CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

Unidad Zacatenco

Departamento de Computacion

Analisis de la seguridad de
implementaciones de GIFT-COFB
contra ataques por canales laterales
basados en el consumo de potencia

Tesis que presenta

Rogelio Calvillo Juarez

para obtener el Grado de

Maestro en Ciencias en Computaciéon

Directores de la Tesis

Dra. Brisbane Ovilla Martinez
Dr. Cuauhtemoc Mancillas Lopez

Ciudad de México Diciembre 2024

II

Resumen

Este trabajo evalia la seguridad de las implementaciones de software del cifra-
dor GIFT-COFB frente a ataques por canales laterales, especificamente utilizando
CPA (Correlation Power Analysis) para detectar posibles fugas de informacion. Se
analizaron tres variantes del algoritmo: fixslicing, bitslicing y la versién secuencial.
Los resultados indican que la variante fixslicing proporciona una mayor resistencia a
los ataques por canales laterales en comparacion con bitslicing y la implementacion
secuencial, aunque a costa de un mayor niimero de trazas necesarias para recuperar la
clave. Fixslicing también genera més falsos positivos, lo que incrementa la dificultad
para identificar correctamente la clave, pero sigue siendo posible obtenerla con un
numero suficiente de trazas. Por otro lado, bitslicing ofrece una menor proteccion,
pero requiere menos trazas para ejecutar con éxito el ataque.

A pesar de que GIFT-COFB fue finalista en la competencia del NIST para algo-
ritmos de cifrado ligero, se demostré que el modo COFB no elimina la vulnerabilidad
a los ataques por canales laterales. Ademas, se observo que en el estado del arte existe
una escasez de trabajos que exploren especificamente las implementaciones de GIFT-
COFB en sus versiones fixslicing y bitslicing. Esto subraya la necesidad de realizar
més investigaciones sobre la seguridad de estas implementaciones, dada su creciente
relevancia en el ambito de la criptografia ligera.

III

v

CAPITULO 0. RESUMEN

Abstract

This work evaluates the security of software implementations of the GIFT-COFB
cipher against side-channel attacks, specifically using CPA (Correlation Power Analy-
sis) to detect potential information leaks. Three variants of the algorithm were analy-
zed: fixslicing, bitslicing, and the sequential version. The results indicate that the
fixslicing variant provides greater resistance to side-channel attacks compared to bits-
licing and the sequential implementation, although at the cost of requiring a larger
number of traces to recover the key. Fixslicing also generates more false positives,
increasing the difficulty in correctly identifying the key, but it is still possible to re-
cover it with a sufficient number of traces. On the other hand, bitslicing offers lower
protection but requires fewer traces to successfully execute the attack.

Although GIFT-COFB was a finalist in the NIST lightweight cryptography com-
petition, it was demonstrated that the COFB mode does not eliminate vulnerability
to side-channel attacks. Additionally, it was observed that there is a lack of studies
specifically exploring GIFT-COFB implementations in their fixslicing and bitslicing
versions. This highlights the need for further research on the security of these imple-
mentations, given their increasing relevance in the field of lightweight cryptography.

VI

CAPITULO 0. ABSTRACT

Agradecimientos

En primer lugar dedico esta tesis a mi familia por todo su enorme apoyo durante
toda mi vida.

Agradezco enormemente a mis asesores el Dr. Cuauhtemoc Mancillas Lopez y la
Dra. Brisbane Ovilla Martinez por todas sus ensefianzas y su gran paciencia.

Al igual que mis amigos de toda la vida y a mis amigos que hice del CINVESTAV,
en especial a Josue Alberto con el que comparti muchas aventuras y aprendizajes.

Agradezco al Departamento de Computacion del CINVESTAV Zacatenco por dar-
me la oportunidad de estudiar su programa de posgrado, asi como al CONAHCYT
por brindarme la beca durante mis estudios de maestria.

VII

VIII CAPITULO 0. AGRADECIMIENTOS

Indice general

Resumen

Abstract

Agradecimientos

Indice de figuras

Indice de tablas

1. Introduccién

1.1.
1.2.
1.3.
1.4.

Propuesta
Objetivos generales y especificos del proyecto
Preliminares y notacion
Organizacion de la Tesis

2. GIFT-COFB

2.1.

2.0.1. Funcibnderonda,
2.0.2. Generacion de claves deronda
Técnicas de implementacion en arquitecturas Cortex-M
2.1.1. Bitslicing
2.1.2. Fixslicingo o

3. Ataques por canales laterales

3.1.

3.2.

3.3.
3.4.
3.5.
3.6.

Ataques de anélisis de potencia
3.1.1. Analisis de potencia simple
3.1.2. Analisis de potencia diferencial
Distinguidores Lo
3.2.1. Correlacional
3.2.2. Informacion Mutua L
Modelos de consumo de potencia
Relacion senal aruido Lo Lo oL
Descripcion deun ACL oo
Plataforma experimetal
3.6.1. Ecosistema ChipWhisperer

IX

111

VII

XI

XIII

O O Ot =

12
14
14
15

INDICE GENERAL

X
3.6.2. ChipWhisperer Nano 25
3.6.3. ChipWhisperer Lite 26
4. Implementaciéon de los ataques 29
4.1. Implementacion Secuencial L. 29
4.1.1. Modelode consumo 29
4.1.2. Reconstruccion de la clave 30
4.1.3. Configuracion del ataque 31
4.2. Implementacion bitslicing 32
4.2.1. Modelode consumo 33
4.22. SNR . . . e 34
4.2.3. Reconstruccion de laclave 34
4.2.4. Flujo completo del ataque 39
4.3. Implementacion fixslicing oL 41
4.3.1. Modelode consumo 41
4.3.2. Reconstruccion de las claves 42
4.4. Estadodelarte 45
5. Resultados 47
5.1. Implementaciéon Secuencial 47
5.1.1. GIFT-64 e 47
5.1.2. GIFT-128 49
5.2. Implementacion bitslicing 0oL 49
52.1. GIFT-64 e 50
5.2.2. GIFT-128 e 51
5.3. Implementacion fizslicingo 52
53.1. GIFT-128 53
5.4. Porcentaje de éxito de las distintas versiones 55
6. Conclusiones 59
Bibliografia 61
A. 65
A.1. Instalacion de ChipWhisperer 65
A.2. Libretas python y carga del firmware 66
B. Apendice 2 71
B.1. Manejo de las herramientas ChipWhisperer 71
B.1.1. Scope e 71
B.1.2. Target e 72
B.1.3. Auxiliares 73
B.1.4. Codigo plantilla para realizar la captura de los datos 73

INDICE GENERAL X1

C. 75
C.1. Algoritmo criptogréafico personalizado 75
C.1.1. Proyecto principal 75

C.1.2. Makefile 7

C1.3. Crypto . . . o o o oo 78

XII

INDICE GENERAL

Indice de figuras

2.1. Dosrondas de GIFT-64 [1].
2.2. Cifrado autenticado de COFB para tres bloques de datos asociados y
texto plano.
2.3. Representacion ciibica del estado de GIFT-64, cada color hace referen-
cia a un distinto slice mientras que los bits seleccionados en negro son
a los cuales se les aplica lacaja S [2].
2.4. Representacion cibica del estado de GIFT-128, cada color hace refe-
rencia a un distinto slice mientras que los bits seleccionados en negro
son a los cuales se les aplica lacaja S [2].

3.1. https://www.newae.com/products/nae-cwll101
3.2. ChipWhisperer Lite, [3].

4.1. GIFT-64, Puntos de fuga de informacion

5.1. Traza capturada de GIFT-64 secuencial.
5.2. Graficas de senal a ruido de rondas de la version secuencial GIFT-64.
5.3. Gréaficas de suposicion de la cantidad de muestras necesarias para ob-
tener la clave de la versién secuencial GIFT-64.
5.4. Traza capturada de GIFT-64 bitslicing.
5.5. Graficas de senal a ruido de rondas de la version secuencial GIFT-64
bitslicing
5.6. Traza capturada de GIFT-128 bitslicing.
5.7. Graficas de senal a ruido de rondas de la versién secuencial GIFT-128
bitslicing L
5.8. Traza capturada de GIFT-128 fizslicing.
5.9. Graficas de senal a ruido de rondas de la version secuencial GIFT-128
fixslicing
5.10. Gréfica del score de las posibles claves en GIFT-128 fizslicing.

A.1. Conexiéon del ChipWhisperer Nano
A.2. Conexiéon del ChipWhisperer Lite

C.1. Sistema de archivos de ChipWhisperer

XIII

15

16

26
27

29

48
48

49
20

51
52

X1V INDICE DE FIGURAS

Indice de tablas

2.1.
2.2.

4.1.

5.1.

CajaS.. e 10
Constantes deronda. 11
Ataques CPA a GIFT-COFB implementado en software 45

Porcentaje de éxito de CPA a las distintas versiones de GIFT-COFB. 56

XV

XVI INDICE DE TABLAS

Capitulo 1

Introduccion

Con la llegada del Internet de las cosas (IdC), estamos rodeados de dispositivos
inteligentes que tiene la habilidad para comunicarse entre ellos en redes centralizadas.
Estos dispositivos se utilizan ampliamente en el manejo de las cadenas de suministros,
logistica, casas inteligentes, control de trafico, monitoreo médico entre otras. Aunque
estos dispositivos son convenientes y eficientes para el desarrollo de tales actividades,
surge el problema de la privacidad y seguridad, por lo que es necesario el uso de
algoritmos criptograficos para protegerlos. El objetivo original de la criptografia es
proporcionar un canal de comunicaciéon seguro entre los diferentes actores, aunque las
primitivas de criptografia modernas ofrecen servicios tales como la confidencialidad,
la integridad, la autenticacion de datos y entidades y el no repudio. La idea bésica
de estas primitivas es hacer uso de problemas matematicos dificiles tal como la fac-
torizacion de niimeros enteros en factores primos o el logaritmo discreto en el caso de
la criptografia de clave ptublica y la generacion de secuencias pseudoaleatorias en la
criptografia de clave secreta. Ambos tipos de criptografia estan disenados para que
recuperar la clave secreta sea dificil computacionalmente.

Uno de los problemas principales a los que se enfrentan los dispositivos IdC es que
cuentan con recursos restringidos (memoria, conjunto de instrucciones y energia de
alimentacion) y en muchos casos no es factible implementar una primitiva criptogra-
fica estandar en ellos. Por la necesidad de incorporar seguridad en dispositivos IdC,
el estudio de los algoritmos de criptografia ligera, o sea, algoritmos disenados para
ejecutarse en dispositivos restringidos, ha sido un area de investigacion activa las tlti-
mas dos décadas. Se han propuesto muchos algoritmos para optimizar el desempeno,
los recursos necesarios para su implementacion y el consumo de potencia.

El criptoanalisis es una rama de la criptografia que se centra en estudiar y ana-
lizar la seguridad de los algoritmos criptograficos con el objetivo de identificar sus
vulnerabilidades y puntos débiles. Los algoritmos estandar, que incluyen técnicas
ampliamente utilizadas como AES (Advanced Encryption Standard) y SHA (Secure
Hash Algorithm), han sido evaluados rigurosamente durante anios por investigadores
y expertos en criptografia. Debido a este trabajo exhaustivo, se considera que estos
algoritmos son seguros contra los ataques convencionales, tales como ataques de texto
plano o cifrado diferencial.

2 Introduccion

Sin embargo, en los ultimos anos, han surgido nuevos tipos de ataques cono-
cidos como ataques por canal lateral (ACL, por sus siglas en inglés: Side-Channel
Attacks). A diferencia de los métodos tradicionales, los ACL no se centran en debili-
dades matematicas en el algoritmo mismo, estos explotan informacion derivada de la
implementacion fisica del sistema criptografico. Desde el descubrimiento de los ACL
a finales de los anios noventa por Paul Kocher |1], éstos se volvieron una amenaza pa-
ra los dispositivos fisicos que implementan un algoritmo criptografico. Estos ataques
representan un cambio significativo en el paradigma de seguridad, ya que han demos-
trado que muchos algoritmos que se consideran mateméticamente seguros pueden ser
vulnerables a la extraccion de informaciéon secreta en un contexto fisico. Los ACL
explotan informacion fisica que se fuga de diversas fuentes indirectas o canales como
son el consumo de potencia, radiacion electromagnética o el tiempo en que un célculo
es realizado, los cuales son conocidos como canales laterales. La informacién conte-
nida en las fugas obtenidas mediante la medicion de los canales laterales depende de
los valores intermedios calculados durante la ejecucion del algoritmo criptogréfico y
son correlacionados con las entradas (texto plano) y la clave secreta del cifrador. Un
atacante puede extraer de manera efectiva la clave secreta observando y analizando
las fugas de informacion de los ataques laterales con instrumentos de medicion y en
un corto periodo de tiempo que va desde algunos minutos a algunas horas. Debido
a estas razones los ACL representan una amenaza a los dispositivos IdC ya que un
atacante puede tener acceso a ellos.

El GIFT-COFB es un algoritmo de cifrado simétrico de bloques disenado especifi-
camente para aplicaciones de criptografia ligera, en las cuales se prioriza la eficiencia
y el bajo consumo de recursos. El algoritmo esta pensado para implementarse en dis-
positivos con recursos limitados, como sensores, tarjetas inteligentes y otros sistemas
embebidos. Este algoritmo fue presentado en el concurso de estandarizacion de cripto-
grafia ligera (Lightweight Cryptography Standardization) organizado por el Instituto
Nacional de Estandares y Tecnologia (NIST, por sus siglas en inglés). Como parte del
proceso de seleccion, GIFT-COFB ha sido sometido a numerosas pruebas y analisis
de seguridad, tanto en términos de resistencia a ataques. Los resultados indican que
GIFT-COFB ofrece un balance 6ptimo entre seguridad y eficiencia, lo que lo hace
una opciéon prometedora para su adopcion en entornos de criptografia ligera.

Los distintos tipos de ataques por canal lateral incluyen analisis de tiempo, analisis
de potencia, analisis electromagnético y ataques de inducciéon de fallos. Los cuales se
detallan a continuacion [5]:

= Ataque de tiempo: Este ataque se basa en las variaciones en el tiempo de eje-
cucion de un dispositivo criptografico. El atacante analiza el tiempo que tarda
en procesar diferentes mensajes para deducir parametros secretos del sistema.

= Ataque de anéalisis de potencia: Este ataque aprovecha las variaciones en el con-
sumo de energia de un dispositivo durante una operacion criptografica. Existen
diferentes variantes:

e Ataque de potencia simple (SPA, por sus siglas en inglés): El ataque mas
bésico, que consiste en analizar los trazos de potencia para identificar pa-
trones que puedan revelar claves secretas.

e Analisis de potencia diferencial (DPA, por sus siglas en inglés): Un ataque
mas avanzado que utiliza correlaciones estadisticas entre el consumo de
potencia y los datos de entrada para extraer informacién confidencial sin
necesidad de conocer la implementaciéon interna del sistema.

e Analisis de potencia diferencial de orden superior (HODPA, por sus siglas
en inglés): Combina DPA con analisis de tiempo y criptoanélisis tradicional
para aumentar la eficacia del ataque.

e Analisis de potencia correlacional (CPA, por sus siglas en inglés): Utiliza
el modelo de peso Hamming para correlacionar el consumo de energia con
la distancia de Hamming, ayudando a identificar la clave correcta.

e Ataque de plantilla: La forma mas avanzada de ataque de potencia, que
requiere acceso a un dispositivo idéntico para crear plantillas precisas y
utilizarlas para descubrir la clave secreta.

= Ataque electromagnético: Este tipo de ataque explota las emisiones electromag-
néticas de un dispositivo para obtener informacién sobre sus operaciones. Similar
al analisis de potencia, estas emisiones pueden analizarse para extraer secretos,
y debido a su capacidad para proporcionar mas informacion, estos ataques son
especialmente poderosos.

= Ataque de induccion de fallos: Los ataques de inducciéon de fallos alteran el fun-
cionamiento de un dispositivo criptografico, induciendo errores en sus operacio-
nes para que revelen informacién confidencial. Los fallos pueden ser permanen-
tes (danando permanentemente componentes como la memoria) o transitorios
(causados por alteraciones en el reloj o el voltaje).

= Ataques O6pticos y analisis de tréfico:

e Ataques dpticos: Explotan las emisiones de luz, como los LED, para ex-
traer datos de dispositivos. En dispositivos con pantallas, el analisis de la
intensidad de la luz puede revelar informacion sensible.

e Analisis de trafico: Estos ataques analizan los flujos de trafico en redes de
sensores para obtener informacién sobre la topologia de la red, como la
ubicacién de nodos criticos, aprovechando las restricciones de energia de
los dispositivos.

= Ataques acusticos y de imagenes térmicas:

e Ataques acusticos: Explotan las emisiones acusticas producidas por dis-
positivos, como teclados o componentes de computacion, para identificar
teclas presionadas o procesos en ejecucion.

Introduccion

o Ataques de imdgenes térmicas: Utilizan imagenes térmicas para detectar
la radiacion infrarroja emitida por componentes, como las CPU, y revelar
informacion sobre las operaciones internas.

A lo largo de los anos, los ACL han demostrado ser extremadamente efectivos
contra diversas implementaciones criptograficas. Estos ataques han sido aplicados
con éxito a una amplia variedad de algoritmos, tanto de clave simétrica como de
clave publica. A continuacion, se presentan algunos ejemplos de ataques exitosos que
han revelado vulnerabilidades en sistemas criptograficos ampliamente utilizados:

Kocher [6] en 1996, introduce el ataque de tiempo y lo implementa a la expo-
nenciaciéon modular en el algoritmo RSA.

Dhem et al. |7] utilizaron un ataque de tiempo contra una implementacion real
de RSA en una tarjeta inteligente.

Schindler [3] present6 ataques de tiempo sobre la implementacion de la expo-
nenciacion de RSA utilizando el Teorema Chino del Residuo.

Hevia et al. [9] describieron ataques de tiempo sobre el algoritmo DES, especi-
ficamente para recuperar el peso Hamming de la clave secreta.

Brumley y Boneh [10] demostraron que los ataques de tiempo podian revelar
claves privadas de RSA en un servidor web basado en OpenSSL, al explotarse
a través de una red local.

Biham y Shamir |1 1] presentaron un analisis de fallos sobre el esquema de cifrado
simétrico DES, mostrando cémo los fallos pueden ser utilizados para extraer
informacion confidencial.

Anderson y Kuhn [12]| discutieron formas realistas de inducir fallos transito-
rios (glitches), los cuales pueden comprometer la seguridad de los algoritmos
criptogréficos.

Skorobogatov y Anderson [13] propusieron un ataque 6ptico de fallos, demos-
trando que con equipos relativamente baratos se podian inducir fallos en una
tarjeta inteligente al iluminar transistores especificos, revelando claves privadas

de RSA.

Los ataques de anélisis de potencia han demostrado ser altamente efectivos en la
mayoria de las implementaciones simples de cifrados simétricos y de clave publica,
como se muestra a continuacion:

Sommer et al. [1] atacaron una implementacion de DES de una tarjeta inteli-
gente, utilizando el método de analisis de potencia simple.

Novak et al. [15] aplico el método de analisis de potencia simple a una imple-
mentacién de RSA.

Capitulo 1 5

= Walter et al. [16] presentaron un ataque a RSA, utilizando el método de anélisis
diferencial de potencia.

» Nuradha et al. [17] utilizaron el método de anélisis de potencia por correlacion
para recuperar la clave de cifrado de AES en un microcontrolador.

= O’Fllyn et al. [18] atacaron a AES-256 ara recuperar la clave completa de 32
bytes y el vector de inicializacién mediante anélisis de potencia por correlacion.

» Taha et al. [19] atacaron al algoritmo Keccak especificamente en su uso como
MAC en un procesador Microblaze.

» Koziel et al. [20] utilizaron ataques de andlisis de potencia refinados que explotan
valores cero para extraer bits de la clave secreta para recuperar las claves SIDH
(Supersingular Isogeny Diffie-Hellman).

