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Resumen

Este trabajo evalúa la seguridad de las implementaciones de software del cifra-
dor GIFT-COFB frente a ataques por canales laterales, específicamente utilizando
CPA (Correlation Power Analysis) para detectar posibles fugas de información. Se
analizaron tres variantes del algoritmo: fixslicing, bitslicing y la versión secuencial.
Los resultados indican que la variante fixslicing proporciona una mayor resistencia a
los ataques por canales laterales en comparación con bitslicing y la implementación
secuencial, aunque a costa de un mayor número de trazas necesarias para recuperar la
clave. Fixslicing también genera más falsos positivos, lo que incrementa la dificultad
para identificar correctamente la clave, pero sigue siendo posible obtenerla con un
número suficiente de trazas. Por otro lado, bitslicing ofrece una menor protección,
pero requiere menos trazas para ejecutar con éxito el ataque.

A pesar de que GIFT-COFB fue finalista en la competencia del NIST para algo-
ritmos de cifrado ligero, se demostró que el modo COFB no elimina la vulnerabilidad
a los ataques por canales laterales. Además, se observó que en el estado del arte existe
una escasez de trabajos que exploren específicamente las implementaciones de GIFT-
COFB en sus versiones fixslicing y bitslicing. Esto subraya la necesidad de realizar
más investigaciones sobre la seguridad de estas implementaciones, dada su creciente
relevancia en el ámbito de la criptografía ligera.
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Abstract

This work evaluates the security of software implementations of the GIFT-COFB
cipher against side-channel attacks, specifically using CPA (Correlation Power Analy-
sis) to detect potential information leaks. Three variants of the algorithm were analy-
zed: fixslicing, bitslicing, and the sequential version. The results indicate that the
fixslicing variant provides greater resistance to side-channel attacks compared to bits-
licing and the sequential implementation, although at the cost of requiring a larger
number of traces to recover the key. Fixslicing also generates more false positives,
increasing the difficulty in correctly identifying the key, but it is still possible to re-
cover it with a sufficient number of traces. On the other hand, bitslicing offers lower
protection but requires fewer traces to successfully execute the attack.

Although GIFT-COFB was a finalist in the NIST lightweight cryptography com-
petition, it was demonstrated that the COFB mode does not eliminate vulnerability
to side-channel attacks. Additionally, it was observed that there is a lack of studies
specifically exploring GIFT-COFB implementations in their fixslicing and bitslicing
versions. This highlights the need for further research on the security of these imple-
mentations, given their increasing relevance in the field of lightweight cryptography.
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Capítulo 1

Introducción

Con la llegada del Internet de las cosas (IdC), estamos rodeados de dispositivos
inteligentes que tiene la habilidad para comunicarse entre ellos en redes centralizadas.
Estos dispositivos se utilizan ampliamente en el manejo de las cadenas de suministros,
logística, casas inteligentes, control de tráfico, monitoreo médico entre otras. Aunque
estos dispositivos son convenientes y eficientes para el desarrollo de tales actividades,
surge el problema de la privacidad y seguridad, por lo que es necesario el uso de
algoritmos criptográficos para protegerlos. El objetivo original de la criptografía es
proporcionar un canal de comunicación seguro entre los diferentes actores, aunque las
primitivas de criptografía modernas ofrecen servicios tales como la confidencialidad,
la integridad, la autenticación de datos y entidades y el no repudio. La idea básica
de estas primitivas es hacer uso de problemas matemáticos difíciles tal como la fac-
torización de números enteros en factores primos o el logaritmo discreto en el caso de
la criptografía de clave pública y la generación de secuencias pseudoaleatorias en la
criptografía de clave secreta. Ambos tipos de criptografía están diseñados para que
recuperar la clave secreta sea difícil computacionalmente.

Uno de los problemas principales a los que se enfrentan los dispositivos IdC es que
cuentan con recursos restringidos (memoria, conjunto de instrucciones y energía de
alimentación) y en muchos casos no es factible implementar una primitiva criptográ-
fica estándar en ellos. Por la necesidad de incorporar seguridad en dispositivos IdC,
el estudio de los algoritmos de criptografía ligera, o sea, algoritmos diseñados para
ejecutarse en dispositivos restringidos, ha sido un área de investigación activa las últi-
mas dos décadas. Se han propuesto muchos algoritmos para optimizar el desempeño,
los recursos necesarios para su implementación y el consumo de potencia.

El criptoanálisis es una rama de la criptografía que se centra en estudiar y ana-
lizar la seguridad de los algoritmos criptográficos con el objetivo de identificar sus
vulnerabilidades y puntos débiles. Los algoritmos estándar, que incluyen técnicas
ampliamente utilizadas como AES (Advanced Encryption Standard) y SHA (Secure
Hash Algorithm), han sido evaluados rigurosamente durante años por investigadores
y expertos en criptografía. Debido a este trabajo exhaustivo, se considera que estos
algoritmos son seguros contra los ataques convencionales, tales como ataques de texto
plano o cifrado diferencial.
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2 Introducción

Sin embargo, en los últimos años, han surgido nuevos tipos de ataques cono-
cidos como ataques por canal lateral (ACL, por sus siglas en inglés: Side-Channel
Attacks). A diferencia de los métodos tradicionales, los ACL no se centran en debili-
dades matemáticas en el algoritmo mismo, estos explotan información derivada de la
implementación física del sistema criptográfico. Desde el descubrimiento de los ACL
a finales de los años noventa por Paul Kocher [4], éstos se volvieron una amenaza pa-
ra los dispositivos físicos que implementan un algoritmo criptográfico. Estos ataques
representan un cambio significativo en el paradigma de seguridad, ya que han demos-
trado que muchos algoritmos que se consideran matemáticamente seguros pueden ser
vulnerables a la extracción de información secreta en un contexto físico. Los ACL
explotan información física que se fuga de diversas fuentes indirectas o canales como
son el consumo de potencia, radiación electromagnética o el tiempo en que un cálculo
es realizado, los cuales son conocidos como canales laterales. La información conte-
nida en las fugas obtenidas mediante la medición de los canales laterales depende de
los valores intermedios calculados durante la ejecución del algoritmo criptográfico y
son correlacionados con las entradas (texto plano) y la clave secreta del cifrador. Un
atacante puede extraer de manera efectiva la clave secreta observando y analizando
las fugas de información de los ataques laterales con instrumentos de medición y en
un corto periodo de tiempo que va desde algunos minutos a algunas horas. Debido
a estas razones los ACL representan una amenaza a los dispositivos IdC ya que un
atacante puede tener acceso a ellos.

El GIFT-COFB es un algoritmo de cifrado simétrico de bloques diseñado específi-
camente para aplicaciones de criptografía ligera, en las cuales se prioriza la eficiencia
y el bajo consumo de recursos. El algoritmo está pensado para implementarse en dis-
positivos con recursos limitados, como sensores, tarjetas inteligentes y otros sistemas
embebidos. Este algoritmo fue presentado en el concurso de estandarización de cripto-
grafía ligera (Lightweight Cryptography Standardization) organizado por el Instituto
Nacional de Estándares y Tecnología (NIST, por sus siglas en inglés). Como parte del
proceso de selección, GIFT-COFB ha sido sometido a numerosas pruebas y análisis
de seguridad, tanto en términos de resistencia a ataques. Los resultados indican que
GIFT-COFB ofrece un balance óptimo entre seguridad y eficiencia, lo que lo hace
una opción prometedora para su adopción en entornos de criptografía ligera.

Los distintos tipos de ataques por canal lateral incluyen análisis de tiempo, análisis
de potencia, análisis electromagnético y ataques de inducción de fallos. Los cuales se
detallan a continuación [5]:

Ataque de tiempo: Este ataque se basa en las variaciones en el tiempo de eje-
cución de un dispositivo criptográfico. El atacante analiza el tiempo que tarda
en procesar diferentes mensajes para deducir parámetros secretos del sistema.

Ataque de análisis de potencia: Este ataque aprovecha las variaciones en el con-
sumo de energía de un dispositivo durante una operación criptográfica. Existen
diferentes variantes:
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• Ataque de potencia simple (SPA, por sus siglas en inglés): El ataque más
básico, que consiste en analizar los trazos de potencia para identificar pa-
trones que puedan revelar claves secretas.

• Análisis de potencia diferencial (DPA, por sus siglas en inglés): Un ataque
más avanzado que utiliza correlaciones estadísticas entre el consumo de
potencia y los datos de entrada para extraer información confidencial sin
necesidad de conocer la implementación interna del sistema.

• Análisis de potencia diferencial de orden superior (HODPA, por sus siglas
en inglés): Combina DPA con análisis de tiempo y criptoanálisis tradicional
para aumentar la eficacia del ataque.

• Análisis de potencia correlacional (CPA, por sus siglas en inglés): Utiliza
el modelo de peso Hamming para correlacionar el consumo de energía con
la distancia de Hamming, ayudando a identificar la clave correcta.

• Ataque de plantilla: La forma más avanzada de ataque de potencia, que
requiere acceso a un dispositivo idéntico para crear plantillas precisas y
utilizarlas para descubrir la clave secreta.

Ataque electromagnético: Este tipo de ataque explota las emisiones electromag-
néticas de un dispositivo para obtener información sobre sus operaciones. Similar
al análisis de potencia, estas emisiones pueden analizarse para extraer secretos,
y debido a su capacidad para proporcionar más información, estos ataques son
especialmente poderosos.

Ataque de inducción de fallos: Los ataques de inducción de fallos alteran el fun-
cionamiento de un dispositivo criptográfico, induciendo errores en sus operacio-
nes para que revelen información confidencial. Los fallos pueden ser permanen-
tes (dañando permanentemente componentes como la memoria) o transitorios
(causados por alteraciones en el reloj o el voltaje).

Ataques ópticos y análisis de tráfico:

• Ataques ópticos : Explotan las emisiones de luz, como los LED, para ex-
traer datos de dispositivos. En dispositivos con pantallas, el análisis de la
intensidad de la luz puede revelar información sensible.

• Análisis de tráfico: Estos ataques analizan los flujos de tráfico en redes de
sensores para obtener información sobre la topología de la red, como la
ubicación de nodos críticos, aprovechando las restricciones de energía de
los dispositivos.

Ataques acústicos y de imágenes térmicas:

• Ataques acústicos : Explotan las emisiones acústicas producidas por dis-
positivos, como teclados o componentes de computación, para identificar
teclas presionadas o procesos en ejecución.
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• Ataques de imágenes térmicas : Utilizan imágenes térmicas para detectar
la radiación infrarroja emitida por componentes, como las CPU, y revelar
información sobre las operaciones internas.

A lo largo de los años, los ACL han demostrado ser extremadamente efectivos
contra diversas implementaciones criptográficas. Estos ataques han sido aplicados
con éxito a una amplia variedad de algoritmos, tanto de clave simétrica como de
clave pública. A continuación, se presentan algunos ejemplos de ataques exitosos que
han revelado vulnerabilidades en sistemas criptográficos ampliamente utilizados:

Kocher [6] en 1996, introduce el ataque de tiempo y lo implementa a la expo-
nenciación modular en el algoritmo RSA.

Dhem et al. [7] utilizaron un ataque de tiempo contra una implementación real
de RSA en una tarjeta inteligente.

Schindler [8] presentó ataques de tiempo sobre la implementación de la expo-
nenciación de RSA utilizando el Teorema Chino del Residuo.

Hevia et al. [9] describieron ataques de tiempo sobre el algoritmo DES, especí-
ficamente para recuperar el peso Hamming de la clave secreta.

Brumley y Boneh [10] demostraron que los ataques de tiempo podían revelar
claves privadas de RSA en un servidor web basado en OpenSSL, al explotarse
a través de una red local.

Biham y Shamir [11] presentaron un análisis de fallos sobre el esquema de cifrado
simétrico DES, mostrando cómo los fallos pueden ser utilizados para extraer
información confidencial.

Anderson y Kuhn [12] discutieron formas realistas de inducir fallos transito-
rios (glitches), los cuales pueden comprometer la seguridad de los algoritmos
criptográficos.

Skorobogatov y Anderson [13] propusieron un ataque óptico de fallos, demos-
trando que con equipos relativamente baratos se podían inducir fallos en una
tarjeta inteligente al iluminar transistores específicos, revelando claves privadas
de RSA.

Los ataques de análisis de potencia han demostrado ser altamente efectivos en la
mayoría de las implementaciones simples de cifrados simétricos y de clave pública,
como se muestra a continuación:

Sommer et al. [14] atacaron una implementación de DES de una tarjeta inteli-
gente, utilizando el método de análisis de potencia simple.

Novak et al. [15] aplicó el método de análisis de potencia simple a una imple-
mentación de RSA.
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Walter et al. [16] presentaron un ataque a RSA, utilizando el método de análisis
diferencial de potencia.

Nuradha et al. [17] utilizaron el método de análisis de potencia por correlación
para recuperar la clave de cifrado de AES en un microcontrolador.

O’Fllyn et al. [18] atacaron a AES-256 ara recuperar la clave completa de 32
bytes y el vector de inicialización mediante análisis de potencia por correlación.

Taha et al. [19] atacaron al algoritmo Keccak específicamente en su uso como
MAC en un procesador Microblaze.

Koziel et al. [20] utilizaron ataques de análisis de potencia refinados que explotan
valores cero para extraer bits de la clave secreta para recuperar las claves SIDH
(Supersingular Isogeny Diffie-Hellman).

En la actualidad, herramientas como ChipWhisperer 1 han facilitado significati-
vamente el análisis de potencia en criptosistemas. ChipWhisperer es una plataforma
de código abierto diseñada específicamente para realizar ataques de canal lateral.
Combina herramientas de hardware y software que permiten la captura y análisis de
señales eléctricas, lo que posibilita ataques como el análisis de potencia diferencial y
ataques de inyección de fallos. Esta plataforma es ampliamente utilizada para eva-
luar la seguridad de implementaciones criptográficas en dispositivos de hardware y
software, que permite explorar vulnerabilidades en sus diseños físicos.

1.1. Propuesta
La idea básica del análisis de potencia es revelar la clave secreta de un dispositivo

criptográfico a través de su consumo de potencia. Esencialmente dos dependencias
del consumo de potencia son explotadas: la dependencia de datos y la dependencia de
operación. El consumo de potencia instantánea del dispositivo depende de los datos
que procesa y de las operaciones que realiza.

Se propone realizar ataques por canales laterales a una implementación sin pro-
tección y propuestas protegidas en software de GIFT-COFB para encontrar fugas
de información y analizar la vulnerabilidad de ellas a ataques por canales laterales
basados en el consumo de potencia.

El enfoque que se quiere utilizar es realizar un ataque de análisis de potencia para
poder extraer la clave secreta. Con la ayuda de la herramienta ChipWhisperer se pla-
nea programar un microcontrolador que será la víctima, para que realice operaciones
criptográficas con el algoritmo GIFT-COFB. El microcontrolador recibirá texto plano
desde la computadora, lo cifrará y enviará el resultado de regreso a la computadora.
Durante el tiempo en que el cifrado sea realizado, el consumo de potencia será medido
con el ChipWhisperer y registrado para realizar el análisis. Estos registros serán las
trazas de las fugas de información que se utilizarán para recuperar la clave secreta.

1https://www.newae.com/chipwhisperer
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1.2. Objetivos generales y específicos del proyecto

General

Verificar si existen fugas de información en implementaciones de los algoritmos de
criptografía ligera GIFT y GIFT-COFB.

Particulares

1. Proponer modelos de ataques por canales laterales para buscar posibles fugas
de información en implementaciones de GIFT y GIFT-COFB. Estas implemen-
taciones están basadas en fixslicing, bitslicing.

2. Desarrollar las implementaciones en el firmware de ChipWhisperer para obtener
las trazas de potencia de cada uno de los algoritmos analizados.

3. Verificar si las implementaciones antes mencionadas de GIFT y GIFT-COFB
son seguras a ataques por canales laterales y la dificultad de estas para vulne-
rarlas.

1.3. Preliminares y notación

Sea {0, 1}n el espacio de todas las cadenas binarias de longitud n, análogamente
dichas cadenas son consideradas elementos del campo de Galois GF (2n), por lo que
pueden ser representadas como polinomios de grado a los más n. Si a, b ∈ {0, 1}n,
su adición es denotada como a ⊕ b y es calculada como una operación o-exclusiva a
nivel de bits. El producto de define como ab mód q(x) donde q(x) es un polinomio
irreducible de grado n, es decir, no tiene raíces en el campo GF (2). La operación
xtimes, es la multiplicación del monomio x por a y reducida según el polinomio irre-
ducible utilizado, misma que puede ser calculada de forma muy eficiente utilizando
un corrimiento de bits y unas pocas operaciones ⊕.

Un cifrador por bloque es una función E : {0, 1}n × {0, 1}k → {0, 1}n, donde n
es la longitud en bits del bloque y k es la longitud en bits de la clave. Se denota
como EK(·) y la función inversa como E−1

k (), para todo m ∈ {0, 1}n se cumple que
m = E−1

k (Ek(m)). Dado que un cifrador por bloques es invertible, es una permutación
del espacio de cadenas de n bits, cada clave instancia una permutación distinta.

Un algoritmo de cifrado autenticado con datos asociados (CADA) es una función
AE : {0, 1}m × {0, 1}d × {0, 1}k → {0, 1}c × {0, 1}τ donde m, d, k, c y τ son las
longitudes en bits del mensaje, de los datos asociados, de la clave, el mensaje cifrado
y la etiqueta de autenticación respectivamente. Se denota como C, τ = AEK(AD,M),
recibe como entrada un mensaje y los datos asociados y entrega como salida el men-
saje cifrado acompañado de la etiqueta de autenticación. La función de descifrado
es AE−1 : {0, 1}c × {0, 1}d × {0, 1}τ × {0, 1}k → {0, 1}m × {0, 1}⊥ donde ⊥ indica
que la verificación de la etiqueta de autenticación falló y por lo tanto no se regresa el
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mensaje que se ha descifrado ya que puede haber errores en la integridad del mensaje
o en la autenticación (se está usando una clave distinta a la utilizada para cifrar). La
función de verificación solamente compara dos etiquetas y devuelve 1 o 0 según sean
iguales o no. Los datos asociados no se cifran, pero sí deben ser autenticados.

