € ) < Pr [T(AFk) = (xq,yq)} > Pr [T(AG) = (xq,yq)}
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Demostracién. Considere un distinguidor genérico A® y sea 7 = (2%, y?) un transcrito cual-
quiera. Entonces,

Pr[A° = 1] =Pr[7(A°) € Sop A]
=Pr[A(y?) = 27, 0(2%) = y’,b = 1]
=Pr[b(A(y?) = 1,B = (27, y)]
= > Pr[B=(a%y"]

(z4,y7)cSop A

= P?(Ql)

Como el distinguidor parte el conjunto de los transcritos, la clase €2; y {2y, se cumple la des-
igualdad anterior. Luego, para dos funciones distintas, se sigue que

(F,G)=|Pr[A" = 1] - Pr[A° = 1]| (7.1)
= | P (1) — PG() | (7.2)
< mix | Pi () = P () | (7.3)
<|PX-PK| = lITr— T | (7.4)

Rememoré la Definicién[I.4.6]sobre la notacién para funciones de probabilidad o para variables
aleatorias que usamos en (7/.4)). Ahora, supongamos un distinguidor 6ptimo tal que

méx (F, G) = [| T —Te || (7.5)

=) Considere un transcrito en el soporte del distinguidor w; € Sop .A. Luego, de (7.5) se
deduce que

T = T || = mx (F, G) = miix | PE () — PS(5) |

Por el Lema|1.4.8] se cumple que 2; C ).
Pr[r(A™) =w ] > Pr[7(A%) = w; |

<) Abhora, considere un transcrito w € 2> para dos funciones distintas. Entonces,

| Te =T || =Y méx{0, Pr [7(A") =w] = Pr[7(4A%) = w]}

TEN

=Y | Prr(A™) =w] — Pr[r(A%) = w] |

TEQZ

= | PX() — PS(Q:) |
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Al aplicar (7.5)), se resuelve que
| PL0) —PEOL) | = mix(FG) = | PE) —PE(ey) |

Por lo tanto, el transcrito pertenece al soporte del distinguidor w € €.

Dado que se cumple la suficiencia y la necesidad, se concluye la prueba. [

7.1.1. Coeficientes H

Uno de los mayores problemas al desarrollar un sistema criptografico es como destilar una
familia de funciones de tal manera que su distribucion sea uniforme. Se sabe que a pesar de
que existen multiples maneras para construir una familia de funciones especifica, obtener una
familia cuyas instancias generen una distribuciéon uniforme entre su dominio y rango es una
tarea monumental. Por este motivo, en el Capitulo @ se introdujeron las funciones AXU.

Resumiendo, una funciéon AXU no garantiza uniformidad, pero asegura que las irregularida-
des entre instancias esté acotada. De esta manera, Patarin desarrolla una serie de resultados para
secuencias de transcritos con probabilidad acotada, como las funciones AXU, a partir de una
medida nombrada coeficiente /.

Definicién 7.1.4. Sea G : (J,, X — X, K,B) un sistema de respuesta y deje que (a?,b?) €
B,/, sea una secuencia de parejas (a;,b;) € X, i = 1,...,q en el comportamiento, tal que
cada a; es distinta por pares. Se define el coeficiente H de G como

H(a%,b?) = ‘ {k € K| (a;,b;,k) € B, Vi < q} ‘
donde ‘B es el comportamiento interno de G.

Aprecie como el sistema G define a su vez una aplicacién G : K — XX, De este modo, los
coeficientes H también corresponden con la cardinalidad del conjunto

{ke K| Gkla;)=b;Vi<q}

En consecuencia, se denota /{ como la cantidad de instancias que mapean una secuencia a? a
exactamente una salida 09, i.e., la medida del espacio latente K.

Las herramientas de los coeficientes [ constituyen 5 teoremas fundamentales que garanti-
zan seguridad incondicional bajo distintos modos de ataque: KPA, CPA, CCA y sus versiones
adaptativas. A continuacion, se enuncian las condiciones de suficiencia para cada caso.

7.1.2. Seguridad bajo ataque de texto plano conocido

Teorema 7.1.5. [ Condicién de suficiencia contra KPA | Sean «, 3 nimeros reales positivos y
| X| = N. Si para valores aleatorios (a?,b?) € € (los elementos a; distintos por pares) con
Pr[7 = (a%b%)] > (1 — j3) siempre sucede que,

K]
HZﬁ(l—@)
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entonces, la seguridad incondicional de una familia I' es
AdVEPA < o 1
contra cualquier adversario A € K P A con q textos conocidos.

Demostracién. Se denota D al conjunto de elementos a? € X (9, tal que los elementos a; son
distintos por pares. Enseguida, considere un adversario A € K PA y tome un a? € D fijo para
los siguientes casos:

<) Sea (2 el soporte del distinguidor .A. Por lo tanto, para el mundo ideal:

Pr[A” = 1] =Pr[b(A(y?)) =1, p(a?) = y?] (7.6)
= Y Prip(a®) =1"] (7.7)
b2€Q (a)
1
= > ~ (7.8)
b2€Q (a)
_ [$ulan)] Q;\(f‘? | (7.9)

donde Qy(a?) = {b? | (a%,b?) € Sop.A}. Vea en (7.8) cémo se aplica la Proposicion
sobre las URF. Luego, para el mundo real:

Pr[A"% = 1] = Y Pr[Fi(a?) =]

bqul(aq)

q
= > I PriFu(a) =yl Flxy) = ;]
b1€Q (ad) 1<5<i
Debido a que F}, es una funcién, Pr [ F(k,z;) = (y;)| y Pr[F(k,z;) = (y;) ] son inde-
pendientes. Adicionalmente, ya que Fj, es una funcion probabilistica,

PriAf = 1]= Y H > prli=tk]

b7eQq(ad) i= keK :
F(k,a;) = b;

Advierta de que K es el espacio de claves asociado al comportamiento F : X — X(9)
de la funcion criptografica F'.
1

PriAff = 1]= )" > & (7.10)

quQ1(a‘1) fﬁeK,iSq:

F(k,a;) =b;
H(a%,b7)
= _— (7.11)
T

b1 (a?)
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Observe como el coeficiente H se obtiene a partir de (7.10). Ahora, se define B como la
cantidad de transcritos (a?, b?) € () tales que

K]

q pe

H(a%, b%) > Nq(l «)
Por hipétesis,

B

Para un o fijo, se define B(a?) como el conjunto de b? que satisface la hipdtesis anterior.

Bl =Y [B(a®)| > |D|- N(1 - ) (7.12)
wrch

De (7TT) se sigue que

Pr[Af = 1] > % H(a%, b7 (7.13)
2 (a) 1 B(a?)
> (1-a)- ’Ql(aq)Nﬂq Blat)l (7.14)
> (1—a)- | 1 (a?) |]\;q| Bf(af) | (7.15)
De (7.9) y (7.15),

Pr[A% = 1] > (1-a)- |Ql(aq)|];qch(aq)| (7.16)
1o (1) e o1
—(1-a)- <Pr[Ap = 1] - %) (7.18)
>(1—a)- <Pr[.A” N |B;(ch‘q)|> . |B3(Viq)| (7.19)
zPr[Ap:>1]—a-Pr[Ap:>1]—mi\(f—zq)l (7.20)
zPr[Apﬁl]—a—W (7.21)

Dado que 1 > Pr[A(b?) =a?]y1 > Pr[.A” = 1], minimizamos (7.20)). Enseguida, al
calcular la cantidad de b7 ¢ B(a?),

S [B*(a") + B(a”) = Y [X9| = D] N

aleD aleD
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De (7.12)), se obtiene que

Ex [B%(a)] = Z IB%(a?)| = NY — — Z IB(a?)] (7.22)
aqu aqu
< N?— N9(1—-8) =f-N¢ (7.23)

Luego, al aplicar (7.23)) en (7.21)),

C
Ex [Af: = 1] > 5] Z [Pr (AP = 1] — |B](qu)|} (7.24)
aleD
— Fx [A47 = 1] - Ex [a] — Ex | 1] (7.25)
=Ex[A* = 1] —a— % - Ex [B(a?)] (7.26)
>Ex[A = 1] —a—4 (7.27)

Aqui sobresale como hemos aplicado las propiedades lineales de la esperanza para obte-
ner (7.27).
Ex[A? = 1] —Ex[A" = 1] <a+j (7.28)

Esto satisface la cota superior.