En la actualidad, herramientas como ChipWhisperer ' han facilitado significati-
vamente el anélisis de potencia en criptosistemas. ChipWhisperer es una plataforma
de codigo abierto disenada especificamente para realizar ataques de canal lateral.
Combina herramientas de hardware y software que permiten la captura y anéalisis de
senales eléctricas, lo que posibilita ataques como el analisis de potencia diferencial y
ataques de inyeccion de fallos. Esta plataforma es ampliamente utilizada para eva-
luar la seguridad de implementaciones criptogréaficas en dispositivos de hardware y
software, que permite explorar vulnerabilidades en sus disenos fisicos.

1.1. Propuesta

La idea basica del analisis de potencia es revelar la clave secreta de un dispositivo
criptografico a través de su consumo de potencia. Esencialmente dos dependencias
del consumo de potencia son explotadas: la dependencia de datos y la dependencia de
operacion. El consumo de potencia instantédnea del dispositivo depende de los datos
que procesa y de las operaciones que realiza.

Se propone realizar ataques por canales laterales a una implementaciéon sin pro-
teccion y propuestas protegidas en software de GIFT-COFB para encontrar fugas
de informacién y analizar la vulnerabilidad de ellas a ataques por canales laterales
basados en el consumo de potencia.

El enfoque que se quiere utilizar es realizar un ataque de anélisis de potencia para
poder extraer la clave secreta. Con la ayuda de la herramienta ChipWhisperer se pla-
nea programar un microcontrolador que sera la victima, para que realice operaciones
criptogréficas con el algoritmo GIFT-COFB. El microcontrolador recibira texto plano
desde la computadora, lo cifrard y enviara el resultado de regreso a la computadora.
Durante el tiempo en que el cifrado sea realizado, el consumo de potencia serd medido
con el ChipWhisperer y registrado para realizar el anélisis. Estos registros seran las
trazas de las fugas de informacion que se utilizaran para recuperar la clave secreta.

thttps:/ /www.newae.com /chipwhisperer

6 Introduccion

1.2. Objetivos generales y especificos del proyecto

General

Verificar si existen fugas de informaciéon en implementaciones de los algoritmos de
criptografia ligera GIFT y GIFT-COFB.

Particulares

1. Proponer modelos de ataques por canales laterales para buscar posibles fugas
de informacién en implementaciones de GIFT y GIFT-COFB. Estas implemen-
taciones estan basadas en fixslicing, bitslicing.

2. Desarrollar las implementaciones en el firmware de ChipWhisperer para obtener
las trazas de potencia de cada uno de los algoritmos analizados.

3. Verificar si las implementaciones antes mencionadas de GIFT y GIFT-COFB
son seguras a ataques por canales laterales y la dificultad de estas para vulne-
rarlas.

1.3. Preliminares y notacién

Sea {0, 1}" el espacio de todas las cadenas binarias de longitud n, andlogamente
dichas cadenas son consideradas elementos del campo de Galois GF(2"), por lo que
pueden ser representadas como polinomios de grado a los mas n. Si a,b € {0,1}",
su adiciéon es denotada como a @ b y es calculada como una operaciéon o-exclusiva a
nivel de bits. El producto de define como ab méd ¢(z) donde g(x) es un polinomio
irreducible de grado n, es decir, no tiene raices en el campo GF(2). La operacion
atimes, es la multiplicacién del monomio x por a y reducida segtun el polinomio irre-
ducible utilizado, misma que puede ser calculada de forma muy eficiente utilizando
un corrimiento de bits y unas pocas operaciones @.

Un cifrador por bloque es una funcion E : {0,1}" x {0,1}* — {0,1}", donde n
es la longitud en bits del bloque y k es la longitud en bits de la clave. Se denota
como Eg(-) y la funcién inversa como E, '(), para todo m € {0,1}" se cumple que
m = E, *(E(m)). Dado que un cifrador por bloques es invertible, es una permutacién
del espacio de cadenas de n bits, cada clave instancia una permutacion distinta.

Un algoritmo de cifrado autenticado con datos asociados (CADA) es una funciéon
AE : {0,1}™ x {0,1}% x {0,1}* — {0,1}¢ x {0,1}" donde m, d, k, ¢ y 7 son las
longitudes en bits del mensaje, de los datos asociados, de la clave, el mensaje cifrado
y la etiqueta de autenticacion respectivamente. Se denota como C, 7 = AEx(AD, M),
recibe como entrada un mensaje y los datos asociados y entrega como salida el men-
saje cifrado acompanado de la etiqueta de autenticacion. La funcién de descifrado
es AE71: {0,1}¢ x {0,1}4 x {0,1}" x {0,1}* — {0,1}™ x {0,1}* donde L indica
que la verificacion de la etiqueta de autenticacion falld y por lo tanto no se regresa el

Capitulo 1 7

mensaje que se ha descifrado ya que puede haber errores en la integridad del mensaje
o en la autenticacion (se estd usando una clave distinta a la utilizada para cifrar). La
funciéon de verificacion solamente compara dos etiquetas y devuelve 1 o 0 segiin sean
iguales o no. Los datos asociados no se cifran, pero si deben ser autenticados.

1.4. Organizacién de la Tesis

Capitulo 2: GIFT-COFB. Se presentan las versiones bitslicing y fixslicing del
algoritmo GIFT-COFB, describiendo sus caracteristicas y diferencias clave.

Capitulo 3: Ataques por canales laterales. Se explica el ataque CPA, el concepto
de SNR y el uso de ChipWhisperer para realizar ataques por canal lateral.

Capitulo 4: Implementacion de los ataques. Se detallan los ataques realizados a
las implementaciones secuencial, bitslicing y fixslicing de GIFT-COFB.

Capitulo 5: Resultados. Se presentan los resultados de los ataques, incluyendo el
ntmero de trazas y la tasa de éxito de cada implementacion.

Capitulo 6: Conclusiones. Se resumen los hallazgos principales y se propone como
se podria mejorar la seguridad de las implementaciones de GIFT-COFB.

Introduccion

Capitulo 2

GIFT-COFB

Las limitaciones en recursos de los dispositivos IdC hace que sea imposible de
utilizar algoritmos de cifrados complejos como el AES en algin modo de operacion,
debido a que la cantidad de recursos para su implementacion puede no estar disponible
en estos dispositivos o ser muy limitado. Por las necesidades de seguridad y desempeno
de los IdC los algoritmos de criptografia ligera' han sido un 4rea de investigacion
activa las dltimas dos décadas. Un gran nimero de algoritmos innovadores de cifrado
han sido propuestos con el fin de optimizar varios de los criterios de desempeno y
seguridad, como lo son GIFT-COFB o ASCON.

En este capitulo se explicara de forma detallada el cifrador por bloques GIFT y
el modo de operacion COFB.

GIFT es una Red de Sustituciones y Permutaciones (RSP), la cual es una forma
de disenar un cifrador por bloques iterado, esto significa que una cierta secuencia
de calculos que forman una ronda es repetida un ntmero especificado de veces. Una
ronda es definida como una composicion de transformaciones (sustituciones y permu-
taciones) aplicadas a los datos de entrada, de tal manera tal que se logra cumplir el
principio de Shannon de confusién y difusion. Otro cifrador basado en una RSP es
el AES, el cual fue estandarizado por el NIST en el ano 2001. AES no es adecuado
para dispositivos con recursos restringidos debido a sus caracteristicas de diseno que
no estaban orientadas a dichas plataformas. Ademas de GIFT existen otros cifradores
ligeros, algunos ejemplos son: Midori [21], Skinny [22], Simon y Speck [23].

GIFT [24] es una familia de cifradores por bloque ligeros con dos miembros: GIFT-
64 y GITF-128. Los cuales tienen un tamano de bloque de entrada de 64 y 128 bits,
ambos reciben una clave secreta de 128 bits. Consisten de una funciéon de ronda
compuesta de cuatro transformaciones, la cual es iterada 28 veces para GIFT-64 y 40
veces para GITF-128. La figura 2.1 muestra 2 rondas de GIFT-64 [1].

Los datos de entrada se representan en forma de un arreglo unidimensional de
nibbles, es decir, datos de cuatro bits. En la figura 2.1 se muestran dos rondas del
cifrador GIFT. A continuacién, se explicara la funcién de ronda.

'El término se refiere a algoritmos de criptografia que pueden ser implementados en dispositivos
muy restringidos en recursos como memoria, energia e incluso instrucciones.

10 GIFT-COFB

635281805958575855545352515049484745454443424140393937383534333231302928272525242322212019131718151413121110!IJ ? 78 -|5 il

g ¥ ¥ g ¥

S S S S S S S S S S S S S S S S
L
— o . 25, s ST ST S =
RSN oSET A =T
R R A TR ST TS X oS sT S
\" A - Sy, | “;‘i‘-"'—‘";i&’d-‘("\
e ae eV
y A — d‘m é’
: . et X
P y———
P| | D | D | PP ‘:::|:x:, &P | P
S S S S S S
oS 2R i
= v SO
AN 0 Y
A2
s = SN
AN(gasapanypurI ORI

Figura 2.1: Dos rondas de GIFT-64 [1].

3145 7 9 11011 12|13 |14]| 15
12(6(15(3(9|2 1311 7|5]0] 8|14

(@)
oo

@]
—
[\

—_
—_
[a]
e~

Tabla 2.1: Caja S.

2.0.1. Funcioén de ronda

La funcién de ronda de GIFT se compone de tres transformaciones caja de subs-
titucion, permutacion de bits y suma de la clave de ronda|?], las cuales se describen

a continuacion.

Substitucion de bits. Consiste en la sustitucion de cada nibble en el estado por un
valor extraido de una tabla llamada caja S. Ambas versiones de GIFT usan la misma
caja S de cuatro bits. Se representa de la siguiente forma:

Wi < GS(?Uz), Jvi € 07 sy 8 17

donde s = 16 para GIFT-64 y s = 32 para GIFT-128. Dado que S es una funcion
del tipo S : 0,1* — 0, 1%, puede ser representada por medio de ecuaciones booleanas
(ecuaciones (2.1)) o mediante una tabla de consulta (tabla 2.1).

ol1] = ~(2[1] & ~(e0] - 2[2))
2[0] = ~(2[0] ® ~(a]1] - 2[3))

ef2] = ~(2[2] ® ~([0] + [1]))

o[3] = ~(2[3] @ [2) (2.)
of1] = —(2[1] & 2[3)

o[2] = —(2[2) @ ~(e0]) - 2[1)

11

Rondas Constantes
1-16 01,03,07,0F,1F,3E,3D,3B,37,2F ,1E,3C,39,33,27.0E
17-32 | 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38
33-48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Tabla 2.2: Constantes de ronda.

Permutacion de bits. Consiste realizar un reordenamiento de los bits en el
estado conforme las siguientes ecuaciones dependiendo si se instancia GIFT-64 o
GIFT-128:

bp(l) — bi, ,Vi € 07 O 1

Pea(i) = 4 L%J +16 ((3 {%J + (i mod 4)) méd 4) + (i méd 4),

Pras(i) = 4 HGJ +32 ((3 L%J + (i méd 4)) méd 4) + (i méd 4).

Suma de la clave de ronda. Este paso consiste en agregar la clave de ronda y las
constantes de ronda. Una clave de ronda RK es obtenida del estado de la clave y es
particionada en dos palabras de s bits, donde RK = U||V = us_1...up||vs—1||vo y s =
16 6 32 respectivamente.

Suma de la clave de ronda para GIFT-64.

bait1 < bair1 D uy,, b4 D vy, ,V; €0,...,15

Suma de la clave de ronda para GIFT-128

baiv2 < baiya @ Uy, bait D vy, , Vi €0,...,31

Para ambas versiones de GIFT, se realiza una operaciéon ¢ con un tnico bit 1 y una
constante de ronda de seis bits C' = c5cqc3caci¢y con el estado en las posiciones de
los bits n - 1, 23, 19, 11, 7 y 3 respectivamente. Dicha constante de ronda se obtiene
mediante el siguiente registro de corrimiento lineal retroalimentado (LFSR por sus
siglas en inglés):

cs||ealles||eal|er||co <= calleslcallcr]|collcs @ es @1,

los seis bits son inicializados en cero. Las constates de ronda generadas son mos-
tradas en la tabla 2.2.

12 GIFT-COFB

2.0.2. Generacion de claves de ronda

En ambas versiones de GIFT se utiliza una clave de 128 bits. La clave inicial es
almacenada en el estado de clave k, el cual se divide en ocho palabras k; y |k;| = 16
para ¢ € 0,7. Para generar una clave de ronda, el estado de clave se actualiza como:

Kzl |ko || ks ||kl ks] 2| [|| ko <= k1 >> 2|[ko > 12]...[|ky,

donde > representa un corrimiento circular a la derecha.
Para GIFT-64 se extrae una clave de ronda de 32 bits como RK = U||V,

U - kl, V - k’o.
En el caso de GIFT-128 la clave es de 32 bits,

U —]{?5”]{34,‘/ — leko

RK es utilizada en la suma de la clave de ronda.

GIFT-COFB

COFB (Combined FeedBack, por sus siglas en inglés) es un esquema de cifrado
autenticado con datos asociados. COFB recibe bloques de mensaje o datos asociados
de 128 bits, una clave secreta de 128 bits y un nonce? del mismo tamano. Utiliza
como bloque basico un cifrador por bloques, adicionalmente utiliza una funcién li-
neal compuesta de @ y multiplicaciones en un campo finito GF(2%%) con diferentes
constantes pequenas como 2 y 4 [25]. En la figura 2.2 se muestra como COFB opera
cuando recibe bloques de mensaje y de datos asociados.

COFB se enfoca principalmente fue disenado como un algoritmo ligero y que
lograr utilizar una sola llamada al cifrador utilizado por cada bloque de entrada. Una
caracteristica importante de este modo de operacion es que no necesita que el cifrador
subyacente sea invertible durante el descifrado, lo que permite un tamano del estado
interno pequeno.

Descripciéon de los bloques basicos de construccion

Clave y bloque del cifrador: la primitiva criptografica subyacente es un cifrador Ex
con bloques de n-bits. Se asume que n es miltiplo de 4, ¢ denota una cadena de
longitud cero y K es la clave del cifrador por bloques.

Funcion de relleno. Para = € {0,1}", se define la funcion de relleno como:

Pad(z) x six # ey |z| mod n = 0 z|[10n~(zlmodin)=1)
a =
de lo contrario.

2Se refiere a un valor que debe ser distinto para cada mensaje/datos asociados que sean procesados
con la misma clave.

13

maska(1,0) maska(2.0) maska(2, 84)

maska(3,64) maska(4d.64) maska(4,64 + 8as)

Figura 2.2: Cifrado autenticado de COFB para tres bloques de datos asociados y
texto plano.

Funcién de enmascaramiento. Es una funcion Mask : {0,1}"? x N x N — {0, 1}"/*
definida como:

mask(A,a,b) =a*- (14 «a) - A.

Se puede escribir mask(A, a,b) como maska(a,b). Aqui, - se entiende como la mul-
tiplicacion sobre GF(2"?) y o como el elemento primitivo del campo; el polinomio

irreducible que define el campo es p(z) = 2% + 2* + 2% + = + 1.

Funcion de retroalimentacion. Sea Y € {0,1}" y Y[1],Y[2] &2 Y, donde Yi] €

0,1"/2. Se define una funcién G : {0,1}" — {0,1}" como:

G(Y) = (Y2, Y[1] <« 1)

donde X << r es la rotacion circular a la izquierda de la cadena X en r posiciones.
Ahora se define p; (Y, M) = G(Y) & M, y finalmente la funcién de retroalimentacion
p y su inversa p~! se definen como:

:0<Y7 M) = (pl(Y7M)>Y@M)a

p(Yie)=(m(Y.Y @ C),Y &C).

Es importante notar que recientemente el NIST realizé un proceso un mecanismo

14 GIFT-COFB

de estandarizacion de diferentes algoritmos de criptografia ligera del NIST *, donde
GIFT-COFB fue uno de los finalistas.

2.1. Técnicas de implementacion en arquitecturas Cortex-
M

2.1.1. Bitslicing

La técnica de bitslicing consiste en implementar las cajas S utilizando instruccio-
nes logicas a nivel de bits. Debido a que estas instrucciones son independientes del
mensaje de entrada y de la clave, generalmente las implementaciones con bitslicing
son resistentes a los ataques de temporizacion. Su objetivo es reducir el nimero de
instrucciones de almacenamiento y carga en la memoria [26].

La representacion bitslicing para la permutaciéon GIFT puede verse como un rec-
tangulo, es decir el bitslice esta en dos dimensiones (2D) con el propoésito de tener una
implementacion mas eficiente. GIFT en 2D esta compuesto por tres pasos: SubCells,
PermBits y AddRoundKey [24].

Initialization. El texto plano es acomodado en cuatro filas de 16 6 32 bits de
arriba hacia abajo y de derecha a izquierda. El estado del cifrador es visto como una
matriz de dos dimensiones.

Para utilizar esta técnica se deben de reordenar las entradas para tener una re-
presentacion apta para el bitslicing [2]. Para ello se utiliza la siguiente funcion de
intercambio:

SWAPMOVE(A,B,M,n): T =B&®A>n)AMB=Ba&T A =A& (T <n)

La funcion consiste en intercambiar los bits de B enmascarados con M con los
bits de A enmascarados con el corrimiento M < n.

SubCells. Ambas versiones de GIFT (GIFT-64, GIFT-128) usan la misma caja S
invertible de cuatro bits. La caja S es aplicada en paralelo a cada columna del estado
del cifrador (en forma de matriz), todas las cajas S puede ser ejecutadas en paralelo
utilizando solo 13 operaciones como se describi6é en la seccion 2.1.

PermBits. Se aplican cuatro permutaciones a nivel de bits a las filas del estado
del cifrador independientemente. Mapea los bits de la posicion (i,) a la posicion
(1, Pi(j)). Este es el paso méas costoso ya que se requiere mover bit a nivel de software,
para realizar una permutacion Py de 16 bits a Sy [2]:

3National Institute of Standards and Technology, https://csrc.nist.gov/projects/
lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography

Capitulo 2 15

A A 4

77

r—

‘04312/

L
%g

32 || 36 || 40 || 44

48 || 52 || 56 || 60

Figura 2.3: Representacion cubica del estado de GIFT-64, cada color hace referencia
a un distinto slice mientras que los bits seleccionados en negro son a los cuales se les
aplica la caja S [2].

Po(Sp) = (Sp A 0x0401) V ((Sp A 0x0002 < 11)
((So A 0x0020) < 8) V ((Sp A 0x0008 < 1)
((So A 0x2000) < 2) V ((Sp A 0x0040 < 3)
((So A 0x0200) < 5) V ((Sp A 0x0004 < 6) (2.2)
((So A 0x1000) < 9) V ((Sp A 0x8000 < 8)
((So A 0x0100) < 6) V ((Sp A 0x0800 < 5)

((So A 0x4010) < 3) V ((Sp A 0x0080 < 2)

<< < < <L

(
(
(
(
(
(

AddRoundKey. Una fraccion de n/2 de la clave es extraida del estado de la
clave y se realiza la funcién XOR a las primeras 2 filas del estado del cifrador. Para la
version de GIFT-64.

2.1.2. Fixslicing

Esta representacion tiene el objetivo de disminuir la latencia generada al realizar la
permutacion en la representacion bitslice. Al hacer fizslicing se divide el estado cada
cuatro bits. Cada bit se coloca en cuatro diferentes slices. Esta nueva representacion
puede verse graficamente como un cubo en la figura 2.3.

SubCells. La aplicaciéon de la subtitucion con las cajas S permanece igual que en
la representacion bitslice. Las 16 cajas S para GIFT-64 se aplican en paralelo |2].