1.4. Organización de la Tesis
Capítulo 2: GIFT-COFB. Se presentan las versiones bitslicing y fixslicing del

algoritmo GIFT-COFB, describiendo sus características y diferencias clave.
Capítulo 3: Ataques por canales laterales. Se explica el ataque CPA, el concepto

de SNR y el uso de ChipWhisperer para realizar ataques por canal lateral.
Capítulo 4: Implementación de los ataques. Se detallan los ataques realizados a

las implementaciones secuencial, bitslicing y fixslicing de GIFT-COFB.
Capítulo 5: Resultados. Se presentan los resultados de los ataques, incluyendo el

número de trazas y la tasa de éxito de cada implementación.
Capítulo 6: Conclusiones. Se resumen los hallazgos principales y se propone como

se podría mejorar la seguridad de las implementaciones de GIFT-COFB.
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Capítulo 2

GIFT-COFB

Las limitaciones en recursos de los dispositivos IdC hace que sea imposible de
utilizar algoritmos de cifrados complejos como el AES en algún modo de operación,
debido a que la cantidad de recursos para su implementación puede no estar disponible
en estos dispositivos o ser muy limitado. Por las necesidades de seguridad y desempeño
de los IdC los algoritmos de criptografía ligera1 han sido un área de investigación
activa las últimas dos décadas. Un gran número de algoritmos innovadores de cifrado
han sido propuestos con el fin de optimizar varios de los criterios de desempeño y
seguridad, como lo son GIFT-COFB o ASCON.

En este capítulo se explicará de forma detallada el cifrador por bloques GIFT y
el modo de operación COFB.

GIFT es una Red de Sustituciones y Permutaciones (RSP), la cual es una forma
de diseñar un cifrador por bloques iterado, esto significa que una cierta secuencia
de cálculos que forman una ronda es repetida un número especificado de veces. Una
ronda es definida como una composición de transformaciones (sustituciones y permu-
taciones) aplicadas a los datos de entrada, de tal manera tal que se logra cumplir el
principio de Shannon de confusión y difusión. Otro cifrador basado en una RSP es
el AES, el cual fue estandarizado por el NIST en el año 2001. AES no es adecuado
para dispositivos con recursos restringidos debido a sus características de diseño que
no estaban orientadas a dichas plataformas. Además de GIFT existen otros cifradores
ligeros, algunos ejemplos son: Midori [21], Skinny [22], Simon y Speck [23].

GIFT [24] es una familia de cifradores por bloque ligeros con dos miembros: GIFT-
64 y GITF-128. Los cuales tienen un tamaño de bloque de entrada de 64 y 128 bits,
ambos reciben una clave secreta de 128 bits. Consisten de una función de ronda
compuesta de cuatro transformaciones, la cual es iterada 28 veces para GIFT-64 y 40
veces para GITF-128. La figura 2.1 muestra 2 rondas de GIFT-64 [1].

Los datos de entrada se representan en forma de un arreglo unidimensional de
nibbles, es decir, datos de cuatro bits. En la figura 2.1 se muestran dos rondas del
cifrador GIFT. A continuación, se explicará la función de ronda.

1El término se refiere a algoritmos de criptografía que pueden ser implementados en dispositivos
muy restringidos en recursos como memoria, energía e incluso instrucciones.

9
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Figura 2.1: Dos rondas de GIFT-64 [1].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 10 4 12 6 15 3 9 2 13 11 7 5 0 8 14

Tabla 2.1: Caja S.

2.0.1. Función de ronda

La función de ronda de GIFT se compone de tres transformaciones caja de subs-
titución, permutación de bits y suma de la clave de ronda[2], las cuales se describen
a continuación.

Substitución de bits. Consiste en la sustitución de cada nibble en el estado por un
valor extraído de una tabla llamada caja S. Ambas versiones de GIFT usan la misma
caja S de cuatro bits. Se representa de la siguiente forma:

wi ← GS(wi), ,∀i ∈ 0, ..., s− 1,

donde s = 16 para GIFT-64 y s = 32 para GIFT-128. Dado que S es una función
del tipo S : 0, 14 → 0, 14, puede ser representada por medio de ecuaciones booleanas
(ecuaciones (2.1)) o mediante una tabla de consulta (tabla 2.1).

x[1] = ¬(x[1]⊕ ¬(x[0] · x[2])
x[0] = ¬(x[0]⊕ ¬(x[1] · x[3])
x[2] = ¬(x[2]⊕ ¬(x[0] + x[1]))

x[3] = ¬(x[3]⊕ x[2])

x[1] = ¬(x[1]⊕ x[3])

x[2] = ¬(x[2]⊕ ¬(x[0]) · x[1])

(2.1)
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Rondas Constantes
1-16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E
17-32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38
33-48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Tabla 2.2: Constantes de ronda.

Permutación de bits. Consiste realizar un reordenamiento de los bits en el
estado conforme las siguientes ecuaciones dependiendo si se instancia GIFT-64 o
GIFT-128:

bP (i) ← bi, ,∀i ∈ 0, ..., n− 1

P64(i) = 4

⌊
i

16

⌋
+ 16

((
3

⌊
i mód 16

4

⌋
+ (i mód 4)

)
mód 4

)
+ (i mód 4) ,

P128(i) = 4

⌊
i

16

⌋
+ 32

((
3

⌊
i mód 16

4

⌋
+ (i mód 4)

)
mód 4

)
+ (i mód 4) .

Suma de la clave de ronda. Este paso consiste en agregar la clave de ronda y las
constantes de ronda. Una clave de ronda RK es obtenida del estado de la clave y es
particionada en dos palabras de s bits, donde RK = U ||V = us−1...u0||vs−1||v0 y s =
16 ó 32 respectivamente.
Suma de la clave de ronda para GIFT-64.

b4i+1 ← b4i+1 ⊕ ui, , b4i ⊕ vi, ,∀i ∈ 0, ..., 15

Suma de la clave de ronda para GIFT-128

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ⊕ vi, ,∀i ∈ 0, ..., 31

Para ambas versiones de GIFT, se realiza una operación ⊕ con un único bit 1 y una
constante de ronda de seis bits C = c5c4c3c2c1c0 con el estado en las posiciones de
los bits n - 1, 23, 19, 11, 7 y 3 respectivamente. Dicha constante de ronda se obtiene
mediante el siguiente registro de corrimiento lineal retroalimentado (LFSR por sus
siglas en inglés):

c5||c4||c3||c2||c1||c0 ← c4||c3||c2||c1||c0||c5 ⊕ c4 ⊕ 1,

los seis bits son inicializados en cero. Las constates de ronda generadas son mos-
tradas en la tabla 2.2.
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2.0.2. Generación de claves de ronda

En ambas versiones de GIFT se utiliza una clave de 128 bits. La clave inicial es
almacenada en el estado de clave k, el cual se divide en ocho palabras ki y |ki| = 16
para i ∈ 0, 7. Para generar una clave de ronda, el estado de clave se actualiza como:

k7||k6||k5||k4||k3||k2||k1||k0 ← k1 ≫ 2||k0 ≫ 12||...||k2,
donde ≫ representa un corrimiento circular a la derecha.

Para GIFT-64 se extrae una clave de ronda de 32 bits como RK = U ||V ,

U = k1, V = k0.

En el caso de GIFT-128 la clave es de 32 bits,

U = k5||k4, V = k1||k0.
RK es utilizada en la suma de la clave de ronda.

GIFT-COFB
COFB (Combined FeedBack, por sus siglas en inglés) es un esquema de cifrado

autenticado con datos asociados. COFB recibe bloques de mensaje o datos asociados
de 128 bits, una clave secreta de 128 bits y un nonce2 del mismo tamaño. Utiliza
como bloque básico un cifrador por bloques, adicionalmente utiliza una función li-
neal compuesta de ⊕ y multiplicaciones en un campo finito GF (264) con diferentes
constantes pequeñas como 2 y 4 [25]. En la figura 2.2 se muestra cómo COFB opera
cuando recibe bloques de mensaje y de datos asociados.

COFB se enfoca principalmente fue diseñado como un algoritmo ligero y que
lograr utilizar una sola llamada al cifrador utilizado por cada bloque de entrada. Una
característica importante de este modo de operación es que no necesita que el cifrador
subyacente sea invertible durante el descifrado, lo que permite un tamaño del estado
interno pequeño.

Descripción de los bloques básicos de construcción

Clave y bloque del cifrador: la primitiva criptográfica subyacente es un cifrador EK

con bloques de n-bits. Se asume que n es múltiplo de 4, ϵ denota una cadena de
longitud cero y K es la clave del cifrador por bloques.
Función de relleno. Para x ∈ {0, 1}∗, se define la función de relleno como:

Pad(x) =

{
x si x ̸= ϵ y |x| mod n = 0 x||10(n−(|x|;mod;n)−1)

de lo contrario.

2Se refiere a un valor que debe ser distinto para cada mensaje/datos asociados que sean procesados
con la misma clave.
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Figura 2.2: Cifrado autenticado de COFB para tres bloques de datos asociados y
texto plano.

Función de enmascaramiento. Es una función Mask : {0, 1}n/2 × N × N → {0, 1}n/2
definida como:

mask(∆, a, b) = αa · (1 + α) ·∆.

Se puede escribir mask(∆, a, b) como mask∆(a, b). Aquí, · se entiende como la mul-
tiplicación sobre GF (2n/2) y α como el elemento primitivo del campo; el polinomio
irreducible que define el campo es p(x) = x64 + x4 + x3 + x+ 1.

Función de retroalimentación. Sea Y ∈ {0, 1}n y Y [1], Y [2]
n/2←−− Y , donde Y [i] ∈

0, 1n/2. Se define una función G : {0, 1}n → {0, 1}n como:

G(Y ) = (Y [2], Y [1] ≪ 1)

donde X ≪ r es la rotación circular a la izquierda de la cadena X en r posiciones.
Ahora se define ρ1(Y,M) = G(Y )⊕M , y finalmente la función de retroalimentación
ρ y su inversa ρ−1 se definen como:

ρ(Y,M) = (ρ1(Y,M), Y ⊕M),

y
ρ−1(Y, c) = (ρ1(Y, Y ⊕ C), Y ⊕ C).

Es importante notar que recientemente el NIST realizó un proceso un mecanismo
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de estandarización de diferentes algoritmos de criptografía ligera del NIST 3, donde
GIFT-COFB fue uno de los finalistas.

2.1. Técnicas de implementación en arquitecturas Cortex-
M

2.1.1. Bitslicing

La técnica de bitslicing consiste en implementar las cajas S utilizando instruccio-
nes lógicas a nivel de bits. Debido a que estas instrucciones son independientes del
mensaje de entrada y de la clave, generalmente las implementaciones con bitslicing
son resistentes a los ataques de temporización. Su objetivo es reducir el número de
instrucciones de almacenamiento y carga en la memoria [26].

La representación bitslicing para la permutación GIFT puede verse como un rec-
tángulo, es decir el bitslice está en dos dimensiones (2D) con el propósito de tener una
implementación más eficiente. GIFT en 2D está compuesto por tres pasos: SubCells,
PermBits y AddRoundKey [24].

Initialization. El texto plano es acomodado en cuatro filas de 16 ó 32 bits de
arriba hacia abajo y de derecha a izquierda. El estado del cifrador es visto como una
matriz de dos dimensiones.

Para utilizar esta técnica se deben de reordenar las entradas para tener una re-
presentación apta para el bitslicing [2]. Para ello se utiliza la siguiente función de
intercambio:

SWAPMOVE(A,B,M, n) : T = (B ⊕ (A≫ n)) ∧M B = B ⊕ T A = A⊕ (T ≪ n)

La función consiste en intercambiar los bits de B enmascarados con M con los
bits de A enmascarados con el corrimiento M ≪ n.

SubCells. Ambas versiones de GIFT (GIFT-64, GIFT-128) usan la misma caja S
invertible de cuatro bits. La caja S es aplicada en paralelo a cada columna del estado
del cifrador (en forma de matriz), todas las cajas S puede ser ejecutadas en paralelo
utilizando solo 13 operaciones como se describió en la sección 2.1.

PermBits. Se aplican cuatro permutaciones a nivel de bits a las filas del estado
del cifrador independientemente. Mapea los bits de la posición (i, j) a la posición
(i, Pi(j)). Este es el paso más costoso ya que se requiere mover bit a nivel de software,
para realizar una permutación P0 de 16 bits a S0 [2]:

3National Institute of Standards and Technology, https://csrc.nist.gov/projects/
lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
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Figura 2.3: Representación cúbica del estado de GIFT-64, cada color hace referencia
a un distinto slice mientras que los bits seleccionados en negro son a los cuales se les
aplica la caja S [2].

P0(S0) = (S0 ∧ 0x0401) ∨ ((S0 ∧ 0x0002≪ 11)

∨ ((S0 ∧ 0x0020)≪ 8) ∨ ((S0 ∧ 0x0008≪ 1)

∨ ((S0 ∧ 0x2000)≪ 2) ∨ ((S0 ∧ 0x0040≪ 3)

∨ ((S0 ∧ 0x0200)≪ 5) ∨ ((S0 ∧ 0x0004≪ 6)

∨ ((S0 ∧ 0x1000)≪ 9) ∨ ((S0 ∧ 0x8000≪ 8)

∨ ((S0 ∧ 0x0100)≪ 6) ∨ ((S0 ∧ 0x0800≪ 5)

∨ ((S0 ∧ 0x4010)≪ 3) ∨ ((S0 ∧ 0x0080≪ 2)

(2.2)

AddRoundKey. Una fracción de n/2 de la clave es extraída del estado de la
clave y se realiza la función XOR a las primeras 2 filas del estado del cifrador. Para la
versión de GIFT-64.

2.1.2. Fixslicing

Esta representación tiene el objetivo de disminuir la latencia generada al realizar la
permutación en la representación bitslice. Al hacer fixslicing se divide el estado cada
cuatro bits. Cada bit se coloca en cuatro diferentes slices. Esta nueva representación
puede verse gráficamente como un cubo en la figura 2.3.

SubCells. La aplicación de la subtitución con las cajas S permanece igual que en
la representación bitslice. Las 16 cajas S para GIFT-64 se aplican en paralelo [2].

PermBits. Para realizar la permutación se realizan los siguientes pasos:

Obtener la transpuesta de cada slice.

Aplicar intercambios en las filas:

• Slice 0: intercambio fila 1 con 3.

• Slice 1: intercambio fila 0 con 1 y fila 2 con 3
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Figura 2.4: Representación cúbica del estado de GIFT-128, cada color hace referencia
a un distinto slice mientras que los bits seleccionados en negro son a los cuales se les
aplica la caja S [2].

• Slice 2: intercambio fila 0 con 2.

• Slice 3: intercambio fila 0 con 3 y fila 1 con 2.

AddRoundKey. Se mantiene igual que en la representación Bitslice.
Para la versión GIFT-128 se ordenan los bits en dos cubos, tal como se muestra

gráficamente en la figura 2.4. Se aplican las 32 cajas S en paralelo. La permutación
se define de la siguiente manera:

Se obtiene la matriz transpuesta de cada slice de los cubos.

Se mezclan las matrices izquierdas y derechas de cada slice.

Se aplican los siguientes intercambios de filas:

• Slice 0: intercambia las 2 mitades de abajo.

• Slice 1: intercambia las mitades de abajo y arriba de los slices indepen-
dientemente.

• Slice 2: intercambia las 2 mitades de arriba.

• Slice 3: intercambia la mitad de arriba y abajo de forma cruzada.
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Ataques por canales laterales

Los ataques por canales laterales (ACL), introducidos en 1996 por Paul Kocher
[4] explotan las fugas de los canales laterales, tal como el consumo de potencia de
un dispositivo para extraer información secreta. Los ACL pueden ser clasificados en
dos categorías: enfocados o no enfocados. Los ataques enfocados requieren acceso a
un dispositivo, lo cual es una suposición necesaria que en la práctica no siempre es
posible. Los ataques no perfilados incluyen el análisis de potencia diferencial (APD),
el análisis de potencia correlacional (APC) y el análisis de información mutua (AIM).

3.1. Ataques de análisis de potencia

Este tipo de ataques toman ventaja de la información que puede ser obtenida
al medir la potencia consumida por un dispositivo criptográfico. La mayoría de la
potencia consumida por estos dispositivos es usada principalmente cuando los tran-
sistores cambian de estado. Esto es conocido como consumo dinámico y la cantidad de
potencia consumida en el cambio de estado puede ser usada para poder hacer un crip-
toanálisis. También es conocido que el consumo de potencia estático de los dispositivos
tiene relación con el último valor almacenado, el cual puede ser usado por un atacante.

Muchos dispositivos criptográficos son simples microcontroladores con un único
hilo de ejecución, sin pipeline y con un ciclo de reloj lento. Debido a estas caracte-
rísticas es relativamente fácil encontrar una relación entre los datos e instrucciones
procesadas y la potencia consumida. De esa relación, un atacante puede suponer los
valores de los datos procesados. Algunos de estos valores son datos secretos almace-
nados en el microcontrolador.

El análisis de potencia utiliza las trazas del consumo de potencia medido durante
la operación del dispositivo criptográfico. Una traza es un conjunto de mediciones del
consumo de potencia obtenidas durante una operación de cifrado.

17
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3.1.1. Análisis de potencia simple

Los ataques de potencia simple (APS) es un método que involucra una interpre-
tación directa de las mediciones del consumo de potencia las cuales son adquiridas
durante las operaciones de cifrado realizadas en un dispositivo. Diferentes valores de
potencia sobre la traza son debido a que diferentes instrucciones forman parte de un
algoritmo de cifrado. Debido a que la secuencia de instrucciones puede ser revelado
mediante un APS y la ruta de ejecución tiene una relación directa con los datos pro-
cesados, el APS puede ser usado para romper la implementación criptográfica.

