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Resumen

Una de las técnicas más comúnmente usadas para resolver problemas de
optimización multi-objetivo (POMs) son los llamados algoritmos evolutivos
multi-objetivo (AEMOs), los cuales son metaheurísticas poblacionales que
emulan el proceso evolutivo biológico. Los AEMOs usan el principio de
“supervivencia del más apto”, de la teoría de Darwin para resolver POMs
de alta complejidad. La población utilizada por los AEMOs presenta la ven-
taja de permitir, con una manipulación adecuada, procesar un conjunto de
soluciones óptimas a cada iteración, en vez de operar con una sola a la vez,
como ocurre con las técnicas de programación matemática.

Sin embargo, el uso de una población hace también que los AEMOs re-
quieran un mecanismo que les permita mantener un cierto grado de di-
versidad durante el proceso evolutivo. De no mantener adecuadamente la
diversidad, los resultados producidos por un AEMO serán de muy baja cal-
idad o se podría producir convergencia prematura. Esto ha motivado el de-
sarrollo de una amplia variedad de técnicas de preservación de diversidad.
Estas técnicas pueden ser clasificadas de forma general en tres categorías:
(1) estimadores de densidad, (2) restricciones a la cruza y (3) poblaciones
secundarias.

Los POMs con cuatro o más objetivos, también conocidos como prob-
lemas de optimización con muchos objetivos, añaden nuevos desafíos a
los AEMOs, principalmente debido a que el incremento en el número de
objetivos conlleva un incremento exponencial en el tamaño del espacio de
búsqueda. Consecuentemente, esto genera una disminución en la presión
de selección en los AEMOs basados en dominancia de Pareto, y también
produce un costo computacional que puede volverse prohibitivo en algunos
casos (p-ej., cuando se usa un mecanismo de selección basado en el hiper-
volumen). Adicionalmente, existen aún diferentes áreas sin explorar en
torno a la preservación de diversidad, específicamente para problemas de
alta dimensionalidad.

El trabajo presentado en esta tesis tiene el objetivo de contribuir al estado
del arte de técnicas de preservación de diversidad en problemas de opti-
mización con muchos objetivos. El trabajo presentado en esta tesis se con-
centra en dos áreas principales de investigación. La primera, concerniente
al uso de restricciones a la cruza basadas en energía-s, propone una nueva
y útil técnica de preservación de diversidad basada en un conjunto de es-
tas restricciones. Nuestros resultados experimentales muestran que el uso
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de un indicador de diversidad (energía-s) en una técnica de preservación
de diversidad (restricciones a la cruza) produce una mejora en problemas
de optimización con muchos objetivos. Por otro lado, investigamos el uso
de evolución gramatical para producir nuevos componentes de un AEMO.
Específicamente, generamos nuevas funciones de escalarización (usadas en
AEMOs basados en descomposición) y nuevas aproximaciones del hiper-
volumen (usadas en AEMOs basados en indicadores). Todos los compo-
nentes que generamos con este método producen mejores resultados al ser
comparados contra alternativas del estado del arte. Esto indica que el uso
de evolución gramatical para generar componentes de un AEMO es una
área de investigación prometedora, y que es una alternativa viable para
generar nuevas funciones de escalarización, aproximaciones del hipervol-
umen, y potencialmente, nuevas técnicas de preservación de diversidad
(p.ej., nuevos estimadores de densidad).
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Abstract

One of the most commonly used techniques for solve multi-objective op-
timization problems (MOPs) are the so-called multi-objective evolutionary
algorithms (MOEAs), which are population-based metaheuristics that em-
ulate the evolutionary process that occurs in Nature. MOEAs use the “sur-
vival of the fittest” principle from Darwin’s evolutionary theory to solve
high complexity MOPs. The population adopted by MOEAs presents the
advantage of allowing, with a proper manipulation, the processing of a set
of optimal solutions at each iteration, instead of operating with one solution
at a time, as occurs with mathematical programming techniques.