PermBits. Para realizar la permutacion se realizan los siguientes pasos:

= Obtener la transpuesta de cada slice.
= Aplicar intercambios en las filas:

e Slice 0: intercambio fila 1 con 3.

e Slice 1: intercambio fila 0 con 1 y fila 2 con 3

16 GIFT-COFB

727 7 A S S 4

/ 1 1f)’ 1
o / /
7 7
/) /]
o 4| 8|12/ |y 6468|7276 |7
7l
16 || 20 | 24 || 28 | 7] || 80 || 84 | 88 || 92 |7
A A

32136 | 40 || 44 | JA] ||V | 96 || 100 | 104 || 108 | |

48 || 52 || 56 || 60 112 || 116 | 120 || 124

Figura 2.4: Representacion cibica del estado de GIFT-128, cada color hace referencia
a un distinto slice mientras que los bits seleccionados en negro son a los cuales se les
aplica la caja S [2].

e Slice 2: intercambio fila 0 con 2.
e Slice 3: intercambio fila 0 con 3 y fila 1 con 2.
AddRoundKey. Se mantiene igual que en la representacion Bitslice.
Para la version GIFT-128 se ordenan los bits en dos cubos, tal como se muestra

graficamente en la figura 2.4. Se aplican las 32 cajas S en paralelo. La permutacion
se define de la siguiente manera:

= Se obtiene la matriz transpuesta de cada slice de los cubos.
= Se mezclan las matrices izquierdas y derechas de cada slice.
= Se aplican los siguientes intercambios de filas:

e Slice 0: intercambia las 2 mitades de abajo.

e Slice 1: intercambia las mitades de abajo y arriba de los slices indepen-
dientemente.

e Slice 2: intercambia las 2 mitades de arriba.

e Slice 3: intercambia la mitad de arriba y abajo de forma cruzada.

Capitulo 3

Ataques por canales laterales

Los ataques por canales laterales (ACL), introducidos en 1996 por Paul Kocher
[1] explotan las fugas de los canales laterales, tal como el consumo de potencia de
un dispositivo para extraer informacion secreta. Los ACL pueden ser clasificados en
dos categorias: enfocados o no enfocados. Los ataques enfocados requieren acceso a
un dispositivo, lo cual es una suposiciéon necesaria que en la practica no siempre es
posible. Los ataques no perfilados incluyen el analisis de potencia diferencial (APD),
el anélisis de potencia correlacional (APC) y el analisis de informacion mutua (AIM).

3.1. Ataques de analisis de potencia

Este tipo de ataques toman ventaja de la informaciéon que puede ser obtenida
al medir la potencia consumida por un dispositivo criptografico. La mayoria de la
potencia consumida por estos dispositivos es usada principalmente cuando los tran-
sistores cambian de estado. Esto es conocido como consumo dinamico y la cantidad de
potencia consumida en el cambio de estado puede ser usada para poder hacer un crip-
toanélisis. También es conocido que el consumo de potencia estético de los dispositivos
tiene relacion con el dltimo valor almacenado, el cual puede ser usado por un atacante.

Muchos dispositivos criptograficos son simples microcontroladores con un tnico
hilo de ejecucion, sin pipeline y con un ciclo de reloj lento. Debido a estas caracte-
risticas es relativamente facil encontrar una relacion entre los datos e instrucciones
procesadas y la potencia consumida. De esa relacion, un atacante puede suponer los
valores de los datos procesados. Algunos de estos valores son datos secretos almace-
nados en el microcontrolador.

El anéalisis de potencia utiliza las trazas del consumo de potencia medido durante
la operacion del dispositivo criptografico. Una traza es un conjunto de mediciones del
consumo de potencia obtenidas durante una operaciéon de cifrado.

17

18 Ataques por canales laterales
3.1.1. Analisis de potencia simple

Los ataques de potencia simple (APS) es un método que involucra una interpre-
tacion directa de las mediciones del consumo de potencia las cuales son adquiridas
durante las operaciones de cifrado realizadas en un dispositivo. Diferentes valores de
potencia sobre la traza son debido a que diferentes instrucciones forman parte de un
algoritmo de cifrado. Debido a que la secuencia de instrucciones puede ser revelado
mediante un APS y la ruta de ejecucion tiene una relacion directa con los datos pro-
cesados, el APS puede ser usado para romper la implementacion criptografica.

En un ataque de analisis de potencia el atacante debe tener acceso a algunas
trazas de potencia y para poder tener un ataque exitoso, debe conocer a profundidad
el algoritmo criptogréafico que se utiliza, asi como, los detalles de la implementacion
del mismo, para poder conocer los pasos intermedios del algoritmo.

3.1.2. Analisis de potencia diferencial

El anélisis de potencia diferencial (APD) es una técnica avanzada que usa métodos
estadisticos con el propoésito de identificar una relacion entre las medidas de potencia
y un consumo de potencia supuesto del dispositivo [27]. A diferencia de un APS,
en un APD no se necesita tener un conocimiento detallado del dispositivo victima.
También se puede obtener éxito al obtener la clave secreta incluso si existe ruido en
las trazas de potencia medidas. Una desventaja de este ataque es que requiere una
gran cantidad de trazas de potencia.

Con el fin de obtener la clave secreta, un atacante debe tener acceso al dispositivo
victima y proponer un modelo de consumo de potencia, también se asume que se
conoce el algoritmo criptografico que la victima esta ejecutando para poder obtener
las mediciones del consumo de potencia, la implementacion del algoritmo y los texto
planos (o en claro).

Para realizar un APD, se necesita que muchos textos planos sean cifrados y del
proceso de cifrado de cada uno de los textos, medir el consumo de potencia, almace-
narlo y sincronizarlo. El objetivo del ataque es comparar todas las trazas a lo largo
de la ejecucion del proceso de cifrado y poder hacer una suposicion del instante de
tiempo en el que se estan realizando las operaciones que componen el algoritmo.

Debido a que el analisis de potencia diferencial confia en una comparacion esta-
distica de multiples trazas, contramedidas de aleatorizacién implican que un ntmero
aleatoria es usado en cada ejecucion puede dificultar o impedir el éxito de un APD.

Capitulo 3 19

3.2. Distinguidores

Un distinguidor es una herramienta estadistica cuyo proposito es determinar la
clave secreta més probable de entre un conjunto. Varias clasificaciones de distingui-
dores pueden ser consideradas y por lo tanto, divididos en dos grupos de acuerdo
a el nimero de muestras y el tipo de fuga que se quiere aprovechar para recuperar
informaciéon en monovariados y multivariados. Otra forma de clasificarlos es separar
los distinguidores de acuerdo a la suposiciéon de que el atacante tiene una copia del
dispositivo que se quiere atacar, estos dos grupos en la literatura especializada son los
ataques enfocados o no enfocados respectivamente. De hecho, si el atacante tiene un
dispositivo equivalente a la victima, entonces se puede enfocar a una fuga especifica
antes de la fase del ataque. La fase de enfoque consiste en estimar la distribucion de
probabilidad de fuga, es decir, estimar los diferentes momentos estadisticos como la
media, varianza, etc. Mientras la fase de ataque consiste en calcular la diferencia entre
la distribucién de la fuga actual y la distribuciéon de fuga estimada. Estas diferencias
pueden ser calculadas mediante el cuadrado de la distancia o la vecindad maxima.
Una tercera forma en la que se pueden clasificar los distinguidores, se basa en la im-
plementacion que se quiere atacar, es decir, si tienen como objetivo implementaciones
no protegidas, especificamente las no enmascaradas. Este tipo de distinguidores son
conocidos como de primer orden. Por el otro lado, estéan los distinguidores que tienen
como objetivo implementaciones protegidas mediante el enmascaramiento, que son
los distinguidores de orden superior [25].

3.2.1. Correlacional

El anélisis de potencia correlacional (APC) es un método estadistico que es em-
pleado para deducir la clave secreta correcta usando un coeficiente de correlacion. El
APC fue introducido en [29], usando el coeficiente de correlacion de Pearson. En un
ataque APC el modelo de consumo de potencia utilizado es el peso de Hamming que
relaciona el consumo de potencia de un algoritmo criptografico que esta realizando el
cifrado de textos planos en un dispositivo y este consumo es usualmente proporcional
a cuantos bits han cambiado de valor en un registro especifico o posiciéon de memoria.
Este es visto como el peso de Hamming entre el valor previo y el nuevo valor. El peso
de Hamming es calculado como el nimero de unos que hay en un arreglo de bits.

Si W denota la potencia medidad y H el peso de Hamming entre los valores
supuestos y los valores intermedios D, el coeficiente de la correlaciéon de Pearson pw g
entre W y H puede ser calculado como:

~ Coo(W,H) E((W — pw)(H — pugr))
P = =
OwWOH owoH

donde pyw y pg son los valores intermedios respectivos, oy v oy son las respectivas
desviaciones estandar, C'ov la covarianza y E la media.

El valor de la clave secreta que maximiza el valor absoluto de el coeficiente de
correlacion es el valor que maximiza la correlacion entre el valor supuesto y el valor

20 Ataques por canales laterales

medido; esto es, la clave supuesta escogida es la que esta asociada el valor absoluto
del coeficiente de correlacion mas alto.

El APC requiere menos trazas que el APD para lanzar un ataque exitosos ya que
"todos los bits de datos no supuestos correctamente penalizan a la relacion de senal
a ruido” [[29], [30]]. Debido a esto, el APC es probablemente el tipo de ataque de
analisis de potencia més utilizado.

3.2.2. Informaciéon Mutua

La informaciéon mutua es un concepto de teoria de la informacion esta mide la
cantidad de informacion que dos variables aleatorias (X, YY) comparten de dos espacios
discretos X y), cada uno con una densidad de probabilidad de P, y P,. En pocas
palabras, cuantifica la informacion de obtener a X si se observa Y. En el procesamiento
de senales ayuda a comprender la dependencia de cada una, es especifico para los ACL
indica la cantidad de informacion que puede filtrarse [31]

166Y) = 305 pla,) log (M)]

S p(z)p(y)

Donde (p(x, y)) es la distribuciéon conjunta de (X) e (Y), (p(x)) es la distribucion
marginal de (X) y (p(y)) es la distribucion marginal de (Y).

3.3. Modelos de consumo de potencia

Los modelos de potencia son usados para simular el consumo de potencia de un
dispositivo criptografico, destacando que entre mas exacto sea, los recursos compu-
tacionales necesarios para su ejecucion son mayores. Siempre existe un compromiso
entre la precision de los valores dados por las herramientas estadisticas y los recursos
de computo utilizados. Los atacantes usan modelos de potencia abstractos de gran
nivel con el fin de suponer como el consumo de potencia esté relacionado a los datos
procesados. Durante la fase del diseno del ataque, diferentes modelos de consumo
pueden ser usados. Los modelos mas comunes son:

Peso de Hamming

En el ataque implementado por Kocher [27] basado en el analisis de consumo
de potencia, el modelo utilizado fue el peso de Hamming (PH). En este modelo, el
atacante supone que el consumo de potencia es proporcional al nimero de bits cuyo
valor 16gico es '1” en el dato que esta siendo procesado, ignorando los valores previos
y siguientes. Por ejemplo, en el caso de los microprocesadores con buses precargados,
el consumo de potencia puede depender del peso de Hamming de los datos en el bus.

Capitulo 3 21

Esto es tipicamente el caso si los valores precargados son «todos ceros» lo cual genera
que el consumo de potencia depende de Wg(0...0 8 Y;) = Wy (Y)).

Distancia de Hamming

Cuando un dispositivo criptografico no tiene precargados ciertos valores en su
entrada, el modelo de potencia que mejor se ajusta a la potencia consumida es el
modelo de la distancia de Hamming. El modelo de la distancia de Hamming considera
cuantas transiciones de 0 a 1 y de 1 a 0 ocurren en un dispositivo durante un periodo
de tiempo dado. El modelo de la distancia de Hamming esta basado en la hipotesis en
donde la transiciéon de 0 a 1 tiene un consumo de potencia similar al de la transicion
de 1 a 0 y también se aplica para la transiciéon de 0 a 0 y de 1 a 1 en donde el consumo
de potencia es el mismo [32]. Por lo que es aplicable a implementaciones de hardware,
especificamente a las fugas emitidas por registros y buses de datos.

Otros modelos

Algunas operaciones criptograficas requieren multiplicaciones. Se sabe que el con-
sumo de potencia es menor si uno de los factores de la multiplicacién es cero, a
diferencia del caso general en donde ambos operadores son diferentes de cero. Por lo
tanto algunas veces los modelos de consumo tienden a suponer un consumo nulo si
cualquiera de los operandos es cero y asignan 1 si ambos son diferentes de cero.

3.4. Relaciéon senal a ruido

Los ACL estan estrechamente relacionados fenémenos fisicos observables causa-
dos en la ejecucion de tareas en el hardware. Por ejemplo, el tiempo de ejecucion y
energia consumida pueden ser utilizadas para los ACL. También se pueden utilizar
las emisiones electromagnéticas, la disipacion calor, incluso el ruido producido. Todas
estas fuentes de informacion que se filtran las computadoras y procesadores al realizar
tareas pueden ser explotadas por adversarios maliciosos [33]. Cuando se puede medir
esta informacion, y la senal fluctiia dependiente de los datos de entrada, operaciones
y ruido aleatorio, puede usarse como ACL [34].

Con esta senal se forma una traza de canal lateral. La traza tiene tres componentes
en el caso de consumo de potencia: senal de componente V.05, correlacionada con el
modelo de potencia dependiente de la entrada, el componente de ruido V,,, sin corre-
lacion con el modelo de potencia, pero dependiente de las operaciones criptograficas
y el componente de ruido aleatorio Viugo [31]. Se puede resumir que hay una fuga
de informacion dependiente de los datos senal y una fuga independiente del ruido
ruido.

La relacion senal ruido RSR es la correlacion de la senal y el componente de ruido
ambiente que hay en una mediciéon. Se utiliza como métrica para evaluar el diseno
de contramedidas contra los ACL. Con RSR se obtienen dos criterios importantes: el

22 Ataques por canales laterales

coeficiente de correlacion y el namero de trazas necesarias para obtener la clave [34].
En un ACL, la RSR representa la proporciéon de la informacion disponible respecto a
la informacion total cuando el objetivo ejecuta un algoritmo criptografico. RSR mide
la varianza de una senal contra la varianza del ruido. Este modelo esta compuesto de
tres partes:

= Obtener la senal: Medir la senal y calcular su media.

= Obtener el ruido: Se sabe que existe cierto ruido aleatorio, a las trazas se les
resta la media.

= Calcular la RSR: Se obtiene la varianza de las seniales y el ruido.

o%, Var es la varianza, N

[RSR = Var(senal) Var(ruido)][Var(z)=02=+ SN (zi—%)2]Donde
numero total de elementos, x; cada valor individual y z media aritmética.

3.5. Descripcion de un ACL

El objetivo de un ACL es revelar las claves secretas de los dispositivos criptografi-
cos basado en un gran ntimero de trazas de potencia que han sido registradas mientras
el dispositivo esta cifrando y descifrando diferentes bloques de datos. En este caso se
tiene acceso al dispositivo bajo ataque por lo que se puede seleccionar un conjunto
de datos de entrada conocidos, supongamos el ataque a un cifrador por bloques que
tiene como entradas un mensaje y una clave de 16 bytes (128 bits) y una tnica salida
de la misma longitud. Se describe un ataque genérico que recupera f — bits de la
clave [35]. Primero se seleccionan D entradas conocidas y a continuacion se sigue el
siguiente procedimiento:

Paso 1: Elegir un resultado intermedio del algoritmo ejecutado. El primer paso de
un ataque es elegir un resultado intermedio del algoritmo criptografico que es ejecu-
tado por el dispositivo atacado. Este resultado intermedio necesita ser una funcién
f(d, k) con salidas y entradas de f — bits, donde d es un valor no constante de la
entrada conocida (hay D valores) y k son f — bits de la clave. Los resultados inter-
medios que cumplan esta condiciéon pueden ser usados para revelar k. En la mayoria
de los escenarios ataques, d corresponde a es el texto plano o el texto cifrado.

Paso 2: Medir el consumo de potencia. El segundo paso del ataque es medir el
consumo de potencia del dispositivo criptografico mientras cifra o descifra D diferentes
bloques de datos conocidos. Para cada una de estas operaciones, el atacante necesita
saber el valor d correspondiente que esté involucrado en el célculo de los resultados
intermedios elegidos en el paso 1. Estos valores conocidos pueden ser expresados como
un vector d = (dy, ...,d,)’, donde d; denota el valor en la i operaciéon de cifrado o
descifrado. Durante cada una de estas operaciones el atacante registra las trazas de
potencia. Las trazas que corresponden a los bloques d; son el vector t; = (¢;1,...t; 1),

Capitulo 3 23

donde T denota la longitud de la traza. ' El atacante mide una traza para cada uno
de los D bloques de datos y por lo tanto las trazas pueden ser escritas como una
matriz T de tamano DxT. Es importante para los ataques que las medidas estén
alineadas correctamente. Esto significa que los valores del consumo de potencia de
cada columna ?; de la matriz T necesita ser de la misma operacién. La matriz T
queda como:

T=|: -~ . (3.1)
tpi -+ tpr

Paso 3: Calcular los valores intermedios hipotéticos. El siguiente paso de ataque
es calcular un valor intermedio hipotético para cada posible eleccion de k. Estos
posibles valores son denotados por el vector k = (ki,...,kx), donde K denota el
numero total de posibles elecciones de k. En el contexto de un ataque los elementos
del vector forman la clave secreta hipotética. Dado el vector d y la clave hipotética
k, un atacante puede calcular facilmente los valores intermedios hipotéticos f(d, k)
para todas las D operaciones de cifrados y para todas las K claves. Los valores se
almacenan en una matriz V:

fldi, k) -+ f(do, k)

V= (3.2)

fldp k1) -+ f(dp, kk)

Paso 4: Asignar valores intermedios a valores de consumo de potencia. El siguiente
paso de ataque es mapear los valores intermedios hipotéticos V' a la matriz H de
valores de consumo de potencia hipotéticos. Para este proposito el atacante utiliza
algiin modelo de consumo de potencia. Al usar estas técnicas el consumo de potencia
del dispositivo, cada uno de los valores intermedios hipotéticos V;; es simulado en
orden para obtener valores de consumo de potencia hipotéticos H; ;. Por ejemplo si
se utiliza el modelo de la distancia de Hamming (H D(+)) la matriz H es:

hii -+ hik HD(f(dy, k1)) -+ HD(f(do,kK))
H=|: -~ |= : : - (33)
hpi -+ hpk) HD(f(dp, k1)) - HD(f(dp,kxk))

Paso 5: Comparar valores de consumo de potencia hipotéticos con trazas de po-
tencia. Después de haber transformado (V') a H, el paso final del ataque puede ser
realizado. En este paso, cada columna h; de la matriz H es comparado con cada co-
lumna t; de la matriz T.Esto significa que el atacante compara los valores de consumo
de potencia hipotético de cada una de las claves hipotéticas con las trazas registra-
das en cada posicion. En esta comparacion se utilizan los distinguidores, por ejemplo

1Se refiere al niimero de puntos capturados por un osciloscopio, esto depende de la frecuencia de
muestreo del mismo y el periodo de tiempo de captura.

24 Ataques por canales laterales

basandose en los coeficientes de correlacion. A partir de esta relacion, f — bits de la
clave secreta del dispositivo atacado puede ser descubierta con cierta probabilidad.

El procedimiento anterior es repetido varias veces con diferentes partes de los D
mensajes conocidos, de esta manera se recupera la clave en su totalidad.

3.6. Plataforma experimetal

Para realizar un ACL utilizando el consumo de potencia se necesitan de los si-
guientes componentes:

1. Dispositivo objetivo (target): Es un dispositivo el cual va a ejecutar el algoritmo
criptografico que se quiere probar su seguridad.

2. Equipo de medicion: Se encarga de recolectar las muestras, trazas para su pos-
terior analisis. Se necesita de un osciloscopio que registre las senales durante la
ejecucion del algoritmo criptogréfico.

3. Equipo de procesamiento: Con las senales medidas se realizan las correlaciones
correspondientes con el consumo tedrico contra las mediciones obtenidas. Con
dicho analisis se puede obtener la clave utilizada en el algoritmo criptografico.

