CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

Unidad Zacatenco

Departamento de Computacion

Deteccion de marcadores en imagenes utilizando
redes neuronales convolucionales

TESIS

Que presenta

Christian Ruiz Hernandez

para obtener el Grado de

Maestro en Ciencias en Computacién

Director de la Tesis

Dr. Luis Gerardo de la Fraga

Ciudad de México Agosto, 2024

II

Resumen

Actualmente, las redes neuronales convolucionales se han vuelto méas populares con

la introducciéon de bibliotecas que facilitan el uso de los modelos, asi como su imple-
mentacion y entrenamiento sobre unidades de procesamiento grafico (GPU). Gracias
a esto, estos modelos han adquirido una mayor complejidad y han sido aplicados en
diferentes ambitos en dentro del campo de la visién por computadora, como lo es la
clasificacion, deteccion y segmentacion de imagenes. Es por eso que es importante
estudiar formas de aprovechar el conocimiento de los modelos preentrenados que son
utiles para adaptar una red a nuevos problemas y aplicaciones.
En este trabajo realiza una revisiéon de los modelos de redes neuronales convolucio-
nales mas comunes, (Single Shot Multibox Detector) y (You Only Look Once version
5), para la tarea de deteccion de objetos. Se realizan pruebas y entrenamientos de
ambos modelos con un conjunto de datos personalizado con marcadores de tipo de
orden. Este conjunto de datos se formé tnicamente utilizando imégenes sintéticas que
en conjunto con el modelo de la cdmara oscura y de ruido tipo Perlin como fondo,
facilita la creacion de grandes cantidades de datos de entrenamiento y de prueba
para entrenar los modelos de las dos redes profundas seleccionadas. De igual forma
se utilizaron técnicas de transferencia de aprendizaje, comenzando por los modelos
preentrenados de ambas arquitecturas con el conjunto de datos COCO. Se determind
que parte de estas redes se pueden congelar los pesos y el sesgo de diferentes capas
para el reentrenamiento de los modelos, con el fin de ahorrar tiempos de entrenamien-
to aprovechando el conocimiento adquirido previamente y sin inicializar los pesos de
las redes profundas con valores aleatorios. Fue posible entrenar la red YOLOvV5 para
detectar correctamente uno, dos y ocho marcadores diferentes.

III

v

CAPITULO 0. RESUMEN

Abstract

Currently, the convolutional neural networks have become increasingly popular
with the introduction of computational libraries that facilitate the use of models,
as well as their implementation and training on graphical processing units (GPU).
Because of this, these models have increased their complexity and have been applied
in different areas within the field of computer vision, such as image classification,
detection and segmentation. That is why it is important to study ways to find ways
to take advantage of the knowledge of the pre-trained models that are provided and
adapt to new problems and applications.

In this work, a review is made of the most common convolutional neural network
models Single (Shot Multibox Detector) and (You Only Look Once (YOLO) version
5), for the task of object detection. We test both models with a custom dataset
with fiducial markers. This dataset was created using only synthetic images with the
pinhole camera model and Perlin noise as background. This facilitates the creation
of large amounts of training and test data for the Single Shot Multibox Detector and
for the You Only Look Once version 5 models. Likewise, transfer learning techniques
were used, starting by the use of the pre-trained models of both architectures with
the COCO dataset. It was studied. Through several trainings, we were able to show
that the weights and bias of different layers can be frozen for saving training time
by taking advantage of the knowledge previously acquired instead of just initializing
all deep network weights with random values. It was possible to train the YOLOvH
network to detect one, two and eight different fiducial markers successfully.

VI

CAPITULO 0. ABSTRACT

Agradecimientos

Al CONAHCYT por el apoyo econémico brindado para dedicarme de tiempo com-
pleto a la culminacion de la maestria. Al CINVESTAV por prestarme las instalaciones
y facilitarme todos los recursos necesarios para concluir mi maestria. También a los
Doctores y Doctoras que, con paciencia, fueron una guia indispensable para el cul-
tivo de mi conocimiento. En especial a mi asesor el Dr. Luis Gerardo de la Fraga y
sinodales que me ayudaron a superar los obstaculos que se presentaron durante la
realizacion de este trabajo. A mi familia por siempre estar conmigo, en las buenas y
en las malas, apoyandome y creyendo en mi. Mi mamé Mtra. Marfa de los Angeles
Hernandez Maldonado, que me enseno el camino al mundo académico y me empujo a
seguir en ese rumbo. A mi hermana Jessica Ruiz Hernédndez, que siempre estuvo mo-
tivandome a seguir adelante cuando mas lo necesitaba. A mis amigos, que estuvieron
conmigo ayudandome y acompanandome, durente este periodo de mi vida.

VII

VIII CAPITULO 0. AGRADECIMIENTOS

Indice general

Resumen 11
Abstract \Y%
Agradecimientos VII
Indice de figuras X
Indice de tablas X111

1. Introduccién
1.1. Definiciéon del problema
1.2. Objetivos generales y especificos
1.2.1. General
1.2.2. Particulareso
1.3. Organizacion de la tesis L.

NN DN ==

2. Marco Teérico 3
2.1. Problemas que pueden resolverse con redes convolucionales 3
2.2. Marcadores de tipodeorden L. 4
2.3. Redes neuronales convolucionales)

2.3.1. Operaciones comunes utilizadas en redes convolucionales 7

2.3.2. Clasificaciéon y detecciéon 10
2.3.3. Red convolucional YoloV5 16
2.3.4. Operaciones especiales de la arquitectura YoloV5H 20
2.3.5. Red convolucional SSD (single shot multibox detector) 32

3. Desarrollo 37
3.1. Propuestadesolucion., 37
3.2. Creacion de conjunto de datos sintéticos 38
3.2.1. Marcadores 38
3.2.2. Modelo de la cAmara oscura 40
3.2.3. RuidoPerlin., 43
3.2.4. Entrenamiento YoloV5 45
3.2.5. Experimentos con la Arquitectura YoloV5 Modificada 52

IX

INDICE GENERAL

3.2.6. Segundo intento red YoloV5 congelamiento de capas
3.2.7. Problema mas complejo usando la técnica de transferencia de
aprendizaje para reentrenamiento y congelamiento de parame-

tros hasta la capa de agrupacion espacial piramidal (SPPF)
3.3. Red SSD (Single Shot Multibox Detector)

4. Resultados

4.1. YoloVH

4.1.1. Unmarcador
4.1.2. Dos marcadores
4.1.3. Ocho marcadores

5. Conclusiones
5.1. Trabajo futuro

Bibliografia

61
63

71
71
71
72
73

75
76

7

Indice de figuras

2.1.
2.2.
2.3.
2.4.
2.5.

2.6.
2.7.
2.8.
2.9.

2.10.
2.11.

2.12.
2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.
2.20.

2.21.

2.22

Ejemplo de marcador de tipode orden.o
Ejemplodered CNN.
Explicacion de operacion de convolucion.
Ejemplos de pooling. o
Ejemplo de relleno de valor 1 después de aplicar el agrupamiento del
valor maximo.
Ejemplo de flatten (aplanamiento).
Ejemplo de una red CNN en un problema de clasificacion.
Ejemplo demostrativo del formato centro ancho y alto.
Ejemplo demostrativo del formato puntos maximos y minimos.
Ejemplo de una red CNN en un problema de deteccion.
Grafica que muestra el tamano de los parametros entrenables contra la
exactitud media. Del lado derecho grafico de velocidad en milisegundos
contra exactitud media. Estas graficas fueron obtenidas de [1].
Gréafica de rendimiento YoloV5. Esta grafica fue obtenida de [1]. . . .
Diagrama de la arquitectura Yolov4 representando otra forma en que
se dividen las capas de las arquitecturas Yolo modernas (este diagrama
fue tomado del articulo [2]). Lo
Ejemplodecapa C3
Diagrama de la arquitectura Yolovh subdividido en regiones: rojo, re-
gion troncal (backbone); verde: cuello (neck); y morado: cabeza (head).
Ejemplo de como se proponen las regiones de interés dependiendo de
la region con mayor activacion [3].
Arquitectura propuesta de APE (Agrupacion Piramidal Espacial). Este
diagrama fue extraidode [3]. o Lo
Arquitectura de modulo Ghostnet Bottleneck (cuello de botella) [4]. .
Modulo cuello de botella de GhostNet en la red YoloV5
Comparacion del mapa de caracteristicas original en el recuadro rojo y
en el recuadro verde, el mapa de caracteristicas obtenido con la técnica
GhostNet, Este ejemplo fue extraido del articulo [4].
Ejemplos de las diferentes técnicas de extracciéon de caracteristicas pi-
ramidal para deteccion. [5]..o
Ejemplo de aumentacion de datos mosaico YoloV5 [1]..

XI

o 3 O Ot

10
11
12
13
15

16
17

18
19

22

23
24
25

XII

2.23.
2.24.
2.25.
2.26.

2.27.
2.28.
2.29.
2.30.
2.31.

3.1.

3.2.
3.3.
3.4.
3.5.
3.6.

3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.

3.18.

3.19.

3.20.

3.21.

3.22.

INDICE DE FIGURAS

Ejemplo de aumentacion de datos copiar y pegar [1]. 29
Ejemplo de aumentacion de transformaciones aleatorias [1]. 30
Ejemplo de aumentacion de datos por mezcla Yolovs [1]. 30
Ejemplo de aumentacion de datos matiz, saturacion y valor (HVS)

Yolovh [1]. . o o o o 31
Ejemplo de aumentacion de datos orientacion aleatoria Yolovs [1]. . . 31
Arquitectura de red convolucional SSD [6]. 32
Ejemplo de uso de indice Jaccard en redes neuronales convolucionales. 33
Arquitectura jerarquia de caracteristicas piramidal [5]. 34
Ejemplo de la operacion supresion no maxima del articulo [7]. 35

Formato de codificacion de cajas delimitadoras elegido para ambas ar-

quitecturas. L L L. 38
Marcador 1 e 39
La imagen de salida al aplicar el modelo de la caAmara oscura. 42
Imagen transformada. 42
Imagen transformada con la caja envolvente al marcador 43
Fondo utilizado en la tesis de maestria de Gonzalo Adan Chéavez Fra-

gOSO [8] . L L 44
Fondo con ruido Perlin propuesto 44
Mesa de 1.20 m marcada 47
Mesa marcada con cinta cada 10 ecm 47
Tabla marcada con angulos cada 10° de 0° a 180° 48
Probando Multiples marcadores. 49
Calculo del porcentaje de pixeles de falla del modelo. 49
Calculo de porcentaje de pixeles del marcador para reconocimiento. . 50
Calculo de porcentaje de pixeles del marcador para falla. 50
Calculo de porcentaje de pixeles del marcador horizontal para falla. . 51
Prueba poniendo la mano encima del marcador. o1

Diagrama que muestra cémo la funciéon “classify” funciona en la tltima
capa para hacer las detecciones, para por ultimo utilizar el algoritmo

de supresion del no maximo. 54
Marcadores utilizados para crear el conjunto de entrenamiento de dos
clases. . .. 55
Matriz de confusion del re-entrenamiento congelando todas las convo-
luciones, dejando solo la capa totalmente conectada. 56
Red convolucional YoloV5 con pardmetros congelados hasta la capa de
agrupacion espacial piramidal (SPPF). 57
Matriz de confusion del reentrenamiento congelando convoluciones has-
ta la capa de agrupacion espacial piramidal (SPPF).. 58

Pruebas con camara en tiempo real de deteccion de dos marcadores
con el modelo YoloV) preentrenado y congelando capas hasta la capa
de agrupacion espacial piramidal (SPPF) 59

INDICE DE FIGURAS XIII

3.23

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

4.1.

4.2.

4.3.

. Marcadores utilizados para crear el conjunto de entrenamiento de ocho
clases. . ..o 61
Matriz de confusion del reentrenamiento con ocho marcadores conge-
lando convoluciones hasta la capa de agrupacion espacial piramidal
(SPPE). . . 62
Pruebas de deteccion en tiempo real con cAmara de modelo reentrenado
con ocho clases hasta la capa de agrupacion espacial piramidal (SPPF). 63
Directorio de caché de pytorch que contiene las implementaciones que
se usaron para los modelos preentrenados. L. 64
Imagen que ilustra el comportamiento en tiempo real del mejor modelo
entrenado con 8000 imégenes, usando el optimizador SGD, detectando
el marcador con el que fue entrenado 67
Imagen que ilustra el comportamiento en tiempo real del mejor modelo
entrenado con 8000 imégenes, usando el optimizador SGD, detectando
el marcador con el que fue entrenado y falso positivo que muestra el
modeloen el mundoreal. oL 68
Imagen que ilustra el comportamiento en tiempo real del mejor modelo
entrenado con 8000 imégenes, usando el optimizador SGD, detectando
el marcador con el que fue entrenado y mostrando él traslapo de cajas
delimitadoras. 69

Grafico de exactitud para cada época de entrenamiento, reentrenando
para un solo marcador, con el conjunto de datos COCO. 72
Grafico de exactitud para cada época del modelo reentrenado para
dos clases con el modelo preentrenado para detectar una sola clase y
congelando hasta la capa de agrupacion espacial piramidal (SPPF). . 73
Graficos de exactitud para cada época de modelo reentrenado para
ocho clases con el modelo preentrenado para detectar una sola clase y
congelando hasta la capa de agrupacion espacial piramidal (SPPF). . 74

X1V INDICE DE FIGURAS

Indice de tablas

2.1.

2.2.
2.3.

3.1.
3.2.
3.3.
3.4.

4.1.

4.2.

Comparaciéon entre distintas versiones de la arquitectura YoloV5 en sus
versiones de entrada de 640 x 640.
Descripcion de la arquitectura propuesta de APE en el articulo [3].

Comparacion de arquitecturas VGG-16 y ResNet-56 con sus variantes
con la técnica GhostNet implementada [4].

Especificacion de hardware L.
Puntos que conforman el marcador 1
Parametros para entrenamiento segtn la documentacion de Pytorch [1]
Resultados de los entrenamientos mas relevantes de la red SSD, con el
modelo preentrenado con el conjunto de datos COCO [9].

Tabla de resultados del experimento propuesto, para modelo reentre-
nado para detectar un solo marcador preentrenado con el conjunto de
datos COCO. e
Tabla de resultados del experimento propuesto, para el modelo reen-
trenado para detectar un solo marcador y preentrenado con el conjunto
de datos COCO con un tiempo de entrenamiento de 34 horas 7
minutos. e e

XV

17
22

25

37
39
46

66

72

XVI INDICE DE TABLAS

Capitulo 1

Introducciéon

1.1. Definicién del problema

Actualmente, para el problema de detectar objetos, es decir encerrar los objetos
en un rectangulo dentro de la imagen donde aparecen, asi como también clasificarlos o
identificarlos, se utilizan diferentes técnicas de vision por computadora y aprendizaje
automatico. Mas recientemente se estan utilizando con més frecuencia técnicas de
aprendizaje profundo es decir reden neuronales y redes convolucionales para dichos
propositos. De tal forma se aprovecha el poder de abstraccion de las redes neuronales
convolucionales, para extraer caracteristicas de las imégenes, asi como utilizando las
redes profundas para la parte de clasificacion.

Teniendo en cuenta esto, un gran problema al utilizar estos modelos de redes neu-
ronales convolucionales es el gran tamano y consumo de recursos, ya que las técnicas
utilizadas en este tipo de redes para la detecciéon hacen que la misma red sea mu-
cho méas robusta que las empleadas solo para clasificar. La idea de este trabajo es
verificar si para un problema mas sencillo, pueda de igual forma simplificarse la red,
ya sea reduciendo capas, o fijando alguno de sus parametros de algunas capas para
mejorar el rendimiento, manteniendo la exactitud en la medida de lo posible. Para
este fin, se consideraran problemas menos complejos, con marcadores mas facilmente
distinguibles y menos objetos por identificar, a fin de reducir el nimero de clases.