However, the use of a population, also makes MOEAs to require a mech-
anism that allows them to keep a certain level of diversity during the evo-
lutionary process. If diversity is not properly maintained, the results pro-
duced by a MOEA will be of very low quality or premature convergence
may occur. This has motivated the development of a wide variety of tech-
niques to maintain diversity. Such techniques can classified, in general, in
three categories: (1) density estimators, (2) mating restrictions and (3) sec-
ondary populations.

MOPs having four or more objectives, which are also known as many-
objective optimization problems (MaOPs), add new challenges to MOEAs,
mainly because the increase in the number of objectives involves an expo-
nential increase in the size of the search space. Consequently, this gener-
ates a decrease in the selection pressure of MOEAs based on Pareto domi-
nance and also produces a computational cost that may become prohibitive
in some cases (e.g., when using a selection mechanism based on the hy-
pervolume). Additionally, there are still several unexplored research areas
around diversity maintenance, specifically for MaOPs.

The work presented in this thesis has as its main goal to contribute to the
state of the art in diversity maintenance techniques in MaOPs. The work
presented here focuses on two main research areas. The first is related to
the use of mating restrictions adopting s-energy, in which we propose a
new and useful diversity maintenance technique based on the use of a set
of mating restrictions. Our experimental results show that the use of a di-
versity indicator (s-energy) in a diversity maintenance technique (mating
restrictions) produces an improvement in MaOPs. On the other hand, we
also studied the use of grammatical evolution to produce new components
of a MOEA. Specifically, we generated new scalarizing functions (used in
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MOEAs based on decomposition) and new hypervolume approximations
(used in MOEAs based on performance indicators). All the components
that we generated using this approach are able to produce better results
when compared with alternative approaches from the state of the art. This
indicates that the use of grammatical evolution to generate components of a
MOEA is a promising research area, and that this is indeed a viable choice to
generate new scalarizing functions, hypervolume approximation and, po-
tentially, new diversity maintenance techniques (e.g., new density estima-
tors).
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1

Introduction

Multi-objective optimization problems (MOPs) can model a variety of real-
world problems found in many different fields of knowledge. This has gen-
erated a great interest in developing techniques to solve such problems. In
contrast to single-objective optimization, MOPs have no single optimal so-
lution. Instead, in this case a set of solutions representing the best possible
trade-offs among the objective functions is sought.

Over the years, a variety of mathematical programming techniques have
been developed to solve MOPs [84]. However, these techniques have sev-
eral limitations in practice. For example, they can’t be applied when the
Pareto front is disconnected or when there are multiple false Pareto fronts
(also known as multifrontality). Additionally, they often return a single
Pareto optimal solution per run, meaning that several executions are re-
quired to obtain an approximation of the Pareto front. The aforementioned
limitations of mathematical programming techniques have motivated the
use of evolutionary algorithms to solve MOPs [24].

Evolutionary algorithms present several advantages in the process of
solving MOPs. One of the most important advantages is that they are pop-
ulation-based stochastic search techniques. This means that they operate
on a set of solutions which, through the iterative evolutionary process, can
produce a set of multiple Pareto optimal solutions in a single execution.

In addition to this, evolutionary algorithms are less dependant on the
shape or continuity of the Pareto front. Also, they do not require the objec-
tive functions to be differentiable, which is the case for some mathematical
programming techniques. In fact, evolutionary algorithms do not even re-
quire the objective functions to be an analytical expression (e.g., they can
be the outcome of a simulation). These algorithms are known as multi-
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CHAPTER 1. INTRODUCTION

objective evolutionary algorithms (MOEAs) and they have become more
and more important in the past ten years [31, 26, 24]. The first MOEA was
presented in 1984 [104, 103], and ever since, multiple different algorithms
have been developed.

1.1 MOTIVATION

MOEAs can be classified into different categories, depending on the base-
line mechanism they use to determine which are the best solutions. The
most well known categories are: Pareto dominance-based, decomposition-
based and indicator-based MOEAs. However, regardless of the category
they belong to, one of the most important aspects of a MOEA is diversity,
since the lack of diversity can lead to a poor approximation or to prema-
ture convergence. Hence, modern MOEAs incorporate at least one diversity
maintenance technique. These techniques can be classified in three broad
categories: (1) density estimators, (2) mating restrictions and (3) secondary
populations.