Realizar estas pruebas, requieren de un osciloscopio de alta precision, hardware
adicional que realice la sincronizacion al ejecutar el algoritmo entre el dispositivo
objetivo y el osciloscopio.

Por ello se utilizan herramientas dedicadas las cuales hacen el estudio de la segu-
ridad de algoritmos criptogréaficos contra ataques de canal lateral asequible y simple
de configurar.

Dichas herramientas de hardware y software son proporcionadas por NewAE?.

NewAE es una empresa dedicada a la seguridad de hardware en dispositivos em-
bebidos, con la mision de de hacer ver a los disenadores e ingenieros sobre el poder
del ACL y glitching como vectores de ataque importantes.

Las herramientas son de codigo abierto y ampliamente disponibles [36].

Se puede analizar distintas sefiales al mismo tiempo con un solo dispositivo, por
ejemplo, consumo de potencia con emisiones electromagnéticas, sin necesidad de tener
un equipo de captura para cada senal generada.

3.6.1. Ecosistema ChipWhisperer

Es un conjunto de herramientas tutiles para la investigacion en seguridad en hard-
ware de dispositivos embebidos.

Estan enfocadas a el analisis de consumo de potencia, voltaje y ataque de fallas
del reloj.

2https://www.newae.com

https://www.newae.com

Capitulo 3 25

Estas herramientas dan soporte a distintos dispositivos objetivo como microcon-
troladores ARM Cortex-M, dispositivos PowerPC, FPGAs pequenos.
Estan compuestas de cuatro capas.

» Hardware: ChipWhisperer tiene tarjetas-osciloscopio que son utilizadas para
montar un ACL.

Las tarjetas funcionan como dispositivos bajo prueba.

= Firmware: Incluyen el firmware de codigo libre para las tarjetas-osciloscopio y
los dispositivos objetivo.

El firmware esté escrito en Veriog para los FPGAs y en C para los microcon-
troladores.

= Software: Es una biblioteca de codigo abierto escrita en python que controla
el hardware de captura de las trazas y la comunicacion entre el dispositivo
objetivo. Se encarga de obtener las mediciones del consumo de potencia. Tiene
dos APIs principales una Captura y otra Analizer.

= Tutorials: Son libretas de python que funcionan para montar un laboratorio de
ACL. Desde las libretas se puede realizar todo el flujo del ataque hasta realiza el
analisis de las muestras capturadas y obtener la clave utilizada por el algoritmo
criptografico.

Las 4 capas siguen un flujo general para la captura hasta obtener la clave. Inicia con
la configuracion de la tarjeta-osciloscopio y el microcontrolador objetivo. Se escribe
el texto plano o mensaje que va a procesar el algoritmo criptografico dentro del
microcontrolador. Después se sincronizan las dos partes y se activa el cifrado. A la
vez se capturan las trazas. Se obtiene el cifrado del objetivo. Los datos obtenidos se
organizan y se almacenan.

Estos pasos se realizan repetidamente hasta generar un conjunto de trazas con
distintos textos planos cifrados suficientes para poder realizar el anélisis, los resultados
se interpretan aun si no se ha encontrado la clave y se pueden obtener resultados
parciales de la clave.

3.6.2. ChipWhisperer Nano

Es la plataforma de menor costo para realizar ACL e inyeccion de fallos de voltaje.
Tiene las siguientes caracteristicas:

= Convertidor Analogico-digital de 8 bits capaz de tomar muestras hasta 20 Mega-
muestras por segundo, con un reloj externo o un reloj interno.

= Tiene un microcontrolador objetivo STM32F030 para cargar el algoritmo crip-
tografico.

26 Ataques por canales laterales

Figura 3.1: ChipWhisperer Nano, [37]

s Puede almacenar hasta 50 000 muestras.

La tarjeta ChipWhisperer Nano esta disenada principalmente para demostraciones
de analisis de potencia y método de ensenanza. Fisicamente la tarjeta esta dividida
en dos secciones una que es el microcontrolador y la que toma muestra.

3.6.3. ChipWhisperer Lite

De la misma manera que la plataforma ChipWhisperer Nano, la version Lite tam-
bién esta dividida en dos médulos. Uno encargado de la captura de las muestras y el
otro que implementa el algoritmo criptografico a atacar. Esta version tiene un mayor
nimero de prestaciones que la version Nano.

Esta version tiene una mayor capacidad de almacenamiento de las trazas, opera a
una frecuencia mayor y tienen una mayor sensibilidad a la senal de ruido.

Sus caracteristicas son las siguientes:

» Convertidor Analégico-digital de 10 bits capaz de tomar muestras hasta 105
Mega-muestras por segundo, con un reloj externo o un reloj interno.

» Tiene un microcontrolador objetivo STM32F para cargar el algoritmo cripto-
grafico.

= Un reloj ajustable de 5-200MHz.

s Puede almacenar hasta 24 573 muestras.

La herramienta de ChipWhisperer hacen que la configuracion sea sencilla de ambas
tarjetas. Basta con cambiar las opciones de compilaciéon con una variable, por ello
con los programas desarrollados para el ACL se puede comparar el funcionamiento
en ambas plataformas.

Capitulo 3

oooo00000D
00000

650000000
0000

110,
(o
STt

00 wxiam " &
00999% .2

000000000
-uooooonoao

Figura 3.2: ChipWhisperer Lite, [3].

27

28

Ataques por canales laterales

Capitulo 4

Implementacion de los ataques

4.1. Implementacién Secuencial

Nuestro analisis fue realizado tanto en GIFT-64 como GIFT-128, ya que indepen-
dientemente de la version, la clave esta formada de 128 bits, en donde cada subclave
es un nibble, lo que significa que cada subclave estd compuesta de 4—bits y puede
tener sus valores entre 0, 1, 2, ..., 15, es decir, 2* posibles combinaciones.

4.1.1. Modelo de consumo

Para poder llevar a cabo un ataque exitoso, es decir, obtener de manera correcta
los 128 bits de la clave, necesitamos conseguir las 32 subclaves que la componen.
El ntmero de subclaves que se pueden extraer por ronda varia dependiendo de la
version analizada, ya que para GIFT-64 se utilizan 32 bits de la clave por ronda, es
decir, ocho subclaves, por lo que es necesario atacar cuatro rondas de GIFT-64. Para
GIFT-128 se utilizan 64 bits de la clave por ronda, obteniendo 16 subclaves, por lo
que tnicamente es necesario atacar dos rondas de GIFT-128.

Para cada una de las subclaves con la que se cifran N textos planos, dependiendo
de la implementacion atacada, calculamos un valor de correlacion para cada posible
valor [0,...,15], después de calcular los distintos valores de correlacion, escogemos el
valor de correlaciéon maxima de cada subclave supuesta y ese sera el valor escogido.

Us Vi U Vi u. W U Vo
ﬁ ﬁ °te ﬁ ﬁ
1 A T T

Figura 4.1: GIFT-64, Puntos de fuga de informacion

29

30 Implementacion de los ataques

Este proceso es repetido en cada una de las rondas tanto de GIFT-64 como de GIFT-
128.

En nuestro analisis elegimos el punto de interés (Pdl), también conocido como
punto de fuga en la salida de la caja S de la funcién de ronda 2, 3, 4 y 5 de GIFT-64
y en la salida de la caja S de la funcion de ronda 2 y 3 de GIFT-128.

La correlacion es calculada para cada posible subclave supuesta usada en cada
una de las rondas atacadas y la subclave con la correlacion maxima se vuelve nuestra
subclave supuesta. Ya que parte del contenido de la clave secreta es utilizada en cada
ronda objetivo, para obtener la primer clave de ronda, calculamos el peso de Hamming
de la salida de la caja S de la segunda porque es ahi donde existe una interaccién entre
el estado del cifrador y la clave de ronda. Para obtener las claves de ronda siguientes
se repite el proceso con el fin de recuperar la clave secreta. El codigo mostrado abajo
detalla el funcionamiento de la correlacion.

Algoritmo 1 CPA [(]

1: for iteration =1,2,... do

2 for actor =1,2,..., N do

3 Clave supuesta XOR Texto plano
4: end for

5 Correlacion Maxima

6: end for

4.1.2. Reconstruccion de la clave

La clave secreta también conocida como clave de estado K utilizada por el cifrador
es de 128 bits como K = kr||kg]|...||ko donde k es una palabra de 16 bits [21].

El calculo de las claves de ronda para ambas versiones de GIFT es el siguiente:

Para GIFT-64 se extraen dos palabras de 16 bits, kg y k1 de la clave de estado y
se convierten en la clave de ronda RK = U||V.

U<—/€1,V%k0

Para GIFT-128 se extraen cuatro palabras de 16 bits, ko, k1, ks y k5 de la clave de
estado y se convierten en la clave de ronda RK = U||V.

Después se actualiza la clave de estado como:

donde > ¢ es una rotacion circular a la derecha.

Capitulo 4 31

Inversion Key Schedule de GIFT-64

Para obtener la clave secreta se necesitan las primeras cuatro claves de ronda y
después utilizamos esas cuatro claves de ronda para invertir el proceso de generacion
de claves y recuperar los 128 bits que la componen. Necesitamos atacar cuatro rondas
secuenciales de GIFT-64 debido a la estructura de su esquema criptografico. En GIFT-
64, tinicamente 32 bits de cada clave de ronda se utilizan, es por lo que son necesarias
cuatro rondas secuenciales para obtener los 128 bits de la clave secreta.

En la funciéon de ronda AddRoundKey cada uno de los bits de U y V se combinan
con el estado del cifrador mediante una operacion XOR en los bits by 11ybs, por lo
que es necesario generar U y V y obtener la clave de ronda [21].

baiv1 < baiv1 @ s, bgiy1 < by v, V; € {0, ..., 15}

Inversion Key Schedule de GIFT-128

Para obtener la clave secreta se necesitan las primeras dos claves de ronda y
después utilizamos esas dos claves de ronda para invertir el proceso de generacion
de claves y recuperar los 128 bits que la componen. Necesitamos atacar dos rondas
secuenciales de GIFT-128 debido a la estructura de su esquema criptografico. En
GIFT-128, tinicamente 64 bits de cada clave de ronda se utilizan, es por lo que son
necesarias dos rondas secuenciales para obtener los 128 bits de la clave secreta.

En la funcién de ronda AddRoundKey cada uno de los bits de U y V se combinan
con el estado del cifrador mediante una operacion XOR, en los bits by o y byy1, por
lo que es necesario generar U y V y obtener la clave de ronda [21].

baito < baivo ® Uj, byiy1 < byip1 ® v, Vi € {0,...,31}

4.1.3. Configuracion del ataque

Para este analisis se utiliz6 el ecosistema ChipWhisperer que cuenta con un micro-
controlador que tiene como objetivo ser la victima, la tarjeta de control y el oscilosco-
pio. El modelo utilizado fue el ChipWhisperer NANO que consiste en un microcontro-
lador STM32F030 de ocho bits. La implementacion utilizado tanto de GIFT-64 como
de GIFT-128 fue implementada en el lenguaje C con la ayuda del protocolo simple
serial de ChipWhisperer. Se realizaron una serie de ataques para poder visualizar la
tasa de efectividad del modelo propuesto, esto significa, el ntimero de veces que se
obtuvo con éxito la clave secreta. Para poder visualizar la efectividad del ataque, se
midio la tasa de éxito del ataque de potencia correlacional (APC), esta tasa de éxito
muestra si un ataque recuperd de manera exitosa la clave usada por el algoritmo para
cifrar los textos planos. La tasa de éxito se defini6 como:

1, si la clave es correcta

tasa de éxito = { 0, de lo contrario

32 Implementacion de los ataques

Para realizar el anélisis de la efectividad del ataque, se realizaron multiples ataques
y se calculd la media de la tasa de éxito, que es el nimero de ataques intentados
dividido por el niimero de ataques que recuperaron la clave de manera exitosa.

, # ataques exitosos
media =

total ataques

Una serie de ataques es definida como un conjunto de iteraciones, en donde cada
iteracion crea de manera aleatoria un arreglo de pares de textos planos y la potencia
medida y se guarda en un bloque de datos para posteriormente aplicar el ataque sobre
estos datos. Si el ataque recuper6 la clave secreta de manera exitosa, la el valor de
la tasa de éxito es 1 de lo contrario es 0. Una vez que las iteraciones se terminan, la
media de la tasa de éxito es calculada. En nuestro analisis se usaron un total de 120
iteraciones y 5000 pares de textos planos y la potencia medida. El procedimiento es
descrito en el algoritmo 2.

Algoritmo 2 Serie de ataques APC

1: Resultado: Media de la tasa de éxito
2: totallteraciones = 120

3: iteraciones = 0

4: tasakxito = 0

5: mediaTasaExito = 0

6: pares = ||

7: while totallteraciones < total do

8: pares.agregar(texto/potencia)

9: resultado = CPA(pares)

10: iteraciones+-+

11: if resultado es exitoso then

12: tasabxito +=1

13: end if

14: end while

15: mediaTasaExito = tasaExito/totallteraciones

4.2. Implementacién bitslicing

En ambas versiones de GIFT-64 y GIFT-128 se usa la representacion de una
matriz para realizar paralelamente las operaciones de la caja S. Sin embargo la parte
costosa a nivel software es la permutacion de bits. Para que la entrada concuerde
con el formato de la matriz, este debe transformarse con las funciéon de packing y
el cifrado se regresa a la representaciéon normal unpacking. Para ello se utiliza la
siguiente funcion de intercambio de bits SWAPMOVE Algoritmo 3.

En ambas versiones de GIFT-64 y GIFT-128 el mensaje debe de transformarse
para seguir el mismo formato, los siguientes pseudocodigos ilustran esta accion Algo-

Capitulo 4 33

Algoritmo 3 SWAPMOVE

Require: a,b, mask,n > Dos ntimeros a y b de 32 bits, un desplazamiento y una
mascara
1: tmp < (b® (a > n)) A mask
2: b+ b®tmp
3 a < ad® (tmp < n)

ritmo 12. El unpacking se utilizan las mismas operaciones solo que la transformacion
de enteros de 32 bits en formato Big-endian a un arreglo de bytes se realiza al fi-
nal de los intercambios de bits. Debe de tomarse en cuenta que se trabaja con un
microcontrolador ARM Cortex-M de 32 bits, generalmente estdn configurados para
trabajar con la representacion Little-endian (el byte menos significativo se almacena
en la memoria mas baja). La permutacion fue implementada de la siguiente manera,
utilizando la funcién de intercambio SWAP.

4.2.1. Modelo de consumo
Peso de Hamming

Se implement6 el peso de Hamming como modelo de consumo para los ataques
de correlaciéon de potencia . Especificamente, se consideraron las transiciones de 1y 2
bits en los Algoritmos 4 y 5 en las operaciones de cifrado. Esto significa que el modelo
de consumo se basa en el nimero de bits que cambian a "1.°® cada operacion. Para la
implementacion, se calculé el peso de Hamming de cada byte procesado en el cifra-
do y se utilizo esta informacion para correlacionarla con las mediciones de consumo
de potencia del dispositivo objetivo. Esta implementacién permitié evaluar como las
variaciones en el consumo de energia pueden estar asociadas con el comportamien-
to de GIFT-COFB en sus versiones de 64 y 128-bits, en particular con los valores
intermedios de las claves.

Algoritmo 4 Calculo del peso de Hamming de 1 bit

Require: entrada: arreglo de bytes para el calculo del peso de Hamming
1: peso_de hamming < 0 > Inicializa el peso de Hamming
2: for byte € entrada do
3 for i <+~ 0 to 7 do
4 if pos_Dbi(byte, i) = 1 then
5: peso _de hamming <— peso _de hamming + 1
6 end if
7 end for
8: end for
9: return peso_de hamming > Retorna el peso de Hamming total de 1 bit

34 Implementacion de los ataques

Algoritmo 5 Calculo del peso de Hamming de 2 bits consecutivos

Require: entrada: arreglo de bytes para el calculo del peso de Hamming
1: peso_de hamming 2bits <— 0 > Inicializa el peso de Hamming de 2 bits
2: for byte € entrada do
3: for i +— 0 to 6 do

4 if pos_bit(byte, i) =1 and pos_bit(byte, i+1) = 1 then

5: peso_de hamming 2bits <— peso de hamming 2bits + 1

6 end if

7 end for

8: end for

9: return peso_de hamming 2bits > Retorna el peso de Hamming de 2 bits
4.2.2. SNR

En este analisis de potencia, se utiliz6 SNR como modelo de consumo para los
ataques de anélisis de potencia diferencial DPA y anéalisis de potencia de correlacion
CPA. Especificamente, el SNR Algoritmo 6 se aprovecha para identificar la diferen-
cia entre la senal 1til, que corresponde a las variaciones en el consumo de potencia
asociadas con las operaciones de cifrado, y el ruido de fondo que puede distorsionar
la medicion.

4.2.3. Reconstruccion de la clave

En los ataques de CPA la reconstrucciéon de la clave se basa en correlacionar las
mediciones de consumo de energia con los valores intermedios generados durante el
proceso criptografico. En CPA| se utiliz6 el peso de Hamming y el SNR como modelos
de consumo para predecir el consumo de energia asociado con diferentes valores de
la clave Algoritmo 7. A través de la correlacion entre las trazas y las predicciones del
modelo, se pudieron identificar los valores correctos de la clave. En DPA, se calculo
la diferencia entre las trazas asociadas a diferentes hipotesis de la clave y se utilizo
un anélisis estadistico para detectar patrones significativos que revelaran la clave
correcta. Ambos ataques requerian multiples trazas y un analisis cuidadoso de la
variabilidad del consumo de energia para finalmente reconstruir la clave completa.

Previamente se utiliza la funcion gift_internal (Algoritmo 8 para realizar una
operacion para que las claves propuestas tengan el mismo formato que el GIFT-COFB.
La funcién realiza una operacion XOR, entre el valor en la posicién indicada por row
y un valor basado en la suposiciéon. La suposicion se modifica segtin su paridad y su
valor absoluto.

Se necesitan las siguientes subrutinas para reconstruir las claves:

= construir_clave (Algoritmo 9): Esta funcién toma una lista de bits y cons-
truye una clave al aplicar un desplazamiento (shift) y una operacion XOR entre
los bits, generando un valor entero final que representa la clave reconstruida.

Capitulo 4 35

Algoritmo 6 Célculo de la relacion senal-ruido (SNR)

Require: ronda: entradas del estado del cifrado, trazas: conjunto de trazas de poten-

cia, clave: clave secreta, fila: indice del estado a analizar, inicio: inicio del intervalo
de trazas, fin: fin del intervalo de trazas

Ensure: Relacion senal-ruido (SNR)

H
e

11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

Inicializar grupos de peso de Hamming vacios: grupos hw < ||
for i =0 to 16 do
grupos_hwli] < []
end for
for i = 0 to longitud(trazas) — 1 do
peso__hamming < calcular_ HW (estado_ interno(rondali], clave, fila))
Agregar trazasli|[inicio:fin| a grupos hw|peso hamming]|

end for
Filtrar los grupos no vacios: grupos_no_ vacios < filtrar _no_ vacios(grupos hw)
Calcular los promedios de cada grupo: promedios hw —

calcular _promedios(grupos _no_ vacios)
Calcular el promedio global: promedio global < promedio(promedios hw)
Inicializar el arreglo de ruido: ruido < ||
for i = 0 to longitud(promedios hw) — 1 do
for traza in grupos no_vacios[i| do
Agregar traza — promedios hw([i] a ruido

end for
end for
Calcular la varianza del ruido: varianza ruido < calcular varianza(ruido)
Calcular la varianza del promedio: varianza__ promedio —

calcular varianza(promedios hw)
varianza_promedio

return ——
varianza_ruido

36 Implementacion de los ataques

Algoritmo 7 Analisis de correlacion de potencia (CPA)

Require: rondas: lista de entradas del estado del algoritmo, trazas: conjunto de
mediciones de potencia, registro: indice del estado a evaluar
Ensure: claves: lista de posibles valores de la clave
1: claves < ||

2: promedio_trazas < calcular promedio(trazas)
3: desv_trazas < calcular desviacion(trazas, promedio trazas)
4: N < 16 > Numero de posibles bits de la clave
5: for bit <~ 0to N — 1 do
6: maxcpa <— [0, 0] > Almacenar las correlaciones maximas
7 for suposicion < 0 to 1 do
8: hws < calcular pesos Hamming(rondas, bit, suposicion, registro)
9: promedio _hws < calcular _promedio(hws)
10: desv _hws <« calcular _desviacion(hws, promedio hws)
11: correlacin < calcular _covarianza(trazas, promedio trazas, hws, promedio hws)
12: cpa_salida = desv_tcr(za‘rzr;slictii(zrslv_hws
13: maxcpalsuposicion| <— calcular maximo(valor absoluto(cpa_salida))
14: end for
15: suposicion _méaxima < indice méximo(maxcpa)
16: correlacion _maxima <— maximo(mazcpa)

17: Agregar suposicion _méxima a claves
18: end forreturn claves

Algoritmo 8 gift internal

Require: state: arreglo que representa el estado del sistema.

