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Resumen

Esta tesis se centra en el estudio riguroso de la seguridad demostrable en criptografı́a, con
un enfoque particular en los códigos de autenticación de mensajes (MAC). La tesis se erige
sobre una base sólida de conceptos teóricos provenientes de la probabilidad, la teorı́a de la
información y la criptografı́a simétrica. Estos fundamentos proporcionan el marco necesario
para abordar los temas centrales de la investigación.

Asimismo, se realiza un estudio exhaustivo de los cifradores por bloques entonables, que
son considerados la piedra angular de muchos sistemas criptográficos modernos. Se introdu-
ce el concepto de oráculo como una herramienta teórica para modelar la interacción entre un
adversario y un sistema criptográfico.

Se define formalmente el concepto de familia de funciones, que es fundamental para las fun-
ciones pseudoaleatorias y las estrategias que pueden emplear los adversarios para distinguirlas
de funciones verdaderamente aleatorias. Se presta especial interés en el concepto de seguridad
incondicional, que se basa en la teorı́a de la información y no depende de supuestos compu-
tacionales.

Adicionalmente, se explica con alto grado de detalle la técnica de los coeficientes H, una
herramienta poderosa para demostrar la seguridad de construcciones criptográficas. Se ofrecen
demostraciones rigurosas de los teoremas principales y se generaliza la definición de transcrito
bueno, proporcionando ası́ una medida de seguridad para cualquier sistema probabilı́stico.

Por último, se muestra la aplicación de la técnica H al análisis del esquema ZMAC, un MAC
basado en cifradores por bloques entonables. Se identifican las propiedades de seguridad de
ZMAC y se demuestra su resistencia a diversos tipos de ataques. Además, se proponen mejoras
para optimizar la eficiencia computacional de ZMAC sin comprometer su seguridad.
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Abstract

This dissertation delves into a rigorous examination of provable security in cryptography,
with a particular focus on Message Authentication Codes (MAC). The thesis is grounded in a
solid foundation of theoretical concepts drawn from probability theory, information theory, and
symmetric cryptography. These underpinnings provide the necessary framework to address the
core research topics.

Furthermore, a comprehensive study of block ciphers, which are widely regarded as the cor-
nerstone of many modern cryptographic systems, is undertaken. The concept of an oracle is
introduced as a theoretical tool to model the interaction between an adversary and a crypto-
graphic system.

The concept of a function family is formally defined, which is fundamental to understanding
pseudorandom functions and the strategies adversaries may employ to distinguish them from
truly random functions. Particular attention is paid to the notion of unconditional security, which
is grounded in information theory and independent of computational assumptions.

Furthermore, the thesis provides a highly detailed explanation of the H-coefficient technique,
a powerful tool for proving the security of cryptographic constructions. Rigorous proofs of the
main theorems are presented, and the definition of a good transcript is generalized, providing a
security measure for any probabilistic system.

Finally, the application of the H-coefficient technique to the analysis of the ZMAC scheme,
a MAC based on block ciphers, is demonstrated. The security properties of ZMAC are identi-
fied, and its resistance to various attacks is proven. Additionally, improvements are proposed to
optimize the computational efficiency of ZMAC without compromising its security.
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7.1. Condiciones de suficiencia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1. Coeficientes H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2. Seguridad bajo ataque de texto plano conocido . . . . . . . . . . . . . 72
7.1.3. Seguridad bajo ataque de texto plano elegido . . . . . . . . . . . . . . 76
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Índice de tablas

1.1. Distribución de la variable aleatoria X . . . . . . . . . . . . . . . . . . . . . . 8

2.1. Posibles textos cifrados obtenidos por ANR . . . . . . . . . . . . . . . . . . . 13

3.1. Truncamiento de los 2 bits menos significativos . . . . . . . . . . . . . . . . . 20
3.2. Permutación PT

K para los tonos T0 y T1 . . . . . . . . . . . . . . . . . . . . . 25
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XVIII ÍNDICE DE TABLAS



Capı́tulo 1

Introducción

1.1. Antecedentes

La criptografı́a moderna es la piedra angular de las comunicaciones y la seguridad informáti-
ca, con productos finales que son inmensamente prácticos. En el esquema básico se presentan
tres entidades: el remitente, el receptor y el adversario. El remitente y el receptor desean comu-
nicarse entre sı́, pero no existen canales ideales que conecten a las partes. El problema principal
de la criptografı́a es garantizar la seguridad de la comunicación a través de un medio insegu-
ro, considerando distintas caracterı́sticas como la integridad, la discreción, la privacidad, el no
repudio y la autenticidad de un mensaje (Bellare & Rogaway, 2005).

Los códigos de autenticación de mensajes (MAC, por sus siglas en inglés) son uno de los
aspectos más importantes de la criptografı́a. En pocas palabras, los MAC son una versión de la
firma digital de clave secreta para autenticar mensajes. Los MAC están diseñados para proveer
integridad al mensaje y autenticidad del emisor. Esto se logra al detectar cuándo un adversario
inserta o modifica la información transmitida. De esta manera, sólo el emisor está en posibilidad
de enviar mensajes que serán considerados como auténticos por parte del receptor. Esto significa
que una pareja (M,S) siempre satisface Vk(M,S) = 1 si y sólo si esta fue enviada por el emisor.
Note que en este caso el adversario trata de falsificar la pareja (M,S). La ventaja que se tiene
para falsificar la pareja es mayor a la ventaja que se tiene en recuperar la llave secreta. Ası́, la
falsificación es más importante que la recuperación de la llave.

En la criptografı́a moderna, los esquemas criptográficos deben contar con una demostración
matemática rigurosa que garantice la seguridad del esquema. El objetivo de cualquier esquema
de clave secreta es lograr una especie de “indistinguibilidad” entre el sistema real (una instancia
de una familia de funciones) y un sistema ideal (usualmente, una función aleatoria). Si un ad-
versario no es capaz de distinguir el sistema real del ideal, podemos garantizar las propiedades
criptográficas de la familia, por lo tanto, deseable a ser utilizado como un cifrado por bloques.
Para esto, se considera un adversario, el cual cuenta con un oráculo que responde a sus pregun-
tas, obteniendo ası́ un conjunto de pares de textos en claro y textos cifrados. Dependiendo de
estas parejas, se puede tener la distinción de encontrarse en el mundo de la familia especı́fica o

1



2 CAPÍTULO 1. INTRODUCCIÓN

de la familia de las funciones aleatorias, denotando estos mundos como mundo 1 y mundo 0,
respectivamente.

Mundo 0: La función O es un oráculo ideal elegido uniformemente al azar de una distribu-
ción D.

Mundo 1: La función O es una función criptográfica, es decir, una instancia de la familia F
dada por una clave k.

Para probar la seguridad utilizando el enfoque de secuencia de juegos, se construye una serie
de experimentos en pseudocódigo, donde el adversario se encuentra en un mundo ♭ ∈ {0, 1}.
La técnica de los juegos de distinción desarrollada por Bellare y Rogaway (2005) comienza con
el adversario A interactuando con un retador por medio de preguntas y respuestas iterativas.
Este experimento puede entenderse de manera más sencilla, considerándolo como un algorit-
mo (oráculo) O que retorna una secuencia de pares entrada-salida. Después de esta interacción,
A obtiene una muestra del comportamiento de O que puede estudiar para tomar una decisión
sobre el valor de ♭ y terminar el juego.

El acto de decidir en cuál mundo se localiza se formaliza con la idea de un “distinguidor”,
i.e. un algoritmo con acceso a una función O que intenta decidir en cuál de ambos mundos se
encuentra. Generalmente, el objeto es identificar si O es un objeto idealizado o una función
criptográfica. De este modo, la ventaja del distinguidor se calcula de la diferencia en el evento
♭ = 1 entre ambos mundos.

AdvEXP
O (A) := Pr [Mundo 1 : ♭ = 1 ]− Pr[Mundo 0 : ♭ = 1] (1.1)

Con base en cada juego, se realiza un análisis probabilı́stico para acotar la ventaja del distin-
guidor o la ecuación (1.1). Esta es la técnica contemporánea desarrollada por Bellare y Rogaway
(2006), donde los juegos se representan como un pseudocódigo con variables y banderas que re-
presenta la decisión del adversario. Por ello, el paradigma actual para diseñar MAC iterativas de
clave simétrica es la construcción de PRFs basadas en cifradores por bloques como CBC-MAC,
PMAC, OMAC y LightMAC (Iwata & Kurosawa, 2003). Algunas de las construcciones más
comunes proveen seguridad de hasta 2n/2 consultas de un adversario, en donde n es el tamaño
del bloque del cifrador. No obstante, estas construcciones sólo aseguran alcanzar el lı́mite de
seguridad conocido como “La cota de cumpleaños” (Birthday Bound).

En los últimos años, se ha utilizado una herramienta más robusta introducida por Patarin
(2009) en el SAC 2008 (aunque ya utilizada en trabajos anteriores) denominada “La técnica de
Coeficientes H”. En resumen, la técnica H consiste en un adversario y un oráculo interactuando,
a través de secuencias llamadas transcritos. La técnica establece que la ventaja para distinguir el
oráculo real del ideal está limitada por la probabilidad de encontrar cierto transcrito en el com-
portamiento del oráculo real. A diferencia de la técnica de juego, la técnica de Coeficientes H no
asume distribuciones de probabilidad implı́citas en los oráculos y requiere cálculos explı́citos
de probabilidad en ambos casos para limitar la relación entre ellos.
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1.1.1. Motivación
En la era digital actual, la comunicación segura se ha vuelto esencial en diversos ámbitos,

desde las transacciones bancarias hasta las comunicaciones gubernamentales. La integridad y
autenticidad de los mensajes son aspectos fundamentales para garantizar la confianza en las
comunicaciones electrónicas. Los códigos de autenticación de mensajes desempeñan un papel
crucial en este contexto, proporcionando un mecanismo para verificar la integridad y autentici-
dad de los datos transmitidos.

Sin embargo, a medida que aumentan las sofisticadas amenazas cibernéticas, es cada vez más
importante contar con garantı́as formales sobre la seguridad de los esquemas criptográficos. La
seguridad demostrable ofrece un marco riguroso para analizar y evaluar la resistencia de los
sistemas criptográficos ante nuevos ataques.

Para garantizar esto, mostraremos que la indistinguibilidad de una función pseudoaleatoria es
una de las mayores medidas de seguridad que nos protege contra cualquier clase de ataque que
busque recuperar la llave, o hasta falsificar firmas digitales. Si bien el objetivo principal de un
MAC es la inalterabilidad del mensaje y la verificación del emisor, la indistinguibilidad de bits
aleatorios puede ser una meta de reemplazo valiosa para evaluar la seguridad. Si las etiquetas
son indistinguibles de valores aleatorios, es difı́cil predecir el valor de la firma que un MAC
pueda generar (Moch & List, 2019).

En un alto nivel, muchas de las construcciones MAC siguen el paradigma de diseño Hash-
then-PRF (HtPRF): el mensaje M se mapea primero en una secuencia de bloques que garantice
que cada bloque tenga la misma longitud (éste se logra gracias a una operación de padding).
Enseguida, se obtiene un hash corto de toda la secuencia de bloques, a través de una función
hash universal. Por último, este hash se cifra a través de una PRF de longitud de entrada fija para
obtener una firma corta correspondiente a todo el mensaje. Este método es simple (en particular
es determinista y sin estado); sin embargo, tiene lı́mites de seguridad dados por la cota del
cumpleaños en la ecuación (1.2). Cualquier colisión, en la salida de la función hash, se traduce
en una posibilidad de falsificar las etiqueta que entrega el MAC. Esto suele ser suficiente para
romper la seguridad del esquema:

AdvFORGE
UHF (A) ≤ q(q − 1)

2n+1
≤ q2

2n
(1.2)

La cota de cumpleaños es el lı́mite que invalida la garantı́a de privacidad cuando ocurre
una colisión interna, con probabilidad dada por (1.2), después de procesar 2n/2 bloques con la
misma clave. El ataque ocurre en una construcción MAC que toma valores con longitud de n
bits y requiere no más de O(q2/2n) consultas de un adversario inteligente, lo que significa que
es posible realizar una falsificación de la firma (forgery). Éste es un problema severo para los
cifradores ligeros (64 bits) derivados del Triple-DES y, en menor medida, para los cifradores de
128 bits como GCM u OCB3 (Yasuda, 2011).

En particular, es de nuestro interés emplear cifradores por bloques para generar códigos de
autenticación de mensajes con seguridad más allá de la cota de cumpleaños (Beyond-Birthday-
Bound). Este lı́mite es un problema intrı́nseco al uso de familias de permutaciones pseudo-



4 CAPÍTULO 1. INTRODUCCIÓN

aleatorias (Bhattacharjee et al., 2020). No obstante, en los últimos 10 años los investigadores
han lanzado propuestas novedosas que logran superar este lı́mite a través de distintas técnicas,
como los cifradores entonables o el uso de bloque con doble HASH. La importancia de este
trabajo radica en estudiar dichas construcciones, analizarlas y entender sus propiedades, puesto
que la búsqueda de nuevos códigos de autenticación o el diseño de modos de operación efi-
cientes (computacionalmente) son uno de los asuntos de actualidad más importantes que varios
miembros de la comunidad criptográfica investigan.

1.2. Objetivos de la Tesis
Objetivo General

Encontrar las propiedades necesarias en esquemas basados en cifradores por bloques pa-
ra garantizar códigos de autenticación de mensajes seguros más allá de la cota de cum-
pleaños.

Objetivos especı́ficos

1. Entender las distintas técnicas de demostración de seguridad incondicional.

2. Analizar la construcción de las funciones pseudoaleatorias.

3. Definir un nuevo marco de trabajo para los sistemas probabilı́sticos,

4. Estudiar el esquema de autenticación ZMAC.

5. Realizar la demostración de seguridad de ZMAC.

6. Elaborar un documento sobre los resultados obtenidos.

1.2.1. Estructura de la Tesis

El cuerpo de este documento está dividido por los siguientes capı́tulos con sus respectivas
secciones, de la siguiente manera:

1. Introducción: se presenta el contexto, los objetivos y las contribuciones. Además, pre-
sentamos brevemente el contendido de cada capı́tulo y añadimos una sección sobre cono-
cimientos básicos de probabilidad.
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2. Cifradores por bloques entonables: explicamos el funcionamiento de una de las pri-
mitivas criptográficas más populares, los esquemas simétricos. Explicamos brevemente
algunos conceptos sobre seguridad y problemas que pueden presentarse en su construc-
ción

3. Oráculos y familias de funciones: definimos de manera rigurosa las bases para desarro-
llar sistemas criptográficos desde la perspectiva de las familias de funciones y el compor-
tamiento de sistemas probabilı́sticos.

4. Adversarios y pseudo-aleatoriedad: introducimos el concepto de función pseudoalea-
toria, ası́ como las estrategias y ataques que puede realizar un adversario para poder dis-
tinguirla de una función aleatoria.

5. Seguridad incondicional: desarrollamos con profundidad los distintos conceptos de se-
guridad, enfocándonos en el análisis bajo teorı́a de la información. Adicionalmente, señala-
mos algunas propiedades importantes como la seguridad perfecta, la indistingubilidad
derecha-izquierda y la privacidad de los esquemas simétricos.

6. Códigos de autenticación de mensajes: introducimos los conceptos y propiedades más
importantes para los esquemas de autenticación, ası́ como algunos resultados importantes
sobre los MAC. Demostramos de manera rigurosa los teoremas sobre ”La paradoja de
cumpleaños”, la construcción MAC como PRF y el Lema PRF-PRP.

7. Técnica de los coeficientes H: estudiamos de forma detallada los teoremas principales
descritos por Patarin (2009). Ofrecemos demostraciones más extendidas de cada resultado
y describimos algunas equivalencias entre las distintas maneras de emplear la técnica
H dadas por Jha y Nandi (2022), Hoang y Tessaro (2016). Generalizamos la definición
de transcrito bueno para ser consistente con el estudio del comportamiento descrito por
Polderman y Willems (1997).

8. ZMAC: por último, desarrollamos un estudio de caso con ZMAC para demostrar cómo
aplicar la técnica H con mucho detalle y detenimiento en cada propiedad. Como con-
clusión de nuestro análisis, entregamos algunas propuestas de mejora para implementar
ZMAC con mayor eficiencia computacional.

1.3. Contribuciones
Entregamos un documento que recopila los resultados principales de varios artı́culos, princi-

palmente los expuestos por Jha y Nandi (2022) y Patarin (2009). Asimismo, ampliamos la teorı́a
sobre seguridad demostrable, homogeneizando los conceptos de Bellare y Rogaway (2005) y
Katz y Lindell (2014), con la formalización del comportamiento introducida por Polderman y
Willems (1997).
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Ofrecemos pruebas rigurosas sobre cómo estudiar la seguridad de cualquier esquema crip-
tográfico a partir de su comportamiento entrada-salida (observable). Originalmente, el propósito
de introducir este marco de trabajo era generalizar los resultados de los coeficientes H para sis-
temas más complejos como autómatas celulares, redes neuronales u osciladores caóticos. Esto
con el fin de introducir los sistemas dinámicos en el paradigma moderno de la criptografı́a.

Hoy por hoy, la teorı́a de sistemas dinámicos para diseñar generadores de números pseu-
doaleatorios y funciones pseudoaleatorias se basa principalmente en pruebas experimentales
y carecen de las propiedades de los cifradores por bloques tales como la indistinguibilidad
derecha-izquierda o su cota de seguridad incondicional.

Por este motivo, exponemos con gran detalle los resultados de la técnica H y entregamos una
definición de transcrito bueno al comportamiento de cualquier sistema probabilı́stico.

Por último, exponemos un estudio de caso sobre ZMAC para demostrar cómo los teoremas
expuestos en este documento nos permiten garantizar la seguridad de un código de autenticación
de mensajes más allá de la cota de cumpleaños. A su vez, mientras examinamos el esquema de
autenticación, encontramos varias observaciones que agrupamos como una propuesta de mejora
de ZMAC.

1.4. Preliminares

1.4.1. Notación

Escribimos {0, 1}ℓ a las cadenas con longitud de ℓ-bits cuya cardinalidad es
∣∣ {0, 1}ℓ ∣∣ = 2ℓ.

Usualmente, usamos las letras i, j, k,m, n, ℓ ∈ N para denotar ı́ndices. Asimismo, la suce-
sión estrictamente creciente de todos los ı́ndices menores que m la denotamos como Im =
{1, 2, . . . ,m}.

Para un elemento X ∈ {0, 1}n de una cadena de n-bits, escribimos x1x2 . . .xℓ como cada
uno de los bits en la cadena X. También, denotamos |X| como la longitud en bits de una cadena
y X[i] como el i-ésimo elemento de la cadena. En este caso, |X| = n y X[i] = xi.

Dado ℓ ≤ n, denotamos VXWℓ = x1x2 . . .xℓ como la operación de tomar los primeros ℓ bits
en orden lexicográfico. De manera similar, TXUn−ℓ = xℓxℓ+1 . . .xn representa la operación de
tomar los últimos n− ℓ bits en orden lexicográfico. Sean Y,Z ∈ {0, 1}∗. Entonces, escribimos
X∥Y∥Z como la concatenación de las tres cadenas.

Para un conjunto X , escribimos X(q) como el conjunto de todas las tuplas de q elementos
(o q-uplas) y denotamos simplemente xq = (x1, x2, . . . , xq) ∈ X(q) como una q-upla. Además,
decimos que una secuencia x1, . . . , xq es distinta por pares si xi ̸= xj para todo j > i.

Habitualmente, dado un valor fijo a ∈ A y una función f : A × B → Z con múltiples
entradas, escribimos fa(b) = f(a, b) para todo valor b ∈ B.
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1.4.2. Probabilidad
Introducimos algunos conceptos fundamentales de probabilidad para preparar al lector con

el rigor que emplearemos a lo largo de este documento.

Definición 1.4.1. Un espacio de probabilidad es una tripleta (Ω,S, µ) conformada por un con-
junto distinto del vacı́o Ω, denominado el espacio muestral, y una colección de subconjuntos
S ⊆ 2Ω del espacio muestral, tal que

1. El total está incluido:
Ω ∈ S

2. Es cerrado bajo complementos:

S ∈ S ⇒ S∁ ∈ S

3. Es cerrado bajo uniones numerables:

S1, S2 . . . , Sm ∈ S ⇒
⋃
n∈N

Sn ∈ S

donde cada S ∈ S es llamado evento o suceso. También, está definida una métrica µ sobre el
espacio Ω con imagen en el intervalo [0, 1], denominada función de probabilidad.

1. La medida del vacı́o es cero:
µ(∅) = 0

2. La medida del total es uno:
µ(Ω) = 1

3. La aditividad satisface:

µ

( ⋃
n∈N

Sn

)
=
∑
n∈N

µ(Sn)

Definición 1.4.2. El soporte de una función f sobre un conjunto Ω es el conjunto de todos los
elementos cuya imagen es distinta de la nulidad,

Sop f :=
{
w ∈ Ω | f(w) ̸= 0

}
Definición 1.4.3. Una variable aleatoria X : Ω −→ R es una función real definida sobre un
espacio muestral, tal que para todo [a, b] ∈ R se tiene quE X−1

(
[a, b]

)
∈ S es un evento. Se

denota
Pr [X = x ] := µ

({
w ∈ S | X(w) = x

})
como la probabilidad de los eventos tales que X es igual a x.
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x1 x2 · · · xi

P (x1) P (x2) · · · P (xi)

Tabla 1.1: Distribución de la variable aleatoria X

Si la imagen de la variable aleatoria X(Ω) = {x1, x2, . . . , xn} es finita, entonces X(Ω) define
un espacio de probabilidad tal que P (xi) := Pr [X = xi ] es la probabilidad de cada xi ∈ X(w).

Definición 1.4.4. La función de probabilidad P relacionada con una variable aleatoria X ∼ P
se conoce como la distribución de X y se puede expresar como la tabla 1.1.

Considerando la distribución anterior, entonces:

Definición 1.4.5. Las variables aleatorias X1, X2, . . . , Xn son llamadas mutuamente indepen-
dientes o independientes si

P (X1, X2, . . . , Xn) = P (X1) · P (X2) · · ·P (Xn)

Deje que X sea una variable aleatoria. Entonces se define la esperanza o el valor esperado
como

Ex
[
X
]
:=

n∑
i=0

xi · P (xi)

para toda xi ∈ X(Ω). Advierta cómo la esperanza es una función lineal.

Definición 1.4.6. Sean dos funciones de probabilidad P1 y P2 sobre Ω. Entonces, la distancia
estadı́stica entre P1 y P2 se define como

∥ P1 − P2 ∥ :=
1

2

∑
w∈Ω

|P1(w)− P2(w) |

Si en lugar de dos funciones de probabilidad se tienen dos variables aleatorias X, Y sobre Ω,

⟨X, Y ⟩ := ∥ X(Ω)− Y (Ω) ∥

Las siguientes propiedades de la distancia estadı́stica aseguran que la variación total sobre un
conjunto de distribuciones es una métrica acotada.

Lema 1.4.7. Para cualquier función de probabilidad Pi indexada por i se cumple

1. La no negatividad:
∥ P1 − P2 ∥ ≥ 0

2. La simetrı́a:
∥ P1 − P2 ∥ = ∥ P1 − P2 ∥
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3. La identificación:
∥ P1 − P2 ∥ = 0 ⇔ P1 = P2

4. La desigualdad triangular:

∥ P1 − Pn ∥ ≤
n−1∑
i=1

∥ Pi − Pi+1 ∥

5. El supremo es 1 si y sólo si los soportes son disjuntos:

∥ P1 − P2 ∥ ≤ 1 ⇔ SopP1 ∩SopP2 = ∅

Es evidente que la distancia estadı́stica cumple con este lema, puesto que por definición, estas
propiedades se heredan del valor absoluto y la distribución.

Lema 1.4.8. Dadas las distribuciones de probabilidad P1 y P2 sobre Ω, entonces

máx
S

[P1(S)− P2(S) ] =
∑
w∈Ω

máx{0, P1(w)− P2(w)} = ∥ P1 − P2 ∥

El máximo es alcanzado con un conjunto S si y sólo si Ω> ⊆ S ⊆ Ω≥, donde

Ω> :=
{
w ∈ Ω | P1(w) > P2(w)

}
Ω≥ :=

{
w ∈ Ω | P1(w) ≥ P2(w)

}
Demostración. Para cualquier w /∈ Ω≥ se tiene que la diferencia P1(w) − P2(w) < 0. Luego,
por hipótesis,∑
w∈Ω

máx{ 0, P1(w)− P2(w) } =
∑
w∈Ω≥

máx{ 0, P1(w)− P2(w) }+
∑
w/∈Ω≥

máx{ 0, P1(w)− P2(w) }

=
∑
w∈Ω≥

|P1(w)− P2(w) | = máx
S

[P1(S)− P2(S) ]

Esta igualdad se satisface debido a que S es superconjunto de Ω>. Para la otra parte de la
ecuación, primero se parte el espacio en dos clases Ω = Ω>∪Ω∁

>. Ası́, por simetrı́a del valor
absoluto se sigue que∑

w∈Ω

|P1(w)− P2(w) | =
∑
w∈Ω>

|P1(w)− P2(w) |+
∑
w/∈Ω>

|P2(w)− P1(w) |

= P1(Ω>)− P2(Ω>) + P2(Ω
c
>)− P1(Ω

c
>)

= P1(Ω>)− P2(Ω>) + P1(Ω>)− P2(Ω>)

= 2 ·máx
S

[P1(S)− P2(S) ]

Por la Definición 1.4.6, se concluyen ambas partes de la ecuación.
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Corolario 1.4.9. Sean P2 ∼ X2 y P1 ∼ X1 variables aleatorias con sus respectivas distribu-
ciones sobre Ω. Para toda w en el soporte de P1 deje que

ϵopt(w) = máx
{
0, 1− P2(w)

P1(w)

}
Entonces, la distancia estadı́stica entre las distribuciones es

∥ P1 − P2 ∥ = Ex
[
ϵopt (X1)

]
Demostración.

Ex
[
ϵopt (X1)

]
=

∑
w∈SopP1

ϵopt(w) · P1(w) +
∑

w/∈SopP1

ϵopt(w) · P1(w)

=
∑

w∈SopP1

máx{ 0, 1− P2(w)

P1(w)
} · P1(w)

=
∑

w∈SopP1

máx{ 0, P1(w)− P2(w) } +
∑

w/∈SopP1

máx{ 0, P1(w)− P2(w) }

=
∑
w∈Ω

máx{ 0, P1(w)− P2(w) }

= ∥ P1 − P2 ∥

Observe que máx{ 0, P1(w)− P2(w) } = 0 si w /∈ SopP1.



Capı́tulo 2

Cifradores por bloques

Los cifradores por bloques (BC por sus siglas en inglés) son herramientas fundamentales
en la criptografı́a de clave privada (simétrica), la principal tecnologı́a disponible para este ti-
po de criptografı́a. Este capı́tulo explora estas herramientas y describe el estado actual de su
desarrollo.

Es importante destacar que los cifrados por bloques son únicamente ingredientes crudos para
construir soluciones más útiles, primitivas criptográficas empleadas en la construcción de dis-
tintos esquemas criptográficos. Como en cualquier herramienta poderosa, hay que aprender a
usarlos correctamente. Incluso, un cifrado por bloques mal empleado podrı́a generar vulnerabi-
lidades en un esquema perfectamente seguro.

Definición 2.0.1. Un cifradores por bloques, denotado E : {0, 1}k × {0, 1}n −→ {0, 1}n, es
una permutación indexada al conjunto de claves {0, 1}k. Esto significa que para cada clave K
se tiene una permutación del conjunto {0, 1}n, representada por la función EK. Las entradas
de EK se denominan Textos planos y las salidas, Textos cifrados.

Un BC sólo puede cifrar mensajes que corresponden a su tamaño de bloque. En la práctica,
la longitud m de un mensaje a cifrar es un múltiplo positivo del tamaño n del bloque. De
lo contrario, se puede realizar un proceso para rellenar (padding) apropiadamente el mensaje
hasta conseguir una longitud divisible por el tamaño del bloque, n|m. Generalmente, un BC
es un algoritmo público bien especificado y más adelante se hablará de estas permutaciones
indexadas, vistas además como una familia de funciones.

Dados un texto cifrado C ∈ {0, 1}n, un texto plano M ∈ {0, 1}n y una clave K ∈ {0, 1}k,
calcular EK(M) y E−1

K (C) es relativamente rápido. Por el principio de Kerckhoff, definido por
Shannon (1949), la seguridad del cifrador depende únicamente de la elección de la clave se-
creta K. Por este motivo, el cifrador por bloques debe estar diseñado para que esta tarea sea
computacionalmente difı́cil de lograr.

En consecuencia, como primera aproximación, podrı́amos pensar que el objetivo del adver-
sario es recuperar la clave K, dados algunos ejemplos de entrada-salida del cifrador. Posterior-
mente, refinaremos la idea de seguridad en el Capitulo 5, mostrando que la seguridad contra la

11
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recuperación de la clave secreta es una condición necesaria pero no suficiente para la seguridad
de un BC.

2.1. Ataques en cifradores por bloques
Históricamente, el estudio de ataques a las primitivas criptográficas es conocido como crip-

toanálisis. El criptoanálisis de un BC empieza considerando el siguiente problema:
Sea q ≥ 0 un parámetro entero y sea T una clave secreta de k bits elegida al azar. Permita

que el adversario tenga una secuencia de q ejemplos de entrada-salida del cifrador, digamos:
(M1,C1), . . . , (Mq,Cq) tales que Ci = ET(Mi) para cada i ≤ q. Ası́, el objetivo del adversa-
rio es encontrar la clave aleatoria T.

La estrategia más obvia que puede emplear un adversario es la búsqueda exhaustiva de claves.
El ataque consiste en recorrer todas las claves posibles K ∈ {0, 1}k hasta encontrar una que
explique los pares de entrada-salida. Cabe mencionar que nunca consideramos un adversario
que realice consultas redundantes, por lo que la secuencia de textos planos es distinta por pares,
formalmente, Mi ̸= Mj para todo j > i.