Las redes convolucionales han adquirido mucha fama, por lo cual contamos con
varias arquitecturas de clasificacion como ResNet, EfficientNet, GoogleNet etc. Para
el problema de deteccidon de estos objetos, las mas conocidas y que adoptan diferen-
tes técnicas son la SSD(Single Shot Multibox Detector) [10] y Yolo(You Only Look
Once) [11]. Esta es una de las principales razones por la que se propusieron estas dos
arquitecturas para trabajar, debido a su amplia documentaciéon asi como la facilidad
de acceso a los modelos ya pre-entrenados de ambas arquitecturas por parte de Py-
Torch. Cuenta con conjuntos de datos con varias clases y miles de imégenes como
lo son ImageNet y Coco, pudiendo asi utilizar estos y ser re-entrenados, aplicando
posteriormente técnicas de transferencia de aprendizaje.

2 Capitulo 1

1.2.

Objetivos generales y especificos

1.2.1. General

Detectar objetos en una imagen, encerrarlos en cajas y clasificarlos, utilizando
redes neuronales convolucionales realizando mejoras a nivel rendimiento en tiempo
tanto de entrenamiento como de ejecucion, entrenédndolas para encontrar o distinguir
un solo tipo de objeto.

1.2.2. Particulares

1.

2.

1.3.

Estudiar y comprender las arquitecturas actuales YoloV5 y SSD.

Obtener un conjunto de datos con marcadores para entrenar las redes neurona-
les.

. Verificar el rendimiento de los modelos entrenados, asi como su precision.

Trabajar con Pytorch en GPUs, usando las arquitecturas YoloV5 y SSD.

Entender como trabajan las arquitecturas de redes neuronales en Pytorch asi
como el uso de los modelos que genera.

Utilizar las redes Yolov) y SSD pre-entrenadas para aprovechar el conocimiento
haciendo transferencia de conocimiento, cambiando la capa totalmente conec-
tada.

Organizacion de la tesis

Esta tesis consta de cinco cuyo contenido es el siguiente:

1.
2.

El primer capitulo consta de los objetivos y el planteamiento del problema.

El segundo capitulo habla de todos los aspectos que son clave para comprender
bien como trabajan en general las arquitecturas y de esta manera entender de
igual forma el problema que se pretende solucionar.

El tercer capitulo abordara la propuesta de solucién, asi como todos los pasos
y experimentos realizados.

En el cuarto capitulo analizaremos todos los resultados arrojados por cada uno
de los experimentos realizados.

El quinto capitulo consta de las conclusiones y posibles lineas de trabajo futuro.

Cinvestav Departamento de Computacion

Capitulo 2

Marco Teoérico

2.1. Problemas que pueden resolverse con redes con-
volucionales

En el mundo real existen decenas de problemas que pueden resolverse con redes
neuronales convolucionales tales como: conducciéon auténoma, seleccion de cultivos,
reconocimiento de caras, reconocimiento de expresiones faciales, reconocimiento de
lenguaje de senas, etc. Sin embargo, en el campo del aprendizaje profundo son mas
especificos los problemas que se pueden resolver y a su vez mas generales en aplicacion,
como por ejemplo:

= Reconocimiento de imégenes: Este es el problema de clasificaciéon sobre imagenes
que consiste en definir grados de pertenencia a una clase dada una imagen de
entrada, identificAndose a cuél de las clases pertenece.

= Deteccion de objetos: Este problema es el que se aborda en este trabajo que
consiste en localizar objetos sobre una imagen y después clasificar dichos ele-
mentos localizados en alguna de las clases. Por lo tanto, la salida no solo nos
mostrara los grados de pertenencia a cada una de las clases, sino también las
coordenadas de localizacion del objeto, usualmente encerradas en una caja de
cuatro lados. Para especificar la caja usualmente se utiliza el formato de las
coordenadas del centro de la caja centro, mas su ancho y su alto. Sin embargo,
también existe la posibilidad de utilizar los dos puntos (el maximo y el minimo
de la caja) o los cuatro puntos de los vértices de la caja, pero estos dos tltimos
formatos son poco utilizados.

= Segmentacion de imagenes: Este problema es muy parecido al anterior, pero
ahora no solo son cajas lo que nos devolveré, sino que nos devolverd una region
de pixeles de cualquier forma, ya que ahora no se utiliza una forma regular para
encerrar el objeto. En este caso, son los mismos pixeles los que son marcados con
una clase u otra. Para esto, usualmente en el entrenamiento se utilizan méascaras

4 Capitulo 2

que, dada la imagen de entrada, definen sobre los pixeles la pertenencia a las
diferentes clases.

= Reconocimiento de texto: Las redes convolucionales son capaces de reconocer
textos debido a que, son capaces de reconocer patrones de letras con diferentes
escrituras al ser correctamente entrenadas.

= Procesamiento de video: Esto no se refiere més que al procesamiento de iméa-
genes simultaneas, ya sea un video grabado o en tiempo real. Esta tarea la
pueden realizar las redes CNN, ya que ademaés de ser redes robustas, con el for-
talecimiento del computo en paralelo por GPU pueden ser ejecutadas de forma
continua, ya que el tiempo de ejecucion (una vez paralelizadas) suelen ser en
orden de los milisegundos.

» Generacion de imagenes: Esto se refiere al problema de generar imagenes de
cierto tipo de clase, es decir dado que las redes CNN son capaces de aprender
los filtros necesarios para distinguir diferentes caracteristicas de cada clase, los
modelos preentrenados de redes neuronales convolucionales se aprovechan, para
que, desde un conjunto de pixeles aleatorios se maximicen las caracteristicas
deseadas para la clase que se quiera generar y de esta forma se crea una imagen
que el modelo considera corresponde a la clase para la que fue entrenada.

Como podemos ver, son varios los problemas que se pueden resolver en el campo de
la vision por computadora, por medio del uso de redes neuronales convolucionales asi
que es un tema muy importante en la actualidad seguir estudiando estas redes para
encontrar arquitecturas y técnicas que mejoren la eficiencia de las mismas.

2.2. Marcadores de tipo de orden

Los marcadores de tipo de orden son objetos cuyas caracteristicas los hacen facil-
mente reconocibles por algoritmos de vision por computadora. El uso mas comun de
este tipo de marcadores es para ayudar a sistemas de vision a rastrear la posicion y
orientacion de un objeto sobre un entorno tridimensional, a partir de datos bidimen-
sionales, como lo son los datos que devuelven las imagenes de una cdmara. Haciendo
uso de patrones facilmente reconocibles y, por lo regular, utilizando el color blanco y
negro. Estos valores de los pixeles que representan la sobresaturacion de los mismos
(0 y 1, 0 0 y 255), haciendo que el uso de estos colores facilite la deteccion de los
patrones del marcador sobre las imagenes.

Actualmente, se hicieron famosos los coédigos QR que son un tipo de marcador
que se aprovecha del hecho de que son distinguibles los marcadores unos de otros,
desarrollando una especie de etiquetado codificando la informaciéon sobre el mismo
“marcador”” usando de una matriz de puntos. También se utilizan diferentes tipos de
marcadores en la actualidad para operaciones de realidad aumentada posicionando

Cinvestav Departamento de Computacion

Marco Tedrico 5

elementos tridimensionales sobre los objetos bidimensionales (que también son mar-
cadores) debido a las propiedades de los marcadores anteriormente descritas.

Los marcadores de tipo de orden estdn compuestos por tres elementos fundamen-
tales, el rea sin ruido, el area de datos y los puntos de la etiqueta, es decir, los puntos
que forman la figura blanca representativa [12].

= Area sin ruido: Esto es el espacio en blanco que encierra todos los elementos
del marcador y sirve como separador del marcador con respecto del resto de la
imagen.

= Area de datos: Se compone por el area negra del marcador. Su proposito es
contener un contraste con respecto a los puntos que ser requieren detectar.

= Puntos que definen la etiqueta: Son el conjunto de puntos que conformaran los
vértices de la figura que contendra el marcador.

Area sin ruido

Figura 2.1: Ejemplo de marcador de tipo de orden.

2.3. Redes neuronales convolucionales

Las redes neuronales convolucionales o redes CNN son un tipo de red del campo
del aprendizaje profundo que aprovecha la operaciéon de convoluciéon como parte de
la extraccion de caracteristicas. Usualmente, se utiliza en problemas de visiéon por
computadora por su relaciéon directa, con estos problemas.

En general, las redes CNN se componen de tres fases comunes:

Cinvestav Departamento de Computacion

6 Capitulo 2

» Convolucion (extraccion de caracteristicas): En esta parte, los pixeles de la
imagen de entrada se convierten poco a poco en mapas de caracteristicas cada
vez més abstractas y regularmente reduciendo la dimensionalidad espacial de
la imagen, pero incrementando la profundidad que componen los mapas de
caracteristicas.

= Agrupacion: En esta etapa se toman todos los mapas de caracteristicas extrai-
das y se busca reducir el niimero de caracteristicas, pero manteniendo siempre
aquellos valores de las caracteristicas que influiran més en el modelo. Usualmen-
te, aqui se utilizan las operaciones llamadas de agrupacion (pooling en inglés)
para posteriormente pasar a una fase de aplanamiento convirtiendo todos estos
valores en un solo vector unidimensional. Exista la agrupacion del maximo, la
agrupacion del promedio y la agrupacion del minimo.

= (lasificacion: En esta etapa se pasan los valores de la capa anterior aplanada a
una red neuronal directa totalmente conectada, que se encargara de entrenar la
parte de clasificacion y su vez, mostrara los grados de pertenencia a cada una
de las clases.

Imagen RGB Convoluciones Agrupaddny Rad
|
j,.‘ | \
B N AN VAN
/ \ 7 \.\ / \
n P e

Figura 2.2: Ejemplo de red CNN.

Cinvestav Departamento de Computacion

Marco Tedrico 7

2.3.1. Operaciones comunes utilizadas en redes convoluciona-
les

Convoluciéon

La convolucién es la operacion fundamental de una red CNN y es la primera de
las operaciones que se efectiian sobre la imagen de entrada en redes CNN para clasi-
ficacion y deteccidén de imagenes. Esta es una operacion en la que se involucran dos
partes esenciales: 1) la imagen de entrada que es representada inicialmente como los
valores de entrada de los pixeles para los diferentes canales y 2) el kernel o filtro que
es una matriz de menor dimensiéon (regularmente de 3 x 3) en la cual el proposito de
esta operacion es lograr una extracciéon de caracteristicas de la imagen. Cuando se
entrena una red CNN los valores que se desea buscar, al igual que los pesos de la red
totalmente conectada, son los valores del kernel o filtro que faciliten la distinciéon de
las caracteristicas de las diferentes clases de imégenes con las que esté siendo entre-
nada.

En el ejemplo en la figura 2.3, se muestra la operacién de convolucién que consiste
en multiplicar de manera directa cada uno de los valores de la imagen con los valores
del filtro y después sumar cada uno de estos valores devolviendo un escalar que sera
el valor numérico que correspondera al valor numérico del mapa de caracteristicas en
esa seccion. En este ejemplo se muestran 2 cuadros, uno verde y uno azul. El verde
corresponde al filtro en una posiciéon inicial y el azul al filtro en una posicién final
una vez completadas las operaciones correspondientes. También para fines practicos
se tomo6 una imagen de 6 x 6 y valores aleatorios de la imagen del 0 al 9 asi como un
paso o Stride de uno. Es decir, que el filtro efectuara pasos de 1 pixel en 1 pixel. Sin
embargo, estos valores pueden ser diferentes.

1(1)+7(0)+8(—1)+6(1) +2(0) +8(—1)+2(1) +3(0) +9(—1) = 1 —8+6—8+2—9

117 |8]s | 7| 4 |
16 -3 9 -1

& 2 8 1 3 4 _

1 0 -1
213 9|5 |6 |8 2 ol]

X 1 0 -1 =

9 | 2 2 1 6 0 6 7 -4 4

1 0 - L
0 | 1 6 | 7 |95 |1

. Filtro (kernel): 3x3 3 4 -8 9
3|3 |12 |2 o
Resultado: 4x4

Imagen: 6x6

Figura 2.3: Explicacion de operacién de convolucion.

Cinvestav Departamento de Computacion

8 Capitulo 2

Agrupacion (pooling).

Dentro de las redes convolucionales como vimos anteriormente hay una fase de
agrupacion y aplanamiento. En este caso regularmente la fase de agrupacion es una
operacion muy sencilla de implementar, ya que es parecida a la operacion de convo-
luciéon al necesitar de una ventana. Sin embargo, aqui no existe un filtro como tal.
El tamano de la ventana dado es aplicado sobre la misma matriz que entre mapas
de caracteristicas. Esto sirve para resaltar ciertas caracteristicas sobre el mapa de
caracteristicas y a su vez reducir el tamano de las mismas. De estas operaciones, las
3 méas populares son las siguientes:

= Agrupacion del valor minimo: Esta operaciéon consiste en tomar una ventana de
n x n lados (usualmente de 2 x 2) sobre la matriz del mapa de caracteristicas
y sacar el valor minimo que se encuentre dentro de dicha matriz. Este valor
corresponderé a esa posicion del mapa de caracteristicas. y = min(z)

= Agrupacion del valor maximo: Esta operacion consiste en tomar una ventana de
n x n lados (usualmente de 2 x 2) sobre la matriz del mapa de caracteristicas y
sacar el valor maximo que se encuentre dentro de dicha matriz. este valor sera
correspondera a esa posicion del mapa de caracteristicas. y = maz(x)

= Agrupacion del valor promedio: Consiste de obtener la media entre los valores
de la ventana y se colocara en la misma posicion del mapa de caracteristicas
1
Y=
En la figura 2.4 se muestran las tres diferentes operaciones basicas de agrupamiento.

Se tomd6 en cuenta un tamano de filtro de 3 x 3 y un mapa de caracteristicas inicial
de 6 x 6 ddndonos un mapa de caracteristicas de salida de 2 x 2.

Min-Pooling Max-Pooling

112|3|3|5]7 1(2|(3]3]5]7
415|6|4|5|6 1 0 4(5|6(4|5|6 9 9
7/8]|9]8[9]0 1 7(819/819]0 £
3178 Salida 2 x 2 3(718 Salida 2 x 2
919|8 9(9]8
7|1]1 7(1]|1

6 x 6 Entrada

6 x 6 Entrada

Avg-Pooling

5| 5.222222
5.888889

Salida 2 x 2

2
5
8
7
9
1
X

o|IN|O|W|N]|R~]|-

6 Entrada

Figura 2.4: Ejemplos de pooling.

Cinvestav Departamento de Computacion

Marco Teorico 9

Relleno (padding).

Una operaciéon que se integra entre las convoluciones y el pooling es la parte del
relleno de los espacios en blanco cuando se pretende mantener el tamano del mapa de
caracteristicas. Esto es llamado padding y usualmente consiste en rellenar los espacios
en blanco con ceros, pero puede haber diferentes tipos de padding.

Tomando el ejemplo 2.4 de Max-pooling, se crea el ejemplo 2.5 suponiendo que
necesitamos un tamano de 4 x 4 a la salida del proceso, En este caso, hacemos un
padding de 1 tomando en cuenta que seré el incremento a realizar a las orillas.

Max-Pooling Padding
1]2(3]3|5|7 0 0 0 0
415|614|5|6 9 9 0 9 9 0
71819(819]0 9 0 9 0
31718 Salida 2 x 2 0 0 | 0 0
919|8 Salida 4 x 4
711(1
6 x 6 Entrada

Figura 2.5: Ejemplo de relleno de valor 1 después de aplicar el agrupamiento del valor
maximo.