En un ataque de análisis de potencia el atacante debe tener acceso a algunas
trazas de potencia y para poder tener un ataque exitoso, debe conocer a profundidad
el algoritmo criptográfico que se utiliza, así como, los detalles de la implementación
del mismo, para poder conocer los pasos intermedios del algoritmo.

3.1.2. Análisis de potencia diferencial

El análisis de potencia diferencial (APD) es una técnica avanzada que usa métodos
estadísticos con el propósito de identificar una relación entre las medidas de potencia
y un consumo de potencia supuesto del dispositivo [27]. A diferencia de un APS,
en un APD no se necesita tener un conocimiento detallado del dispositivo víctima.
También se puede obtener éxito al obtener la clave secreta incluso si existe ruido en
las trazas de potencia medidas. Una desventaja de este ataque es que requiere una
gran cantidad de trazas de potencia.

Con el fin de obtener la clave secreta, un atacante debe tener acceso al dispositivo
víctima y proponer un modelo de consumo de potencia, también se asume que se
conoce el algoritmo criptográfico que la víctima está ejecutando para poder obtener
las mediciones del consumo de potencia, la implementación del algoritmo y los texto
planos (o en claro).

Para realizar un APD, se necesita que muchos textos planos sean cifrados y del
proceso de cifrado de cada uno de los textos, medir el consumo de potencia, almace-
narlo y sincronizarlo. El objetivo del ataque es comparar todas las trazas a lo largo
de la ejecución del proceso de cifrado y poder hacer una suposición del instante de
tiempo en el que se están realizando las operaciones que componen el algoritmo.

Debido a que el análisis de potencia diferencial confía en una comparación esta-
dística de múltiples trazas, contramedidas de aleatorización implican que un número
aleatoria es usado en cada ejecución puede dificultar o impedir el éxito de un APD.
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3.2. Distinguidores
Un distinguidor es una herramienta estadística cuyo propósito es determinar la

clave secreta más probable de entre un conjunto. Varias clasificaciones de distingui-
dores pueden ser consideradas y por lo tanto, divididos en dos grupos de acuerdo
a el número de muestras y el tipo de fuga que se quiere aprovechar para recuperar
información en monovariados y multivariados. Otra forma de clasificarlos es separar
los distinguidores de acuerdo a la suposición de que el atacante tiene una copia del
dispositivo que se quiere atacar, estos dos grupos en la literatura especializada son los
ataques enfocados o no enfocados respectivamente. De hecho, si el atacante tiene un
dispositivo equivalente a la víctima, entonces se puede enfocar a una fuga específica
antes de la fase del ataque. La fase de enfoque consiste en estimar la distribución de
probabilidad de fuga, es decir, estimar los diferentes momentos estadísticos como la
media, varianza, etc. Mientras la fase de ataque consiste en calcular la diferencia entre
la distribución de la fuga actual y la distribución de fuga estimada. Estas diferencias
pueden ser calculadas mediante el cuadrado de la distancia o la vecindad máxima.
Una tercera forma en la que se pueden clasificar los distinguidores, se basa en la im-
plementación que se quiere atacar, es decir, si tienen como objetivo implementaciones
no protegidas, específicamente las no enmascaradas. Este tipo de distinguidores son
conocidos como de primer orden. Por el otro lado, están los distinguidores que tienen
como objetivo implementaciones protegidas mediante el enmascaramiento, que son
los distinguidores de orden superior [28].

3.2.1. Correlacional

El análisis de potencia correlacional (APC) es un método estadístico que es em-
pleado para deducir la clave secreta correcta usando un coeficiente de correlación. El
APC fue introducido en [29], usando el coeficiente de correlación de Pearson. En un
ataque APC el modelo de consumo de potencia utilizado es el peso de Hamming que
relaciona el consumo de potencia de un algoritmo criptográfico que esta realizando el
cifrado de textos planos en un dispositivo y este consumo es usualmente proporcional
a cuantos bits han cambiado de valor en un registro especifico o posición de memoria.
Este es visto como el peso de Hamming entre el valor previo y el nuevo valor. El peso
de Hamming es calculado como el número de unos que hay en un arreglo de bits.

Si W denota la potencia medidad y H el peso de Hamming entre los valores
supuestos y los valores intermedios D, el coeficiente de la correlación de Pearson ρW,H

entre W y H puede ser calculado como:

ρW,H =
Cov(W,H)

σWσH

=
E((W − µW )(H − µH))

σWσH

donde µW y µH son los valores intermedios respectivos, σW y σH son las respectivas
desviaciones estándar, Cov la covarianza y E la media.

El valor de la clave secreta que maximiza el valor absoluto de el coeficiente de
correlación es el valor que maximiza la correlación entre el valor supuesto y el valor
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medido; esto es, la clave supuesta escogida es la que esta asociada el valor absoluto
del coeficiente de correlación más alto.

El APC requiere menos trazas que el APD para lanzar un ataque exitosos ya que
"todos los bits de datos no supuestos correctamente penalizan a la relación de señal
a ruido" [[29], [30]]. Debido a esto, el APC es probablemente el tipo de ataque de
análisis de potencia más utilizado.

3.2.2. Información Mutua

La información mutua es un concepto de teoría de la información esta mide la
cantidad de información que dos variables aleatorias (X, Y ) comparten de dos espacios
discretos X y Y , cada uno con una densidad de probabilidad de Px y Py. En pocas
palabras, cuantifica la información de obtener a X si se observa Y . En el procesamiento
de señales ayuda a comprender la dependencia de cada una, es específico para los ACL
indica la cantidad de información que puede filtrarse [31]

[
I(X;Y ) =

∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)]

Donde (p(x, y)) es la distribución conjunta de (X) e (Y), (p(x)) es la distribución
marginal de (X) y (p(y)) es la distribución marginal de (Y).

3.3. Modelos de consumo de potencia
Los modelos de potencia son usados para simular el consumo de potencia de un

dispositivo criptográfico, destacando que entre más exacto sea, los recursos compu-
tacionales necesarios para su ejecución son mayores. Siempre existe un compromiso
entre la precisión de los valores dados por las herramientas estadísticas y los recursos
de cómputo utilizados. Los atacantes usan modelos de potencia abstractos de gran
nivel con el fin de suponer como el consumo de potencia está relacionado a los datos
procesados. Durante la fase del diseño del ataque, diferentes modelos de consumo
pueden ser usados. Los modelos más comunes son:

Peso de Hamming

En el ataque implementado por Kocher [27] basado en el análisis de consumo
de potencia, el modelo utilizado fue el peso de Hamming (PH). En este modelo, el
atacante supone que el consumo de potencia es proporcional al número de bits cuyo
valor lógico es ’1’ en el dato que está siendo procesado, ignorando los valores previos
y siguientes. Por ejemplo, en el caso de los microprocesadores con buses precargados,
el consumo de potencia puede depender del peso de Hamming de los datos en el bus.
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Esto es típicamente el caso si los valores precargados son «todos ceros» lo cual genera
que el consumo de potencia depende de WH(0...0⊕ Yi) = WH(Yi).

Distancia de Hamming

Cuando un dispositivo criptográfico no tiene precargados ciertos valores en su
entrada, el modelo de potencia que mejor se ajusta a la potencia consumida es el
modelo de la distancia de Hamming. El modelo de la distancia de Hamming considera
cuántas transiciones de 0 a 1 y de 1 a 0 ocurren en un dispositivo durante un periodo
de tiempo dado. El modelo de la distancia de Hamming está basado en la hipótesis en
donde la transición de 0 a 1 tiene un consumo de potencia similar al de la transición
de 1 a 0 y también se aplica para la transición de 0 a 0 y de 1 a 1 en donde el consumo
de potencia es el mismo [32]. Por lo que es aplicable a implementaciones de hardware,
específicamente a las fugas emitidas por registros y buses de datos.

Otros modelos

Algunas operaciones criptográficas requieren multiplicaciones. Se sabe que el con-
sumo de potencia es menor si uno de los factores de la multiplicación es cero, a
diferencia del caso general en donde ambos operadores son diferentes de cero. Por lo
tanto algunas veces los modelos de consumo tienden a suponer un consumo nulo si
cualquiera de los operandos es cero y asignan 1 si ambos son diferentes de cero.

3.4. Relación señal a ruido

Los ACL están estrechamente relacionados fenómenos físicos observables causa-
dos en la ejecución de tareas en el hardware. Por ejemplo, el tiempo de ejecución y
energía consumida pueden ser utilizadas para los ACL. También se pueden utilizar
las emisiones electromagnéticas, la disipación calor, incluso el ruido producido. Todas
estas fuentes de información que se filtran las computadoras y procesadores al realizar
tareas pueden ser explotadas por adversarios maliciosos [33]. Cuando se puede medir
esta información, y la señal fluctúa dependiente de los datos de entrada, operaciones
y ruido aleatorio, puede usarse como ACL [34].

Con esta señal se forma una traza de canal lateral. La traza tiene tres componentes
en el caso de consumo de potencia: señal de componente Vdatos, correlacionada con el
modelo de potencia dependiente de la entrada, el componente de ruido Vop, sin corre-
lación con el modelo de potencia, pero dependiente de las operaciones criptográficas
y el componente de ruido aleatorio Vruido [34]. Se puede resumir que hay una fuga
de información dependiente de los datos señal y una fuga independiente del ruido
ruido.

La relación señal ruido RSR es la correlación de la señal y el componente de ruido
ambiente que hay en una medición. Se utiliza como métrica para evaluar el diseño
de contramedidas contra los ACL. Con RSR se obtienen dos criterios importantes: el



22 Ataques por canales laterales

coeficiente de correlación y el número de trazas necesarias para obtener la clave [34].
En un ACL, la RSR representa la proporción de la información disponible respecto a
la información total cuando el objetivo ejecuta un algoritmo criptográfico. RSR mide
la varianza de una señal contra la varianza del ruido. Este modelo está compuesto de
tres partes:

Obtener la señal: Medir la señal y calcular su media.

Obtener el ruido: Se sabe que existe cierto ruido aleatorio, a las trazas se les
resta la media.

Calcular la RSR: Se obtiene la varianza de las señales y el ruido.

[ RSR = Var(señal)
V ar(ruido)][V ar(x)=σ2= 1

N

∑N
i=1(xi−x̄)2]Donde

σ2, V ar es la varianza, N

número total de elementos, xi cada valor individual y x̄ media aritmética.

3.5. Descripción de un ACL
El objetivo de un ACL es revelar las claves secretas de los dispositivos criptográfi-

cos basado en un gran número de trazas de potencia que han sido registradas mientras
el dispositivo está cifrando y descifrando diferentes bloques de datos. En este caso se
tiene acceso al dispositivo bajo ataque por lo que se puede seleccionar un conjunto
de datos de entrada conocidos, supongamos el ataque a un cifrador por bloques que
tiene como entradas un mensaje y una clave de 16 bytes (128 bits) y una única salida
de la misma longitud. Se describe un ataque genérico que recupera f − bits de la
clave [35]. Primero se seleccionan D entradas conocidas y a continuación se sigue el
siguiente procedimiento:

Paso 1: Elegir un resultado intermedio del algoritmo ejecutado. El primer paso de
un ataque es elegir un resultado intermedio del algoritmo criptográfico que es ejecu-
tado por el dispositivo atacado. Este resultado intermedio necesita ser una función
f(d, k) con salidas y entradas de f − bits, donde d es un valor no constante de la
entrada conocida (hay D valores) y k son f − bits de la clave. Los resultados inter-
medios que cumplan esta condición pueden ser usados para revelar k. En la mayoría
de los escenarios ataques, d corresponde a es el texto plano o el texto cifrado.

Paso 2: Medir el consumo de potencia. El segundo paso del ataque es medir el
consumo de potencia del dispositivo criptográfico mientras cifra o descifra D diferentes
bloques de datos conocidos. Para cada una de estas operaciones, el atacante necesita
saber el valor d correspondiente que esté involucrado en el cálculo de los resultados
intermedios elegidos en el paso 1. Estos valores conocidos pueden ser expresados como
un vector d = (d1, ..., dn)

′, donde di denota el valor en la ith operación de cifrado o
descifrado. Durante cada una de estas operaciones el atacante registra las trazas de
potencia. Las trazas que corresponden a los bloques di son el vector t′i = (ti,1, ...ti,T ),
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donde T denota la longitud de la traza. 1 El atacante mide una traza para cada uno
de los D bloques de datos y por lo tanto las trazas pueden ser escritas como una
matriz T de tamaño DxT . Es importante para los ataques que las medidas estén
alineadas correctamente. Esto significa que los valores del consumo de potencia de
cada columna tj de la matriz T necesita ser de la misma operación. La matriz T
queda como:

T =

 t1,1 · · · t1,T
... . . . ...

tD,1 · · · tD,T

 . (3.1)

Paso 3: Calcular los valores intermedios hipotéticos. El siguiente paso de ataque
es calcular un valor intermedio hipotético para cada posible elección de k. Estos
posibles valores son denotados por el vector k = (k1, ..., kK), donde K denota el
número total de posibles elecciones de k. En el contexto de un ataque los elementos
del vector forman la clave secreta hipotética. Dado el vector d y la clave hipotética
k, un atacante puede calcular fácilmente los valores intermedios hipotéticos f(d, k)
para todas las D operaciones de cifrados y para todas las K claves. Los valores se
almacenan en una matriz V:

V =

f(d1, k1) · · · f(d0, kK)
... . . . ...

f(dD, k1) · · · f(dD, kK)

 . (3.2)

Paso 4: Asignar valores intermedios a valores de consumo de potencia. El siguiente
paso de ataque es mapear los valores intermedios hipotéticos V a la matriz H de
valores de consumo de potencia hipotéticos. Para este propósito el atacante utiliza
algún modelo de consumo de potencia. Al usar estas técnicas el consumo de potencia
del dispositivo, cada uno de los valores intermedios hipotéticos Vi,j es simulado en
orden para obtener valores de consumo de potencia hipotéticos Hi,j. Por ejemplo si
se utiliza el modelo de la distancia de Hamming (HD(·)) la matriz H es:

H =

h1,1 · · · h1,K
... . . . ...

hD,1 · · · hD,K)

 =

HD(f(d1, k1)) · · · HD(f(d0, kK))
... . . . ...

HD(f(dD, k1)) · · · HD(f(dD, kK))

 . (3.3)

Paso 5: Comparar valores de consumo de potencia hipotéticos con trazas de po-
tencia. Después de haber transformado (V ) a H, el paso final del ataque puede ser
realizado. En este paso, cada columna hi de la matriz H es comparado con cada co-
lumna tj de la matriz T.Esto significa que el atacante compara los valores de consumo
de potencia hipotético de cada una de las claves hipotéticas con las trazas registra-
das en cada posición. En esta comparación se utilizan los distinguidores, por ejemplo

1Se refiere al número de puntos capturados por un osciloscopio, esto depende de la frecuencia de
muestreo del mismo y el periodo de tiempo de captura.
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basándose en los coeficientes de correlación. A partir de esta relación, f − bits de la
clave secreta del dispositivo atacado puede ser descubierta con cierta probabilidad.

El procedimiento anterior es repetido varias veces con diferentes partes de los D
mensajes conocidos, de esta manera se recupera la clave en su totalidad.

3.6. Plataforma experimetal

Para realizar un ACL utilizando el consumo de potencia se necesitan de los si-
guientes componentes:

1. Dispositivo objetivo (target): Es un dispositivo el cual va a ejecutar el algoritmo
criptográfico que se quiere probar su seguridad.

2. Equipo de medición: Se encarga de recolectar las muestras, trazas para su pos-
terior análisis. Se necesita de un osciloscopio que registre las señales durante la
ejecución del algoritmo criptográfico.

3. Equipo de procesamiento: Con las señales medidas se realizan las correlaciones
correspondientes con el consumo teórico contra las mediciones obtenidas. Con
dicho análisis se puede obtener la clave utilizada en el algoritmo criptográfico.

Realizar estas pruebas, requieren de un osciloscopio de alta precisión, hardware
adicional que realice la sincronización al ejecutar el algoritmo entre el dispositivo
objetivo y el osciloscopio.

Por ello se utilizan herramientas dedicadas las cuales hacen el estudio de la segu-
ridad de algoritmos criptográficos contra ataques de canal lateral asequible y simple
de configurar.

Dichas herramientas de hardware y software son proporcionadas por NewAE2.
NewAE es una empresa dedicada a la seguridad de hardware en dispositivos em-

bebidos, con la misión de de hacer ver a los diseñadores e ingenieros sobre el poder
del ACL y glitching como vectores de ataque importantes.

Las herramientas son de código abierto y ampliamente disponibles [36].
Se puede analizar distintas señales al mismo tiempo con un solo dispositivo, por

ejemplo, consumo de potencia con emisiones electromagnéticas, sin necesidad de tener
un equipo de captura para cada señal generada.

3.6.1. Ecosistema ChipWhisperer

Es un conjunto de herramientas útiles para la investigación en seguridad en hard-
ware de dispositivos embebidos.

Están enfocadas a el análisis de consumo de potencia, voltaje y ataque de fallas
del reloj.

2https://www.newae.com

https://www.newae.com
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Estas herramientas dan soporte a distintos dispositivos objetivo como microcon-
troladores ARM Cortex-M, dispositivos PowerPC, FPGAs pequeños.

Están compuestas de cuatro capas.

Hardware: ChipWhisperer tiene tarjetas-osciloscopio que son utilizadas para
montar un ACL.

Las tarjetas funcionan como dispositivos bajo prueba.

Firmware: Incluyen el firmware de código libre para las tarjetas-osciloscopio y
los dispositivos objetivo.

El firmware está escrito en Veriog para los FPGAs y en C para los microcon-
troladores.

Software: Es una biblioteca de código abierto escrita en python que controla
el hardware de captura de las trazas y la comunicación entre el dispositivo
objetivo. Se encarga de obtener las mediciones del consumo de potencia. Tiene
dos APIs principales una Captura y otra Analizer.