> ) Abhora, considere el complemento del distinguidor §2y. Dado que B se calcula de manera

independiente al distinguidor, se puede replicar el mismo andlisis hasta (7.27) tal que
EX[.AF’“ = 0} ZEX[.A” = O] —a—p

Esto es vélido, puesto que se podria pensar en un distinguidor ®° como en uno genérico
que responde 1 cuando ¢ responde 0.

a+ B >Ex[A” = 0] —Pr[A™ = 0] (7.29)
>1-Ex[A° = 0] — (1 - Ex[A" = 0]) (7.30)
> Ex [Af = 1] — Ex [A° = 1] (7.31)

Por ultimo, al aplicar el Corolario[7.1.3|en (7.28) y (7.31) se satisface que

Advyt = II?IE;LI)L‘( (Ex [ATr — A°]) < a+p

En conclusion, la ventaja de cualquier adversario con una cantidad finita de textos planos
conocidos estd acotada del modo deseado.

]
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7.1.3. Seguridad bajo ataque de texto plano elegido

El segundo y tercer teorema de los coeficientes /' toman en cuenta un distinguidor bajo un
ataque de texto plano elegido.

Teorema 7.1.6. | Condicion de suficiencia contra CPA-1 | Sean o, 3 niimeros reales positivos.
Siempre que exista un subconjunto B(a?) C Y9 con cardinalidad |B(a?)| > (1 — 8) - N9
para cada secuencia o € X9 con elementos distintos por pares, tal que ademds para toda
b? € B(a?) se cumpla que
K
H > |N—q(1 —a)
entonces, la seguridad incondicional de una familia F es

Advi* < a4+

contra cualquier adversario no adaptativo A € C P A realizando a lo mds q consultas de textos
planos.

Note como la diferencia principal entre KPA y CPA radica en la definicién de B(a?). En el
Teorema se calculan las posibles secuencias b? € B(a?) especificamente sobre la proba-
bilidad con que se toma un transcrito al azar dada una secuencia de entradas a? en el transcrito.
Esto restringe la estrategia del adversario a condiciones muy estrictas, tales como en un ataque
KPA.

En el Teorema se toman todas las B(a?) correspondientes a cada secuencia a?, por lo
que la cantidad de posibles secuencias de salida b? € B(a?) se calcula a partir de la cardinalidad
de este subconjunto, y no de la probabilidad dada de un transcrito. En este resultado, se consi-
deran todas las posibles secuencias de textos elegidos que puede seleccionar un adversario bajo
CPA.

Teorema 7.1.7. | Condicién de suficiencia contra CPA-2 | Sean «, [3 niimeros reales positivos
y B C Y@ un subconjunto con cardinalidad |B| > (1 — ) - N9 Si para todo transcrito
(a9,b9) € Q (con los elementos de a? distintos por pares) tal que b? € B se cumple que

K]
H > m(l — )
entonces, la seguridad incondicional de una familia F es
Advi* < a4+

contra cualquier adversario A € CPA, realizando a lo mds q consultas de textos planos.

Advierta cémo el conjunto B ahora no esta relacionado con alguna secuencia a? en especifi-
co. Més atin, sabemos que la cardinalidad de cualquier subconjunto de Y (%) esta acotado. Esto
significa que este resultado es independiente de cualquier entrada a; seleccionada por un ad-
versario bajo CPA. El Teorema es mucho mds fuerte que el Teorema [/.1.6, ya que el
adversario podria elegir la secuencia de pares Optima e incluso asi, su ventaja estaria acotada.

Para entender mejor este resultado se realiza la demostracion:
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Demostracion. Sea (af,b?) € Q un transcrito definido como y deje que A® sea un distin-
guidor genérico bajo PRFE. Entonces, para el mundo ideal:

PrlA? = 1] = Y Pr[p(a®)=0"] = {0 (7.32)

N4
(a9,b9)€Q

Recuerde que permitir al adversario consultar texto plano después de conocer el resultado del
oraculo, implica que su comportamiento es un sistema determinista. Luego, para el mundo real:

PrA" = 1] = > Pr[Fa’) =1"] (7.33)
(a?,b7)ey
1 q
:ZWHHkGK|Fk(a,~):bi}\ (7.34)
TED i=1
H(a%,b9)
_ ) (7.35)
2 A

Observe como en ([/.34)) se aplica el coeficiente H. Por hipotesis, se tiene que cualquier subcon-
junto B C Y (@ relacionado con H estd dentro del compacto (1 — 5) - N2 < B < N4 Por lo
tanto, existen a lo més 3 - N7 elementos b ¢ B. De (7.35)) y (7.32) se deduce que

H(a%,b?)

Pr[Af% = 1] > (|] — BNY) - %] (7.36)
4] — N7 |K]|

> (1-a) (7.37)

> (% - ,6) (1-a) (7.38)

>Pr[A” = 1]-B—a (7.39)

Replicando el mismo andlisis para el complemento del distinguidor, se consideran los transcritos
en Q[{ Entonces, al calcular las probabilidades de ambos mundos,

Pr[A™ = 0] >Pr[4° = 0] - B —«a (7.40)
Esto se cumple, puesto que la hipdtesis es simétrica para ambos conjuntos de transcritos.
PriA’ = 1]>Pr[A™ = 1] -B-a (7.41)
Al aplicar el Corolario[7.1.3en (7.39) y (7.41)),
PRF __ ‘ . <
AdvF %gif(Fap> — O[—i_ﬁ

En conclusion, la ventaja de cualquier adversario escogiendo adaptativamente textos planos esta
acotada de la manera afirmada. [



78 CAPITULO 7. HERRAMIENTAS DE LA TECNICA-H

7.2. Técnica H generalizada

Los Teoremas 4 y 5 del articulo (Patarin, 2009) enuncian las condiciones de suficiencia contra
los ataques de texto cifrado escogido. Ambos teoremas consideran un adversario adaptativo bajo
CCA. Por lo tanto, en lugar de enunciar los dltimos dos teoremas, se describe una proposicion
equivalente (sin pérdida de generalidad) que resume los teoremas de los coeficientes H para
cualquier tipo de adversario, pero antes tenga en cuenta la siguiente definicion:

Definicion 7.2.1. Sean Hy ~ Ogy H, ~ O los coeficientes H relacionados con cada ordculo
respectivamente. Se define el conjunto de transcritos buenos respecto a o, 5 € [0, 1] como

B:— {T(A‘D) ( g;—g;;z1—a}
tal que
Prt(A®) eB] > 1-5

En el complemento, los transcritos T ¢ B se denominan transcritos malos.

Asti, el pardmetro [ limita la cantidad de transcritos malos posibles

B> Pr[t(A?) ¢ B]
Mientras que el parametro « son las claves que satisfacen
a>1-— %
De estas relaciones, podemos hallar la siguiente equivalencia:

Proposicion 7.2.2. Dados dos ordculos F'y G, para todo transcrito bueno se satisface
Pr[F(a?) = b7] G
>1-— Prit B| <
PriGa) =] =@ ¥ PrifAD¢B]<f
donde (a?,b?) € B.
Demostracion. Sean dos ordculos con espacio de claves K; ~ F'y Ky ~ G, respectivamente.
Acorde a la Definicion|/.1.4] se deduce que
1> S Ho
K4 | Ko
Sin perdida de generalidad, asumimos que la relacion entra la cantidad de claves que satisface

el coeficiente de /' puede ser mayor que la relacion con las claves de (=, no obstante, podriamos
realizar una prueba equivalente para el otro caso. Luego, de la Definicion[7.2.1]

H1 Z Ho(]_—Oé>
H, Hy

| K |
Pr[F(a?) =0?] > Pr[G(a?) =0] (1 —«)

v
=
|
L
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donde H;, Hy son los coeficientes respectivos de F, G. Conjuntamente, se satisface que la pro-
babilidad de T(A“) € B’ es menor o igual a 3.
]

Como mencionamos, en virtud de que « es arbitrario, se puede demostrar el caso contrario

H,

1>—> —
| Kol T K|

Incluso, existen o’ y 3’ para acotar la relacion P¢ > P¥ y la probabilidad de T(AF) ¢ B,
respectivamente. Adicionalmente, juzgue como los transcritos buenos cumplen con la hip6tesis
Q. C B C Qs del Lema empleado en la distancia estadistica.