A continuación, considere un atacante con un ejemplo único de entrada-salida del cifrador,
esto es q = 1. Para cada iteración i ∈ {1, ..., 2k}, sea T′

i la i-ésima cadena de k bits en orden
lexicográfico.

ALGORITMO ANR ( M1,C1 ):
for i = 1, . . . , 2k haz

si ET′i(M1 = C1) entonces regresa T′
i

Algoritmo 2.1.1: Búsqueda ingenua de clave secreta

Por lo tanto, T′
i es la supuesta clave secreta que buscamos. Cabe mencionar que este ata-

que siempre devuelve una clave consistente con el ejemplo de entrada-salida (M1,C1). Sin
embargo, que la clave devuelta sea correcta, T′

i = T, depende del cifrador por bloques. Esta
manera de atacar un cifrador es bastante ingenua, pero nos ayuda a entender un par de conceptos
importantes sobre la seguridad computacional.

Ejemplo 2.1.1. Supongamos que se cifra por bloques la palabra FELINO (un bloque por
letra) y se obtiene el cifrado ONILEF con la clave T0. Entonces, dado el par entrada-salida
(F,O) el algoritmo puede arrojar los resultados de la Tabla 2.1.

Note cómo existen varias claves consistentes (precisamente 120) para la muestra (F,O), que
pueden ser obtenidas con el ataque representado por el Algoritmo 2.1.1.

Si asumimos un BC con un comportamiento uniformemente aleatorio, entonces la longitud
de la clave k y la longitud del bloque n son parámetros relevantes para evaluar si el ataque será
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T0 T1 T2 T3 T4 T5 T6 T7

F O O O O O O O
E N E L I F N N
L E L F F N F F
I F I I N E E I
N I F N E L L L
O L N E L I I E

Tabla 2.1: Posibles textos cifrados obtenidos por ANR

exitoso. La probabilidad de que un ataque devuelva la clave secreta puede aumentar evaluando
más muestras de pares entrada-salida.

ALGORITMO AKR( (M1,C1), . . . , (Mq,Cq) ):
for i = 1, . . . , 2k haz

si ETi
(M1) = C1 ∧ · · · ∧ ETi

(Mq) = Cq entonces regresa Ti

Algoritmo 2.1.2: Recuperación exhaustiva de clave secreta

Un valor bastante pequeño, digamos q = k/n, es suficiente para que este ataque devuelva la
clave correcta. Para una permutación pseudoaleatoria como DES (Bellare & Rogaway, 2005),
q = 2 muestras son suficientes. Por lo tanto, ningún BC es perfectamente seguro, ya que un ata-
cante siempre puede recuperar una clave consistente con suficiente tiempo. A pesar de ello, un
buen cifrador por bloques está diseñado para que esta tarea sea computacionalmente prohibitiva.

Supongamos una cantidad de muestras q lo suficientemente pequeña e ignoremos el costo
computacional deAKR. En el peor de los casos, el ataque podrı́a utilizar 2k cálculos del cifrador
por bloques. No obstante, podrı́an ser menos; si tuviéramos suerte y la clave secreta se encon-
trará en la primera mitad del espacio de búsqueda, entonces sólo harı́an falta 2(k−1) cálculos.
Por lo tanto, una mejor medida de seguridad considera el costo promedio de cualquier ataque:

Ex
[
AKR

]
=

2k∑
i=1

i · Pr [Ti = T ] =
2k∑
i=1

i

2k
=

1

2k
·

2k∑
i=1

i =
1

2k
· 2

k(2k + 1)

2
≈ 2k−1

Esta aproximación nos indica un resultado bastante evidente. Una clave secreta T, elegida uni-
formemente al azar, tiene una probabilidad de 1/2k de ser igual a la clave que devuelve nuestro
algoritmo.

Ahora, tomando en cuenta el costo computacional, observe que AKR realiza i cálculos del ci-
frador E para encontrarla. Por lo tanto, el costo de la recuperación de la clave mediante búsqueda
exhaustiva es proporcional al tamaño de la clave. Por esto, el parámetro k está relacionado con
la seguridad del cifrador.
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2.2. Limitaciones en la recuperación de clave secreta
La seguridad de los BC ha sido tradicionalmente evaluada en términos de la dificultad para

recuperar la clave secreta. Este enfoque se ejemplifica con el Algoritmo 2.1.2. Sin embargo, la
seguridad contra la recuperación de claves es limitada como concepto, ya que no garantiza la
seguridad en todos los usos prácticos en los que se emplean cifradores por bloques.

Considere el cifrador por bloques E : {0, 1}128 × {0, 1}256 −→ {0, 1}256 y defina el texto
cifrado como C = LEK(Xl)∥XrM donde el bloque izquierdo Xl = VMW128 son los primeros 128
bits del texto plano y el bloque derecho Xr = TMU128 son los últimos 128 bits. La recuperación
de claves es tan difı́cil como el experimento anterior, pero el texto cifrado revela la segunda
mitad del texto plano.

Esto podrı́a parecer artificial, puesto que revelar la mitad del texto no es una condición para un
buen cifrado. Es más, podrı́amos enumerar todas las propiedades deseadas para un buen cifrador
(incluido no revelar ningún bit del texto plano). Sin embargo, únicamente terminarı́amos con
una larga lista de condiciones insuficientes, sin ninguna pista sobre cómo diseñar cifradores
para todo uso práctico.

Esto es uno de los problemas del enfoque clásico: construcciones improvisadas, sin análisis y
con soluciones ad hoc. A lo largo de esta tesis veremos cómo el paradigma moderno explorado
por los pioneros Bellare y Rogaway (2005) y Katz y Lindell (2014) consiste en definiciones
generales, teoremas sólidos y demostraciones rigurosas, que nos otorgan garantı́as sobre todas
las propiedades que deseamos en nuestras aplicaciones criptográficas.
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Familias de funciones

Una manera de analizar la seguridad de los cifradores por bloque es por medio de las fun-
ciones pseudoaleatorias. La indistinguibilidad entre una función aleatoria y una función pseu-
doaleatoria es lo que nos permite medir la seguridad de nuestras construcciones criptográficas.
Antes de estudiar las funciones pseudoaleatorias, es importante definir algunos conceptos que
nos ayudaran a entender de manera más intuitiva el propósito de las demostraciones de seguri-
dad y la importancia de dichas funciones.

En este capı́tulo se introducen las definiciones de función aleatoria, permutación aleatoria,
sistemas aleatorios, entre otras. Estas son herramientas esenciales para el diseño de primiti-
vas criptográficas, como los cifradores de bloques y otras aplicaciones útiles como códigos de
autenticación de mensajes, que abordaremos en los siguientes capı́tulos.

Todos estos objetos criptográficos pueden ser entendidos como familias, debido a lo cual, pri-
mero introduciremos lo que significa una familia de funciones, antes de modelar estos sistemas
criptográficos.

Definición 3.0.1. Una familia de funciones es un mapa F : K × X −→ Y , donde K, X , Y
son conjuntos finitos distintos del vacı́o. De modo alterno, se visualiza como una colección de
funciones indexadas {

Fk : X → Y | k ∈ K
}

Se denota Y X a la familia de todas las funciones con dominio X (espacio de entradas) y rango
Y (espacio de salidas). También, es posible expresar como Dom(F ) al espacio de entradas,
Ran(F ) al espacio de salidas y Key(F ) al espacio de claves de la familia.

En criptografı́a, los sistemas criptográficos como un BC o un MAC se modelan a partir de
una familia de funciones con buenas propiedades criptográficas. Esto implica estudiar varias
familias de funciones distintas.

En particular, la familia de todas las funciones con dominio {0, 1}n y rango {0, 1}m es de-
notada Func (n,m). Observe que la cantidad de todas las funciones Fk : {0, 1}n → {0, 1}m
indexadas por k y, por tanto, la cantidad de sus claves es

|Key(F )| = |Func (n,m) | = 2m2n

15
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Por añadidura, podemos construir un espacio de claves asociado al conjunto Func (n,m) para
modelarlo como una familia de funciones. Para definir este espacio, debemos considerar el
conjunto de todas las sucesiones de longitud 2n generadas por todas las posibles entradas de
{0, 1}m, formalmente descritas como

Key
(
Func (n,m)

)
=
{
(Y1,Y2, . . . ,Y2n) | Yi ∈ {0, 1}m, i ∈ I2m

}
Ejemplo 3.0.1. Considere la familia Func (3, 2). Observe que para una instancia Fk de la
familia, se puede representar su comportamiento entrada-salida con la siguiente tabla:

X 000 001 010 011 100 101 110 111
Fk(X) 11 01 00 00 10 11 01 11

En este caso, la clave especı́fica para esta función es

k = (11, 01, 00, 00, 10, 11, 01, 11)

Se puede apreciar la correspondencia de las imágenes de Fk con las Yi. Ası́, el espacio de
claves de Func (3, 2) corresponde con el conjunto de todas las 8-tuplas cuyos componentes son
cadenas de 2-bit. Exactamente, existen

22·2
3

= 216 = 65, 536

tuplas dentro del espacio de claves.

3.1. Funciones aleatorias
Una función aleatoria es muy distinta de una función, puesto que dada una entrada x, la

función siempre retorna una salida especı́fica r. No obstante, una función aleatoria no es deter-
minista, i.e., dada una entrada x, el resultado de una función aleatoria es incierto y lo único que
podemos saber es que y ocurre con cierta probabilidad.

El comportamiento de una función aleatoria no es predecible, pero puede ser modelado e
incluso mejor comprendido a través de una función probabilı́stica.

Definición 3.1.1. Una función probabilı́stica f : X −→ Y es una variable aleatoria cuyos
valores son funciones X → Y . Se puede modelar una función probabilı́stica como una familia
f : ×X → Y indexada por un conjunto finito , denominado el espacio de monedas.

Dada una entrada x ∈ X y una moneda R ∈ , se define la variable aleatoria f(x) para toda
salida y ∈ Y como

Pr
R←

[
f(x) = y

]
:= Pr

[
f(R, x) = y

∣∣∣ R
$←−

]
=

∑
r̂ ∈ :

f(r̂, x) = y

Pr [ R = r̂ ]
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Cabe mencionar que usualmente no especificaremos la naturaleza del espacio de monedas ,
de tal modo que emplearemos la notación de la izquierda, en vez de la notación de Jha y Nandi
(2022).

Supongamos que el espacio de monedas es un espacio degenerado, i.e., un singleton. En-
tonces la función probabilı́stica es simplemente una función X → Y . Por otro lado,

Definición 3.1.2. Si la cantidad de monedas es | | = |Y X | y la distribución de f es uniforme,

entonces la función probabilı́stica f : X −→ Y denota una función aleatoria f
$←− Y X .

El término función aleatoria puede ser engañoso, ya que podrı́a dar la impresión de que algu-
nas funciones son intrı́nsecamente “aleatorias” y otras no; sin embargo, esto es incorrecto. La
aleatoriedad de una función se refiere a cómo fue seleccionada, no a una caracterı́stica inherente
de la función en sı́.

Por ejemplo, al elegir una función al azar entre todas las funciones, siempre es posible ob-
tener la función constante que devuelve 0 para cualquier elemento del dominio. En resumen,
la aleatoriedad de una función individual carece de sentido; una función aleatoria simplemente
significa una función seleccionada al azar de la familia total de funciones.

A continuación, discutiremos una serie de afirmaciones sobre las funciones aleatorias, que
son de suma importancia recordarlas para capı́tulos posteriores. Ahora, considere una función
aleatoria f

$←− Y X con cardinalidad |Y | = M y |X| = N para las siguientes proposiciones:

Proposición 3.1.3. Sean x ∈ X y y ∈ Y fijos. Entonces

Pr [ f(x) = y ] =
1

M

Demostración. Dada una función f̂ , la probabilidad de que ésta coincida con otro elemento
del espacio Y X es 1/MN . Además, sı́ f̂(x) = y, entonces cualquier función que cumpla esta
condición no puede enviar x a otra imagen. Ası́,{

X \ {x1}
f̂−→ Y

∣∣∣ f̂(x1) = y
}

es el conjunto de todos los eventos favorables.

∴ Pr [ f(x) = y ] =
∑

f̂ :x 7→ y

Pr
[
f = f̂

]
=
∑

f̂ :x 7→ y

1

MN
=

MN−1

MN
=

1

M

Dado el procedimiento y el resultado, se observa que la probabilidad no depende del dominio,
ası́ como tampoco depende de los valores x o y.
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Proposición 3.1.4. Sean x1, x2 ∈ X y sea y ∈ Y . Entonces,

Pr [ f(x1) = y, f(x2) = y ] =

{
M−1 x1 = x2

M−2 x1 ̸= x2

Demostración. Si x1 = x2, la justificación del primer caso es idéntica a la Proposición 3.1.3.
En caso contrario, la cantidad de eventos en el espacio de distribución es la cardinalidad del

conjunto de todas las funciones con dominio X \ {x1, x2} y rango Y .

∴ Pr [ f(x1) = y, f(x2) = y ] =
∑

f̂ :x1 7→ y, x2 7→ y

Pr
[
f = f̂

]
=

∑
f̂ :x1 7→ y, x2 7→ y

1

MN

=
MN−2

MN
=

1

M2

Advierta que en la proposición anterior se obtiene el mismo resultado, incluso si se conside-
ran imágenes y1 ̸= y2 distintas para x1 ̸= x2 distintos.

Proposición 3.1.5. Considere x1, x2 ∈ X y y1, y2 ∈ Y fijos, tal que x1 ̸= x2. Entonces

Pr
[
f(x1) = y1 | f(x2) = y2

]
=

1

M

Demostración. De la Proposición 3.1.4 y por definición de la probabilidad condicional, se tiene
que

Pr
[
f(x1) = y1 | f(x2) = y2

]
=

Pr [ f(x1) = y1, f(x2) = y2 ]

Pr [ f(x2) = y2 ]

=
1

M2

1
M

=
1

M

De la proposición anterior, observamos la independencia entre las parejas de entradas y sali-
das de una función aleatoria.

Proposición 3.1.6. Sea x1, x2 ∈ X y y ∈ Y fijos. Luego,

Pr [ f(x1)⊕ f(x2) = y ] =


1 SI x1 = x2, y = 0
0 SI x1 = x2, y ̸= 0

M−1 SI x1 ̸= x2
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Demostración. Sea x1 = x2. Entonces, f(x1) = f(x2) ⇔ ŷ = f(x1) ⊕ f(x2) = 0. Esto
implica que la probabilidad es nula para cualquier ŷ ̸= 0, y es uno en caso contrario.

Ahora, suponga x1 ̸= x2 y tome en cuenta todas las posibles parejas de imágenes en y.
Entonces, se escribe el siguiente sistema de ecuaciones{

f(x2) = y ⊕ y′

f(x1) = y′

Luego, la probabilidad deseada es la probabilidad de elegir una función f aleatoriamente que
satisfaga una de las posibles parejas (y, y′) . Por consiguiente,

Pr [ f(x1)⊕ f(x2) = y ] =
∑
y′∈Y

Pr
[
f(x1) = y′, f(x2) = y′ ⊕ y︸ ︷︷ ︸

δ

]
=
∑
y′∈Y

Pr
[
f(x2) = δ | f(x1) = y′

]
· Pr [ f(x1) = y′ ]

=
∑
y′∈Y

1

M

1

M
=

M

M

Por cerradura de la operación δ ∈ Y se puede aplicar la Proposición 3.1.5.

En particular, este teorema será de importancia para los resultados probabilı́sticos con la
operación XOR o para cualquier resultado definido sobre el campo de Galois GF(2n).

Proposición 3.1.7. Sea g : Y −→ Z una función de partición que envı́a los elementos de su
dominio de manera uniforme a su rango, con |Z | = L ≤ |Y |. Dados x1, x2 ∈ X distintos con
y ∈ Y y z ∈ Z fijos, se tiene que

Pr
[
g(f(x2)) = z | f(x1) = y

]
=

1

L

Demostración. Primero, analizamos la composición X
f̂−→ Y

g−→ Z. Ya que |Z| ≤ |Y |, en-
tonces la probabilidad para g(f̂(x2)) = z es mayor o igual que antes. Debido a que g es una
función uniforme que particiona el dominio Y en M/L partes, para cada imagen en Z se deduce
que

Pr
[
g
(
f(x2)

)
= z | f(x1) = y

]
=
∑

ŷ∈Y/Z

Pr
[
f(x2) = ŷ | f(x1) = y

]
=

M/L

M
=

1

L
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La proposición anterior afirma que, si se particiona el rango de una función aleatoria de
manera uniforme, se obtiene una composición con una distribución uniforme pero con un menor
rango. Para mayor claridad sobre g, vea el siguiente ejemplo:

Ejemplo 3.1.1. Sea g : {0, 1}4 −→ {0, 1}2 una función que toma sólo los últimos 2 bits de
cada cadena, entonces se tiene la Tabla 3.1.

Y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
g(Y) 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Tabla 3.1: Truncamiento de los 2 bits menos significativos

Advierta cómo g mapea la misma cantidad de elementos a 00 del mismo modo que a cualquier
otro elemento de {0, 1}2, generando ası́ una partición del conjunto {0, 1}4 dividida por los 2 bits
más significativos. En especı́fico, g(Y) es la función VYW2.

3.2. Permutaciones aleatorias
Como se habı́a mencionado, los BC pueden ser considerados familias de permutaciones, un

caso especı́fico de las familias de funciones. Con el fin de entender una permutación como una
función, imagine un mazo de naipes con 52 cartas ordenadas de la manera usual. Al barajar el
mazo de naipes, hemos mezclado las 52 cartas sin eliminar ni agregar ninguna al mazo. Esto
conserva la cantidad de elementos en el mazo, pero el proceso ha cambiado completamente
el orden de las cartas. Tenemos, entonces, una regla de asociación entre el orden original y el
nuevo.

Una familia de permutaciones busca modelar este principio, mezclar los mismos elemen-
tos dentro de un conjunto. Dentro de las familias de permutaciones existen familias que son
de mayor interés para la criptografı́a, conocida como permutaciones aleatorias, las cuales se
formalizarán en esta sección.

Definición 3.2.1. Una permutación π es una función biyectiva con el mismo dominio y rango.
Por lo tanto, una familia

P :=
{
Pk : Y → Y | k ∈ K

}
es una familia de permutaciones si cada instancia de Pk es una permutación. Del mismo modo,
la familia de todas las permutaciones sobre Y es denotada Y †.

Observe cómo una familia de permutaciones P tiene rango Dom(P ) = Ran(P ). Se denota
Perm (m) al conjunto de todas las permutaciones de {0, 1}m tal que |Perm (m) | = 2m!.

En general, la cantidad de permutaciones de N elementos tomados r a la vez satisface

(N)r := N(N − 1)(N − 2) · · · (N − r − 1)
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A continuación, se ilustra con más detalle algunas caracterı́sticas de las permutaciones inde-
xadas y las permutaciones aleatorias. En Perm (m), el espacio de claves se puede interpretar
como el conjunto de todas las sucesiones de longitud 2m, en donde todas las entradas de cada
sucesión son distintas y son elementos de {0, 1}m.

Key
(
Perm (m)

)
=
{
(Y1, Y2, . . . , Y2m) | Yi ∈ {0, 1}m distintas por pares, i ∈ I2m

}
Ası́, podemos considerar al conjunto de todas las permutaciones de la cadena {0, 1}m como

una familia de permutaciones, ya que podemos hablar de sus permutaciones indexadas.

Ejemplo 3.2.1. Considere la familia Perm (3) cuyos valores están en el conjunto {0, 1}3. Ad-
vierta que dada una instancia Pk de la familia se puede representar su comportamiento entrada-
salida con la siguiente tabla:

Y 000 001 010 011 100 101 110 111
Pk(Y) 111 001 100 101 100 011 000 110

En este caso, la clave especı́fica para esta función es

k = (111, 001, 100, 101, 100, 011, 000, 110)

Se puede observar que el espacio de claves de Perm (3) consta de las 8-tuplas que corresponde
con la secuencia de todas las cadenas de 3-bit sin repeticiones, con algún orden dado. Exacta-
mente, existen

23! = 8! = 40, 320

tuplas dentro del espacio de claves.

A continuación, una serie de resultados probabilı́sticos de las permutaciones. Para las siguien-
tes proposiciones se utilizará una permutación aleatoria p

$←− Y † con rango Y de cardinalidad
M .

Proposición 3.2.2. Sean x, y ∈ Y elementos fijos. Entonces,

Pr [ p(x) = y ] =
1

M

Demostración. El análisis es similar a elegir p aleatoriamente de Y Y .

Pr [ p(x) = y ] =
∑

p̂:x 7→ y

Pr [ p = p̂ ] =
(M − 1)!

M !
=

1

M

El resultado coincide con las familias de funciones en general, no obstante, las similitudes se
desvanecen cuando se tienen más de dos elementos en el rango.
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Proposición 3.2.3. Dados los elementos fijos x1, x2, y ∈ Y , se tiene

Pr [ p(x1) = y, p(x2) = y ] =

{
0
M−1 ⇐

x1 ̸= x2

x1 = x2

Demostración. Se sabe que x1 ̸= x2 si y sólo si la permutación p̂ tiene imágenes distintas. Por
lo tanto, dado y = p(x1) = p(x2), la probabilidad es cero. Por el contrario, dado x1 = x2 la
demostración se reduce a la Proposición 3.2.2.

Proposición 3.2.4. Sean los elementos fijos x1, x2, y1, y2 ∈ Y con x1 ̸= x2, y1 ̸= y2. Se tiene
que

Pr [ p(x1) = y1, p(x2) = y2 ] =
1

M(M − 1)

Demostración. Sea p̂ tal que p̂(x1) = y1 y p̂(x2) = y2. Observe que y1 ̸= y2, ası́ la cantidad de
variaciones de p̂ son todas las permutaciones sobre el conjunto (Y \ {x1, x2})†. Entonces,

Pr [ p(x1) = y1, p(x2) = y2 ] =
∑

p̂:x1 7→ y1, x2 7→ y2

Pr [ p = p̂ ]

=
∑

(Y \{x1,x2})†

1

M !

=
(M − 2)!

M !
=

1

M(M − 1)

Proposición 3.2.5. Considere x1, x2, y1, y2 ∈ Y elementos fijos, x1 ̸= x2. Entonces

Pr
[
p(x1) = y1 | p(x2) = y2

]
=

{
0

1
M−1

⇐ y1 = y2
y1 ̸= y2

Demostración. Se sabe que x1 ̸= x2 si y sólo si p̂(x1) ̸= p̂(x2). Por lo tanto, no es posible que
ocurra p(x1) = y1 = y2 = p(x2). Por el contrario, dado y1 ̸= y2 se tiene que

Pr
[
p(x1) = y1 | p(x2) = y2

]
=

Pr [ p(x1) = y1, p(x2) = y2 ]

Pr [ p(x2) = y2 ]

=

1
M(M−1)

1
M

=
1

M − 1

gracias a la Proposición 3.2.4.
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Proposición 3.2.6. Sean x1, x2 ∈ X elementos fijos y y ∈ Y . Luego

Pr [ p(x1) + p(x2) = y ] =


1 x1 = x2, y = 0
0 x1 = x2, y ̸= 0
0 x1 ̸= x2, y = 0

M−1 x1 ̸= x2, y ̸= 0

Demostración. Ya que p es una permutación, se deduce que p(x1) ⊕ p(x2) = 0 si y sólo si
x1 = x2. Dado x1 = x2, la probabilidad es nula para y ̸= 0 y uno de otro modo. Asimismo, si
x1 ̸= x2, entonces no es posible que p(x1) + p(x2) = 0.

En consecuencia, dadas entradas x1 ̸= x2 con salida no nula y ̸= 0 se sigue

Pr
[
p(x1) = y1 | p(x2) = y2

]
=

∑
y′∈Y \{0}

Pr

 p(x1) = y′, p(x2) = y′ ⊕ y︸ ︷︷ ︸
δ


=

∑
y′∈Y \{0}

Pr
[
p(x2) = δ | p(x1) = y′

]
Pr [ p(x1) = y′ ]

=
∑

y′∈Y \{0}

1

M − 1

1

M − 1

=
M − 1

(M − 1)2
=

1

M − 1

Gracias a la cerradura de la operación δ ∈ Y , y la igualdad se satisface acorde a la Proposición
3.2.5.

Proposición 3.2.7. Sea Y
g−→ Z una función que particiona el dominio y mapea sus elementos

de manera uniforme a su rango, con |Z | = L ≤ M . Dados x1, x2 ∈ Y distintos con y ∈ Y y
z ∈ Z fijos, se tiene que

Pr
[
g(p(x2)) = z | p(x1) = y

]
=

{
M

L(M−1)
M/L−1
M−1

⇐ z ̸= g(y)
z = g(y)

Demostración. Aunque p es una permutación, se puede apreciar que g no lo es necesariamen-
te. A pesar de ello, sabemos que g particiona al conjunto Y y por consiguiente, tenemos la
equivalencia:

Y
p−→ Y

g−→ Z ⇔ Y
p−→ Y/Z

tal que Y/Z es el conjunto de elementos que cumplen g(p̂(x2)) = z.
Cuando ŷ ̸= y, existen a lo mucho |Y/Z | = M/L elementos que cumplen con la condición.

Por el contrario, si ŷ = y, entonces no es posible que la imagen de g(p̂(x2)) coincida con z, por
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lo que tenemos M/L− 1 eventos favorables.

∴ Pr
[
g
(
p(x2)

)
= z | p(x1) = y

]
=

Pr
[
g
(
p(x2)

)
= z, p(x1) = y

]
Pr [ p(x1) = y ]

=
∑

ŷ∈Y/Z

Pr [ p(x2) = ŷ, p(x1) = y ]

Pr [ p(x1) = y ]

=
∑

ŷ∈Y/Z

1

M − 1
=

M/L− 1

M − 1

Esto se concluye de la Proposición 3.2.4 y 3.2.5.

3.2.1. Permutaciones entonables

Recientemente, se han publicado nuevos diseños de esquemas criptográficos basados en una
nueva primitiva descubierta por Rogaway (2004), conocida como cifradores por bloques en-
tonables o TBC (Tweakable Block Cipher). Esta propuesta es lo suficientemente flexible para
varias funcionalidades criptográficas, y a su vez, brinda una mayor resistencia a las colisiones
que los cifradores BC tradicionales. Un TBC consiste en una familia de permutaciones con
dos espacios de entrada: uno para textos planos y otro para seleccionar configuraciones, deno-
minadas tonos. De esta manera, se comprime más información por bloque y se añade mayor
variabilidad al texto cifrado.

Este espacio de tonos permite configurar de manera dinámica la relación entre el espacio
de claves y las permutaciones posibles de un cifrador por bloques. A continuación, mostramos
como modelar un TBC a partir de una familia de funciones, tal como hemos estado modelando
otros objetos criptográficos a lo largo de este capı́tulo.

Definición 3.2.8. Una permutación entonable es una permutación criptográfica, extendida por
el espacio adjunto T , tal que

P :=
{
P t
k | (k, t) ∈ K × T

}
donde T se denomina espacio de tonos. Se denota P t

k a la instancia P (k, t) y espacio de tonos
Twk(P ).

El propósito de una permutación entonable es añadir mayor variabilidad a la cantidad de
permutaciones que pueden ser instanciadas por una familia de permutaciones.

Ejemplo 3.2.2. Sea P una permutación entonable con rango Y = Ran(P ) = {0, 1}3 y espacio
de tonos T. Dada una clave K

$←− Key(P ), observe los resultados de la Tabla 3.2:
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T T0 T1

Y 000 001 010 011 100 101 110 111

PT
K(Y ) 001 010 110 100 001 010 100 110

Tabla 3.2: Permutación PT
K para los tonos T0 y T1

Advierta que al añadir un espacio adjunto extra, se pueden seleccionar dos permutaciones
distintas PT0

K y PT1
K para dos tonos T0 ̸= T1.

De esta manera, el comportamiento de la familia P (T) puede mapear el par (T,Y) a imáge-
nes repetidas de 3 bits, asemejando el comportamiento de una familia de funciones. Esto será
de suma importancia para los siguientes capı́tulos, donde hablaremos de seguridad e indistin-
guibilidad de funciones pseudoaleatorias.

3.3. Sistemas de respuesta
Un sistema probabilı́stico es un modelo matemático para estudiar el comportamiento de un

algoritmo probabilı́stico interactivo como caja negra. Un algoritmo interactivo (probabilı́stico)
es usualmente modelado como un autómata (probabilı́stica). El concepto de sistema latente de
Polderman y Willems (1997), que se describe en este documento, busca generalizar la inter-
acción que existe entre el oráculo y el adversario para capturar el comportamiento de estos
algoritmos. De manera análoga a las propuestas de Maurer et al. (2006), buscamos estudiar la
integración de varios sistemas complejos con fines útiles para la criptografı́a.

Definición 3.3.1. Un modelo matemático es una tripleta (Ω,B, E) conformada por un espacio
muestral Ω, un espacio finito E y un subconjunto del universo B ⊆ Ω denominado el compor-
tamiento tal que

B :=
{
ω ∈ Ω | f1(ω) = f2(ω)

}
donde f1, f2 : Ω→ E son funciones que mapean una muestra ω a un elemento de E.

Cabe mencionar que el comportamiento está conformado por tuplas ω = (x, y) ∈ Ω o
muestras de entrada-salida obtenidas por los algoritmos que deseamos modelar. Usualmente,
f1(ω) = f2(ω) es una condición de equilibrio para un sistema dinámico, pero en este caso la
empleamos como cualquier ecuación de interés dada por nuestro análisis de seguridad.