Tutorials: Son libretas de python que funcionan para montar un laboratorio de
ACL. Desde las libretas se puede realizar todo el flujo del ataque hasta realiza el
análisis de las muestras capturadas y obtener la clave utilizada por el algoritmo
criptográfico.

Las 4 capas siguen un flujo general para la captura hasta obtener la clave. Inicia con
la configuración de la tarjeta-osciloscopio y el microcontrolador objetivo. Se escribe
el texto plano o mensaje que va a procesar el algoritmo criptográfico dentro del
microcontrolador. Después se sincronizan las dos partes y se activa el cifrado. A la
vez se capturan las trazas. Se obtiene el cifrado del objetivo. Los datos obtenidos se
organizan y se almacenan.

Estos pasos se realizan repetidamente hasta generar un conjunto de trazas con
distintos textos planos cifrados suficientes para poder realizar el análisis, los resultados
se interpretan aun si no se ha encontrado la clave y se pueden obtener resultados
parciales de la clave.

3.6.2. ChipWhisperer Nano

Es la plataforma de menor costo para realizar ACL e inyección de fallos de voltaje.
Tiene las siguientes características:

Convertidor Analogíco-digital de 8 bits capaz de tomar muestras hasta 20 Mega-
muestras por segundo, con un reloj externo o un reloj interno.

Tiene un microcontrolador objetivo STM32F030 para cargar el algoritmo crip-
tográfico.
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Figura 3.1: ChipWhisperer Nano, [37]

Puede almacenar hasta 50 000 muestras.

La tarjeta ChipWhisperer Nano está diseñada principalmente para demostraciones
de análisis de potencia y método de enseñanza. Físicamente la tarjeta está dividida
en dos secciones una que es el microcontrolador y la que toma muestra.

3.6.3. ChipWhisperer Lite

De la misma manera que la plataforma ChipWhisperer Nano, la versión Lite tam-
bién está dividida en dos módulos. Uno encargado de la captura de las muestras y el
otro que implementa el algoritmo criptográfico a atacar. Esta versión tiene un mayor
número de prestaciones que la versión Nano.

Esta versión tiene una mayor capacidad de almacenamiento de las trazas, opera a
una frecuencia mayor y tienen una mayor sensibilidad a la señal de ruido.

Sus características son las siguientes:

Convertidor Analógico-digital de 10 bits capaz de tomar muestras hasta 105
Mega-muestras por segundo, con un reloj externo o un reloj interno.

Tiene un microcontrolador objetivo STM32F para cargar el algoritmo cripto-
gráfico.

Un reloj ajustable de 5-200MHz.

Puede almacenar hasta 24 573 muestras.

La herramienta de ChipWhisperer hacen que la configuración sea sencilla de ambas
tarjetas. Basta con cambiar las opciones de compilación con una variable, por ello
con los programas desarrollados para el ACL se puede comparar el funcionamiento
en ambas plataformas.
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Figura 3.2: ChipWhisperer Lite, [3].
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Capítulo 4

Implementación de los ataques

4.1. Implementación Secuencial
Nuestro análisis fue realizado tanto en GIFT-64 como GIFT-128, ya que indepen-

dientemente de la versión, la clave está formada de 128 bits, en donde cada subclave
es un nibble, lo que significa que cada subclave está compuesta de 4−bits y puede
tener sus valores entre 0, 1, 2, ..., 15, es decir, 24 posibles combinaciones.

4.1.1. Modelo de consumo

Para poder llevar a cabo un ataque exitoso, es decir, obtener de manera correcta
los 128 bits de la clave, necesitamos conseguir las 32 subclaves que la componen.
El número de subclaves que se pueden extraer por ronda varía dependiendo de la
versión analizada, ya que para GIFT-64 se utilizan 32 bits de la clave por ronda, es
decir, ocho subclaves, por lo que es necesario atacar cuatro rondas de GIFT-64. Para
GIFT-128 se utilizan 64 bits de la clave por ronda, obteniendo 16 subclaves, por lo
que únicamente es necesario atacar dos rondas de GIFT-128.

Para cada una de las subclaves con la que se cifran N textos planos, dependiendo
de la implementación atacada, calculamos un valor de correlación para cada posible
valor [0,...,15], después de calcular los distintos valores de correlación, escogemos el
valor de correlación máxima de cada subclave supuesta y ese será el valor escogido.

Figura 4.1: GIFT-64, Puntos de fuga de información

29
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Este proceso es repetido en cada una de las rondas tanto de GIFT-64 como de GIFT-
128.

En nuestro análisis elegimos el punto de interés (PdI), también conocido como
punto de fuga en la salida de la caja S de la función de ronda 2, 3, 4 y 5 de GIFT-64
y en la salida de la caja S de la función de ronda 2 y 3 de GIFT-128.

La correlación es calculada para cada posible subclave supuesta usada en cada
una de las rondas atacadas y la subclave con la correlación máxima se vuelve nuestra
subclave supuesta. Ya que parte del contenido de la clave secreta es utilizada en cada
ronda objetivo, para obtener la primer clave de ronda, calculamos el peso de Hamming
de la salida de la caja S de la segunda porque es ahí donde existe una interacción entre
el estado del cifrador y la clave de ronda. Para obtener las claves de ronda siguientes
se repite el proceso con el fin de recuperar la clave secreta. El código mostrado abajo
detalla el funcionamiento de la correlación.

Algoritmo 1 CPA [6]
1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Clave supuesta XOR Texto plano
4: end for
5: Correlación Máxima
6: end for

4.1.2. Reconstrucción de la clave

La clave secreta también conocida como clave de estado K utilizada por el cifrador
es de 128 bits como K = k7||k6||...||k0 donde k es una palabra de 16 bits [24].

El calculo de las claves de ronda para ambas versiones de GIFT es el siguiente:

Para GIFT-64 se extraen dos palabras de 16 bits, k0 y k1 de la clave de estado y
se convierten en la clave de ronda RK = U ||V .

U ← k1, V ← k0

Para GIFT-128 se extraen cuatro palabras de 16 bits, k0, k1, k4 y k5 de la clave de
estado y se convierten en la clave de ronda RK = U ||V .

Después se actualiza la clave de estado como:

k7||k6||...||k1||k0 ← k1 ≫ 2||k0 ≫ 12||...||k3||k2

donde ≫ i es una rotación circular a la derecha.
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Inversión Key Schedule de GIFT-64

Para obtener la clave secreta se necesitan las primeras cuatro claves de ronda y
después utilizamos esas cuatro claves de ronda para invertir el proceso de generación
de claves y recuperar los 128 bits que la componen. Necesitamos atacar cuatro rondas
secuenciales de GIFT-64 debido a la estructura de su esquema criptográfico. En GIFT-
64, únicamente 32 bits de cada clave de ronda se utilizan, es por lo que son necesarias
cuatro rondas secuenciales para obtener los 128 bits de la clave secreta.

En la función de ronda AddRoundKey cada uno de los bits de U y V se combinan
con el estado del cifrador mediante una operación XOR en los bits b4i+1yb4, por lo
que es necesario generar U y V y obtener la clave de ronda [24].

b4i+1 ← b4i+1 ⊕ ui, b4i+1 ← b4i ⊕ vi, ∀i ∈ {0, ..., 15}

Inversión Key Schedule de GIFT-128

Para obtener la clave secreta se necesitan las primeras dos claves de ronda y
después utilizamos esas dos claves de ronda para invertir el proceso de generación
de claves y recuperar los 128 bits que la componen. Necesitamos atacar dos rondas
secuenciales de GIFT-128 debido a la estructura de su esquema criptográfico. En
GIFT-128, únicamente 64 bits de cada clave de ronda se utilizan, es por lo que son
necesarias dos rondas secuenciales para obtener los 128 bits de la clave secreta.

En la función de ronda AddRoundKey cada uno de los bits de U y V se combinan
con el estado del cifrador mediante una operación XOR en los bits b4i+2 y b4+1, por
lo que es necesario generar U y V y obtener la clave de ronda [24].

b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi,∀i ∈ {0, ..., 31}

4.1.3. Configuración del ataque

Para este análisis se utilizó el ecosistema ChipWhisperer que cuenta con un micro-
controlador que tiene como objetivo ser la víctima, la tarjeta de control y el oscilosco-
pio. El modelo utilizado fue el ChipWhisperer NANO que consiste en un microcontro-
lador STM32F030 de ocho bits. La implementación utilizado tanto de GIFT-64 como
de GIFT-128 fue implementada en el lenguaje C con la ayuda del protocolo simple
serial de ChipWhisperer. Se realizaron una serie de ataques para poder visualizar la
tasa de efectividad del modelo propuesto, esto significa, el número de veces que se
obtuvo con éxito la clave secreta. Para poder visualizar la efectividad del ataque, se
midió la tasa de éxito del ataque de potencia correlacional (APC), está tasa de éxito
muestra si un ataque recuperó de manera exitosa la clave usada por el algoritmo para
cifrar los textos planos. La tasa de éxito se definió como:

tasa de éxito =
{

1, si la clave es correcta
0, de lo contrario
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Para realizar el análisis de la efectividad del ataque, se realizaron múltiples ataques
y se calculó la media de la tasa de éxito, que es el número de ataques intentados
dividido por el número de ataques que recuperaron la clave de manera exitosa.

media =
# ataques exitosos

# total ataques

Una serie de ataques es definida como un conjunto de iteraciones, en donde cada
iteración crea de manera aleatoria un arreglo de pares de textos planos y la potencia
medida y se guarda en un bloque de datos para posteriormente aplicar el ataque sobre
estos datos. Si el ataque recuperó la clave secreta de manera exitosa, la el valor de
la tasa de éxito es 1 de lo contrario es 0. Una vez que las iteraciones se terminan, la
media de la tasa de éxito es calculada. En nuestro análisis se usaron un total de 120
iteraciones y 5000 pares de textos planos y la potencia medida. El procedimiento es
descrito en el algoritmo 2.

Algoritmo 2 Serie de ataques APC
1: Resultado: Media de la tasa de éxito
2: totalIteraciones = 120
3: iteraciones = 0
4: tasaExito = 0
5: mediaTasaExito = 0
6: pares = []
7: while totalIteraciones < total do
8: pares.agregar(texto/potencia)
9: resultado = CPA(pares)

10: iteraciones++
11: if resultado es exitoso then
12: tasaExito += 1
13: end if
14: end while
15: mediaTasaExito = tasaExito/totalIteraciones

4.2. Implementación bitslicing
En ambas versiones de GIFT-64 y GIFT-128 se usa la representación de una

matriz para realizar paralelamente las operaciones de la caja S. Sin embargo la parte
costosa a nivel software es la permutación de bits. Para que la entrada concuerde
con el formato de la matriz, este debe transformarse con las función de packing y
el cifrado se regresa a la representación normal unpacking. Para ello se utiliza la
siguiente función de intercambio de bits SWAPMOVE Algoritmo 3.

En ambas versiones de GIFT-64 y GIFT-128 el mensaje debe de transformarse
para seguir el mismo formato, los siguientes pseudocódigos ilustran esta acción Algo-
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Algoritmo 3 SWAPMOVE
Require: a, b,mask, n ▷ Dos números a y b de 32 bits, un desplazamiento y una

máscara
1: tmp← (b⊕ (a≫ n)) ∧mask
2: b← b⊕ tmp
3: a← a⊕ (tmp≪ n)

ritmo 12. El unpacking se utilizan las mismas operaciones solo que la transformación
de enteros de 32 bits en formato Big-endian a un arreglo de bytes se realiza al fi-
nal de los intercambios de bits. Debe de tomarse en cuenta que se trabaja con un
microcontrolador ARM Cortex-M de 32 bits, generalmente están configurados para
trabajar con la representación Little-endian (el byte menos significativo se almacena
en la memoria más baja). La permutación fue implementada de la siguiente manera,
utilizando la función de intercambio SWAP.

4.2.1. Modelo de consumo

Peso de Hamming

Se implementó el peso de Hamming como modelo de consumo para los ataques
de correlación de potencia . Específicamente, se consideraron las transiciones de 1 y 2
bits en los Algoritmos 4 y 5 en las operaciones de cifrado. Esto significa que el modelo
de consumo se basa en el número de bits que cambian a "1.en cada operación. Para la
implementación, se calculó el peso de Hamming de cada byte procesado en el cifra-
do y se utilizó esta información para correlacionarla con las mediciones de consumo
de potencia del dispositivo objetivo. Esta implementación permitió evaluar cómo las
variaciones en el consumo de energía pueden estar asociadas con el comportamien-
to de GIFT-COFB en sus versiones de 64 y 128-bits, en particular con los valores
intermedios de las claves.

Algoritmo 4 Cálculo del peso de Hamming de 1 bit
Require: entrada: arreglo de bytes para el cálculo del peso de Hamming
1: peso_de_hamming← 0 ▷ Inicializa el peso de Hamming
2: for byte ∈ entrada do
3: for i← 0 to 7 do
4: if pos_bi(byte, i) = 1 then
5: peso_de_hamming← peso_de_hamming + 1
6: end if
7: end for
8: end for
9: return peso_de_hamming ▷ Retorna el peso de Hamming total de 1 bit
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Algoritmo 5 Cálculo del peso de Hamming de 2 bits consecutivos
Require: entrada: arreglo de bytes para el cálculo del peso de Hamming
1: peso_de_hamming_2bits← 0 ▷ Inicializa el peso de Hamming de 2 bits
2: for byte ∈ entrada do
3: for i← 0 to 6 do
4: if pos_bit(byte, i) = 1 and pos_bit(byte, i+1) = 1 then
5: peso_de_hamming_2bits← peso_de_hamming_2bits + 1
6: end if
7: end for
8: end for
9: return peso_de_hamming_2bits ▷ Retorna el peso de Hamming de 2 bits

4.2.2. SNR

En este análisis de potencia, se utilizó SNR como modelo de consumo para los
ataques de análisis de potencia diferencial DPA y análisis de potencia de correlación
CPA. Específicamente, el SNR Algoritmo 6 se aprovecha para identificar la diferen-
cia entre la señal útil, que corresponde a las variaciones en el consumo de potencia
asociadas con las operaciones de cifrado, y el ruido de fondo que puede distorsionar
la medición.

4.2.3. Reconstrucción de la clave

En los ataques de CPA la reconstrucción de la clave se basa en correlacionar las
mediciones de consumo de energía con los valores intermedios generados durante el
proceso criptográfico. En CPA, se utilizó el peso de Hamming y el SNR como modelos
de consumo para predecir el consumo de energía asociado con diferentes valores de
la clave Algoritmo 7. A través de la correlación entre las trazas y las predicciones del
modelo, se pudieron identificar los valores correctos de la clave. En DPA, se calculó
la diferencia entre las trazas asociadas a diferentes hipótesis de la clave y se utilizó
un análisis estadístico para detectar patrones significativos que revelaran la clave
correcta. Ambos ataques requerían múltiples trazas y un análisis cuidadoso de la
variabilidad del consumo de energía para finalmente reconstruir la clave completa.

Previamente se utiliza la función gift_internal (Algoritmo 8 para realizar una
operación para que las claves propuestas tengan el mismo formato que el GIFT-COFB.
La función realiza una operación XOR entre el valor en la posición indicada por row
y un valor basado en la suposición. La suposición se modifica según su paridad y su
valor absoluto.

Se necesitan las siguientes subrutinas para reconstruir las claves:

construir_clave (Algoritmo 9): Esta función toma una lista de bits y cons-
truye una clave al aplicar un desplazamiento (shift) y una operación XOR entre
los bits, generando un valor entero final que representa la clave reconstruida.
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Algoritmo 6 Cálculo de la relación señal-ruido (SNR)
Require: ronda: entradas del estado del cifrado, trazas: conjunto de trazas de poten-

cia, clave: clave secreta, fila: índice del estado a analizar, inicio: inicio del intervalo
de trazas, fin: fin del intervalo de trazas

Ensure: Relación señal-ruido (SNR)
1: Inicializar grupos de peso de Hamming vacíos: grupos_hw← []
2: for i = 0 to 16 do
3: grupos_hw[i]← []
4: end for
5: for i = 0 to longitud(trazas)− 1 do
6: peso_hamming ← calcular_HW(estado_interno(ronda[i], clave, fila))
7: Agregar trazas[i][inicio:fin] a grupos_hw[peso_hamming]
8: end for
9: Filtrar los grupos no vacíos: grupos_no_vacíos← filtrar_no_vacíos(grupos_hw)

10: Calcular los promedios de cada grupo: promedios_hw ←
calcular_promedios(grupos_no_vacíos)

11: Calcular el promedio global: promedio_global← promedio(promedios_hw)
12: Inicializar el arreglo de ruido: ruido← []
13: for i = 0 to longitud(promedios_hw)− 1 do
14: for traza in grupos_no_vacíos[i] do
15: Agregar traza− promedios_hw[i] a ruido
16: end for
17: end for
18: Calcular la varianza del ruido: varianza_ruido← calcular_varianza(ruido)
19: Calcular la varianza del promedio: varianza_promedio ←

calcular_varianza(promedios_hw)
20: return varianza_promedio

varianza_ruido
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Algoritmo 7 Análisis de correlación de potencia (CPA)
Require: rondas: lista de entradas del estado del algoritmo, trazas: conjunto de

mediciones de potencia, registro: índice del estado a evaluar
Ensure: claves: lista de posibles valores de la clave
1: claves← []
2: promedio_trazas← calcular_promedio(trazas)
3: desv_trazas← calcular_desviación(trazas, promedio_trazas)
4: N ← 16 ▷ Número de posibles bits de la clave
5: for bit← 0 to N − 1 do
6: maxcpa← [0, 0] ▷ Almacenar las correlaciones máximas
7: for suposición← 0 to 1 do
8: hws← calcular_pesos_Hamming(rondas, bit, suposición, registro)
9: promedio_hws← calcular_promedio(hws)

10: desv_hws← calcular_desviación(hws, promedio_hws)
11: correlacin← calcular_covarianza(trazas, promedio_trazas, hws, promedio_hws)
12: cpa_salida← correlación

desv_trazas×desv_hws
13: maxcpa[suposición]← calcular_máximo(valor_absoluto(cpa_salida))
14: end for
15: suposición_máxima← indice_máximo(maxcpa)
16: correlación_máxima← máximo(maxcpa)
17: Agregar suposición_máxima a claves
18: end forreturn claves

Algoritmo 8 gift_internal
Require: state: arreglo que representa el estado del sistema.
Require: guess: suposición sobre el valor a ser calculado.
Require: row: índice de la fila sobre la que se aplicará la operación.
1: return state[row]⊕ ((guess mód 2)≪ int(guess/2))
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obtener_clave (Algoritmo 10): Esta función divide una lista de bits en dos
grupos y luego utiliza la función construir_clave para calcular dos claves, una
para cada grupo de bits.