Aplanamiento (flatten)

Por tdltimo una de las operaciones que se realizan sobre el mapa de caracteristicas
antes de entrar a la red totalmente conectada o red neuronal profunda clasica para
clasificacion, es la fase de aplanamiento o flatten. Esta consiste en convertir todo el
conjunto de mapas de caracteristicas en un solo vector de una dimension.

En la figura 2.6 podemos observar la operacion flatten (aplanamiento) en un mapa
de caracteristicas de 3 X 3 en el que se resaltan con colores las respectivas posiciones
de los niimeros en vector de salida de una sola dimension.

Cinvestav Departamento de Computacion

10 Capitulo 2

Salida 9 x 1
Flatten (Aplanamiento) 3

2

Entrada 3 x 3

3 2

Figura 2.6: Ejemplo de flatten (aplanamiento).

2.3.2. Clasificaciéon y detecciéon

Como vimos en el primer capitulo, las redes CNN nos sirven para resolver varios de
los problemas de visién por computadora. Dos de estos problemas son la clasificacién
y la deteccion. En esta seccion abordaremos las diferencias entre estos dos problemas,
asf como la forma en la que una red CNN es capaz de resolverlos. Veremos también de
forma genérica la estructura y los datos que devuelven las redes neuronales totalmente
conectadas.

Clasificacion

Este problema consiste en determinar el tipo de objeto al que corresponde cada
uno de los objetos analizados dentro del mismo conjunto de datos. En este caso, como
abordamos el problema desde una perspectiva de visiéon por computadora, el reto es
determinar qué tipo de objeto aparece en una imagen o conjunto de pixeles.

Las redes CNN que resuelven este tipo de problemas, de manera general en el
entrenamiento, tienen como entrada la imagen o los pixeles que la conforman y un
vector que determina el grado de pertenencia a las diferentes clases. Este usualmente
esta codificado con valores del 0 y 1, ya que la misma salida a la hora de la evaluacion
del modelo nos regresara un vector parecido, pero ahora con los diferentes grados de
pertenencia del 0 al 1.

En la figura 2.7 se muestra: la fase de entrenamiento con un conjunto de datos
que contiene tres clases diferentes (Gato, Perro, Auto). Podemos ver las imagenes de
entrada de la red CNN asi como el vector en el cual se codifica las clases, quedando
de la siguiente forma gato [1,0,0], perro [0,1,0] y auto [0,0,1|. De igual forma, en la
misma figura 2.7 se representa la parte del uso del modelo ya entrenado la cual nos
devuelve la probabilidad de pertenencia a cada clase.

Cinvestav Departamento de Computacion

Marco Teorico 11

Entrenamiento

Red CNN

Prueba del modelo Salida

MCCCE

- o O =0 o=

N

Red CNI

Figura 2.7: Ejemplo de una red CNN en un problema de clasificacion.

03
0.5
0.9

T HEEEEsS

Deteccion

En este punto el siguiente paso es la detecciéon, es decir, ahora no basta solo con
identificar el objeto, es decir clasificarlo, sino que ahora es necesario ubicarlo espacial-
mente sobre la imagen y encerrarlo para delimitar el objeto dentro de un cuadrado
o rectangulo segin sea el caso. Esto nos permitird ahora clasificar mas de un solo
objeto en una misma imagen.

Para esto, es necesario agregar algunos cambios a los datos de entrada y la salida
serd, de igual forma, algo diferente. El primer cambio es que ahora, aparte de codificar
la clase a la que pertenece, se tiene que codificar también su ubicaciéon y para esto se
utilizan por lo regular tres formatos:

= Centro, ancho y alto: Este es el formato que utiliza la red YOLO y es el mas
cominmente utilizado debido a la popularidad de la misma red. Este formato se
compone de las coordenadas del centro del objeto, el alto y el ancho quedando
de la siguiente manera: {200, 200, 100, 100] suponiendo que el centro se ubica en
las coordenadas z = 200,y = 200 y el ancho y el alto son de 100 x 100 pixeles.

= Minimo y maximo: Este formato fue inicialmente utilizado por las primeras
redes de deteccion FastRCNN o la misma SSD en sus primeras versiones. Se
compone de un punto maximo y uno minimo y de esta forma se dibuja el cuadro
que encerrara el objeto. En la figura 2.9 podemos observar el objeto encerrado
con los puntos maximos y minimos en las siguientes coordenadas: minimo en
min(100,60) y maximo en max(520,910) (recuerde que en una imagen el origen
de coordenadas esta en el vértice superior izquierdo).

» Cuatro puntos: Por ultimo. Este es el formato menos utilizado, ya que se com-
pone directamente de los 4 puntos que encierran el objeto. Esto es mucho més
ineficiente, por lo tanto, ninguna de las redes CNN para deteccion utiliza este
formato en la actualidad.

Cinvestav Departamento de Computacion

12 Capitulo 2

Figura 2.8: Ejemplo demostrativo del formato centro ancho y alto.

Cinvestav Departamento de Computacion

Marco Tedrico 13

FE

Figura 2.9: Ejemplo demostrativo del formato puntos méximos y minimos.

Cinvestav Departamento de Computacion

14 Capitulo 2

Cabe mencionar que se puede cambiar o adaptar entre cualquiera de estos formatos
y transformarlos de uno a otro. Esto sirve porque algunas operaciones internas que
se realizan en las redes CNN para deteccion estan optimizadas para usar uno u otro
formato.

Cinvestav Departamento de Computacion

Marco Tedrico 15

Teniendo esto en cuenta podemos observar el siguiente ejemplo al igual que el
anterior de clasificacion pero ahora sobre una red CNN para deteccion.

Coordenadas Entrenamiento
5
0 [200.200,100,100] "
0
0 B
1 [250,250,200,300) ' &
0
o
0 [300,450,200,300]
1
Prueba del medelo Salids Coordenadas
Red CNN
— - 0.3
' in i 0.5
i 2 0.9 [300,450,200.300]
— -

Figura 2.10: Ejemplo de una red CNN en un problema de deteccion.

Como se puede ver en la figura 2.10, ahora no solo se ingresa el dato sobre la
clase a la que pertenece un objeto, sino también sus coordenadas y a la salida ob-
tenemos las coordenadas y su clasificacion. Por tanto, para la salida no tenemos un
solo resultado sino mas bien un tensor que contiene todas las detecciones es decir los

N elementos que se hayan considerado como objetos detectables més sus respectivos
grados de pertenencia.

Es facil intuir, entonces, que la caracteristica principal entre este tipo de redes
CNN para detecciéon de objetos es la forma la en que tratan las cajas y las técnicas
utilizadas para proponerlas en posibles regiones, asi como para decidir que caja se
selecciona como parte de un objeto.

Cinvestav Departamento de Computacion

16 Capitulo 2

2.3.3. Red convolucional YoloV5

La red convolucional YoloV5 es la quinta de las versiones de este tipo de redes que
ha mostrado ser de las mejores redes en cuanto a su relacion velocidad /exactitud, ya
que usualmente si se mejora uno de los aspectos, el otro tiende a empeorar bastante
como podemos ver en una de sus graficas reportadas en [1].

55 55 T x
50 50
& a S
SI§ 45 éE 45 4
< <
£ 40 A £ 40 A
o o
o o
S 354 —e— YOLOW O 35 —— YOLOW
© Small YOLOV7 © Fast YOLOV?
30 - 4& YOLOV6-2.0 30 - 4& YOLOV6-2.0
YOLOV5-7.0 YOLOV5-7.0
0 20 40 60 80 1.0 1.5 2.0 2.5 3.0 3.5
Parameters (M) Latency A100 TensorRT FP16 (ms/img)

Figura 2.11: Grafica que muestra el tamano de los pardmetros entrenables contra
la exactitud media. Del lado derecho gréfico de velocidad en milisegundos contra
exactitud media. Estas graficas fueron obtenidas de [1].

En la figura 2.11 podemos observar los resultados obtenidos con las diferentes
versiones de la red Yolo, asi como los diferentes tamanos de las mismas, ya que éstos
estan clasificados como:

Nano : representado como n

Small : representado como s

Medium : representado como m

Large : representado como 1

Extra Large : representado como x

El gréafico de la izquierda de la figura 2.11 también muestra el aproximado de la

cantidad de parametros en un orden de millones sobre el eje de las x y sobre el eje de
las y la exactitud media del modelo entrenado con la red COCO.
Y del lado derecho de la figura 2.11 se muestra de igual forma sobre el eje de las
y la precision media. Sin embargo, sobre el eje de las y ahora se muestra el tiempo
de procesamiento por imagen en milisegundos sobre la plataforma de NVIDIA A100
para redes neuronales.

Como podemos ver la mejora no es muy significativa de la version 5 a la 8 en sus
tamanos pequenos del small al medium, en cuanto a la relacion exactitud/tamano.

Cinvestav Departamento de Computacion

Marco Teorico 17

Ademas, se integraron muchas otras técnicas creciendo en complejidad de implemen-
tacion, también tomando en cuenta que esta red es muy reciente y que es mantenida
por la comunidad. Versiones posteriores a la 5 de la red Yolo no tienen articulos pu-
blicados a la fecha. Es por eso que se decidi6 trabajar con la red YoloV5, pues ademés
se cuenta con un facil acceso al modelo preentrenado para esta red.

De igual forma, en la figura 2.12 podemos observar la comparacion de los distin-
tos tamanos de red y su rendimiento, asi como una comparacion directa con la red
EfficentNet proporcionada en [1].

55 Better
YOLOv5x6
50 o |
_ 45 -
©
> @
o
<o‘ 40 - 4
S —e— YOLOV5Nn6
S] YOLOV5s6
—e— YOLOV5m6
—eo— YOLOV5I6
30 A —o— YOLOV5x6
* YOLOV5n6 o EfficientDet
25 ' '
0 40 50

10 20 30
Faster <@ GPU Speed (ms/img)

Figura 2.12: Grafica de rendimiento YoloV5. Esté grafica fue obtenida de [1].

En el mismo repositorio proporcionado por pytorch [I] se muestra informacion
acerca del tamano y la entrada de cada una de las versiones de YoloV5.

Tabla 2.1: Comparacion entre distintas versiones de la arquitectura YoloV5 en sus
versiones de entrada de 640 x 640.

Nombre | Cantidad de parametros (en millones) | Tamano de imagen de entrada
YOLOv5n 1.9 640 x 640
YOLOv5s 7.2 640 x 640
YOLOv5bm 21.2 640 x 640
YOLOvSI 46.5 640 x 640
YOLOv5x 86.7 640 x 640

Cinvestav Departamento de Computacion

18 Capitulo 2

Arquitectura

La arquitectura YoloV5 se compone de 24 capas como la red Yolo original y por lo
regular todas las versiones tratan de mantenerlas. Sin embargo, como veremos a con-
tinuacion en la imagen 2.15, se agrupan las capas por diferentes “técnicas” utilizadas
para mejorar la red. Es decir, no son como tal 24 capas convolucionales solamente, ya
que cada una de las capas se consideran con un conjunto de capas convolucionales y
de agrupacion, las cuales se justifican como diversas técnicas de mejora de extraccion
de caracteristicas. Dado esto, la variacion real de la cantidad de capas convolucionales
radica en el tamano elegido como vimos en la tabla 2.1, estd dado por los tamanos,
nano, small, medium, large y extra large. Por tal motivo, se cambia la cantidad de
parametros entrenables pero siempre conservando la arquitectura mostrada en el dia-
grama de la figura 2.15.

Otra forma en la que cominmente se representa la arquitectura Yolo es dividiendo
las etapas convolucionales en secciones, de la siguiente manera:

= Red troncal: Es una modificaciéon de la Darknet53, la red convolucional que se
utiliz6 en anteriores versiones de la red Yolo.

= Cuello: Esta parte es la que conecta la red troncal con la cabeza, en este caso
utilizando SPPF(Spatial Pyramid Pooling) y PAN-Net.

= Cabeza Esta parte se encarga de dar el resultado final de la deteccion, por lo
tanto, éste incluye la red totalmente conectada, es decir, la red de clasificacion.

Esto puede verse en el diagrama 2.13 reproducido del articulo [2].

Ome-Stage Detector

Input | T Backbone Neek [Demse Prediction Sparse Prediction

Q
v

\a
M)

Figura 2.13: Diagrama de la arquitectura Yolov4 representando otra forma en que se
dividen las capas de las arquitecturas Yolo modernas (este diagrama fue tomado del
articulo [2]).

Cinvestav Departamento de Computacion

Marco Tedrico 19

Tomando todo esto en cuenta, podemos empezar por entender que existen las
denominadas “capas de la arquitectura YoloV5” llamadas C3 y éstas internamente se
componen de varias capas convolucionales como podemos ver en la figura 2.14.

A 4

Convolucion
Stride = 2
Padding =1
Kernel=3x 3
Entrada = 64
Salida = 128
160 x 160 x 128

y

Convolucion
Stride = 1

Padding =0

Entrada =128

Kernel =1 x1 Se divide el mapa de caracteristicas.

Salida = 64
160 x 160 x 64

Y

Convolucion
Stride = 1
Padding = 0
Kemel =1x1
Entrada = 64
Salida = 64
160 x 160 x 64

Bottleneck x3

A

Convolucion
Stride = 1
Padding = 1
Kernel = 3x 3
Entrada = 64
Salida = 64
160 x 160 x 64

C31
Convolucion
Stride =1
Padding = 0
Kernel=1x1
Entrada = 128
Salida = 64
160 x 160 x 64

Y

/ Concatenacion

Y

-\
N\

Figura 2.14: Ejemplo de capa C3

»
r

160 x 160 x 128

En la figura 2.14 podemos observar cémo el nimero de mapas de caracteristicas
de entrada se divide en dos, manteniendo la mitad intacta, mientras que la otra mitad
del mapa de caracteristicas que mandan a otra subcapa llamada bottleneck o cuello
de botella que se compone de 2 convoluciones, esta subcapa se repetird N veces. En el
diagrama estan simplificadas las partes mas redundantes, por lo tanto, eso se repetira
3 veces para este ejemplo. La salida del resultado de aplicar el cuello de botella 3
veces se sumard a la mitad intacta de entrada y este valor, a su vez, se concatenara

Cinvestav Departamento de Computacion

20 Capitulo 2

con la otra mitad de los mapas de caracteristicas. En este ejemplo, la entrada del
mapa de caracteristicas es de 128 dividiéndolo asi en 2 partes de 64 y después de
todo el proceso anteriormente mencionado se vuelven a concatenar ambos mapas de
caracteristicas volviendo a una salida de 128.

Después de cada operacion C3, sigue una reduccion (usualmente a la mitad) uti-
lizando filtros de 3 x 3 para después aplicar de nuevo a los nuevos mapas de carac-
teristicas reducidos. Esto se repetird 4 veces incrementando al doble el ntimero de
iteraciones sobre el cuello de botella excepto por la tltima operacion C3 antes de
la operacion SPPF. Toda esta region, incluyendo la operacion SPPF comprende la
region troncal y cuello que en la version 4 de la red Yolo se consideraban como dos
regiones. En la version 5 de la red Yolo se denomina solo como region troncal.

2.3.4. Operaciones especiales de la arquitectura YoloV5

Como vimos, la arquitectura YoloV5 se basa principalmente en un conjunto de
diferentes operaciones y técnicas utilizadas que por si mismas se utilizaron con diversos
fines. En esta secciéon abordaremos dichas operaciones y su fundamento.

Agrupamiento piramidal espacial (spatial pyramid pooling)

Esta es una técnica que fue investigada en el articulo 3] para usar tamanos de
entrada dindmicos, es decir, que las convoluciones no se apliquen sobre regiones del
mapa de caracteristicas fijo, sino que éstas puedan aplicarse sobre regiones de interés.