De esta manera, el comportamiento nos permite formalizar el estudio de los algoritmos co-
mo cajas negras, y nos da un enfoque para analizar los algoritmos interactivos de la siguiente
manera:

Definición 3.3.2. Un sistema latente o autómata es una tupla (T,Ω, L,B) conformada por
un conjunto de ı́ndices T , un espacio muestral Ω, un espacio de variables latentes L y un
comportamiento interno B ⊆ (Ω× L)T .
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Un autómata está asociado a un modelo matemático (Ω,Bi/o) cuyo comportamiento (obser-
vable) es

Bi/o :=
{
ω : T → Ω | ∃ℓ : T → L tal que (ω, ℓ) ∈ B

}
Advierta cómo B representa un mapa

t 7→ (ω1, ℓ1), (ω2, ℓ2), . . . , (ωt, ℓ)

que describe la totalidad del funcionamiento de un sistema o algoritmo, mientras que el com-
portamiento B (observable) es la generalización del sistema visto como una caja negra. De este
modo, B está conformado por todas las tuplas ωq ∼ ℓq relacionadas con una variable latente.
Rememore que una tupla wq ∈ Ω se escribe wq = w1, w2, . . . , wq ∀q ≥ 1.

Es relevante destacar, que las variables latentes ℓi representan la incertidumbre implı́cita y
directamente inobservable de una caja negra. Adicionalmente, es posible clasificar dos tipos de
sistemas de acuerdo a su naturaleza:

Un sistema determinista: es un modelo matemático muy útil para describir distintos
algoritmos iterativos. El autómata descrito por Maurer (2002) puede ser modelado como
un sistema de (Z+,Ω, S,Σ) indexado por q ∈ Z+ con un espacio muestral Ω = X × Y y
espacio de variables latentes S. El comportamiento (observable) de un autómata se define
como

Σi/o =
{
(x1, y1), . . . , (xq, yq)

∣∣∣ ∃s : (xi, yi, si) ∈ Σ̂
}

y su comportamiento latente,

Σ =
{
(x1, y1, s1), . . . , (xq, yq, sq) | (yi, si) = f(xi, si−1)

}
con estado inicial s0 fijo. Observe cómo el comportamiento describe una secuencia de
funciones indexadas mediante tuplas (xi, yi) funcionalmente compatibles.

Un sistema probabilı́stico: es análogo a un autómata probabilı́stico cuyo sistema (T,Ω, ,P)
está relacionado con un espacio de probabilidad (Ω,P,Pr [ · ]). Usualmente, se denota

P(Bi/o) = Pr
[
ωq ∈ Bi/o

]
como el comportamiento de un sistema probabilı́stico o como variable aleatoria. En un
sistema determinista, las variables latentes representan los estados internos que no son
observables. En cambio, en un sistema probabilı́stico, el espacio de monedas representa
la incertidumbre que tenemos del sistema en cuestión.

Visto lo anterior, se define de la siguiente manera los oráculos sobre la base del comporta-
miento.
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Definición 3.3.3. Un oráculo O o sistema de respuesta es un sistema probabilı́stico indexado
por i ∈ Iq consultas, cuyo comportamiento es una función probabilı́stica F : X −→ Y tal que
para todo (xi, yi) ∈ Ω

POxq(yq) := Pr [O(xq) = yq ] =

q∏
i=1

Pr [F (xi) = yi|F (xj) = yj ∀j < i ]

Ası́, un sistema de respuesta se entiende como un sistema cuyo comportamiento es una se-
cuencia de variables aleatorias dependientes entre si.

3.3.1. Oráculos deterministas
En ciencias de la computación, un oráculo es el concepto formal para modelar una caja negra

(una máquina hipotética). Para ser especı́fico, un oráculo es un sistema que responde de manera
unı́voca cada consulta que se le realice. La naturaleza del oráculo no es importante, lo esencial
es que el comportamiento del oráculo puede variar dependiendo de las necesidades de nuestras
pruebas o experimentos a estudiar.

El comportamiento de un oráculo puede estar asociado a un experimento Exp. En particular,
para un experimento de distinción, el comportamiento de un oráculo puede variar dependiendo
del mundo en el que se encuentre. No obstante, antes de hablar más sobre los experimentos, es
importante explicar algunos ejemplos de sistemas de respuesta.

Sean (x1, y1), . . . , (xq, yq) ∈ Ω una secuencia de muestras entrada-salida y sea K el espacio
de claves. Entonces:

Definición 3.3.4. Un oráculoF puede comportarse como una familia
{
Fk : X

(q) → Y (q) | k ∈ K
}

,
denominada función criptográfica, de tal manera que para una clave k ∈ K,

F(k, xq) = (Fk(x1), Fk(x2), . . . , Fk(xq)) ∀xq ∈ X(q)

Cabe mencionar que X(q) representa el conjunto de tuplas xq.

Definición 3.3.5. Un oráculoP puede comportarse como una familia
{
Pk : Y

(q) → Y (q) | k ∈ K
}

.
En este escenario, es necesario definir la siguiente función criptográfica:

P±
k : {1,−1} × Y (q) −→ Y (q)

de tal manera que (1, xq) mapea a la función Pk(x
q) mientras que (−1, xq) mapea a la función

inversa P−1
k (xq).

Se define Pk(±1, xq) := P±
k (xq) para el sistema de respuesta P±, mientras que la familia{

P±
k | k ∈ K

}
asociada al sistema se denomina permutación fuertemente criptográfica.

Es posible interpretar el comportamiento de un oráculo cuando actúa como permutación crip-
tográfica o cuando actúa como su inversa, a través de un concepto introducido por Jha y Nandi
(2022) conocido como representación unidireccional.



28 CAPÍTULO 3. FAMILIAS DE FUNCIONES

Definición 3.3.6. Una representación unidireccional (αq, xq, yq) es una tripleta asociada a
una tripleta de tuplas (αq, xq, yq) ∈ {1,−1} × Y 2q dada, tal que para cada i ∈ Iq

(ai, bi) :=

{
(xi, yi), αi = 1
(yi, xi), αi = −1

La representación unidireccional es una forma equivalente de la forma original, puesto que la
tripleta original se puede reconstruir de forma única a partir de la definición.

3.3.2. Oráculos aleatorios
El modelo de oráculo aleatorio apareció en primer lugar en el contexto de la teorı́a de la

complejidad que permite estudiar algoritmos elaborados a través de esta abstracción (Bennett
& Gill, 1981). Gracias a Bellare y Rogaway (1993), los oráculos fueron empleados en las de-
mostraciones de seguridad para facilitar las pruebas mediante reducción.

En estas pruebas de reducción se evalúa cómo las construcciones reales pueden asemejar
el comportamiento de los objetos ideales con cierto error acotado. Deje que X, Y y T sean
conjuntos finitos con |Y | = N . Entonces:

Proposición 3.3.7. Un oráculo ρ es una función aleatoria uniforme(URF) si su comportamiento
es una función aleatoria ρ

$←− Y X tal que para todo yq ∈ Y (q) y xq ∈ X(q)

Pr [ ρ(xq) = yq ] =
1

Nd

donde d es la cantidad de xi distintos por pares dentro de xq. Para cualquier otro xq o yq la
probabilidad es cero.

Antes de introducir la demostración primero consideré el siguiente ejemplo:

Ejemplo 3.3.1. Consideremos un oráculo y una función aleatoria ρ
$←− Y X con Y = {0, 1}2.

Luego, para visualizar las posibilidades de 7 consultas, supongamos la siguiente respuesta del
oráculo (10, 11, 00, 10, 01, 11, 10) ∈ Y (7).

X(q) x1 x2 x3 x4 x5 x6 x7

ρ(xq) 10 11 00 10 01 11 10

Tabla 3.3: Comportamiento del oráculo como función aleatoria uniforme

Luego, para calcular la probabilidad de la primera entrada tenemos que

Pr [ ρ(x1) = 10 ] =
1

22
=

1

4
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De hecho, la probabilidad para cada entrada es exactamente igual debido a la naturaleza de ρ,
ver 3.1.3. Enseguida, observe la Tabla 3.3 y considere la Proposición 3.1.4.

∴ Pr
[
ρ(x7) = (10, 11, 00, 10, 01, 11, 10)

]
=

1

47
=

1

16 384

Demostración. Por la Definición 3.3.3 de un sistema de respuesta, para cualquier cantidad q <
|X| de consultas y una cardinalidad |X| = N , es evidente que se tendrá una probabilidad de
1/N q. Además, tenga en cuenta que para cualquier zq /∈ Y (q) el evento ρ(xq) = zq no puede
ocurrir.

Proposición 3.3.8. Un oráculo π es una permutación aleatoria uniforme(URP) si su compor-
tamiento es una permutación aleatoria Y

$←− Y tal que para todo aq, bq ∈ Y q

Pr [π(aq) = bq ] =
1

(N)d

donde d es la cantidad de xi distintos por pares dentro de xq. En cualquier otro caso la proba-
bilidad es cero.

Ejemplo 3.3.2. Consideremos un oráculo y una permutación aleatoria π
$←− Y † con Y =

{0, 1}3. Luego, para visualizar las posibilidades de 7 consultas, supongamos la siguiente res-
puesta del oráculo (100, 000, 101, 001, 011, 010, 110) ∈ Y (7).

Y (q) y1 y2 y3 y4 y5 y6 y7
π(xq) 100 000 101 001 011 010 110

Tabla 3.4: Comportamiento del oráculo como permutación aleatoria uniforme

Ası́, la probabilidad de la primera entrada tenemos que

Pr [π(y1) = 100 ] =
1

23
=

1

8

Como es de esperar, de acuerdo a la naturaleza de π (Proposición 3.2.2). A continuación, vea la
Tabla 3.4 y recuerde las Proposiciones 3.2.4 y 3.2.5.

∴ Pr
[
π(y7) = (100, 000, 101, 001, 011, 010, 110)

]
=

1

(8)7
=

1

40 320
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Demostración. Por la Definición 3.2.3, vea que para cualquier cantidad q < |Y | de consultas y
una cardinalidad |Y | = N , se tendrá una probabilidad 1/(N)q.

En general, sea (γq, aq, bq) una representación unidireccional de (xq, yq). Entonces, para cual-
quier URP su probabilidad como permutación aleatoria fuerte es:

Pr
[
π±(γq, xq) = yq

]
:=

1

(N)d

tal que d es la cantidad de ai distintos de aq, los cuales son el mismo número de bi distintos de
bq. Por último, para una permutación entonable tenemos que:

Proposición 3.3.9. Un oráculo π es una permutación entonable aleatoria uniforme(TURP) si
su comportamiento es una permutación entonable aleatoria π

$←− T × Y †, tal que para toda
aq, bq ∈ Y (q),

Pr [π(tq, aq) = bq ] =

q∏
i=1

1

N − αi

donde cada αi es la cantidad de ı́ndices j < i tales que xi ̸= xj para cada ti = tj .

Ejemplo 3.3.3. Consideremos un oráculo y una permutación entonable aleatoria π $←− T × Y †

con T × Y = {0, 1} × {0, 1}3. Luego, para visualizar las posibilidades de 7 consultas, se
supone la siguiente respuesta del oráculo (100, 000, 101, 001, 011, 010, 110) ∈ Y (7). Enseguida,
para entender el proceso del cálculo:

Y (7) y1 y2 y3 y4 y5 y6 y7
T (7) 0 0 1 1 0 1 0

π(t7, x7) 100 000 101 001 011 010 110

Tabla 3.5: Comportamiento del oráculo como permutación aleatoria uniforme

Para calcular la probabilidad de una permutación entonable, por la Proposición 3.2.3, se sabe
que dos pares (ti, yi) = (tj, yj) no pueden tener imágenes distintas. Por lo tanto, podemos
ordenar las probabilidades juntando los tonos idénticos ti = tj de la Tabla 3.5, ası́

Pr

[
π(t7, y7) = (100, 000, 101,

001, 011, 010, 110)

]
= Pr

[
π(04, a4) = (100, 000, 011, 110),
π(13, b3) = (101, 001, 010)

]
Es posible realizar esto porque las instancias π0 y π1 son independientes. Note cómo existen 4
ı́ndices correspondientes al tono 0 y 3 ı́ndices para el tono 1, tales que las tuplas a4 = y1y2y5y7
y b3 = y3y4y6 corresponden a las entradas de cada sistema, respectivamente.

∴ Pr

[
π(04, a4) = (100, 000, 011, 110),
π(13, b3) = (101, 001, 010)

]
=

1

(23)4
· 1

(23)3
=

1

564 480
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Demostración. En general, para un sistema P cuyo comportamiento es una permutación en-
tonable, es posible desacoplarlo en sistemas independientes Pt cuyo comportamiento es una
permutación, tal que

Pr
[
P(tq, xq) = yq

]
=

λ∏
t=0

Pr
[
Pt(ak) = bk

]
donde λ es la cantidad de tonos ti en tq distintos por pares y (ak, bk) es el par de tuplas co-
rrespondientes al comportamiento de Pt para cada tono fijo t. Por definición de sistema de
respuesta, se concluye la prueba.

Con esta última conclusión, hemos introducido todos los conceptos de probabilidad fun-
damentales para estudiar cualquier primitiva criptográfica. Enseguida abordaremos en los si-
guientes capı́tulos, algunos fundamentos para diseñar aplicaciones reales tales como esquemas
criptográficos.
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Capı́tulo 4

Pseudoaleatoriedad y adversarios

Las funciones aleatorias son los objetos ideales para fines criptográficos. Debido a su na-
turaleza, es imposible predecir con precisión algún valor concreto de ésta, incluso para el ad-
versario más poderoso e inteligente que imaginemos. Éste es el motivo que impulsa a estudiar
las funciones pseudoaleatorias para sus aplicaciones en esquemas de cifrados con seguridad
incondicional.

Antes de definir una función pseudoaleatoria, es importante entender otros conceptos. En par-
ticular, qué es un adversario, qué es un distinguidor y cuáles son sus objetivos. A continuación,
describimos al antagonista principal de nuestros esquemas de cifrado.

4.1. Adversarios
En criptografı́a y en ciencias de la computación, el hablar de un adversario A se refiere a

un algoritmo iterativo capaz de ejecutar otro algoritmo B como subrutina, denotado AB. De
tal manera que el adversario interactúa con B hasta obtener la respuesta deseada. Podrı́amos
considerar al adversario como un sistema de respuesta, cuyo comportamiento interno está re-
lacionado con la estrategia que emplea para solucionar un algoritmo. Éste, generalmente, es
un sistema criptográfico y dependiendo del objetivo del adversario, pudiera contestar con un
modelo de la primitiva, una clave secreta, un texto plano o simplemente con un bit.

Un adversario puede comportarse de distintas maneras, por lo que es importante tener en
cuenta las siguientes estrategias:

Ataque de texto plano conocido (KPA): un adversario posee una cantidad fija de muestras
de texto plano y cifrado recolectadas del sistema criptográfico.

Ataque de texto plano elegido (CPA): se considera un adversario con mayor poder, pues-
to que se le permite tener acceso al cifrador como caja negra, y obtener los textos cifrados
correspondientes de cualquier texto plano de su elección.

Ataque de texto cifrado elegido (CCA): se le permite al adversario no solamente obtener
textos cifrados de la caja negra, sino también consultar textos cifrados y observar sus textos

33
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planos correspondientes.
Para cualquiera de estos ataques, podemos considerar un comportamiento adaptativo o no

adaptativo. Un adversario no adaptativo selecciona a priori todas las consultas que desea rea-
lizar a la caja negra, después espera la respuesta de la caja negra y por último evalúa todas las
muestra que tiene a su disposición.

Un adversario adaptativo es capaz de realizar una consulta a la vez, evaluando cada respuesta
de manera iterativa para seleccionar mejores consultas cada vez. Esto a veces es denominado
como un ataque de texto bien elegido.

Definición 4.1.1. Un adversario A es un sistema probabilı́stico cuyo comportamiento es com-
patible con una función probabilı́stica Y −→ X . Un adversario es llamado:

No adaptativo: siA(yq) es independiente de cualquier entrada yq. Es decir, el comporta-
miento del adversario depende únicamente del espacio de monedas .

Determinista: si el espacio de monedas es degenerado. En este caso, el adversario se
comporta como un autómata.

Definición 4.1.2. Una función de decisión ♭ : A(Y (q)) −→ {0, 1} es una función binaria que
toma la imagen de un adversario y devuelve un bit. Al adversario A ∼ ♭, relacionado con una
función de decisión, se le denomina distinguidor.

La clase de los distintos ataques posibles que puede ejecutar un distinguidor se denota

ATK := {KPA,CPA,CCA}

y escribimos A ∈ ATK como un adversario bajo alguna clase de ataque.

4.2. Función pseudoaleatoria
Una función pseudoaleatoria (PRF) es una función indexada tal que una instancia elegida

aleatoriamente es computacionalmente indistinguible de cualquier función aleatoria. Esto sig-
nifica que observar el comportamiento de entradas y salidas de una función no es suficiente
para decidir si la función pertenece a una familia dada. Para poder verificar que una familia
de funciones cumple con los criterios de ser una función pseudoaleatoria se tiene el siguiente
experimento.

Imagine que usted tiene acceso a una función g como caja negra, i.e., no posee ningún mo-
delo ni conocimiento sobre los estados internos de la función. Lo único que puede realizar es
estudiar el comportamiento entrada-salida de la caja g al ingresar entradas válidas y observar
las respuestas. Suponga que el comportamiento de la caja varı́a de dos maneras posibles, de-
pendiendo del mundo en que se encuentre. Estos mundos posibles se definen de la siguiente
manera:
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Mundo 0: el oráculo O es tomado uniformemente al azar de la familia de todas las fun-
ciones X → Y , es decir, el sistema de respuesta es una URF ρ

$←− Y X .

Mundo 1: el oráculo O es un sistema determinista que se comporta como una instancia
de la familia F generada por una clave k

$←− Key(F ) tomada al azar.

El propósito de este experimento es medir la probabilidad de que una persona o entidad
(formalmente un distinguidor) sea capaz de resolver si se encuentra interactuando con la caja
en el mundo 0 o el mundo 1. Intuitivamente, este experimento es análogo a una prueba de
Turing para funciones pseudoaleatorias.

Un distinguidor puede realizar cualquier número de preguntas a la caja y terminar el expe-
rimento cuando esté seguro sobre el mundo en que se encuentra. Este proceso está basado en
los juegos de indistinguibilidad propuestos por Shoup (2004), y nos permite definir la calidad
de F como función pseudoaleatoria, a partir de la dificultad que encuentra un distinguidor en
este experimento. Formalmente, se define la indistinguibilidad computacional con el siguiente
algoritmo:

Definición 4.2.1. Sea F : K × X → Y una familia y AO un distinguidor con acceso a un
oráculo. Se definen los siguientes experimentos:

EXPERIMENTO ExpPRF
0 ( A; ρ):

ρ
$←− Y X

O← ρ
♭← Aρ

regresa ♭

EXPERIMENTO ExpPRF
1 ( A;F ):

k
$←− K
O← Fk

♭← AFk

regresa ♭

Algoritmo 4.2.1: Experimento PRF: Mundo 0 y Mundo 1

La probabilidad de éxito de un distinguidor se define como

Adv PRF
F (A) := Pr [ExpPRF

1 (A;F ) ⇒ 1 ]− Pr [ExpPRF
0 (A; ρ) ⇒ 1 ]

Este experimento formaliza el concepto de mundo, que hablamos anteriormente, al introducir
dos oráculos totalmente independientes. Se denota Aρ como un distinguidor que ejecuta al
oráculo ideal como subrutina yAFk cuando ejecuta al oráculo real. De esta manera, el Mundo 0
corresponde al experimento que estudia el comportamiento del oráculo (objeto) ideal, mientras
que el Mundo 1, estudia el comportamiento del oráculo (objeto) real. Reflexione, cómo la idea
detrás de estos experimentos es análoga a un examen de Turing.

Es importante resaltar que un distinguidor inteligenteA interactuando con el oráculo real, en
el Mundo 1, tendrá una probabilidad muy alta de retornar 1. Mientras tanto, el mismo distin-
guidor, en el Mundo 0, tendrá una probabilidad muy baja de hacerlo. Por lo tanto, es posible
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calcular la diferencia entre ambos experimentos mediante el estudio del comportamiento de
ambos oráculos.

Un punto importante de esta definición es que el adversario A no tiene conocimiento sobre
la clave k ∈ Key(F ). No tiene sentido experimentar con una función pseudoaleatoria si k es
conocida, a priori, por un adversario. De lo contrario, el distinguidor puede diferenciar el objeto
real del ideal de manera trivial sin necesidad de estudiar sus comportamientos.

Cada tipo de adversario tendrá diferentes probabilidades de éxito, principalmente por dos
motivos. Un adversario muy inteligente puede consultar menos preguntas, pero consiguiendo
mayor información. Mientras que un adversario con más recurso realizará tantas consultas como
sea posible hasta eventualmente obtener la respuesta deseada de su oráculo. En general, espe-
ramos que a medida que un adversario obtenga más muestras de entrada-salida, su capacidad
para determinar en qué mundo se encuentra aumentará.

En criptografı́a, una función pseudoaleatoria puede no ser segura para aplicaciones crip-
tográficas, ya que el experimento por sı́ solo no garantiza que la ventaja de un distinguidor
cualquiera esté limitada por ciertos recursos informáticos especı́ficos. En los siguientes capı́tu-
los estudiaremos a más detalle la relación entre los adversarios y la seguridad de un esquema
criptográfico.

4.3. Permutación pseudoaleatoria
Una familia de funciones E : K × Y → Y es una permutación pseudoaleatoria si el com-

portamiento de entrada-salida de una instancia aleatoria de la familia es “computacionalmente
indistinguible” de una permutación aleatoria de Y .

En este contexto, hay dos tipos de experimentos que se pueden considerar. El primero, como
antes, consiste en un adversario con acceso a un oráculo para estudiar el comportamiento de
la familia que está siendo probada. Sin embargo, cuando E es una familia de permutaciones,
también se puede considerar el caso en que el adversario recibe, además, un oráculo para E−1.
Consideramos estas configuraciones en orden. La primera es la configuración de ataques de
texto en claro elegido, mientras que la segunda es la configuración de ataques de texto cifrado
elegido.

Considere el siguiente experimento, tome una familia de funciones F sin exigir que F sea
una familia de permutaciones. Luego, se definen los mundos de la siguiente manera:

Mundo 0: El oráculo O es tomado uniformemente al azar de la familia de todas las
permutaciones Y → Y , i.e., su comportamiento es una permutación aleatoria g

$←− Y X .

Mundo 1: El oráculo O es un sistema determinista que se comporta como una instancia
de la familia F :

{
Fk | k ∈ K

}
generada por una clave tomada al azar k $←− K.

Observe que el Mundo 1 es idéntico al mundo (oráculo) real para una PRF. Igual que antes,
se considera un distinguidor que estudia el comportamiento de dos objetos para determinar con
cuál está interactuando. Este experimento se formaliza de la siguiente manera:
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Definición 4.3.1. Sea F : K × Y → Y una familia de funciones, y A un distinguidor con
acceso a un oráculo O para realizar consultas hasta retornar un bit ♭. Se definen los siguientes
experimentos:

EXPERIMENTO ExpPRP
0 (A, F ):

π
$←− Y †

O← π
♭← Aπ

regresa ♭

EXPERIMENTO ExpPRP
1 (A, F ):

k
$←− K
O← Fk

♭← AFk

regresa ♭

Algoritmo 4.3.1: Experimento PRP: Mundo 0 y Mundo 1

La probabilidad de éxito de un distinguidor bajo CPA se define como

AdvPRP
F (A) := Pr [ExpPRP

1 (A;F )→ 1 ]− Pr [ExpPRP
0 (A; π)→ 1 ]

De esta manera el experimento es análogo a la Definición 4.2.1. La diferencia principal es
que el oráculo ideal con el que se compara F , ya no es una función aleatoria, sino una permuta-
ción aleatoria. Sin embargo, esta definición puede no ser suficiente para definir una permutación
pseudoaleatoria criptográficamente segura, puesto que un adversario más inteligente podrı́a ha-
cer uso de una estrategia no trivial que consiste en consultar la inversa de la permutación alea-
toria.

Como una familia de funciones no está obligada a tener una función inversa, esta evaluación
no es posible bajo la manera en que está definido el experimento. Por ello, una familia de
funciones que sea indistinguible de una permutación aleatoria bajo este experimento es conocida
como una permutación pseudoaleatoria bajo ataque de texto plano elegido (CPA por sus siglas
en inglés).

4.3.1. Permutación pseudoaleatoria fuerte

Como se mencionó, el experimento PRP bajo CPA está limitado a considerar un adversario
que estrictamente consulta pares de texto plano y cifrado, conforme interroga a un oráculo. Un
adversario más astuto puede seleccionar textos cifrados para encontrar sus respectivos textos
planos asociados y de esta manera obtener un par de texto cifrado-plano congruente que le
permita decidir si está interactuando con el oráculo real o el ideal.

Lo anterior, se obtiene al emplear familias de permutaciones (como los BC) en lugar de una
familia de funciones usual. Esto permite que un adversario en el mundo 1, ahora pueda consultar
la función inversa de la permutación. De lo contrario, no se puede garantizar que la función dada
por la familia posea una inversa, ocasionando problemas por la manera en que está diseñado el
experimento. Formalmente, se define el experimento de la siguiente manera:
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Definición 4.3.2. Sea P : K × Y → Y una familia de permutaciones y sea AO un distingui-
dor con acceso a un oráculo O, para realizar consultas hasta retorna un bit ♭. Se definen los
siguientes experimentos:

EXPERIMENTO ExpSPRP
0 (A, P ):

π
$←− Y †

O← π
♭← Aπ,π−1

regresa ♭

EXPERIMENTO ExpSPRP
1 (A, P ):

k
$←− K

O← Pk

♭← APk,P
−1
k

regresa ♭

Algoritmo 4.3.2: Experimento SPRP: Mundo 0 y Mundo 1

La probabilidad de éxito del distinguidor bajo CCA se define como

AdvSPRP
P := Pr [ExpSPRP

0 (A; π)→ 1 ]− Pr [ExpSPRP
1 (A;P )→ 1 ]

Observe que en el mundo 0, el oráculo ideal se comporta del mismo modo que en el Experi-
mento 4.3.1. Sin embargo, ahora sı́ requerimos que P sea una familia de permutaciones para que
el adversario puede consultar la función inversa P−1

k , si ası́ lo desea. Este experimento se co-
noce como permutación pseudoaleatoria bajo ataque de texto cifrado elegido o de permutación
pseudoaleatoriamente fuerte.

4.3.2. Relación entre el experimento PRP y SPRP
Debido a que un adversario bajo CCA puede decidir no realizar ninguna consulta a la inversa

de su oráculo, en ese caso, parece evidente que el adversario está prácticamente realizando un
ataque CPA. Para evaluar este concepto consideré la siguiente proposición:

Proposición 4.3.3. Sea P :
{
Pk | k ∈ K

}
una familia de permutaciones y sea AO un dis-

tinguidor bajo el experimento ExpPRP que realiza a lo más q consultas. Entonces, existe un
adversario B bajo el experimento ExpPRP realizando la misma cantidad q de consultas de tex-
tos planos, sin consultar P−1

k , tal que

AdvSPRP
P (B) ≥ AdvPRP

P (A)

Demostración.
Si un adversario A bajo CCA no realiza ninguna consulta de texto cifrado, entonces A tendrá
la misma ventaja bajo CPA.

AdvPRP(A) = AdvSPRP(A)
Se asume que B es un adversario bajo CCA que tiene la misma inteligencia que A, pero realiza
al menos una consulta de texto cifrado. Debido a que la ventaja de los adversarios también
depende de la cantidad de consultas que realicen:

∴ AdvPRP(A) = AdvSPRP(A) ≤ AdvSPRP(B)
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Este resultado implica que el conjunto de adversarios bajo CPA está incluido en el conjunto
de adversarios bajo CCA. Por ello, la Definición 3.3.5 (referente a una permutación) es bastante
general para hablar de cualquier permutación pseudoaleatoria.

Con todo lo dicho, en el siguiente capı́tulo estudiaremos el enfoque moderno referente a la
seguridad de los esquemas de cifrado simétrico. Es importante recordar las propiedades de una
función pseudoaleatoria, puesto que más adelante veremos como se emplean para la construc-
ción de un MAC.



40 CAPÍTULO 4. PSEUDOALEATORIEDAD Y ADVERSARIOS



Capı́tulo 5

Seguridad e Indistinguibilidad

En los capı́tulos anteriores se mencionaron varios objetos importantes en la criptografı́a, por
ejemplo, funciones pseudoaleatorias, permutaciones pseudoaleatorias y el modelo de oráculo
aleatorio. El propósito del modelo de Bellare y Rogaway (2005) es estudiar los objetos crip-
tográficos a partir de las propiedades de ciertos objetos perfectos. Además, se planteó la idea
de medir la ventaja de un adversario como su probabilidad de éxito en un experimento bien de-
finido. Cada experimento especı́fico tiene sus propias condiciones de éxito para un adversario
dado y el éxito del adversario crece de acuerdo a la capacidad de cómputo que posea: tiempo
de ejecución, espacio de memoria y cantidad de consultas.

Para los esquemas simétricos se utiliza un concepto de indistinguibilidad más general ba-
sado en la teorı́a de la información conocido como seguridad incondicional. La seguridad
incondicional o de complejidad teórica de información se basa informalmente en considerar un
adversario con capacidad de cómputo infinita. Lo que significa que se ignoran los parámetros
del tiempo de ejecución y el espacio de memoria en nuestro análisis, para enfocarnos sólo en
la cantidad de consultas q y su tamaño µ. Este enfoque precisa acotar la información pertinente
que puede obtener un adversario con cada consulta, para adivinar con qué objeto se encuentra
interactuando. Antes de entrar en más detalle sobre el significado de seguridad incondicional,
es esencial repasar las definiciones fundamentales.

5.1. Esquema de cifrado
En el esquema clásico tenemos a un grupo conformado por un emisor y un receptor que se

comunican a través de un canal inseguro, en donde se encuentra a un “hombre en el medio”
conocido como el adversario. La solución es emplear una clave secreta, la cual permite ocultar
sus mensajes a través del canal inseguro, de esta manera pueden establecer un protocolo de co-
municación privado entre los dos. Debido a que tanto el emisor como el receptor deben tener el
mismo conocimiento (comparten la misma clave) estos esquemas son denominados simétricos.

El esquema simétrico especifica un algoritmo de cifrado que indica al emisor cómo procesar
el texto plano utilizando la clave, produciendo ası́ el texto cifrado que se transmite realmente. Un

41
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esquema de cifrado también especifica un algoritmo de descifrado que indica al receptor cómo
recuperar el texto plano original de la transmisión, posiblemente realizando también alguna
verificación. Finalmente, hay un algoritmo de generación de claves, la cual produce una clave
que las partes necesitan compartir. La descripción formal se enuncia a continuación.