Algoritmo 9 construir_clave
Require: bits: lista de bits de entrada
Ensure: Una clave generada a partir de los bits
1: clave← 0
2: for (i, bit) in enumerar(bits) do
3: clave← clave⊕ (bit≪ i)
4: end for
5: return clave

Algoritmo 10 obtener_clave
Require: bits: lista de bits de entrada
Ensure: Dos claves generadas a partir de los grupos de bits
1: grupo_1← []
2: grupo_2← []
3: for (bit1, bit2) in bits do
4: grupo_1.append(bit1)
5: grupo_2.append(bit2)
6: end for
7: return construir_clave(grupo_1), construir_clave(grupo_2)

Ataque CPA utilizando subclaves
El Algoritmo 11 implementa una variante del ataque CPA (Análisis de Corre-

lación de Potencia) para identificar la clave más probable a partir de un conjunto
de subclaves. La función max_cpa calcula la correlación entre las trazas de poten-
cia y las subclaves posibles utilizando un modelo de consumo basado en el peso de
Hamming. La subclave que produce la mayor correlación con las trazas observadas es
seleccionada como la clave más probable.

En este algoritmo se implementan dos funciones (Algoritmos 12 y 13, packing y
unpacking, que se utilizan para transformar los textos planos y cifrados en el formato
GIFT-COFB. La función packing toma un bloque de texto plano y lo organiza en un
formato adecuado para ser procesado por el cifrado. La función unpacking, por otro
lado, toma un bloque cifrado y lo convierte de nuevo al formato de texto plano. Ambas
funciones utilizan la operación SWAPMOVE para realizar intercambios de bits dentro del
estado.
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Algoritmo 11 max_cpa
Require: ronda: conjunto de valores del estado del cifrado
Require: trazas: trazas de potencia capturadas
Require: subclaves: lista de subclaves posibles
Require: fila: índice de la fila del estado a evaluar
Ensure: La subclave más probable
1: promedio_trazas← calcular_promedio(trazas)
2: desv_trazas← calcular_desviación(trazas, promedio_trazas)
3: maxcpa← [0] × longitud(subclaves)
4: for suposición in rango(0, longitud(subclaves)) do
5: hws← calcular_pesos_Hamming(ronda, subclaves[suposición], fila)
6: promedio_hws← calcular_promedio(hws)
7: desv_hws← calcular_desviación(hws, promedio_hws)
8: correlacin← calcular_covarianza(trazas, promedio_trazas, hws, promedio_hws)
9: cpa_resultado← correlación

desv_trazas × desv_hws
10: maxcpa[suposición]← calcular_máximo(valor_absoluto(cpa_resultado))
11: end for
12: return subclaves[índice_máximo(maxcpa)]

Algoritmo 12 packing
Require: block: arreglo de entrada de 8 bytes
1: state← [0] ∗ 4
2: state[0]← U32BIG(block[4 :])
3: state[1]← U32BIG(block[: 4])
4: SWAPMOVE(0, 0, 0x0a0a0a0a, 3)
5: SWAPMOVE(0, 0, 0x00cc00cc, 6)
6: SWAPMOVE(0, 0, 0x0000f0f0, 12)
7: SWAPMOVE(0, 0, 0x0000ff00, 8)
8: SWAPMOVE(1, 1, 0x0a0a0a0a, 3)
9: SWAPMOVE(1, 1, 0x00cc00cc, 6)

10: SWAPMOVE(1, 1, 0x0000f0f0, 12)
11: SWAPMOVE(1, 1, 0x0000ff00, 8)
12: SWAPMOVE(0, 1, 0x00ff00ff, 8)
13: SWAPMOVE(0, 2, 0x0000ffff, 16)
14: SWAPMOVE(1, 3, 0x0000ffff, 16)
15: return state
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Algoritmo 13 unpacking
Require: state: arreglo de estado de 4 palabras
1: SWAPMOVE(1, 3, 0x0000ffff, 16)
2: SWAPMOVE(0, 2, 0x0000ffff, 16)
3: SWAPMOVE(0, 1, 0x00ff00ff, 8)
4: SWAPMOVE(1, 1, 0x0000ff00, 8)
5: SWAPMOVE(1, 1, 0x0000f0f0, 12)
6: SWAPMOVE(1, 1, 0x00cc00cc, 6)
7: SWAPMOVE(1, 1, 0x0a0a0a0a, 3)
8: SWAPMOVE(0, 0, 0x0000ff00, 8)
9: SWAPMOVE(0, 0, 0x0000f0f0, 12)

10: SWAPMOVE(0, 0, 0x00cc00cc, 6)
11: SWAPMOVE(0, 0, 0x0a0a0a0a, 3)
12: block[4 :]← U8BIG(state[0])
13: block[: 4]← U8BIG(state[1])
14: return block

4.2.4. Flujo completo del ataque

Este conjunto de algoritmos representa el flujo completo de un ataque de análisis
de potencia diferencial (DPA) utilizando correlación (CPA). El proceso comienza con
la captura de trazas de consumo de potencia (Algoritmo 14). En este paso, se configura
un dispositivo criptográfico para cifrar textos planos generados de forma aleatoria,
utilizando una clave secreta fija. Durante el cifrado, se registran las trazas de potencia
que reflejan el consumo energético del dispositivo, junto con los textos de entrada
utilizados. Este conjunto de trazas y textos es fundamental, ya que proporciona la
base de datos necesaria para realizar el ataque.

Una vez capturadas las trazas, el siguiente paso es recuperar la clave secreta me-
diante un ataque CPA (Algoritmo 15). Primero, se identifican las partes más relevan-
tes de las trazas mediante un análisis de la relación señal-ruido (SNR). Esto ayuda a
localizar los puntos donde las trazas contienen información útil sobre la clave. Luego,
se extraen esas subtrazas y se aplica el análisis de correlación de potencia para deducir
las partes probables de la clave secreta. Estas partes se refinan a través de cálculos
adicionales, como la búsqueda de correlaciones máximas, y finalmente se reconstruye
la clave completa en el formato que utiliza el algoritmo de cifrado.

En resumen, estos algoritmos describen el flujo completo de un ataque, desde
la configuración inicial para capturar las trazas hasta la recuperación precisa de la
clave secreta. Este enfoque puede adaptarse a diferentes rondas del cifrado o incluso
a otros algoritmos criptográficos, haciendo del proceso una herramienta flexible para
el análisis de seguridad.
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Algoritmo 14 Captura de trazas de potencia
Require: N : Número total de trazas a capturar, clave: clave del algoritmo de cifrado
Ensure: arreglo_trazas: conjunto de trazas capturadas, arreglo_textos: textos de

entrada correspondientes
1: arreglo_trazas← []
2: arreglo_textos← []
3: iniciar_cifrado(clave) ▷ Inicializar el sistema con la clave
4: texto_cifrado_tmp← None
5: for i← 1 to N do
6: preparar_captura() ▷ Preparar sistema para capturar traza
7: texto← generar_texto_aleatorio() ▷ Generar texto plano aleatorio
8: enviar_texto(texto) ▷ Enviar texto plano al dispositivo para cifrar
9: esperar_cifrado() ▷ Esperar a que el dispositivo complete el cifrado

10: if cifrado_agotado() then
11: continue
12: end if
13: respuesta← leer_salida_cifrada() ▷ Leer texto cifrado
14: if i = 1 then
15: texto_cifrado_tmp← respuesta
16: end if
17: traza← obtener_traza_actual() ▷ Obtener traza de consumo
18: arreglo_trazas.append(traza)
19: arreglo_textos.append(texto)
20: end for
21: return arreglo_trazas, arreglo_textos
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Algoritmo 15 Obtención de claves probables mediante CPA
Require: trazas: conjunto de trazas capturadas, textos: textos planos correspondien-

tes, rondas: datos intermedios calculados por el cifrado
Ensure: clave_recuperada: clave secreta reconstruida
1: snr_graficar(rondas, trazas, región_interes) ▷ Identificar región relevante
2: trazas_primera_ronda← extraer_trazas(trazas, región_interes) ▷ Extraer

subtrazas relevantes
3: parte_v← cpa(rondas, trazas_primera_ronda, registro_v) ▷ Calcular primera

parte de la clave
4: parte_u← cpa(rondas, trazas_segunda_ronda, registro_u) ▷ Calcular segunda

parte de la clave
5: v_0, v_1← formato_clave(parte_v)
6: u_0, u_1← formato_clave(parte_u)
7: v1← max_cpa(rondas, trazas_primera_ronda, [v_0, v_1], registro_v) ▷

Encontrar valor más probable de v
8: u1← max_cpa(rondas, trazas_segunda_ronda, [u_0, u_1], registro_u) ▷

Encontrar valor más probable de u
9: k12, k13, k14, k15← reconstruir_clave(v1, u1) ▷ Convertir a formato final

10: return k12, k13, k14, k15

4.3. Implementación fixslicing

4.3.1. Modelo de consumo

La implementación fixslicing de GIFT-COFB introduce una reorganización espe-
cífica en la representación del estado, optimizada para realizar operaciones eficientes.
Sin embargo, los ataques descritos anteriormente, como el cálculo de la Relación Señal-
Ruido (SNR) y el Ataque de Correlación de Potencia (CPA), siguen siendo aplicables
con ciertas adaptaciones necesarias para manejar esta representación.

En fixslicing, el estado del cifrado se reorganiza de manera que cada bit ocupa
una posición fija, facilitando operaciones como permutaciones y mezclas en un nivel
estructurado. Esto implica:

Los bits del estado no están distribuidos secuencialmente, sino que están asig-
nados de manera fija y específica a registros o palabras de la arquitectura sub-
yacente.

Las operaciones internas del cifrado, como las permutaciones de bits, las ro-
taciones y las mezclas, se realizan de manera diferente al enfoque clásico o al
bit-slicing.

Dado esto, las métricas de análisis, como el peso de Hamming, deben ajustarse
para reflejar esta representación. Las posiciones fijas de los bits determinan cómo se
calcula el modelo de consumo y cómo se agrupan las trazas para analizar la relación
entre los datos internos del cifrado y las mediciones de potencia.
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El modelo basado en el peso de Hamming permanece sin cambios. Se asume que
la potencia consumida por el hardware está directamente relacionada con el número
de bits activados (en estado ‘1’). Sin embargo, debido a la representación fixslicing, se
debe reinterpretar el estado para calcular correctamente este peso, teniendo en cuenta
las posiciones fijas de los bits.

El cálculo de la SNR se realiza de manera similar al caso tradicional, pero los
intervalos de trazas y la agrupación de pesos de Hamming deben adaptarse para
considerar cómo están organizados los bits en fixslicing. En particular:

La función de agrupamiento del peso de Hamming debe interpretar correcta-
mente la posición fija de cada bit en el estado.

Las trazas se analizan en intervalos definidos por las operaciones internas del
cifrado, ajustándose a cómo las posiciones fijas de los bits afectan el modelo de
consumo.

El Ataque CPA sigue el mismo principio de correlación entre las trazas de potencia
y los valores intermedios del cifrado, pero es fundamental ajustar las funciones internas
para interpretar correctamente la representación fixslicing :

La función interna del cifrado (gift_internal) debe considerar la disposición
fija de los bits al calcular los pesos de Hamming.

La correlación se evalúa de forma estándar, pero el significado de cada bit dentro
del estado debe alinearse con la estructura de fixslicing.

4.3.2. Reconstrucción de las claves

El proceso de reconstrucción de claves, basado en las subrutinas descritas pre-
viamente, también debe ajustarse a la representación fixslicing. Las operaciones de
desplazamiento y XOR se aplican de acuerdo con el esquema fijo de los bits, ase-
gurando que el resultado final respete la estructura interna del estado. A pesar de
estas adaptaciones, el flujo general para reconstruir las subclaves y la clave completa
permanece intacto.

En la implementación fixslicing de GIFT-COFB:

El cálculo de SNR y CPA es funcional, pero requiere ajustes para trabajar con
la representación fija de los bits.

Las métricas, como el peso de Hamming, se deben calcular considerando las
posiciones específicas de los bits en fixslicing.

Las correlaciones y las trazas capturadas deben interpretarse correctamente para
reflejar la estructura fija del estado.
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Las siguientes funciones están diseñadas para dar formato a las claves utilizadas en
la representación fixslicing del cifrado GIFT-COFB. Esta representación requiere que
las claves se estructuren de manera específica, reorganizando los bits para optimizar
las operaciones internas, como transposiciones, rotaciones y manipulaciones bit a
bit. A continuación, se describen y detallan las funciones utilizadas para lograr este
objetivo.

Las funciones REARRANGE_KEYWORD_0_1 y REARRANGE_KEYWORD_2_3 procesan pa-
res de palabras clave (x e y), aplicando desplazamientos y operaciones lógicas como
AND, OR y SHIFT. Estas funciones generan combinaciones específicas de los bits para
alinear las palabras clave al formato requerido por el fixslicing. La diferencia entre
ambas radica en el esquema de combinación utilizado para procesar los bits.

La función principal, RearrangeKey, toma como entrada una clave organizada en
palabras y la transforma en un conjunto de palabras clave reorganizadas (rkey). Esto
se logra mediante una combinación de operaciones:

Aplicación de REARRANGE_KEYWORD_0_1 y REARRANGE_KEYWORD_2_3 a las pala-
bras clave individuales.

Transposición de palabras mediante la subrutina TRANSPOSE_U32.

Operaciones lógicas como XOR, OR y desplazamientos para completar la reorga-
nización.

Uso de la subrutina SWAPMOVE, que realiza intercambios controlados entre pala-
bras clave utilizando máscaras y desplazamientos.

Estas operaciones aseguran que la clave reorganizada cumpla con los requisitos del
formato fixslicing y esté lista para su uso en el cifrado.

En resumen, aunque los principios fundamentales de los ataques no cambian, su
implementación práctica necesita tomar en cuenta los detalles particulares de fixsli-
cing, especialmente en lo que respecta al ordenamiento y manipulación de los bits en
el estado del cifrado, así como la reconstrucción de las claves.
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Algoritmo 16 Reorganización de palabras clave para fixslicing
1: function REARRANGE_KEYWORD_0_1(x, y)
2: return (((y) ∧ 0xf0) ≪ 20) ∨ (((x) ∧ 0x0f) ≪ 16) ∨ (((x) ∧ 0xf0) ≪ 4) ∨

((y) ∧ 0x0f)
3: end function
4: function REARRANGE_KEYWORD_2_3(x, y)
5: return (((x) ∧ 0xf0) ≪ 20) ∨ (((x) ∧ 0x0f) ≪ 16) ∨ (((y) ∧ 0xf0) ≪ 4) ∨

((y) ∧ 0x0f)
6: end function
7: function RearrangeKey(key)
8: rkey ← [0]× 10
9: rkey[0]← REARRANGE_KEYWORD_0_1(key[14], key[15])

10: rkey[1]← REARRANGE_KEYWORD_0_1(key[12], key[13])
11: rkey[0]← TRANSPOSE_U32(rkey[0])
12: rkey[1]← TRANSPOSE_U32(rkey[1])
13: rkey[0]← rkey[0] ∨ (rkey[0]≪ 4)
14: rkey[1]← rkey[1] ∨ (rkey[1]≪ 4)
15: rkey[0]← rkey[0]⊕ 0xffffffff
16: rkey[2]← REARRANGE_KEYWORD_0_1(key[10], key[11])
17: rkey[3]← REARRANGE_KEYWORD_0_1(key[8], key[9])
18: rkey[2]← rkey[2] ∨ (rkey[2]≪ 4)
19: rkey[3]← rkey[3] ∨ (rkey[3]≪ 4)
20: rkey[2]← rkey[2]⊕ 0xffffffff
21: SWAPMOVE(2, 2, 0x22222222, 2)
22: SWAPMOVE(3, 3, 0x22222222, 2)
23: rkey[4]← REARRANGE_KEYWORD_2_3(key[6], key[7])
24: rkey[5]← REARRANGE_KEYWORD_2_3(key[4], key[5])
25: rkey[4]← TRANSPOSE_U32(rkey[4])
26: rkey[5]← TRANSPOSE_U32(rkey[5])
27: SWAPMOVE(4, 4, 0x00000f00, 16)
28: SWAPMOVE(5, 5, 0x00000f00, 16)
29: rkey[4]← rkey[4] ∨ (rkey[4]≪ 4)
30: rkey[5]← rkey[5] ∨ (rkey[5]≪ 4)
31: rkey[4]← rkey[4]⊕ 0xffffffff
32: rkey[6]← REARRANGE_KEYWORD_2_3(key[2], key[3])
33: rkey[7]← REARRANGE_KEYWORD_2_3(key[0], key[1])
34: rkey[6]← rkey[6] ∨ (rkey[6]≪ 4)
35: rkey[7]← rkey[7] ∨ (rkey[7]≪ 4)
36: rkey[6]← rkey[6]⊕ 0xffffffff
37: rkey[8]← NIBBLE_ROR_1(rkey[0])
38: rkey[9] ← (NIBBLE_ROR_3(rkey[1]) ∧ 0x0000ffff) ∨ (rkey[1] ∧

0xffff0000)
39: rkey[9]← ROR(rkey[9], 16)
40: return rkey
41: end function
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4.4. Estado del arte

Tabla 4.1: Ataques CPA a GIFT-COFB implementado en software

Autor Version de GIFT-COFB Plataforma Herramienta Num. de trazas Resultado
Turan N. [38] Bitslicing Protección mascara booleana STM32F303 ChipWhisperer CW309 100k falla prueba-t
Turan N. [38] Sin protección STM32F303RCT6 Osciloscopio Pico 3203D 20k pasa prueba-t
Benjamin A. [39] GIFT-128 STM32F ChipWhisperer-Lite 345 100 % exactitud
Unger W.[40] Sin protección ATXMEGA128D4 ChipWhisperer CW308 2000 100 % exactitud

CPA es un método ampliamente utilizado para evaluar la seguridad de distintos
criptosistemas, en este caso para GIFT-COFB frente a ataques de canal lateral. En
un estudio realizado por [38], se evaluaron implementaciones de GIFT-COFB en un
microcontrolador STM32F303 bajo dos configuraciones: una protegida mediante mas-
carado booleano y otra sin protección. Los resultados mostraron que, en la versión
protegida, CPA no logró recuperar las claves privadas, incluso después de analizar
100,000 trazas, lo que evidencia una resistencia adecuada. Sin embargo, en la ver-
sión sin protección, CPA tampoco fue efectivo para comprometer la clave, pasando
la prueba t con tan solo 20,000 trazas. Este comportamiento podría explicarse por
las particularidades del formato bitslicing utilizado en GIFT-COFB, que complica la
correlación directa entre las trazas de potencia y los estados intermedios de las claves.