Corolario 7.2.3. | Suficiencia de seguridad incondicional] Sean dos ordculos F y G. Enton-
ces, para todo transcrito bueno se cumple que

IF-G| <a+p

Demostracion. A continuacién, emplearemos la prueba dada por Jha y Nandi (2022) en su
Lema 3, para visualizar mejor como los resultados de Patarin convergen a esta conclusion.
Sea (a%, b?) un transcrito bueno. Entonces existen vy 3 tales que

IF-Gll= Y méx{0, L) —P%(19)}

(a?,b7)€Q
< Y PLOY) - PG
(CLq bq)€Q>
Pra (b7)
< PE(BY) - (1 — =<
< 2 Pu® ( P )
(aq,bq)€Q>
<a- Y PLO) +a- Y POOY)
(a?,b7)€B (a9,b9)¢B
<a+ Y PLH) < a+p
(a9,b9)¢B

donde obtenemos la primera igualdad conforme a los Lemas y [[.4.§] de la distancia es-
tadistica. Al aplicar el Corolario incluso, se concluye que

AdvE® < |[F-G|| € a+ p

para cualquier adversario A € AT K haciendo ¢ consultas.



80 CAPITULO 7. HERRAMIENTAS DE LA TECNICA-H

Cabe mencionar, que este corolario resume los resultados de los teoremas de Patarin (2009)
con base al conjunto de transcritos buenos. Asimismo, la forma de seleccionar un transcrito
con buenos pardmetros depende del experimento de indistinguibilidad que se considere. En
particular:

» Para A € KPA, se deduce que
Pr [Fk(aq) = bq]

>1-—
Priplan)=t] =
tal que |B| < |[D|- N?- (1 — ).
» Para A € C'PA, se colige que
q\ — 14
PI'[Fk(CL) b]21_a
Prp(a?) = 7]
tal que |B| < N?- (1 — f).
» Para A € CCA, se resuelve que
Pr [ FE(a9) = ¢
r [ F(a?) ] >1—a

tal que |B| < |D]- N7 - (1 — 3).

A continuacién, describiremos la manera de modificar este resultado para considerar experi-
mentos con permutaciones entonables pseudoaleatorias.

7.2.1. Condicion de suficiencia extendida

Como se menciond, la técnica de los coeficientes H es bastante amplia, ya que puede ser
empleada en cualquier experimento PRF o SPRP; no obstante, se puede ampliar el uso de la
técnica para analizar los cifradores por bloques entonables. Recordemos que un TBC se modela
como una TPRP

P={P:X > X|(tLheKxT}

que es una familia de permutaciones extendida por un espacio adjunto denominado espacio
de tonos. Con este fin, considere la siguiente modificacion para los transcritos, dada por Jha y
Nandi (2022)).

Definicion 7.2.4. Sean A un adversarioy O : X9 2 Y@ x S un ordculo S-extendido. Se
define el transcrito extendido T como

7(A%) = 7(A°) := (7(A°),S(x7))

donde O := (0, S) es un sistema de respuesta con variable adjunta S.
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Advierta como el transcrito extendido revela la secuencia de pares entrada-salida, asi como el
tono empleado para generarlas. Esto implica que, el comportamiento observable para estudiar
un TBC consiste en las entradas z;, las salidas y; y el tono s. La dnica variable latente que se
considera es el espacio de claves de un TBC.

A continuacion, se enuncia el teorema generalizado para la seguridad incondicional de siste-
mas extendidos contra cualquier adversario.

Teorema 7.2.5. [ Técnica H extendida ] Sean F = (F,T)y G = (G, T") dos ordculos ex-
tendidos. Siempre que exista un subconjunto de transcritos buenos B C ) en los transcritos
extendidos, sucede que la ventaja para cualquier adversario A € ATK es

(R.G) < | (A" =A%) || < atp
Demostracién. Sea (z9,y?, s) € Q un transcrito extendido. Dado un tono ¢ € T fijo, se denota

Q) == {(a9,y9) | (29,y%,1) € Q}

como el conjunto de transcritos simples. Luego, para un distinguidor genérico de F'y G se sigue
que
Prp(Ay?) = 1] < Prb(Ay’, ) = 1]

Esto se debe a que el adversario podria elegir no usar la informacién de ¢ para decidir el valor
deb.
(RG) < (FO) < |[F-2|

Enseguida, de la Proposicion sabemos que existe un transcrito (27,47, ¢) € B tal que

Pr[F(a?) =0T =t] Pr[F(a?) = b9]
Pr(Glat) = b0, T —¢] = Pr[Glat) —b1] =+ ©

Como la variable 7" es independiente de /'y (G, se cumple la desigualdad izquierda. Paralela-
mente, la cantidad de transcritos T(A) ¢ BB estd acotada por /3. En consecuencia, aplicando el
Corolario se infiere que

IF-Cll<a+p

En conclusion, la ventaja para distinguir cualesquiera dos sistemas estd acotada de la manera
deseada. [

Observe como hemos especificado un conjunto de transcritos buenos bien definido que nos
permite acotar la distancia estadistica entre dos sistemas de respuesta, en general.

Cabe mencionar que existe otra forma equivalente de formular el teorema del coeficiente H
extendido propuesta por Hoang y Tessaro (2016)). Esta técnica, mds conocida como método
del valor esperado, permite alcanzar una seguridad muy estrecha, al encontrar una funcion
negligible,

c , (?) _ 1 J— M IP(D(CL'Q, yq’ S) > ]Pfk (.:Eq, yq, S)
. 0 de lo contrario
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de tal manera que un distinguidor cualquiera tiene ventaja

(F,G) < H (AT — (A H = Ex [eor (T(A9))]
de modo que la igualdad se cumple gracias al Corolario Advierta como este resultado es
un caso particular para los pardmetros optimos o = €,,; y 3 = 0 que garantizan la inexisten-
cia de transcritos malos. Como el nombre del método lo indica, esta técnica permite alcanzar
optimalidad siempre y cuando se pueda calcular el valor esperado con precision y facilidad.
En el siguiente capitulo, veremos un ejemplo claro (el ZMAC) y mostraremos cémo elegir
los parametros adecuados para un transcrito bueno, asi como su utilidad para las pruebas de
seguridad en esquemas de seguridad y autenticacion.



Capitulo 8

Caso de estudio

Una de las propuestas mas recientes respecto a esquemas de autenticacion de mensajes es
el modo de operacion propuesto por Iwata et al. (2017)), denominado ZMAC. A diferencia,
de otros modos de operacién basados en cifradores por bloques (BC), ZMAC permite emplear
cifradores por bloques entonables (TBC). Esto es una gran mejor, puesto que los MAC basados
en BC solamente procesan n bits por ejecucion, mientras que ZMAC nos permite alcanzar n + ¢
bits por ejecucion. En resumen, ZMAC es un esquema que nos permite alcanzar seguridad mas
alla de la cota de cumpleafios (BBB) con mayor cantidad de bits por ejecucion, completamente
paralelizable y adaptable para cualquier TBC.

En este capitulo abordaremos en profundidad todos los aspectos técnicos de ZMA. Se hara
énfasis en las pruebas de seguridad y extenderemos el andlisis de cada prueba mostrando cémo
los teoremas de los Capitulos {4 [5]y [7]nos garantizan una firma infalsificable.

Si bien, antes de exponer los resultados principales, es necesario introducir algunos conceptos
esenciales para la comprension de este capitulo.

Definicion 8.0.1. Dado un niimero naturales k, se define la operacion one-zero-padding para
todo mensaje M € {0,1}* como

L M si k|m,
0zp(M; k) = { M||10” de lo contrario.

de modo que v = (m méd n + t) — 1 es la cantidad de ceros para rellenar el mensaje y
m = |M| es la longitud del mensaje.

Definicion 8.0.2. Sea A = ay, a,, .. .a, una cadena de bits y sea
A, i=a,2"  fa,_ "t b b agr +a

su representacion como elemento del campo de Galois GF(2"). Entonces, se define la operacion
doubling como

2A, =1 - Z a;z' méd p(z)
i=0

83
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donde p(x) es el polinomio primitivo o generador de GF(2").

Es oportuno mencionar que el grupo constituido por {0, 1}" y la operacién XOR es isomorfo
a (GF(2"), +). Esto implica que siempre existe una transformacion inversa entre ambas repre-
sentaciones A = A,. De este modo, la operaciéon doubling estd bien definida para cualquier
cadena de bits. En particular, para n = 128 se tiene el campo de Galois G F(2'?®) con el poli-
nomio generador usual z'% + 27 + 2% + z + 1 tal que

A — A <1 si a; = 0,
1 (A< 1) (02°10000111) sia; = 1.