Require: guess: suposicion sobre el valor a ser calculado.

Require: row: indice de la fila sobre la que se aplicaré la operacion.
1: return state[row| @ ((guess méd 2) < int(guess/2))

Capitulo 4 37

= obtener_clave (Algoritmo 10): Esta funciéon divide una lista de bits en dos
grupos y luego utiliza la funciéon construir_clave para calcular dos claves, una
para cada grupo de bits.

Algoritmo 9 construir clave

Require: bits: lista de bits de entrada
Ensure: Una clave generada a partir de los bits
clave < 0
for (i, bit) in enumerar(bits) do
clave + clave @ (bit < 1)
end for
return clave

Algoritmo 10 obtener clave

Require: bits: lista de bits de entrada
Ensure: Dos claves generadas a partir de los grupos de bits
: grupo_1 <[]
: grupo_2 <[]
. for (bit1,bit2) in bits do
grupo_1l.append(bitl)
grupo_ 2.append(bit2)
end for
return construir _clave(grupo 1), construir clave(grupo 2)

AN vy

Ataque CPA utilizando subclaves

El Algoritmo 11 implementa una variante del ataque CPA (Analisis de Corre-
lacién de Potencia) para identificar la clave més probable a partir de un conjunto
de subclaves. La funcién max_cpa calcula la correlacion entre las trazas de poten-
cia y las subclaves posibles utilizando un modelo de consumo basado en el peso de
Hamming. La subclave que produce la mayor correlacion con las trazas observadas es
seleccionada como la clave més probable.

En este algoritmo se implementan dos funciones (Algoritmos 12 y 13, packing y
unpacking, que se utilizan para transformar los textos planos y cifrados en el formato
GIFT-COFB. La funcién packing toma un bloque de texto plano y lo organiza en un
formato adecuado para ser procesado por el cifrado. La funcién unpacking, por otro
lado, toma un bloque cifrado y lo convierte de nuevo al formato de texto plano. Ambas
funciones utilizan la operaciéon SWAPMOVE para realizar intercambios de bits dentro del
estado.

38

Implementacion de los ataques

Algoritmo 11 max_cpa

Require: ronda: conjunto de valores del estado del cifrado
Require: trazas: trazas de potencia capturadas

Require: subclaves: lista de subclaves posibles

Require: fila: indice de la fila del estado a evaluar
Ensure: La subclave méas probable

1:
2:

© X e s w

10:
11:
12:

promedio_trazas < calcular _promedio(trazas)
desv_trazas < calcular _desviacion(trazas, promedio trazas)
maxcpa < [0] x longitud(subclaves)
for suposicion in rango(0, longitud(subclaves)) do
hws <+ calcular _pesos Hamming(ronda, subclaves|suposicion], fila)
promedio__hws < calcular _promedio(hws)
desv _hws < calcular _desviacion(hws, promedio hws)
correlacin < calcular _covarianza(trazas, promedio trazas, hws, promedio hws)

correlacién
Cpa_T‘@SUltCLdO = desv_trazas X desv_hws

maxcpalsuposicion| <— calcular maximo(valor absoluto(cpa_resultado))
end for
return subclaves|indice maximo(maxcpa)]

Algoritmo 12 packing

Require: block: arreglo de entrada de 8 bytes

e O G S
TR W N RO

© P g Wy

state <— [0] x4
state[0] <— U32BIG(block[4 :])
state[1] <— U32BIG(block]: 4])
SWAPMOVE(O, 0, 0x0a0aOala, 3)
SWAPMOVE(O, 0, 0x00cc00cc, 6)
SWAPMOVE(O, 0, 0x0000f0f0, 12)
SWAPMOVE(O, 0, 0x0000ff00, 8)
SWAPMOVE(1, 1, Ox0Oal0alala, 3)
SWAPMOVE(1, 1, 0x00cc00cc, 6)
SWAPMOVE(1, 1, 0x0000f0f0, 12)
: SWAPMOVE(1, 1, 0x0000ff00, 8)
: SWAPMOVE(O, 1, O0xO0ff00ff, 8)
: SWAPMOVE(O, 2, 0x0000ffff, 16)
: SWAPMOVE(1, 3, 0x0000ffff, 16)

: return state

Capitulo 4

39

Algoritmo 13 unpacking

Require: state: arreglo de estado de 4 palabras

1: SWAPMOVE(1, 3, OxO000ffff, 16)
2: SWAPMOVE(O, 2, O0xO000ffff, 16)
3: SWAPMOVE(O, 1, OxOOffOO0ff, 8)
4: SWAPMOVE(1, 1, 0x0000ff00, 8)
5. SWAPMOVE(1, 1, 0x0000f0f0, 12)
6: SWAPMOVE(1, 1, 0x00cc00cc, 6)
7: SWAPMOVE(1, 1, 0x0a0a0ala, 3)
8: SWAPMOVE(O, 0, 0x0000ff00, 8)
9: SWAPMOVE(O, 0, 0x0000f0f0, 12)
10: SWAPMOVE(O, 0, 0x00cc00cc, 6)
11: SWAPMOVE(O, 0, 0x0a0alala, 3)
12: block[4 :] - U8BIG(state[0])

—
w

. block[: 4] «<— USBIG(state[1])
. return block

—_
=

4.2.4. Flujo completo del ataque

Este conjunto de algoritmos representa el flujo completo de un ataque de analisis
de potencia diferencial (DPA) utilizando correlacion (CPA). El proceso comienza con
la captura de trazas de consumo de potencia (Algoritmo 14). En este paso, se configura
un dispositivo criptografico para cifrar textos planos generados de forma aleatoria,
utilizando una clave secreta fija. Durante el cifrado, se registran las trazas de potencia
que reflejan el consumo energético del dispositivo, junto con los textos de entrada
utilizados. Este conjunto de trazas y textos es fundamental, ya que proporciona la
base de datos necesaria para realizar el ataque.

Una vez capturadas las trazas, el siguiente paso es recuperar la clave secreta me-
diante un ataque CPA (Algoritmo 15). Primero, se identifican las partes mas relevan-
tes de las trazas mediante un anélisis de la relacion senal-ruido (SNR). Esto ayuda a
localizar los puntos donde las trazas contienen informacion tutil sobre la clave. Luego,
se extraen esas subtrazas y se aplica el analisis de correlacion de potencia para deducir
las partes probables de la clave secreta. Estas partes se refinan a través de calculos
adicionales, como la busqueda de correlaciones maximas, y finalmente se reconstruye
la clave completa en el formato que utiliza el algoritmo de cifrado.

En resumen, estos algoritmos describen el flujo completo de un ataque, desde
la configuraciéon inicial para capturar las trazas hasta la recuperacion precisa de la
clave secreta. Este enfoque puede adaptarse a diferentes rondas del cifrado o incluso
a otros algoritmos criptograficos, haciendo del proceso una herramienta flexible para
el analisis de seguridad.

40

Implementacion de los ataques

Algoritmo 14 Captura de trazas de potencia

Require: N: Numero total de trazas a capturar, clave: clave del algoritmo de cifrado
Ensure: arreglo trazas: conjunto de trazas capturadas, arreglo textos: textos de

e e T e T e = T e T T

19:
20:
21:

entrada correspondientes

arreglo trazas < ||

arreglo textos < ||

iniciar _cifrado(clave) > Inicializar el sistema con la clave
texto cifrado_tmp < None

for : < 1to N do

preparar__captural() > Preparar sistema para capturar traza
texto <— generar texto aleatorio() > Generar texto plano aleatorio
enviar _texto(texto) > Enviar texto plano al dispositivo para cifrar
esperar_ cifrado() > Esperar a que el dispositivo complete el cifrado
if cifrado agotado() then

continue
end if
respuesta < leer salida_ cifrada() > Leer texto cifrado
if © =1 then

texto cifrado tmp < respuesta
end if
traza <— obtener_traza actual() > Obtener traza de consumo

arreglo trazas.append(traza)
arreglo textos.append(texto)

end for

return arreglo trazas, arreglo textos

Capitulo 4 41

Algoritmo 15 Obtencion de claves probables mediante CPA

Require: trazas: conjunto de trazas capturadas, textos: textos planos correspondien-
tes, rondas: datos intermedios calculados por el cifrado
Ensure: clave recuperada: clave secreta reconstruida
1: snr_graficar(rondas, trazas, region _interes) > Identificar region relevante
2: trazas primera_ronda < extraer trazas(trazas,region interes) > Extraer
subtrazas relevantes
3: parte_v < cpa(rondas, trazas_primera_ronda, registro _v) > Calcular primera
parte de la clave
4: parte_u < cpa(rondas, trazas_segunda_ronda, registro_u) > Calcular segunda
parte de la clave
5: v_0,v_1 < formato clave(parte v)
6: u_0,u_1 <« formato clave(parte u)

7. vl < max_cpa(rondas, trazas_primera_ronda,[v_0,v 1], registro_v) >
Encontrar valor més probable de v

8: ul - max_cpa(rondas, trazas segunda_ronda,[u_0,u_ 1], registro u) >
Encontrar valor més probable de u

9: k12,k13,k14, k15 < reconstruir_clave(vl,ul) > Convertir a formato final

10: return k12,k13,k14, k15

4.3. Implementacion fixslicing

4.3.1. Modelo de consumo

La implementacion fizslicing de GIFT-COFB introduce una reorganizacion espe-
cifica en la representacion del estado, optimizada para realizar operaciones eficientes.
Sin embargo, los ataques descritos anteriormente, como el calculo de la Relacién Senal-
Ruido (SNR) y el Ataque de Correlacion de Potencia (CPA), siguen siendo aplicables
con ciertas adaptaciones necesarias para manejar esta representacion.

En fixslicing, el estado del cifrado se reorganiza de manera que cada bit ocupa
una posicion fija, facilitando operaciones como permutaciones y mezclas en un nivel
estructurado. Esto implica:

= Los bits del estado no estan distribuidos secuencialmente, sino que estan asig-
nados de manera fija y especifica a registros o palabras de la arquitectura sub-
yacente.

» Las operaciones internas del cifrado, como las permutaciones de bits, las ro-
taciones y las mezclas, se realizan de manera diferente al enfoque clasico o al
bit-slicing.

Dado esto, las métricas de anélisis, como el peso de Hamming, deben ajustarse
para reflejar esta representacion. Las posiciones fijas de los bits determinan como se
calcula el modelo de consumo y cémo se agrupan las trazas para analizar la relacion
entre los datos internos del cifrado y las mediciones de potencia.

42 Implementacion de los ataques

El modelo basado en el peso de Hamming permanece sin cambios. Se asume que
la potencia consumida por el hardware esta directamente relacionada con el namero
de bits activados (en estado ‘1’). Sin embargo, debido a la representacion fizslicing, se
debe reinterpretar el estado para calcular correctamente este peso, teniendo en cuenta
las posiciones fijas de los bits.

El célculo de la SNR se realiza de manera similar al caso tradicional, pero los
intervalos de trazas y la agrupacion de pesos de Hamming deben adaptarse para
considerar como estan organizados los bits en fizslicing. En particular:

= La funcion de agrupamiento del peso de Hamming debe interpretar correcta-
mente la posicion fija de cada bit en el estado.

= Las trazas se analizan en intervalos definidos por las operaciones internas del
cifrado, ajustandose a como las posiciones fijas de los bits afectan el modelo de
consumo.

El Ataque CPA sigue el mismo principio de correlaciéon entre las trazas de potencia
y los valores intermedios del cifrado, pero es fundamental ajustar las funciones internas
para interpretar correctamente la representacion fizslicing:

» La funcién interna del cifrado (gift_internal) debe considerar la disposicion
fija de los bits al calcular los pesos de Hamming.

= La correlacion se evalia de forma estandar, pero el significado de cada bit dentro
del estado debe alinearse con la estructura de fizslicing.

4.3.2. Reconstruccion de las claves

El proceso de reconstruccion de claves, basado en las subrutinas descritas pre-
viamente, también debe ajustarse a la representacion fizslicing. Las operaciones de
desplazamiento y XOR se aplican de acuerdo con el esquema fijo de los bits, ase-
gurando que el resultado final respete la estructura interna del estado. A pesar de
estas adaptaciones, el flujo general para reconstruir las subclaves y la clave completa
permanece intacto.

En la implementacion fizslicing de GIFT-COFB:

= El calculo de SNR y CPA es funcional, pero requiere ajustes para trabajar con
la representacion fija de los bits.

= Las métricas, como el peso de Hamming, se deben calcular considerando las
posiciones especificas de los bits en fixslicing.

= Las correlaciones y las trazas capturadas deben interpretarse correctamente para
reflejar la estructura fija del estado.

Capitulo 4 43

Las siguientes funciones estan disenadas para dar formato a las claves utilizadas en
la representacion fizslicing del cifrado GIFT-COFB. Esta representacion requiere que
las claves se estructuren de manera especifica, reorganizando los bits para optimizar
las operaciones internas, como transposiciones, rotaciones y manipulaciones bit a
bit. A continuacién, se describen y detallan las funciones utilizadas para lograr este
objetivo.

Las funciones REARRANGE_KEYWORD_0_1 y REARRANGE_KEYWORD_2_3 procesan pa-
res de palabras clave (x e y), aplicando desplazamientos y operaciones logicas como
AND, OR y SHIFT. Estas funciones generan combinaciones especificas de los bits para
alinear las palabras clave al formato requerido por el fizslicing. La diferencia entre
ambas radica en el esquema de combinaciéon utilizado para procesar los bits.

La funcién principal, RearrangeKey, toma como entrada una clave organizada en
palabras y la transforma en un conjunto de palabras clave reorganizadas (rkey). Esto
se logra mediante una combinacién de operaciones:

L] Aplicacién de REARRANGE_KEYWORD_O_1 y REARRANGE_KEYWORD_2_3 a las pala—
bras clave individuales.

» Transposiciéon de palabras mediante la subrutina TRANSPOSE_U32.

= Operaciones logicas como XOR, OR y desplazamientos para completar la reorga-
nizacion.

= Uso de la subrutina SWAPMOVE, que realiza intercambios controlados entre pala-
bras clave utilizando méscaras y desplazamientos.

Estas operaciones aseguran que la clave reorganizada cumpla con los requisitos del
formato fixslicing y esté lista para su uso en el cifrado.

En resumen, aunque los principios fundamentales de los ataques no cambian, su
implementacion préactica necesita tomar en cuenta los detalles particulares de fixsli-
cing, especialmente en lo que respecta al ordenamiento y manipulacion de los bits en
el estado del cifrado, asi como la reconstruccion de las claves.

44 Implementacion de los ataques

Algoritmo 16 Reorganizacion de palabras clave para fixslicing

1: function REARRANGE KEYWORD 0 1(x,y)
2: return (((y) A 0xf0) < 20) V (((z) A 020f) < 16) V (((x) A 0z f0) < 4) V

((y) N020f)
3: end function

4: function REARRANGE KEYWORD 2 3(x,y)

return (((z) A 0xf0) < 20) V (((z) A 0z0f) < 16) V (((y) A 0z f0) < 4) V
((y) A 0z0f)
end function
function REARRANGEKEY (key)

rkey < [0] x 10

rkey[0] <+~ REARRANGE KEYWORD 0 1(key[14], key[15])
10: rkey[l] «+ REARRANGE KEYWORD _0_1(key[12], key[13])
11: rkey|0] <+ TRANSPOSE U32(rkey[0])
12: rkey[l] <~ TRANSPOSE U32(rkey[1])
13: rkey[0] < rkey[0] V (rkey[0] < 4)

[
[
[
[
[
14: rkey|
|
[
[
[
[

o

1] < rkey[1] V (rkey[l] < 4)
15: rkey|0
16: rkey2] ¢+ REARRANGE KEYWORD_0_1(key[10], key[11])
17 rkey[3] + REARRANGE _KEYWORD _0_1(key[8], key[9)])
18: rkey[2] + rkey[2] V (rkey[Q] < 4)

]
]
]
}
} — rkey0] @0z fffffff
]
]
]

19: rkey(3] < rkey[3] V (rkey[3] < 4)

2. rheyl2] & rheyl2) & 0uf f1 111

21: SWAPMOVE(2, 2, 0x22222222, 2)

22: SWAPMOVE(3, 3, 0x22222222, 2)

23: rkey[4] <~ REARRANGE _KEYWORD 2 3(key|6], key[7]
24: rkey[5] <~ REARRANGE _KEYWORD 2 3(key[4], key[5]
25: rkey[4] <~ TRANSPOSE U32(rkey[4])

26: rkey[5] <+~ TRANSPOSE U32(rkeyl5))

21 SWAPMOVE(4, 4, 0x00000{00, 16)

2% SWAPMOVE(5, 5, 0x0000000, 16)

29: rkeyl4] < rkey[4] V (rkey[4] < 4)

30: rkey[d] < rkey[5] V (rkey[5] < 4)

31: rkeyld] < rkeyld| @ 0xffffffff

~— —

[5]
[4]
32: rkey[6] + REARRANGE KEYWORD 2 3(key[2], key[3])
33: rkey[7] «+ REARRANGE KEYWORD 2 3(key|0], key[1])
34: rkeyl6] < rkey[6] Vv (rkey[G] < 4)
35: rkeyl7] < rkey[7] V (rkey[7] < 4)
36: rheyl6] < rkeyl6] & Oz ffFFFFLS
37: rkey[8] «— NIBBLE ROR_1(rkey|0])
38: rkeyl9] < (NIBBLE_ROR_B('r’k‘ey[l]) A 0x0000ffff) V (rkey[l] A
0z f f £ £0000)
39: rkeyl9] + ROR(rkey[9], 16)
40: return rkey

41: end function

Capitulo 4 45

4.4. FEstado del arte

Tabla 4.1: Ataques CPA a GIFT-COFB implementado en software

Autor Version de GIFT-COFB Plataforma Herramienta Num. de trazas | Resultado
Turan N. [35] Bitslicing Protecciéon mascara booleana | STM32F303 ChipWhisperer CW309 | 100k falla prueba-t
Turan N. [35] Sin proteccion STM32F303RCT6 | Osciloscopio Pico 3203D | 20k pasa prueba-t
Benjamin A. [39] | GIFT-128 STM32F ChipWhisperer-Lite 345 100 % exactitud
Unger W.[10] Sin proteccion ATXMEGA128D4 | ChipWhisperer CW308 | 2000 100 % exactitud

CPA es un método ampliamente utilizado para evaluar la seguridad de distintos
criptosistemas, en este caso para GIFT-COFB frente a ataques de canal lateral. En
un estudio realizado por [38], se evaluaron implementaciones de GIFT-COFB en un
microcontrolador STM32F303 bajo dos configuraciones: una protegida mediante mas-
carado booleano y otra sin proteccion. Los resultados mostraron que, en la version
protegida, CPA no logré recuperar las claves privadas, incluso después de analizar
100,000 trazas, lo que evidencia una resistencia adecuada. Sin embargo, en la ver-
sion sin proteccion, CPA tampoco fue efectivo para comprometer la clave, pasando
la prueba t con tan solo 20,000 trazas. Este comportamiento podria explicarse por
las particularidades del formato bitslicing utilizado en GIFT-COFB, que complica la
correlacion directa entre las trazas de potencia y los estados intermedios de las claves.