Por otro lado, otros investigadores han demostrado que CPA puede ser altamente
efectivo en ciertas condiciones. Por ejemplo, [40] consiguieron recuperar la clave con
un 100 % de precisión analizando únicamente 2,000 trazas en un microcontrolador
ATXMEGA128D4 utilizando un ChipWhisperer CW308. Tambien se han propuesto
utilizar el CPA junto aprendizaje profundo por [39]. Encontraron que el número de
trazas necesarias para vulnerar el cifrado se reducía considerablemente, a 345 para
lograr una precisión de 100 %. Estos resultados subrayan la importancia de considerar
tanto la representación fixslicing u otras métodos de protección contra CPA en GIFT
y junto a su modo de operación.

En este trabajo se realiza un análisis CPA aplicado a la implementación fixslicing
de GIFT-COFB. Este enfoque, que organiza los bits de manera específica para op-
timizar el rendimiento y reforzar la seguridad, representa un avance respecto a las
investigaciones previas centradas en implementaciones bitslicing. Nuestro estudio es
el primero en explorar las vulnerabilidades de GIFT-COFB bajo este esquema, lo
que implica abordar retos únicos debido a la estructura y el ordenamiento particular
de los bits en fixslicing. Esto requiere ajustar tanto el modelo de consumo como las
técnicas de ataque para adaptarse a esta nueva representación.

Para garantizar que los resultados sean comparables con los de investigaciones
anteriores, utilizamos las mismas herramientas estándar del estado del arte, como el
ChipWhisperer, que permite la captura y evaluación precisa de trazas de potencia.
Este enfoque asegura la consistencia de los datos y facilita una evaluación objetiva.
Nuestro trabajo no solo amplía el conocimiento sobre las vulnerabilidades de GIFT-
COFB, sino que también establece una base sólida para futuros análisis de cifrados
livianos en esquemas más avanzados como el fixslicing.
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Resultados

5.1. Implementación Secuencial
Para el análisis de la implementación secuencial del algoritmo GIFT se consideraró

la versión de 64bits. El modelo de potencia que se eligió para atacar al algoritmo
fue la correlación de Pearson junto con el peso de Hamming, esto debido a que la
implementación usa la caja S con un bloque en memoria y procesa el estado de GIFT
byte a byte. El punto clave aquí, es que cada caja S es calculada de manera separa
por lo que el modelo de potencia es aplicada en el cálculo de cada una de ellas. Por
lo tanto, es de esperarse que cada cuatro bits o nibble fugué información al mismo
tiempo y sea posible suponer un consumo de potencia mediante el peso de Hamming
de la salida de la caja S.

5.1.1. GIFT-64

El modelo propuesto se aplico a la salida de la caja S de la ronda 2, 3, 4 y 5
que es donde interactúan las claves de ronda respectivas con el estado del cifrador
y se simularon los valores intermedios con las claves supuestas y se correlacionaron
con la potencia medida. La Figura 5.1 muestra como se ven gráficamente una traza
capturada de las rondas capturadas. Como se puede observar existe una región donde
hay un patrón que se repite 28 veces, tal como el número de rondas que se aplican a
la versión GIFT-64. El punto de interés se encuentra entre las trazas de 0 a 5000 ya
que es donde se utiliza la clave, en especifico en las primeras rondas.

SNR

Para poder obtener el punto de fuga ó punto de interés para poder obtener las
claves de ronda y de esta manera poder revertir el proceso que calcula las claves
de ronda, se utilizó un algoritmo que muestra la tasa de señal a ruido y marca el
punto en donde existe la mayor relación entre los valores intermedios y las trazas de
potencia medidas. Estos posibles puntos de interés son visibles una vez que las trazas
de potencia estén alineadas.

47
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Figura 5.1: Traza capturada de GIFT-64 secuencial.

La Figura 5.2a muestra una gráfica con picos que muestran donde hay una mayor
relación de la clave supuesta con los valores intermedios, donde el pico más alto señala
el punto de interés que se utilizó para realizar la correlación de los valores supuestos
con las trazas de potencia reales.

(a) Tasa de señal a ruido, ronda 1 y 2. (b) Tasa de señal a ruido, ronda 4 y 5.

Figura 5.2: Gráficas de señal a ruido de rondas de la versión secuencial GIFT-64.

Correlación

El resultado del ataque en cada ronda es un conjunto de valores ordenados, en
donde cada valor corresponde a la correlación máxima de las claves supuestas. El
tamaño del conjunto de valores máximos varia dependiendo de la versión de GIFT
analizada, siendo de 32 valores para GIFT-64 y 64 valores para GIFT-128. Cada uno
de estos valores representa la subclave que se obtuvo como correcta.
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La Figura 5.3a muestra que el número de trazas necesarias para obtener la primer
clave de ronda es de 180. La Figura 5.3b muestra que le número de trazas necesarias
para obtener la segunda clave de ronda es de 200.

(a) Entropía de suposición parcial, ronda 2. (b) Entropía de suposición parcial, ronda 2.

Figura 5.3: Gráficas de suposición de la cantidad de muestras necesarias para obtener
la clave de la versión secuencial GIFT-64.

Lo mismo se replica para los rondas 4 y 5 y se obtienen las claves de ronda, tal
como se muestra en la Figura5.2b.

5.1.2. GIFT-128

El análisis de GIFT-128 en la implementación secuencial se realizó siguiendo el
mismo procedimiento que para GIFT-64. Se trabajó con las rondas 2, 3, 4 y 5, simulan-
do los valores intermedios y correlacionándolos con las trazas de potencia obtenidas.
Aunque no se logró generar gráficas específicas para esta versión, el análisis permitió
confirmar que las fugas de potencia seguían un patrón similar al observado en GIFT-
64, destacando los puntos clave donde las claves de ronda interactúan con el estado
del cifrador. Los resultados de muestran en la Tabla 5.1.

5.2. Implementación bitslicing
Para el análisis de la implementación bitslicing del cifrador GIFT, se trabajó

con las versiones de 64 bits y 128 bits. Esta implementación aprovecha un enfoque
altamente paralelo que permite procesar múltiples bloques de datos al mismo tiempo.
A diferencia de la versión secuencial, donde las operaciones se realizan de manera
individual para cada nibble, en el bitslicing las operaciones se distribuyen a través
de registros completos. Esto genera fugas de información de forma sincronizada, lo
que introduce retos específicos al modelar el consumo de potencia. Para este análisis,
se utilizó el modelo basado en la correlación de Pearson combinado con el peso de
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Figura 5.4: Traza capturada de GIFT-64 bitslicing.

Hamming, ya que sigue siendo efectivo para capturar las fugas relacionadas con las
claves de ronda.

En esta implementación, las cajas S se procesan en paralelo, lo que significa que las
transiciones de estado ocurren simultáneamente para múltiples bloques. Esto resulta
en patrones distribuidos en las trazas de potencia, los cuales fueron analizados para
identificar los puntos donde las claves interactúan con los estados intermedios.

5.2.1. GIFT-64

En el caso de GIFT-64, se enfocó el análisis en las rondas 1,2,3 y 4, ya que en estas
rondas las claves de ronda interactúan directamente con el estado del cifrador. Se uti-
lizaron las trazas de potencia capturadas y se compararon con los valores intermedios
calculados usando claves supuestas. En la Figura 5.4 se presenta una traza captura-
da, donde se puede observar un patrón repetitivo que corresponde a las 28 rondas de
GIFT-64. El análisis de las fugas se concentró entre el tiempo 0 y 20000, dado que
es en este rango donde ocurren las transiciones más significativas relacionadas con el
uso de la clave.

snr

Para identificar el punto de fuga o punto de interés que permitiera recuperar las
claves de ronda y revertir el cálculo de estas, se utilizó un algoritmo basado en la
SNR. Este algoritmo evalúa la relación entre los valores intermedios simulados y las
trazas de potencia medidas, marcando los puntos con mayor correlación. Los puntos
de interés se hacen visibles una vez que las trazas de potencia están correctamente
alineadas, en este caso son se puede observar los picos de las rondas 1 a 4 en las figuras
5.5a5.5b5.5c5.5d. La Figura 5.5 muestra una gráfica donde los picos reflejan las zonas
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con mayor relación entre la clave supuesta y los valores intermedios en las distintas
rondas. El pico más alto corresponde al punto de interés clave, que fue utilizado para
realizar la correlación entre los valores supuestos y las trazas de potencia reales.

(a) Taza señal a ruido ronda 1 (b) Taza señal a ruido ronda 2

(c) Taza señal a ruido ronda 3 (d) Taza señal a ruido ronda 4

Figura 5.5: Gráficas de señal a ruido de rondas de la versión secuencial GIFT-64
bitslicing

5.2.2. GIFT-128

Para GIFT-128, el enfoque fue similar, pero con algunas diferencias debido a
la estructura del cifrador, que opera sobre 40 rondas en lugar de 28. Las fugas de
potencia también se analizaron en las rondas iniciales (1,2,3 y 4), donde las claves de
ronda interactúan con el estado interno. En este caso, la Figura 5.6 muestra una traza
capturada, en la que es evidente un patrón consistente con la estructura repetitiva
de las rondas. Como en el caso de GIFT-64, el análisis se centró en las primeras 0 a
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Figura 5.6: Traza capturada de GIFT-128 bitslicing.

25000 muestras, ya que es en este intervalo donde las transiciones relacionadas con
las claves de ronda son más evidentes.

El procesamiento paralelo de GIFT-128 en bitslicing genera trazas más complejas
debido al mayor número de operaciones en cada ronda. Sin embargo, los patrones
de fuga son identificables al correlacionar las trazas con los modelos de potencia,
permitiendo recuperar de manera efectiva las claves de ronda correspondientes.

snr

Al igual que en el caso de GIFT-64, SNR para determinar los puntos clave donde
las fugas de potencia eran más significativas. Este algoritmo permitió localizar los
puntos donde la relación entre los valores intermedios y las trazas de potencia era
más fuerte, facilitando la recuperación de las claves de ronda.

La Figura 5.7 muestra los resultados del análisis SNR para GIFT-128 para las
distintas rondas (1-4). Los picos en la gráfica indican los momentos en los que la
correlación con la clave supuesta es más alta. El pico principal fue utilizado como
punto de referencia para realizar la correlación entre los valores supuestos y las trazas
reales, permitiendo extraer la información necesaria para revertir el cálculo de las
claves.

5.3. Implementación fixslicing

La implementación fixslicing se centró exclusivamente en GIFT-128. Este enfoque
reorganiza las operaciones internas del cifrador para optimizar el procesamiento y
minimizar el costo computacional, lo que resulta en patrones únicos y consistentes en
las trazas de potencia. A diferencia de las versiones secuencial y bitslicing, fixslicing
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(a) Taza señal a ruido ronda 1 (b) Taza señal a ruido ronda 2

(c) Taza señal a ruido ronda 3 (d) Taza señal a ruido ronda 4

Figura 5.7: Gráficas de señal a ruido de rondas de la versión secuencial GIFT-128
bitslicing

genera una distribución interna optimizada que afecta cómo y dónde aparecen las
fugas de información.

5.3.1. GIFT-128

El análisis de GIFT-128 se enfocó en las rondas 1,2,3 y 4, que son las primeras
donde las claves de ronda interactúan con el estado interno del cifrador. Estas in-
teracciones generan transiciones significativas que pueden observarse en las trazas de
potencia capturadas.

La Figura 5.8 muestra una traza representativa de esta implementación, donde
se observan patrones que corresponden a las 40 rondas de GIFT-128. En particular,
el análisis se centró en las primeras 75000 muestras, que es donde se encuentran las
fugas de potencia más relevantes para la recuperación de las claves de ronda.
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Figura 5.8: Traza capturada de GIFT-128 fixslicing.

snr

Con snr se localizaron los puntos críticos donde las fugas de potencia estaban más
correlacionadas con los valores intermedios simulados. Los resultados, presentados en
la Figura 5.9, destacan los picos que indican las regiones de mayor relación entre las
claves supuestas y las mediciones.

El punto con la mayor amplitud en el análisis marcó la posición clave utilizada
para correlacionar los valores simulados con las trazas reales. En esta implementación,
el esquema fixslicing mostró que estas fugas se concentran en zonas específicas de las
trazas, lo que confirma un patrón definido asociado a su estructura optimizada. Es
decir que es donde se encuentra la interacción de la clave con las rondas de GIFT-128.

Score

El término score se refiere a una métrica que mide la relación entre las trazas
capturadas y los valores intermedios simulados para cada posible candidato de clave.
En este contexto, un score más alto indica que un candidato de clave tiene una mayor
probabilidad de ser correcto, ya que su comportamiento se alinea más estrechamente
con las fugas de potencia observadas.

La Figura 5.10 ilustra cómo evoluciona el score a medida que se incrementa el
número de trazas procesadas. Las líneas negras representan el score del candida-
to correcto, mientras que las líneas grises corresponden a candidatos incorrectos. A
medida que se utilizan más trazas, se observa cómo el score del candidato correcto
comienza a destacarse significativamente sobre los demás.

Este comportamiento indica que el ataque fue capaz de identificar el candidato
correcto después de procesar un número suficiente de trazas. Este tipo de análisis
es clave para evaluar la eficacia del ataque, ya que permite cuantificar el número de
trazas necesarias para recuperar la clave de manera confiable.
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(a) Taza señal a ruido ronda 1 (b) Taza señal a ruido ronda 2

(c) Taza señal a ruido ronda 3 (d) Taza señal a ruido ronda 4

Figura 5.9: Gráficas de señal a ruido de rondas de la versión secuencial GIFT-128
fixslicing

5.4. Porcentaje de éxito de las distintas versiones

La Tabla 5.1 resume los resultados obtenidos al realizar experimentos con el ci-
frador GIFT en diferentes configuraciones, como las implementaciones secuencial,
bitslicing y fixslicing. En estos experimentos, se consideró un ataque exitoso cuando
se logró recuperar las claves internas de las rondas del cifrado y reconstruir con éxito
la clave completa del algoritmo, lo que representa una medida clave de efectividad en
los ataques.

Las implementaciones secuenciales, tanto de GIFT-64 como de GIFT-128, mos-
traron el mejor desempeño, con tasas de éxito del 99.1 % y el 100 %, respectivamente.
Estas pruebas se realizaron con 5000 trazas y emplearon el dispositivo ChipWhisperer
Nano. En cambio, las configuraciones basadas en bitslicing y fixslicing procesaron un
mayor volumen de datos, con 50000 trazas cada una, pero sus tasas de éxito fueron
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Figura 5.10: Gráfica del score de las posibles claves en GIFT-128 fixslicing.

menores, entre el 76 % y el 88 %. Estas configuraciones se probaron en el ChipWhis-
perer Lite de 32 bits, un dispositivo diseñado para análisis más intensivos en términos
computacionales.

Tabla 5.1: Porcentaje de éxito de CPA a las distintas versiones de GIFT-COFB.

Version del cifrador Experimentos Éxitos Tasa de éxito (%) Número de trazas ChipWhisperer
GIFT-64 secuencial 120 119 99.1 5000 Nano
GIFT-128 secuencial 120 120 100 5000 Nano
GIFT-64 bitslicing 1000 880 88 50000 Lite
GIFT-128 bitslicing 1000 850 85 50000 Lite
GIFT-128 fixslicing 5000 4200 76 50000 Lite

Al comparar los resultados obtenidos con el cifrador GIFT en sus diferentes va-
riantes (secuencial, bitslicing y fixslicing) con los reportados en el estado del arte, se
observan algunas tendencias interesantes. Primero, los experimentos realizados con el
cifrador GIFT-128 secuencial y GIFT-64 secuencial lograron tasas de éxito muy altas,
con un 99.1 % y un 100 % de éxito respectivamente, utilizando únicamente 5000 trazas
y un dispositivo ChipWhisperer Nano. Estos resultados coinciden con lo informado
por Turan N. [38] para implementaciones con protección de máscara booleana, que
también reportan un rendimiento bastante alto con configuraciones similares, aun-
que en plataformas diferentes. En cuanto a los resultados de GIFT-64 bitslicing y
GIFT-128 bitslicing con los de otras investigaciones, como las de Benjamin A. [39]
y Unger W. [40], se observa una ligera disminución en las tasas de éxito. Aunque
estos métodos de sin protección han demostrado ser eficientes en ejecución, las tasas
de éxito alcanzadas en nuestras pruebas (88 % y 85 % respectivamente, de bitslicing
que se realizaron en esta tesis) fueron algo menores, lo que podría reflejar una mayor
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dificultad para recuperar las claves en estas implementaciones. En contra parte, los
resultados con GIFT-128 fixslicing mostraron una tasa de éxito del 76 %, lo que, aun-
que más bajo que los anteriores, sigue siendo un rendimiento notable considerando
que este método involucra una mayor complejidad en la implementación.