Definición 5.1.1. Un esquema de cifrado simétrico es una tripleta (K, E ,D) que consta de tres
algoritmos eficientes:

1. Generación de claves aleatorias: el algoritmo K genera una clave secreta tomada al
azar k $←− KΣ.

2. Cifrado de mensaje: dado un mensaje m ∈ MΣ y una clave secreta k, el algoritmo E
genera un texto cifrado c← Ek(m)

3. Descifrado determinista: dado un texto cifrado c ∈ CΣ y una clave secreta k, el algoritmo
D regresa un mensaje m = Dk(c).

De manera análoga a una familia de funciones, un esquema de cifrado está asociado a un
espacio de claves KΣ, un espacio de mensajes MΣ y un espacio de cifrados CΣ. Estos algoritmos
están definidos sobre los espacios antes nombrados, pero puede existir el caso de que tomemos
un mensaje m /∈ MΣ o un texto cifrado c /∈ CΣ inválido. Por lo tanto, denotamos ⊥ como el
resultado para un valor indefinido en un esquema.

Cabe destacar que E puede ser un algoritmo probabilı́stico (con estado o sin estado) que ge-
nera un texto cifrado c← Ek(m), mientras que D está obligado a ser un algoritmo determinista
que siempre devuelveDk(c) = m. Estos algoritmos pueden estar basados en cifradores por blo-
ques o permutaciones públicas. De esta manera, un equipo conformado por un emisor y receptor
pueden establecer la comunicación en un canal inseguro.

Diseñar estos algoritmos a través de un enfoque informal sólo genera varios problemas (dis-
cutidos en el capı́tulo acerca de cifradores por bloques) al diseñar esquemas complejos y hablar
de su seguridad. Ésta es la filosofı́a con la que se han creado los sistemas más antiguos como
“El cifrado Vigenere” hasta la construcción de la máquina enigma (Shimeall & Spring, 2014).

No obstante, lo que la historia ha mostrado es que todos estos esquemas han sido rotos y
a pesar de proponer soluciones para repararlos, estas soluciones se confı́an de tener la ven-
taja tecnológica. Creer que un sistema siempre va a estar al borde de la vanguardia y que el
adversario es incapaz de superarnos en inteligencia o poder de cómputo es una aproximación
muy ingenua para garantizar la seguridad de un esquema. La criptografı́a moderna actualmente
está fundamentada sobre definiciones, hipótesis y pruebas matemáticas sólidas. Este enfoque
riguroso constituye la diferencia entre la filosofı́a clásica, basada en propuestas Ad hoc, y el
formalismo moderno (Goldwasser & Micali, 1984; Savage, 2013; Shannon, 1949).
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5.2. Seguridad perfecta

Imaginemos un adversario que conoce la distribución de probabilidad sobre M , ası́ como
el esquema de cifrado empleado por un grupo conformado de un emisor y de un receptor. Si
el emisor manda al receptor un mensaje cifrado, el adversario puede interceptar el mensaje y
observarlo. Esto se denomina un ataque bajo texto cifrado único, y es el esquema de seguridad
clásico de la criptografı́a (Bellare & Rogaway, 2005; Shannon, 1949).

Asumimos un esquema clásico en donde un emisor envı́a mensajes ocultos a un receptor a
través de un canal inseguro, y un adversario se encuentra en medio, interfiriendo en los mensajes
que se envı́an. Para que este esquema de seguridad sea perfectamente seguro, un adversario en
posesión de un texto cifrado c no puede ganar algún conocimiento sobre la distribución de los
mensajes en M .

Definición 5.2.1. Sea k ∈ KΣ una llave secreta y sean m,m′ ∈ MΣ dos mensajes distintos.
Entonces, Σ es un esquema perfectamente seguro si la probabilidad para todo texto cifrado
c ∈ CΣ es

Pr [ Ek(m) = c ] = Pr [ Ek(m′) = c ] (5.1)

Repare en cómo esta definición de seguridad exige que la distribución Ek(M) sea precisa-
mente la distribución uniforme. El concepto de seguridad perfecta es muy poderoso. Debido a
que un adversario, sin conocimiento de la clave secreta, tiene la misma ventaja escuchando un
texto cifrado que escuchando todos. Estos conceptos de indistinguibilidad entre textos, ventaja
de un adversario y distribución uniforme serán muy importante para encontrar una condición
de suficiencia para la seguridad de cualquier esquema criptográfico.

Viendo este teorema desde la teorı́a de la información, la conclusión es bastante evidente,
puesto que Shannon (1949) pide que la entropı́a de un esquema sea máxima para garantizar que
su seguridad. Un adversario al obtener un texto cifrado c no es capaz de conocer algo sobre
cualquier otro texto cifrado c′ = Ek(m′). Es pertinente resaltar que esto es muy problemático,
ya que el adversario podrı́a buscar todos los mensajes en el espacio MΣ. y aun ası́ no tener
alguna pista sobre qué mensaje m fue cifrado para obtener c. Para asimilar mejor este resultado,
se analiza el esquema de Un-sólo-uso (One-time-pad).

5.2.1. One-Time-Pad

El esquema de cifrado de Un-sólo-uso (One-time-pad) es un esquema de cifrado determinista,
cuyo algoritmo de generación de claves K devuelve una cadena aleatoria de K ∈ {0, 1}k. El
algoritmo de cifrado mantiene un contador estático ctr que inicialmente es cero. Entonces, los
algoritmos de cifrado y descifrado operan de la siguiente manera:
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ALGORITMO E( M,K )
ctr ← 0 ◁ valor estático
m← |M|
si ctr +m > |K| entonces

regresa ⊥
C ←M ⊕ kctr+1 8 . . . 8 kctr+m

ctr ← ctr +m
regresa ctr −m, C

ALGORITMO D( C ′,K, ctr )
m← |C ′|
si ctr +m > |K| entonces

regresa ⊥
M← C ′ ⊕ kctr+1 8 . . . 8 kctr+m

regresa M

Algoritmo 5.2.1: Esquema de cifrado One-time-pad

En este caso, cada K|i representa el i-ésimo bit dentro de la clave secreta K. El contador
ctr consiste en un parámetro que permite variar y seleccionar la cantidad de bits que se usarán
como una máscara para el mensaje M. Después, el cifrador realiza una operación XOR bit por
bit K|i ⊕M|i entre la llave y el mensaje. Para un bit del cifrado Ci sólo existen dos posibles
resultados: 1 o 0, por lo que la probabilidad de adivinar la llave correcta es 1/2. Por lo tanto,
para cualquier ı́ndice entre ctr + 1 y ctr +m, se tiene que

Pr [ EK(M) = C ] =
m∏
i=1

1

2i
=

1

2m

Como la llave K es tomada al azar de las cadenas de {0, 1}k distribuidas de manera uniforme,
es posible que el mensaje sea más grande que la clave. Por ello, el algoritmo siempre verifica el
tamaño de la clave K, el contador ctr y el mensaje m para asegurar que el cifrado sea posible
|K+ctr| = |M|. La seguridad de este esquema se hace evidente al notar que la operación XOR
preserva la uniformidad en la distribución de los bits de llave tomada al azar.

∴ Pr [ EK(M) = C ′ ] = 1

2m

Observe cómo el esquema One-time-pad cumple con la Definición 5,2,1. Antes de concluir,
advierta que la naturaleza de este algoritmo implica la necesidad de poseer una clave de la
misma longitud (incluso mayor) que el mensaje a cifrar para garantizar seguridad perfecta. No
obstante, este problema no es exclusivo del esquema One-time-pad. El Teorema 2.10 de Katz
y Lindell (2014), demuestra que todo esquema Σ perfectamente seguro requiere un espacio
de claves |KΣ| ≥ |MΣ|. Esta clase de resultados, nos revela la naturaleza entre la seguridad
informática y los recursos computacionales.

5.3. Seguridad computacional
Como se discutió, es posible obtener un esquema con un enorme nivel de seguridad, pero a un

costo muy alto, que es factible sólo para algunas agencias gubernamentales o multinacionales.
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Sin embargo, para cualquier uso práctico de la criptografı́a, ¿es necesario tal nivel de seguridad?
Es obvio que la Definición 5.2.1 es una condición suficiente, pero quizás no necesaria.

El ideal de seguridad perfecta es la meta a alcanzar para cualquier criptógrafo, pero en cien-
cias de la computación se busca un compromiso entre los objetivos y el costo. Esto es de suma
importancia para aplicaciones de bajos recursos: el área de salud, el hogar, el campo, para me-
jorar la eficiencia energética o combatir el cambio climático.

A continuación, se estudia un concepto de seguridad, posiblemente más débil que el pro-
puesto por Shannon aunque más general, que nos permite contemplar todo tipo de adversarios
siempre y cuando especifiquemos la cantidad de recursos a los que se tiene acceso.

5.3.1. Enfoque asintótico
La seguridad computacional se basa en el enfoque de la teorı́a de complejidad algorı́tmica.

Introducimos una variable n que parametriza la seguridad de un esquema de cifrado Σ, ası́ como
los recursos del equipo emisor-receptor. Cuando un equipo ejecuta el esquema de cifrado, se
asume que ellos asignan un valor para n (generalmente el tamaño de la llave) y este valor es
conocido por el adversario.

Recordemos que un adversario es un algoritmo, por lo tanto podemos definir un adversario
eficiente como un algoritmo que rompe un esquema en tiempo polinómico (dado por el paráme-
tro de seguridad n, es decir, p(n)). En teorı́a de la complejidad, se sabe que un problema fácil es
un problema que es resuelto en tiempo polinómico, mientras que un problema difı́cil se resuelve
en tiempo no polinómico. Por ello se define:

Definición 5.3.1. Una función negligible es una función ξ : N → [0,∞) tal que para toda
función polinómica positiva p ∈ R[n] existe un n0 tal que

∀n > n0 : f(n) <
1

p(n)

De este modo, se puede hacer uso de la notación de complejidad para medir los recursos
de cualquier adversario. Es importante mencionar que cualquier esquema de cifrado práctico
requiere emplear algoritmos que se ejecuten en tiempo polinómico. Ası́, la teorı́a de la comple-
jidad es una manera de estudiar los esquemas de cifrado para su implementación real.

Se retomarán las funciones negligibles durante el siguiente capı́tulo. Por el momento, enun-
ciamos lo siguiente: 2−n, 2−

√
n y n− logn son ejemplos de funciones negligibles y la combinación

lineal de funciones negligibles sigue siendo negligible.

5.3.2. Ataque de recuperación de llave
Uno de los ataques más simples es la recuperación de la clave en un esquema de cifrado.

Como estudiamos en el capı́tulo de cifradores por bloques, la recuperación de clave es un expe-
rimento básico, pero no es suficiente garantı́a para la seguridad de un esquema simétrico.
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Ahora, empleando el enfoque asintótico, se definirá un experimento más general (por lo tanto
más fuerte) para estudiar la seguridad de un esquema contra cualquier adversario. Es oportuno
señalar, que podemos clasificar la seguridad de este experimento como condicional o incondi-
cional.

Un experimento (prueba) de seguridad condicional toma en cuenta los recursos compu-
tacionales de un adversario, por ejemplo: tiempo de ejecución t, memoria de almacenamiento
ϑ, cantidad de consultas q de una subrutina y la longitud ℓ de las cadenas de bits empleadas en
cada consulta.

La seguridad incondicional, por el contrario, asume adversarios con capacidad de compu-
tación ilimitada. Este tipo de pruebas no busca delimitar los recursos computacionales que posee
un adversario, sino cuantificar sus recursos informáticos, principalmente la cantidad de consul-
tas q que requiere de un oráculo. Debido a que un adversario con infinita capacidad de cómputo
es más peligroso, concentraremos nuestros esfuerzos únicamente en la seguridad incondicional.

Definición 5.3.2. Sea F : K × X → Y una familia de funciones y sea B un adversario que
interactúa con un oráculo F̂ : X → Y hasta adivinar una clave k′ secreta. Entonces, considere
el siguiente experimento:

EXPERIMENTO ExpKR(B, F ):
k

$←− K
k′ ← BFk

si k = k′ entonces regresa 1
si no regresa 0

Algoritmo 5.3.1: Experimento de recuperación de clave secreta

La ventaja del adversario B para la recuperación de la clave secreta es

AdvKR
F (B) := Pr [ExpKR(B, F ) = 1 ]

Esta definición es lo suficientemente general como para considerar todo tipo de ataque. Cual-
quiera de los ataques clásicos contra esquemas como búsqueda exhaustiva, criptoanálisis dife-
rencial, criptoanálisis lineal y cualquier método heurı́stico, corresponden a estrategias especı́fi-
cas que selecciona el adversario B. En general, el adversario puede considerar cualquier algo-
ritmo de búsqueda para encontrar la clave secreta k y emplear muestras del comportamiento de
la instancia Fk.

Además, este experimento logra capturar de manera parcial el concepto de seguridad perfecta.
Un adversario con probabilidad negligible de éxito, en este experimento, garantiza seguridad
perfecta si y sólo si la distribución de la familia de funciones F está uniformemente distribuida.
Debido a que el enfoque asintótico no garantiza uniformidad, no se puede concluir nada más al
respecto.

Por el contrario, un esquema perfectamente seguro puede ser roto si un adversario consigue
las suficientes muestras de entrada-salida como para deducir unicamente una clave posible.
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Debido a la naturaleza del esquema One-time-pad (Algoritmo 5.2.1), es trivial deducir la clave
correcta a partir de un mensaje y su correspondiente texto cifrado. Como se menciona en el
segundo capı́tulo, se requieren sólo dos muestras para garantizar la recuperación de la clave
secreta en el AES y el DES.

Para entender mejor el experimento de recuperación de clave, consideremos el siguiente
ejemplo:

Ejemplo 5.3.1. Sea F : {0, 1}k × {0, 1}n → {0, 1}m una función indexada tal que k = m · n
y considere una clave K de k-bits que forma una matriz de m renglones por n columnas. Sea
X = x1 · · ·xm una secuencia de n-bits de entrada, y defina F (K,X):

FK(X) =


k11 k12 . . . k1n

k21 k22 . . . k2n
... . . . ...

km1 km2 . . . kmn

 ·

x1

x2
...
xn

 =


y1

y2
...

ym


es decir,

y1 = k11 · x1 ⊕ k12 · x2 ⊕ · · ·⊕ k1m · xn

y2 = k21 · x1 ⊕ k22 · x2 ⊕ · · ·⊕ k2n · xn
...

... . . .
ym = km1 · x1 ⊕ km2 · x2 ⊕ · · ·⊕ kmn · xn

Donde la clave K es el conjunto de todos los bits kij en la matriz y la aritmética de la operación
se realiza módulo dos.

Sea B un adversario que ejecuta el siguiente ataque para recuperar la clave:
ALGORITMO B( F ):

K← ε
para cada i ∈ In haz

X← 0n, X|i ← 1
Y ← F (X)
K̂← 8K̂Y8

regresa K̂

Al inicio del algoritmo, K es una cadena vacı́a. En este ataque, el adversario B genera una
cadena X y la inicializa en ceros, excepto en la i-ésima posición en donde se la asigna X|i = 1.
De esta manera, con cada iteración se obtiene una columna de la matriz K al consultar la imagen
F (X). Note cómo

F (0i−1 8 1 8 0n−i+2) = k1i 8 k2i 8 . . . 8 kmi

Este ejemplo puede parecer trivial, sin embargo, no lo es. Es importante resaltar que la vul-
nerabilidad de F radica en su fuerte linealidad. Cualquier cifrado homomórfico es vulnerable a
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este ataque, puesto que sus operaciones conservan un núcleo invariante (en este caso 0n). Ası́,
el adversario recupera la clave secreta con probabilidad de éxito.

Pr [ExpKR(B, F ) = 1 ] = 1

No obstante, advierta que este algoritmo requiere al menos de n consultas al oráculo F . Esto
significa que conforme el tamaño de la clave aumenta, la complejidad de encontrar la clave se
torna lineal O(q) con la cantidad de consultas q.

5.4. Privacidad
Suponga que se tiene un equipo conformado por un par de emisor y receptor. Ambos miem-

bros son honestos y ejecutan un esquema de cifrado simétrico, de tal manera que ellos conocen
una clave secreta tomada al azar. El adversario no conoce la clave secreta que selecciona el
equipo, pero puede ver cualquier mensaje enviado entre ellos, ¿Cómo puede el adversario apro-
vecharse de esto?

Por ejemplo, es evidente que el adversario con suficientes pares de mensaje-cifrado, pue-
de adivinar la clave secreta y descifrar cualquier otro texto cifrado futuro que se mande. Sin
embargo, ¿existe alguna otra manera en que el adversario podrı́a beneficiarse? De hecho, sı́.

Supongamos que el equipo emisor-receptor decide ingenuamente usar un formato fijo, en
donde el último bit corresponde con un voto a la opción 0 o a la opción 1. Luego, empleando el
esquema One-time-pad empiezan a mandar sus respectivos votos cifrados. En este caso, nuestro
adversario podrı́a obtener información parcial del mensaje y violar el derecho al voto anónimo
del equipo con alta probabilidad.

El problema aquı́ no es culpa realmente del equipo, puesto que un esquema criptográfico debe
proteger la información del equipo independientemente del formato que elijan. Debido a que un
único bit sólo puede ser adivinado con 1/2 de probabilidad, tampoco es problema del Esquema
5.2.1, ya que éste es el máximo nivel de seguridad para un bit.

Como se ha mencionado varias en ocasiones, podrı́amos empezar a enlistar requerimientos
como mezclar los bits del cifrado antes de ser enviado, usar máquinas de estados para variar
los valores de cada bit, y demás propuestas, pero esto nunca es suficiente. La seguridad contra
la recuperación de la clave e incluso la seguridad perfecta es una forma especı́fica de lo que en
criptografı́a se denomina seguridad semántica.

5.4.1. Seguridad Semántica
El concepto de privacidad, formalmente definido como seguridad semántica. La idea de Gold-

wasser y Micali (1984) mezcla la intuición de la seguridad perfecta con el enfoque asintótico.
Originalmente, este enfoque fue introducido para la seguridad de esquemas asimétricos o de
llave pública. Estas pruebas consisten en un análisis de seguridad condicional en donde se con-
sideran adversarios con recursos computacionales finitos.
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El experimento consiste en un adversario que escoge de manera iterativa una secuencia
M1,M2, . . . ,Mq de espacios de mensajes y al mismo tiempo se selecciona al azar una clave

secreta k
$←− K. Para cada espacio de mensajes Mi seleccionado por el adversario, se toman

dos elementos al azar Xi,X
′
i

$←−Mi. Luego, existen dos casos posibles:

Mensaje Izquierdo: Se le devuelve al adversario el texto cifrado Yi correspondiente a
Xi.

Mensaje Derecho: Se le devuelve al adversario el texto cifrado Yi correspondiente a X′
i.

El adversario desconoce cuál de los dos mensajes generó Yi. No obstante, puede seleccionar
de manera cuidadosa un nuevo espacio Mi+1 cada vez que obtiene un cifrado. Una vez que
el adversario termina de analizar las muestras (Y1, . . . ,Yq) toma una decisión de la siguiente
manera: primero, el adversario selecciona un elemento Z ∈ CΣ; luego, crea un sistema deter-
minista F funcionalmente compatible con las muestras obtenidas, y por último, devuelve 1 si
F(X1, . . . ,Xq) = Z, de lo contrario, 0. Formalmente,

Definición 5.4.1. Sea Σ = (K, E ,D) un esquema de cifrado y deje que A sea un adversario
con acceso a un oráculo. Se considera el experimento:

EXPERIMENTO ExpSEC-L( Σ,A ):
k

$←− K, S ← ∅
para cada i ∈ Iq haz

(Mi, S)← A(S)
Xi, X

′
i

$←−Mi

si |Xi | ≠ |X′
i | entonces

regresa Xi ← X′
i ← ε

Yi ← Ek(Xi)
S ← S ∪Yi

(F,Z)← A(S)
regresa F(X1, . . . ,Xq) = Z

EXPERIMENTO ExpSEC-R( Σ,A ):
k

$←− K, S ← ∅
para cada i ∈ Iq haz

(Mi, S)← A(S)
Xi, X

′
i

$←−Mi

si |Xi | ≠ |X′
i | entonces

regresa Xi ← X′
i ← ε

Yi ← Ek(X′
i)

S ← S ∪Yi

(F,Z)← A(S)
regresa F(X′

1, . . . ,X
′
q) = Z

Algoritmo 5.4.1: Experimento de seguridad semántica: Mensaje Izquierdo y Mensaje Derecho

La seguridad semántica de Σ (la ventaja de A ∈ CPA) se define

SecCPA
Σ (A) := Pr

[
ExpSEC-R

Σ (A) ⇒ 1
]
− Pr

[
ExpSEC-L

Σ (A) ⇒ 1
]

Como es habitual en estos experimentos, el primer algoritmo inicia el esquema al seleccio-
nar una clave al azar del espacio de claves KΣ y un espacio de estados S inicialmente vacı́o.
Enseguida, se realiza un proceso iterativo para las q consultas. Observe cómo en cada iteración
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se verifica que el tamaño de las cadenas Xi y X′
i sean iguales, de lo contrario, se borran las

cadenas y las lı́neas consecutivas prácticamente no se ejecutan; mientras tanto, el estado S se
actualiza en cada iteración. Ası́, podemos percatarnos de cómo este adversario es necesariamen-
te adaptativo.

Al finalizar la iteración, el adversario calcula F y verifica que se cumpla la igualdad. El
objetivo del adversario es seleccionar Z y F de tal manera que pueda diferenciar los mensajes
izquierdos de los mensajes derechos. Advierta cómo este experimento es mucho más fácil de
ganar para un adversario que el Experimento 5.3.1.

Es importante mencionar, que la seguridad semántica describe una noción de seguridad mu-
cho más fuerte en términos computacionales. En este experimento, el adversario no requiere
obtener información especı́fica del esquema, sino que puede emplear cualquier tipo de informa-
ción parcial a su conveniencia. De hecho, le otorgamos al adversario la habilidad de consultar
adaptativamente los mensajes que crea conveniente y de diseñar el mejor modelo para predecir
el texto cifrado que desee.

Las limitaciones de seguridad del esquema dependen de la capacidad de cómputo que se
considere. Por ejemplo, el espacio de almacenamiento para todas la muestras obtenidas puede
ser muy costoso, ası́ como el tiempo de ejecución que se requiere para encontrar el modelo de
predicción. Esta definición de seguridad es muy empleada en esquemas de llave pública que
consideran problemas difı́ciles como la factorización de primos o la inversión del algoritmo
discreto. Aun ası́, nuestra meta es alcanzar un nivel de seguridad incondicional para garantizar
una seguridad casi perfecta en nuestros esquemas simétricos.

5.4.2. Experimento de Indistinguibilidad

Nuestro objetivo en esta sección es definir un experimento que garantice seguridad en un
sentido tan fuerte como la seguridad semántica y que a su vez considere un adversario con
capacidad de cómputo ilimitada como en el enfoque de seguridad incondicional. La propiedad
fundamental que emplea este enfoque es conocido como indistinguibilidad.

La idea detrás de este experimento consiste en poner a prueba a un adversario, que no posee
la clave secreta, a superar un desafı́o. Éste consiste en la selección de dos mensajes distintos de
la misma longitud. Luego, a través de un oráculo, la obtención de un texto cifrado dependiendo
de cada mundo:

Mundo 0: El comportamiento del oráculo izquierdo es Ek
(
LR(∗, ∗, 0)

)
. Siempre que el

adversario haga una consulta (x0, x1), el oráculo calcula y = Ek(x0), y devuelve y como
la respuesta.

Mundo 1: El comportamiento del oráculo derecho es Ek
(
LR(∗, ∗, 1)

)
. Siempre que el

adversario haga una consulta (x0, x1), el oráculo calcula y $←− Ek(x1), y devuelve y como
la respuesta.
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El adversario consulta hasta q veces al oráculo, antes de tomar una decisión. El objetivo del
oráculo es bastante simple, solamente tiene que adivinar en cuál de los dos mundos está, i.e.,
tiene que decidir cuál de los dos mensajes fue cifrado: el derecho o el izquierdo. Antes de
formalizar el experimento es necesario definir el oráculo con el que se interactúa.

Definición 5.4.2. Sea un esquema de cifrado Σ, ♭ ∈ {0, 1} un bit y deje que x0, x1 ∈ M
sean mensajes distintos. Entonces, se define el oráculo Izquierdo-Derecho como un sistema
funcionalmente compatible con LR : MΣ ×MΣ × {0, 1} →M tal que

LR(x0, x1, ♭) :=

{
x0

x1
⇐ ♭ = 0

♭ = 1

También llamamos al mundo (oráculo) “izquierdo”, el mundo (oráculo) 0. Mientras que al
mundo (oráculo) “derecho”, lo denominamos el mundo (oráculo) 1. El problema para el ad-
versario es interrogar a su oráculo de la manera más eficiente, para que de esta manera pueda
decidir con cuál de los dos oráculos interactúa. Esto es análogo a la prueba de Turing, en don-
de una persona se encuentra interrogado a dos participantes (una persona y una máquina que
finge ser una persona) sin conocimiento previo de quién es la persona y cuál es la máquina.
Formalmente,

Definición 5.4.3. Sea Σ = (K, E ,D) un esquema de cifrado simétrico y sea A sea un distin-
guidor con acceso a un oráculo. Considere el siguiente experimento:

EXPERIMENTO ExpCPA-0( Σ,A ):
k

$←− K
♭← AEk(LR(∗,∗,0))

regresa ♭

EXPERIMENTO ExpCPA-1( Σ,A ):
k

$←− K
♭← AEk(LR(∗,∗,1))

regresa ♭

Algoritmo 5.4.2: Experimento de indistinguibilidad: Mensaje Izquierdo y Derecho

Por lo tanto, la indistinguibilidad del esquema Σ se define como

IndCPA
Σ (A) := Pr

[
ExpCPA-1

Σ (A) ⇒ 1
]
− Pr

[
ExpCPA-0

Σ (A) ⇒ 1
]

Observe que este experimento es bastante general, ası́ como lo deseamos. Debido a que nues-
tro adversario tiene acceso a un oráculo para interactuar con distintos textos cifrados, producidos
por el sistema, se permite ignorar el costo computacional de cada respuesta del oráculo y el en-
foque es únicamente en la información obtenida por cada consulta. De hecho, se puede reducir
el experimento con el siguiente algoritmo equivalente:

Teorema 5.4.4. Sea Σ = (K, E ,D) un esquema de cifrado simétrico y deje que A sea un
distinguidor con acceso a un oráculo. Considere el siguiente experimento:
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EXPERIMENTO ExpCPA-LR( Σ,A ):
k

$←− K, ♭
$←− {0, 1}

♭̂← AEk(LR(∗,∗,♭))

regresa ♭ = ♭̂

Algoritmo 5.4.3: Experimento de indistinguibilidad Izquierda-Derecha

Por lo tanto, la ventaja del distinguidor A ∈ CPA se resume en

AdvLR
Σ := 2 · Pr [ExpLR

Σ (A) ⇒ 1 ]− 1

Demostración. Resolviendo, se tienen las siguientes desigualdades:

Pr [ExpLR
Σ (A) ⇒ 1 ] = Pr

[
♭ = ♭̂

]
= Pr

[
♭ = ♭̂ | ♭ = 1

]
Pr [ ♭ = 1 ] + Pr

[
♭ = ♭̂ | ♭ = 0

]
Pr [ ♭ = 0 ]

= Pr
[
♭ = ♭̂ | ♭ = 1

]
· 1
2
+ Pr

[
♭ = ♭̂ | ♭ = 0

]
· 1
2

= Pr
[
♭̂ = 1 | ♭ = 1

]
· 1
2
+ Pr

[
♭̂ = 0 | ♭ = 0

]
· 1
2

=
1

2
· Pr

[
♭̂ = 1 | ♭ = 1

]
+

1

2
·
(
1− Pr

[
♭̂ = 1 | ♭ = 0

])
=

1

2
· Pr

[
♭̂ = 1 | ♭ = 1

]
+

1

2
− 1

2
· Pr

[
♭̂ = 1 | ♭ = 0

]
=

1

2
+

1

2
·
(
Pr
[
♭̂ = 1 | ♭ = 1

]
− Pr

[
♭̂ = 1 | ♭ = 0

])
=

1

2
+

1

2
·
(
Pr
[
ExpCPA-1

Σ ϕ = 1
]
− Pr

[
ExpCPA-0

Σ ϕ = 1
])

=
1

2
+

1

2
· (Pr

[
ExpCPA-1

Σ (A) ⇒ 1
]
− Pr

[
ExpCPA-0

Σ (A) ⇒ 1
]
)

Aprecie cómo para un ♭ = 0 fijo, la probabilidad se calcula sobre los mensajes izquierdos,
mientras que para ♭ = 1, la probabilidad se calcula sobre los mensajes derechos.

∴ Pr [ExpLR
Σ (A) ⇒ 1 ] =

1

2
+

1

2
·AdvLR

Σ (A)

Esta conclusión no es difı́cil de seguir, puesto que al considerar adversarios bajo la teorı́a de
la información, podrı́amos considerar una estrategia trivial en donde el adversario simplemente
adivina el mundo de manera aleatoria, sin ni siquiera realizar una consulta al oráculo. Esta
estrategia trivial, en promedio, tendrı́a éxito el 50 % de las veces. De esta manera, el Teorema
5.4.4 es un algoritmo reducido del experimento anterior.
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5.4.3. Indistinguibilidad implica Seguridad Semántica

Por último, para garantizar que la propiedad de indistinguibilidad Izquierda-Derecha sea la
definición de seguridad que se busca, se necesita saber si es lo suficientemente general como la
seguridad semántica.