Por otro lado, otros investigadores han demostrado que CPA puede ser altamente
efectivo en ciertas condiciones. Por ejemplo, [10] consiguieron recuperar la clave con
un 100 % de precision analizando tnicamente 2,000 trazas en un microcontrolador
ATXMEGA128D4 utilizando un ChipWhisperer CW308. Tambien se han propuesto
utilizar el CPA junto aprendizaje profundo por [39]. Encontraron que el numero de
trazas necesarias para vulnerar el cifrado se reducia considerablemente, a 345 para
lograr una precision de 100 %. Estos resultados subrayan la importancia de considerar
tanto la representacion fixslicing u otras métodos de proteccion contra CPA en GIFT
y junto a su modo de operacion.

En este trabajo se realiza un analisis CPA aplicado a la implementacion fixslicing
de GIFT-COFB. Este enfoque, que organiza los bits de manera especifica para op-
timizar el rendimiento y reforzar la seguridad, representa un avance respecto a las
investigaciones previas centradas en implementaciones bitslicing. Nuestro estudio es
el primero en explorar las vulnerabilidades de GIFT-COFB bajo este esquema, lo
que implica abordar retos tinicos debido a la estructura y el ordenamiento particular
de los bits en fixslicing. Esto requiere ajustar tanto el modelo de consumo como las
técnicas de ataque para adaptarse a esta nueva representacion.

Para garantizar que los resultados sean comparables con los de investigaciones
anteriores, utilizamos las mismas herramientas estandar del estado del arte, como el
ChipWhisperer, que permite la captura y evaluacién precisa de trazas de potencia.
Este enfoque asegura la consistencia de los datos y facilita una evaluacion objetiva.
Nuestro trabajo no solo amplia el conocimiento sobre las vulnerabilidades de GIFT-
COFB, sino que también establece una base solida para futuros anélisis de cifrados
livianos en esquemas mas avanzados como el fixslicing.

46

Implementacion de los ataques

Capitulo 5

Resultados

5.1. Implementacién Secuencial

Para el analisis de la implementacion secuencial del algoritmo GIFT se considerard
la version de 64bits. El modelo de potencia que se eligié para atacar al algoritmo
fue la correlacion de Pearson junto con el peso de Hamming, esto debido a que la
implementacion usa la caja S con un bloque en memoria y procesa el estado de GIFT
byte a byte. El punto clave aqui, es que cada caja S es calculada de manera separa
por lo que el modelo de potencia es aplicada en el calculo de cada una de ellas. Por
lo tanto, es de esperarse que cada cuatro bits o nibble fugué informacion al mismo
tiempo y sea posible suponer un consumo de potencia mediante el peso de Hamming
de la salida de la caja S.

5.1.1. GIFT-64

El modelo propuesto se aplico a la salida de la caja S de la ronda 2, 3, 4 y 5
que es donde interactiian las claves de ronda respectivas con el estado del cifrador
y se simularon los valores intermedios con las claves supuestas y se correlacionaron
con la potencia medida. La Figura 5.1 muestra como se ven graficamente una traza
capturada de las rondas capturadas. Como se puede observar existe una region donde
hay un patréon que se repite 28 veces, tal como el nimero de rondas que se aplican a
la version GIFT-64. El punto de interés se encuentra entre las trazas de 0 a 5000 ya
que es donde se utiliza la clave, en especifico en las primeras rondas.

SNR

Para poder obtener el punto de fuga 6 punto de interés para poder obtener las
claves de ronda y de esta manera poder revertir el proceso que calcula las claves
de ronda, se utilizdé un algoritmo que muestra la tasa de senal a ruido y marca el
punto en donde existe la mayor relacion entre los valores intermedios y las trazas de
potencia medidas. Estos posibles puntos de interés son visibles una vez que las trazas
de potencia estén alineadas.

47

48 Resultados

0.2 1

0.1

0.0

—-0.1 1

-0.2 4

—-0.3 1

-0.4

0 5000 10000 15000 20000 25000

Figura 5.1: Traza capturada de GIFT-64 secuencial.

La Figura 5.2a muestra una grafica con picos que muestran donde hay una mayor
relacion de la clave supuesta con los valores intermedios, donde el pico mas alto senala
el punto de interés que se utilizd para realizar la correlacion de los valores supuestos
con las trazas de potencia reales.

3.0

2.5+

2.0 1

0.8+
154

0.6 4

Consumo de voltaje

1.0 A
0.4 1

0.5
| | 0.2 1
0.0 0.0 q
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Muestreo en el tiempo

(a) Tasa de sefial a ruido, ronda 1y 2. (b) Tasa de senal a ruido, ronda 4 y 5.

Figura 5.2: Graficas de senal a ruido de rondas de la version secuencial GIFT-64.

Correlacion

El resultado del ataque en cada ronda es un conjunto de valores ordenados, en
donde cada valor corresponde a la correlacion maxima de las claves supuestas. El
tamano del conjunto de valores maximos varia dependiendo de la version de GIFT
analizada, siendo de 32 valores para GIFT-64 y 64 valores para GIFT-128. Cada uno
de estos valores representa la subclave que se obtuvo como correcta.

Capitulo 5 49

La Figura 5.3a muestra que el nimero de trazas necesarias para obtener la primer
clave de ronda es de 180. La Figura 5.3b muestra que le nimero de trazas necesarias
para obtener la segunda clave de ronda es de 200.

3.0 1 3.0 q
2.5 254
2.0

2.0

1.5

1.0 1.0
0.5 4 H n 0.5+ IM
0.0 0.0 1 L

T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Numero de trazas Numero de trazas

Entropia de suposicion parcial
Entropia de suposicion parcial
.

w

(a) Entropia de suposicion parcial, ronda 2. (b) Entropia de suposicion parcial, ronda 2.

Figura 5.3: Gréficas de suposicion de la cantidad de muestras necesarias para obtener
la clave de la version secuencial GIFT-64.

Lo mismo se replica para los rondas 4 y 5 y se obtienen las claves de ronda, tal
como se muestra en la Figurab.2b.

5.1.2. GIFT-128

El anéalisis de GIFT-128 en la implementacion secuencial se realizd siguiendo el
mismo procedimiento que para GIFT-64. Se trabajo con las rondas 2, 3, 4 y 5, simulan-
do los valores intermedios y correlacionandolos con las trazas de potencia obtenidas.
Aunque no se logré generar graficas especificas para esta version, el analisis permitio
confirmar que las fugas de potencia seguian un patrén similar al observado en GIFT-
64, destacando los puntos clave donde las claves de ronda interacttian con el estado
del cifrador. Los resultados de muestran en la Tabla 5.1.

5.2. Implementacién bitslicing

Para el analisis de la implementacion bitslicing del cifrador GIFT, se trabajo
con las versiones de 64 bits y 128 bits. Esta implementacion aprovecha un enfoque
altamente paralelo que permite procesar miltiples bloques de datos al mismo tiempo.
A diferencia de la version secuencial, donde las operaciones se realizan de manera
individual para cada nibble, en el bitslicing las operaciones se distribuyen a través
de registros completos. Esto genera fugas de informacién de forma sincronizada, lo
que introduce retos especificos al modelar el consumo de potencia. Para este analisis,
se utiliz6 el modelo basado en la correlaciéon de Pearson combinado con el peso de

50 Resultados

0.2 4

0.1+

0.0

Consumo de voltaje

—0.4

T T T T T T
1] 5000 10000 15000 20000 25000
Muestreo en el tiempo

Figura 5.4: Traza capturada de GIFT-64 bitslicing.

Hamming, ya que sigue siendo efectivo para capturar las fugas relacionadas con las
claves de ronda.

En esta implementacion, las cajas S se procesan en paralelo, lo que significa que las
transiciones de estado ocurren simultdneamente para miltiples bloques. Esto resulta
en patrones distribuidos en las trazas de potencia, los cuales fueron analizados para
identificar los puntos donde las claves interactiian con los estados intermedios.

5.2.1. GIFT-64

En el caso de GIFT-64, se enfoco el anédlisis en las rondas 1,2,3 y 4, ya que en estas
rondas las claves de ronda interacttian directamente con el estado del cifrador. Se uti-
lizaron las trazas de potencia capturadas y se compararon con los valores intermedios
calculados usando claves supuestas. En la Figura 5.4 se presenta una traza captura-
da, donde se puede observar un patron repetitivo que corresponde a las 28 rondas de
GIFT-64. El analisis de las fugas se concentrd entre el tiempo 0 y 20000, dado que
es en este rango donde ocurren las transiciones mas significativas relacionadas con el
uso de la clave.

snr

Para identificar el punto de fuga o punto de interés que permitiera recuperar las
claves de ronda y revertir el calculo de estas, se utilizd6 un algoritmo basado en la
SNR. Este algoritmo evalta la relacion entre los valores intermedios simulados y las
trazas de potencia medidas, marcando los puntos con mayor correlaciéon. Los puntos
de interés se hacen visibles una vez que las trazas de potencia estan correctamente
alineadas, en este caso son se puede observar los picos de las rondas 1 a 4 en las figuras
5.5a5.5b5.5¢H.5d. La Figura 5.5 muestra una gréafica donde los picos reflejan las zonas

Capitulo 5 51

con mayor relacion entre la clave supuesta y los valores intermedios en las distintas
rondas. El pico mas alto corresponde al punto de interés clave, que fue utilizado para
realizar la correlacion entre los valores supuestos y las trazas de potencia reales.

3.0

2.5
2.5

~
=3
L
g
=)
L

=
wn
L

=
=)
!

Consumo de voltaje
[y [
o v
! |
Consumo de voltaje

05 4 0.5
0.0 m‘l ww 0.0 kit bl WA b
r T

T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Muestreo en el tiempo Muestreo en el tiempo
(a) Taza senal a ruido ronda 1 (b) Taza sefial a ruido ronda 2

3.0
3.0 4

2.5
254

2.0

n
o
L

1.5

=
n
L

1.0+

05 | 054
0.0 0.0 4

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Consumo de voltaje
Consumo de voltaje

=
o
L

Muestreo en el tiempo Muestreo en el tiempo
(¢) Taza senal a ruido ronda 3 (d) Taza senial a ruido ronda 4

Figura 5.5: Gréficas de senal a ruido de rondas de la versiéon secuencial GIFT-64
bitslicing

5.2.2. GIFT-128

Para GIFT-128, el enfoque fue similar, pero con algunas diferencias debido a
la estructura del cifrador, que opera sobre 40 rondas en lugar de 28. Las fugas de
potencia también se analizaron en las rondas iniciales (1,2,3 y 4), donde las claves de
ronda interacttian con el estado interno. En este caso, la Figura 5.6 muestra una traza
capturada, en la que es evidente un patréon consistente con la estructura repetitiva
de las rondas. Como en el caso de GIFT-64, el analisis se centr6 en las primeras 0 a

52 Resultados

0.2 4

0.1+

0.0 4

Consumo de voltaje

T T T T T T
1] 5000 10000 15000 20000 25000
Muestreo en el tiempo

Figura 5.6: Traza capturada de GIFT-128 bitslicing.

25000 muestras, ya que es en este intervalo donde las transiciones relacionadas con
las claves de ronda son més evidentes.

El procesamiento paralelo de GIFT-128 en bitslicing genera trazas mas complejas
debido al mayor nimero de operaciones en cada ronda. Sin embargo, los patrones
de fuga son identificables al correlacionar las trazas con los modelos de potencia,
permitiendo recuperar de manera efectiva las claves de ronda correspondientes.

snr

Al igual que en el caso de GIFT-64, SNR para determinar los puntos clave donde
las fugas de potencia eran mas significativas. Este algoritmo permitioé localizar los
puntos donde la relaciéon entre los valores intermedios y las trazas de potencia era
més fuerte, facilitando la recuperacion de las claves de ronda.

La Figura 5.7 muestra los resultados del anélisis SNR para GIFT-128 para las
distintas rondas (1-4). Los picos en la grafica indican los momentos en los que la
correlacion con la clave supuesta es mas alta. El pico principal fue utilizado como
punto de referencia para realizar la correlacion entre los valores supuestos y las trazas
reales, permitiendo extraer la informacién necesaria para revertir el calculo de las
claves.

5.3. Implementacion fixzslicing

La implementacion fixslicing se centrd exclusivamente en GIFT-128. Este enfoque
reorganiza las operaciones internas del cifrador para optimizar el procesamiento y
minimizar el costo computacional, lo que resulta en patrones tinicos y consistentes en
las trazas de potencia. A diferencia de las versiones secuencial y bitslicing, firslicing

Capitulo 5 53

1.75
1.50 2.0
o 1251 o
) T s
S i
s 1.00 s
o o
£ 0751 £ 1.0
2 2
5 8
0.50
0.5
0.25
0.00 0.0 |
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Muestreo en el tiempo Muestreo en el tiempo
(a) Taza sefial a ruido ronda 1 (b) Taza sefial a ruido ronda 2
2.5 4
2.0 4
2.0
1.5 4
o 2
il i)
2 g1
3 3
o 1.0 °
E E
E} S 1.0
2 2
5 §
0.5
0.5
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Muestreo en el tiempo Muestreo en el tiempo
(c) Taza senal a ruido ronda 3 (d) Taza senial a ruido ronda 4

Figura 5.7: Graficas de senal a ruido de rondas de la versién secuencial GIFT-128
bitslicing

genera una distribuciéon interna optimizada que afecta cémo y dénde aparecen las
fugas de informacion.

5.3.1. GIFT-128

El analisis de GIFT-128 se enfoco en las rondas 1,2,3 y 4, que son las primeras
donde las claves de ronda interacttian con el estado interno del cifrador. Estas in-
teracciones generan transiciones significativas que pueden observarse en las trazas de
potencia capturadas.

La Figura 5.8 muestra una traza representativa de esta implementacion, donde
se observan patrones que corresponden a las 40 rondas de GIFT-128. En particular,
el analisis se centrd en las primeras 75000 muestras, que es donde se encuentran las
fugas de potencia més relevantes para la recuperacion de las claves de ronda.

54 Resultados

Consumo de voltaje

—0.3 4

—-0.4

T T T T T
1] 5000 10000 15000 20000 25000
Muestreo en el tiempo

Figura 5.8: Traza capturada de GIFT-128 fizslicing.

snr

Con snr se localizaron los puntos criticos donde las fugas de potencia estaban mas
correlacionadas con los valores intermedios simulados. Los resultados, presentados en
la Figura 5.9, destacan los picos que indican las regiones de mayor relaciéon entre las
claves supuestas y las mediciones.

El punto con la mayor amplitud en el analisis marcé la posicion clave utilizada
para correlacionar los valores simulados con las trazas reales. En esta implementacion,
el esquema fixslicing mostr6é que estas fugas se concentran en zonas especificas de las
trazas, lo que confirma un patréon definido asociado a su estructura optimizada. Es
decir que es donde se encuentra la interaccion de la clave con las rondas de GIFT-128.

Score

El término score se refiere a una métrica que mide la relacién entre las trazas
capturadas y los valores intermedios simulados para cada posible candidato de clave.
En este contexto, un score mas alto indica que un candidato de clave tiene una mayor
probabilidad de ser correcto, ya que su comportamiento se alinea més estrechamente
con las fugas de potencia observadas.

La Figura 5.10 ilustra cémo evoluciona el score a medida que se incrementa el
numero de trazas procesadas. Las lineas negras representan el score del candida-
to correcto, mientras que las lineas grises corresponden a candidatos incorrectos. A
medida que se utilizan més trazas, se observa como el score del candidato correcto
comienza a destacarse significativamente sobre los demés.

Este comportamiento indica que el ataque fue capaz de identificar el candidato
correcto después de procesar un numero suficiente de trazas. Este tipo de analisis
es clave para evaluar la eficacia del ataque, ya que permite cuantificar el ntimero de
trazas necesarias para recuperar la clave de manera confiable.

Capitulo 5 55

W
o
L

~
n
L

~
o
L
w
!

=
=]
s

Consumo de voltaje
~
h

Consumo de voltaje

g
=]
L

5 [T VY T T e |

T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 0 250 500 750 1000 1250 1500 1750 2000
Muestreo en el tiempo Muestreo en el tiempo

(a) Taza sefial a ruido ronda 1 (b) Taza sefial a ruido ronda 2

2.5

2.04

T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 o] 250 500 750 1000 1250 1500 1750 2000
Muestreo en el tiempo Muestreo en el tiempo

w
L

Consumo de voltaje
~N
h

Consumo de voltaje

-

(c) Taza senal a ruido ronda 3 (d) Taza senial a ruido ronda 4

Figura 5.9: Graficas de senal a ruido de rondas de la versién secuencial GIFT-128
fixslicing

5.4. Porcentaje de éxito de las distintas versiones

La Tabla 5.1 resume los resultados obtenidos al realizar experimentos con el ci-
frador GIFT en diferentes configuraciones, como las implementaciones secuencial,
bitslicing y fixzslicing. En estos experimentos, se consider6é un ataque exitoso cuando
se logro recuperar las claves internas de las rondas del cifrado y reconstruir con éxito
la clave completa del algoritmo, lo que representa una medida clave de efectividad en
los ataques.

Las implementaciones secuenciales, tanto de GIFT-64 como de GIFT-128, mos-
traron el mejor desempeno, con tasas de éxito del 99.1 % y el 100 %, respectivamente.
Estas pruebas se realizaron con 5000 trazas y emplearon el dispositivo ChipWhisperer
Nano. En cambio, las configuraciones basadas en bitslicing y fixslicing procesaron un
mayor volumen de datos, con 50000 trazas cada una, pero sus tasas de éxito fueron

56 Resultados

—— Llave incorrecta
—— Llave incorrecta
" —— Llave correcta

—— Llave correcta

0.6

0.4 4

0.2 A

Correlacién

0 2000 4000 6000 8000 10000
Numero de trazas

Figura 5.10: Grafica del score de las posibles claves en GIFT-128 fizslicing.
menores, entre el 76 % y el 88 %. Estas configuraciones se probaron en el ChipWhis-

perer Lite de 32 bits, un dispositivo disenado para anélisis més intensivos en términos
computacionales.

Tabla 5.1: Porcentaje de éxito de CPA a las distintas versiones de GIFT-COFB.

Version del cifrador Experimentos Exitos Tasa de éxito (%) Numero de trazas ChipWhisperer

GIFT-64 secuencial 120 119 99.1 5000 Nano
GIFT-128 secuencial 120 120 100 5000 Nano
GIFT-64 bitslicing 1000 880 88 50000 Lite
GIFT-128 bitslicing 1000 850 85 50000 Lite
GIFT-128 fizslicing 5000 4200 76 50000 Lite

Al comparar los resultados obtenidos con el cifrador GIFT en sus diferentes va-
riantes (secuencial, bitslicing y fizslicing) con los reportados en el estado del arte, se
observan algunas tendencias interesantes. Primero, los experimentos realizados con el
cifrador GIFT-128 secuencial y GIFT-64 secuencial lograron tasas de éxito muy altas,
con un 99.1 % y un 100 % de éxito respectivamente, utilizando inicamente 5000 trazas
y un dispositivo ChipWhisperer Nano. Estos resultados coinciden con lo informado
por Turan N. [38] para implementaciones con proteccion de mascara booleana, que
también reportan un rendimiento bastante alto con configuraciones similares, aun-
que en plataformas diferentes. En cuanto a los resultados de GIFT-64 bitslicing y
GIFT-128 bitslicing con los de otras investigaciones, como las de Benjamin A. [39]
y Unger W. [10], se observa una ligera disminuciéon en las tasas de éxito. Aunque
estos métodos de sin proteccion han demostrado ser eficientes en ejecucion, las tasas
de éxito alcanzadas en nuestras pruebas (88 % y 85 % respectivamente, de bitslicing
que se realizaron en esta tesis) fueron algo menores, lo que podria reflejar una mayor

Capitulo 5 57

dificultad para recuperar las claves en estas implementaciones. En contra parte, los
resultados con GIFT-128 fizslicing mostraron una tasa de éxito del 76 %, lo que, aun-
que mas bajo que los anteriores, sigue siendo un rendimiento notable considerando
que este método involucra una mayor complejidad en la implementacion.