The term diversity is usually used to measure two features of a given
population: (1) solutions should be well spread across all objectives, usu-
ally covering the extreme points and (2) solutions should have a uniform
distribution. Diversity has been studied since the early days of evolution-
ary computation, but there are still few studies centering on diversity in
the context of multi-objective optimization, and even less in the context of
many-objective optimization (which refers to MOPs with four or more ob-
jective functions).

The increase of objective functions present in many-objective optimiza-
tion introduces some additional challenges to MOEAs, particularly in do-
minance-based MOEAs. This occurs because each additional objective in-
creases the size of the search space, allowing more solutions to become non-
dominated, which is the main selection criterion in these algorithms. Thus,
the selection pressure of dominance-based MOEAs becomes significantly
reduced, producing poor results. Additionally, some diversity maintenance
techniques may be infeasible to use in this type of problems due to lack of
scalability, or because they become too computationally expensive.

1.2 PROBLEM STATEMENT

Even though there exists a large number of diversity maintenance tech-
niques, many of them have been originally designed considering two and
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three objective optimization problems. And, even though there are some
proposals in the context of diversity maintenance specifically for many-
objective optimization, there is a significant number of areas that remain to
be explored. For instance, there are performance indicators such as s-energy
which can be used to measure diversity in a population, and their use in di-
versity maintenance techniques has not been explored. On the other hand,
there are evolutionary computation algorithms that could be used to gen-
erate new elements that could improve MOEAs’ performance, such as the
generation of new density estimators.

1.3 OBJECTIVES

1.3.1 RESEARCH AIM

To contribute to the advance of the state of the art in diversity maintenance
techniques used in multi-objective evolutionary optimization, particularly
in many-objective optimization problems.

1.3.2 RESEARCH OBJECTIVES

• To study already developed diversity maintenance techniques.

• To propose a new diversity maintenance technique that can be used in
many-objective optimization problems.

• To develop a new algorithm based on an approach focused on diver-
sity improvement.

• To analyze the potential of grammatical evolution to develop a new
density estimator for many-objective problems.

1.4 CONTRIBUTIONS

The following are the most important contributions that we achieved dur-
ing our research:

• S-energy based mating restrictions. We proposed three different mat-
ing restrictions based on the s-energy performance indicator and tested
their performance in problems with 2, 3 and 5 objectives. We pre-
sented this work at the 2021 IEEE Congress on Evolutionary Computa-
tion [97].
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• Ensemble of s-energy based mating restrictions. As a follow up of
the previous work done on mating restrictions, we proposed an en-
semble of such restrictions and explored its performance in problems
with up to 7 objectives. We presented the obtained results at the 2021
IEEE Symposium Series on Computational Intelligence (SSCI) [98].

• Generation of new scalarizing functions using genetic programming.
We implemented a hybrid implementation of genetic programming
and a MOEA to generate new scalarizing functions. Using this im-
plementation we were able to generate new scalarizing functions with
some favorable results which were presented at the sixteenth inter-
national Conference on Parallel Problem Solving from Nature (PPSN
XVI) [96]. A follow up work generating new scalarizing functions for
MOPs with up to 7 objectives both in standard and inverse bench-
mark problems was presented in the Grammatical Evolution Work-
shop (GEWS2023) held during the Conference on Genetic and Evolu-
tionary Computation (GECCO 2023) [99].

• Generation of hypervolume approximations using genetic program-
ming. We modified the genetic programming implementation used in
the previous work to generate different hypervolume approximations
for 2-5 objectives and compared them against some state-of-the-art hy-
pervolume approximations. We published this work at the Swarm
and Evolutionary Computation journal [95].