En donde la operacién XOR (denotado @) y el corrimiento circular < son definidos de la
manera usual. Conjuntamente,

Definicion 8.0.3. Sean X € {0,1}"yY € {0, 1}. Se define la operacion &, como

 IXTteY sit<n,
X0 Y= { X0 aY sit>n.
Por consiguiente, la longitud total |X @, Y| = t en cualquier caso. Ahora, se formaliza el
estudio de los TBC con la siguiente definicion:

Definiciéon 8.0.4. Un TBC £ : {0,1}* x {0,1}* x {0,1}* — {0,1}" es una permutacion
entonable con espacio de claves {0,1}" y espacio de tonos {0, 1}'. Andlogamente, un TBC es
un BC {0, 1}!-extendido.

Esto significa que Dom(E) corresponde con el conjunto de textos planos y Ran(E) con el

. . . =t . i )
conjunto de textos cifrados. Adicionalmente, £, denota una permutacion especifica determinada
porty k.

8.1. ZMAC

Para las siguientes definiciones sobre ZMAC deje que £ : K x T5 x {0,1}" — {0,1}" sea
un TBC con espacio de tonos 75 := T x Jg, en donde el espacio 7' = {0,1}" se denomina
el tono mayor y la secuencia Jg el tono menor. Ademds, dado un indice m, se denota X =
X[1],..., X[m] como una cadena de m bloques, tal que cada bloque X [i] € {0, 1}

Definicion 8.1.1. Se define ZMAC como una PRF Zwac(g,] : K x {0,1}* — {0,1}*" con un
espacio de mensajes de tamario arbitrario tal que
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ALGORITMO ZMAc[&;[( M ):
X < ozp(M; n+t), m«+ |[M| acon X = X[1],... X[p] € {0,1}"*
(U, V) — ZHASH[E] (X)
si (n+t)|m entonces
regresa S < ZriN[£] (0, U, V)
si no
| regresa S < ZriNz] (4,U,V)

Algoritmo 8.1.1: Funcién pseudoaleatoria ZMAC

Advierta que ZMAC fue diseiiado sobre la base de los esquemas Hash-then-MAC, especifi-
camente estd inspirado en PMAC (Yasuda, [2011). Para comprender mejor la arquitectura de
ZMAC tenga en cuenta la siguiente definicion dada por Black y Rogaway (2000).

Definicion 8.1.2. Sea G : K x {0,1}* — Y una funcién hash acorde a la Definicion y

sea F': L x Y — S una familia de funciones. Dadas las claves kg S K y ky, ko na L, se
define la construccion Carter-Wegman como

L Fk1 (Gko (M)) Si (n + t)‘m’
CW3[Gry, Fiy By (m) = { Fiy (Gio (M) de lo contrario.

tal que m = |M)| es la longitud del mensaje.

En particular, ZmAac|[&, ] es una instancia de la construccion CW3 [Z HasH| & |, ZFIN[E]y, ZFIN[E] 4}
constituido de la funcién ZHASH casi-universal y la funcién pseudoaleatoria ZFIN. Mas ade-
lante, estudiaremos con detalle el funcionamiento de estos algoritmos en particular.

Por el momento, cabe destacar las siguientes propiedades computacionales de ZMAC:

1. Emplea una unica clave k € K.
2. Las ejecuciones del TBC & son paralelizables.

3. Procesa en promedio n + ¢ bits por bloque Xi].

4. Su seguridad estd demostrada para una longitud total de
q
o= Z |X[ZH < 2m1’n{n,(n+t)/2}
i=1

con ¢ bloques consultados por el adversario.
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N
Zuasu[z]
] [
7/ \ Y\ Y\
|XL||XR||’?||XR| III
L—>® R 2.L_.Q? 2'lR orieJ, _>Q? e R
— | —, —
gk 4-@;—4 gk 4—@;—1 gk «@;—4
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0 >—® &—© RO}
|\ J

Figura 8.1: Diagrama del funcionamiento de ZHASH

8.2. ZHASH

En primer lugar, se define la funcion ZHASH para ¢ < n, la que comprime las cadenas de
bloques X™ obtenidas del mensaje. Recuerde que una funcién Hash es una funcién digesto que
no puede ser invertida computacionalmente, y que posee cierta resistencia a las colisiones. En
el Capitulo 6] se introdujo sobre los principios de las funciones Hash universales.

Definicién 8.2.1. Se define ZHASH como una funcién Zussu[ €] : [{0, 1} — {0,1}" x
{0, 1} tal que

ALGORITMO Zuasu[ € |(X):
U+ 0", V<0
L« £,(04,07), R+« &,(0011,07)
para cada i € J, haz
(X, XRg) < X]i] <4 Con |L| =n,
Z+— X, oL, T+ Xp&:R
Y, « E4(T,Z)
Yr<+ Y @& Xp
U+—2UaYy)
V—VdYr
~ (L,R) « (2L,2R)
regresa (U,V)

R| =tycada|X[i]| =n+t

Algoritmo 8.2.1: Algoritmo de compresion ZHASH

Para entender mejor la funcién ZHASH, estudie el diagrama en la Figura[8.1] A continuacion,
explicaremos los dos casos posibles:
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e Parauntonot < n, en Zuasu| £ | se calculan dos méscaras: una izquierda L := EZ(OZ 0™)
y una derecha R := EZ(Ot‘ll, 0™). Ambas de la misma longitud |L| = |R| = n.

Dada una cadena de bloques X := X][1],..., X|[p], el algoritmo Zuasu| €] divide ca-
da bloque X[i] en dos partes: se define X [i] := [[X[i]]]" como la entrada del TBC y

Xgli] := || X]i]||; como el tono del TBC. Entonces, para cada indice ¢ < p se calcula
Y. [i] = £ (27 R &, Xgli], 2L & X, [i]) (8.1)
Yrli] = Yili] & Xgli] (8.2)

Aprecie como las variables latentes T y Z corresponden al tono y la entrada del TBC g,

Adicionalmente, Zuasu[ € | calcula las variables U, V' recursivamente:

p

U= Y[ (8.3)
l;l

V=P Yalil (8.4)
=1

De esta manera, ZHASH requiere una ejecucién del TBC £ y tres doublings en GF(2")
por cada bloque de n + ¢ bits. Esto, sin contar las dos ejecuciones iniciales para generar
las méscaras L'y R.

e Para un tono t > n, se calculan las mascaras de la misma manera que el caso anterior. En-
seguida las variables U y V' se calculan conforme a las ecuaciones (8.3)) y (8.4). Examine
cémo (U, [[V]|") son los variables correspondientes al caso ¢ = n. En cambio, denotamos

W= Ve = [Xa[llltn @ --- @ [Xg[m]li-n (8.5)

como los ¢ — n bits restantes de V. Esto, lo hacemos con el fin de estudiar por separado
las variables (U, V') para el caso t = n y facilitar la demostracién de seguridad al final
de esta seccion. De igual manera, vea como W depende tnicamente de los bloques del
mensaje X[1], ..., X[p].

Observe que el algoritmo Zuasu[ £ | puede ser considerado como un algoritmo recursivo: el
caso base (ntucleo) calcula el par (Y, Yr) y el paso recursivo computa los valores (U, V). Por
esta razon, primero describimos la siguiente construccion:

Definicién 8.2.2. Sea P : K x {0,1}' x {0,1}" — {0,1}" una permutacion entonable y sea

H L xS — {0,1}" x {0, 1} una familia de funciones. Dadas las claves k Sk y 0 E, se
define el esquema Xor-Tweak XT[P,H | como

XT[P,H |re :=Pi (T, W @& X) conH(g) :== (W, T) (8.6)
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Este esquema Xor-Tweak es un disefio genérico propuesto por Minematsu y Iwata (2015) para
procesar bloques en paralelo con seguridad CPA. En especifico, ZHASH emplea el esquema

denotado X E = XT[&", ], que mapea

XE: (X, (X,1) = E(27 'R &, Xgli], 27 'L & X, [i]) (8.7)

=8 .
en donde &, es una permutacién dada por el tono 8 y la clave k de nuestro TBC, en tanto que
‘H es una funcién que cumple la Definicion Este esquema es el componente nuclear del

algoritmo Zuasu[ £ | y nos permite procesar 2" — 1 bloques por ejecucion.

Al mismo tiempo, para poder estudiar la seguridad de esta construccion, definimos el objeto
ideal X P := XT[7, H] como el esquema Xor-Tweak que emplea una TURP 7 como primitiva
criptogréfica.

8.2.1. 7 como funcion parcialmente Casi-Xor-Universal

Una pieza crucial para el desarrollo del esquema X F fue encontrar una familia de funciones
con buena resistencia a las colisiones.