Teorema 5.4.5. Sea Σ un esquema simétrico y A un adversario bajo el experimento de segu-
ridad semántica. Entonces, existe un distinguidor B bajo el experimento de indistinguibilidad
Izquierda-Derecha, tal que

AdvLR
Σ (B) ≥ SecCPA

Σ (A)

Demostración. Considere un distinguidorB bajo el experimento de indistinguibilidad Izquierda-
Derecha, cuya estrategia es

ALGORITMO BΘ( Σ ):
S ← ∅
para cada i ∈ Iq haz

(Mi, S)← A(S)
Xi, X

′
i

$←−Mi

si |Xi | ≠ |X′
i | entonces

regresa Xi ← X′
i ← ε

Yi ← Θ(X′
i,Xi)

S ← S ∪Yi

(F,Z)← A(S)
regresa F(X1,X2, . . . ,Xq) = Z

Algoritmo 5.4.4: Indistinguibilidad contra seguridad semántica

Suponga que B consulta al oráculo izquierdo. Entonces, Ek(LR(Xi,X
′
i, 0)) = Ek(Xi) = Y.

Por lo tanto, el Mundo 0 del Experimento 5.4.3 es igual al Mensaje Izquierdo del Experimento
5.4.1. Luego, para un adversario A en el experimento de seguridad semántica, se deduce que

Pr
[
ExpCPA-0

Σ (B) ⇒ 1
]
= Pr

[
ExpSEC-L

Σ (A) ⇒ 1
]

Ahora deje que B consulte al oráculo derecho. Entonces Ek(LR(Xi,X
′
i, 1)) = Ek(X′

i) = Y.
De este modo, el Mundo 1 es igual al Mensaje Derecho del Experimento 5.4.1. Ası́,

Pr
[
ExpCPA-1

Σ (B) ⇒ 1
]
= Pr

[
ExpSEC-R

Σ (A) ⇒ 1
]

Ya que el experimento de indistinguibilidad Izquierda-Derecha considera adversarios con infi-
nita capacidad de cómputo, se concluye que B tiene mayor ventaja que A.
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Esto comprueba que la indistinguibilidad de un esquema es la condición de suficiencia que
buscamos para estudiar la seguridad de los esquemas simétricos o de llave privada. Cabe men-
cionar, que podrı́amos considerar adversarios A ∈ CCA al considerar un oráculo que nos
permita acceder tanto al cifrado Ek como al descifrado Dk mediante una representación unidi-
reccional, recuerde la Definición 3.3.6. No obstante, aunque el análisis no es muy complejo,
esto se sale de los alcances de la tesis referente a los MAC.



Capı́tulo 6

Códigos de autenticación de mensajes

Uno de los objetivos básicos en criptografı́a es permitir a dos entidades (emisor y receptor)
comunicarse de forma segura utilizando un canal abierto. La privacidad es una meta muy im-
portante en la criptografı́a, pero la autenticación de mensajes es incluso más importante. De este
modo, es de suma importancia asegurar la integridad y autenticidad de un mensaje a través de
un canal inseguro, de tal manera que cada entidad pueda validar que el mensaje ha sido enviado
por la entidad que afirma haberlo hecho, además de verificar que el mensaje recibido no ha sido
modificado.

Un código de autenticación de mensajes (MAC por sus siglas en inglés) es la versión de
clave secreta de la firma digital. Un MAC puede ser visto como una función que comprime la
información de un mensaje y genera una firma asociada a una clave secreta. Formalmente,

Definición 6.0.1. Un MAC H : {0, 1}k × {0, 1}∗ −→ {0, 1}n es una función indexada por un
espacio de llaves {0, 1}k, un espacio de mensajes {0, 1}∗ de tamaño arbitrario y un espacio de
firmas {0, 1}n. Cada instancia Hk de un código de autenticación de mensajes es una función
de compresión que toma un mensaje M de tamaño arbitrario y (usualmente) genera una firma
T de tamaño fijo.

En la literatura, se suele hablar de un MAC no solamente como una función, sino además
como la firma o el código generado por el MAC. En general, hablaremos de un MAC para
cualquiera de estos casos, a excepción de que el contexto lo especifique.

La mayorı́a de los MAC se construyen a partir de una función HASH, la cual comprime el
mensaje dividiéndolo en bloques y realizando operaciones entre ellos, usualmente operaciones
XOR como PMAC (Yasuda, 2011). Los MAC pueden ser deterministas, con estado, aleatoriza-
dos, pipelineables (CBC-MAC y OMAC), entre otros (Bellare & Rogaway, 2005; Bellare et al.,
1999; Iwata & Kurosawa, 2003).

Ineludiblemente, obtener aleatoriedad criptográficamente segura es muy costoso para varios
escenarios. Por lo tanto, se suelen utilizar construcciones sin estado y basadas en nonce, donde el
remitente es responsable de proporcionar un nonce único para cada mensaje a autenticar (Moch
& List, 2019).

55
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Antiguamente, los mensajes eran enviados en cartas o rollos de papiro sellados con cera, lacre
o incluso tinta invisible, formando una figura o firma que permitiera identificar al remitente.
Este sello protegı́a el mensaje de ser visto por terceros, ya que algún intruso que deseara ver su
contenido tendrı́a que romper el sello. Si el sello llega intacto, el receptor puede estar seguro de
la integridad del mensaje y de la privacidad de la comunicación. A continuación, se describe el
protocolo de autenticación moderno.

Definición 6.0.2. Un esquema de autenticación Λ es una tripleta (K,H,V) que consta de tres
algoritmos eficientes:

1. Generación de claves aleatorias : el algoritmo K genera una clave secreta tomada al
azar k $←− K.

2. Algoritmo MAC: dado un mensaje m ∈ M y una clave secreta k, el algoritmo H com-
prime el mensaje y genera una firma t ← Hk(m). Si el mensaje no puede ser procesado
por el MAC, el algoritmo entrega un error de generación ⊥← H .

3. Verificación determinista: dada una firma t ∈ T y una clave secreta k, el algoritmo
V entrega de manera determinista un bit. Se dice que el MAC ha sido autenticado si
Vk(m, t) = 1 y es rechazado en cualquier otro caso.

De la definición anterior, se observa que un esquema de autenticación es similar a un esquema
de cifrado simétrico. La función de validación tiene que ser determinista, mientras que la fun-
ción MAC puede no serlo. Análogamente, se denota KΛ como el espacio de claves del esquema,
MΛ como el espacio de mensaje y TΛ como el espacio de firmas. Ası́ mismo, un esquema de au-
tenticación también se construye con base en primitivas criptográficas: cifradores por bloques,
permutaciones públicas, funciones digesto (HASH) y cifradores por bloques entonables.

En los esquemas asimétricos basta con demostrar por reducción que falsificar la firma es tan
difı́cil como romper la primitiva criptográfica del sistema. No obstante, cabe hacerse la pregunta,
¿existe una manera de falsificar esta firma sin necesidad de romper la primitiva? En el caso de
los esquemas simétricos, la respuesta es clara, pero para entenderla es necesario explicar en
primer lugar el significado de seguridad para un MAC.

6.1. Seguridad para MAC
En el capı́tulo anterior, se mencionó la definición de seguridad y cómo ésta garantiza la

privacidad de las comunicaciones al no exponer nada de información parcial del esquema. No
obstante, el objetivo de un MAC no es garantizar la privacidad de la comunicación per se, sino
permitir autenticar los mensajes emitidos por un remitente. Para entender mejor la relación de
seguridad entre las firmas MAC y la privacidad, empezaremos explicando el experimento de
falsificación.
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En este experimento, el objetivo del adversario es falsificar la firma MAC del emisor, pero
la firma depende del mensaje enviado, el algoritmo MAC y la clave secreta. Para demostrar
la seguridad de un esquema de autenticación, se asume que el mensaje está bajo control del
adversario. Además el adversario conoce el algoritmo MAC, y peor aún, tiene acceso a un
oráculo que permite interactuar con el MAC para obtener ejemplos de pares mensaje-firma.

Un adversario puede proponer mensajes falsos y consultar a su oráculo para obtener su firma
respectiva. Si la respuesta del oráculo es una firma distinta a la firma original, el adversario
propone un nuevo mensaje falso y vuelve a consultar al oráculo. Este proceso se repite hasta
que el adversario logre encontrar una firma igual a la original. De esta manera, el receptor no
puede distinguir el mensaje falso del real. Formalmente, definimos la seguridad como sigue:

Definición 6.1.1. Sea un esquema de autenticación Λ = (K,H,V) y sea A un adversario con
acceso a un oráculo O. Considere el siguiente experimento:

EXPERIMENTO ExpFORGE( Λ,A ):
k

$←− K, S ← ∅
para cada i ∈ Iq haz

(mi, ti)← A(S)
S ← S ∪ (mi, ti)

(m′, t′)← A(S)
si (m′, t′) /∈ S entonces regresa Vk(m′, t′) = 1
si no regresa 0

Algoritmo 6.1.1: Experimento de falsificación

La seguridad del esquema Λ se define como

ForgeCPA
Λ (A) = Pr

[
ExpFORGE

Λ (A) ⇒ 1
]

En este experimento, se permite que un adversario consulte a un oráculo Hk para probar
cualquier par de mensajes (m, t) hasta que el distinguidor AHk devuelva 1. Cada mensaje con-
sultado se guarda en un estado S que es retroalimentado al adversario para proponer nuevos
mensajes.

Se dice que el MAC ha sido roto, si el adversario encuentra un par (m′, t′) tal que Vk(M ′, t′) =
1. Formalmente, pedimos que el par (m′, t′) no pertenezca al conjunto de mensajes consulta-
dos S, esto para evitar victorias triviales para el adversario. Fı́jese cómo esta definición es
lo suficientemente general para incluir cualquier ataque que involucre encontrar una imagen
Fk(m

′) = t′.
En primer lugar, se le permite al adversario consultar mensaje de cualquier longitud. Esto no

es trivial, puesto que un MAC que no genera una firma dependiente del tamaño del mensaje, se
considera insegura.

En segundo lugar, el adversario no está obligado a consultar mensajes M ′ coherentes con
ningún lenguaje, por lo que es más fácil encontrar falsificaciones en este experimento que en el
uso práctico de un MAC.
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Definición 6.1.2. Dado un esquema de autenticación Λ = (K,H, V ). Se dice que un MAC H
es infalsificable (o simplemente seguro), si la ventaja para cualquier adversario A ∈ CPA es
negligible.

AdvFORGE
H (A) := ForgeCPA

Λ (A) ≤ ϵ(q)

Gracias al Experimento 6.1.1, se entiende la estrecha relación entre un esquema de autenti-
cación y su correspondiente MAC. Esto es importante, debido a que no podemos hablar de la
seguridad de H sin tomar en cuenta su algoritmo V correspondiente. Note cómo esta definición
de seguridad es muy distinta a la indistinguibilidad Izquierda-Derecha que se escribió al final
del capı́tulo anterior.

Para poder garantizar la seguridad de un MAC para todo uso práctico, no es suficiente con
asegurar que cada firma sea indistinguible entre sı́. Dado que un MAC puede tener un dominio
mucho mayor que su rango, debemos considerar la facilidad con que se pueden encontrar firmas
iguales para mensajes distintos, i.e., su resistencia a las colisiones.

6.1.1. PRF como medida de seguridad

El motivo de haber estudiado tan minuciosamente la indistinguibilidad de una función pseu-
doaleatoria en los capı́tulos anteriores, se debe a que su naturaleza es muy útil para construir
códigos de autenticación de mensajes. En principio, si un MAC genera una firma empleando
una PRF, entonces falsificar la firma implica calcular una nueva entrada en la PRF tal que ge-
nere una salida idéntica a la firma. Debido a que una PRF es indistinguible de una función
aleatoria, es difı́cil adivinar el comportamiento de una PRF más allá de simplemente conocer su
distribución.

Para demostrar que la indistinguibilidad es una fuerte condición de seguridad, considere el
siguiente resultado:

Teorema 6.1.3. Sea F una función pseudoaleatoria asociada al esquema de autenticación Λ.
Entonces, Λ es indistinguible bajo el experimento ExpCPA-LR para cualquier adversario A ∈
CPA.

AdvLR
Λ (A) ≤ AdvPRF

F (B)

Demostración. Sea F : K × X → Y una función pseudoaleatoria y deje que Λ ∼ F sea un
esquema simétrico que emplea esta función como algoritmo de cifrado. Ası́,

IndCPA
Λ (A) = Pr

[
ExpCPA-1

Λ (A) ⇒ 1
]
− Pr

[
ExpCPA-0

Λ (A) ⇒ 1
]

= Pr
[
AFk(x1) ⇒ 1

]
− Pr

[
AFk(x0) ⇒ 1

]
Sin perdida de generalidad, considere una función aleatoria ρ

$←− Y X tal que

Pr
[
AFk(x0)⇒ 1

]
≥ Pr

[
Aρ(x0) ⇒ 1

]
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Podemos asumir esto, gracias a que F es también un sistema determinista. Dado un x fijo, un
adversario A con suficientes recursos tendrá una ventaja mayor contra cualquier instancia Fk

que para un ρ.
Suponga ahora un adversario B que pude seleccionar las entradas x1, x0.

∴ IndCPA
Λ (A) ≤ Pr

[
AFk(x1) ⇒ 1

]
− Pr

[
Aρ(x0) ⇒ 1

]
≤ Pr

[
BFk ⇒ 1

]
− Pr [Bρ ⇒ 1 ]

≤ AdvPRF
F (B)

Aplicando el Teorema 5.4.4, se concluye la prueba.

Es importante advertir de que en esta demostración, se ha llegado a la conclusión de que la
seguridad del esquema Λ se reduce a la seguridad de la función F relacionada con al algoritmo
de cifrado. Es necesario recordar esto, porque a partir de ahora se demostrará la seguridad de
un esquema a través de pruebas por reducción. Además, esto nos permite apreciar la estrecha
relación entre los esquemas de seguridad y sus primitivas.

Más aún, este resultado plantea una cuestión bastante interesante. Usualmente, asegurar la
privacidad de la comunicación (seguridad semántica) parecı́a ser una de las metas más impor-
tantes y, sobre todo, difı́ciles de lograr para un criptógrafo. Sin embargo, aquı́ se argumenta que,
de hecho, garantizar la autenticidad de un mensaje es una meta mucho más difı́cil de lograr.

La indistinguibilidad Izquierda-Derecha sólo garantiza que un adversario no pueda conocer
algo de información parcial sobre algún mensaje, pero esto indica nada sobre la integridad de
cada mensaje. No obstante, es evidente que asegurar la privacidad de las comunicaciones no
implica que seamos capaces de verificar la autenticidad de éstas. Además, robar información no
es la única manera en que un adversario puede hacer daño con nuestros mensajes.

6.1.2. Cota de cumpleaños
Recordemos que un adversario, en el experimento de falsificación, es capaz de interceptar

los mensajes y reemplazarlos con mensajes manipulados. Ingenuamente, se podrı́a pensar: un
esquema de autenticación que no filtra nada de información parcial sobre el mensaje es sufi-
ciente para ser seguro; pero ¿acaso existe una manera de falsificar un mensaje sin necesidad de
información alguna sobre el mensaje?

Imagine que se tiene un MAC basado en cifradores por bloques y un adversario que desea
encontrar una colisión entre dos mensajes distintos. Además, deje que el adversario consulte a
un oráculo en distintas entradas x1, x2, . . . , xq, tales que cada entrada es de la longitud máxima
del BC. Debido a que un cifrador por bloques es una familia de permutaciones, se sabe que
cualquiera de sus instancias siempre genera una secuencia y1, y2, . . . , yq distinta por pares. Por
el contrario, si el adversario estuviera interactuando con una función aleatoria, entonces existe
la posibilidad de que ocurra alguna colisión yi = yj dentro de la secuencia yq.

En teorı́a de la probabilidad, existe una ley que describe la facilidad de encontrar una coli-
sión, para un dominio dado, denominada “La paradoja del cumpleaños”. Ésta puede entenderse
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mejor al pensar sobre la cantidad de gente necesaria para encontrar dos personas con el mismo
cumpleaños. Cabe señalar que es una paradoja contra-intuitiva, no verı́dica. La intuición sugiere
que la probabilidad de encontrar esas personas crece linealmente, sin embargo, no es ası́. Antes
de enunciar el teorema principal, se considera resolver una serie de resultados importantes:

Lema 6.1.4. Sea 0 ≤ x ≤ 1. Entonces(
1− 1

e

)
· x ≤ 1− e−x ≤ x

Demostración. Dado que ex es una función continua, por el teorema del valor intermedio se
deduce que

e0 − e−x

0− x
=

1− 1
ex

−x
=

1

eα
≤ 1

para cualquier α ≥ 0. Ya que ex ≤ e para toda x ∈ [0, 1], entonces

x ≥ 1− 1

ex
≥ x · (1− 1

ex
) ≥ x · (1− 1

e
)

Simplificando, se obtiene el resultado deseado.

El resultado anterior nos permite comprobar la cota de cumpleaños.

Lema 6.1.5. Sea C(N, q) la probabilidad de que exista alguna colisión en una secuencia ωq =
ω1, . . . , ωq de elementos de un conjunto |Ω| = N . Entonces, la probabilidad de colisión está
acotada asintóticamente por

C(N, q) = Θ

(
q(q − 1)

N

)
para todo q ≤

√
2N .

Demostración.

(≤) Primero, considere q = 2. Dado ω1 fijo, entonces la probabilidad de que ocurra al menos
una colisión es

C(N, 2) = Pr [ω2 = ω1 ] =
1

N
Ahora, suponga que C(N, k) ≤ k(k − 1)/(2N) para todo N > k. Dados ω1, ω2, . . . , ωk,
entonces

C(N, k + 1) = Pr [ ∃j ≤ k : ωk+1 = ωj ] ≤
k∑

j< i

Pr
[
ωi+1 = ωi | ωi ̸= ωj

]
≤

k∑
i=1

i

N
=

k(k − 1)

2N
+

k

N
= C(N, k) +

k

N

Por inducción, se verifica la cota superior.

∴ C(N, q) ≤ q(q − 1)

2N
(6.1)
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(≥) Para la cota inferior, considere la probabilidad de que la secuencia ω1, . . . , ωk sea dis-
tinta por pares, i.e., el evento de que no exista ninguna colisión en una secuencia de k
elementos. Sea j < i. Entonces,

Pr
[
ωi+1 ̸= ωi | ωi ̸= ωj

]
= 1− C(N, i+ 1) = 1− i

N
(6.2)

Observe cómo este evento es complemento del caso anterior. Luego, dados ω1, ω2, . . . , ωq,
se tiene que

1− C(Ω, k) = Pr [ω1, . . . , ωk distinta por pares ]

=
k−1∏

1≤ j< i

Pr
[
ωi+1 ̸= ωi | ωi ̸= ωj

]
=

k−1∏
i=1

(
1− i

N

)
=

k−1∏
i=1

(
1− (1− e−

i
N )
)

=

q−1∏
i=1

e−
∑q−1

i=1 i/N = e−q(q−1)/2N

Ya que i/N < 1, se puede aplicar el Lema 6.1.4. También, sea q <
√
2N.

∴ C(Ω, k) = 1− e−q(q−1)/2N ≥
(
1− 1

e

)
q(q − 1)

2N
(6.3)

En conclusión, de (6.3) y (6.1) se sigue la inclusión Θ.

Sorprendentemente, un adversario aplicando el principio de la cota de cumpleaños puede
crear un ataque muy eficiente y barato, pues solamente tiene que consultar a su oráculo en dife-
rentes entradas hasta encontrar una colisión. A continuación, se muestra el resultado principal
en el ataque de la cota de cumpleaños.

Teorema 6.1.6. Sea E :
{
Ek | k ∈ K

}
una familia de permutaciones con |Dom(E)| = |Ran(E)| =

N . Entonces, existe un adversario A realizando a lo más q ≤
√
2N consultas, cuya ventaja en

el experimento ExpPRF es

AdvPRF
E (A) = Θ

(
q(q − 1)

2N

)
Demostración. Sea AO un distinguidor que consulta entradas distintas xi ∈ Dom(E) y detecta
colisiones en las respuestas yi ∈ Ran(E) de un oráculo. Su estrategia consiste de la siguiente
manera: si después de q consultas A detecta una colisión, entonces retorna 0; de otro modo, A
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retorna 1. Adicionalmente, deje que el oráculo se comporte como una familia de permutaciones
E en el Mundo 1 y ρ

$←− Y Y en el Mundo 0.
Dada una secuencia (xq, yq) de pares entrada-salida (xi, yi) ∈ Ω compatibles para ambos

oráculos, se presentan los siguientes casos para el Experimento 4.2.1:

Para el mundo real, Ek es una permutación. Por lo tanto, el distinguidor siempre retornará 1.

Pr [ExpPRF
1 (A) ⇒ 1 ] = Pr

[
AFk ⇒ 1

]
= Pr [Ek(x

q) = yq distinto por pares ]
= 1

Para el mundo ideal, ρ es una función aleatoria. Debido a esto, la probabilidad de que el dis-
tinguidor retorne 1 depende de la existencia de una colisión en (xq, yq), i.e., retorna 1 si yq es
distinto por pares.

Pr [ExpPRF
0 (A) ⇒ 1 ] = Pr [Aρ ⇒ 1 ]

= Pr [ ρ(xq) = yq distinto por pares ]
= 1− C(Y, q)

Percátese de que la probabilidad de este evento está dada por la cota de cumpleaños. Por último,
el Teorema 6.1.5 implica que la ventaja del adversario es

AdvPRF
E (A) = Pr [ExpPRF

1 (A) ⇒ 1 ]− Pr [ExpPRF
0 (A) ⇒ 1 ]

= 1− (1− C(Y, q))

= C(Y, q)

De esta manera, se concluye la demostración.

6.2. Construcción MAC
Intuitivamente, nos damos cuenta de que las funciones pseudoaleatorias son objetos muy

útiles para diseñar un MAC. Imagine un equipo de emisor-receptor que conoce una familia F

y selecciona al azar una clave secreta k
$←− Key(F ). Lo único que debe hacer el emisor para

enviar un mensaje m es firmar el mensaje como y = Fk(x), y luego, enviarlo por un canal
inseguro al receptor. Sin importar que tipo de mensaje-firma (x′, y′) reciba el receptor, él sólo
tiene que verificar que Fk(x

′) = y′ para asegurar que el mensaje llego integro y garantizar que
fue enviado por el emisor, el otro miembro que conoce la clave secreta.

Simultáneamente, un adversario que atrapa el par (x′, y′) se enfrenta con el siguiente proble-
ma. Suponga que en lugar de obtener mensajes con firmas producidas por una función pseu-
doaleatoria, obtiene firmas producidas por una función aleatoria. Reflexione sobre lo siguiente:
si un modelo es entrenado con datos y′

$←− Y como ruido aleatorio, entonces un adversario
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usando ese modelo nunca mejora sus probabilidades de lograr falsificar una firma y. Esto se
debe a que los datos son basura, ya que todos los valores y′ son obtenidos de una distribución
uniforme completamente al azar. Contemple cómo esta conclusión es similar a las mencionadas
en el Teorema 5.2.1 sobre la seguridad perfecta.

Teorema 6.2.1. Sea Λ un esquema de autenticación cuyo MAC F : K×X → Y es una función
pseudoaleatoria y sea A un adversario, bajo el experimento ExpFORGE, que realiza a lo más q
consultas de longitud µ. Por lo tanto, existe un adversario B bajo el experimento ExpPRF tal
que

AdvFORGE
F (A) ≤ AdvPRF

F (B) + q

|Y |

Demostración. Sea A ∈ CPA un adversario bajo el Experimento 6.1.1 y deje que ρ
$←− Y X

sea el algoritmo de cifrado relacionado con el esquema Λ. Por consiguiente,

AdvFORGE
ρ (A) = Pr [Vk(x, y) = 1 ] = Pr [ ρ(x) = y ] =

1

|Y |
Esto es directo, dada la Proposición 3.1.3. Suponga ahora que el algoritmo de cifrado F ∼ Λ
es una función pseudoaleatoria. Entonces, existe un adversario B bajo el Experimento 4.2.1 tal
que

AdvFORGE
F (A) = Pr [Vk(x, y) = 1 ] = Pr [Fk(x) = y ] ≤ Pr [ExpPRF

1 (B) ⇒ 1 ]

Observe cómo calcular la probabilidad del evento Fk(x) = y es una estrategia particular que
puede emplear B, no obstante, pueden existir mejores estrategias que retornen 1 para Fk.

∴ AdvFORGE
F (A)−AdvFORGE

ρ (A) ≤ Pr
[
BFk ⇒ 1

]
− Pr [Bρ ⇒ 1 ]

Ası́, por definición de función pseudoaleatoria,

AdvFORGE
F (A) ≤ AdvPRF

F (B) + 1

|Y |
En conclusión, si la ventaja de B es negligible, entonces F es un MAC infalsificable.

El resultado anterior es bastante estrecho, pues la seguridad del MAC está reducida a la
seguridad de una PRF. No obstante, para garantizar este nivel de seguridad es necesario que la
PRF tenga una entrada de tamaño arbitrario. Los MAC generalmente se diseñan haciendo uso
de primitivas criptográficas como los BC que sólo pueden procesar un bloque de tamaño fijo
a la vez. Debido a esto, un algoritmo MAC debe considerar cómo comprimir un mensaje a un
tamaño de bloque fácil de procesar para el cifrador por bloques, y que a su vez el algoritmo
tenga un comportamiento indistinguible de una función aleatoria.

Cuando los mensajes son más grandes que la longitud de los bloques, se procesa el mensa-
je empleando modos de operación para cifradores por bloques. Los principales modos de
operación, es decir, libro de código electrónico (Electronic Code Book, ECB), cadena de blo-
ques cifrados (Cipher Block Chaining, CBC) y el modo contador (Counter mode, CTR), nos
indican la manera en que un cifrador por bloques puede ser utilizado para cifrar mensajes muy
grandes sin comprometer su seguridad.
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6.2.1. Relación entre funciones y permutaciones pseudoaleatorias
Como discutimos en la sección anterior, la construcción habitual de un MAC emplea cifrado-

res por bloques y permutaciones públicas que se pueden modelar como familias de permutacio-
nes. Entre las permutaciones y las funciones pseudoaleatorias existe una estrecha relación muy
importante de conocer al diseñar un MAC. La relación PRP-PRF es un resultado que se refleja
del teorema del ataque de cumpleaños, el cual estipula que

Lema 6.2.2. [Lema PRF-PRP] Sea E :
{
Ek : Y → Y | k ∈ K

}
una familia de funciones con

|Y | = N y sea A un adversario que realiza a lo más q consultas. Dado k
$←− K y ρ

$←− Y Y ,
entonces ∥∥ Aρ −AEk

∥∥ ≤ q(q − 1)

2N

Como consecuencia, para cualquier adversario bajo ExpPRF se tiene que,

|AdvPRF
E (A)−AdvPRP

E (A) | ≤ q(q − 1)

2N

Demostración. Para demostrar esta proposición se hará uso de la técnica de coeficientes H
enunciada por Patarin (2009). En el siguiente capı́tulo, se abordará con más detalle qué son
estos coeficientes, por el momento considere lo siguiente:

Sea O1 el comportamiento del oráculo como una permutación aleatoria π
$←− Y † y sea O0

su comportamiento como función aleatoria ρ
$←− Y Y , |Y | = N . Entonces, dado un transcrito

w = (xq, yq) ∈ Ω,

Pr [O0 = w ]

Pr [O1 = w ]
=

Pr [π(xq) = yq ]

Pr [ ρ(xq) = yq ]
=

(N)q
N q

=
1

N
· 2
N
· · · N − q − 1

N

=

q−1∏
i=1

(
N − i

N

)
≤ 1− C(N, q)

Note cómo se ha empleado el resultado de la cota de cumpleaños (6.2), y que una permutación
sólo genera una secuencia yq de elementos distintos por pares. Por lo tanto, el cociente entre
una función aleatoria sobre una permutación aleatoria resulta en la cota de cumpleaños.

Ahora, suponga queAO es un distinguidor para un experimento PRF y PRP respectivamente.
Entonces,

Pr [Aρ ⇒ 1 ]

Pr [Aπ ⇒ 1 ]
≥ (N)q

N q
= 1− C(Ω, q) ≥ 1− q(q − 1)

2N

Luego, al despejar la variable aleatoria Aρ se sigue que

Pr [Aρ ⇒ 1 ] ≥
(
1− q(q − 1)

2N

)
· Pr [Aπ ⇒ 1 ] ≥ Pr [Aπ ⇒ 1 ]− q(q − 1)

2N
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Al aplicar las propiedades de la distancia estadı́stica 1.4.6,

∥ Aρ −Aπ ∥ ≤ q(q − 1)

2N

Por último, considere un distinguidor para una familia de funciones E compatible con los trans-
critos.

∴
q(q − 1)

2N
≥ Pr [Aρ ⇒ 1 ]− Pr [Aπ ⇒ 1 ]

≥ Pr [Aρ ⇒ 1 ]− Pr
[
AE ⇒ 0

]
− (Pr [Aρ ⇒ 1 ]− Pr

[
AE ⇒ 0

]
)

≥ AdvPRF
E A−AdvPRP

E A

Es notorio que
−q(q − 1)

2N
≤ Adv PRP

E (A)−Adv PRF
E (A)

Por lo tanto, la indistingubilidad de una PRP como PRF está acotada.

Este resultado es bastante útil, pues asegura que una función pseudoaleatoria y una permu-
tación pseudoaleatoria (que modelan un BC) pueden ser empleados para construir un MAC,
además de que cualquier MAC basado en un cifrador por bloques tiene una seguridad limitada
por el teorema del cumpleaños.

6.3. Más allá de la cota de cumpleaños
El lema PRP-PRF declara que la ventaja del adversario crece de manera asintótica al cua-

drado de las consultas O(q2/N). Esto implica que una clave de 128 bits solamente garantiza
64 bits de seguridad. Normalmente, lo anterior no es un problema, ya que solamente hay que
considerar claves de 256 para obtener la seguridad deseada de 128 bits. El problema es que
existen entornos de recursos limitados que no tienen el lujo de poder gastar más en recursos de
los que ya usan sus aplicaciones, como para permitirse almacenar claves mucho más grandes.
Los dispositivos como relojes, marcapasos, sensores inteligentes, accesorios “wearables” y en
general “El internet de las cosas” son entornos de bajos recursos (Dar et al., 2021; Naito, 2017).