Esta se aprovecha de la operacion de agrupacion (pooling) y de ahi su nombre para
agrupar las regiones de interés. Como vimos anteriormente, la agrupacioén permite que
nos quedemos con las caracteristicas més significativas o de mayor valor, reduciendo
asi el tamano del mapa de caracteristicas. mientras que con otras técnicas las regiones
de interés son de tamano fijo. En este caso se proponen dichas regiones como podemos
ver en la figura 2.16 [3].

Cinvestav Departamento de Computacion

Marco Teorico 21

y

Imagen de entrada
640x640x3

N T

Convolucion
Stride = 2
Padding = 2
Kernel =

Entrad:
Salida = 64
320 x 320 x 64

1

Convolucién
Stride = 2
Padding = 1
Kernel =3 x 3
Entrada = 64
Salida = 128
160 x 160 x 128

e

c3

+
GhostNet Cuello de botella (Bottleneck)x3
Entrada = 160 x 160 x (128/2)

Salida = 160 x 160 x 128

Convolucién
Stride = 1
Padding = 0
Kernel =1x 1

Convolucién
Stride = 2
Padding = 1
Kernel =3x 3
Entrada = 128
Salida = 256
80 x 80 x 256

c3

S
GhostNet Cuello de botella

Entrada = 256
Salida = 255
80 x 80 x 255

Entrada = 80 x 80 X (512/2)
Salida = 80 x 80 x 256

c3

+
GhostNet Cuello de botella (Bottleneck)x6
Entrada = 80 x 80 x (256/2)

Salida = 80 x 80 x 256

Convolucion
Stride = 2
Padding = 1
Kernel =3 x 3
Entrada = 256
Salida = 512
40 x 40 x 512

oncatenacion
80x80x512

Reescalado
40x40x256 ->
80x80x256

Convolucién

Stride =
Padding = 0
Kerel=1x1
Entrada = 512
Salida = 256
40 x 40 x 256

Convolucién
Stride = 2
Padding = 1
Kernel =3x 3
Entrada = 256
Salida = 256
40 x 40 x 256

oncatenacion
40x40x512

Convolucion
c3 Stride = 1
+ Padding = 0
GhostNet Cuello de botella (Bottleneck)x3 Kernel =1x 1
Entrada = 40 x 40 x (512/2) Entrada = 512
Salida = 40 x 40 x 512 Salida = 255

40 x 40 x 255

c3

+
GhostNet Cuello de botella

c3

S
GhostNet Cuello de botella (Bottleneck)x3
Entrada = 40 x 40 x (1024/2)

Salida = 40 x 40 x 512

Entrada = 40 x 40 x (512/2)
Salida = 40 x 40 x 512

Convolucién
Stride = 2
Padding = 1

Kemel=3x3
Entrada = 512
Salida = 1024
20 x 20 x 1024

‘Concatenacion
40x40x1024

Reescalado’
20x20x512 ->
40x40x512

Agrupacion piramidal espacial(Spatial Pyramid
Pooling

ooling)x3
+
Entrada = 20 x 20 x 1024
Salida = 20 x 20 x 1024

Convolucion
Stride = 1
Padding = 0
Kernel =1x 1
Entrada = 1024
Salida = 512
20x20x 512

Convolucion
Stride = 2
Padding = 1
Kernel =3 x 3
Entrada = 512
Salida = 512
20x20x 512

‘Concatenacion
20x20x1024

Convolucién
c3 Stride = 1
+ Padding = 0
GhostNet Cuello de botella (Bottleneck)x3 Kernel =1 x 1

Entrada = 20 x 20 x (1024/2) Entrada = 1024
Salida = 20 x 20 x 1024 Salida = 255
20x 20 x 255

Figura 2.15: Diagrama de la arquitectura Yolovh subdividido en regiones: rojo, region
troncal (backbone); verde: cuello (neck); y morado: cabeza (head).

Cinvestav

Departamento de Computacion

22 Capitulo 2

ENESPNES
= B
Fﬂﬁﬁ

~Fr

(a) image (b) feature maps (c) strongest activations

Figura 2.16: Ejemplo de cémo se proponen las regiones de interés dependiendo de la
regién con mayor activacion [3].

Como se puede observar al utilizar la operacion de agrupacion con diferentes tama-
nos de filtro, se pueden acentuar mejor las caracteristicas, denotando asi las regiones
de interés, las cuales posteriormente se pasaran a las capas totalmente conectadas
o la parte de clasificacion. En la figura 2.17 podemos ver la arquitectura propuesta,
delimitada por la regiéon rectangular. Se puede observar la parte del SPP que consis-
te en aplicar tres diferentes operaciones de agrupamiento del maximo con diferentes
tamanos de filtro después de hacer la parte de extraccion de caracteristicas con las
convoluciones anteriores. En el mismo articulo [3] se menciona que se prob6 esta téc-
nica en la red convolucional de deteccion RCNN (Regional Proposal Convolutional
Neural Network). Con el conjunto de datos PASCAL VOC 2007 mostré ser un 4 %
mas exacta la red con SPP, pasando de un 55.2% a un 59.2 %.

Tabla 2.2: Descripcion de la arquitectura propuesta de APE en el articulo [3].

Agrupacion (pooling) | Tamano | Paso (stride)
1 5 X b 4
2 7T 6
3 13 x 13 13

De forma resumida podemos decir que la técnica de agrupamiento piramidal espa-
cial nos permite trabajar con regiones de interés de tamano variable aprovechando la
operacion de agrupacion (Max-Pooling) dejandonos con los mapas de caracteristicas
més representativos al utilizar los tres tamanos diferentes de ventana como se muestra

Cinvestav Departamento de Computacion

Marco Tedrico 23

fully-connected layers (fcg, fcq)

t

fixed-length representation
I - - . D |
i o ™
I . - - - - - - . I
4 16%256-d {i 4x256-d " 256-d
L S S S S
YA AR AR AR 4
L > A
spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

‘ convolutional layers

input image

Figura 2.17: Arquitectura propuesta de APE (Agrupacion Piramidal Espacial). Este
diagrama fue extraido de [3].

Cinvestav Departamento de Computacion

24 Capitulo 2

en la tabla 2.2 y agrupandolas posteriormente, de esta forma ahorrdndonos el proceso
de segmentar la imagen.

GhostNet

Esta red segun el articulo |1], més que una técnica es una red como tal. Sin
embargo, dentro de esta red convolucional lo que la hace especial es una seccién
llamada GhostNet bottleneck (cuello de botella) que lo que trata de hacer es obtener
més caracteristicas de una misma entrada haciendo varias iteraciones sobre si misma
y sumando dichas caracteristicas haciendo que resalten mas regiones de activacion del
mapa de caracteristicas. Como podemos observar en la figura 2.18 esta es la misma

BN Ghost module

Ghost module
3
Ghost module BN RelU

Ghost module

Stride=1 bottleneck
Stride=2 bottleneck

Figura 2.18: Arquitectura de moédulo Ghostnet Bottleneck (cuello de botella) [1].

técnica utilizada en el bottleneck de las operaciones C3 de la red YoloV5.

Cinvestav Departamento de Computacion

Marco Tedrico 25

¥

Convolucion
Stride = 2

Padding = 1
Kernel =3x 3
Entrada = 64
salida = 128

160 X160 X128

|

v c31

Convolucion

Cenvelucien
Stride = 1 Stride = 1
Padding =0 Padding = 0
Kernel =1 x 1 Se divide el mapa de caracteristicas.| Kernel =1x 1
Entrada =128 Entrada = 128
Salida = 64 Salida = 64

160 X 160 x 64 160 x 160 x 64

——]

Convolucion
Stride = 1

Padding = 0
Kemel = 1x 1
Entrada = 64
salida = 64

160 X 160 x 64

l Bottleneck x3

Convolucion
Stride = 1
Padding = 1
Kernel = 3x 3
Entrada = 64
Salida = 64
160 x 160 x 64

Modulo GhostNet

N Concatenscion
K—/ 160 x 160 x 128

Figura 2.19: Moédulo cuello de botella de GhostNet en la red YoloV5

El uso de esta técnica mostré que es capaz de remarcar o generar mapas de ca-
racteristicas mas contrastadas, y extrayendo mas caracteristicas al concatenar los
mapas de caracteristicas de entrada con los procesados. Esta técnica fue aplicada so-
bre la arquitectura VGG-16 y ResNet-56 para clasificacién, mostrando que mantiene
la exactitud de la red original, pero con menos célculos de punto flotante y, por tan-
to, siendo una buena opcion, puesto que las operaciones de punto flotante son mas
costosas computacionalmente.

Tabla 2.3: Comparacion de arquitecturas VGG-16 y ResNet-56 con sus variantes con
la técnica GhostNet implementada [].

Modelo Operaciones de punto flotante (FLOPs) | Exactitud
VGG-16 313M 93.6
VGG-16 GhostNet 158M 93.7
ResNet-56 1256M 93.0
ResNet-56 GhostNet 63M 92.7

En el articulo [/] se muestra una representacion de los mapas de caracteristicas
dada la misma imagen de entrada para observar de manera mas visual el efecto que
produce sobre los mapas de caracteristicas. En esta técnica se puso la misma imagen
de entrada en la red ya entrenada VGG-16 y se comparé con la red VGG-16 GhostNet
y se observaron los mapas de caracteristicas de la segunda capa de convolucion de la

Cinvestav Departamento de Computacion

26 Capitulo 2

red mostrando asi los mapas de caracteristicas extras que se obtuvieron después de
aplicar esta técnica.

Figura 2.20: Comparacion del mapa de caracteristicas original en el recuadro rojo y
en el recuadro verde, el mapa de caracteristicas obtenido con la técnica GhostNet,
Este ejemplo fue extraido del articulo [1].

Cinvestav Departamento de Computacion

Marco Teorico 27

Red piramidal de caracteristicas (feature pyramid network)

En el area de vision, especificamente en el problema de deteccion utilizando redes
neuronales convolucionales se han llevado a cabo diferentes técnicas para segmentar
o proponer regiones de interés, es decir, regiones donde se encuentra un objeto para
posteriormente ser clasificado. Una de estas técnicas ampliamente usada consiste en
crear una pirdmide de mapas de caracteristicas que nos permite hacer detecciones a
diferentes escalas o relaciones de aspecto. A diferencia de una red convolucién normal
de clasificacion donde se realiza una prediccion al final de todas las convoluciones, en
una red piramidal de caracteristicas se hacen predicciones a diferentes tamanos de
mapas de caracteristicas de entrada.

(2} Featunzed image pyramid (b) Single feature map
(7=
VR —

() Pyramidal feature hierarchy {d) Feature Pyramid Network

Figura 2.21: Ejemplos de las diferentes técnicas de extraccion de caracteristicas pira-
midal para deteccion. [5].

Lo que podemos observar en la figura 2.21 son los siguientes ejemplos:

a. Piramide de caracterizacion de imagen: En este caso se entrena la red con imé-
genes de diferentes tamanos, ya sea teniendo la entrada original y escalando la
imagen con algin algoritmo de escalado tradicional. Extrayendo los mapas de
caracteristicas de cada una de las imagenes, esto es el equivalente a tener varias
redes entrenadas con diferentes tamanos corriendo en paralelo.

b. Unico mapa de caracteristicas: Es la forma mas sencilla y bésica de una red
convolucional esto es ampliamente utilizado por redes convolucionales de cla-
sificacion donde entra una imagen de un tamano determinado y es a esta a la
que se le aplican todas las convoluciones y no es hasta el final de estas donde
se realiza la clasificacion.

c. Jerarquia piramidal de caracteristicas: Es muy parecida a la anterior donde
entra una sola imagen y a esta se le aplican convoluciones con diferentes filtros
reduciendo las dimensiones del mapa de caracteristicas, sin embargo, en esta no

Cinvestav Departamento de Computacion

28 Capitulo 2

es necesario esperar a que terminen todas las convoluciones para empezar a hacer
predicciones, sino que se aprovechan los diferentes mapas de caracteristicas de
diferentes tamanos para clasificar esta técnica es utilizada por redes de deteccion
como la SSD y la Yolo en su primera versiéon es normalmente representada como
una rejilla de diferentes dimensiones sobre la imagen, donde el tamano de la
rejilla esta dada por el tamano del mapa de caracteristicas en cada capa.

d. Red piramidal de caracteristicas: En este caso de igual forma se parte de un
solo tamano de imagen y se va reduciendo el mapa de caracteristicas a tra-
vés de diferentes filtros, no obstante, al llegar al tamano minimo del mapa de
caracteristicas empieza una expansion de la misma concatenando el mapa de
caracteristicas de las primeras etapas teniendo asi mapas de caracteristicas mas
abstractos asi como menos abstractos de las mismas dimensiones en un solo ten-
sor por capa, haciendo para cada una de estas la clasificacion, enriqueciendo asi
la profundidad del mapa de caracteristicas. Esta es la arquitectura aprovechada
por la red YoloV5 y propuesta en el articulo |5].

Esta técnica ofrecié una capacidad tnica para mejorar la deteccion a diferentes esca-
las sin tener que anadir algoritmos més complejos para proponer tamanos de rejilla
o cajas, reduciendo asi el costo computacional obteniendo asi una mejor precision en
la deteccion de objetos de diferentes dimensiones gracias la multiple deteccion de di-
ferentes caracteristicas a diferentes escalas del mapa de caracteristicas. Esto se logra
atreves del uso de dos técnicas llamadas de abajo hacia arriba (Bottom-up) y arriba
hacia abajo (top-down), donde la primera es la clasica estructura de red convolucio-
nal donde se parte de un tamano arbitrario y se va reduciendo las dimensiones del
mapa de caracteristicas, pero aumentando la profundidad por el nimero de filtros
aplicados. Mientras que la segunda toma el mapa de caracteristicas mas abstracto o
de menor resolucion y lo combina con secciones de mayor resolucion, haciendo mapas
de caracteristicas mas enriquecidos.

Aumentacion de datos (data augmentation)

Esta es una técnica implementada solo para el entrenamiento y no afecta a la
arquitectura de la red convolucional, esta técnica estd més relacionada con los datos
de entrenamiento. Que trata de partir de los datos de entrenamiento, extraer carac-
teristicas de los mismos datos y crear datos de entrenamiento sintéticos extras en
tiempo de entrenamiento. Teniendo méas datos con los que el modelo puede entrenar
y reduciendo asi el almacenamiento requerido de los datos, pero aumentando un poco
el tiempo de ejecucion al implementar estas técnicas.

Al estar tratando con imagenes, en este caso las técnicas de aumentacion utilizadas
tienen que ver con los pixeles de las figuras encerradas de los datos de prueba, en este
caso la implementacion de YoloV5 de [1] tiene seis técnicas de aumentacion de datos.

1. Aumentaciéon de datos mosaico: Consiste en tomar cuatro imégenes del conjunto
de datos de entrenamiento y crear una nueva imagen, dejando espacios aleatorios

Cinvestav Departamento de Computacion

Marco Tedrico 29

entre las cuatro imagenes y reescalando las imégenes dentro de la nueva imagen
creada por el conjunto de las imagenes seleccionadas.

Figura 2.22: Ejemplo de aumentacion de datos mosaico YoloV5 [1].

2. Aumentacion de datos, copiar y pegar: consiste en tomar el objeto encerrado de
una de las imagenes del conjunto de entrenamiento y pegarlo sobre otra imagen
del conjunto de entrenamiento en una posiciéon al azar.

copy-paste

Figura 2.23: Ejemplo de aumentacion de datos copiar y pegar [1].

Cinvestav Departamento de Computacion

30 Capitulo 2

3. Transformaciones aleatorias: esto es parecido a la técnica mosaico, sin embargo,
este incluye poner las imagenes rotadas, giradas e incompletas.