Definicion 8.2.3. Sea H : £ x S — {0, 1} x {0, 1} una familia de funciones con espacio de
claves £. = {0,1}" x {0,1}" y dominio s = {0, 1} X Jon_;. Dados L, R & 1, se define

Hy r(S,i) == (27'L, 27 'R @, S)

Para evaluar la seguridad del nicleo de ZHASH, primero probaremos que H es una funcién
Hash adecuada.

Lema 8.2.4. La funcion H es pAXU respecto a (n,t, €) de modo que

1

€(7’L,t) - 9n+min{n,t}

Demostracion. Se denota la probabilidad de colisiéon de H como

C(H,T,T') := Pr [Hiwr(S,i)®HrLr(S,j) = (5,0)]

L,R«+L
para dos tonos S # S’ distintos. Luego, tenga en cuenta los dos casos siguientes:

(<) Suponga ¢ < n. Entonces por la Definicion [8.0.3] se sigue que

(6,0 = (27'L, 27'"Re&, S) @ (27'L, 27'Re, §)
= (27'L, 27 R]'@S) & (7L, [27'R]' @ 8")
= (27'Le2 'L, [2"'Ra2'R]|'eSa¥s)
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Como R, L y S, S’ son independientes, entonces se pueden escribir las ecuaciones
6= (2" +27 L
AS =[2""+ 277 HR]’

endonde AS := S @ S, acorde a la Proposicién Ademas, denotamos )\, = 201 +
27~1 con h < n, para facilitar los cdlculos. Note cémo 7 = j implica que

HQi—lR‘Ht@lTQi—lR'Ht — Ot ?é AS

Esto se debe a que S y S’ son distintos. Por consiguiente, s6lo es necesario tener en cuenta

los i # j para que 2" sea un elemento distinto del nulo. También, aprecie cémo [[A, R’
cumple con las caracteristicas de la Proposicion |3.1.7

C(H,S,S8')= Pr [ 0 =ML }

LR« L AS: H)\hR-ﬂt
=Pr[§=N\L]-Pr[AS = A\R]]
111
_2_71? - 2t+n

Ya que 6 y AS son elementos fijos, el computo de la probabilidad se determina por la
distribucién de las variables A\, R, A\, L sobre GF'(2").

(>) Supongat > n. Entonces,
(0,0 = (27'L,2'"R&, S) @ (27'L, 2" R®, §')
= (27'L,27'R|0"" & S) @ (27'L, 27'R| 0" @ S')
=(27'Le2 'L, 7' Re 2 'R)[0""eS® )
De manera similar al caso anterior, se escribe el sistema de ecuaciones
§=2"'+27HL
AT = (2771 + 27 H R0
Para computar la probabilidad de colision, tenga en cuenta que AT y 0°~" son elementos

fijos. Esto implica que existe la posibilidad de que ||AS||;—,, # 0™

. 5= ML
COLTT) =PriAg — (nRJj07)

= Pr[d=\L]-Pr[AS = (\R]077) ]

1 . 1
< o Pr[[AST = MR] < o

En virtud de que descartamos la informacion de los ultimos ¢ — n bits, podemos obtener
una cota superior.
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De ambos casos,

1
max Pr [HLR(S,Z') ®HLr(S,j) = (Aaot)] <

S#S’ L,R«L — 9n+tmin{n,t}

En conclusion, H es una funciéon pAXU.

]

Ya demostrado que la construccién XT[Es, ] cuenta con un TBC y una funcion HASH, se
procede a probar la seguridad del esquema completo.

8.2.2. Seguridad del esquema X P

Para demostrar la seguridad del nidcleo de ZHASH, considere los siguientes preliminares
(Gnicamente para esta seccion): R

Sea A € CCA un adversario cuyo objetivo es distinguir X P de una TURP P, usando a
lo més g consultas con capacidad de computo ilimitada. Sin perdida de generalidad, podemos
asumir un transcrito /-extendido para un distinguidor genérico como

T<A®) - ((817 L1, y1)7 B (8q7 Lqs yq)ﬂ 6)

de tal manera que cada s; es el tono mayor, cada z; es la entrada, cada y; es la saliday ¢ es la
clave de ‘H. Asimismo, la estrategia del adversario consiste en consultar de manera adaptativa
secuencias (s?, z9) y obtener respuestas (y?, ().

Para el mundo real: X P se construye con una TURP 7 Eorxyt y una funcién pAXU
H:bL xS — W xT,de tal manera que

Ho(si) = (wi, t;) (8.8)
Zi = Ti + W; (8.9)
yi = (s, %) (8.10)

Abusando de la notacién, la ecuacién representa dos elementos w; € GF(2") y t; €
GF(2") dados por la imagen de H,(s;). Recuerde que ésta es una representacién equivalente
para W ={0,1}"y T = {0, 1}".

De este modo, (8.9) es el proceso de enmascarar las entradas de la TURP, tal que z; + w; €
GF(2"). Por ultimo, @I} expresa la salida de X P como y; € GF(2"+),

Para el mundo ideal: ® <~ S x GF(2"*")" es una TURP que mapea

(si,25) — yi = @(si,2) (8.11)

Observe que los valores (w;, z;, t;) no tienen sentido alguno en el mundo ideal. Por este motivo,

. . $
asuma que las variables son dependientes de una clave ¢ <— L..
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Expuesto ambos mundos, aprecie como el transcrito 7 determina de manera tnica los valores
(wy, 2, t;), de acuerdo a lo siguiente:

Definicion 8.2.5. El conjunto de transcritos buenos de X P se define como

B={t(A°) | Vj >i: (2:,t;) # (2, 1;) }

Esta definicién implica que no existen colisiones en el dominio de 7. Esto es importante,
puesto que el adversario puede encontrar colisiones triviales y; = y; en el mundo real simple-
mente seleccionando valores (s?, x%) que cumplan (z;,t;) = (zj,t;).

Para asegurarnos de que B es también un conjunto bueno respecto a «, 5 € [0, 1], se enuncian
los siguientes lemas:

Lema 8.2.6. Todo transcrito bueno de X P satisface
Pr[XP = 7]
Pri@=r]

Demostracion. Sea T = (s9, 29, y9) un transcrito bueno. Entonces, la probabilidad del oraculo
ideal es

Pri@=7]=Pr|w(s!,2?) =y L=1/] (8.12)
=Pr|w(s!,2?) =y?]-Pr[L =1/(] (8.13)
_ : 1 8.14
-l 8.14)

donde a; es la cantidad de 7 < j entradas consultadas con el mismo tono mayor g; = s;.
Luego, recuerde que el transcrito determina de manera tnica el tono menor y la entrada de 7
a través del sistema de ecuaciones anterior. Por lo cual, la probabilidad del ordculo real es

Pr[XP =71]| =Pr[7(t% 2% =y, L' = (] (8.15)
=Pr[7(t?, 29 =y?]-Pr[L=1{] (8.16)

1 1
-5 1} T 8.17)

donde b; es la cantidad de 7 < j entradas consultadas con el mismo tono menor ¢; = t;.
= Supongamos que s; = s;. De (8.§)),
Holsi) = (wi, ti) = (wj, t5) = Hu(s;)
Por consiguiente, w; = w;. Por definicién de B y de (8.9), se infiere que
2 =2, Qw; #x; Dw; = z;

En consecuencia, la cantidad de indices en a; estd dado por la cantidad de z; # z, bajo
control del adversario.
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= Supongamos ahora que ¢; = t;. De nuevo, se deduce que z; # z; acorde a la definicién
de transcrito bueno.

Esto implica que la cantidad de indices en b; depende de la cantidad de z; # x; dis-
tintos o de los w; # w; distintos. Paralelamente, percitese como cada (w;,t;) estd en
correspondencia con un s; bajo control del adversario, gracias a la funcién H,.

bi = |{i<j|$i7éxj}u{i<j‘517&53‘” (8.18)
> i<jlo#u)| = a (8.19)

Por dltimo, al aplicar (8.14), (8.17) en (8.19)se cumple que
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En conclusion, se satisface la hipotesis para el pardmetro .

O]

Adicionalmente, debemos comprobar que la Definicion [8.2.5] cumple con la hipétesis de los
coeficientes H.