1.5 LIST OF PUBLICATIONS

1.5.1 CONFERENCE PAPERS

• Bernabé Rodríguez, A. V. and Coello Coello, C. A., Generation of New
Scalarizing Functions Using Genetic Programming. In Parallel Problem
Solving from Nature – PPSN XVI, Leiden, The Netherlands.

• Bernabé Rodríguez, A. V. and Coello Coello, C. A., An Empirical Study
on the Use of the S-energy Performance Indicator in Mating Restric-
tion Schemes for Multi-Objective Optimizers. In 2021 IEEE Congress
on Evolutionary Computation (CEC’2021), Krákow, Poland. ISBN 978-1-
7281-8393-0.

• Bernabé Rodríguez, A. V. and Coello Coello, C. A., An Ensemble of
S-energy Based Mating Restricti ons for Multi-Objective Evolution-
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ary Algorithms. In IEEE Symposium Series on Computational Intelligence
(IEEE SSCI 2021), Orlando, USA.

• Bernabé Rodríguez, A. V. and Coello Coello, C. A., Designing Scalariz-
ing Functions Using Grammatical Evolution In Proceedings of the Com-
panion Conference on Genetic and Evolutionary Computation (GECCO 2023
Companion), Lisbon, Portugal.

1.5.2 JOURNAL PUBLICATION

• Bernabé Rodríguez, A. V., Alejo-Cerezo, B. I., and Coello Coello, C.
A., Improving Multi-Objective Evolutionary Algorithms using Gram-
matical Evolution. In Swarm and Evolutionary Computation 84:101434,
2024.

1.6 STRUCTURE OF THIS DOCUMENT

This thesis consists of 8 chapters, including this first one. Next, we describe
briefly the contents of each of the following chapters.

In Chapter 2 we present the essential background needed to discuss our
work. We provide the definition of multi-objective optimization problems
as well as an overview of evolutionary algorithms, with a particular em-
phasis on multi-objective evolutionary algorithms. At the end of this chap-
ter we also present some indicators used to assess the performance of such
algorithms.

In Chapter 3 we define diversity in the context of evolutionary optimiza-
tion and discuss its relevance to MOEAs. We also review some of the diver-
sity maintenance techniques used in the area.

In Chapter 4 we present some new mating restrictions which are based
in a diversity indicator and we evaluate their performance experimentally.

In Chapter 5 we propose an ensemble of the mating restrictions pro-
posed in the previous chapter. This ensemble is able to adapt the number of
individuals paired with each of the mating restrictions at each generation.

In Chapter 6 we explain how we used grammatical evolution (an evolu-
tionary computation technique) to generate new scalarizing functions (com-
monly used in decomposition-based MOEAs).

In Chapter 7 we employ a modification of the grammatical evolution
implementation presented in the previous chapter, but with the purpose of
generating hypervolume approximations.
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Finally, in Chapter 8 we present our conclusions and some future re-
search paths.
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2

Background

This chapter provides some essential concepts needed to discuss the work
presented in this document. In Section 2.1 we present some basic notions
of evolutionary algorithms. Then, in Section 2.2 we introduce the definition
of multi-objective optimization. Next, we discuss the use of evolutionary
algorithms to solve multi-objective optimization problems in Section 2.3.
Finally, in Section 2.4 we define some of the most popular performance in-
dicators used to assess the quality of the results obtained in this type of
algorithms.

2.1 EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms take inspiration from the evolutionary modern
synthesis, which is the result of merging Charles Darwin’s theory of evo-
lution with Gregor Mendel’s notions of heredity. Broadly, this theory states
that evolution occurs due to changes in the genetic material of individuals
through generations, which are guided by natural selection. The two main
mechanisms that generate these changes are mutation and recombination
(also called crossover).

Biologically, the genetic material of each organism is contained in the
deoxyribonucleic acid (DNA), where all the information needed to build
cell components is stored. DNA is structured in chromosomes, which are
long sub-segments of itself. In turn, chromosomes are divided in multiple
genes, which are small segments of DNA that encode a defined biochemical
function. Additionally, in a pair of homologous chromosomes, the value
that a certain genetic position can acquire is called allele.
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DNA contains all the genetic information of an organism. However, this
does not imply that all the information contained in the DNA will be used
at a given time during the development of such organism. We call geno-
type to the ensemble of all genetic material of an individual. Whereas the
information that is actually used (or expressed) and turns into observable
features of the individual is known as phenotype.