Figura 2.24: Ejemplo de aumentacion de transformaciones aleatorias [1].

4. Aumentacion de datos por mezcla: consiste en tomar de igual forma cuatro ima-
genes del conjunto de entrenamiento y superponerlas en posiciones aleatorias,
haciendo transparente cada una de estas y variando el canal alpha para lograrlo,

creando de esta forma la nueva imagen.

Figura 2.25: Ejemplo de aumentacion de datos por mezcla Yolovh |[1].

Cinvestav Departamento de Computacion

Marco Teorico 31

5. Aumentacion de datos matiz, saturacion y valor (HVS): Este consiste en variar
ligeramente los colores de la imagen, ya sea saturandolos o cargando los valores
hacia diferentes canales para generar una imagen nueva.

Figura 2.26: Ejemplo de aumentacion de datos matiz, saturacion y valor (HVS) Yolovh

[1]-

6. Aumentacion de datos orientacion aleatoria: este método consiste en girar ho-
rizontalmente de igual forma las cuatro iméagenes seleccionadas para crear la
nueva imagen.

Figura 2.27: Ejemplo de aumentacion de datos orientacion aleatoria Yolovh [1].

Cinvestav Departamento de Computacion

32 Capitulo 2

2.3.5. Red convolucional SSD (single shot multibox detector)

La red convolucional SSD fue contemporénea a la version 1 y 2 de la red Yolo y
fue presentad por ingenieros de Google y la universidad de Michigan en el articulo
[6]. Esta red utiliza una sola red convolucional y predice cuadros delimitadores de
diferentes tamanos, esto en una sola ejecuciéon como bien lo dice en su mismo nombre
“un solo disparo” (single shot).

Red Base . B i I
Extractor de aracteristicas extra de diferentes escalas.

caracteristicas A

Imagen de
entrada
300 % 300x3

a3 Supr'es_idn no
Detecciones maxima
porcada || (Non-Maximum
dlase Supression)

VGG-16
Capa Convd_3 Convolucion Convolucion
3Bx38x512 [71 19%19%1024 [7| 19x 19 1024 Convolucion
10x10x512

Convolucion
5x5x256 Convolucion

3x3x256 Convolucién
1x1x128

Figura 2.28: Arquitectura de red convolucional SSD [6].

Como podemos ver en la figura 2.28, la arquitectura propuesta en el articulo [(]
se compone de tres diferentes partes, la primera es una arquitectura convolucional de
clasificacion, en este caso se propone utilizar la red VGG-16, sin embargo, no se utiliza
toda esta red. En el articulo [0] se hicieron varias pruebas y se determiné que la forma
mas eficiente es utilizar hasta la capa Conv4d 3 que da una salida de 38 x 38 x 512
siendo esta capa el primer tamano de ventana por el cual se detectara después se pasa
por una serie de convoluciones extra que nos reduciran las dimensiones, la cual nos
daran unas salidas para cada deteccion de los siguientes tamanos.

= 10 x 10 x 512
= 5 X H x 256
m 3 X 3 X256
s 1 x1x128

Donde segin la arquitectura propuesta del articulo [6] da una salida fija de 8732
detecciones por clase, es decir, son el nimero de ventanas que propone por cada
clase sobre la imagen, cada una de estas ventanas es clasificada, y posteriormente con

Cinvestav Departamento de Computacion

Marco Tedrico 33

la operacion de supresion no maxima (Non-Maximum Supression) se seleccionan las
ventanas mejor clasificadas y detectadas es decir en esta parte con esta operacion se
determina la ubicacion del objeto al eliminar las ventanas que se acerquen menos a
las coordenadas reales dadas en el entrenamiento.

Operaciones y técnicas especiales de la arquitectura

Como podemos observar de igual forma que la red YoloV5 la red convolucional SSD
utiliza un conjunto de varias técnicas previamente creadas que en conjunto permiten
generar una red convolucional mas robusta que permita hacer diferentes cosas para
las que fueron creadas originalmente.

Indice Jaccard

El indice Jaccard o interseccion sobre la uniéon que mide el grado de similitud
dados 2 conjuntos siguiendo la siguiente expresion J (A, B) = ﬁg—g, esto es usualmente
utilizado para medir el grado de similitud entre las cajas que predice el modelo con

las imagenes de pruebas y las etiquetas reales de las cajas con las que se crearon.

o J (A, B) =458

Caja real
Caja predicha

Figura 2.29: Ejemplo de uso de indice Jaccard en redes neuronales convolucionales.

En la figura 2.29 podemos ver que el area azul pertenece a la interseccién, mientras
que la unién perteneceria al area total de ambos conjuntos.

Detecciéon por mapas de caracteristicas de multiples escalas

Como podemos observar hasta ahora la operacién de detectar conlleva un proceso
de segmentacion de la imagen, el cual delimitara la posicion de los objetos a detectar
sobre la imagen, por lo tanto, no es de extranarse que lo que caracterice una red
convolucional de deteccion de otra es la forma en la que se segmentan o se crean estas
regiones de interés sobre la imagen. En el caso de la red SSD a diferencia de la YoloV5
que se aprovechaba de la técnica de agrupacion piramidal espacial (APE) y red de

Cinvestav Departamento de Computacion

34 Capitulo 2

caracteristicas piramidal para generar estas regiones de interés, la red SSD utiliza una
técnica similar en concepto, pero distinta en técnica, como vimos en la figura 2.21
hay diferentes formas de aprovechar los diferentes tamanos de los mapas de caracte-
risticas conforme se aplican las convoluciones para el problema de detecciéon en este
caso la forma mas similar como trabaja la red SSD siguiendo el mismo diagrama seria
la llamada jerarquia de caracteristicas piramidal (pyramid feature hierarchy). Donde

> predict

- > predict
/ , &

/ 4> predict

Figura 2.30: Arquitectura jerarquia de caracteristicas piramidal [5].

como podemos observar en la figura 2.30 se aprovecha la reduccién del mapa de carac-
teristicas haciendo predicciones para cada uno de los tamanos de las convoluciones,
directamente entonces segun la arquitectura SSD propuesta el niimero de prediccio-
nes. La red SSD utiliza cuadros predeterminados llamados anclas (anchor) parecidos
a los utilizados por la red RCNN (Region proposal network) que basicamente se usan
como referencias iniciales para las predicciones estas son las que anaden los diferentes
tamanos y escalas en la tarea de defeccion asi como proporcionan la rejilla inicial de
predicciones.

En el entrenamiento lo que sucede es una estrategia de ajuste donde las regiones
iniciales junto con sus predicciones se tratan de ajustar a algo que en el articulo [0]
denominan region verdadera (ground truth) utilizando como guia de proximidad el
indice Jaccard o unién sobre interseccién. De esta forma se discriminan las cajas o
detecciones que obtengan menor indice Jaccard y asi se aproxima a la ubicacién real
del objeto.

Cinvestav Departamento de Computacion

Marco Tedrico 35

Supresion del no maximo

Una de las tltimas etapas de la red SSD es utilizar la operaciéon de supresion
del no maximo, que segun explica el articulo [7] sirve principalmente para disminuir
el namero de cajas delimitadoras que apuntan al mismo objeto en el problema de
deteccion. La version clasica del algoritmo publicado en el articulo [13] que habla de

Figura 2.31: Ejemplo de la operacion supresion no maxima del articulo [7].

supresion no méxima funciona de la siguiente manera:

= Ordenamos las cajas por confianza, una vez obtenidos los grados de pertenencia
de cada una de las cajas se ordenan de mayor a menor segin la confianza que
represente para cada clase.

= Seleccionamos la caja con mayor confianza.
» Para las cajas restantes aplicamos el indice Jaccard.

» Eliminamos todas las cajas cuyo indice Jaccard sea menor al umbral definido
que segun el indice Jaccard si es menor a 0.5 se considera normalmente como
un conjunto totalmente diferente.

= Se repite el proceso hasta que al repetir el proceso el resultado del nimero de
cajas sea igual al anterior proceso realizado.

Cinvestav Departamento de Computacion

36 Capitulo 2

Cinvestav Departamento de Computacion

Capitulo 3

Desarrollo

3.1. Propuesta de solucion

La propuesta de solucién de forma general se compone de 3 etapas:

= Creacion de conjunto de datos sintéticos: En este punto se establecera el formato
del conjunto de datos, se utilizara el modelo de la cAmara oscura para la crea-
cion de las imagenes sintéticas, asi como se establecera un fondo que permita
diferenciar el marcador y facilite el entrenamiento de la red.

» Entrenamiento usando la red YoloV5: Se utilizara el modelo YoloV5 preentre-
nado, con la biblioteca de Python PyTorch.

= Entrenamiento usando la red SSD: Se utilizara el modelo SSD preentrenado,
con la biblioteca de Python PyTorch.

Utilizar el mismo hardware para el entrenamiento, asi como para la prueba de los

modelos entrenados.

Tabla 3.1: Especificaciéon de hardware

Etapa RAM CPU GPU S.0
Entrenamiento 252GB | Xeon 24 nucleos 48 hilos | RTX3070 8GB | Fedora
Prueba en tiempo real | 32GB Ryzen 5 5600x RTX 2060 6GB | Manjaro

Se establece como base de parametros utilizar para ambas arquitecturas un entre-
namiento de 300 épocas. para medir los tiempos de entrenamiento posteriormente al
utilizar transferencia de aprendizaje. También se propone utilizar la misma cantidad
de imagenes de entrenamiento por clase en ambas arquitecturas para comparacion,
sin embargo, si la arquitectura requiere mas imagenes de entrenamiento se aumenta-
ran, pero siempre respetando que para validacion se tomara el 10 % del numero de

imagenes.

37

38 Capitulo 3

3.2. Creacién de conjunto de datos sintéticos

Como vimos en el capitulo anterior del marco teérico donde se explican ambas
arquitecturas y funcionamiento, podemos observar que es necesario primeramente
contar con un conjunto de datos, es decir, imégenes asi como los datos de las coor-
denadas y clase a la que pertenecen codificados para cada imagen. En este caso se
decidi6é tomar el formato de la red YoloV) para codificar dichos datos en archivos in-
dependientes con extension CVS el cual separa cada uno de los datos por un espacio,
as{ como normalizar los datos con valores de 0 a 1, quedando como se muestra en la
figura 3.1.

0 03 03 04

Figura 3.1: Formato de codificacion de cajas delimitadoras elegido para ambas arqui-
tecturas

Donde, como se muestra en la figura 3.1 el formato elegido, el niimero coloreado de
color azur representa la clase, tomando en cuenta que la forma como estara codificada
cada clase sera [0,1,2...n] para cada una de las clases. Seguidamente, los proximos 2
ntmeros coloreados en rojo son las coordenadas del centro del objeto. Por tltimo, los
nimeros coloreados de color verde pertenecen al ancho y al alto de la caja.

Siguiendo las actividades del cronograma previsto en el protocolo de investigacion.
Se comenzé por ver la parte de la creacién de un programa que nos proporcione N
cantidad de datos generados automaticamente, en este caso de marcadores tinicamen-
te.

Para la realizacion del programa que permitiera la creacion de datos sintéticos, se
consideraron los siguientes aspectos:

1. Puntos del que conforman el marcador.

2. Modelo de la camara oscura.

3. El fondo

3.2.1. Marcadores

Como vimos en el capitulo anterior, los marcadores de tipo de orden son objetos
que son facilmente distinguibles y que se conforman por diferentes areas, area sin
ruido, el area de datos y los puntos que definen la etiqueta.

Debido a esto lo primero, fue fijar los marcadores, en este caso fijar el tamano de
los marcadores, asi como los puntos caracteristicos sobre la imagen que nos permitiran
diferenciar dicho marcador de otro. En este caso se propuso utilizar primeramente los
marcadores definidos en la tesis de maestria de Andres Curenio Ramirez [14].

Cinvestav Departamento de Computacion

Desarrollo 39

Tabla 3.2: Puntos que conforman el marcador 1

X y
0 0
0 | 255
255 | 0
255 | 255
145 | 18
92 | b4
Marcador 1
0
100 4
200 4
300 A
400 -
500 4
600 A
0 2lr:|U 46U EIDU

Figura 3.2: Marcador 1

Cinvestav Departamento de Computacion

40 Capitulo 3

Para el marcador 1 (mostrado en la figura3.2), las 4 coordenadas pertenecen al
recuadro negro, es decir, el drea de datos y los otros 2 puntos pertenecen a los que
conformaran el tridngulo que se forma cuando se unen con entre si y al punto central
de la imagen.

Tomando como referencia esta imagen, sé procedié a programar el modelo de la
camara donde se toman como parametros de entrada los puntos correspondientes a
la caAmara, los puntos del plano original y los puntos del plano transformado.

3.2.2. Modelo de la cAmara oscura

El modelo de la cdmara oscura nos describe una proyeccion de un objeto de tres
dimensiones sobre el plano en dos dimensiones, siendo el plano 2D una forma de
representar un sensor de “Céamara” imaginaria es decir el plano en el cual se le pro-
yectaran los puntos pertenecientes al objeto tridimensional. Por lo tanto, nosotros
aprovecharemos este modelo, ya que se pueden extraer los puntos pertenecientes a
estas transformaciones dandonos como resultado la proyeccion final. En el proceso,
se emplean las coordenadas de la ubicacion del objeto que necesitamos para el entre-
namiento de los modelos. Este modelo esta representado por la siguiente expresion
matematica:

Ap = K[R|t]P (3.1)

Donde p es el punto bidimensional de destino de la proyeccion, mientras que P es el
punto tridimensional del objeto que deseamos proyectar, K son los parametros de la
“Camara” imaginaria que definen las propiedades del plano el cual contiene los valores
del foco, R es una matriz de rotaciéon, y ¢ un vector de translacion.

Ya que la resolucion de entrada de las imagenes para la red neuronal YOLOV5 es de
640 x 640, la matriz de pixeles comienza en 0 y dado que se tomara el centro como
modelo, el modelo propuesto quedé en las coordenadas x = 319.5,y = 319.5. Una
vez propuesto el modelo y dado que se utiliza el mismo modelo de camara utilizado
en previas ocasiones, se conoce el foco que es 525 por tanto se procedié a aplicar el
modelo de la cAmara oscura.

Cinvestav Departamento de Computacion

Desarrollo 41

\p = K[R|t]P
= KR[I,—c|P
= K[I,—P
319.5
A (3195 = K[I,—c]P
1
_C[L‘
=K |I, |-¢, (3.2)
_CZ
(525 0 —ug| [1 0 0 —c,
=10 525 —y| [0 1 0 —¢
0 0 —-1]|0 01 —c
_’U()CZ 0 —Ug
= 0 525 —u
| 0 0 -1

Los parametros de la cAmara correspondientes vyug asi como la posicion de la camara

Cz, Cy, C;, seran elegidos aleatoriamente dentro de un rango de -4000 a 4000 dando asi
posiciones y transformaciones de perspectiva aleatorias a cada iteracién generando
al término de cada iteracion los puntos necesarios ya transformados, para generar la
imagen de salida.

Para la implementacion del coédigo que aplica el modelo de la cadmara oscura,
también se tomaron en cuenta ciertas restricciones que debian contener las transfor-
maciones. Esto debido a que las cajas delimitadoras e imagenes generadas a partir de
este modelo solo nos seran tutiles para el entrenamiento de los modelos YoloV5 y SSD,
si son imégenes cuyos puntos del modelo se encuentren dentro del lienzo de proyeccion
de 640 x 640 en el caso de la red YoloV5 y 300 x 300 para la red SSD. Asi mismo, la
perspectiva no debe ser tan pronunciada. Es decir, no debe ser tan préxima a 90 gra-
dos, puesto que solo se veria una linea y estos datos no serian validos para entrenar los
modelos SSD y YoloV5 asi como contribuirfan a meter mas ruido en el entrenamiento.