En resumen, aunque las implementaciones de bitslicing, tanto con como sin protec-
ción, muestran una disminución en la tasa de éxito en comparación con las versiones
secuenciales, continúan siendo métodos efectivos para atacar al cifrador GIFT, es-
pecialmente cuando se dispone de un número adecuado de trazas y la herramienta
adecuada, como el ChipWhisperer Lite. Estos resultados destacan la importancia del
tipo de implementación y la cantidad de trazas en la eficacia del ataque.
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Conclusiones

En este trabajo se evaluó la seguridad de las implementaciones de software del
algoritmo GIFT-COFB frente a ataques por canales laterales, utilizando CPA para
identificar posibles fugas de información en las variantes fixslicing y bitslicing. Los
resultados obtenidos revelaron que fixslicing proporciona una mayor protección frente
a los ataques, comparado con la variante bitslicing. Esto se debe a que fixslicing
introduce más variabilidad en el proceso de cifrado, lo que dificulta la extracción de
la clave a través de un análisis de correlación de potencia. Sin embargo, esta protección
adicional viene acompañada de una mayor necesidad de trazas para poder realizar
una correlación exitosa y recuperar la clave.

Por su implementación de fixslicing, esta variante tiende a generar una mayor can-
tidad de falsos positivos, como se mostró en el análisis del score. Aunque la presencia
de estos falsos positivos puede dificultar la identificación precisa del valor correcto
de la clave, aun así es posible recuperar la clave con suficientes trazas. Este compor-
tamiento implica que, aunque fixslicing es más resistente a los ataques por canales
laterales, el costo computacional es significativamente mayor debido a la necesidad
de obtener más muestras para realizar una correlación efectiva y lidiar con los falsos
positivos.

En cuanto a la cantidad de trazas necesarias para obtener una tasa de éxito acepta-
ble, los experimentos mostraron que las implementaciones fixslicing requieren alrede-
dor de 5000 trazas para obtener buenos resultados, mientras que las implementaciones
bitslicing y las versiones secuenciales permitieron la recuperación de la clave con una
menor cantidad de trazas. Esto implica que, si bien fixslicing es más seguro frente a
los ataques por canales laterales, también presenta un desafío mayor en términos de
eficiencia, lo que pone de manifiesto la necesidad de equilibrar seguridad y recursos
computacionales.

De manera general, se puede concluir que fixslicing es una opción más robusta
frente a ataques por canales laterales, pero también más exigente en cuanto a los
recursos necesarios para ejecutar el ataque. Este comportamiento pone en evidencia
que el modo fixslicing no solo es más seguro, sino que también implica una mayor
dificultad para los atacantes, aunque no los hace invulnerables. Los resultados obteni-
dos reflejan la importancia de tomar en cuenta tanto la eficiencia del algoritmo como
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su seguridad práctica al ser implementado en software.
Un aspecto importante a destacar es que GIFT-COFB, que fue finalista en la

competencia del NIST para algoritmos de cifrado ligero, se muestra vulnerable a
los ataques por canales laterales, a pesar de su participación en dicha competencia.
Los experimentos realizados en este trabajo demuestran que, independientemente
del modo COFB utilizado, el cifrador sigue siendo susceptible a los ataques CPA.
Esto subraya la necesidad de diseñar implementaciones más seguras que mitiguen las
vulnerabilidades frente a ataques de este tipo, especialmente en aplicaciones críticas
que manejan información sensible.

Finalmente, se observa que en el estado del arte hay una escasez de trabajos que
aborden específicamente los ataques a GIFT-COFB en sus versiones implementadas
en software. La mayoría de los estudios disponibles se centran en versiones secuenciales
del algoritmo, con la excepción de un trabajo que propone una protección mediante
máscaras booleanas en el modo bitslicing. Esta falta de investigación sobre los modos
fixslicing y bitslicing de GIFT-COFB destaca la necesidad urgente de realizar más
estudios que analicen la resistencia de estas implementaciones frente a los ataques
por canales laterales, dada la relevancia creciente de este cifrador en el campo de la
criptografía ligera.



Bibliografía

[1] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016. [accedido el 7 de Noviembre de 2022].

[2] Alexandre Adomnicai, Zakaria Najm, and Thomas Peyrin. Fixslicing: A new gift
representation. Cryptology ePrint Archive, Paper 2020/412, 2020. Consultado
el 19 de Octubre de 2022.

[3] NewAE. Chipwhisperer-lite, 2024.

[4] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO
’96, pages 104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[5] G Joy Persial, M Prabhu, and R Shanmugalakshmi. Side channel attack-survey.
Int. J. Adv. Sci. Res. Rev, 1(4):54–57, 2011.

[6] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Advances in Cryptology—CRYPTO’96: 16th Annual
International Cryptology Conference Santa Barbara, California, USA August 18–
22, 1996 Proceedings 16, pages 104–113. Springer, 1996.

[7] ña practical implementation of the timing attack.

[8] Werner Schindler. A timing attack against RSA with the chinese remainder theo-
rem. In Cryptographic Hardware and Embedded Systems—CHES 2000: Second
International Workshop Worcester, MA, USA, August 17–18, 2000 Proceedings
2, pages 109–124. Springer, 2000.

[9] Alejandro Hevia and Marcos Kiwi. Strength of two data encryption standard
implementations under timing attacks. ACM Transactions on Information and
System Security (TISSEC), 2(4):416–437, 1999.

[10] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[11] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Advances in Cryptology—CRYPTO’97: 17th Annual International Cryptology

61

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/


62 BIBLIOGRAFÍA

Conference Santa Barbara, California, USA August 17–21, 1997 Proceedings 17,
pages 513–525. Springer, 1997.

[12] Ross Anderson and Markus Kuhn. Low cost attacks on tamper resistant devices.
In International Workshop on Security Protocols, pages 125–136. Springer, 1997.

[13] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction attacks. In
Cryptographic Hardware and Embedded Systems-CHES 2002: 4th International
Workshop Redwood Shores, CA, USA, August 13–15, 2002 Revised Papers 4,
pages 2–12. Springer, 2003.

[14] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of sim-
ple power analysis on smartcards. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 78–92. Springer, 2000.

[15] Roman Novak. SPA-based adaptive chosen-ciphertext attack on RSA implemen-
tation. In International Workshop on Public Key Cryptography, pages 252–262.
Springer, 2002.

[16] Colin D Walter. Sliding windows succumbs to big mac attack. In Cryptographic
Hardware and Embedded Systems—CHES 2001: Third International Workshop
Paris, France, May 14–16, 2001 Proceedings 3, pages 286–299. Springer, 2001.

[17] Faisal Rahman Nuradha, Septafiansyah Dwi Putra, Yusuf Kurniawan, and
Muhammad Adli Rizqulloh. Attack on aes encryption microcontroller devices
with correlation power analysis. In 2019 International Symposium on Electro-
nics and Smart Devices (ISESD), pages 1–4. IEEE, 2019.

[18] Colin O’Flynn and Zhizhang David Chen. Side channel power analysis of an
aes-256 bootloader. In 2015 IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), pages 750–755. IEEE, 2015.

[19] Mostafa Taha and Patrick Schaumont. Side-channel analysis of mac-keccak. In
2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 125–130. IEEE, 2013.

[20] Brian Koziel, Reza Azarderakhsh, and David Jao. Side-channel attacks on
quantum-resistant supersingular isogeny diffie-hellman. In Selected Areas in
Cryptography–SAC 2017: 24th International Conference, Ottawa, ON, Canada,
August 16-18, 2017, Revised Selected Papers 24, pages 64–81. Springer, 2018.

[21] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for
low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology
– ASIACRYPT 2015, pages 411–436, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.



BIBLIOGRAFÍA 63

[22] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Tho-
mas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny family
of block ciphers and its low-latency variant mantis. In Matthew Robshaw and Jo-
nathan Katz, editors, Advances in Cryptology – CRYPTO 2016, pages 123–153,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[23] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason
Smith, and Louis Wingers. The simon and speck lightweight block ciphers. In
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–
6, 2015.

[24] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. Gift: A small present. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems – CHES 2017,
pages 321–345, Cham, 2017. Springer International Publishing.

[25] Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni. A
small gift-cofb: Lightweight bit-serial architectures. Cryptology ePrint Archive,
Paper 2022/955, 2022. https://eprint.iacr.org/2022/955.

[26] Seiichi Matsuda and Shiho Moriai. Lightweight cryptography for the cloud:
Exploit the power of bitslice implementation. In Cryptographic Hardware and
Embedded Systems–CHES 2012: 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings 14, pages 408–425. Springer, 2012.

[27] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to differential power analysis. Journal of Cryptographic Engineering, 1:5–27,
2011.

[28] Maamar Ouladj. Side-Channel Analysis of Embedded Systems : An Efficient Al-
gorithmic Approach / by Maamar Ouladj, Sylvain Guilley. Springer International
Publishing, Cham, 2021.

[29] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004.
Proceedings, volume 3156 of Lecture Notes in Computer Science, pages 16–29.
Springer, 2004.

[30] Eric Brier, Christophe Clavier, and Francis Olivier. Optimal statistical power
analysis. Cryptology ePrint Archive, Paper 2003/152, 2003. https://eprint.
iacr.org/2003/152.

[31] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual informa-
tion analysis: A generic side-channel distinguisher. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 426–442. Springer, 2008.

https://eprint.iacr.org/2022/955
https://eprint.iacr.org/2003/152
https://eprint.iacr.org/2003/152


64 BIBLIOGRAFÍA

[32] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors, Cry-
ptographic Hardware and Embedded Systems - CHES 2004, pages 16–29, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[33] François-Xavier Standaert. Introduction to side-channel attacks. Secure integra-
ted circuits and systems, pages 27–42, 2010.

[34] Yusuke Yano, Kengo Iokibe, Yoshitaka Toyota, and Toshiaki Teshima. Signal-to-
noise ratio measurements of side-channel traces for establishing low-cost coun-
termeasure design. In 2017 Asia-Pacific International symposium on electromag-
netic compatibility (APEMC), pages 93–95. IEEE, 2017.

[35] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer Publishing Company, Incorpora-
ted, 1st edition, 2010.

[36] Alex Dewar, Jean-Pierre Thibault, and Colin O’Flynn. Naean0010: Power analy-
sis on fpga implementation of aes using cw305 & chipwhisperer r o, 2020.

[37] NewAE. Chipwhisperer-nano, 2024.

[38] Meltem Sonmez Turan, Meltem Sonmez Turan, Kerry McKay, Donghoon Chang,
Lawrence E Bassham, Jinkeon Kang, Noah D Waller, John M Kelsey, and Deukjo
Hong. Status report on the final round of the NIST lightweight cryptography
standardization process. US Department of Commerce, National Institute of
Standards and Technology, 2023.

[39] Alexander Benjamin, Jack Herzoff, Liljana Babinkostova, and Edoardo Serra.
Deep Learning Based Side Channel Attacks on Lightweight Cryptography (Stu-
dent Abstract). In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 12911–12912, 2022.

[40] William Unger, Liljana Babinkostova, Mike Borowczak, and Robert Erbes. Side-
channel leakage assessment metrics: A case study of gift block ciphers. In 2021
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 236–241.
IEEE, 2021.



Apéndice A

A.1. Instalación de ChipWhisperer

Instalación en Ubuntu 22.04 LTS, para instalar ChipWhisperer y utilizar las li-
bretas de python se realiza con lo siguientes comandos:

• Prerrequisitos

sudo apt update && sudo apt upgrade

sudo apt-get install build-essential gdb lcov pkg-config \
libbz2-dev libffi-dev libgdbm-dev libgdbm-compat-dev liblzma-dev \
libncurses5-dev libreadline6-dev libsqlite3-dev libssl-dev \
lzma lzma-dev tk-dev uuid-dev zlib1g-dev curl

sudo apt install libusb-dev make git avr-libc gcc-avr \
gcc-arm-none-eabi libusb-1.0-0-dev usbutils

• Instalación de los ambientes de python y configuración los ambientes virtuales

curl https://pyenv.run | bash
echo ’export PATH="~/.pyenv/bin:$PATH"’ >> ~/.bashrc
echo ’export PATH="~/.pyenv/shims:$PATH"’ >> ~/.bashrc
echo ’eval "$(pyenv init -)"’ >> ~/.bashrc
echo ’eval "$(pyenv virtualenv-init -)"’ >> ~/.bashrc

source ~/.bashrc

pyenv install 3.9.5
pyenv virtualenv 3.9.5 cw
pyenv activate cw

• Instalación del conjunto de herramientas de ChipWhisperer
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cd ~/
git clone https://github.com/newaetech/chipwhisperer
cd chipwhisperer

• Configuración de las reglas udev para que se puedan reconocer las tarjetas de
desarrollo y acceder a ellas mediante USB

sudo cp hardware/50-newae.rules /etc/udev/rules.d/50-newae.rules
sudo udevadm control --reload-rules

• Creación usuario y grupos que tienen permiso para ChipWhisperer

sudo groupadd -f chipwhisperer
sudo usermod -aG chipwhisperer $USER
sudo usermod -aG plugdev $USER

• Instalación las librerías para las libretas jupyter

git submodule update --init jupyter
python -m pip install -e .
python -m pip install -r jupyter/requirements.txt
cd jupyter
python -m pip install nbstripout
nbstripout --install

• Otra alternativa puede instalarse directamente ChipWhisperer como una biblio-
teca de python3 con el comando pip

pip install chipwhisperer

A.2. Libretas python y carga del firmware

Chipwhisperer provee de su repositorio con libretas de python para poder realizar
los ACL. Estas libretas son utilizadas para el aprendizaje, el curso de SCA y inyección
a fallos, como plataforma de experimentación e incluyen las demostraciones del uso de
las herramientas chipwhisperer. Las libretas son una plantilla excelente para realizar
experimentaciones sobre algún otro algoritmo que no se incluya en chipwhisperer o
nuevas formas de analizar los datos de las trazas obtenidas. Dentro del repositorio
chipwhisperer se tiene el repositorio jupyter que contiene a las libretas. Sin embargo,
puede clonarse por separado con el repositorio de chipswhisperer-jupyter:
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Figura A.1: Conexión del ChipWhisperer Nano

git clone https://github.com/newaetech/chipwhisperer-jupyter.git

En las libretas python en necesario establecer las siguientes variables globales que
van a indicar el tipo de plataforma que se utilizara y el algoritmo estas son:

SCOPETYPE : Indica que hardware de captura se va a utilizar ‘OPENADC’ para
ChipWhisperer Lite o Pro y ‘CWNANO’ para la versión Nano.

PLATFORM : Selecciona el hardware que se esta atacando, ‘CW308_STM32F3’ para
el microprocesador STM32F3, ‘CWLITEXMEGA’ para XMEGA y ‘CWNANO’ para
el micrprocesador de Chipwhisperer Nano STM32F0.

CRYPTO-TARGET : Indica la biblioteca criptográfica que se va a utilizar. Aquí es
donde se establece el algoritmo propio que se va a probar.

SS_VER : Define la versión, utilizar la versión ‘SS_VER_1_1’.

• Ejemplo Utilizando la plataforma ChipWhisperer Nano, con la Versión 1.1, utili-
zando el algoritmo GIFT64 caja S:

SCOPETYPE = ‘CWNANO’
PLATFORM = ‘CWNANO’
CRYPTO_TARGET = ‘GIFT64CSBOX’
SS_VER = ‘SS_VER_1_1’

Antes de ejecutar alguna celda del código las plataformas deben de estar conecta-
das mediante un cable micro USB a USB con el equipo que va a procesar y analizar
las trazas, tal como lo muestran la figuras A.1 y A.2.
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Figura A.2: Conexión del ChipWhisperer Lite

Una vez conectadas las plataformas de ejecuta el siguiente código. Este script va
a establecer la conexión con la tarjeta ChipWhisperer, va a establecer el programa-
dor para el microcontrolador que se ha configurada y restablecerá el firmware del
microcontrolador.

%run ../chipwhisperer-jupyter/Setup_Scripts/Setup_Generic.ipynb

Si ha encontrado exitosamente el dispositivo, imprimirá el siguiente mensaje:

INFO: Found ChipWhisperer

Una vez indicadas las variables globales se realiza la compilación cruzada con
arm-none-eabi-gcc, se ligan las librería y se generan los archivos binario, hex y elf.
Genera el firmware de la víctima. (algo) se sustituye por el algoritmo que se va a
probar.