Lema 8.2.7. Para todo transcrito malo se satisface
e
Prt(A¥) ¢ B] < €
Demostracion. De la Definicion [8.2.5]se sabe que el conjunto de transcritos malos es
IBC = {T | =) <] : (Zl,tl) = (Zj,tj)}

Advierta como cualquier estrategia del adversario para distinguir co de X P implica encontrar
un transcrito malo.
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Entonces, en el mundo ideal, las variables s;, t;, w; son dependientes de la distribucién de ¢.
Pr(r(A%) ¢ B] < rggfor [ ((s% 2%, y?),0)€ B]

= mé,X Pl” Zi7ti = Z‘,t‘
(s6,23)#(s5,25) ; [( ) = (3 J)]
1<Jxq
(Si7$i)¢(8j7xj) e sy
1<Jxq

= max Z Pr [(wj +w;, t;+t;) = (x; +$ia0)]

;T4 ST {1
(51712)7’5(51 796]) i<j<q

=  mix Pr [(wj, t;) + (w;, t;) = (Az,0)]

i L o {+L
(sl,zz);é(s] @J) i<j<q

< Z max  Pr [He(s;) + He(s;) = (Az, 0)]

s 8i,Li ZHL
7«<]< 0L z)# 7 ]

P

1<j<g

donde Az := z; + xz; € GF(2"). Vea como el Lema se emplea para acotar los transcritos
malos. En conclusion, se satisface la hipdtesis para el pardmetro (.

]

De esta manera, demostramos que la definicion de transcritos buenos es suficiente para ga-
rantizar la seguridad del esquema X P . A continuacidn, terminaremos la prueba considerando
el esquema nuclear de ZHASH.

Corolario 8.2.8. Sea X P el esquema de la Definicion 8.2.2: con una TURP 7@ : {0,1}' x
{0,1}* — {0,1}" y ses H una funcién acorde a la Definicion[8.2.3| Por lo tanto, la seguridad
incondicional del esquema como TPRP es

2

AdvTPRP q

XP — 9n+l4+min{n,t}
para todo adversario realizando a lo mds q consultas.

Demostracion. De los Lemas y se deduce que « = 0y 8 = ¢*€/2. Finalmente, al

aplicar el Teorema se concluye la prueba.
[

Asi, queda demostrada la seguridad del nucleo X P. M4s adelante, explicaremos c6mo sus-
tituir el esquema real Zuasu[ € ] en el esquema ideal Zuasu| 7. Por el momento, estudiaremos a
ZHASH como si fuera el esquema ideal.
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8.2.3. ZHASH como funcion hash universal

Como comprobamos en la seccion anterior, el caso base de ZHASH es seguro, sin embargo,
ZMAC pide una funcion hash e-universal para completar la construccion Carter-Wegman.
Para ello, considere la siguiente funcion:

ZHASH[ﬁ] : OZp(M) — XT[W,H]&[(X)

que mapea cada mensaje M a un hash creado por X P, de acuerdo a la Definicién Para
mostrar que ZHASH es una funcién resistente a las colisiones, efectuaremos el mismo analisis
realizado en el articulo Iwata et al., 2017.

Lema 8.2.9. Para toda m,m' < /€, la probabilidad de colision de Zussu| X P es

. 4
! J—
C(Zus XP|,m,m') < oommmy = €

Demostracion. Deje que AV =V + V' y AU := U + U’. Entonces, la probabilidad de
colision de ZHASH es

-5 N AU =0
C(ZHASH[XP],?TL,m)—PI"[ AV :Ot}

Ahora, conforme a las ecuaciones (8.3)) y [8.4] se tiene el sistema de ecuaciones

AU = @ 2m7i+1YL [Z] + @ 2m/,j+1Y/L[j]
j=1

=1
AV = P Yrli] + P Yhlj]
i=1 Jj=1

Por el Corolario|8.2.8] el mapa X P es una permutacin entonable aleatoria.
XP: (Xg, [Xp,i)— 727" R @ Xg[i], 27'L o X[i]) (8.20)

Observe como estd es la misma Construccion 8.7 para una TURP 7. De este modo, de y
(8.2), se sigue que la variable Y [i] es independiente de cada bloque X[i] = Xg[i][| X [i], a su
vez, Y [j] es independiente de Y p|[i], Y [] para cada i > j.

Por consiguiente, evaluamos los siguientes casos con ¢ < n:

s Param’ =m:

* Suponga que existe un h € J,, tal que X[h] # X'[h] y que X[i] = X'[i] para todo
i # h. Entonces,
AU = @2 (Yoli + Y[i]) = 2" ™AL # 0"
— ———

i=1 AL
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donde se deduce que Y [h] # Y/ [h] puesto que son una permutacion de X|[h] y
X'[h], respectivamente. De lo contrario,

AV = @(YR[ZHY;QM) = AR = Xg[] & X[ # 0

Esto implica que no puede existir una colisidon para un tnico indice h.
* Suponga dos indices h,s € J,, que satisfacen X[h] # X'[h] y X[s] # X[s].

Entonces,

AU = 2" MIAL[R) + 2" ALs| + @ 2" AL
ig{h,s}

-~

01

AV = ARJW + AR[s]+ €D ARJi]
i {h.s}

—_————
02

Observe que A y A, son variables independientes de (AR[h], AL[h]) y (AR[s], ALs])
a causa de la separacion de dominios en la Construccion Ademads, los indices
h'y s determinan tonos distintos a los tonos dependientes de :.

Deje que )\, = 2™ h*1 )\, = 2=+l y considere una colisién

[ AU =0" ] [ )\hAL[[Z & NAL[s] =6, }

]
AV =0 | ®AR[s] =0
MAL[R] & N AL[s] =6
[ TAL[R) @ AL[S]]P = 02 @ Xg[h] ® Xz[h] ® Xg[s] ® Xy]s]

Podemos asumir el siguiente sistema equivalente:

A As\ (ALR]\ (6
1 1 AL[S] o (53
En virtud del caso anterior, se sabe que el determinante es A\, & A; # 0 porque h, s

son distintos. De lo contrario, no es posible una colisién. Por ende, el mapa X[i| —
(61, d3) tiene una dnica solucion. De este modo, la distribucién de las variables se
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encuentra sobre GF(2") \ {0} en el peor de los casos.

AU =0 , MALR & AAL[s) =6,

<

Pr { _ } = o B br { TAL[W & AL[S]TE =6,
5 € GF(2*

. MAL[R] @ A AL[s] =8,
<
< max ) Pr { AL ® AL[s] = 6
55 € GF(2t) 83 € GF(2"):
TosT* = 62
1 1
< i .
- 61renaaF)én) Z an_1 9n_1
85 € GF(2t) 83 € GF(2") :
TosT* = 82
< ont. 2 2 = 4
2n 2n 2n+t

s Param’ < m + 1, se tienen las ecuaciones

AU = @2711 1+1Y @ gm+1— z+1Y/ ]

i<m 1<m+1

=2(Yym+1]@2Y][ml &Y [mle @ 2" ALl

i<m—1
o
y
AV =P Yrlile P Yili
i<m i<m+1
=Y,m+1@2Y m e Y. [m]'e D AR
i<m—1

02

Conforme al caso anterior, se deduce que d; y d2 son variables independientes de Y 1, [m]
yYr[m+1].Sean A =Y [m + 1] @ Y.[m|y B = Y [m]. Entonces, se tiene que

G ?) (2) N (gl) (8.21)

Como Ay B son independientes entre si, gracias a la separacion de dominios (establecida

|
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por m + 1) es facil ver que este sistema tiene una tnica solucion.

Pr[AU =0 }g b PI{ A+ 2B :51}

AV =0 51 € GF(2™) ”A + Bﬂt = 52
53 € GF(2%)
, A+2B =9
<  max E Pr !
51 € GF(2™) A+B = (53
55 € GF(2t) &3 € GF(2™):
MosT* = 62
, 1 1
< max E — - —
51 € GF(2™) AL
52 € GF(2?) &3 € GF(2") :
TosTt = o2
on—t 1
< — =
- 22n n+t

En este caso, percitese que A y B son variables aleatoriamente uniformes tomadas de
GF(2").

» Parael casom’ > m,

AU =2( Y [m]@2Y [m —1]& @ 2" AL )
i<m/—2

-

o1
AV =Y m @Y, m -1]o @ AR T

i<m/—2

S
02

J/

Observe que d; y 0 son independientes de Y [m'] y Y, [m' — 1]. Ademds, en este caso
m —1 < m < m’, de otro modo estarfamos dentro del caso anterior. Sean A = Y [m/] y
B =Y/ [m’ — 1]. Entonces, se obtiene de nuevo el sistema (8.21).