Como estos puntos ya estan dados en las coordenadas de pixeles de la misma
imagen, se tomaron éstas para crear los puntos de las cajas que envuelven al objeto
(también llamada la caja envolvente). Para esto, se tomaron las coordenadas de los
puntos menores y mayores respectivamente para asi tomar las coordenadas més ale-
jadas de todos los extremos y de esta forma se procedié a generar las coordenadas de
dichas cajas.

Cinvestav Departamento de Computacion

42 Capitulo 3

600 -

500 A

400 A

300 - °

200 A

100 A

0 100 200 300 400 500 600

Figura 3.3: La imagen de salida al aplicar el modelo de la cAmara oscura.

o Input o Output
100 100
200 200
300 300
400 A 400
500 500
600 600
0 200 400 600 0 200 400 600

Figura 3.4: Imagen transformada.

Cinvestav Departamento de Computacion

Desarrollo 43

Figura 3.5: Imagen transformada con la caja envolvente al marcador

En el fondo se utilizo el algoritmo llamado ruido Perlin para generarlos, esto es,
una funcién pseudoaleatoria que genera nimeros entre 0 y 1 utilizada en la creacion
de mapas de videojuegos que necesitan generarse aleatoriamente dada una semilla,
produciendo asi diferentes tipos de relieves.

Para el guardado de las imagenes, los archivos contendran el vector de entrada
con los datos correspondientes a [clase coordenadaX coordenadaY ancho largo],
donde las coordenadas X, Y pertenecen al punto central de la caja que encierra al
objeto, Esto permitiré que se dibuje la caja que lo rodea, usando el ancho y largo.

También es importante destacar que se realiz6 este programa que genera datos
sintéticos de forma genérica. Esto significa que, cambiando solo los valores de los
focos del modelo de la ciAmara oscura, asi como las dimensiones de la imagen que
se desee realizar y el rango de niimeros aleatorios que pertenecen a las rotaciones en
[z,y, z] del modelo de la camara oscura, el programa por si solo crearéa las imagenes
sintéticas en automatico. Para ello, se usaran los pardmetros dados cuidando que
los 4 puntos del marcador siempre estén en la escena, es decir, que no se salgan de
las dimensiones predefinidas de la imagen de salida previamente definidas. Esto hace
que dicho programa sea facilmente adaptable para crear conjuntos de entrenamiento
sintéticos para ambos modelos YoloV5 [1] y SSD cuyas dimensiones de entrada varian.
El modelo Yolov) utiliza entradas de imagen de 640 x 640 mientras que el modelo
SSD utiliza tamanos de imagen de entrada de 300 x 300.

3.2.3. Ruido Perlin

Se propuso utilizar el ruido Perlin como fondo debido a que genera valores alea-
torios basados en gradientes. Por lo tanto, si estos valores son interpretados como
intensidades de los valores de los pixeles que necesitamos como fondo, entonces esto
mostrara imagenes con degradados aleatorios. Esto permite diferentes patrones mas
parecidos a los gradientes de luz proporcionados por una imagen obtenidos por una
camara, a diferencia de la tesis [$] donde se utilizan de fondo valores aleatorios 0 y 1

Cinvestav Departamento de Computacion

44 Capitulo 3

para cada pixel de la imagen, teniendo cambios bruscos en la intensidad de los pixeles.

Figura 3.6: Fondo utilizado en la tesis de maestria de Gonzalo Adédn Chavez Fragoso

1]

Figura 3.7: Fondo con ruido Perlin propuesto

Este tipo de ruido es famoso en el ambito del cine y los videojuegos al crear
patrones de fisica, como humo o polvo, asi como para la creacion de mapas procedu-
rales en juegos de mundo abierto. Este tipo de ruido pseudoaleatorio se calcula por

Cinvestav Departamento de Computacion

Desarrollo 45

la interpolaciéon de varios nimeros de gradientes precalculados, en espacios de dos
dimensiones.

Se decidi6 utilizar la libreria de Python que nos ayuda a generar ruido Perlin
llamada Perlin-noise, instalada a través del gestor de paquetes pip [15]. De tal forma,
simplemente pasamos a la funcion noise() los parametros de tamano de [x,y| del
tamano de imagen que deseamos crear. Internamente, ya se cuenta con los gradientes
correspondientes y se genera la matriz de salida con un formato correcto para imprimir
con mathplotlib. De esta forma podemos rescatar y almacenar la imagen de fondo.

3.2.4. Entrenamiento YoloV5

Para comenzar se utilizé el modelo preentrenado de la red YoloV5 proporcionado
por Pytorch [I]. Este modelo se entrené previamente con el conjunto de datos de
entrenamiento COCO [9], que segun el sitio oficial del conjunto de datos consta de
200 mil imagenes etiquetadas y 80 clases.

Se realizé un estudio de como fue entrenada la red, es decir, y como fue implemen-
tada para poder ser reentrenada con éxito. Para realizar el primer entrenamiento se
crearon 2000 imégenes sintéticas de entrenamiento con el procedimiento y parametros
anteriormente mencionados, asi como 200 imagenes extra de prueba para realizar las
pruebas del modelo correspondientes al 10 % de las imagenes de entrenamiento.

Una vez creadas las imagenes de entrenamiento y prueba, se procedi6é a crear una
carpeta que contendria en conjunto de datos de entrenamiento. En la documentacion
de la red YOLOV5 [1] se indica que ésta trabaja con un formato llamado YAML, el
cual es parecido a XML o Json, en el cual se deben especificar los siguientes datos:

Path: Ruta tomando como raiz el sitio donde se ejecuta el programa en Python.

train: Carpeta donde se ubican los datos de entrenamiento tomando como raiz
la ruta guardada en «Path» anteriormente mencionada.

test: Carpeta donde se ubican los datos de prueba tomando como raiz la ruta
guardada en «Path» anteriormente mencionada.

names: La cantidad de clases seguida de dos puntos (:) y el nombre de la clase.

Seguido de esto se crearon los directorios correspondientes a dichas rutas y se
almacenaron las imégenes para entrenamiento en la carpeta «images». Las etiquetas
se almacenaron en la carpeta «labelsy para entrenamiento y prueba respectivamente.

Posteriormente, se procedié a entrenar la red neuronal con los nuevos conjuntos
de entrenamiento con la version small, utilizando Pytorch y sus herramientas que
facilitan el entrenamiento y re-entrenamiento de varios tipos de redes.

La documentacion de la red neuronal YOLOv5 [1] menciona que la salida de la
red neuronal tiene como salida un vector con los grados de pertenencia a cada clase,

Cinvestav Departamento de Computacion

46 Capitulo 3

asi como las coordenadas con los mismos tipos da dato con los que fue entrenado, es

decir [gradosDePertenencia coordenadaX coordenadaY ancho largo].
Posteriormente, la documentacion de Pytorch de la red Yolov5 [I| menciona que

debemos ejecutar el entrenamiento del modelo con el siguiente comando de ejemplo:

python train.py --img 640 --epochs 3 --data cocol28.yaml
--weights yolovbs.pt

donde los parametros que se le pasan al archivo son los siguientes:

Tabla 3.3: Parametros para entrenamiento segin la documentacion de Pytorch [I]

Parametro Descripcion
—img Tamano de las iméagenes de entrenamiento y validacion.
—epoch Numero de épocas.
—data Nombre o ruta del archivo previamente creado que contiene

las rutas de las carpetas de los archivos de imégenes
etiquetas para entrenamiento y validacion, respectivamente.
—weigths Nombre o ruta del archivo
del modelo preentrenado.

Experimento con red YoloV5 entrenada

Posteriormente, se disen6é un experimento para medir las distancias y angulos a
los que se tiene un grado de pertenencia aceptable predicho con los pesos del modelo
ya entrenado. El experimento consiste en medir el largo de dos mesas. En este caso,
ambas mesas median 1.20 m. Después, estas mesas fueron marcadas con cinta cada
10 cm para asi mover el marcador de 10 en 10 centimetros hasta detectar una bajada
menor al 60 % en el grado de pertenencia al cual corresponde al equivalente real a
confundirlo con ruido en la imagen.

También se tomd en cuenta el &ngulo de rotacion sobre el eje X, para esto se marco
una tabla con los grados del 0 al 180 de igual forma de 10 en 10 para ir rotando el
marcador sobre esta referencia y de esta forma detectar el &ngulo en el que el modelo
deja de mostrar un grado de pertenencia convincente.

La camara de la prueba fue la PlayStation Eye, la cual, como se menciona en el
capitulo anterior, ya tiene calculado su foco siguiendo el modelo de la cAmara oscura.
Con esta camara se calcularon las rotaciones y distancias siguiendo el mismo modelo
para la creacion de las imagenes sintéticas. La camara se fij6 con un tripié al frente
de las mesas marcadas a una altura de 12 c¢m sobre la mesa.

Para tener un ambiente més realista sé probo el modelo en tiempo real.

Cinvestav Departamento de Computacion

Desarrollo 47

Figura 3.8: Mesa de 1.20 m marcada

Figura 3.9: Mesa marcada con cinta cada 10 cm

Cinvestav Departamento de Computacion

48 Capitulo 3

Figura 3.10: Tabla marcada con angulos cada 10° de 0° a 180°

Cinvestav Departamento de Computacion

Desarrollo 49

Figura 3.11: Probando Miultiples marcadores.

Como podemos observar en la figura 3.11, al utilizar multiples marcadores se pueden
detectar todos a diferentes distancias, con diferentes posiciones y diferentes dngulos
de inclinacién, asi como con un menor grado de pertenencia los reflejos creados por
éstos sobre la mesa.

mar Q_“%
mar_cﬁ%orj . 4'/

d

xeles de la imagen: 387280

| marcador 0.53117
=N | &l

© " ~““marcador1 0.44

e —
p—— .

—_—

marcader] 0.34
[

Figura 3.12: Calculo del porcentaje de pixeles de falla del modelo.

En la figura 3.12, se muestra el calculo del porcentaje de pixeles necesario que hace
fallar el modelo mediante un script que cuenta los pixeles y obtiene el porcentaje sobre
el tamano total de la imagen de entrada.

Cinvestav Departamento de Computacion

50 Capitulo 3

Figura 3.13: Calculo de porcentaje de pixeles del marcador para reconocimiento.

marcador1 0.25 4y
marcador

—

marcadori
i

marcador1 0.298marcador1 0

e -

Figura 3.14: Calculo de porcentaje de pixeles del marcador para falla.

Cinvestav Departamento de Computacion

Desarrollo 51

marcador1 0.29

~marcador1 0.78 s

Figura 3.15: Calculo de porcentaje de pixeles del marcador horizontal para falla.

“marcador1 0.28

Figura 3.16: Prueba poniendo la mano encima del marcador.

Cinvestav Departamento de Computacion

52 Capitulo 3

En las figuras 3.13, 3.14 y 3.15 se muestran las pruebas realizadas para validar
los limites del modelo entrenado al cubrir diferentes porcentajes del marcador tanto
en horizontal como en vertical. En la figura 3.16 se muestra parcialmente cubierto
con formas irregulares como lo son los dedos de una mano, para ver el poder de
generalizacion al exponerlo a problemas para los que no fue preparado.

3.2.5. Experimentos con la Arquitectura YoloV5 Modificada

Para este punto, ya que hemos visto que la arquitectura YoloV5 completa fun-
ciona bastante bien para detectar un solo marcador, se planted, segin los objetivos
de esta tesis, una reduccion de las capas para mejorar el proceso de entrenamiento.
El primer intento se realiz6 tomando en cuenta solo la capa totalmente conecta-
da, es decir, la parte de clasificacion. Que como se vio con anterioridad, esta ca-
pa consta de una entrada de todas las caracteristicas de las etapas convolucionales
a una reduccion de 1280 neuronas en la primera capa que se conecta a otra capa
que es la de salida que se calcula como numero de clases 4+ 1(la_clase fondo) +
4(coordenadas necesarias _para_dibujar la caja). La capa totalmente conecta-
da se encuentra directamente conectada a las tiltimas convoluciones de 80 x 80,40 x 40,
20x20. Cada una de ellas da un total de 255 filtros por cada salida, es decir, el nimero
total de valores que en este punto serian:

t1 = 80 x 80 x 255 = 1632000
12 = 40 x 40 x 255 = 408000
t3 = 20 x 20 x 255 = 102000
t1 412 +t3 = 2142000

(3.3)

Todos estos valores pasan por una tultima convolucién en el cual se ingresa el total
de filtros o canales es decir 255 x 3 = 765 y sale una cantidad fija de 1280 al aplicar
un filtro de 1 x 1 con pasos de 1 segin el codigo proporcionado por Pytorch [1]. Esto
para después ser agrupados con una operaciéon de agrupacion, llamado agrupacion
adaptativa promedio. Esta tultima operacion aplica una eliminacién (dropout) esto
es una técnica que sirve para prevenir el sobreajuste dando una probabilidad a cada
neurona de ser entrenada o no, durante el proceso de entrenamiento.

class Classify(nn.Module):
YOLOvS classification head, t.e. z(b,cl1,20,20) to z(b,c2)
def __init__(self,

cl,

c2,

Cinvestav Departamento de Computacion

Desarrollo 53

dropout_p=0.0): # ch_in, ch_out, kernel,
#stride, padding, groups, dropout probability
<<-- numero de canales = cl, numero de clases = c2
super (). __init__()
c_ = 1280 # efficientnet_b0 size
self.conv Conv(cl, c_, k, s, autopad(k, p), g)
self .pool nn.AdaptiveAvgPool2d (1) # to z(b,c_,1,1)
self .drop = nn.Dropout (p=dropout_p, inplace=True)
self.linear = nn.Linear(c_, c2) # to z(b,c2)

Es aqui donde se pasan los 1280 mapas de caracteristicas a una red neuronal del
mismo tamano y a la salida nos regresa al nimero de clases necesario ya con los
grados de pertenencia.

En este nuevo intento se congelaron todos los valores de las etapas convolucio-
nales y se reentrené el modelo que con anterioridad ya funcionaba para detectar un
solo marcador. Se esperaba que el extractor de caracteristicas, es decir la capa con-
volucional, generalizara las caracteristicas de un marcador como para reentrenar solo
la dltima capa de clasificacién previamente mencionada. De tal forma se esperaba
que los pesos de los filtros, o kernerls fueran lo suficientemente robustos como para
proporcionar un buen extractor de caracteristicas para el problema de deteccion de
marcadores. También se cambié el tipo de marcador y se incrementé a dos marcado-
res, creando asi un conjunto de datos de 2000 imagenes por clase para entrenamiento
y 200 por clase para validacién.

Cinvestav Departamento de Computacion

54 Capitulo 3

Clasificacion

Convolucién

Comde i Stride=1 O
Padding = 0 Kernel=1 x 1 . Agrupacién(Pooling O
AdaptativePooling \O
o
o

A

Kernel = 1 x 1 -
Entrada - 256 Entl_'ada =255
Salida = 1280
o
o

Salida = 255
O Nclases + 5

80 x 80 x 255 80 x 80 x 1280

Convolucién : O
C;;\I/;;uflin Stride=1 O
- Kernel=1 x 1 - .
Komel 22 Entrada=255 [————pfigrupacion(booling) ™ " O Non-Max
Es,,;:,:::g? Salida = 1280 AdaptativePooling = g Supression
40 x 40 x 255 40 x 40 x 1280 o
O Nclases + 5
O 1280

OO0

Stride = 1
Padding = 0
Ke?nelngl x1 Kernel=1 x 1 N ¢ ‘
Entrada = 1024 Entrada = 255 ¥| AdaptativePooling
Nclases + 5
1280

Convolucién Convolucién O
Stride=1
Agrupacion(Pooling; P
o

050 xo0s Salida = 1280
80 x 80 x 1280

Figura 3.17: Diagrama que muestra céomo la funcién “classify” funciona en la dltima
capa para hacer las detecciones, para por tltimo utilizar el algoritmo de supresion del

no maximo.