La comunidad criptográfica ha hecho grandes esfuerzos para mejorar la seguridad de los
MAC, sin degradar el rendimiento del proceso de autenticación, a través de construcciones se-
guras “más allá de la cota de cumpleaños” (BBB por sus siglas en inglés). Esto significa que las
construcciones MAC BBB son confiables para más de 2n/2 consultas, donde n es el tamaño de
bloque del cifrador subyacente. La primera solución para superar la limitación de cumpleaños
es incorporar una estructura aleatoria para el procesamiento de cada parte del mensaje. Sin
embargo, los esquemas existentes requieren propiedades de cifrado de bloque muy sólidas: un
patrón de cifrado perfecto, resistencia a los ataques de claves asociadas o una cantidad relati-
vamente grande de entropı́a (Cogliati & Seurin, 2016). Una opción es implementar el método
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de transformación de PRP a PRF, como la construcción pEDM, que utiliza una sola permuta-
ción de n nits para construir una PRF con dos llamadas que no requieren la invertibilidad de la
permutación (Dutta et al., 2021).

6.3.1. Estado del arte

El primer MAC BBB demostrable conocido como SUM-ECBC fue propuesto por Yasuda
(2010). Este MAC está basado en un diseño genérico llamado “Digesto de Doble bloque luego
Suma” o DbHtS (Doble-block Hash then Sum), que genera dos digestos G y H de un mensaje
M , para luego sumar los dos bloques cifrados y entregar la salida DbHtS(M) = G(M)⊕H(M).
A partir de este diseño genérico, se propusieron distintos diseños de MAC BBB, por ejem-
plo: PMAC+, una versión modificada de PMAC que opera con tres claves; LightMAC+ (Naito,
2017), una modificación de LightMAC independiente de la longitud del mensaje y con un rendi-
miento mejorado, y GCM-SIV2, un modo de operación con memoria (stateful) o MACRX (Be-
llare et al., 1999), una construcción que suma bits entre mensajes de manera aleatoria.

Una generalización del diseño DbHtS conocida como “Digesto de Doble bloque luego Fun-
ción” o DbHtF (Double-block Hash-then-Function) calcula la salida a partir de una función
F que toma 2 digestos G y H de entrada, para obtener DbHtF(M) = F (G(M), H(M)). Por
ejemplo: NI+MAC (Dutta et al., 2015), una modificación del NI MAC basada en una función
de comprensión, con dos tuberı́as en paralelo para calcular la firma, y 3kf9 (Zhang et al., 2012),
una construcción basada en el modo CBC que emplea la estructura f9 para calcular la salida.
En general, todos los cifradores mencionados anteriormente se consideran DbHtF, de acuerdo
a Guo et al. (2020).

Un diseño genérico descubierto por Liskov et al. (2011) consiste en crear un MAC basado en
un TBC. Un TBC puede ser construido a través de emplear el modo de operación Xor-Encrypt-
Xor (XEX) con un BC, y al mismo tiempo, un TBC puede generar un MAC a partir de un diseño
dedicado como el propuesto por Iwata et al. (2017). Estos diseños suelen ser más seguros que
PMAC y logran procesar bloques de n+t-bits por llamada de cifrador. En general, es importante
encontrar funciones MAC más seguras y eficientes, que brinden seguridad más allá del lı́mite
de cumpleaños, por lo tanto, los TBC son una propuesta sobresaliente.

La Tabla 6.3.1 resume las caracterı́sticas y las construcciones MAC BBB relacionadas con
las funciones pseudoaleatorias. Las primitivas de subyacentes de cada sistema se denotan PP
(permutación pública), BC (cifrador por bloques), CF (Función de compresión) y las recientes
TBC (Cifrador por bloques entonable). Cabe mencionar que la seguridad mostrada en las tablas
son las cotas más estrechas demostradas para el momento, en especı́fico, para la seguridad de
CLRW2 que fue demostrada por Jha y Nandi (2020).

Se describe la seguridad de cada MAC con la notación de complejidad, el número de consul-
tas q, el tamaño de bits n por bloque, la longitud del mensaje l y, particularmente para MACRX,
la cantidad de t bits tomados al azar (Bellare et al., 1999). Todas estas construcciones se utilizan
para proteger los datos en entornos con recursos limitados que exceden de manera confiable el
lı́mite de cumpleaños.
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MAC Llaves Complejidad Seguridad Paralelo Primitiva Referencia
SUM-ECBC 4 O(l4q3/22n) 2n/3 × BC (Yasuda, 2010)
PMAC+ 3 O(l3q3/22n) 2n/3 ✓ BC (Yasuda, 2011)
GCM-SIV2 2 θ(l2q3/22n) 2n/3 × BC (Iwata & Minematsu, 2016)
3kf9 3 O(l3q3/22n) 2n/3 × BC (Zhang et al., 2012)
CLRW2 3 O(q3/2n+t) (n+ t)/3 × TBC (Landecker et al., 2012)
NI+ 1 O(l2q2/22n) 2n/3 × CF (Dutta et al., 2015)
LightMAC+ 3 θ(q3/22n) 2n/3 ✓ BC (Naito, 2017)
ZMAC 1 θ(q3/2n+t) (n+ t)/2 ✓ TBC (Iwata et al., 2017)
HPxHP 2 O(q3/22n) 2n/3 ✓ PP (Moch & List, 2019)
nEHtM 2 θ(q3/22n 2n/3 × PP (Dutta et al., 2019)
pEDM 2 θ(q3/22n) 2n/3 × PP (Dutta et al., 2021)
EliMAC 1 θ(

√
q2/22n−s) (n− s)/2 ✓ BC (Dobraunig et al., 2023)

6.3.2. Funciones HASH universales
Como ya se mencionó, existen distintas propuestas para mejorar la indistinguibilidad de una

construcción basada en BC como PRF. A continuación se describe una construcción genérica
bastante importante que nos permitirá diseñar un modo de operación resistente a las colisiones
denominada “casi xor universal”, o AXU por sus siglas en inglés.

SeaH :
{
Hk | k ∈ K

}
una familia de funciones con dominio X y rango Y para las siguien-

tes definiciones.

Proposición 6.3.1. La funciónH es llamada hash-casi-universal (ϵ−AU), si para todo x, x′ ∈
X se satisface que

máx
x′ ̸=x

Pr
k←K

[
Hk(x) = Hk(x

′)
]
≤ ϵ

donde ϵ es una función negligible.

En tal caso, si el valor de ϵ es nulo, entoncesH es una función hash universal.

Proposición 6.3.2. Sea (Y,⊕) un grupo abeliano. Luego, H es llamada una función casi-xor-
universal (ϵ−AXU), si para todo ∆ ∈ Y y cualesquiera x, x′ ∈ X se tiene que

máx
x′ ̸=x

Pr
k←K

[
Hk(x)⊕Hk(x

′) = ∆
]
≤ ϵ(n)

Observe que si una función es AXU , entonces también es ϵ−AU. Por último,

Proposición 6.3.3. Sea Y = {0, 1}n × {0, 1}t. Entonces H es llamada una función casi-
parcial-xor-universal ((n, t, ϵ)−pAXU), si para todo x, x′ ∈ X y ∆ ∈ {0, 1}n se cumple que

máx
x′ ̸=x

Pr
k←K

[
Hk(x)⊕Hk(x

′) = (∆, 0t)
]
≤ ϵ(n, t)

Las funciones AXU y pAXU son requerimientos esenciales para la construcción de los MAC
BBB. Sin embargo, es pertinente hacer las preguntas ¿Existen funciones AXU y pAXU que su-
peren la cota de cumpleaños? ¿En qué casos pueden existir? ¿Si existen, cómo las construimos?
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En los siguientes capı́tulos, se dará respuesta a estas preguntas mediante el estudio de la técnica
de los coeficientes H (que se mencionó brevemente en el Lema 6.2.2) y al analizar una pAXU
empleado por el esquema ZMAC dado más adelante.



Capı́tulo 7

Herramientas de la técnica-H

En el capı́tulo anterior, se hizo uso práctico de la técnica propuesta de los coeficientes H
para demostrar el Lema PRF-PRP. Ahora, se estudiará de manera minuciosa los teoremas de
suficiencia descubiertos por Patarin (2009). Esta técnica es uno de los logros más importantes
del enfoque moderno, sobre todo para el desarrollo de esquemas simétricos.

En este capı́tulo, vamos a unir todos las ideas estudiadas hasta ahora para entender por fin
la técnica principal que tanto buscábamos. Como se mencionó al final del Capı́tulo 2, no se
buscan listas de condiciones inagotables sobre cómo diseñar cifradores por bloques o códigos
de autenticación. Lo que se busca es una condición muy fuerte, que al cumplirse obtenga un
esquema con todas las propiedades de seguridad que hemos estudiado a lo largo de los Capı́tulos
5 y 6.

7.1. Condiciones de suficiencia
Antes de abordar los resultados principales de esta teorı́a, es importante tener en claro algunos

conceptos que enunciamos a continuación:

Definición 7.1.1. SeaA un adversario y O un oráculo. Un transcrito es una variable aleatoria
τ(AO) := (xq, yq), tal que para toda i ≤ q cada instancia xi, yi es dada recursivamente como

(xi, yi) :=
(
A(yi−1),O(xi)

)
Podemos advertir que para cualquier transcrito (xq, yq) ∈ Ω,

Pr
[
τ(AO) = (xq, yq)

]
= Pr [A(yq) = xq, O(xq) = yq ]

Recuerde que un oráculo y un adversario se modelan como sistemas probabilı́sticos, ambos
con sus respectivos espacios de probabilidad asociados a un espacio de monedas en particular.
Aunque no sea evidente en la definición, está implı́cito que tanto el adversario A como el
oráculo O son sistemas independientes.

69
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El transcrito es una abstracción que permite entender la interacción entre ambos sistemas
como un sólo conjunto de tuplas que conforman su comportamiento de entrada-salida (xq, yq)
de Ω. De esta manera, se puede hacer un análisis puramente probabilı́stico para realizar pruebas
de seguridad incondicional.

Definición 7.1.2. Deje que AO ∈ ATK sea un distinguidor genérico. Para dos funciones
distintas F y G, la ventaja incondicional del distinguidor es

⟨F,G⟩ :=
∣∣ Pr [AFk ⇒ 1

]
− Pr

[
AG ⇒ 1

] ∣∣
Además, para cada experimento de pseudoaletoriedad se tiene que

AdvPRF
F := máx

KPA
∆(F ; ρ)

AdvPRP
F := máx

CPA
∆(F ; ρ)

AdvSPRP
F := máx

CCA
∆(F±; ρ±)

AdvTPRP
F := máx

CPA
∆(F̂ ; ρ̂)

AdvTSPRP
F := máx

CCA
∆(F̂±; ρ̂±)

es la seguridad incondicional de F como PRF, o como PRP en sus respectivas versiones fuertes
y entonables.

Contemple cómo la seguridad incondicional es la ventaja máxima con la que se puede dis-
tinguir una familia. Esta ventaja se calcula sobre el mejor de los distinguidores posibles en
un modo de ataque, el cual está definido previamente por alguno de los experimentos vistos
en el Capı́tulo 4. Cabe agregar, que la seguridad incondicional de una función pseudoaleatoria
es análoga al concepto de indiferenciabilidad de una función quasi-aleatoria introducida por
Maurer (2002).

Encontrar al más poderoso de los adversarios bajo teorı́a de la información podrı́a parecer
una tarea bastante difı́cil, sin embargo, es aquı́ en donde aplicaremos los resultados obtenidos
sobre la distancia estadı́stica en el Capı́tulo 1.

Corolario 7.1.3. Sea Ω1 el soporte del distinguidor A. Dado un transcrito τ(AO). Entonces,
para cualesquiera dos familias F y G, se tiene que

⟨F,G⟩ ≤ ∥ τF − τG ∥

Más aún, la ventaja del distinguidor es óptima cuando

(xq, yq) ∈ Ω1 ⇔ Pr
[
τ(AFk) = (xq, yq)

]
≥ Pr

[
τ(AG) = (xq, yq)

]
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Demostración. Considere un distinguidor genérico AO y sea τ = (xq, yq) un transcrito cual-
quiera. Entonces,

Pr
[
AO ⇒ 1

]
= Pr

[
τ(AO) ∈ SopA

]
= Pr [A(yq) = xq,O(xq) = yq, ♭ = 1 ]

= Pr [ ♭(A(yq)) = 1,B = (xq, yq) ]

=
∑

(xq ,yq)∈SopA

Pr [B = (xq, yq) ]

= PB
τ (Ω1)

Como el distinguidor parte el conjunto de los transcritos, la clase Ω1 y Ω0, se cumple la des-
igualdad anterior. Luego, para dos funciones distintas, se sigue que

⟨F,G⟩ =
∣∣Pr [AF ⇒ 1

]
− Pr

[
AG ⇒ 1

] ∣∣ (7.1)

=
∣∣PF

X(Ω1)− PG
X(Ω1)

∣∣ (7.2)

≤ máx
Ω1

∣∣ PF
X(Ω1)− PG

X(Ω1)
∣∣ (7.3)

≤
∥∥ PF

X − PG
X

∥∥ = ∥ τF − τG ∥ (7.4)

Rememoré la Definición 1.4.6 sobre la notación para funciones de probabilidad o para variables
aleatorias que usamos en (7.4). Ahora, supongamos un distinguidor óptimo tal que

máx
ATK
⟨F, G⟩ = ∥ τF − τG ∥ (7.5)

⇒ ) Considere un transcrito en el soporte del distinguidor ω1 ∈ SopA. Luego, de (7.5) se
deduce que

∥ τF − τG ∥ = máx
ATK
⟨F, G⟩ = máx

Ω1

∣∣ PF
X(Ω1)− PG

X(Ω1)
∣∣

Por el Lema 1.4.8, se cumple que Ω1 ⊆ Ω≥.

∴ Pr
[
τ(AFk) = ω1

]
≥ Pr

[
τ(AG) = ω1

]
⇐ ) Ahora, considere un transcrito ω ∈ Ω≥ para dos funciones distintas. Entonces,

∥ τF − τG ∥ =
∑
τ∈Ω

máx{0, Pr
[
τ(AFk) = ω

]
− Pr

[
τ(AG) = ω

]
}

=
∑
τ∈Ω≥

∣∣ Pr [ τ(AFk) = ω
]
− Pr

[
τ(AG) = ω

] ∣∣
=
∣∣ PF

X(Ω≥)− PG
X(Ω≥)

∣∣
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Al aplicar (7.5), se resuelve que∣∣ PF
X(Ω≥)− PG

X(Ω≥)
∣∣ = máx

ATK
⟨F, G⟩ =

∣∣ PF
X(Ω1)− PG

X(Ω1)
∣∣

Por lo tanto, el transcrito pertenece al soporte del distinguidor ω ∈ Ω1.

Dado que se cumple la suficiencia y la necesidad, se concluye la prueba.

7.1.1. Coeficientes H
Uno de los mayores problemas al desarrollar un sistema criptográfico es cómo destilar una

familia de funciones de tal manera que su distribución sea uniforme. Se sabe que a pesar de
que existen múltiples maneras para construir una familia de funciones especı́fica, obtener una
familia cuyas instancias generen una distribución uniforme entre su dominio y rango es una
tarea monumental. Por este motivo, en el Capı́tulo 6 se introdujeron las funciones AXU.

Resumiendo, una función AXU no garantiza uniformidad, pero asegura que las irregularida-
des entre instancias esté acotada. De esta manera, Patarı́n desarrolla una serie de resultados para
secuencias de transcritos con probabilidad acotada, como las funciones AXU, a partir de una
medida nombrada coeficiente H .

Definición 7.1.4. Sea G : (Iq, X → X,K,B) un sistema de respuesta y deje que (aq, bq) ∈
Bi/o sea una secuencia de parejas (ai, bi) ∈ X , i = 1, . . . , q en el comportamiento, tal que
cada ai es distinta por pares. Se define el coeficiente H de G como

H(aq, bq) :=
∣∣ {k ∈ K | (ai, bi, k) ∈ B, ∀i ≤ q

} ∣∣
donde B es el comportamiento interno de G.

Aprecie como el sistema G define a su vez una aplicación G : K → XX . De este modo, los
coeficientes H también corresponden con la cardinalidad del conjunto{

k ∈ K | GK(ai) = bi ∀i ≤ q
}

En consecuencia, se denota H como la cantidad de instancias que mapean una secuencia aq a
exactamente una salida bq, i.e., la medida del espacio latente K.

Las herramientas de los coeficientes H constituyen 5 teoremas fundamentales que garanti-
zan seguridad incondicional bajo distintos modos de ataque: KPA, CPA, CCA y sus versiones
adaptativas. A continuación, se enuncian las condiciones de suficiencia para cada caso.

7.1.2. Seguridad bajo ataque de texto plano conocido
Teorema 7.1.5. [ Condición de suficiencia contra KPA ] Sean α, β números reales positivos y
|X| = N . Si para valores aleatorios (aq, bq) ∈ Ω (los elementos ai distintos por pares) con
Pr [ τ = (aq, bq) ] ≥ (1− β) siempre sucede que,

H ≥ |K|
N q

(1− α)
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entonces, la seguridad incondicional de una familia F es

AdvKPA
F ≤ α + β

contra cualquier adversario A ∈ KPA con q textos conocidos.

Demostración. Se denota D al conjunto de elementos aq ∈ X(q), tal que los elementos ai son
distintos por pares. Enseguida, considere un adversario A ∈ KPA y tome un aq ∈ D fijo para
los siguientes casos:

≤ ) Sea Ω1 el soporte del distinguidor A. Por lo tanto, para el mundo ideal:

Pr [Aρ ⇒ 1 ] = Pr [ ♭ (A(yq)) = 1, ρ(xq) = yq ] (7.6)

=
∑

bq∈Ω1(aq)

Pr [ ρ(aq) = bq ] (7.7)

=
∑

bq∈Ω1(aq)

1

N q
(7.8)

=
|Ω1(a

q) |
N q

(7.9)

donde Ω1(a
q) =

{
bq | (aq, bq) ∈ SopA

}
. Vea en (7.8) cómo se aplica la Proposición

3.3.7 sobre las URF. Luego, para el mundo real:

Pr
[
AFk ⇒ 1

]
=

∑
bq∈Ω1(aq)

Pr [Fk(a
q) = bq ]

=
∑

bq∈Ω1(aq)

q∏
1≤j<i

Pr [Fk(xi) = yi|Fk(xj) = yj ]

Debido a que Fk es una función, Pr [F (k, xi) = (yi) ] y Pr [F (k, xj) = (yj) ] son inde-
pendientes. Adicionalmente, ya que Fk es una función probabilı́stica,

Pr
[
AFk ⇒ 1

]
=

∑
bq∈Ω1(aq)

q∏
i=1

∑
k̂∈K :

F (k̂, ai) = bi

Pr
[
k̂ = k

]

Advierta de que K es el espacio de claves asociado al comportamiento F : X(q) → X(q)

de la función criptográfica F .

∴ Pr
[
AFk ⇒ 1

]
=

∑
bq∈Ω1(aq)

∑
k̂∈K, i ≤ q :

F (k̂, ai) = bi

1

|K|
(7.10)

=
∑

bq∈Ω1(aq)

H(aq, bq)

|K|
(7.11)



74 CAPÍTULO 7. HERRAMIENTAS DE LA TÉCNICA-H

Observe cómo el coeficiente H se obtiene a partir de (7.10). Ahora, se define B como la
cantidad de transcritos (aq, bq) ∈ Ω tales que

H(aq, bq) ≥ |K|
N q

(1− α)

Por hipótesis,

(1− β) ≤ |B|
|D| ·N q

Para un aq fijo, se define B(aq) como el conjunto de bq que satisface la hipótesis anterior.

∴ |B| =
∑
aq∈D

|B(aq)| ≥ |D| ·N q(1− β) (7.12)

De (7.11) se sigue que

Pr
[
AFk ⇒ 1

]
≥ γ

|K|
∑

Ω1(aq) ∩ B(aq)

H(aq, bq) (7.13)

≥ (1− α) · |Ω1(a
q) ∩ B(aq)|
N q

(7.14)

≥ (1− α) · |Ω1(a
q) | − |B∁(aq) |

N q
(7.15)

De (7.9) y (7.15),

Pr
[
AFk ⇒ 1

]
≥ (1− α) · |Ω1(a

q)| − |B∁(aq)|
N q

(7.16)

= (1− α) ·
(
|Ω1(a

q)|
N q

− |B
∁(aq)|
N q

)
(7.17)

= (1− α) ·
(
Pr [Aρ ⇒ 1 ]− |B

∁(aq)|
N q

)
(7.18)

≥ (1− α) ·
(
Pr [Aρ ⇒ 1 ]− |B

∁(aq)|
N q

)
− α · |B

∁(aq)|
N q

(7.19)

≥ Pr [Aρ ⇒ 1 ]− α · Pr [Aρ ⇒ 1 ]− |B
∁(aq)|
N q

(7.20)

≥ Pr [Aρ ⇒ 1 ]− α− |B
∁(aq)|
N q

(7.21)

Dado que 1 ≥ Pr [A(bq) = aq ] y 1 ≥ Pr [Aρ ⇒ 1 ], minimizamos (7.20). Enseguida, al
calcular la cantidad de bq /∈ B(aq),∑

aq∈D

|B∁(aq) +B(aq)| =
∑
aq∈D

|X(q)| = |D| ·N q
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De (7.12), se obtiene que

Ex
[
B∁(aq)

]
=

1

|D|
∑
aq∈D

|B∁(aq)| = N q − 1

|D|
∑
aq∈D

|B(aq)| (7.22)

≤ N q −N q(1− β) = β ·N q (7.23)

Luego, al aplicar (7.23) en (7.21),

Ex
[
AFk ⇒ 1

]
≥ 1

|D|
∑
aq∈D

[
Pr [Aρ ⇒ 1 ]− α− |B

∁(aq)|
N q

]
(7.24)

= Ex
[
Aρ ⇒ 1

]
− Ex

[
α
]
− Ex

[
|B∁(aq)|

Nq

]
(7.25)

= Ex
[
Aρ ⇒ 1

]
− α− 1

N q
· Ex

[
B∁(aq)

]
(7.26)

≥ Ex
[
Aρ ⇒ 1

]
− α− β (7.27)

Aquı́ sobresale cómo hemos aplicado las propiedades lineales de la esperanza para obte-
ner (7.27).

∴ Ex
[
Aρ ⇒ 1

]
− Ex

[
AFk ⇒ 1

]
≤ α + β (7.28)

Esto satisface la cota superior.

≥ ) Ahora, considere el complemento del distinguidor Ω0. Dado que B se calcula de manera
independiente al distinguidor, se puede replicar el mismo análisis hasta (7.27) tal que

Ex
[
AFk ⇒ 0

]
≥ Ex

[
Aρ ⇒ 0

]
− α− β

Esto es válido, puesto que se podrı́a pensar en un distinguidor Φ∁ como en uno genérico
que responde 1 cuando Φ responde 0.

∴ α + β ≥ Ex
[
Aρ ⇒ 0

]
− Pr

[
AFk ⇒ 0

]
(7.29)

≥ 1− Ex
[
Aρ ⇒ 0

]
− (1− Ex

[
AFk ⇒ 0

]
) (7.30)

≥ Ex
[
AFk ⇒ 1

]
− Ex

[
Aρ ⇒ 1

]
(7.31)

Por último, al aplicar el Corolario 7.1.3 en (7.28) y (7.31) se satisface que

AdvPRF
F = máx

KPA

(
Ex
[
AFk −Aρ

])
≤ α + β

En conclusión, la ventaja de cualquier adversario con una cantidad finita de textos planos
conocidos está acotada del modo deseado.
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7.1.3. Seguridad bajo ataque de texto plano elegido
El segundo y tercer teorema de los coeficientes H toman en cuenta un distinguidor bajo un

ataque de texto plano elegido.

Teorema 7.1.6. [ Condición de suficiencia contra CPA-1 ] Sean α, β números reales positivos.
Siempre que exista un subconjunto B(aq) ⊆ Y (q) con cardinalidad |B(aq)| ≥ (1 − β) · N q

para cada secuencia aq ∈ X(q) con elementos distintos por pares, tal que además para toda
bq ∈ B(aq) se cumpla que

H ≥ |K|
N q

(1− α)

entonces, la seguridad incondicional de una familia F es

AdvCPA
F ≤ α + β

contra cualquier adversario no adaptativoA ∈ CPA realizando a lo más q consultas de textos
planos.

Note cómo la diferencia principal entre KPA y CPA radica en la definición de B(aq). En el
Teorema 7.1.5 se calculan las posibles secuencias bq ∈ B(aq) especı́ficamente sobre la proba-
bilidad con que se toma un transcrito al azar dada una secuencia de entradas aq en el transcrito.
Esto restringe la estrategia del adversario a condiciones muy estrictas, tales como en un ataque
KPA.

En el Teorema 7.1.6, se toman todas las B(aq) correspondientes a cada secuencia aq, por lo
que la cantidad de posibles secuencias de salida bq ∈ B(aq) se calcula a partir de la cardinalidad
de este subconjunto, y no de la probabilidad dada de un transcrito. En este resultado, se consi-
deran todas las posibles secuencias de textos elegidos que puede seleccionar un adversario bajo
CPA.

Teorema 7.1.7. [ Condición de suficiencia contra CPA-2 ] Sean α, β números reales positivos
y B ⊆ Y (q) un subconjunto con cardinalidad |B| ≥ (1 − β) · N q. Si para todo transcrito
(aq, bq) ∈ Ω (con los elementos de aq distintos por pares) tal que bq ∈ B se cumple que

H ≥ |K|
N q

(1− α)

entonces, la seguridad incondicional de una familia F es

AdvCPA
F ≤ α + β

contra cualquier adversario A ∈ CPA, realizando a lo más q consultas de textos planos.

Advierta cómo el conjunto B ahora no está relacionado con alguna secuencia aq en especı́fi-
co. Más aún, sabemos que la cardinalidad de cualquier subconjunto de Y (q) está acotado. Esto
significa que este resultado es independiente de cualquier entrada ai seleccionada por un ad-
versario bajo CPA. El Teorema 7.1.7 es mucho más fuerte que el Teorema 7.1.6, ya que el
adversario podrı́a elegir la secuencia de pares óptima e incluso ası́, su ventaja estarı́a acotada.

Para entender mejor este resultado se realiza la demostración:
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Demostración. Sea (aq, bq) ∈ Ω un transcrito definido como 7.1.1 y deje que AΘ sea un distin-
guidor genérico bajo PRF. Entonces, para el mundo ideal:

Pr [Aρ ⇒ 1 ] =
∑

(aq ,bq)∈Ω1

Pr [ ρ(aq) = bq ] =
|Ω1|
N q

(7.32)

Recuerde que permitir al adversario consultar texto plano después de conocer el resultado del
oráculo, implica que su comportamiento es un sistema determinista. Luego, para el mundo real:

Pr
[
AFk ⇒ 1

]
=

∑
(aq ,bq)∈Ω1

Pr [Fk(a
q) = bq ] (7.33)

=
∑
τ∈Ω1

1

|K|

q∏
i=1

∣∣ {k ∈ K | Fk(ai) = bi
} ∣∣ (7.34)

=
∑
τ∈Ω1

H(aq, bq)

|K|
(7.35)

Observe cómo en (7.34) se aplica el coeficiente H. Por hipótesis, se tiene que cualquier subcon-
junto B ⊆ Y (q) relacionado con H está dentro del compacto (1 − β) · N q ≤ B ≤ N q. Por lo
tanto, existen a lo más β ·N q elementos b /∈ B. De (7.35) y (7.32) se deduce que

Pr
[
AFk ⇒ 1

]
≥ (|Ω1| − βN q) · H(aq, bq)

|K|
(7.36)

≥ |Ω1| − βN q

|K|
· |K|
N q

(1− α) (7.37)

≥
(
|Ω1|
N q
− β

)
· (1− α) (7.38)

≥ Pr [Aρ ⇒ 1 ]− β − α (7.39)

Replicando el mismo análisis para el complemento del distinguidor, se consideran los transcritos
en Ω∁

1. Entonces, al calcular las probabilidades de ambos mundos,

Pr
[
AFk ⇒ 0

]
≥ Pr [Aρ ⇒ 0 ]− β − α (7.40)

Esto se cumple, puesto que la hipótesis es simétrica para ambos conjuntos de transcritos.

∴ Pr [Aρ ⇒ 1 ] ≥ Pr
[
AFk ⇒ 1

]
− β − α (7.41)

Al aplicar el Corolario 7.1.3 en (7.39) y (7.41),

AdvPRF
F = máx

CPA
⟨F ; ρ⟩ ≤ α + β

En conclusión, la ventaja de cualquier adversario escogiendo adaptativamente textos planos está
acotada de la manera afirmada.
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7.2. Técnica H generalizada
Los Teoremas 4 y 5 del artı́culo (Patarin, 2009) enuncian las condiciones de suficiencia contra

los ataques de texto cifrado escogido. Ambos teoremas consideran un adversario adaptativo bajo
CCA. Por lo tanto, en lugar de enunciar los últimos dos teoremas, se describe una proposición
equivalente (sin pérdida de generalidad) que resume los teoremas de los coeficientes H para
cualquier tipo de adversario, pero antes tenga en cuenta la siguiente definición:

Definición 7.2.1. Sean H0 ∼ O0 y H1 ∼ O1 los coeficientes H relacionados con cada oráculo
respectivamente. Se define el conjunto de transcritos buenos respecto a α, β ∈ [0, 1] como

B :=
{
τ(AO)

∣∣∣ H1(τ)
H0(τ)

≥ 1− α
}

tal que
Pr
[
τ(AO) ∈ B

]
≥ 1− β

En el complemento, los transcritos τ /∈ B se denominan transcritos malos.

Ası́, el parámetro β limita la cantidad de transcritos malos posibles

β ≥ Pr
[
τ(AO) /∈ B

]
Mientras que el parámetro α son las claves que satisfacen

α ≥ 1− H1

H0

De estas relaciones, podemos hallar la siguiente equivalencia:

Proposición 7.2.2. Dados dos oráculos F y G, para todo transcrito bueno se satisface

Pr [F (aq) = bq ]

Pr [G(aq) = bq ]
≥ 1− α y Pr

[
τ(AG) /∈ B

]
≤ β

donde (aq, bq) ∈ B.