Pr Y, [m]@2Y,[m' -1 =4 < 1
Y/ [m| oY, [m' —1] =6y | = ontt

Reflexione cémo Y’ [m/], Y [m’ — 1] son independientes en cualquier caso, gracias a la
Construccion [8.200

Para finalizar, asumimos que ¢ > n con m’ > m. En este caso, se obtiene una ecuacion extra
acorde a lo definido en (8.5):

AW = W+ W = DIXalillle-n & DUXRI]-

i<m i<m/
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Inmediatamente, de las ecuaciones (8.1)) y (8.2), se obtiene el nuevo sistema

AU = @ 2m—i+1YL [Z] @ @ 2m/—j+1YL []]

AV = DIART & BIAR]"
AW = EDIARI -0 ® EDUARI -

Advierta como (AU, AV') conforma un sistema de ecuaciones independientes similar a los
casos anteriores, sin olvidar que AW corresponde con los ultimos ¢ — n bits de AV. Mds atn,
en este caso, el sistema depende de AW para tener una tnica solucion.

Si AW # 0'™, entonces para un indice i < m/’ se cumple que Xg[i] & X’[i] # 0, puesto
que X[i] y X'[i] son distintos. De otro modo, el sistema no presenta solucion, lo que indica que
no es posible una colision.

Dicho lo anterior, para que ocurra una colisién (AU, AV, AW) = (0™, 0™, 0'"™), podemos
asumir que la probabilidad es médxima si se satisface que

Yo [m]@2Y, [m— 1= @ 2" AL

i<m—1
NS >y
Vv

Y [m] @ Yi[m—1= €D TAR[]]" & Xg[m] & Xg[m — 1]

<m—1

(8.22)

g

02

Observe cOmo este sistema corresponde al caso ¢ = n.

AU =0n ] _ 4
Pr[ AV :on}gﬁ

De esta manera, podemos afirmar que en cualquier caso € no es mayor que 4/ gntmin{n.t}
[

Esto concluye que la probabilidad de colision de ZHASH es negligible para un €(n, t) y una
cantidad de ¢ consultas dadas. En consecuencia, se cumple el primer requisito para la construc-
cién ZMAC[Ey].

Es oportuno mencionar que los valores X[i| son controlados por el adversario, asi, inclusive
para un TBC con longitud de tono ¢ muy grande, no se tiene una probabilidad mayor a 1/2",
Conjuntamente, no se puede concluir que la funcion ZHASH es casi-Xor-Universal. Esto se
debe a qué en el primer caso V + V' # 0" o la suma U + U’ # 0%, lo que entra en conflicto con
la Definicion
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zFIN [E]
: « =] @ = « = «

Figura 8.2: Esquema ZFIN

8.3. ZFIN

El algoritmo ZFIN es el mecanismo que nos permite generar una firma de 2n bits segura,
desde los valores U, V' obtenidos de ZHASH, de la siguiente manera:

Definicion 8.3.1. Se define ZFIN como una funcién ZriNg] : Jg x {0,1}"* x {0,1}* — {0,1}"
tal que

ALGORITMO ZriN[E](i, U, V):
Y.« E(V,U)a TV, U)
Yr <+ EP(V,U)a E(V,U)
regresa Y < (Y.||Y&)

Algoritmo 8.3.1: Algoritmo de salida ZFIN

Note que ¢ es un nimero natural que sirve para obtener una separacion de dominio entre cada
permutacién &,. Siempre y cuando |i — j| > 4, las funciones ZrINE)(i,u,v) y ZFIN[E](], u, V)
son distintas e independientes. Asi, para el caso de un mensaje M que requiera padding se
define + = 0 y para el otro caso se define 7 = 4.

Para demostrar que ZFIN es una funcion PREF, y de este modo cumplir con el segundo requi-
sito de la construccion Carter-Wegman, se necesita definir la siguiente construccion:

Definicion 8.3.2. Sean P, y P; dos permutaciones independientes. Entonces, la funcion
se denomina suma de permutaciones para toda entrada X € {0, 1}".

Esta definicion es crucial para el andlisis de ZMAC, ya que que ZFIN es una instancia de

SUM?2. En especifico, se denota Zrn|[P] como la construccion ideal de ZFIN con una TURP
P: (i,U, V) SUM2[P', P"(U,V)||SUM2[P"2, P"*3)(U, V)
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tal que i € {0,4},y U,V son obtenidos de Zuasu| X P |. Para entender mejor el funcionamiento
de ZFIN[E,] observe la Figura[8.2]

8.3.1. Seguridad PRF de ZFIN

Ya que SUM2 es un caso general de la estructura de ZFIN, se demuestra la seguridad de
SUM?2 haciendo uso de los coeficientes H, de manera similar al anélisis propuesto por Jha y
Nandi (2022).

Lema 8.3.3. Sea A un adversario realizando a lo mds ¢ < 2"* consultas. Entonces,

q >3/2

AdvE%FMZ < (27

Demostracion. Sea T = (x7,y?) un transcrito bueno. Luego, para cada j < i

Pr[SUM2[P;, By(z7) = "] = [[ Pr [ Pi(2:) @ Pa(ws) = w; | Pa(x;) @ Pa(a;) = y; |

=TI D_Pr[Pi(ai) =5, Polw:) =i @3 | Pil)) @ Palxy) = ;]

1=1 yzEY

En vista que P, y P, son distintas, se tiene el siguiente sistema independiente:

(z:) =1
Pr[SUM2[P,, Py)(x7) HZP { g () :y,@@ Pi(z;) @ Pa(z;) =y
i i) =vieu
S| PIpE——
i= lyley

Recuerde que a; y b; son la cantidad de indices j respectivos. Luego, para calcular la cantidad
de elementos y; € Y, asumimos que se satisface a lo mucho

Pi(z;) © Po(wj) © Pa(xi) # Pi(wi) # Pi(w)




8.3. ZFIN

101

Esto implica que existe un §; ¢ {u;,v; | j < i} para cada indice j.

Pr[SUM2|P,, P (z?) = y?]

| V

v

| V

v

v

>

2n+1

1) <

Suponiendo que 2" (i —

g (2 ||{};j\} |{)1212n%_} ’|{uj}|)
T
et >
(17 L
ﬁ (1 9o 2n+1((i¢_—11))2+ (i — 1)2> ' %

1

(-

<.
I

(i—1)°

22n—1

—.

1
g

7

< 22n=1 e colige que

Pr[SUM2[P,, P))(z9) = 7] > (1 _ 22(1: (i—1)°

tal que p es una TURP con rango Y = {0, 1}". Asi, aplicando el Teorema cona = ¢3/2%"
y 8 = 0, se concluye que SUM2 es segura.

]

Es suficiente con emplear la técnica H de la manera usual, para demostrar la seguridad de la
suma de dos permutaciones. Por lo tanto, podemos concluir lo siguiente:

Corolario 8.3.4. Sea A un adversario realizando a lo mds q < 2"~* consultas contra Zm[Pj).
Entonces, para cada i € {0,4} se satisface que
3/2
Aavi, <2 (L)

ZFIN[?[] —
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Demostracion. Deje que Z;(U, V') := Zun[P](i,U, V). Entonces,
AdVPZT:N[ﬁI] < AdVPZRii-Zwl + AdVPZlij-2+Z¢+3

< Advgyamz, i) T AAVSUMZ 0 7i0s)
q >3/2 < q >3/2
< (L 4
<(z) (&
Esto se cumple conforme al Lema|8.3.3 0

Recuerde que la construccion ZFIN consiste en una firma de 2n-bits, que se obtiene al conca-
tenar Z; + Z; 1|/ Zi12 + Zi1 3. Dicho de otra manera, el adversario requiere resolver dos veces el
problema de SUM2, puesto que cada permutacién P;(i, U, V) es distinta debido a la separacién
de dominios que se obtiene con los tonos pequeios 2,7 + 1,7 + 2,7 + 3.

8.4. Probabilidad de falsificacion de ZMAC

Finalmente, después del analisis a la seguridad de ZHASH y ZFIN, estamos preparados para
analizar la seguridad de la construccion ZMAC. No obstante, antes de enunciar el teorema
principal es importante entender como se componen los dos algoritmos.

Recuerde que ZMAc[£,] es una instancia de la construccion Carter-Wegman que a su vez es
un caso particular del esquema genérico Hash-then-PRF. Este tiene la siguiente propiedad.

. . . $
Lema 8.4.1. Sea G : H x M — S una funcion hash-casi-universal e—AU y sea p +— Y una
funcion aleatoria. Entonces

PRF q
AdV[G,p] S <2> €
para cualquier adversario A € C PA.