En resumen, aunque las implementaciones de bitslicing, tanto con como sin protec-
cion, muestran una disminucion en la tasa de éxito en comparaciéon con las versiones
secuenciales, contintian siendo métodos efectivos para atacar al cifrador GIFT, es-
pecialmente cuando se dispone de un ntmero adecuado de trazas y la herramienta
adecuada, como el ChipWhisperer Lite. Estos resultados destacan la importancia del
tipo de implementacion y la cantidad de trazas en la eficacia del ataque.

o8

Resultados

Capitulo 6

Conclusiones

En este trabajo se evalud la seguridad de las implementaciones de software del
algoritmo GIFT-COFB frente a ataques por canales laterales, utilizando CPA para
identificar posibles fugas de informaciéon en las variantes fixslicing y bitslicing. Los
resultados obtenidos revelaron que fizslicing proporciona una mayor proteccion frente
a los ataques, comparado con la variante bitslicing. Esto se debe a que fixslicing
introduce mas variabilidad en el proceso de cifrado, lo que dificulta la extraccion de
la clave a través de un analisis de correlacion de potencia. Sin embargo, esta proteccion
adicional viene acompanada de una mayor necesidad de trazas para poder realizar
una correlacion exitosa y recuperar la clave.

Por su implementacion de fizslicing, esta variante tiende a generar una mayor can-
tidad de falsos positivos, como se mostro en el analisis del score. Aunque la presencia
de estos falsos positivos puede dificultar la identificacién precisa del valor correcto
de la clave, aun asi es posible recuperar la clave con suficientes trazas. Este compor-
tamiento implica que, aunque fizslicing es mas resistente a los ataques por canales
laterales, el costo computacional es significativamente mayor debido a la necesidad
de obtener mas muestras para realizar una correlacion efectiva y lidiar con los falsos
positivos.

En cuanto a la cantidad de trazas necesarias para obtener una tasa de éxito acepta-
ble, los experimentos mostraron que las implementaciones fizslicing requieren alrede-
dor de 5000 trazas para obtener buenos resultados, mientras que las implementaciones
bitslicing y las versiones secuenciales permitieron la recuperacion de la clave con una
menor cantidad de trazas. Esto implica que, si bien fizslicing es més seguro frente a
los ataques por canales laterales, también presenta un desafio mayor en términos de
eficiencia, lo que pone de manifiesto la necesidad de equilibrar seguridad y recursos
computacionales.

De manera general, se puede concluir que fizslicing es una opcién més robusta
frente a ataques por canales laterales, pero también més exigente en cuanto a los
recursos necesarios para ejecutar el ataque. Este comportamiento pone en evidencia
que el modo fixslicing no solo es més seguro, sino que también implica una mayor
dificultad para los atacantes, aunque no los hace invulnerables. Los resultados obteni-
dos reflejan la importancia de tomar en cuenta tanto la eficiencia del algoritmo como

29

60 Conclusiones

su seguridad préctica al ser implementado en software.

Un aspecto importante a destacar es que GIFT-COFB, que fue finalista en la
competencia del NIST para algoritmos de cifrado ligero, se muestra vulnerable a
los ataques por canales laterales, a pesar de su participacién en dicha competencia.
Los experimentos realizados en este trabajo demuestran que, independientemente
del modo COFB utilizado, el cifrador sigue siendo susceptible a los ataques CPA.
Esto subraya la necesidad de disenar implementaciones mas seguras que mitiguen las
vulnerabilidades frente a ataques de este tipo, especialmente en aplicaciones criticas
que manejan informacion sensible.

Finalmente, se observa que en el estado del arte hay una escasez de trabajos que
aborden especificamente los ataques a GIFT-COFB en sus versiones implementadas
en software. La mayoria de los estudios disponibles se centran en versiones secuenciales
del algoritmo, con la excepciéon de un trabajo que propone una proteccién mediante
méscaras booleanas en el modo bitslicing. Esta falta de investigaciéon sobre los modos
fixslicing y bitslicing de GIFT-COFB destaca la necesidad urgente de realizar mas
estudios que analicen la resistencia de estas implementaciones frente a los ataques
por canales laterales, dada la relevancia creciente de este cifrador en el campo de la
criptografia ligera.

Bibliografia

1]

2]

3]
4]

[5]

[6]

17l
8]

19]

[10]

[11]

Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016. |accedido el 7 de Noviembre de 2022|.

Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A new gift
representation. Cryptology ePrint Archive, Paper 2020/412, 2020. Consultado
el 19 de Octubre de 2022.

NewAE. Chipwhisperer-lite, 2024.

Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO
"96, pages 104-113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

G Joy Persial, M Prabhu, and R Shanmugalakshmi. Side channel attack-survey.
Int. J. Adv. Sci. Res. Rev, 1(4):54-57, 2011.

Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology—CRYPTO’96: 16th Annual
International Cryptology Conference Santa Barbara, California, USA August 18—
22, 1996 Proceedings 16, pages 104-113. Springer, 1996.

na practical implementation of the timing attack.

Werner Schindler. A timing attack against RSA with the chinese remainder theo-
rem. In Cryptographic Hardware and Embedded Systems—CHES 2000: Second
International Workshop Worcester, MA, USA, August 17-18, 2000 Proceedings
2, pages 109-124. Springer, 2000.

Alejandro Hevia and Marcos Kiwi. Strength of two data encryption standard
implementations under timing attacks. ACM Transactions on Information and

System Security (TISSEC), 2(4):416-437, 1999.

David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701-716, 2005.

Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in Cryptology—CRYPTO’97: 17th Annual International Cryptology

61

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

62

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

BIBLIOGRAFIA

Conference Santa Barbara, California, USA August 17-21, 1997 Proceedings 17,
pages 513-525. Springer, 1997.

Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices.
In International Workshop on Security Protocols, pages 125-136. Springer, 1997.

Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002: jth International
Workshop Redwood Shores, CA, USA, August 13-15, 2002 Revised Papers 4,

pages 2—12. Springer, 2003.

Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of sim-
ple power analysis on smartcards. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 78-92. Springer, 2000.

Roman Novak. SPA-based adaptive chosen-ciphertext attack on RSA implemen-
tation. In International Workshop on Public Key Cryptography, pages 252-262.
Springer, 2002.

Colin D Walter. Sliding windows succumbs to big mac attack. In Cryptographic
Hardware and Embedded Systems—CHES 2001: Third International Workshop
Paris, France, May 14—-16, 2001 Proceedings 3, pages 286—299. Springer, 2001.

Faisal Rahman Nuradha, Septafiansyah Dwi Putra, Yusuf Kurniawan, and
Muhammad Adli Rizqulloh. Attack on aes encryption microcontroller devices

with correlation power analysis. In 2019 International Symposium on FElectro-
nics and Smart Devices (ISESD), pages 1-4. IEEE, 2019.

Colin O’Flynn and Zhizhang David Chen. Side channel power analysis of an
aes-256 bootloader. In 2015 IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 750-755. IEEE, 2015.

Mostafa Taha and Patrick Schaumont. Side-channel analysis of mac-keccak. In
2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 125-130. IEEE, 2013.

Brian Koziel, Reza Azarderakhsh, and David Jao. Side-channel attacks on
quantum-resistant supersingular isogeny diffie-hellman. In Selected Areas in
Cryptography—SAC 2017: 24th International Conference, Ottawa, ON, Canada,
August 16-18, 2017, Revised Selected Papers 24, pages 64-81. Springer, 2018.

Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for
low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology
— ASTACRYPT 2015, pages 411-436, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

BIBLIOGRAFIA 63

22]

23]

24]

[25]

[26]

27]

28]

29]

[30]

[31]

Christof Beierle, Jérémy Jean, Stefan Kélbl, Gregor Leander, Amir Moradi, Tho-
mas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny family
of block ciphers and its low-latency variant mantis. In Matthew Robshaw and Jo-
nathan Katz, editors, Advances in Cryptology — CRYPTO 2016, pages 123-153,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason
Smith, and Louis Wingers. The simon and speck lightweight block ciphers. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1—
6, 2015.

Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. Gift: A small present. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems — CHES 2017,
pages 321-345, Cham, 2017. Springer International Publishing.

Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni. A
small gift-cofb: Lightweight bit-serial architectures. Cryptology ePrint Archive,
Paper 2022/955, 2022. https://eprint.iacr.org/2022/955.

Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the cloud:
Exploit the power of bitslice implementation. In Cryptographic Hardware and
Embedded Systems—CHES 2012: 1jth International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings 14, pages 408—425. Springer, 2012.

Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to differential power analysis. Journal of Cryptographic Engineering, 1:5-27,
2011.

Maamar Ouladj. Side-Channel Analysis of Embedded Systems : An Efficient Al-
gorithmic Approach / by Maamar Ouladj, Sylvain Guilley. Springer International
Publishing, Cham, 2021.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004.
Proceedings, volume 3156 of Lecture Notes in Computer Science, pages 16—29.
Springer, 2004.

Eric Brier, Christophe Clavier, and Francis Olivier. Optimal statistical power
analysis. Cryptology ePrint Archive, Paper 2003/152, 2003. https://eprint.
iacr.org/2003/152.

Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual informa-
tion analysis: A generic side-channel distinguisher. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 426-442. Springer, 2008.

https://eprint.iacr.org/2022/955
https://eprint.iacr.org/2003/152
https://eprint.iacr.org/2003/152

64

32]

33

[34]

[35]

[36]

137]
[38]

[39]

[40]

BIBLIOGRAFIA

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cry-
ptographic Hardware and Embedded Systems - CHES 200/, pages 16—29, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

Francgois-Xavier Standaert. Introduction to side-channel attacks. Secure integra-
ted circuits and systems, pages 27-42, 2010.

Yusuke Yano, Kengo lokibe, Yoshitaka Toyota, and Toshiaki Teshima. Signal-to-
noise ratio measurements of side-channel traces for establishing low-cost coun-

termeasure design. In 2017 Asia-Pacific International symposium on electromag-
netic compatibility (APEMC), pages 93-95. IEEE, 2017.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer Publishing Company, Incorpora-
ted, 1st edition, 2010.

Alex Dewar, Jean-Pierre Thibault, and Colin O’Flynn. Naean0010: Power analy-
sis on fpga implementation of aes using cw305 & chipwhisperer r o, 2020.

NewAE. Chipwhisperer-nano, 2024.

Meltem Sonmez Turan, Meltem Sonmez Turan, Kerry McKay, Donghoon Chang,
Lawrence E Bassham, Jinkeon Kang, Noah D Waller, John M Kelsey, and Deukjo
Hong. Status report on the final round of the NIST lightweight cryptography
standardization process. US Department of Commerce, National Institute of
Standards and Technology, 2023.

Alexander Benjamin, Jack Herzoff, Liljana Babinkostova, and Edoardo Serra.
Deep Learning Based Side Channel Attacks on Lightweight Cryptography (Stu-
dent Abstract). In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 12911-12912, 2022.

William Unger, Liljana Babinkostova, Mike Borowczak, and Robert Erbes. Side-
channel leakage assessment metrics: A case study of gift block ciphers. In 2021
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 236—241.
[EEE, 2021.

Apéndice A

A.1. Instalacién de ChipWhisperer

Instalacion en Ubuntu 22.04 LTS, para instalar ChipWhisperer y utilizar las li-
bretas de python se realiza con lo siguientes comandos:
e Prerrequisitos

sudo apt update && sudo apt upgrade

sudo apt-get install build-essential gdb lcov pkg-config \
1libbz2-dev 1libffi-dev libgdbm-dev libgdbm-compat-dev liblzma-dev \
libncursesb-dev libreadline6-dev libsqlite3-dev libssl-dev \
1zma lzma-dev tk-dev uuid-dev zliblg-dev curl

sudo apt install libusb-dev make git avr-libc gcc-avr \
gcc-arm-none-eabi libusb-1.0-0-dev usbutils

e Instalacion de los ambientes de python y configuracion los ambientes virtuales

curl https://pyenv.run | bash
echo ’export PATH=""/.pyenv/bin:$PATH"’> >> ~/.bashrc
echo ’export PATH=""/.pyenv/shims:$PATH"’> >> ~/.bashrc
echo ’eval "$(pyenv init -)"’ >> ~/.bashrc
echo ’eval "$(pyenv virtualenv-init -)"’ >> ~/.bashrc

source ~/.bashrc
pyenv install 3.9.5

pyenv virtualenv 3.9.5 cw
pyenv activate cw

e Instalacion del conjunto de herramientas de ChipWhisperer

65

66

cd 7/
git clone https://github.com/newaetech/chipwhisperer
cd chipwhisperer

e Configuracion de las reglas udev para que se puedan reconocer las tarjetas de
desarrollo y acceder a ellas mediante USB

sudo cp hardware/50-newae.rules /etc/udev/rules.d/50-newae.rules
sudo udevadm control --reload-rules

e Creacion usuario y grupos que tienen permiso para ChipWhisperer

sudo groupadd -f chipwhisperer
sudo usermod -aG chipwhisperer $USER
sudo usermod -aG plugdev $USER

e Instalacion las librerias para las libretas jupyter

git submodule update --init jupyter

python -m pip install -e .

python -m pip install -r jupyter/requirements.txt
cd jupyter

python -m pip install nbstripout

nbstripout --install

e Otra alternativa puede instalarse directamente ChipWhisperer como una biblio-
teca de python3 con el comando pip

pip install chipwhisperer

A.2. Libretas python y carga del firmware

Chipwhisperer provee de su repositorio con libretas de python para poder realizar
los ACL. Estas libretas son utilizadas para el aprendizaje, el curso de SCA y inyeccion
a fallos, como plataforma de experimentacion e incluyen las demostraciones del uso de
las herramientas chipwhisperer. Las libretas son una plantilla excelente para realizar
experimentaciones sobre algin otro algoritmo que no se incluya en chipwhisperer o
nuevas formas de analizar los datos de las trazas obtenidas. Dentro del repositorio
chipwhisperer se tiene el repositorio jupyter que contiene a las libretas. Sin embargo,
puede clonarse por separado con el repositorio de chipswhisperer-jupyter:

Capitulo A 67

Figura A.1: Conexion del ChipWhisperer Nano

git clone https://github.com/newaetech/chipwhisperer-jupyter.git

En las libretas python en necesario establecer las siguientes variables globales que
van a indicar el tipo de plataforma que se utilizara y el algoritmo estas son:

SCOPETYPE : Indica que hardware de captura se va a utilizar ‘OPENADC’ para
ChipWhisperer Lite o Pro y ¢‘CWNANQ’ para la versiéon Nano.

PLATFORM : Selecciona el hardware que se esta atacando, CW308_STM32F3’ para
el microprocesador STM32F3, ‘CWLITEXMEGA’> para XMEGA y ‘CWNANQ’ para
el micrprocesador de Chipwhisperer Nano STM32F0.

CRYPTO-TARGET : Indica la biblioteca criptografica que se va a utilizar. Aqui es
donde se establece el algoritmo propio que se va a probar.

SS_VER : Define la version, utilizar la version ‘SS_VER_1_1°.

e Ejemplo Utilizando la plataforma ChipWhisperer Nano, con la Version 1.1, utili-
zando el algoritmo GIFT64 caja S:

SCOPETYPE = ‘CWNANO’
PLATFORM = ‘CWNANQ’
CRYPTO_TARGET = ‘GIFT64CSBOX’
SS_VER = ‘SS_VER_1_1°

Antes de ejecutar alguna celda del codigo las plataformas deben de estar conecta-
das mediante un cable micro USB a USB con el equipo que va a procesar y analizar
las trazas, tal como lo muestran la figuras A.1 y A.2.

68

Figura A.2: Conexién del ChipWhisperer Lite

Una vez conectadas las plataformas de ejecuta el siguiente codigo. Este script va
a establecer la conexion con la tarjeta ChipWhisperer, va a establecer el programa-
dor para el microcontrolador que se ha configurada y restablecerd el firmware del
microcontrolador.

Jrun ../chipwhisperer-jupyter/Setup_Scripts/Setup_Generic.ipynb

Si ha encontrado exitosamente el dispositivo, imprimiré el siguiente mensaje:

INFO: Found ChipWhisperer

Una vez indicadas las variables globales se realiza la compilaciéon cruzada con
arm-none-eabi-gcc, se ligan las librerfa y se generan los archivos binario, hex y elf.
Genera el firmware de la victima. (algo) se sustituye por el algoritmo que se va a
probar.

%lbash -s "$PLATFORM" "$CRYPTO_TARGET" "$SS_VER"
cd hardware/victims/firmware/simpleserial-(algo)
make PLATFORM=$1 CRYPTO_TARGET=$2 SS_VER=$3

Después de generar el firmware, se carga en la memoria flash de microcontrolador.

Capitulo A 69

(algo) se sustituye por el algoritmo que se va a probar.

cw.program_target (scope, prog,
‘hardware/victims/firmware/simpleserial-gift/
simpleserial-(algo)-{}.hex’.format (PLATFORM))

La ejecuccion exitosa indica que se ha detectado el microcontrolador ARM, se
elimina la memoria en la regiéon 0x8000000 y programa la memoria flash.

70

Apéndice B

Apendice 2

B.1. Manejo de las herramientas ChipWhisperer

Utilizando las libretas en python se importa ChipWhisperer.

import chipwhisperer as cw

B.1.1. Scope

Scope es uno de los objetos mas importantes es la API. Este se encarga del control
de la parte de la tarjeta ChipWhisperer de captura e induccién a fallos. Para utilizarlo
se crea el objeto.

scope = cw.scope()

Configura el osciloscopio para comenzar la captura/inyeccion de fallos cuando esté
activado.

scope.arm()

Captura las trazas. Debe ejecutarse el método arm antes, despues de que se haya
capturado una traza, desarma el scope y escribe los datos de regreso. Los datos
regresan como un arreglo de NumPy.

scope. capture ()

Desconecta el objeto scope.

71

72 Apendice 2

scope.dis()

Establece el numero de muestras a capturar.

scope.adc.samples = num_samples

Regresa todas las trazas capturadas en punto flotante. Son valores escalados y
recorridos entre [—0.5,0.5] Dependiendo del tipo de ADC puede regresar 10 bits para
la version Lite o 8 bits para la version Nano.

scope.get_last_trace()

B.1.2. Target

Este objeto de la API provee de las interfaces para configurar el dispositivo de
prueba (microcontrolador a atacar), para programarlo se utiliza el UART. Para uti-
lizarlo se realizar.

import chipwhisperer as cw
scope = cw.scope()
target = cw.target(scope, cw.targets.SimpleSerial)

Manda la llave key que va a utilizar el algoritmo de cifrado.

target.set_key(key)

Escribe por el serial al dispositivo objetivo. Al escribir descarta los datos de la
memoria text y escribe en el buffer. Con el comando ‘p’ se inicia la escritura por el
serial.

target.simpleserial_write(’p’, text)

Lee el serial de dispositivo de prueba. Se recibe la carga ttil en un arreglo de bytes
codificado en ASCII. Se manda el tamano del arreglo esperado y el comando ‘r’ para
leer.

Capitulo B 73

response = target.simpleserial_read(’r’, 16)

Desconecta el objeto target.

target.dis()

B.1.3. Auxiliares

Clase para generar llaves y textos planos basicos. Con el método next () se obtiene
la siguiente par de llave con el texto plano.

import chipwhisperer as cw
ktp = cw.ktp.Basic()
key, text = ktp.next()

B.1.4. Cédigo plantilla para realizar la captura de los datos

Una vez establecidas cada una de las clases y objetos con sus métodos explicados,
es lo necesario para controlar la tarjeta desde el hardware de captura y el dispositivo
de prueba. Después de realizar la configuracion descrita en el Apéndice A.1 puede
ejecutarse el siguiente cddigo. Con el codigo se obtienen 2000 conjuntos de trazas.
Con cada scope.arm() manda la senal y se inicia el cifrado de los datos con un
nuevo texto plano, a su vez se van capturando las senales de consumo de potencia.
Se genera un arreglo de 2000 conjuntos de trazas para su posterior analisis.