Demostración. Sean dos oráculos con espacio de claves K1 ∼ F y K0 ∼ G, respectivamente.
Acorde a la Definición 7.1.4, se deduce que

1 ≥ H1

|K1|
≥ H0

|K0|
Sin perdida de generalidad, asumimos que la relación entra la cantidad de claves que satisface
el coeficiente de F puede ser mayor que la relación con las claves de G, no obstante, podrı́amos
realizar una prueba equivalente para el otro caso. Luego, de la Definición 7.2.1,

H1 ≥ H0 · (1− α)

H1

|K1|
≥ H0

|K0|
· (1− α)

Pr [F (aq) = bq ] ≥ Pr [G(aq) = bq ] · (1− α)
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donde H1, H0 son los coeficientes respectivos de F,G. Conjuntamente, se satisface que la pro-
babilidad de τ(AG) ∈ B∁ es menor o igual a β.

Como mencionamos, en virtud de que α es arbitrario, se puede demostrar el caso contrario

1 ≥ H0

|K0|
≥ H1

|K1|

Incluso, existen α′ y β′ para acotar la relación PG ≥ PF y la probabilidad de τ(AF ) /∈ B,
respectivamente. Adicionalmente, juzgue cómo los transcritos buenos cumplen con la hipótesis
Ω> ⊆ B ⊆ Ω≥ del Lema 1.4.8 empleado en la distancia estadı́stica.

Corolario 7.2.3. [ Suficiencia de seguridad incondicional] Sean dos oráculos F y G. Enton-
ces, para todo transcrito bueno se cumple que

∥ F −G ∥ ≤ α + β

Demostración. A continuación, emplearemos la prueba dada por Jha y Nandi (2022) en su
Lema 3, para visualizar mejor cómo los resultados de Patarin convergen a esta conclusión.

Sea (aq, bq) un transcrito bueno. Entonces existen α y β tales que

∥ F −G ∥ =
∑

(aq ,bq)∈Ω

máx
{
0, PF

aq(b
q)− PG

aq(b
q)
}

≤
∑

(aq ,bq)∈Ω>

PF
aq(b

q)− PG
xq(yq)

≤
∑

(aq ,bq)∈Ω>

PF
aq(b

q) ·
(
1 − PF

aq(b
q)

PG
aq(b

q)

)
≤ α ·

∑
(aq ,bq)∈B

PF
aq(b

q) + α ·
∑

(aq ,bq)/∈B

PG
aq(b

q)

≤ α +
∑

(aq ,bq)/∈B

PG
aq(b

q) ≤ α + β

donde obtenemos la primera igualdad conforme a los Lemas 1.4.7 y 1.4.8 de la distancia es-
tadı́stica. Al aplicar el Corolario 7.1.3, incluso, se concluye que

AdvEXP
F ≤ ∥ F −G ∥ ≤ α + β

para cualquier adversario A ∈ ATK haciendo q consultas.
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Cabe mencionar, que este corolario resume los resultados de los teoremas de Patarin (2009)
con base al conjunto de transcritos buenos. Asimismo, la forma de seleccionar un transcrito
con buenos parámetros depende del experimento de indistinguibilidad que se considere. En
particular:

▶ Para A ∈ KPA, se deduce que

Pr [Fk(a
q) = bq ]

Pr [ ρ(aq) = bq ]
≥ 1− α

tal que |B| ≤ |D| ·N q · (1− β).

▶ Para A ∈ CPA, se colige que

Pr [Fk(a
q) = bq ]

Pr [ ρ(aq) = bq ]
≥ 1− α

tal que |B| ≤ N q · (1− β).

▶ Para A ∈ CCA, se resuelve que

Pr
[
F±
k (aq) = bq

]
Pr [π±(aq) = bq ]

≥ 1− α

tal que |B| ≤ |D| ·N2q · (1− β).

A continuación, describiremos la manera de modificar este resultado para considerar experi-
mentos con permutaciones entonables pseudoaleatorias.

7.2.1. Condición de suficiencia extendida
Como se mencionó, la técnica de los coeficientes H es bastante amplia, ya que puede ser

empleada en cualquier experimento PRF o SPRP; no obstante, se puede ampliar el uso de la
técnica para analizar los cifradores por bloques entonables. Recordemos que un TBC se modela
como una TPRP

P =
{
P

t

k : X → X | (t, k) ∈ K × T
}

que es una familia de permutaciones extendida por un espacio adjunto denominado espacio
de tonos. Con este fin, considere la siguiente modificación para los transcritos, dada por Jha y
Nandi (2022).

Definición 7.2.4. Sean A un adversario y O : X(q) −→ Y (q) × S un oráculo S-extendido. Se
define el transcrito extendido τ como

τ(AO) = τ(AO) :=
(
τ(AO), S(xq)

)
donde O := (O, S) es un sistema de respuesta con variable adjunta S.
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Advierta cómo el transcrito extendido revela la secuencia de pares entrada-salida, ası́ como el
tono empleado para generarlas. Esto implica que, el comportamiento observable para estudiar
un TBC consiste en las entradas xi, las salidas yi y el tono s. La única variable latente que se
considera es el espacio de claves de un TBC.

A continuación, se enuncia el teorema generalizado para la seguridad incondicional de siste-
mas extendidos contra cualquier adversario.

Teorema 7.2.5. [ Técnica H extendida ] Sean F := (F, T ) y G := (G, T ′) dos oráculos ex-
tendidos. Siempre que exista un subconjunto de transcritos buenos B ⊆ Ω en los transcritos
extendidos, sucede que la ventaja para cualquier adversario A ∈ ATK es

⟨F,G⟩ ≤
∥∥∥ τ(AF )− τ(AG)

∥∥∥ ≤ α + β

Demostración. Sea (xq, yq, s) ∈ Ω un transcrito extendido. Dado un tono t ∈ T fijo, se denota

Ω(t) :=
{
(xq, yq)

∣∣ (xq, yq, t) ∈ Ω
}

como el conjunto de transcritos simples. Luego, para un distinguidor genérico de F y G se sigue
que

Pr [ ♭(Ayq) = 1 ] ≤ Pr [ ♭(Ayq, t) = 1 ]

Esto se debe a que el adversario podrı́a elegir no usar la información de t para decidir el valor
de ♭.

∴ ⟨F,G⟩ ≤
〈
F ,G

〉
≤
∥∥ F −G

∥∥
Enseguida, de la Proposición 7.2.2 sabemos que existe un transcrito (xq, yq, t) ∈ B tal que

Pr [F (aq) = bq, T = t ]

Pr [G(aq) = bq, T ′ = t ]
≥ Pr [F (aq) = bq ]

Pr [G(aq) = bq ]
≥ 1− α

Como la variable T es independiente de F y G, se cumple la desigualdad izquierda. Paralela-
mente, la cantidad de transcritos τ(AG) /∈ B está acotada por β. En consecuencia, aplicando el
Corolario 7.2.3 se infiere que ∥∥ F −G

∥∥ ≤ α + β

En conclusión, la ventaja para distinguir cualesquiera dos sistemas está acotada de la manera
deseada.

Observe cómo hemos especificado un conjunto de transcritos buenos bien definido que nos
permite acotar la distancia estadı́stica entre dos sistemas de respuesta, en general.

Cabe mencionar que existe otra forma equivalente de formular el teorema del coeficiente H
extendido propuesta por Hoang y Tessaro (2016). Esta técnica, más conocida como método
del valor esperado, permite alcanzar una seguridad muy estrecha, al encontrar una función
negligible,

ϵopt (τ) =

{
1− PFk (xq ,yq ,s)

PO(xq ,yq ,s)
PO(xq, yq, s) > PFk(xq, yq, s)

0 de lo contrario
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de tal manera que un distinguidor cualquiera tiene ventaja

⟨F,G⟩ ≤
∥∥∥ τ(AF )− τ(AG)

∥∥∥ = Ex
[
ϵopt

(
τ(AO)

)]
de modo que la igualdad se cumple gracias al Corolario 7.2.3. Advierta cómo este resultado es
un caso particular para los parámetros óptimos α = ϵopt y β = 0 que garantizan la inexisten-
cia de transcritos malos. Como el nombre del método lo indica, esta técnica permite alcanzar
optimalidad siempre y cuando se pueda calcular el valor esperado con precisión y facilidad.

En el siguiente capı́tulo, veremos un ejemplo claro (el ZMAC) y mostraremos cómo elegir
los parámetros adecuados para un transcrito bueno, ası́ como su utilidad para las pruebas de
seguridad en esquemas de seguridad y autenticación.



Capı́tulo 8

Caso de estudio

Una de las propuestas más recientes respecto a esquemas de autenticación de mensajes es
el modo de operación propuesto por Iwata et al. (2017), denominado ZMAC. A diferencia,
de otros modos de operación basados en cifradores por bloques (BC), ZMAC permite emplear
cifradores por bloques entonables (TBC). Esto es una gran mejor, puesto que los MAC basados
en BC solamente procesan n bits por ejecución, mientras que ZMAC nos permite alcanzar n+ t
bits por ejecución. En resumen, ZMAC es un esquema que nos permite alcanzar seguridad más
allá de la cota de cumpleaños (BBB) con mayor cantidad de bits por ejecución, completamente
paralelizable y adaptable para cualquier TBC.

En este capı́tulo abordaremos en profundidad todos los aspectos técnicos de ZMA. Se hará
énfasis en las pruebas de seguridad y extenderemos el análisis de cada prueba mostrando cómo
los teoremas de los Capı́tulos 4, 5 y 7 nos garantizan una firma infalsificable.

Si bien, antes de exponer los resultados principales, es necesario introducir algunos conceptos
esenciales para la comprensión de este capı́tulo.

Definición 8.0.1. Dado un número naturales k, se define la operación one-zero-padding para
todo mensaje M ∈ {0, 1}∗ como

ozp(M; k) :=

{
M si k|m,

M∥10ν de lo contrario.

de modo que ν = (m mód n + t) − 1 es la cantidad de ceros para rellenar el mensaje y
m = |M| es la longitud del mensaje.

Definición 8.0.2. Sea A = a1, a2, . . . an una cadena de bits y sea

Ax := anx
n−1 + an−1x

n−2 + · · ·+ a2x+ a1

su representación como elemento del campo de Galois GF(2n). Entonces, se define la operación
doubling como

2Ax := x ·
n∑

i=0

aix
i−1 mód p(x)

83
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donde p(x) es el polinomio primitivo o generador de GF(2n).

Es oportuno mencionar que el grupo constituido por {0, 1}n y la operación XOR es isomorfo
a (GF(2n),+). Esto implica que siempre existe una transformación inversa entre ambas repre-
sentaciones A ≡ Ax. De este modo, la operación doubling está bien definida para cualquier
cadena de bits. En particular, para n = 128 se tiene el campo de Galois GF (2128) con el poli-
nomio generador usual x128 + x7 + x2 + x+ 1 tal que

2A =

{
A≪ 1 si a1 = 0,

(A≪ 1)⊕ (012010000111) si a1 = 1.

En donde la operación XOR (denotado ⊕) y el corrimiento circular ≪ son definidos de la
manera usual. Conjuntamente,

Definición 8.0.3. Sean X ∈ {0, 1}n y Y ∈ {0, 1}t. Se define la operación ⊕t como

X⊕t Y :=

{
VXWt ⊕Y si t ≤ n,
X∥0t−n ⊕Y si t > n.

Por consiguiente, la longitud total |X ⊕t Y| = t en cualquier caso. Ahora, se formaliza el
estudio de los TBC con la siguiente definición:

Definición 8.0.4. Un TBC E : {0, 1}t × {0, 1}k × {0, 1}n → {0, 1}n es una permutación
entonable con espacio de claves {0, 1}n y espacio de tonos {0, 1}t. Análogamente, un TBC es
un BC {0, 1}t-extendido.

Esto significa que Dom(E) corresponde con el conjunto de textos planos y Ran(E) con el
conjunto de textos cifrados. Adicionalmente, E tk denota una permutación especı́fica determinada
por t y k.

8.1. ZMAC

Para las siguientes definiciones sobre ZMAC deje que E : K × TI × {0, 1}n → {0, 1}n sea
un TBC con espacio de tonos TI := T × I9, en donde el espacio T = {0, 1}t se denomina
el tono mayor y la secuencia I9 el tono menor. Además, dado un ı́ndice m, se denota X =
X[1], . . . , X[m] como una cadena de m bloques, tal que cada bloque X[i] ∈ {0, 1}n+t.

Definición 8.1.1. Se define ZMAC como una PRF ZMAC[ Ek ] : K × {0, 1}∗ → {0, 1}2n con un
espacio de mensajes de tamaño arbitrario tal que
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ALGORITMO ZMAC[ Ek ]( M ):
X ← ozp(M; n+ t), m← |M | ◁ con X = X[1], . . . X[p] ∈ {0, 1}n+t

(U,V)← ZHASH[ E ] (X)
si (n+ t)|m entonces

regresa S← ZFIN[ E ] (0,U,V)
si no

regresa S← ZFIN[ E ] (4,U,V)

Algoritmo 8.1.1: Función pseudoaleatoria ZMAC

Advierta que ZMAC fue diseñado sobre la base de los esquemas Hash-then-MAC, especı́fi-
camente está inspirado en PMAC (Yasuda, 2011). Para comprender mejor la arquitectura de
ZMAC tenga en cuenta la siguiente definición dada por Black y Rogaway (2000).

Definición 8.1.2. Sea G : K × {0, 1}∗ → Y una función hash acorde a la Definición 6.3.1 y

sea F : L × Y → S una familia de funciones. Dadas las claves k0
$←− K y k1, k2

$←− L, se
define la construcción Carter-Wegman como

CW3[Gk0 , Fk1 , Fk2 ](m) :=

{
Fk1(Gk0(M)) si (n+ t)|m,
Fk2(Gk0(M)) de lo contrario.

tal que m = |M| es la longitud del mensaje.

En particular,ZMAC[ Ek ] es una instancia de la construcción CW3
[
ZHASH[ E ],ZFIN[ E ]0,ZFIN[ E ]4

]
constituido de la función ZHASH casi-universal y la función pseudoaleatoria ZFIN. Más ade-
lante, estudiaremos con detalle el funcionamiento de estos algoritmos en particular.

Por el momento, cabe destacar las siguientes propiedades computacionales de ZMAC:

1. Emplea una única clave k ∈ K.

2. Las ejecuciones del TBC E son paralelizables.

3. Procesa en promedio n+ t bits por bloque X[i].

4. Su seguridad está demostrada para una longitud total de

σ :=

q∑
i=1

|X[i]| ≤ 2mı́n{n,(n+t)/2}

con q bloques consultados por el adversario.
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Figura 8.1: Diagrama del funcionamiento de ZHASH

8.2. ZHASH

En primer lugar, se define la función ZHASH para t ≤ n, la que comprime las cadenas de
bloques Xm obtenidas del mensaje. Recuerde que una función Hash es una función digesto que
no puede ser invertida computacionalmente, y que posee cierta resistencia a las colisiones. En
el Capı́tulo 6 se introdujo sobre los principios de las funciones Hash universales.

Definición 8.2.1. Se define ZHASH como una función ZHASH[ E ] : [{0, 1}n+t]
(m) → {0, 1}n ×

{0, 1}t tal que

ALGORITMO ZHASH[ E ](X):
U ← 0n, V ← 0t

L← E9k(0t, 0n), R← E9k(0t−11, 0n)
para cada i ∈ Ip haz

(XL,XR)← X[i] ◁ Con |L| = n, |R| = t y cada |X[i]| = n+ t
Z← XL ⊕ L, T← XR ⊕t R

YL ← E
8

k(T,Z)
YR ← YL ⊕t XR

U ← 2(U ⊕YL)
V ← V ⊕YR

(L,R)← (2L, 2R)
regresa (U, V )

Algoritmo 8.2.1: Algoritmo de compresión ZHASH

Para entender mejor la función ZHASH, estudie el diagrama en la Figura 8.1. A continuación,
explicaremos los dos casos posibles:
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• Para un tono t ≤ n, en ZHASH[ E ] se calculan dos máscaras: una izquierda L := E9k(0t, 0n)
y una derecha R := E9k(0t−11, 0n). Ambas de la misma longitud |L| = |R| = n.

Dada una cadena de bloques X := X[1], . . . , X[p], el algoritmo ZHASH[ E ] divide ca-
da bloque X[i] en dos partes: se define XL[i] := VX[i]Wn como la entrada del TBC y
XR[i] := TX[i]Ut como el tono del TBC. Entonces, para cada ı́ndice i ≤ p se calcula

YL[i] = E
8

k(2
i−1R⊕t XR[i], 2

i−1L⊕XL[i]) (8.1)
YR[i] = YL[i]⊕t XR[i] (8.2)

Aprecie como las variables latentes T y Z corresponden al tono y la entrada del TBC E8.
Adicionalmente, ZHASH[ E ] calcula las variables U, V recursivamente:

U =

p⊕
i=1

2p−i+1YL[i] (8.3)

V =

p⊕
i=1

YR[i] (8.4)

De esta manera, ZHASH requiere una ejecución del TBC E y tres doublings en GF(2n)
por cada bloque de n + t bits. Esto, sin contar las dos ejecuciones iniciales para generar
las máscaras L y R.

• Para un tono t > n, se calculan las máscaras de la misma manera que el caso anterior. En-
seguida las variables U y V se calculan conforme a las ecuaciones (8.3) y (8.4). Examine
cómo (U,VV Wn) son los variables correspondientes al caso t = n. En cambio, denotamos

W := TV Ut−n = TXR[1]Ut−n ⊕ · · · ⊕ TXR[m]Ut−n (8.5)

como los t − n bits restantes de V . Esto, lo hacemos con el fin de estudiar por separado
las variables (U, V ) para el caso t = n y facilitar la demostración de seguridad al final
de esta sección. De igual manera, vea cómo W depende únicamente de los bloques del
mensaje X[1], . . . , X[p].

Observe que el algoritmo ZHASH[ E ] puede ser considerado como un algoritmo recursivo: el
caso base (núcleo) calcula el par (YL,YR) y el paso recursivo computa los valores (U, V ). Por
esta razón, primero describimos la siguiente construcción:

Definición 8.2.2. Sea P : K × {0, 1}t × {0, 1}n → {0, 1}n una permutación entonable y sea

H : Ł× S → {0, 1}n × {0, 1}t una familia de funciones. Dadas las claves k $←− K y ℓ
$←−Ł, se

define el esquema Xor-Tweak XT[P ,H ] como

XT[P ,H ]k,ℓ := Pk (T,W ⊕X) conHℓ(g) := (W, T) (8.6)
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Este esquema Xor-Tweak es un diseño genérico propuesto por Minematsu y Iwata (2015) para
procesar bloques en paralelo con seguridad CPA. En especı́fico, ZHASH emplea el esquema
denotado XE := XT[ E8,H ], que mapea

XE : (XR, (XL, i)) 7→ E
8

k(2
i−1R⊕t XR[i], 2

i−1L⊕XL[i]) (8.7)

en donde E8k es una permutación dada por el tono 8 y la clave k de nuestro TBC, en tanto que
H es una función que cumple la Definición 6.3.3. Este esquema es el componente nuclear del
algoritmo ZHASH[ E ] y nos permite procesar 2n − 1 bloques por ejecución.

Al mismo tiempo, para poder estudiar la seguridad de esta construcción, definimos el objeto
ideal XP := XT[π,H] como el esquema Xor-Tweak que emplea una TURP π como primitiva
criptográfica.

8.2.1. H como función parcialmente Casi-Xor-Universal
Una pieza crucial para el desarrollo del esquema XE fue encontrar una familia de funciones

con buena resistencia a las colisiones.

Definición 8.2.3. Sea H : Ł× S → {0, 1}n × {0, 1}t una familia de funciones con espacio de

claves Ł = {0, 1}n × {0, 1}n y dominio s = {0, 1}t × I2n−1. Dados L,R $←− Ł, se define

HL,R(S, i) := (2i−1L, 2i−1R⊕t S)

Para evaluar la seguridad del núcleo de ZHASH, primero probaremos que H es una función
Hash adecuada.

Lema 8.2.4. La funciónH es pAXU respecto a (n, t, ϵ) de modo que

ϵ(n, t) =
1

2n+mı́n{n,t}

Demostración. Se denota la probabilidad de colisión deH como

C(H, T, T ′) := Pr
L,R← Ł

[
HL,R(S, i)⊕HL,R(S

′, j) = (δ, 0t)
]

para dos tonos S ̸= S′ distintos. Luego, tenga en cuenta los dos casos siguientes:

(≤) Suponga t ≤ n. Entonces por la Definición 8.0.3, se sigue que

(δ, 0t) =
(
2i−1L, 2i−1R⊕t S

)
⊕
(
2j−1L, 2j−1R⊕t S

′ )
=
(
2i−1L, V2i−1RWt ⊕ S

)
⊕
(
2j−1L, V2j−1RWt ⊕ S′ )

=
(
2i−1L⊕ 2j−1L, V2i−1R⊕ 2j−1RWt ⊕ S⊕ S′ )
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Como R,L y S,S′ son independientes, entonces se pueden escribir las ecuaciones

δ = (2i−1 + 2j−1)L

∆S = V(2i−1 + 2j−1)RWt

en donde ∆S := S⊕ S′, acorde a la Proposición 3.1.6. Además, denotamos λh = 2i−1 +
2j−1 con h < n, para facilitar los cálculos. Note cómo i = j implica que

V2i−1RWt ⊕ V2i−1RWt = 0t ̸= ∆S

Esto se debe a que S y S′ son distintos. Por consiguiente, sólo es necesario tener en cuenta
los i ̸= j para que 2h sea un elemento distinto del nulo. También, aprecie cómo VλhRWt

cumple con las caracterı́sticas de la Proposición 3.1.7.

∴ C(H,S,S′) = Pr
L,R← Ł

[
δ = λhL

∆S = VλhRWt

]
= Pr [ δ = λhL ] · Pr

[
∆S = VλhRWt

]
=

1

2n
· 1
2t

=
1

2t+n

Ya que δ y ∆S son elementos fijos, el cómputo de la probabilidad se determina por la
distribución de las variables λhR, λhL sobre GF (2n).

(>) Suponga t > n. Entonces,

(δ, 0t) =
(
2i−1L, 2i−1R⊕t S

)
⊕
(
2j−1L, 2j−1R⊕t S

′ )
=
(
2i−1L, 2i−1R∥0t−n ⊕ S

)
⊕
(
2j−1L, 2j−1R∥0t−n ⊕ S′ )

=
(
2i−1L⊕ 2j−1L, (2i−1R⊕ 2j−1R)∥0t−n ⊕ S⊕ S′ )

De manera similar al caso anterior, se escribe el sistema de ecuaciones

δ = (2i−1 + 2j−1)L

∆T = (2i−1 + 2j−1)R∥0t−n

Para computar la probabilidad de colisión, tenga en cuenta que ∆T y 0t−n son elementos
fijos. Esto implica que existe la posibilidad de que T∆SUt−n ̸= 0t−n.

∴ C(H, T, T ′) = Pr
L,R

[
δ = λhL

∆S = LλhR∥0t−nM

]
= Pr [ δ = λhL ] · Pr

[
∆S = LλhR∥0t−nM

]
≤ 1

2n
· Pr [V∆S ′Wn = λhR ] ≤ 1

2n+n

En virtud de que descartamos la información de los últimos t − n bits, podemos obtener
una cota superior.



90 CAPÍTULO 8. CASO DE ESTUDIO

De ambos casos,

máx
S̸=S′

Pr
L,R←Ł

[
HL,R(S, i)⊕HL,R(S

′, j) = (∆, 0t)
]
≤ 1

2n+mı́n{n,t}

En conclusión,H es una función pAXU.

Ya demostrado que la construcción XT[E8,H] cuenta con un TBC y una función HASH, se
procede a probar la seguridad del esquema completo.

8.2.2. Seguridad del esquema XP

Para demostrar la seguridad del núcleo de ZHASH, considere los siguientes preliminares
(únicamente para esta sección):

Sea A ∈ CCA un adversario cuyo objetivo es distinguir XP de una TURP P̂ , usando a
lo más q consultas con capacidad de cómputo ilimitada. Sin perdida de generalidad, podemos
asumir un transcrito ℓ-extendido para un distinguidor genérico como

τ(AO) = ((s1, x1, y1), . . . , (sq, xq, yq), ℓ)

de tal manera que cada si es el tono mayor, cada xi es la entrada, cada yi es la salida y ℓ es la
clave de H. Asimismo, la estrategia del adversario consiste en consultar de manera adaptativa
secuencias (sq, xq) y obtener respuestas (yq, ℓ).

Para el mundo real: XP se construye con una TURP π
$←− T × Y † y una función pAXU

H : Ł× S → W × T , de tal manera que

Hℓ(si) = (wi, ti) (8.8)
zi = xi + wi (8.9)
yi = π(ti, zi) (8.10)

Abusando de la notación, la ecuación (8.8) representa dos elementos wi ∈ GF(2n) y ti ∈
GF(2t) dados por la imagen de Hℓ(si). Recuerde que ésta es una representación equivalente
para W = {0, 1}n y T = {0, 1}t.

De este modo, (8.9) es el proceso de enmascarar las entradas de la TURP, tal que xi + wi ∈
GF(2n). Por último, (8.10) expresa la salida de XP como yi ∈ GF(2n+t).

Para el mundo ideal: ϖ $←− S × GF(2n+t)† es una TURP que mapea

(si, xi) 7→ yi = ϖ(si, xi) (8.11)

Observe que los valores (wi, zi, ti) no tienen sentido alguno en el mundo ideal. Por este motivo,
asuma que las variables son dependientes de una clave ℓ

$←− Ł.
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Expuesto ambos mundos, aprecie cómo el transcrito τ determina de manera única los valores
(wi, zi, ti), de acuerdo a lo siguiente:

Definición 8.2.5. El conjunto de transcritos buenos de XP se define como

B =
{
τ(AO) | ∀j > i : (zi, ti) ̸= (zj, tj)

}
Esta definición implica que no existen colisiones en el dominio de π. Esto es importante,

puesto que el adversario puede encontrar colisiones triviales yi = yj en el mundo real simple-
mente seleccionando valores (sq, xq) que cumplan (zi, ti) = (zj, tj).

Para asegurarnos de queB es también un conjunto bueno respecto a α, β ∈ [0, 1], se enuncian
los siguientes lemas:

Lema 8.2.6. Todo transcrito bueno de XP satisface

Pr
[
XP = τ

]
Pr [ϖ = τ ]

≥ 1

Demostración. Sea τ = (sq, xq, yq) un transcrito bueno. Entonces, la probabilidad del oráculo
ideal es

Pr [ϖ = τ ] = Pr [ϖ(sq, xq) = yq, L = ℓ ] (8.12)
= Pr [ϖ(sq, xq) = yq ] · Pr [L = ℓ ] (8.13)

=
1

|Ł|

q∏
i=1

1

2n − ai
(8.14)

donde ai es la cantidad de i < j entradas consultadas con el mismo tono mayor gj = si.
Luego, recuerde que el transcrito determina de manera única el tono menor y la entrada de π

a través del sistema de ecuaciones anterior. Por lo cual, la probabilidad del oráculo real es

Pr
[
XP = τ

]
= Pr [ π(tq, zq) = yq, L′ = ℓ ] (8.15)
= Pr [ π(tq, zq) = yq ] · Pr [L = ℓ ] (8.16)

=
1

|Ł|

q∏
i=1

1

2n − bi
(8.17)

donde bi es la cantidad de i < j entradas consultadas con el mismo tono menor ti = tj .

Supongamos que si = sj . De (8.8),

Hℓ(si) = (wi, ti) = (wj, tj) = Hℓ(sj)

Por consiguiente, wi = wj . Por definición de B y de (8.9), se infiere que

zi = xi ⊕ wi ̸= xj ⊕ wj = zj

En consecuencia, la cantidad de ı́ndices en ai está dado por la cantidad de xi ̸= xj bajo
control del adversario.
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Supongamos ahora que ti = tj . De nuevo, se deduce que zi ̸= zj acorde a la definición
de transcrito bueno.

Esto implica que la cantidad de ı́ndices en bi depende de la cantidad de xi ̸= xj dis-
tintos o de los wi ̸= wj distintos. Paralelamente, percátese cómo cada (wi, ti) está en
correspondencia con un si bajo control del adversario, gracias a la funciónHℓ.

∴ bi =
∣∣ {i < j | xi ̸= xj

}
∪
{
i < j | si ̸= sj

} ∣∣ (8.18)

≥
∣∣ {i < j | xi ̸= xj

} ∣∣ = ai (8.19)

Por último, al aplicar (8.14), (8.17) en (8.19)se cumple que

2n − bi ≤ 2n − ai
1

2n − ai
≤ 1

2n − bi
q∏

i=1

1

2n − ai
≤

q∏
i=1

1

2n − bi

Pr [ϖ = τ ] ≤ Pr
[
XP = τ

]
En conclusión, se satisface la hipótesis para el parámetro α.

Adicionalmente, debemos comprobar que la Definición 8.2.5 cumple con la hipótesis de los
coeficientes H.

Lema 8.2.7. Para todo transcrito malo se satisface

Pr [ τ(Aϖ) /∈ B ] ≤ q2

2
ϵ

Demostración. De la Definición 8.2.5 se sabe que el conjunto de transcritos malos es

B∁ =
{
τ | ∃i < j : (zi, ti) = (zj, tj)

}
Advierta cómo cualquier estrategia del adversario para distinguir ϖ de XP implica encontrar
un transcrito malo.
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Entonces, en el mundo ideal, las variables si, ti, wi son dependientes de la distribución de ℓ.