Evolutionary algorithms emulate these biological structures and the pro-
cesses involving their manipulation with the goal of solving certain types
of problems. There are different ways of performing this emulation, as well
as different levels of abstraction, which yields different evolutionary tech-
niques. However, in spite of their differences, all evolutionary algorithms
make an analogy between an evolutionary process and the solution of a
problem. Also, there are some common elements in most of these algo-
rithms, such as:

• Individual: It is the representation of a solution. It is usually a data
structure with multiple parameters that model a simplified version of
a biological organism.

• Population: Set of individuals that can interact with each other. It is
usually generated at random at the beginning of the algorithm, and
obtained through genetic operators in the subsequent iterations.

• Generation: It is a single iteration of the main algorithm.

• Fitness: It is a value that quantifies the quality of an individual as a
potential solution of the problem being solved. It is one of the core
elements of evolutionary algorithms, since it allows to determine if an
individual is desirable or not.

• Genetic operators: They are the mechanisms used to modify the ge-
netic material of the individuals.

– Crossover: It allows to form new individuals from the informa-
tion of other parent individuals.

– Mutation: It alters the genetic material of an individual. These
alteration are usually small.

• Selection mechanism: It is the process that determines which indi-
viduals of the population will be recombined using the crossover op-
erator. It usually contains a stochastic component but is still guided
by the fitness values of the individuals.
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There are three main paradigms in evolutionary computation. The main
differences between them are the genetic operators used, the way in which
they are used at each generation, and the parameters required. In the fol-
lowing subsections we discuss briefly each of these paradigms.

2.1.1 EVOLUTION STRATEGIES

Evolution Strategies (ESs) are an evolutionary technique developed in 1964
at the Technical University of Berlin [4]. It its original version, the main
genetic operator is mutation, while crossover is a secondary operator. An
ES can be denoted with the following notation:

(µ/ρ+, λ)− ES,

where µ, ρ and λ are positive integers. At each generation, there is a popu-
lation of µ parent individuals, from which ρ individuals are chosen to apply
a recombination operator, generating a new population of λ offspring indi-
viduals. Then, fitness values are obtained for each of the new individuals
to determine which will be preserved in the next generation. This process is
performed using some selection operator. The two most common selection
operators are:

• “+” selection The new parents population will be created selecting the
best µ individuals from the set formed by the union of parents and off-
spring in the current generation. This allows that the parents that are
not improved by the offspring are preserved in the next generation,
instead of some of the offspring individuals. In this case, if an indi-
vidual is not improved by the offspring, it can exist in the population
for several generations.

• “,” selection The new parents population will be created selecting only
the best µ individuals from the λ offspring individuals. In this case,
λ ≥ µ, and all individuals will exist in the population for only one
generation.

Usually, the ρ value is not specified in the notation of the ES, simplifying
it to:

(µ+, λ)− ES.

The simplest ES is denoted by (1 + 1) − ES, meaning that there is one
parent individual and one offspring individual. At each generation, the
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offspring is generated by applying a mutation operator to the parent. Then,
the offspring fitness is evaluated, if it is greater than the parent’s fitness, the
parent is replaced by its offspring. Otherwise, the offspring is discarded.

A basic mutation operator works as follows. Given a parent
x̄t =

(
x1, x2, · · · , xn

)T , the offspring is generated using:

x̄t+1 = x̄t +N(0, σ̄),

where t is the number of the current generation, and N(0, σ̄) is a normally
distributed random variable with mean 0 and standard deviation 1.

2.1.2 EVOLUTIONARY PROGRAMMING

Evolutionary Programming (EP) was proposed by Fogel, Owens and Walsh
in the 60s [42]. It was originally proposed to solve prediction problems. To
achieve this, the algorithm is provided a training set, formed by input and
output values. Then, the EP looks for a program that for each input value
generates the corresponding output value defined in the training set.