Demostracion. Sean T = (m?,y?, h) el transcrito extendido, F' := [G, p| la construccion Hash-

then-PRF y ¢ & MY una funcién aleatoria. Se define el conjunto de transcritos buenos como
B:={7(A°) | Vi<j: a #x;}

donde x; = G),(m;) es el hash de cada mensaje con clave h € H. Observe como esto implica
que la probabilidad de encontrar un transcrito malo depende de la probabilidad de colisién de

G.
[ q
Prir¢ B] < mrlnai%qg C(G,m;,m;) < (2>e

i<j
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Luego, para los transcritos buenos,

Pr(p(Gm*)) =1/, H = h] = - Pr [p(GOm®) =y | 1 = 1]
= 7 Prlofe?) = v)
_
~TH TV

|
= Pr[p(m?) =y*, H' = h]

Estoimplicaque v =0y = (g) e. Por dltimo, la prueba se concluye con el Teorema 0

8.4.1. Cota de seguridad de ZMAC

Finalmente, dado los resultados anteriores, llegamos al resultado principal enunciado en el
siguiente teorema:

Teorema 8.4.2. La construccion ZMac[€,] es infalsificable contra cualquier adversario con
ventaja
q 50°/2 ( q )3/2

FORGE TPRP
Adv V ZMAC[EL ] < Adv + ZE + gn-+min{n,t} omn

realizando a lo mds q < 2"~* consultas.

Demostracion. Sea A un adversario bajo el experimento PRF. Entonces, del Teorema[6.2.1]

Adviiors | < Adviy (A)+— (8.23)

ZMAC[E ZMAC[E, 22n

Recuerde que ZMAC es una instancia de la Construccion [8.1.20 Por definicion de TPRP existe
un adversario B tal que

PRF - PRF
AdeMAC[s Advcws[ZHASH[XE]ZFIN[ £, ZFIN[E 4] (A)
PRF TPRP
< AdVCW3[ZHASH[XP]ZFIN[ I ZFINm4] (A)+Advi (B)

Al aplicar el Lema[8.2.9]y el Corolario [8.3.4] se deduce que

AQvE o< AdVER(B) + Adv

PRF
V Zuac(zy ] CW3[ZHASH[ X P|,Fy, ZFIN[ 7]y (A) + Adv Vzen=

< AdVgPRpug) + Adv’yY ](A) + AdV?FFIN 7o + AdV?;N 74

CW3[ZHASH[ X P],Fy, Fy

< AQVE™(B) + AdVyc p ry(A) + ADVEL - AdVES L AdVYE
2

q\3? q
S AdV?)RP(B) + AdV(P:RVl\:/?)[G,FO7F4](A) + 4 (2_n> + 2n+1+mfn{n+t}
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Debido a qué Zrin[7], y ZFiN[7], son PRF, podemos reemplazarlas por dos funciones aleatorias
Fyy F}. Por ultimo, se aplica el Lema para obtener la seguridad de CW3 y se emplea el ¢
del Lema 8.2.9] para obtener la probabilidad de colisién de ZHASH.

2

4 29 3/2
AQVEL o, < AdvE(B) + L + g () @29

ZMAC[ €] 2 ’ 9n+min{n,t} on+min{n,t} on

De (8.23) y (8.24) se concluye la prueba.

]

De este modo, se concluye que ZMAC es una MAC segura, ya que se ha demostrado que la
probabilidad de falsificar una firma generada por ZmaAc[g,] es negligible.

8.5. Trabajo futuro

Una vez replicada la cota de seguridad de ZMAC y expuesto como emplear los teoremas de-
mostrados en esta tesis, sobre todo la técnica H, hemos descubierto varias areas de oportunidad
para mejorar la eficiencia e incluso maximizar la seguridad de ZMAC. Resumimos nuestras
observaciones con las siguientes propuestas:

8.5.1. Propuestas de modificaciones a ZMAC

Al estudiar la probabilidad de colision de ZHASH, notamos que es posible redefinir el caso
t > n para obtener seguridad 2" en cualquier caso:

En primer lugar, consideramos un TBC como (2020) tal que su espacio de tonos es mayor
que su entrada. De este modo, redefinimos las ecuaciones [8.1]y [8.2] para el caso ¢ > n:

Y. [i] = &, (27'S & Xp, 2L & Xy) (8.25)
Yrli] = (Yol 112" Y L [d]]") @Xli] (8.26)

en donde h es el entero tal que h — 1 < t/n < h'y la mascara L. se define de la manera usual.
Ademas, definimos la mascara

S = TR -+ R[]

para las variables R[j] := Ei(lj 0°=¢,0™) con j < h. Simultdneamente, vea que este disefio
puede alcanzar mayor eficiencia al procesar n + ¢t > 2n bits por ejecucion del TBC.

El propdsito de esta modificacion es lograr que las ||V ||;—, sean independientes de cada
bloque X[1],..., X|[p| del mensaje. De esta manera se redefine el sistema de ecuaciones
como

YL{TTL] D 2YL[m — 1} = 51
Yo[ml| - (112 Y e fm]] @ Yelm — 1] 1277 Y i fm — 1])] = 6
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Es importante aclarar que para asegurar que este sistema tenga una Unica solucion, se deben
evaluar los casos donde

2" Y e[l @ 12 Y e fm = 17 = [Gellin = 0"

para evitar conflictos con la hipétesis de Y, [m], Y [m — 1] distintos. Esto dificulta el anlisis,
dado que el adversario puede controlar el paraimetro & = h’ y buscar colisiones internas con la
definiciodn.
Una solucién mds general, consiste en redefinir la relacion (8.26])) como una funcién hash que
mapea
G: (S,Xgli]) =T

los valores de la méscara y los dltimos ¢ bits del bloque X (para generar un tono adecuado para
ZFIN). Buscar dicha funcidn es una tarea complicada y va mas alla del alcance de esta tesis

Otra manera sencilla para modificar ZMAC es encontrar una funcion pAXU que sea més
eficiente que la funcién #H descrita en la Definicién [8.2.3] Esto se debe a que observamos que
la demostracién de seguridad de la Construccion [8.2.2]es independiente del Lema[8.2.4]

8.5.2. Propuesta para la técnica H

Como definimos en el Capitulo [/} la Definicion describe un trascrito bueno para el
comportamiento de cualquier sistema probabilistico. Es importante destacar que la definicion
original de comportamiento dada por Polderman y Willems (1997)) esta definida sobre cualquier
sistema dindmico, incluyendo espacios continuos y diferenciables.

Esto es de particular importancia para esquemas basados en sistemas cadticos, puesto que la
relacién

(7) > 11—«

Ho(7)
permite acotar el comportamiento de cualesquiera dos sistemas probabilisticos con cantidad de
claves H; y H,.

Por el momento, la Definicion[/.1.4]solamente contempla sistemas probabilisticos con espa-
cio finito:

H(a®,0) = | {k € K | (a;,bi,k) € B, Vi < g} |

No obstante, como acabamos de mencionar, la probabilidad de un transcrito (a?,b?) € €2 con
1 < q;a;,b; € R, puede ser calculada si hacemos uso de un o-dlgebra de Borel para construir
un sistema probabilistico.

Claro, es necesario analizar si la construccion de dicho sistema probabilistico con un espacio
de tiempo 7', un espacio muestral {2 C R x R, un espacio latente K y un comportamiento

T e, .. .

B C (Q x K ) , no entra en contradiccidn con alguna de las suposiciones que realizamos en
nuestras demostraciones de seguridad.
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En nuestro trabajo demostramos, que partir de un transcrito en el comportamiento de un
sistema probabilistico, podemos obtener las mismas conclusiones de suficiencia que mostra-
ron Patarin (2009) y Jha y Nandi (2022)). Por ello pensamos que generalizar la técnica H para
conjuntos continuos es posible de realizar, introduciendo conceptos avanzados de probabilidad
como las o-algebras.

8.5.3. Conclusion

Este trabajo presenta una introduccién bastante detallada sobre la seguridad demostrable en
cifradores por bloque, en especifico en esquemas de autenticacién. Incluso, explicamos concep-
tos avanzados sobre la Técnica H y las pruebas de seguridad.

Se ha realizado un estudio extenso de distintos articulos, con pruebas rigurosas, enlazando
y homogeneizando los distintos resultados que en ellos se encuentran. Esperamos que la te-
sis sea de gran utilidad para criptografos e informaticos que deseen estudiar més a fondo las
construcciones PRF y sus aplicaciones.
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