∴ Pr [ τ(Aϖ) /∈ B ] ≤ máx
CCA

Pr
[ (

(sq, xq, yq), ℓ
)
∈ B∁

]
= máx

(si,xi) ̸=(sj ,xj)

∑
i<j≤q

Pr [ (zi, ti) = (zj, tj) ]

= máx
(si,xi )̸=(sj ,xj)

∑
i<j≤q

Pr
ℓ←Ł

[
(xi + wi, ti) = (xj + wj, tj)

]
= máx

(si,xi )̸=(sj ,xj)

∑
i<j≤q

Pr
ℓ←Ł

[
(wj + wi, tj + ti) = (xj + xi, 0)

]
= máx

(si,xi )̸=(sj ,xj)

∑
i<j≤q

Pr
ℓ←Ł

[
(wj, tj) + (wi, ti) = (∆x, 0)

]
≤
∑
i<j≤q

máx
(si,xi) ̸=(sj ,xj)

Pr
ℓ←Ł

[
Hℓ(si) +Hℓ(sj) = (∆x, 0)

]
≤
∑
i<j≤q

ϵ =

(
q

2

)
· ϵ =

q · (q − 1)

2
ϵ

donde ∆x := xi + xj ∈ GF(2n). Vea cómo el Lema 8.2.4 se emplea para acotar los transcritos
malos. En conclusión, se satisface la hipótesis para el parámetro β.

De esta manera, demostramos que la definición de transcritos buenos es suficiente para ga-
rantizar la seguridad del esquema XP . A continuación, terminaremos la prueba considerando
el esquema nuclear de ZHASH.

Corolario 8.2.8. Sea XP el esquema de la Definición 8.2.2, con una TURP π : {0, 1}t ×
{0, 1}n → {0, 1}n y ses H una función acorde a la Definición 8.2.3. Por lo tanto, la seguridad
incondicional del esquema como TPRP es

AdvTPRP
XP
≤ q2

2n+1+mı́n{n,t}

para todo adversario realizando a lo más q consultas.

Demostración. De los Lemas 8.2.6 y 8.2.7, se deduce que α = 0 y β = q2ϵ/2. Finalmente, al
aplicar el Teorema 7.2.5 se concluye la prueba.

Ası́, queda demostrada la seguridad del núcleo XP . Más adelante, explicaremos cómo sus-
tituir el esquema real ZHASH[ E ] en el esquema ideal ZHASH[ π ]. Por el momento, estudiaremos a
ZHASH como si fuera el esquema ideal.
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8.2.3. ZHASH como función hash universal
Como comprobamos en la sección anterior, el caso base de ZHASH es seguro, sin embargo,

ZMAC pide una función hash ϵ-universal para completar la construcción Carter-Wegman.
Para ello, considere la siguiente función:

ZHASH[XP ] : ozp(M) 7→ XT [π,H]k,ℓ(X)

que mapea cada mensaje M a un hash creado por XP , de acuerdo a la Definición 8.2.2. Para
mostrar que ZHASH es una función resistente a las colisiones, efectuaremos el mismo análisis
realizado en el artı́culo Iwata et al., 2017.

Lema 8.2.9. Para toda m,m′ ≤
√
ϵ, la probabilidad de colisión de ZHASH[XP ] es

C(ZHASH[XP ],m,m′) ≤ 4

2n+mı́n{n,t} = ϵ

Demostración. Deje que ∆V := V + V ′ y ∆U := U + U ′. Entonces, la probabilidad de
colisión de ZHASH es

C(ZHASH[XP ],m,m′) = Pr

[
∆U = 0n

∆V = 0t

]
Ahora, conforme a las ecuaciones (8.3) y 8.4 se tiene el sistema de ecuaciones

∆U =
m⊕
i=1

2m−i+1YL[i] +
m′⊕
j=1

2m
′−j+1Y′

L[j]

∆V =
m⊕
i=1

YR[i] +
m′⊕
j=1

Y′
R[j]

Por el Corolario 8.2.8, el mapa XP es una permutación entonable aleatoria.

XP :
(
XR, [XL, i]

)
7→ π(2i−1R⊕t XR[i], 2

i−1L⊕XL[i]) (8.20)

Observe cómo está es la misma Construcción 8.7 para una TURP π. De este modo, de (8.1) y
(8.2), se sigue que la variable YL[i] es independiente de cada bloque X[i] = XR[i]∥XL[i], a su
vez, YL[j] es independiente de YR[i],YL[i] para cada i > j.

Por consiguiente, evaluamos los siguientes casos con t ≤ n:

Para m′ = m:

• Suponga que existe un h ∈ Im tal que X[h] ̸= X′[h] y que X[i] = X′[i] para todo
i ̸= h. Entonces,

∆U =
m⊕
i=1

2m−i+1
(
YL[i] +Y′

L[i]︸ ︷︷ ︸
∆L

)
= 2m−h+1∆L ̸= 0n
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donde se deduce que YL[h] ̸= Y′
L[h] puesto que son una permutación de X[h] y

X′[h], respectivamente. De lo contrario,

∆V =
⊕
i≤m

(
YR[i] +Y′

R[i]︸ ︷︷ ︸
∆R

)
= ∆R[h] = XR[ℓ]⊕X′

R[ℓ] ̸= 0t

Esto implica que no puede existir una colisión para un único ı́ndice h.

• Suponga dos ı́ndices h, s ∈ Im que satisfacen X[h] ̸= X′[h] y X[s] ̸= X′[s].
Entonces,

∆U = 2m−h+1∆L[h] + 2m−s+1∆L[s] +
⊕

i/∈{h,s}

2m−i+1∆L[i]︸ ︷︷ ︸
δ1

∆V = ∆R[h] + ∆R[s] +
⊕

i/∈{h,s}

∆R[i]︸ ︷︷ ︸
δ2

Observe que ∆1 y ∆2 son variables independientes de (∆R[h],∆L[h]) y (∆R[s],∆L[s])
a causa de la separación de dominios en la Construcción 8.20. Además, los ı́ndices
h y s determinan tonos distintos a los tonos dependientes de i.

Deje que λh = 2m−h+1, λs = 2m−s+1 y considere una colisión

[
∆U = 0n

∆V = 0t

]
⇔
[
λh∆L[h]⊕ λs∆L[s] = δ1
∆R[h]⊕∆R[s] = δ2

]
⇔
[
λh∆L[h]⊕ λs∆L[s] = δ1
V∆L[h]⊕∆L[s]Wt = δ2 ⊕XR[h]⊕X′

R[h]⊕XR[s]⊕X′
R[s]

]

Podemos asumir el siguiente sistema equivalente:

(
λh λs

1 1

)(
∆L[h]
∆L[s]

)
=

(
δ1
δ3

)

En virtud del caso anterior, se sabe que el determinante es λh ⊕ λs ̸= 0 porque h, s
son distintos. De lo contrario, no es posible una colisión. Por ende, el mapa X[i] 7→
(δ1, δ3) tiene una única solución. De este modo, la distribución de las variables se
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encuentra sobre GF(2n) \ {0} en el peor de los casos.

∴ Pr

[
∆U = 0n

∆V = 0t

]
≤ máx

δ1 ∈ GF(2n)

δ2 ∈ GF(2t)

Pr

[
λh∆L[h]⊕ λs∆L[s] = δ1
V∆L[h]⊕∆L[s]Wt = δ2

]

≤ máx
δ1 ∈ GF(2n)

δ2 ∈ GF(2t)

∑
δ3 ∈ GF(2n) :

Vδ3Wt = δ2

Pr

[
λh∆L[h]⊕ λs∆L[s] = δ1

∆L[h]⊕∆L[s] = δ3

]

≤ máx
δ1 ∈ GF(2n)

δ2 ∈ GF(2t)

∑
δ3 ∈ GF(2n) :

Vδ3Wt = δ2

1

2n − 1
· 1

2n − 1

≤ 2n−t · 2
2n
· 2
2n

=
4

2n+t

Para m′ ≤ m+ 1, se tienen las ecuaciones

∆U =
⊕
i≤m

2m−i+1YL[i]⊕
⊕

i≤m+1

2m+1−i+1Y′
L[i]

= 2
(
Y′

L[m+ 1]⊕ 2Y′
L[m]⊕YL[m]⊕

⊕
i≤m−1

2m−i∆L[i]︸ ︷︷ ︸
δ1

)

y

∆V =
⊕
i≤m

YR[i]⊕
⊕

i≤m+1

Y′
R[i]

= VY′
L[m+ 1]⊕ 2Y′

L[m]⊕YL[m]Wt ⊕
⊕

i≤m−1

∆R[i]︸ ︷︷ ︸
δ2

Conforme al caso anterior, se deduce que δ1 y δ2 son variables independientes de YL[m]
y YL[m+ 1]. Sean A = Y′

L[m+ 1]⊕YL[m] y B = YL[m]. Entonces, se tiene que

(
1 2
1 1

)(
A
B

)
=

(
δ1
δ2

)
(8.21)

Como A y B son independientes entre sı́, gracias a la separación de dominios (establecida
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por m+ 1) es fácil ver que este sistema tiene una única solución.

∴ Pr

[
∆U = 0n

∆V = 0t

]
≤ máx

δ1 ∈ GF(2n)

δ3 ∈ GF(2t)

Pr

[
A+ 2B = δ1

VA+BWt = δ2

]

≤ máx
δ1 ∈ GF(2n)

δ2 ∈ GF(2t)

∑
δ3 ∈ GF(2n) :

Vδ3Wt = δ2

Pr

[
A+ 2B = δ1
A+B = δ3

]

≤ máx
δ1 ∈ GF(2n)

δ2 ∈ GF(2t)

∑
δ3 ∈ GF(2n) :

Vδ3Wt = δ2

1

2n
· 1
2n

≤ 2n−t

22n
=

1

2n+t

En este caso, percátese que A y B son variables aleatoriamente uniformes tomadas de
GF(2n).

Para el caso m′ > m,

∆U = 2
(
Y′

L[m
′]⊕ 2Y′

L[m
′ − 1]⊕

⊕
i≤m′−2

2m
′−i+1∆L[i]︸ ︷︷ ︸
δ1

)

∆V = V Y′
L[m

′]⊕Y′
L[m

′ − 1]⊕
⊕

i≤m′−2

∆R[i]︸ ︷︷ ︸
δ2

Wt

Observe que δ1 y δ2 son independientes de Y′
L[m

′] y Y′
L[m

′ − 1]. Además, en este caso
m− 1 < m ≤ m′, de otro modo estarı́amos dentro del caso anterior. Sean A = Y′

L[m
′] y

B = Y′
L[m

′ − 1]. Entonces, se obtiene de nuevo el sistema (8.21).

∴ Pr

[
Y′

L[m
′]⊕ 2Y′

L[m
′ − 1 = δ1

Y′
L[m

′]⊕Y′
L[m

′ − 1] = δ2

]
≤ 1

2n+t

Reflexione cómo Y′
L[m

′],Y′
L[m

′ − 1] son independientes en cualquier caso, gracias a la
Construcción 8.20.

Para finalizar, asumimos que t > n con m′ ≥ m. En este caso, se obtiene una ecuación extra
acorde a lo definido en (8.5):

∆W = W +W ′ =
⊕
i≤m

TXR[i]Ut−n ⊕
⊕
i≤m′

TX′
R[j]Ut−n
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Inmediatamente, de las ecuaciones (8.1) y (8.2), se obtiene el nuevo sistema

∆U =
⊕
i≤m

2m−i+1YL[i]⊕
⊕
j≤m′

2m
′−j+1YL[j]

∆V =
⊕
i≤m

V∆R[i]Wn ⊕
⊕
j≤m′

V∆R[j]Wn

∆W =
⊕
i≤m

T∆R[i]Ut−n ⊕
⊕
j≤m′

T∆R[j]Ut−n

Advierta cómo (∆U,∆V ) conforma un sistema de ecuaciones independientes similar a los
casos anteriores, sin olvidar que ∆W corresponde con los últimos t− n bits de ∆V . Más aún,
en este caso, el sistema depende de ∆W para tener una única solución.

Si ∆W ̸= 0t−n, entonces para un ı́ndice i ≤ m′ se cumple que XR[i] ⊕X′
R[i] ̸= 0t, puesto

que X[i] y X ′[i] son distintos. De otro modo, el sistema no presenta solución, lo que indica que
no es posible una colisión.

Dicho lo anterior, para que ocurra una colisión (∆U,∆V,∆W ) = (0n, 0n, 0t−n), podemos
asumir que la probabilidad es máxima si se satisface que

YL[m]⊕ 2YL[m− 1] =
⊕

i<m−1

2m−i+1∆L[i]︸ ︷︷ ︸
δ1

YL[m]⊕YL[m− 1] =
⊕

i<m−1

V∆R[i]Wn ⊕XR[m]⊕XR[m− 1]︸ ︷︷ ︸
δ2

(8.22)

Observe cómo este sistema corresponde al caso t = n.

∴ Pr

[
∆U = 0n

∆V = 0n

]
≤ 4

22n

De esta manera, podemos afirmar que en cualquier caso ϵ no es mayor que 4/2n+mı́n{n.t}.

Esto concluye que la probabilidad de colisión de ZHASH es negligible para un ϵ(n, t) y una
cantidad de q consultas dadas. En consecuencia, se cumple el primer requisito para la construc-
ción ZMAC[ Ek ].

Es oportuno mencionar que los valores X[i] son controlados por el adversario, ası́, inclusive
para un TBC con longitud de tono t muy grande, no se tiene una probabilidad mayor a 1/22n.
Conjuntamente, no se puede concluir que la función ZHASH es casi-Xor-Universal. Esto se
debe a qué en el primer caso V + V ′ ̸= 0n o la suma U +U ′ ̸= 0t, lo que entra en conflicto con
la Definición 6.3.2.
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Figura 8.2: Esquema ZFIN

8.3. ZFIN
El algoritmo ZFIN es el mecanismo que nos permite generar una firma de 2n bits segura,

desde los valores U, V obtenidos de ZHASH, de la siguiente manera:

Definición 8.3.1. Se define ZFIN como una función ZFIN[ E ] : I9×{0, 1}n×{0, 1}t → {0, 1}n
tal que

ALGORITMO ZFIN[ E ]( i,U,V ):
YL ← E ik(V,U)⊕ E i+1

k (V,U)
YR ← E i+2

k (V,U)⊕ E i+3
k (V,U)

regresa Y ← LYL∥YRM

Algoritmo 8.3.1: Algoritmo de salida ZFIN

Note que i es un número natural que sirve para obtener una separación de dominio entre cada
permutación E ik. Siempre y cuando |i− j| ≥ 4, las funciones ZFIN[ E ](i, u, v) y ZFIN[ E ](j, u, v)
son distintas e independientes. Ası́, para el caso de un mensaje M que requiera padding se
define i = 0 y para el otro caso se define i = 4.

Para demostrar que ZFIN es una función PRF, y de este modo cumplir con el segundo requi-
sito de la construcción Carter-Wegman, se necesita definir la siguiente construcción:

Definición 8.3.2. Sean P1 y P2 dos permutaciones independientes. Entonces, la función

SUM2[P1, P2](X) := P1(X)⊕ P2(X)

se denomina suma de permutaciones para toda entrada X ∈ {0, 1}n.

Esta definición es crucial para el análisis de ZMAC, ya que que ZFIN es una instancia de
SUM2. En especı́fico, se denota Z FIN[P ] como la construcción ideal de ZFIN con una TURP

P : (i, U, V ) 7→ SUM2[P i, P i+1](U, V )∥SUM2[P i+2, P i+3](U, V )
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tal que i ∈ {0, 4}, y U, V son obtenidos de ZHASH[XP ]. Para entender mejor el funcionamiento
de ZFIN[ Ek ] observe la Figura 8.2.

8.3.1. Seguridad PRF de ZFIN

Ya que SUM2 es un caso general de la estructura de ZFIN, se demuestra la seguridad de
SUM2 haciendo uso de los coeficientes H, de manera similar al análisis propuesto por Jha y
Nandi (2022).

Lema 8.3.3. Sea A un adversario realizando a lo más q ≤ 2n−4 consultas. Entonces,

AdvPRF
SUM2 ≤

( q

2n

)3/2
Demostración. Sea τ = (xq, yq) un transcrito bueno. Luego, para cada j < i:

Pr [ SUM2[P1, P2](x
q) = yq ] =

q∏
i=1

Pr
[
P1(xi)⊕ P2(xi) = yi | P1(xj)⊕ P2(xj) = yj

]
=

q∏
i=1

∑
ŷi∈Y

Pr
[
P1(xi) = ŷi, P2(xi) = yi ⊕ ŷi | P1(xj)⊕ P2(xj) = yj

]

En vista que P1 y P2 son distintas, se tiene el siguiente sistema independiente:

Pr [ SUM2[P1, P2](x
q) = yq ] =

q∏
i=1

∑
ŷi∈Y

Pr

[
P1(xi) = ŷi
P2(xi) = yi ⊕ ŷi

∣∣∣∣ P1(xj)⊕ P2(xj) = yj

]

=

q∏
i=1

∑
ŷi∈Y

1

2n − ai
· 1

2n − bi

Recuerde que ai y bi son la cantidad de ı́ndices j respectivos. Luego, para calcular la cantidad
de elementos ŷi ∈ Y , asumimos que se satisface a lo mucho

P1(xj)⊕ P2(xj)⊕ P2(xi)︸ ︷︷ ︸
uj

̸= P1(xi) ̸= P1(xj)︸ ︷︷ ︸
vj
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Esto implica que existe un ŷi /∈
{
uj, vj | j < i

}
para cada ı́ndice j.

∴ Pr [ SUM2[P1, P2](x
q) = yq ] ≥

q∏
i=1

|Y \ {uj, vj}|(
2n − |{vj}|

)(
2n − |{uj}|

)
≥

q∏
i=1

2n − 2(i− 1)(
2n − (i− 1)

)(
2n − (i− 1)

)
≥

q∏
i=1

2n − 2(i− 1)(
2n − (i− 1)

)(
2n − i+ 1

) · 2n
2n

≥
q∏

i=1

22n − 2n+1(i− 1) + (i− 1)
(
i− 1

)
22n − 2n+1(i− 1) + (i− 1)2

· 1
2n

≥
q∏

i=1

(
1− (i− 1)2

22n − 2n+1(i− 1) + (i− 1)2

)
· 1

2nq

≥
q∏

i=1

(
1− (i− 1)2

22n−1

)
· 1

2nq

Suponiendo que 2n+1(i− 1) < 2n+1 < 22n−1, se colige que

Pr [ SUM2[P1, P2](x
q) = yq ] ≥

(
1− 2

q∑
i=1

(i− 1)2

22n

)
· 1

2nq

≥
(
1− 2

3

q3

22n

)
· 1

2nq

≥
(
1− q3

2n

)
· 1

2nq

≥
(
1− q3

22n

)
· Pr [ ρ(xq) = yq ]

tal que ρ es una TURP con rango Y = {0, 1}n. Ası́, aplicando el Teorema 7.1.7 con α = q3/22n

y β = 0, se concluye que SUM2 es segura.

Es suficiente con emplear la técnica H de la manera usual, para demostrar la seguridad de la
suma de dos permutaciones. Por lo tanto, podemos concluir lo siguiente:

Corolario 8.3.4. SeaA un adversario realizando a lo más q ≤ 2n−4 consultas contra Z FIN[P I ].
Entonces, para cada i ∈ {0, 4} se satisface que

AdvPRF
ZFIN[P I ]

≤ 2
( q

2n

)3/2
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Demostración. Deje que Zi(U, V ) := Z FIN[P ](i, U, V ). Entonces,

AdvPRF
ZFIN[P I ]

≤ AdvPRF
Zi+Zi+1

+AdvPRF
Zi+2+Zi+3

≤ AdvPRF
SUM2[Zi,Zi+1]

+AdvPRF
SUM2[Zi+2,Zi+3]

≤
( q

2n

)3/2
+
( q

2n

)3/2
Esto se cumple conforme al Lema 8.3.3.

Recuerde que la construcción ZFIN consiste en una firma de 2n-bits, que se obtiene al conca-
tenar Zi+Zi+1∥Zi+2+Zi+3. Dicho de otra manera, el adversario requiere resolver dos veces el
problema de SUM2, puesto que cada permutación P I(i, U, V ) es distinta debido a la separación
de dominios que se obtiene con los tonos pequeños i, i+ 1, i+ 2, i+ 3.

8.4. Probabilidad de falsificación de ZMAC

Finalmente, después del análisis a la seguridad de ZHASH y ZFIN, estamos preparados para
analizar la seguridad de la construcción ZMAC. No obstante, antes de enunciar el teorema
principal es importante entender cómo se componen los dos algoritmos.

Recuerde que ZMAC[ Ek ] es una instancia de la construcción Carter-Wegman que a su vez es
un caso particular del esquema genérico Hash-then-PRF. Éste tiene la siguiente propiedad.

Lema 8.4.1. Sea G : H ×M → S una función hash-casi-universal ϵ−AU y sea ρ
$←− Y Y una

función aleatoria. Entonces

AdvPRF
[G,ρ] ≤

(
q

2

)
ϵ

para cualquier adversario A ∈ CPA.

Demostración. Sean τ = (mq, yq, h) el transcrito extendido, F := [G, ρ] la construcción Hash-
then-PRF y φ

$←−MY una función aleatoria. Se define el conjunto de transcritos buenos como

B :=
{
τ(AO) | ∀i < j : xi ̸= xj

}
donde xi = Gh(mi) es el hash de cada mensaje con clave h ∈ H . Observe cómo esto implica
que la probabilidad de encontrar un transcrito malo depende de la probabilidad de colisión de
G.

∴ Pr [ τ /∈ B ] ≤ máx
m1,...,mq

∑
i<j

C(G,mi,mj) ≤
(
q

2

)
ϵ
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Luego, para los transcritos buenos,

Pr [ ρ(G(mq)) = yq, H = h ] =
1

|H|
· Pr

[
ρ(G(mq)) = yq | H = h

]
=

1

|H|
· Pr [ ρ(xq) = yq ]

=
1

|H|
· 1

|Y |q

= Pr [φ(mq) = yq, H ′ = h ]

Esto implica que α = 0 y β =
(
q
2

)
ϵ. Por último, la prueba se concluye con el Teorema 7.2.5.

8.4.1. Cota de seguridad de ZMAC
Finalmente, dado los resultados anteriores, llegamos al resultado principal enunciado en el

siguiente teorema:

Teorema 8.4.2. La construcción ZMAC[ Ek ] es infalsificable contra cualquier adversario con
ventaja

AdvFORGE
ZMAC[ Ek ] ≤ AdvTPRP

E +
q

22n
+

5σ2/2

2n+mı́n{n,t} + 4
( q

2n

)3/2
realizando a lo más q ≤ 2n−4 consultas.

Demostración. Sea A un adversario bajo el experimento PRF. Entonces, del Teorema 6.2.1,

AdvFORGE
ZMAC[ Ek ] ≤ AdvPRF

ZMAC[ Ek ](A) +
q

22n
(8.23)

Recuerde que ZMAC es una instancia de la Construcción 8.1.2. Por definición de TPRP existe
un adversario B tal que

AdvPRF
ZMAC[ Ek ] = AdvPRF

CW3[ZHASH[XE ],ZFIN[ E ]0,ZFIN[ E ]4]
(A)

≤ AdvPRF

CW3[ZHASH[XP ],ZFIN[π ]0,ZFIN[π ]4]
(A) +AdvTPRP

E (B)

Al aplicar el Lema 8.2.9 y el Corolario 8.3.4, se deduce que

AdvPRF
ZMAC[ Ek ] ≤ AdvTPRP

E (B) +AdvPRF

CW3[ZHASH[XP ],F0,ZFIN[π ]4]
(A) +AdvPRF

ZFIN[π ]4

≤ AdvTPRP
E (B) +AdvPRF

CW3[ZHASH[XP ],F0,F4](A) +AdvPRF
ZFIN[π ]0

+AdvPRF
ZFIN[π ]4

≤ AdvTPRP
E (B) +AdvPRF

CW3[G,F0,F4]
(A) +AdvPRF

ZFIN[π ]0
+AdvPRF

ZFIN[π ]4
+AdvTPRP

XP

≤ AdvTPRP
E (B) +AdvPRF

CW3[G,F0,F4]
(A) + 4

( q

2n

)3/2
+

q2

2n+1+mı́n{n+t}
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Debido a quéZFIN[π ]0 yZFIN[π ]4 son PRF, podemos reemplazarlas por dos funciones aleatorias
F0 y F4. Por último, se aplica el Lema 8.4.1 para obtener la seguridad de CW3 y se emplea el ϵ
del Lema 8.2.9 para obtener la probabilidad de colisión de ZHASH.

∴ AdvPRF
ZMAC[ Ek ] ≤ AdvTPRP

E (B) + q2

2
· 4

2n+mı́n{n,t} +
q2/2

2n+mı́n{n,t} + 4
( q

2n

)3/2
(8.24)

De (8.23) y (8.24) se concluye la prueba.

De este modo, se concluye que ZMAC es una MAC segura, ya que se ha demostrado que la
probabilidad de falsificar una firma generada por ZMAC[ Ek ] es negligible.

8.5. Trabajo futuro
Una vez replicada la cota de seguridad de ZMAC y expuesto cómo emplear los teoremas de-

mostrados en esta tesis, sobre todo la técnica H, hemos descubierto varias áreas de oportunidad
para mejorar la eficiencia e incluso maximizar la seguridad de ZMAC. Resumimos nuestras
observaciones con las siguientes propuestas:

8.5.1. Propuestas de modificaciones a ZMAC
Al estudiar la probabilidad de colisión de ZHASH, notamos que es posible redefinir el caso

t > n para obtener seguridad 2n+t en cualquier caso:
En primer lugar, consideramos un TBC como (2020) tal que su espacio de tonos es mayor

que su entrada. De este modo, redefinimos las ecuaciones 8.1 y 8.2 para el caso t ≥ n:

YL[i] = E
8

k(2
i−1S⊕XR, 2

i−1Ł⊕XL) (8.25)

YR[i] =
(
YL[i]∥ · · · ∥V2h−1YL[i]Wt

)
⊕XR[i] (8.26)

en donde h es el entero tal que h − 1 < t/n ≤ h y la máscara Ł se define de la manera usual.
Además, definimos la máscara

S := VR[1]∥ · · · ∥R[h]Wt

para las variables R[j] := E9k(1j0t−i, 0n) con j ≤ h. Simultáneamente, vea que este diseño
puede alcanzar mayor eficiencia al procesar n+ t > 2n bits por ejecución del TBC.

El propósito de esta modificación es lograr que las TV Ut−n sean independientes de cada
bloque X[1], . . . , X[p] del mensaje. De esta manera se redefine el sistema de ecuaciones (8.22)
como

YL[m]⊕ 2YL[m− 1] = δ1

YL[m]∥ · · · ∥V2h−1YL[m]Wt ⊕YL[m− 1]∥ · · · ∥V2h′−1YL[m− 1]Wt] = δ2
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Es importante aclarar que para asegurar que este sistema tenga una única solución, se deben
evaluar los casos donde

V2h−1YL[m]Wt ⊕ V2h
′−1YL[m− 1]Wt = Tδ2Ut−n = 0t−n

para evitar conflictos con la hipótesis de YL[m],YL[m− 1] distintos. Esto dificulta el análisis,
dado que el adversario puede controlar el parámetro h = h′ y buscar colisiones internas con la
definición.

Una solución más general, consiste en redefinir la relación (8.26) como una función hash que
mapea

G : (S,XR[i]) 7→ T

los valores de la máscara y los últimos t bits del bloque X (para generar un tono adecuado para
ZFIN). Buscar dicha función es una tarea complicada y va más allá del alcance de esta tesis

Otra manera sencilla para modificar ZMAC es encontrar una función pAXU que sea más
eficiente que la función H descrita en la Definición 8.2.3. Esto se debe a que observamos que
la demostración de seguridad de la Construcción 8.2.2 es independiente del Lema 8.2.4.

8.5.2. Propuesta para la técnica H

Como definimos en el Capı́tulo 7, la Definición 7.2.1 describe un trascrito bueno para el
comportamiento de cualquier sistema probabilı́stico. Es importante destacar que la definición
original de comportamiento dada por Polderman y Willems (1997) está definida sobre cualquier
sistema dinámico, incluyendo espacios continuos y diferenciables.

Esto es de particular importancia para esquemas basados en sistemas caóticos, puesto que la
relación

H1(τ)

H0(τ)
≥ 1− α

permite acotar el comportamiento de cualesquiera dos sistemas probabilı́sticos con cantidad de
claves H1 y H0.

Por el momento, la Definición 7.1.4 solamente contempla sistemas probabilı́sticos con espa-
cio finito:

H(aq, bq) :=
∣∣ {k ∈ K | (ai, bi, k) ∈ B, ∀i ≤ q

} ∣∣
No obstante, como acabamos de mencionar, la probabilidad de un transcrito (aq, bq) ∈ Ω con
i ≤ q; ai, bi ∈ R, puede ser calculada si hacemos uso de un σ-álgebra de Borel para construir
un sistema probabilı́stico.

Claro, es necesario analizar si la construcción de dicho sistema probabilı́stico con un espacio
de tiempo T , un espacio muestral Ω ⊆ R × R, un espacio latente K y un comportamiento
B ⊆

(
Ω × K

)T , no entra en contradicción con alguna de las suposiciones que realizamos en
nuestras demostraciones de seguridad.
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En nuestro trabajo demostramos, que partir de un transcrito en el comportamiento de un
sistema probabilı́stico, podemos obtener las mismas conclusiones de suficiencia que mostra-
ron Patarin (2009) y Jha y Nandi (2022). Por ello pensamos que generalizar la técnica H para
conjuntos continuos es posible de realizar, introduciendo conceptos avanzados de probabilidad
como las σ-álgebras.

8.5.3. Conclusión
Este trabajo presenta una introducción bastante detallada sobre la seguridad demostrable en

cifradores por bloque, en especı́fico en esquemas de autenticación. Incluso, explicamos concep-
tos avanzados sobre la Técnica H y las pruebas de seguridad.

Se ha realizado un estudio extenso de distintos artı́culos, con pruebas rigurosas, enlazando
y homogeneizando los distintos resultados que en ellos se encuentran. Esperamos que la te-
sis sea de gran utilidad para criptógrafos e informáticos que deseen estudiar más a fondo las
construcciones PRF y sus aplicaciones.
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