Similarly to ESs, the main genetic operator is the mutation. However,
EP’s most particular feature is that the individuals are represented as finite-
state machines. A finite-state machine is a model where, given an input
signal, generates an output signal by transitioning through different inter-
nal states. These models are defined by a finite alphabet, a state-transition
function, and a finite set of states, which must include an initial state and a
set of final states.

The mutation performed in EP usually allows to change almost all the
components of the individuals, such as the number of states, the state-
transition function, the initial states or the final states. Additionally, the
best half of the population is usually preserved, at each generation, whereas
the remaining half is formed with the best offspring individuals generated
through mutation.

2.1.3 GENETIC ALGORITHMS

Genetic Algorithms (GAs) were first proposed by John H. Holland in 1962 [56].
They are mainly used to solve optimization problems, where a mathemati-
cal function (called objective function) needs to be either maximized or min-
imized.

Taking into consideration that individuals in evolutionary algorithms
emulate living organisms, the individuals in GAs usually emulate the fol-
lowing biological concepts:
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• Phenotype: The values that are evaluated in the objective function
create the phenotype. For instance, given a function with 2 input vari-
ables x1, x2 ∈ IR in the interval [0, 1], the phenotype of one individual
could be (0.25, 0.75).

• Genotype: It is formed by the phenotype values but encoded in a dif-
ferent way. Traditionally, binary values are used. For instance, the pre-
vious values could be encoded with the strings (00100101, 01110101).

• Chromosome: It is the string that encodes all the individual’s vari-
ables. Following the same example, the chromosome would be the
concatenation of both variables’ strings, resulting in the string 0010010101110101.

• Gene: It is the string that encodes each of the individual’s vari-
ables. The example chromosome is formed by two genes: 00100101
and 01110101.

• Allele: It is the possible values that can be assigned to a certain po-
sition in a gene. Using binary encoding, each position can only have
the values 0 or 1.

A generic GA usually performs the following steps:

1. Generate the initial population at random.

2. Select the individuals which will generate the offspring population.
The selection mechanism is performed stochastically, but still consid-
ering the quality of each individual in terms of optimality (using its
fitness value).

3. Generate a new population applying the crossover operator to the
pairs of individuals selected in the previous step. Mutation is also
used as a secondary genetic operator in the resulting individuals.

Steps 2 and 3 are repeated iteratively until termination the criterion is
reached. The most common termination criteria are: a maximum number
of iterations reached or a fitness threshold reached.

2.2 MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

In a great variety of real-world problems, it is necessary to simultaneously
optimize two or more objective functions [112, 52]. These are known as
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Multi-objective Optimization Problems (MOPs). Even though the problem
may involve both maximization and minimization of certain objective func-
tions, without loss of generality, we will assume only minimization in all
the definitions used in this work.

2.2.1 MOP DEFINITION

Formally, a MOP is defined as follows:

minimize f⃗(x⃗) := [f1(x⃗), f2(x⃗), . . . , fk(x⃗)] (2.1)

subject to:
gi(x⃗) ≤ 0 i = 1, 2, . . . , p (2.2)

hi(x⃗) = 0 i = 1, 2, . . . , q (2.3)

where x⃗ = [x1, x2, . . . , xn]
T is the vector of decision variables, fi : IRn → IR,

i = 1, ..., k are the objective functions and gi, hj : IRn → IR, i = 1, ..., p,
j = 1, ..., q are the constraint functions of the problem.

2.2.2 PARETO OPTIMALITY

In order for a MOP to be non-trivial, the objective functions fi must be in
conflict with each other, causing that there is no single solution to a MOP.
Instead of that, we attempt to generate a set of solutions that represent the
best possible trade-offs among the objectives. Pareto dominance is com-
monly used to characterize such solutions.
Definition 1. Given two vectors x⃗, y⃗ ∈ IRk, we say that x⃗ ≤ y⃗ if xi ≤ yi for
i = 1, ..., k, and that x⃗ dominates y⃗ (denoted by x⃗ ≺ y⃗) if x⃗ ≤ y⃗ and x⃗ ̸= y⃗.