%%bash -s "$PLATFORM" "$CRYPTO_TARGET" "$SS_VER"
cd hardware/victims/firmware/simpleserial-(algo)
make PLATFORM=$1 CRYPTO_TARGET=$2 SS_VER=$3

Después de generar el firmware, se carga en la memoria flash de microcontrolador.
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(algo) se sustituye por el algoritmo que se va a probar.

cw.program_target(scope, prog,
‘hardware/victims/firmware/simpleserial-gift/
simpleserial-(algo)-{}.hex’.format(PLATFORM))

La ejecucción exitosa indica que se ha detectado el microcontrolador ARM, se
elimina la memoria en la región 0x8000000 y programa la memoria flash.
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Apendice 2

B.1. Manejo de las herramientas ChipWhisperer

Utilizando las libretas en python se importa ChipWhisperer.

import chipwhisperer as cw

B.1.1. Scope

Scope es uno de los objetos mas importantes es la API. Este se encarga del control
de la parte de la tarjeta ChipWhisperer de captura e inducción a fallos. Para utilizarlo
se crea el objeto.

scope = cw.scope()

Configura el osciloscopio para comenzar la captura/inyección de fallos cuando esté
activado.

scope.arm()

Captura las trazas. Debe ejecutarse el método arm antes, despues de que se haya
capturado una traza, desarma el scope y escribe los datos de regreso. Los datos
regresan como un arreglo de NumPy.

scope.capture()

Desconecta el objeto scope.
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scope.dis()

Establece el numero de muestras a capturar.

scope.adc.samples = num_samples

Regresa todas las trazas capturadas en punto flotante. Son valores escalados y
recorridos entre [−0.5, 0.5] Dependiendo del tipo de ADC puede regresar 10 bits para
la versión Lite o 8 bits para la versión Nano.

scope.get_last_trace()

B.1.2. Target

Este objeto de la API provee de las interfaces para configurar el dispositivo de
prueba (microcontrolador a atacar), para programarlo se utiliza el UART. Para uti-
lizarlo se realizar.

import chipwhisperer as cw
scope = cw.scope()
target = cw.target(scope, cw.targets.SimpleSerial)

Manda la llave key que va a utilizar el algoritmo de cifrado.

target.set_key(key)

Escribe por el serial al dispositivo objetivo. Al escribir descarta los datos de la
memoria text y escribe en el buffer. Con el comando ‘p’ se inicia la escritura por el
serial.

target.simpleserial_write(’p’, text)

Lee el serial de dispositivo de prueba. Se recibe la carga útil en un arreglo de bytes
codificado en ASCII. Se manda el tamaño del arreglo esperado y el comando ‘r’ para
leer.
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response = target.simpleserial_read(’r’, 16)

Desconecta el objeto target.

target.dis()

B.1.3. Auxiliares

Clase para generar llaves y textos planos básicos. Con el método next() se obtiene
la siguiente par de llave con el texto plano.

import chipwhisperer as cw
ktp = cw.ktp.Basic()
key, text = ktp.next()

B.1.4. Código plantilla para realizar la captura de los datos

Una vez establecidas cada una de las clases y objetos con sus métodos explicados,
es lo necesario para controlar la tarjeta desde el hardware de captura y el dispositivo
de prueba. Después de realizar la configuración descrita en el Apéndice A.1 puede
ejecutarse el siguiente código. Con el código se obtienen 2000 conjuntos de trazas.
Con cada scope.arm() manda la señal y se inicia el cifrado de los datos con un
nuevo texto plano, a su vez se van capturando las señales de consumo de potencia.
Se genera un arreglo de 2000 conjuntos de trazas para su posterior análisis.

Dentro del análisis de las trazas obtenidas se utilizan las bibliotecas de python para
graficar con Matplotlib y Numpy para manipulad los datos como arreglos. Se usan lo
métodos estadísticos para buscar las correlaciones, estos incluyen la media, covarianza,
desviación estándar, entre otros. Se compara el módelo de consumo de potencia teórico
contra los datos obtenidos de las trazas. Posterior al análisis se determina si se ha
encontrado la llave con éxito.
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from tqdm.notebook import trange
import numpy as np
import time

ktp = cw.ktp.Basic()
trace_array = []
textin_array = []

key, text = ktp.next()

target.set_key(key)

N = 2000
for i in trange(N, desc = ’Capturando trazas’):

scope.arm()

target.simpleserial_write(’p’, text)

ret = scope.capture()
if ret:

print(’Tiempo agotado.’)
continue

response = target.simpleserial_read(’r’, 16)

trace_array.append(scope.get_last_trace())
textin_array.append(text)

key, text = ktp.next()
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C.1. Algoritmo criptográfico personalizado

ChipWhisperer tiene varias implementaciones de algoritmos criptográficos, en ge-
neral del algoritmo AES en distintos modos de operación. Otros algoritmos cripto-
gráficos incluyen DES y RSA También incluyen algunos programas para probar la
inyección a fallos como la comparación de contraseñas ingresadas y un cargador de
arranque. Cuando se desea implementar un algoritmo personalizado para probarlo
contra ataques por canal lateral se recomienda que se utilicen como plantilla alguno
de las implementaciones de algún algoritmo que se incluyen con ChipWhisperer.

Usando alguno de los algoritmos como plantilla ayuda a identificar las funciones en
C que son controladas desde las herramientas en python. Es decir cunado se establece
una llave, se manda un texto plano, se inicia el cifrado y se regresa el texto cifrado.
El firmware del dispositivo de prueba se encuentra en 4 partes principales dentro del
repositorio de chipwhisperer, esta es el proyecto principal, la capa de abstracción de
hardware (HAL) que es la interfaz entre el microcontrolador y el software, los archivos
crypto y el simpleserial.

C.1.1. Proyecto principal

El proyecto principal es donde se encuentran los archivos del código fuente, por
ejemplo unos tienen el nombre simpleserial-aes.c que contiene la función principal
main() y otras funciones para la lectura escritura en el serial del texto plano y texto
cifrado, realizar el cifrado, entre otros. La estructura de los archivos puede observarse
en la figura C.1. Todo el proyecto principal está ligado a un Makefile que se encarga de
la compilación, aquellos con el subfijo simpleserial. Estos archivos se encuentran
en la siguiente ruta de directorios chipwhisperer/hardware/victims/firmware/.
El siguiente código muestra el archivo en C principal de GIFT-64, este se encuentra
en la ruta:
chipwhisperer/hardware/victims/firmware/simpleserial-gift64/simpleserial-gift.c
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#include "gift-independant.h"
#include "hal.h"
#include "simpleserial.h"
#include <stdint.h>
#include <stdlib.h>

uint8_t get_key(uint8_t * k, uint8_t len)
{
gift_indep_key(k); // Manda la llave
return 0x00; // SimpleSerial OK
}

uint8_t get_pt(uint8_t * pt, uint8_t len)
{
trigger_high(); // pone en alto la señal de captura
gift_indep_enc(pt); // realiza el cifrado
trigger_low(); // baja la señal de captura
simpleserial_put(’r’, 8, pt); // regresa el texto cifrado
return 0x00; // SimpleSerial OK
}

uint8_t reset(uint8_t * x, uint8_t len)
{
return 0x00; // SimpleSerial OK
}

int main(void)
{

// configuración del microcontrolador y el serial
platform_init();
init_uart();
trigger_setup();
simpleserial_init();

// Indica al serial el tipo de paquetes a buscar
// k para manda llave, p para mandar el texto plano.
// Ejecuta las funciones cuando los ha recibido.

simpleserial_addcmd(’k’, 16, get_key);
simpleserial_addcmd(’p’, 8, get_pt);

// Busca paquetes y restablece.
simpleserial_addcmd(’x’, 0, reset);
while(1)
simpleserial_get();
}
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Estos proyectos se puede identificar procesos claves, uno es la lectura de la llave,
los triggers (aquella señal que indica el inicio de la captura de las trazas), el cifrado
de los datos y mandar por el serial información. En el caso de código anterior se tiene
la función get_key que carga la llave al algoritmo GIFT-64 y la función get_pt que
dentro de la función inicia el cifrado.

C.1.2. Makefile

Dentro de la misma ruta que el proyecto principal se define el Makefile para
compilar el proyecto. En este Makefile solo es necesario cambiar las variables que
hagan referencia al algoritmo personalizado que se quiere probar. El siguiente código
ejemplifica la modificación utilizando GIFT-64.

# Nombre de como se va a llamar los archivos compilados
TARGET = simpleserial-gift

# El archivo C del firmware que se quiere probar
SRC += simpleserial-gift.c

EXTRA_OPTS = NO_EXTRA_OPTS
CFLAGS += -D$(EXTRA_OPTS)

# Nombre de los archivos que se encuentran en la carpeta crypto
ifeq ($(CRYPTO_TARGET),)

${info No CRYPTO_TARGET passed - defaulting to GIFT64C}
CRYPTO_TARGET = GIFT64C

endif

${Building for platform ${PLATFORM} with CRYPTO_TARGET=$(CRYPTO_TARGET)}

# Otros archivos requeridos para el build
include ../simpleserial/Makefile.simpleserial

# Ruta del firmware
FIRMWAREPATH = ../.
include $(FIRMWAREPATH)/Makefile.inc

Ahora se puede realizar la compilación del firmware indicando la plataforma que
se está utilizando, en este caso ‘CWNANO’ para el ChipWhisperer Nano.

make -j PLATFORM=CWNANO
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Antes de realizar una nueva compilación, siempre debe eliminar los compilados.

make clean

Nota: Una vez escrito el archivo Makefile, el proceso de compilación y carga del
programa a la memoria flash, al igual que el control de las entradas al algoritmo
criptográfico y captura de traza, puede realizarse desde las libretas de python.

C.1.3. Crypto

Otra de los directorios que se modifican para agregar una implementación de algún
algoritmo para probar es crypto.Esta se encuentra en la ruta:

chipwhisperer/hardware/victims/firmware/crypto
Puede visualizarse en la figura C.1. Pueden agregarse el algoritmo como se desee

solo tiene que coincidir con el formato explicado en el Apéndice B. Primero de modi-
ficar el Makefile general de la carpeta crypto Makefile.crypto. Este comando make
permite que los archivos donde de define al algoritmo criptográfico se liguen donde se
compila en firmware.

else ifeq ($(CRYPTO_TARGET),GIFT-FIRMC)
#
# Crypto Target: GIFT64C
# Crypto Options:
# None

include $(FIRMWAREPATH)/crypto/Makefile.giftfirmc

Se genera un Makefile especifico para el algoritmo que se va a implementar llamado
Makefile.gift64c.

########
CRYPTO_LIB = gift-64
SRC += gift.c gift-independant.c
CDEFS += -DGIFT64C
VPATH += :$(FIRMWAREPATH)/crypto/$(CRYPTO_LIB)
EXTRAINCDIRS += $(FIRMWAREPATH)/crypto/$(CRYPTO_LIB)

Para que todas las versiones implementadas de GIFT tengan el mismo formato, es-
tableció una definición general de todas las funciones utilizadas gift-independant.h
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#include <stdint.h>

#define KEY_LENGTH 16
#define DEFAULT_KEY 0xbd, 0x91, 0x73, 0x1e, 0xb6, 0xbc, 0x27, 0x13,\
0xa1, 0xf9, 0xf6, 0xff, 0xc7, 0x50, 0x44, 0xe7

void gift_indep_init(void);
void gift_indep_key(uint8_t * key);
void gift_indep_enc(uint8_t * pt);
void gift_indep_enc_pretrigger(uint8_t * pt);
void gift_indep_enc_posttrigger(uint8_t * pt);
void gift_indep_mask(uint8_t * m, uint8_t len);

Se presenta la implementación de dichas funciones dependiendo de la versión uti-
lizada, solo se muestra para GIFT64C gift-independant.c.

#include "gift-independant.h"
#include "hal.h"
#include "gift.h"

#if GIFT64C

void gift_indep_init(void) {}
void gift_indep_key(uint8_t * key) {
GIFT64_ECB_indp_setkey(key);}
void gift_indep_enc(uint8_t * pt) {
GIFT64_ECB_indp_crypto(pt);}
void gift_indep_enc_pretrigger(uint8_t * pt) { }
void gift_indep_enc_posttrigger(uint8_t * pt) {}
void gift_indep_mask(uint8_t * m, uint8_t len) {}

A continuación se muestra la implementación completa de la versión GIFT64C.
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#ifndef _GIFT_H
#define _GIFT_H

#include <stdint.h>

#ifndef GIFT_CONST_VAR
//#define GIFT_CONST_VAR
#define GIFT_CONST_VAR
#endif

#define N 64
#define BLOCK_SIZE 8
#define KEYLEN 16
#define RONDAS 28

void GIFT64_ECB_encrypt(uint8_t * input, uint8_t * key, uint8_t * output);
void GIFT64_ECB_decrypt(uint8_t * input, uint8_t * key, uint8_t * output);

void GIFT64_ECB_indp_setkey(uint8_t * key);
void GIFT64_ECB_indp_crypto(uint8_t * input);

#endif

#include <string.h>

#include "gift.h"

static uint8_t state[8];

static uint8_t RoundKeys[RONDAS][16];

static uint8_t input_save[16];

static uint8_t * Key;

static uint8_t Sbox[16] = {
0x01, 0x0a, 0x04, 0x0c, 0x06, 0x0f, 0x03, 0x09, 0x02, 0x0d, 0x0b,

0x07, 0x05, 0x00, 0x08, 0x0e
};

static uint8_t BitPermutation[64] = {
0, 17, 34, 51, 48, 1, 18, 35, 32, 49, 2, 19, 16, 33, 50, 3,
4, 21, 38, 55, 52, 5, 22, 39, 36, 53, 6, 23, 20, 37, 54, 7,
8, 25, 42, 59, 56, 9, 26, 43, 40, 57, 10, 27, 24, 41, 58, 11,
12, 29, 46, 63, 60, 13, 30, 47, 44, 61, 14, 31, 28, 45, 62, 15
};

static uint8_t Constants[48] = {
0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F, 0x1E,
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0x3C, 0x39, 0x33, 0x27, 0x0E, 0x1D, 0x3A, 0x35, 0x2B, 0x16, 0x2C,
0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E, 0x1C, 0x38, 0x31,
0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A, 0x34, 0x29, 0x12, 0x24,
0x08, 0x11, 0x22, 0x04

};

static uint8_t Positions[6] = {
//23, 19, 15, 11, 7, 3
3, 7, 11, 15, 19, 23
};

static void BlockCopy(uint8_t * output, const uint8_t * input, uint8_t len) {
uint8_t i;
for(i = 0; i < len; i++) {
output[i] = input[i];
}
}

static void SubCells() {
uint8_t i;
for(i = 0; i < BLOCK_SIZE; i++) {
state[i] = ((Sbox[(state[i] >> 4) & 0x0f]) << 4) | Sbox[state[i] & 0x0f];
}
}

static void PermBits() {
uint8_t temp[8] = {0x00};
uint8_t i, j, k, mov1, mov2;
for(i = 0; i < BLOCK_SIZE; i++) {
for(j = 0; j < 8; j++) {
k = i*8+j;
mov1 = BitPermutation[k]/8;
mov2 = BitPermutation[k]%8;
temp[mov1] = temp[mov1] ^ (((state[i] >> j) & 0x01) << mov2);
}
}
BlockCopy(state, temp, BLOCK_SIZE);
}

static void AddRoundKey() {
uint8_t i, j, k, mov1, mov2;
uint16_t U = ((Key[3] << 8) & 0xff00) | Key[2];
uint16_t V = ((Key[1] << 8) & 0xff00) | Key[0];
uint16_t RK[2] = {V, U};
for(i = 0; i < 16; i++) {
for(j = 0; j < 2; j++) {
k = 4*i+j;
mov1 = k/8;
mov2 = k%8;
state[mov1] = state[mov1] ^ (((RK[j] >> i) & 0x01) << mov2);
}
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}
}

static void RoundConstants(uint8_t ronda) {
uint8_t i;
uint8_t mov1, mov2;
for(i = 0; i < 6; i++) {
mov1 = Positions[i]/8;
mov2 = Positions[i]%8;
state[mov1] = state[mov1] ^ (((Constants[ronda] >> i) & 0x01) << mov2);
}
mov1 = (N-1)/8;
mov2 = (N-1)%8;
state[mov1] = state[mov1] ^ (0x01 << mov2);
}

static void BigEndianState() {
uint8_t temp[BLOCK_SIZE];
uint8_t i;
for(i = 0; i < BLOCK_SIZE; i++) {
temp[BLOCK_SIZE-i-1] = state[i];
}
BlockCopy(state, temp, BLOCK_SIZE);
}

static void BigEndianKey() {
uint8_t temp[KEYLEN];
uint8_t i;
for(i = 0; i < KEYLEN; i++) {
temp[KEYLEN-i-1] = Key[i];
}
BlockCopy(Key, temp, KEYLEN);
}

static void BigEndian(uint8_t * input) {
uint8_t i;
for(i = 0; i < BLOCK_SIZE; i++) {
input[BLOCK_SIZE-i-1] = state[i];
}
}

static void Initialization(uint8_t * text) {
BlockCopy(state, text, BLOCK_SIZE);
BigEndianState();
}

static void gift64_encrypt_ecb(uint8_t * input) {
Initialization(input);
uint8_t i;

Key = input_save;
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//for(i = 0; i < RONDAS; i++) {
for(i = 0; i < 10; i++) {
SubCells();
PermBits();
AddRoundKey();
RoundConstants(i);

Key = RoundKeys[i];
}
}

static void PrecomputeKeys() {
BigEndianKey();

uint8_t i, j;
uint8_t k1_0, k1_1, k0_0, k0_1;
uint8_t * temp = Key;

for(i = 0; i < RONDAS; i++) {
//BlockCopy(RoundKeys[i], Key, KEYLEN);

k1_0 = ((temp[3] & 0x03) << 6) | ((temp[2] >> 2) & 0x3f);
k1_1 = ((temp[2] & 0x03) << 6) | ((temp[3] >> 2) & 0x3f);
k0_0 = ((temp[0] & 0x0f) << 4) | ((temp[1] >> 4) & 0x0f);
k0_1 = ((temp[1] & 0x0f) << 4) | ((temp[0] >> 4) & 0x0f);

for(j = 0; j < KEYLEN-4; j++) {
RoundKeys[i][j] = temp[j+4];
}

RoundKeys[i][j] = k0_0;
RoundKeys[i][j+1] = k0_1;
RoundKeys[i][j+2] = k1_0;
RoundKeys[i][j+3] = k1_1;

temp = RoundKeys[i];
}
}

void GIFT64_ECB_indp_setkey(uint8_t * key) {
Key = key;
PrecomputeKeys();
BlockCopy(input_save, Key, KEYLEN);
}

void GIFT64_ECB_indp_crypto(uint8_t * input) {
gift64_encrypt_ecb(input);
BigEndian(input);
}



84

void GIFT64_ECB_encrypt(uint8_t * text, uint8_t * key, uint8_t * output) {
Key = key;
PrecomputeKeys();

gift64_encrypt_ecb(text);
BigEndianState();
BigEndianKey();
BlockCopy(output, state, BLOCK_SIZE);
}

void GIFT64_ECB_decrypt(uint8_t * text, uint8_t * key, uint8_t * output) {

}
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Figura C.1: Sistema de archivos de ChipWhisperer
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