Dentro del anélisis de las trazas obtenidas se utilizan las bibliotecas de python para
graficar con Matplotlib y Numpy para manipulad los datos como arreglos. Se usan lo
métodos estadisticos para buscar las correlaciones, estos incluyen la media, covarianza,
desviacion estandar, entre otros. Se compara el mdédelo de consumo de potencia teérico
contra los datos obtenidos de las trazas. Posterior al anélisis se determina si se ha
encontrado la llave con éxito.

74

Apendice 2

from tqdm.notebook import trange
import numpy as np
import time

ktp = cw.ktp.Basic()
trace_array = []
textin_array = []
key, text = ktp.next()
target.set_key(key)
N = 2000
for i in trange(N, desc = ’Capturando trazas’):
scope.arm()
target.simpleserial _write(’p’, text)
ret = scope.capture()
if ret:
print (*’Tiempo agotado.’)
continue

response = target.simpleserial_read(’r’, 16)

trace_array.append(scope.get_last_trace())
textin_array.append(text)

key, text = ktp.next()

Apéndice C

C.1. Algoritmo criptografico personalizado

ChipWhisperer tiene varias implementaciones de algoritmos criptograficos, en ge-
neral del algoritmo AES en distintos modos de operacion. Otros algoritmos cripto-
graficos incluyen DES y RSA También incluyen algunos programas para probar la
inyeccion a fallos como la comparaciéon de contrasenas ingresadas y un cargador de
arranque. Cuando se desea implementar un algoritmo personalizado para probarlo
contra ataques por canal lateral se recomienda que se utilicen como plantilla alguno
de las implementaciones de algiin algoritmo que se incluyen con ChipWhisperer.

Usando alguno de los algoritmos como plantilla ayuda a identificar las funciones en
C que son controladas desde las herramientas en python. Es decir cunado se establece
una llave, se manda un texto plano, se inicia el cifrado y se regresa el texto cifrado.
El firmware del dispositivo de prueba se encuentra en 4 partes principales dentro del
repositorio de chipwhisperer, esta es el proyecto principal, la capa de abstraccion de
hardware (HAL) que es la interfaz entre el microcontrolador y el software, los archivos
crypto y el simpleserial.

C.1.1. Proyecto principal

El proyecto principal es donde se encuentran los archivos del codigo fuente, por
ejemplo unos tienen el nombre simpleserial-aes.c que contiene la funcién principal
main() y otras funciones para la lectura escritura en el serial del texto plano y texto
cifrado, realizar el cifrado, entre otros. La estructura de los archivos puede observarse
en la figura C.1. Todo el proyecto principal esta ligado a un Makefile que se encarga de
la compilacion, aquellos con el subfijo simpleserial. Estos archivos se encuentran
en la siguiente ruta de directorios chipwhisperer/hardware/victims/firmware/.
El siguiente codigo muestra el archivo en C principal de GIFT-64, este se encuentra
en la ruta:

chipwhisperer/hardware/victims/firmware/simpleserial-gift64/simpleserial-gift.c

75

76

#include "gift-independant.h"
#include "hal.h"

#include "simpleserial.h"
#include <stdint.h>

#include <stdlib.h>

uint8_t get_key(uint8_t * k, uint8_t len)

{

gift_indep_key (k) ; // Manda la llave

return 0x00; // SimpleSerial OK

}

uint8_t get_pt(uint8_t * pt, uint8_t len)

{

trigger_high(); // pone en alto la seflal de captura
gift_indep_enc(pt); // realiza el cifrado
trigger_low(); // baja la sefial de captura
simpleserial_put(’r’, 8, pt); // regresa el texto cifrado
return 0x00; // SimpleSerial OK

}

uint8_t reset(uint8_t * x, uint8_t len)

{

return 0x00; // SimpleSerial 0K

}

int main(void)
{
// configuracidén del microcontrolador y el serial
platform_init();
init_uart();
trigger_setup();
simpleserial_init();

// Indica al serial el tipo de paquetes a buscar

// k para manda llave, p para mandar el texto plano.

// Ejecuta las funciones cuando los ha recibido.
simpleserial_addcmd(’k’, 16, get_key);
simpleserial_addcmd(’p’, 8, get_pt);

// Busca paquetes y restablece.
simpleserial_addcmd(’x’, 0, reset);
while(1)
simpleserial_get();

b

Capitulo C 77

Estos proyectos se puede identificar procesos claves, uno es la lectura de la llave,
los triggers (aquella senial que indica el inicio de la captura de las trazas), el cifrado
de los datos y mandar por el serial informacion. En el caso de codigo anterior se tiene
la funcion get_key que carga la llave al algoritmo GIFT-64 y la funciéon get_pt que
dentro de la funcién inicia el cifrado.

C.1.2. Makefile

Dentro de la misma ruta que el proyecto principal se define el Makefile para
compilar el proyecto. En este Makefile solo es necesario cambiar las variables que
hagan referencia al algoritmo personalizado que se quiere probar. El siguiente c6digo
ejemplifica la modificacion utilizando GIFT-64.

Nombre de como se va a llamar los archivos compilados
TARGET = simpleserial-gift

El archivo C del firmware que se quiere probar
SRC += simpleserial-gift.c

EXTRA_OPTS = NO_EXTRA_OPTS
CFLAGS += -D$(EXTRA_OPTS)

Nombre de los archivos que se encuentran en la carpeta crypto
ifeq ($(CRYPTO_TARGET),)
${info No CRYPTO_TARGET passed - defaulting to GIFT64C}
CRYPTO_TARGET = GIFT64C
endif

${Building for platform ${PLATFORM} with CRYPTO_TARGET=$(CRYPTO_TARGET)}

Otros archivos requeridos para el build
include ../simpleserial/Makefile.simpleserial

Ruta del firmware
FIRMWAREPATH = ../.
include $(FIRMWAREPATH) /Makefile.inc

Ahora se puede realizar la compilacion del firmware indicando la plataforma que
se esta utilizando, en este caso ‘CWNANO’ para el ChipWhisperer Nano.

make -j PLATFORM=CWNANO

78

Antes de realizar una nueva compilacion, siempre debe eliminar los compilados.

make clean

Nota: Una vez escrito el archivo Makefile, el proceso de compilacion y carga del
programa a la memoria flash, al igual que el control de las entradas al algoritmo
criptogréfico y captura de traza, puede realizarse desde las libretas de python.

C.1.3. Crypto

Otra de los directorios que se modifican para agregar una implementacion de algtin
algoritmo para probar es crypto.Esta se encuentra en la ruta:

chipwhisperer/hardware/victims/firmware/crypto

Puede visualizarse en la figura C.1. Pueden agregarse el algoritmo como se desee
solo tiene que coincidir con el formato explicado en el Apéndice B. Primero de modi-
ficar el Makefile general de la carpeta crypto Makefile.crypto. Este comando make
permite que los archivos donde de define al algoritmo criptografico se liguen donde se
compila en firmware.

else ifeq ($(CRYPTO_TARGET) ,GIFT-FIRMC)
#
Crypto Target: GIFT64C
Crypto Options:
None
include $(FIRMWAREPATH)/crypto/Makefile.giftfirmc

Se genera un Makefile especifico para el algoritmo que se va a implementar llamado
Makefile.gift64c.

s ~

#HHHH RS

CRYPTO_LIB = gift-64

SRC += gift.c gift-independant.c

CDEFS += -DGIFT64C

VPATH += :$(FIRMWAREPATH)/crypto/$(CRYPTO_LIB)
EXTRAINCDIRS += $(FIRMWAREPATH)/crypto/$(CRYPTO_LIB)

Para que todas las versiones implementadas de GIF'T tengan el mismo formato, es-
tableci6 una definicion general de todas las funciones utilizadas gift-independant.h

Capitulo C 79

#include <stdint.h>

#define KEY_LENGTH 16
#define DEFAULT_KEY Oxbd, 0x91, 0x73, Oxle, 0xb6, Oxbc, 0x27, 0x13,\
Oxal, 0xf9, Oxf6, Oxff, Oxc7, 0x50, Ox44, Oxe7

void gift_indep_init(void);

void gift_indep_key(uint8_t * key);

void gift_indep_enc(uint8_t * pt);

void gift_indep_enc_pretrigger(uint8_t * pt);
void gift_indep_enc_posttrigger(uint8_t * pt);
void gift_indep_mask(uint8_t * m, uint8_t len);

Se presenta la implementacion de dichas funciones dependiendo de la versiéon uti-
lizada, solo se muestra para GIFT64C gift-independant.c

#include "gift-independant.h"
#include "hal.h"
#include "gift.h"

#if GIFT64C

void gift_indep_init(void) {}

void gift_indep_key(uint8_t * key) {
GIFT64_ECB_indp_setkey(key) ;}

void gift_indep_enc(uint8_t * pt) {
GIFT64_ECB_indp_crypto(pt);}

void gift_indep_enc_pretrigger(uint8_t * pt) { }
void gift_indep_enc_posttrigger (uint8_t * pt) {}
void gift_indep_mask(uint8_t * m, uint8_t len) {}

A continuaciéon se muestra la implementacion completa de la version GIFT64C.

#ifndef _GIFT_H
#define _GIFT_H

#include <stdint.h>

#ifndef GIFT_CONST_VAR
//#define GIFT_CONST_VAR
#define GIFT_CONST_VAR
#endif

#tdefine N 64

#define BLOCK_SIZE 8
#define KEYLEN 16
#define RONDAS 28

void GIFT64_ECB_encrypt(uint8_t * input, uint8_t * key, uint8_t * output);
void GIFT64_ECB_decrypt(uint8_t * input, uint8_t * key, uint8_t * output);

void GIFT64_ECB_indp_setkey(uint8_t * key);
void GIFT64_ECB_indp_crypto(uint8_t * input);

#endif

#include <string.h>

#include "gift.h"

static uint8_t statel[8];

static uint8_t RoundKeys[RONDAS] [16];
static uint8_t input_save[16];

static uint8_t * Key;

static uint8_t Sbox[16] = {

0x01, OxOa, 0x04, 0x0Oc, 0x06, 0x0f, 0x03, 0x09, 0x02, 0x0d, 0xOb,
0x07, 0x05, 0x00, 0x08, 0xOe

};

static uint8_t BitPermutation[64] = {

o, 17, 34, 51, 48, 1, 18, 35, 32, 49, 2, 19, 16, 33, 50, 3,

4, 21, 38, 55, 52, 5, 22, 39, 36, 53, 6, 23, 20, 37, 54, 7,

8, 25, 42, 59, 56, 9, 26, 43, 40, 57, 10, 27, 24, 41, 58, 11,
12, 29, 46, 63, 60, 13, 30, 47, 44, 61, 14, 31, 28, 45, 62, 15
Irg

static uint8_t Constants[48] = {
0x01, 0x03, 0x07, OxOF, Ox1F, Ox3E, 0x3D, 0x3B, 0x37, 0x2F, Ox1E,

Capitulo C

81

0x3C, 0x39, 0x33, 0x27, 0xOE, 0x1D, 0x3A, 0x35, 0x2B, 0x16, 0x2C,
0x18, 0x30, 0x21, 0x02, 0x05, 0xOB, 0x17, Ox2E, 0x1C, 0x38, 0x31,
0x23, 0x06, 0xOD, Ox1B, 0x36, 0x2D, Ox1A, 0x34, 0x29, 0x12, 0x24,
0x08, 0x11, 0x22, 0x04

i

static uint8_t Positions[6] = {
//23, 19, 15, 11, 7, 3

3, 7, 11, 15, 19, 23

};

static void BlockCopy(uint8_t * output, const uint8_t * input, uint8_t len)
uint8_t i;

for(i = 0; i < len; i++) {

output [i] = input[i];

}

}

static void SubCells() {

uint8_t i;

for(i = 0; i < BLOCK_SIZE; i++) {

state[i] = ((Sbox[(state[i] >> 4) & 0x0f]) << 4) | Sbox[state[i] & 0x0f];
}

}

static void PermBits() {

uint8_t temp[8] = {0x00};

uint8_t i, j, k, movl, mov2;

for(i = 0; i < BLOCK_SIZE; i++) {
for(j = 0; j < 8; j++) {

k = i%8+j;

movl = BitPermutationl[k]/8;

mov2 = BitPermutationl[k]%8;

temp [mov1l] = temp[movi] ~ (((statel[i] >> j) & 0x01) << mov2);
}

}

BlockCopy(state, temp, BLOCK_SIZE);
}

static void AddRoundKey () {

uint8_t i, j, k, movl, mov2;

uint16_t U = ((Key[3] << 8) & 0xff00) | Key[2];
uint16_t V = ((Key[1] << 8) & 0xff00) | Keyl[0];
uinti6_t RK[2] = {V, U};

for(i = 0; i < 16; i++) {
for(j = 0; j < 2; j++) {
k = 4%i+j;
movl = k/8;
mov2 = k%8;

state[movl] = state[movi] =~ (((RK[j] >> i) & 0x01) << mov2);
}

82

}
}

static void RoundConstants(uint8_t ronda) {
uint8_t i;

uint8_t movl, mov2;

for(i = 0; i < 6; i++) {

movl = Positions[i]/8;

mov2 = Positions[i]%8;

state[movl] = state[movl] ~ (((Constants[ronda] >> i) & 0x01) << mov2);
+

movl = (N-1)/8;

mov2 = (N-1)%8;

state[movl] = state[movl] ~ (0x01 << mov2);

}

static void BigEndianState() {
uint8_t temp[BLOCK_SIZE];

uint8_t i;

for(i = 0; i < BLOCK_SIZE; i++) {
temp [BLOCK_SIZE-i-1] = statel[il;

}

BlockCopy(state, temp, BLOCK_SIZE);
}

static void BigEndianKey() {
uint8_t temp[KEYLEN];

uint8_t i;

for(i = 0; i < KEYLEN; i++) {
temp [KEYLEN-i-1] = Key[il;

}

BlockCopy(Key, temp, KEYLEN);
}

static void BigEndian(uint8_t * input) {
uint8_t i;

for(i = 0; i < BLOCK_SIZE; i++) {

input [BLOCK_SIZE-i-1] = statel[il;

}

}

static void Initialization(uint8_t * text) {
BlockCopy(state, text, BLOCK_SIZE);
BigEndianState() ;

}

static void gift64_encrypt_ecb(uint8_t * input) {
Initialization(input);

uint8_t i;

Key = input_save;

Capitulo C

83

//for(i = 0; i < RONDAS; i++) {
for(i = 0; i < 10; i++) {
SubCells();

PermBits();

AddRoundKey () ;
RoundConstants (i) ;

Key = RoundKeys[i];
}
}

static void PrecomputeKeys() {
BigEndianKey () ;

uint8_t i, j;
uint8_t k1_0, ki1_1, k0_0, kO_1;
uint8_t * temp = Key;

for(i = 0; i < RONDAS; i++) {
//BlockCopy (RoundKeys [i], Key, KEYLEN);

k1_0 = ((temp[3] & 0x03) << 6)

((temp[2] >>

|
k1_1 = ((temp[2] & 0x03) << 6) | ((temp[3] >>
k0_0 = ((temp[0] & 0x0f) << 4) | ((temp[1] >>
k0_1 = ((temp[1] & 0x0f) << 4) | ((temp[0] >>

for(j = 0; j < KEYLEN-4; j++) {
RoundKeys [i] [j] = temp[j+4];
}

RoundKeys[i] [j]1 = kO_0;
RoundKeys[i] [j+1] = kO_1;
RoundKeys [1] [j+2] ;
RoundKeys [i] [j+3]

I
=N
=
| |
= O

temp = RoundKeys[i];
}
}

void GIFT64_ECB_indp_setkey(uint8_t * key) {
Key = key;

PrecomputeKeys () ;

BlockCopy (input_save, Key, KEYLEN);

}

void GIFT64_ECB_indp_crypto(uint8_t * input)
gift64_encrypt_ecb(input);

BigEndian(input) ;

}

2) & 0x3f);
2) & 0x3f);
4) & 0x0f);
4) & 0x0f);

84

void GIFT64_ECB_encrypt(uint8_t * text, uint8_t * key, uint8_t * output) {
Key = key;
PrecomputeKeys () ;

gift64_encrypt_ecb(text);
BigEndianState() ;

BigEndianKey () ;

BlockCopy (output, state, BLOCK_SIZE);
}

void GIFT64_ECB_decrypt(uint8_t * text, uint8_t * key, uint8_t * output) {

}

Capitulo C 85

D chipwhisperer

] D chipwhisperer-minimal

!' - Makefile

1

]

1

1

1

1 1

! "'@ simpleserial-...c
1

]

- @ Makefile.inc

0 o
1
) 'D Setup_Scripts
D openadc

] 'D openocd
D software
'D tests

Figura C.1: Sistema de archivos de ChipWhisperer

1
]
1
]
1
1
]
1
]
1
1
]
1
]
1
]
]
1
]
1
]
]
1
]
1
]
]
]
]
1 1
! y simpleserial-
: p
]
1
1
1
1
]
1
]
1
1
]
L
]
1
1
]
1
1,
1
1
]
]
]
1
]
1
1
]

Los abajo firmantes, integrantes del jurado para el examen de grado que sustenta-
ré la Sr. Rogelio Calvillo Juarez, declaramos que hemos revisado la tesis titulada:

Analisis de la seguridad de implementaciones de GIFT-COFB contra
ataques por canales laterales basados en el consumo de potencia
Y consideramos que cumple con los requisitos para obtener el Grado de Maestria

en Ciencias en Computacion.

Atentamente,

Dr. Cuauhtemoc Mancillas Lopez
Investigador del Departamento de Computacion

Dra. Brisbane Ovilla Martinez
Investigador del Departamento de Computacion

Dr. Juan Carlos Ku Cauich
Investigador por México

Dra. Sandra Diaz Santiago
Profesora Titular del Departamento de Ciencias e Ingenieria de la Computacion
de la Escuela Superior de Computo del Instituto Politécnico Nacional

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Propuesta
	Objetivos generales y específicos del proyecto
	Preliminares y notación
	Organización de la Tesis

	GIFT-COFB
	Función de ronda
	Generación de claves de ronda

	Técnicas de implementación en arquitecturas Cortex-M
	Bitslicing
	Fixslicing

	Ataques por canales laterales
	Ataques de análisis de potencia
	Análisis de potencia simple
	Análisis de potencia diferencial

	Distinguidores
	Correlacional
	Información Mutua

	Modelos de consumo de potencia
	Relación señal a ruido
	Descripción de un ACL
	Plataforma experimetal
	Ecosistema ChipWhisperer
	ChipWhisperer Nano
	ChipWhisperer Lite

	Implementación de los ataques
	Implementación Secuencial
	Modelo de consumo
	Reconstrucción de la clave
	Configuración del ataque

	Implementación bitslicing
	Modelo de consumo
	SNR
	Reconstrucción de la clave
	Flujo completo del ataque

	Implementación fixslicing
	Modelo de consumo
	Reconstrucción de las claves

	Estado del arte

	Resultados
	Implementación Secuencial
	GIFT-64
	GIFT-128

	Implementación bitslicing
	GIFT-64
	GIFT-128

	Implementación fixslicing
	GIFT-128

	Porcentaje de éxito de las distintas versiones

	Conclusiones
	Bibliografía
	
	Instalación de ChipWhisperer
	Libretas python y carga del firmware

	Apendice 2
	Manejo de las herramientas ChipWhisperer
	Scope
	Target
	Auxiliares
	Código plantilla para realizar la captura de los datos

	
	Algoritmo criptográfico personalizado
	Proyecto principal
	Makefile
	Crypto