Definition 2. We say that a vector of decision variables x⃗ ∈ X ⊂ IRn is
non-dominated with respect to X , if there does not exist another x⃗′ ∈ X
such that f⃗(x⃗′) ≺ f⃗(x⃗).

Definition 3. We say that a vector of decision variables x⃗∗ ∈ F ⊂ IRn (F is
the feasible region) is Pareto-optimal if it is non-dominated with respect
to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {x⃗ ∈ F|x⃗ is Pareto-optimal}
Definition 5. The Pareto Front PF∗ is defined by:
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PF∗ = {f⃗(x⃗) ∈ IRk|x⃗ ∈ P∗}

Then, when solving a given MOP, our goal is to find the Pareto optimal
set (P∗) from the feasible region (F) of all the decision variable vectors that
satisfy (2.2) and (2.3).

Note however that in practice, not all the Pareto optimal set is normally
desirable or achievable, and decision makers tend to prefer certain types of
solutions or regions of the Pareto front [12].

Additionally, the Pareto fronts may have different geometries such as
linear, concave, convex or combinations of them. Also, there are some de-
generate fronts, which are of a lower dimension than the objective space in
which they are embedded [61].

2.3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

The use of evolutionary algorithms to solve multi-objective optimization
problems has become increasingly popular in the last decades. The so-
called Multi-Objective Evolutionary Algorithms (MOEAs) present some im-
portant advantages compared to classical mathematical programming tech-
niques, from which, perhaps the most remarkable is that MOEAs operate
on a set of solutions (called population). This allows MOEAs (if properly
manipulated) to generate several Pareto optimal solutions in a single exe-
cution, which contrasts with mathematical programming techniques, which
normally generate a single Pareto optimal solution per execution. Addition-
ally, MOEAs require little domain-specific information and do not impose
requirements neither on the objective functions nor on the constraints of a
MOP, contrasting with mathematical programming techniques which usu-
ally do (e.g., the gradient of the functions or the need for them to be ex-
pressed in algebraic form) [21].

There is a wide variety of MOEAs in the specialized literature, but they
can be broadly classified into the 3 following categories: [116]:

1. Pareto-based MOEAs: These algorithms were developed during
the 1990s, and use a ranking procedure (called non-dominated sort-
ing) based on Pareto optimality to classify solutions. They also adopt a
mechanism responsible for maintaining diversity (which is called den-
sity estimator). These MOEAs were very popular for several years, be-
ing the Non-dominated Sorting Genetic Algorithm for Multi-objective
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Optimization (NSGA-II) [30] one of the most popular MOEAs, but
their use is not effective in MOPs having more than three objectives
(the so-called many-objective optimization problems). This is because
the number of non-dominated solutions grows exponentially with the
number of objectives, and this quickly dilutes the selection pressure [124].

2. Indicator-based MOEAs: In these algorithms, the idea is to use a
performance indicator to select solutions instead of using Pareto op-
timality [140]. The most representative of these algorithms is the S-
metric Selection Evolutionary Multi-objective Algorithm (SMS-EMOA) [7],
which aims to maximize the hypervolume value of its population. The
main advantage of using hypervolume is that it is the only perfor-
mance indicator currently known to be fully Pareto compliant (i.e.,
strictly monotonic with respect to Pareto optimality). However, its
main drawback is its high computational cost, which has led to ex-
plore alternatives such as the use of hypervolume approximations in-
stead of the exact hypervolume [67, 6, 82]. Although indicator-based
MOEAs based on R2 (which is weakly Pareto compliant) are compu-
tationally efficient and have a good performance, their use is not very
popular today. Approaches based on R2 use a scalarizing function
and their performance is sensitive to the specific scalarizing function
adopted [55].