Departamento de Computacion

Cinvestav

Desarrollo 55

(a) Marcador de cruz (b) Marcador de rectangulo

Figura 3.18: Marcadores utilizados para crear el conjunto de entrenamiento de dos
clases.

Desafortunadamente, no se obtuvieron buenos resultados, a pesar de que el tiempo
de entrenamiento fue significativamente menor.

Como se puede observar en la figura 3.19, la matriz de confusiéon nos muestra que
no es capaz de distinguir entre los marcadores y tampoco puede diferenciar entre el
fondo y los marcadores.

3.2.6. Segundo intento red YoloV5 congelamiento de capas

Debido al comportamiento observado y haciendo un estudio mas profundo de co-
mo funciona la red convolucional YoloV5 y las técnicas previamente expuestas en
el marco teorico, se observo que la técnica GhostNet junto con la red piramidal de
caracteristicas obtiene caracteristicas mas abstractas de los objetos. Esto ocurre al
momento de iniciar la expansion del mapa de caracteristicas. Por lo tanto, se plante6
como segunda propuesta para congelar el modelo, solo congelar todo hasta la parte
de la agrupacion espacial piramidal (SPPF) que es la parte en donde empieza la ex-
pansion de dimensiones del mapa de caracteristicas, como se observa en la figura3.20.

Con esta técnica se consigui6 clasificar correctamente ambos marcadores, de igual
forma cémo ocurri6 con el primer entrenamiento, donde se entren6é para un solo
marcador. Mostrando que en este caso, el congelamiento de los pardmetros no afecto
negativamente la clasificacion, como se refleja en la matriz de confusion.

Cinvestav Departamento de Computacion

56 Capitulo 3

Matriz de Confusién

0.65

0.60
MCruz -

0.55

0.50

I 0.45

Mrectangulo
I 0.40

F0.35

A o
3 af
¢ (\0?
Y 5@

&

Figura 3.19: Matriz de confusion del re-entrenamiento congelando todas las convolu-
ciones, dejando solo la capa totalmente conectada.

Cinvestav Departamento de Computacion

Desarrollo 57

y |

N S

Imagen de entrada
640x640x3

T

Convolucién

Entrada = 3
Salida = 64
320 x 320 x 64

Convolucién
Stride = 2
Padding = 1
x3
4
Salida = 128
160 x 160 x 128

—

c3

¥
GhostNet Cuello de botella (Bottleneck)x3
Entrada = 160 x 160 x (128/2)
Salida = 160 x 160 x 128

Convolucion
Stride = 1
Padding = 0
Kernel=1x1

Entrada = 128
Salida = 256
80 x 80 x 256

Entrada = 256
Salida = 255
80 x 80 x 255

c3

+
GhostNet Cuello de botella
Entrada = 80 x 80 x (512/2))

Salida = 80 x 80 x 256

Convolucién
Stride = 2

c3

+
GhostNet Cuello de botella (Bottleneck)x6
Entrada = 80 x 80 x (256/2)

Salida = 80 x 80 x 256

Padding = 1
Kerel=3x3
Entrada = 256
Salida = 256
oncatenacion 40 x 40 x 256

80x80x512

oncatenacion
40x40x512

Reescalado
40x40x256 ->
80x80x256

Convolucién
Stride = 1 Convolucién
‘ Padding = 0 c3 Stride = 1
Kernel =1x 1 + Padding =0
Convolucién Entrada = 512 GhostNet Cuello de botella (Bottleneck)x3 Kernel =1x 1
Stride = 2 Salida = 256 Entrada = 40 X 40 X (512/2) Entrada = 512
Padding = 1 40 x 40 x 256 Salida = 40 x 40 x 512 Salida = 255
Kernel =3x 3 40 x 40 x 255
Entrada = 256 1
Salida = 512
40 x 40 X 512
c3 Convolucién
+ Stride = 2
GhostNet Cuello de botella (Bottleneck)x3 Paddin
Entrada = 40 x 40 x (1024/2) Kernel =3 x 3
cs Salida = 40 x 40 x 512 Entrada = 512
+ Salida = 512
GhostNet Cuello de botella 20x 20x 512
Entrada = 40 x 40 x (512/2)
Salida = 40 x 40 x 512
Concatenacion
40x40x1024 Concatenacion
" 20x20x1024
Convolucion
Stride = 2
Padding = 1
Kernel =3 x 3
Entrada = 512 Reescalado CD"Y;'H_CIW
Salida = 1024 20x20x512 > C+3 P:;'d;g»:lo
20201024 40xa0is12 GhosiNet Cuello de botella (Bottleneckx3 Kermel =1 x 1
Entrada = 20 X 20 x (1024/2) Entrada = 1024
Salida = 20 x 20 x 1024 Salida = 255
Convolucién 20 x 20 x 255
Agrupacién piramidal espacial(Spatial Pyramid e =,
Pooling)x3 P adding
emel=1x 1

+
Entrada = 20 x 20 x 1024
Salida = 20 x 20 x 1024

Entrada = 1024
Salida = 512
20x20x 512

Figura 3.20: Red convolucional YoloV5 con pardmetros congelados hasta la capa de
agrupacion espacial piramidal (SPPF).

Cinvestav

Departamento de Computacion

58 Capitulo 3

Matriz de Confusion

1.0

0.8

MOvalo

0.4
Mcruz
0.2
— 0.0
0 d
o @5'@
\3\

Figura 3.21: Matriz de confusion del reentrenamiento congelando convoluciones hasta
la capa de agrupacion espacial piramidal (SPPF).

Cinvestav Departamento de Computacion

Desarrollo 59

Figura 3.22: Pruebas con camara en tiempo real de deteccion de dos marcadores con el

modelo YoloV5 preentrenado y congelando capas hasta la capa de agrupacion espacial
piramidal (SPPF)

Cinvestav Departamento de Computacion

60 Capitulo 3

Cinvestav Departamento de Computacion

Desarrollo 61

3.2.7. Problema mas complejo usando la técnica de trans-
ferencia de aprendizaje para reentrenamiento y conge-
lamiento de parametros hasta la capa de agrupacién
espacial piramidal (SPPF)

Evidentemente, se tuvo éxito para detectar dos marcadores usando la técnica de
transferencia de conocimiento que utiliza el congelamiento de parametros de modelos
preentrenados. Para corroborar que dicha técnica funcionaria para un problema mas
complejo, se decidi6é anadir mas marcadores. Es decir, se anadieron mas clases, pa-
sando de dos clases a ocho, creando ahora un conjunto de datos de de 2000 iméagenes
por clase para entrenamiento y 200 imagenes por clase para validacion. Esto da un
total de 16000 imégenes de entrenamiento y 1600 de validacion con los marcadores. Se
partié del modelo preentrenado y se entren6 ahora para los ocho marcadores, conge-
lando los parametros de igual forma hasta la etapa de agrupacion espacial piramidal
por un total de 300 épocas. Esto nos dio un tiempo de entrenamiento total para las
300 épocas de 34 horas 7 minutos. También se dejaron los parametros del tamano del
bloque (batch) a 16 sobre las, 16000 imégenes de entrenamiento.

(a) Marcador de (Marcador de (Marcador) Marcador de li-
cruz estrella forma I

(e) Marcador de (Marcador de (Marcador (h) Marcador de
ovalo pentagono rectangulo trlangulo

Figura 3.23: Marcadores utilizados para crear el conjunto de entrenamiento de ocho
clases.

Cinvestav Departamento de Computacion

62 Capitulo 3

Como podemos ver en la figura 3.25, Esta técnica mantuvo su efectividad frente
a un problema mucho mas complejo, como lo es la clasificacion y deteccion de ocho
diferentes objetos. Como se muestra en la matriz de confusion, el 100 % de las imagenes
con marcadores de validacion fueron clasificadas correctamente.

Matriz de Confusion

10
Estrella 0.00 0.00 0.00 0.00 0.00 0.00
Linea - 0.00 0.00 0.8
MOvalo 4 0.00 0.00
0.6
Mcruz 4 0.00 0.00
- 0.4
Pentagono { 0-00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
Rectangulo L 0.2
Triangulo - 0.00 0.00 0.00 0.00
T T T T . 0.0
(e . O A (s} a0
& & s ©
& L kY 2 b
& QE'(' AR

Figura 3.24: Matriz de confusion del reentrenamiento con ocho marcadores congelando
convoluciones hasta la capa de agrupacion espacial piramidal (SPPF).

Cinvestav Departamento de Computacion

Desarrollo 63

Al probar la deteccidon en tiempo real, funcioné bastante bien de igual forma, como
se observa en la figura 3.25, donde se puede detectar al mismo tiempo las ocho clases
en una misma imagen de entrada.

' MCruz 0.89

/@

Figura 3.25: Pruebas de detecciéon en tiempo real con cdmara de modelo reentrenado
con ocho clases hasta la capa de agrupacion espacial piramidal (SPPF).

3.3. Red SSD (Single Shot Multibox Detector)

Como se pudo observar en el capitulo anterior, mediante el uso de la red YoloV5
aplicando correctamente la técnica de transferencia de aprendizaje, se puede llegar a
obtener buenos resultados. Como se dijo en un principio, se decidié también revisar
el rendimiento de la red SSD

Lo primero que se hizo, de igual forma a como se realizé con la red YoloV5, fue
encontrar el modelo preentrenado de la red utilizando la biblioteca de Pytorch [16].
Este, a su vez, contiene en la documentacion la forma sencilla de utilizar el modelo

Cinvestav Departamento de Computacion

64 Capitulo 3

preentrenado, asi como el link a su GitHub donde contiene el c6digo de la implemen-
tacion realizada para el entrenamiento de dicho modelo.

Siguiendo la logica con la que funciona la biblioteca de PyTorch al descargar el
modelo preentrenado con su funcion “load”, realmente se descarga la implementacion y
todo lo que conlleva del GitHub correspondiente a cada proyecto. Los modelos preen-
trenados y sus implementaciones asi como diferentes utilidades tales como funciones
de activacion y operaciones especificas como la supresion de no méaximos y demas
operaciones que necesitan de las diferentes arquitecturas, la biblioteca de Pytorch los
almacena en el siguiente directorio: /.cache/torch/hub. Este directorio es funda-
mental si se quiere comprender mas a fondo como funcionan las implementaciones
con las que fueron entrenados los modelos junto a su respectiva documentacion. Co-
mo podemos observar, al hacer uso de las implementaciones YoloV5 y SSD tenemos
las dos carpetas que corresponden al codigo implementado por la biblioteca en dicha
ruta de cada uno de los modelos, respectivamente.

trusted list

Figura 3.26: Directorio de caché de pytorch que contiene las implementaciones que se
usaron para los modelos preentrenados.

En la figura 3.26 se muestra el directorio raiz del cache en donde se almacenan los
modelos preentrenados asi como las implementaciones que se usaron. En este ca-
so NVIDIA DeepLearningExamples torchhub corresponde a varios modelos imple-
mentados por NVIDIA. Entre ellos se encuentra la red SSD, mientras que ultraly-
tics__yolovb master pertenece inicamente a la red YoloV5. Lo primero que se nota
de acuerdo a la documentacion de la SSD proporcionada por Pytorch [16], es que el
modelo esté disenado para recibir un tensor compuesto por la serie de imagenes en las
que se realizaran las detecciones y éste devuelve un tensor con el niimero total de las
detecciones. En este caso es un total de 8732 de cuadros delimitadores por imagen y
son éstos los que después son evaluados y discriminados por el algoritmo de supresion
del no méximo anteriormente descrito. Eso quiere decir que va a variar la forma en
la que se implementara el detector en tiempo real que utilice este modelo. Esto es
porque a diferencia del modelo preentrenado de la red YoloV5 que utiliza una imagen
de entrada y una salida con las detecciones, este utiliza un arreglo de imagenes de
entrada y a este arreglo es al que se le hacen las detecciones por tanto, es necesario
adaptar este funcionamiento al entorno de detecciéon en tiempo real. Por otra parte,
el modelo de igual forma esta preentrenado con el conjunto de datos COCO [9] asi
que por esa parte se establece un punto de partida similar a la de la red YoloV5.

Cinvestav Departamento de Computacion

Desarrollo 65

No obstante, el formato utilizado para dibujar las cajas delimitadoras que utiliza la
biblioteca OpenCV es el de punto maximo y punto minimo, en lugar del establecido
para utilizar en esta tesis que es el de centro largo y ancho. Por lo tanto, se trabajo en
un conversor o traductor de coordenadas. La transformacion de coordenadas se hizo
de forma sencilla tomando en cuenta que la imagen de entrada es de un tamano fijo
de 300 x 300. De igual manera que en la red YoloV5, los valores entran normalizados
del 0 al 1 en lugar de los valores completos de cada canal de 32 bit correspondientes a
los valores del 0 al 255. De la misma forma, las coordenadas pasan de estar en pixeles
a valores del 0 al 1 representando el porcentaje de la imagen. Esto es importante para
entender el preproceso que se hace antes de implementar la detecciéon en tiempo real.

Revertimos valores del 0 al 1 a las dimensiones reales

centro =X x TamImagX,Y x TamImagY

Calculamos el ancho y el alto de la caja relimitadora

ancho = Xb x TamImagX

alto =Yb x TamImagY

Se transforma el formato de la caja delimitadora de (3.4)
cento alto y ancho a punto minimo, punto maximo

Y'min = centroly| — alto/2

Xmin = centro|x] — ancho/2

Ymaz = centroly] + alto/2

Xmax = centro|x| + ancho/2

De esta forma se consiguio establecer el sistema de coordenadas de la salida del mode-
lo de la red neuronal convolucional al formato entendido por OpenCV que es necesario
para poder trabajar con el modelo en imagenes en tiempo real. Esta forma de traducir
las coordenadas se probé en el script incluido en la documentacién verImg.py. Este
toma la imagen seleccionada en la variable nlmg del conjunto de entrenamiento y
aplica dicho algoritmo para posteriormente dibujar el recuadro con los datos obteni-
dos por el algoritmo.

Una vez entendido esto, se procedi6 a crear un conjunto de datos de entrenamiento

con las dimensiones aceptadas por la red SSD que son de 300 x 300 de un solo marca-
dor, siguiendo con el mismo procedimiento realizado por el entrenamiento de la red
YoloV5. De igual forma, se crearon primeramente 2000 imégenes de entrenamiento y
200 de validaciéon para entrenar la red SSD.
Pese a que la arquitectura SSD de la biblioteca de Pytorch fue entrenado practica-
mente bajo las mismas condiciones, es decir mismo formato de niimeros normalizados
y mismo conjunto de entrenamiento COCO [9], al realizar el reentrenamiento a partir
de este modelo preentrenado no se obtuvieron buenos resultados.

Primeramente, se decidi6 utilizar como funcion de pérdida el optimizador, Adam,
ya que en problemas de clasificacion mostraba ser bastante eficiente en otras préac-
ticas realizadas. No obstante, en este caso fue deficiente. Después sé probo con el

Cinvestav Departamento de Computacion

66 Capitulo 3

optimizador mediante descenso de gradiente estocéstico (SGD) el cual mostro ser un

poco mas eficiente. Sin embargo, este no lograba alcanzar la exactitud que mostraba
el modelo YoloV5.

Gracias a lo observado se determiné que lo més probable es que este modelo, al
ser relativamente mas simple que el modelo YoloV5, necesita més datos de entre-
namiento para lograr mejores resultados. Se decidié duplicar el nimero de datos de
entrenamiento, quedando con 4000 imégenes de entrenamiento. Por tltimo, se decidio
duplicar de nuevo las imagenes de entrenamiento, pasando de 4000 a 8000. Con todas
estas pruebas se obtuvieron los siguientes resultados.

Tabla 3.4: Resultados de los entrenamientos més relevantes de la red SSD, con el
modelo preentrenado con el conjunto de datos COCO [9].

Namero de imagenes | Optimizador | Exactitud | Tiempo de entrenamiento
2000 ADAM 0.62 3 horas 22 min
4000 SGD 0.96 5 horas 34 min
8000 SGD 0.98 11 horas 15 minutos

Este ultimo una mejora significativa con las imagenes de validacién, sin embargo,
ain mostraba algunas deficiencias con la cAmara en tiempo real. Hubieron problemas
de varios solapamientos de las cajas delimitadoras, seguramente debido a que depen-
de demasiado del algoritmo de supresion del no méximo. En otro tipo de problemas,
tienen que ver mas con la calidad de las convoluciones es decir la calidad del extractor
de caracteristicas, ya que aunque era capaz de distinguir el marcador real en la ima-
gen en tiempo real asi como su ubicaciéon, pero mostraba muchos falsos positivos en
posiciones con cierto patréon de oscuro con blanco entendible por el tipo de marcador,
sin embargo, esto solo muestra la debilidad del extractor de caracteristicas a la misma
cantidad de épocas de entrenamiento frente a la red YoloV5.

Como se puede observar en la figura 3.27, el mejor modelo que fue entrenado con
el optimizador SGD y las 8000 imagenes de entrenamiento, fue capaz de detectar las
caracteristicas generales del marcador sobre la imagen, detectando correctamente el
marcador. Sin embargo, en la figura 3.28 y 3.29 podemos ver como confunde objetos
con las mismas caracteristicas sobre la imagen muy facilmente dando falsas detec-
ciones asi como cajas delimitadoras traslapadas. Errores que con menor niimero de
imagenes de entrenamiento el modelo YoloV5 no sufria.

Cinvestav Departamento de Computacion

Desarrollo 67

LI

Figura 3.27: Imagen que ilustra el comportamiento en tiempo real del mejor modelo
entrenado con 8000 imégenes, usando el optimizador SGD, detectando el marcador
con el que fue entrenado

Cinvestav Departamento de Computacion

68 Capitulo 3

Figura 3.28: Imagen que ilustra el comportamiento en tiempo real del mejor modelo
entrenado con 8000 imégenes, usando el optimizador SGD, detectando el marcador
con el que fue entrenado y falso positivo que muestra el modelo en el mundo real.

Cinvestav Departamento de Computacion

Desarrollo 69

Mgrcador1 99.90
] dir 1 99.90
[3
|
£

g IF "‘: ot

i _:,"L--- i

-~ -

Figura 3.29: Imagen que ilustra el comportamiento en tiempo real del mejor modelo
entrenado con 8000 imégenes, usando el optimizador SGD, detectando el marcador
con el que fue entrenado y mostrando él traslapd de cajas delimitadoras.

Cinvestav Departamento de Computacion

70 Capitulo 3

Debido a la limitante del mismo modelo al compararse con el modelo YoloV5 mu-
cho mas robusto, se decidié dejar de trabajar sobre éste y quedarnos con el mejor
entrenamiento que nos dio la red SSD debido a que cada vez los tiempos de entrena-
miento crecian mucho més al igual que el nimero de imagenes sintéticas requeridas
para entrenar el modelo.

Cinvestav Departamento de Computacion

Capitulo 4

Resultados

Como pudimos ver en el capitulo anterior de desarrollo, fue con la arquitectura
YoloV5 que se obtuvieron mejores resultados en el capitulo de desarrollo. Sin em-
bargo, en este capitulo daremos un vistazo mas en profundidad a las estadisticas de
entrenamiento, exactitud, asi como tiempos de entrenamiento y rangos de deteccion
de los diferentes modelos y variantes aplicadas a los diferentes grados de dificultad
desarrollados es decir una clase, dos clases y ocho clases, respectivamente.

4.1. YoloV5

4.1.1. Un marcador

En el primer reentrenamiento del modelo total, con los pesos iniciales de modelo
preentrenado con el conjunto de datos COCO se obtuvo la figura 4.1. Esta figura
muestra una grafica de exactitud para cada una de las 300 épocas, teniendo en cuenta
que nos quedamos siempre con el mejor modelo.

71

72 Capitulo 4

Exactitud/Epoca

1.0+

0.9 4

0.8

0.7 4

Exatitud

0.6

0.5 4

T
0 20 40 60 a0 100
Epoca

Figura 4.1: Grafico de exactitud para cada época de entrenamiento, reentrenando

para un solo marcador, con el conjunto de datos COCO.

También se midieron los angulos de visiéon como se vio en el desarrollo, se realizo
el experimento arrojando los siguientes resultados.

Tabla 4.1: Tabla de resultados del experimento propuesto, para modelo reentrenado
para detectar un solo marcador preentrenado con el conjunto de datos COCO.

Distancia efectiva de reconocimiento 2.20 m
Nuamero de pixeles necesarios para reconocimiento Ventana de 23 x 22 = 506 pixeles
Porcentaje de marcador necesario para reconocimiento 70 %(10 % triangulo visible)
Angulo efectivo de reconocimiento 75° a 80°
Reconocimiento de multiples objetivos (Marcador) Si
Tiempo de entrenamiento 4hr 51min

4.1.2. Dos marcadores

En este caso la exactitud mejor6 hasta el punto en que en menos de 50 épocas ya
conseguia una exactitud de 0.995 es por eso que se decidi6 realizar la grafica con los

Cinvestav Departamento de Computacion

Resultados 73

ejes normales y otra con una escala sobre el eje x, en este caso, el eje de las épocas.

Exactitud/Epoca

1.0+

0.9 +

0.8 A

0.7 4

0.6

Exatitud

0.5

S
Ca)

0.4

0.3 1

[
a3

0.2

T
0 20 40 60 80 100
Epoca

Figura 4.2: Gréfico de exactitud para cada época del modelo reentrenado para dos
clases con el modelo preentrenado para detectar una sola clase y congelando hasta la
capa de agrupacion espacial piramidal (SPPF).

4.1.3. Ocho marcadores

De igual forma, como en el caso de detectar dos marcadores distintos, utilizamos
haciendo la técnica de transferencia de conocimiento, congelando los parametros hasta
la capa de agrupacion espacial piramidal (SPPF). Esto mejoré considerablemente los
resultados, produciéndose una gréfica de exactitud parecida al problema de dos mar-
cadores, habiendo encontrado el mejor modelo desde la época 14 aproximadamente
con una exactitud de 0.991.

Cinvestav Departamento de Computacion

74 Capitulo 4

Exactitud/Epoca

1.0~

0.8 A

0.6

Exatitud

0.4

0.2 1

S

Sl
sy

20

40 60
Epoca

80

T
100

Figura 4.3: Graficos de exactitud para cada época de modelo reentrenado para ocho
clases con el modelo preentrenado para detectar una sola clase y congelando hasta la
capa de agrupacion espacial piramidal (SPPF).

Tabla 4.2: Tabla de resultados del experimento propuesto, para el modelo reentrenado
para detectar un solo marcador y preentrenado con el conjunto de datos COCO con
un tiempo de entrenamiento de 34 horas 7 minutos.

Figura Distancia efectiva | Tamano de ventana | Num pixeles | Angulo efectivo
Tridngulo 1.12 - 1.16m 66 x 64 4224 60° a 70°
Rectangulo 1.05 - 1.10m 66 x 65 4290 50° a 60°
Linea 1.06 - 1.16m 67 x 65 4355 50° a 60°
I 1.12 - 1.17m 66 x 63 4158 60° a 70°
Estrella 1.11 - 1.15m 64 x 66 4224 60° a 70°
Ovalo 1.15- 1.2m 66 x 62 4092 60° a 70°
Cruz 1.11-1.17m 66 x 68 4488 60° a 70°
Pentagono 1.2 - 1.5m 66 x 64 4224 60° a 70°
Cinvestav Departamento de Computacion

Capitulo 5

Conclusiones

De forma general se pueden concluir varios puntos. Uno de ellos es que el uso
de técnicas transferencia de aprendizaje agiliza los procesos de entrenamiento man-
teniendo exactitudes similares si se sabe desde qué capas hacerlas. En este caso se
utilizo la técnica de congelamiento de pardmetros para ciertas capas de modelos pre-
entrenados. También en esta tesis se observd que el uso de la arquitectura de red
convolucional Single Shot Multibox Detector(SSD), requiere de una cantidad enorme
de datos de entrenamiento para igualar la exactitud que demostré YoloVb. De igual
forma, su extractor de caracteristicas es mas débil. Sin embargo, para el tiempo en
que se realizo la arquitectura SSD resulto contemporénea a la red YoloV2. Por lo
tanto, la parte de las convoluciones o la extraccion de caracteristicas estan basadas
en la red VGG16, que es una red de clasificacién que en su momento fue muy buena.
No obstante, actualmente existen redes mucho mas eficientes y robustas, como lo son
Eesnet, Googlenet y Efficientnet, con las que podria experimentarse para mejorar esta
parte.

Se pudo estudiar la ventaja que supone tener este tipo de redes preentrenadas para
el reentrenamiento, ayudando asi a la detecciéon de objetos mas complejos o incluso
a una mayor cantidad de clases. Esto se puede observar en el caso de la arquitectura
YoloV5 donde comenzamos con el problema més sencillo de detectar un solo tipo de
marcador, hasta ampliar el problema a detectar ocho marcadores, congelando parte de
la red, lo que produjo ahorros en el tiempo de entrenamiento. Gracias a tener este tipo
de redes preentrenadas se facilita mucho el uso de estas redes convolucionales para
detecciones mas complejas, permitiendo asi su uso con tiempos de entrenamiento méas
adecuados. Por lo tanto, se puede afirmar cada vez con més seguridad que las redes
neuronales convoluciones se vuelven méas accesibles a comparacion de los algoritmos
clasicos de vision por computadora y extractores de caracteristicas convencionales
como lo son los momentos de Hu o el histograma de gradientes orientados (HOG).

La innovacién en el equipo de computo de hardware, en especial en el campo de
las tarjetas graficas GPU, estd suponiendo una revolucién en el uso de los modelos
de redes neuronales, tanto redes neuronales profundas como convolucionales. Esto ha
acelerado aun més los tiempos de entrenamiento, asi como el uso de estos modelos

75

76

Capitulo 5

ejecutados en tiempo real en dichas tarjetas graficas. Asimismo, la innovaciéon de las
diferentes técnicas en las convoluciones para extraer més caracteristicas o extraer
mejores caracteristicas con menor costo computacional como lo son Ghostnet, SPP o
Feature Pyramid Network que se aplicaron en conjunciéon en la red YoloV5 suponen
un gran salto en comparacién con sus versiones anteriores asi como en comparacion

a la red SSD.

5.1.

Trabajo futuro

Como trabajo futuro se ven viables los siguientes puntos:

Modificar la parte convolucional de extracciéon de caracteristicas de la red SSD
probandola con diferentes redes convolucionales mas actuales de clasificacion.

Revisar cual es el limite de clases que puede clasificar y detectar la red Yo-
loV5, con la técnica de transferencia de aprendizaje aplicada, congelando los
parametros hasta la capa SPPF.

Combinar alguna de las técnicas de extraccion de caracteristicas de la red Yo-
loV5 en la red SSD para ver si ésta mejora.

Verificar si es posible ampliar la parte de clasificacion (la parte de la red total-
mente conectada) tanto de la red YoloV5 como de la SSD y disminuir el ntimero
de convoluciones manteniendo la exactitud pero disminuyendo el tamano de las
redes.

Utilizar una cdmara con mayores cuadros por segundo para la red YoloV5 y
verificar la cantidad maxima que es capaz de procesar en un segundo en el
mundo real.

Cinvestav Departamento de Computacion

Bibliografia

[1]

2]

3]

4]

[5]

[6]

17l

18]

19]

Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, Yonghye Kwon,
Kalen Michael, Jiacong Fang, Zeng Yifu, Colin Wong, Diego Montes, et al. ul-
tralytics/yolovh: v7. 0-yolovh sota realtime instance segmentation. Zenodo, 2022.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Op-
timal speed and accuracy of object detection. arXiv preprint arXiv:2004.1093},
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEFE transactions
on pattern analysis and machine intelligence, 37(9):1904-1916, 2015.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu.
Ghostnet: More features from cheap operations. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1577-1586, 2020.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. Feature pyramid networks for object detection. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 936—
944, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox detector. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision
- ECCV 2016, pages 21-37, Cham, 2016. Springer International Publishing.

Jan Hosang, Rodrigo Benenson, and Bernt Schiele. Learning non-maximum sup-
pression. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6469-6477, 2017.

Gonzalo Adan Chéavez Fragoso. Reconocimiento de marcadores con redes profun-
das. Master’s thesis, Centro de Investigacion y de Estudios Avanzados del Ins-
tituto Politécnico Nacional, Unidad Zacatenco Departamento de Computacion,
September 2020.

Tsung-Yi Lin. cocodataset. https://cocodataset.org/, 2017. Accessed: 2021-
1-22.

7

https://cocodataset.org/

78

BIBLIOGRAFIA

[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

[11]

[12]

[13]

[14]

[15]

[16]

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector.
In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part I 14, pages 21-37. Springer,
2016.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer viston and pattern recognition, pages 779-788, 2016.

Heriberto Cruz-Hernandez and Luis Gerardo de la Fraga. A fiducial tag invariant
to rotation, translation, and perspective transformations. Pattern Recognition,
81:213-223, 2018.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-nms
— improving object detection with one line of code. 2017 IEEE International
Conference on Computer Vision (ICCV), pages 5562-5570, 2017.

Andres Cureno Ramirez. Localizacién y mapeo simultdneos con marcadores y
un robot moévil. Master’s thesis, Centro de Investigacion y de Estudios Avan-
zados del Instituto Politécnico Nacional, Unidad Zacatenco Departamento de
Computacion, September 2022.

salaxieb. Perlin-Noise. https://pypi.org/project/perlin-noise/, 2022. Ac-
cessed: 2022-1-22.

NVIDIA. Pytorch ssd. https://pytorch.org/hub/nvidia_
deeplearningexamples_ssd/, 2017. Accessed: 2021-1-22.

Cinvestav Departamento de Computacion

https://pypi.org/project/perlin-noise/
https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/
https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Definición del problema
	Objetivos generales y específicos
	General
	Particulares

	Organización de la tesis

	Marco Teórico
	Problemas que pueden resolverse con redes convolucionales
	Marcadores de tipo de orden
	Redes neuronales convolucionales
	Operaciones comunes utilizadas en redes convolucionales
	Clasificación y detección
	Red convolucional YoloV5
	Operaciones especiales de la arquitectura YoloV5
	Red convolucional SSD (single shot multibox detector)

	Desarrollo
	Propuesta de solucion
	Creación de conjunto de datos sintéticos
	Marcadores
	Modelo de la cámara oscura
	Ruido Perlin
	Entrenamiento YoloV5
	Experimentos con la Arquitectura YoloV5 Modificada
	Segundo intento red YoloV5 congelamiento de capas
	 Problema más complejo usando la técnica de transferencia de aprendizaje para reentrenamiento y congelamiento de parámetros hasta la capa de agrupación espacial piramidal (SPPF)

	Red SSD (Single Shot Multibox Detector)

	Resultados
	YoloV5
	Un marcador
	Dos marcadores
	Ocho marcadores

	Conclusiones
	Trabajo futuro

	Bibliografía