3. Decomposition-based MOEAs: The idea of using decomposition
(or scalarization) methods was originally proposed in mathematical
programming more than 25 years ago [28] and it consists in transform-
ing the given MOP into several single-objective optimization prob-
lems (SOPs) which are then solved to generate the non-dominated so-
lutions of the original MOP. Scalarizing functions are used to perform
this transformation by aggregating the multiple objective functions
into a single one using weight vectors. This allows to easily incorpo-
rate preference information if needed. Linear scalarizing functions,
such as the Weighted Sum Function (which is the most commonly
used, due to its simplicity), cannot generate solutions in the concave
portion of the Pareto Front [22]. However, non-linear scalarizing func-
tions allow these MOEAs the generation of non-convex portions of the
Pareto front and work even in disconnected Pareto fronts. Further-
more, there’s evidence that shows that the performance of these al-
gorithms depends strongly on the scalarizing function used [54]. An-
other advantage is that, unlike with domination-based MOEAs, de-
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composition techniques are not easily affected by selection pressure
issues [124], which leads to a better performance in many-objective
problems. The Multi-Objective Evolutionary Algorithm based on De-
composition (MOEA/D), introduced in 2007 [130] presents an impor-
tant advantage with respect to methods proposed in the mathematical
programming literature (such as Normal Boundary Intersection (NBI)
[28]): it uses neighborhood search to solve simultaneously all the SOPs
generated from the transformation.

2.4 PERFORMANCE ASSESSMENT

In order to assess the quality of the solutions obtained using a MOEA (or
any other MOP solving technique) there are different criteria that can be
measured [139]:

1. Convergence: The distance between the approximation set and the
true Pareto front should be minimized.

2. Distribution: A uniform distribution of the solutions is desirable.

3. Spread: The extent of the approximation set should be maximized, i.e.,
for each objective, the solutions should cover a wide range of values.

Ideally, a good approximation set to a given MOP has good convergence,
distribution and spread. Performance indicators are used to quantitatively
measure these properties allowing the comparison of different algorithms.
In the following subsections, we define some of these indicators, as they
will be used later in this document to compare our results against other
state-of-the-art algorithms.

In the following definitions we mention the use of a set of points A,
which represents the approximation set of which we want to obtain its indi-
cator value. Additionaly, some indicators require the use of a reference set
B. This reference set is usually a discretization of the true Pareto front of the
MOP being used. This means that this information must be available in or-
der to use these indicators. Although this information is usually not known
a priori in most real-world problems, it is available for most benchmark
MOPs, which are commonly used to assess the performance of MOEAs.
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2.4.1 HYPERVOLUME INDICATOR

Let A = {a⃗1, . . . , a⃗n} ∈ IRm be a set of points in an m−dimensional space,
and let r⃗ ∈ IRm be a reference point which is dominated by every point in
A. Then, the set H(A, r⃗) is formed by all the points that are dominated by
at least one element in A and which also dominate r⃗:

H(A, r⃗) = {z⃗ ∈ IRm | ∃ a⃗ ∈ A : a⃗ ≺ z⃗ ≺ r⃗}. (2.4)

The hypervolume indicator IH(A, r⃗) is defined as follows:

IH(A, r⃗) = λ(H(A, r⃗)), (2.5)

where λ represents the Lebesgue measure [6]. In order to compare the hy-
pervolume values of two different sets, the calculation must be made using
the same reference point r⃗. The greater the hypervolume, the better the ap-
proximation set is. This indicator measures the convergence and the spread
of the set.

2.4.2 GENERATIONAL DISTANCE INDICATOR

Let A = {a⃗1, . . . , a⃗n} ∈ IRm be a set of points and B = {⃗b1, . . . , b⃗n} ∈ IRm

be a reference set. Then, the Generational Distance Indicator is defined as
follows:

IGD(A,B) =
1

n

(
n∑

i=1

d(⃗ai,B)p
) 1

p

(2.6)

where p > 0 is a user-defined parameter (usually p = 2 is used), and d(⃗a,B)
is the Euclidean distance from vector a⃗ to its nearest element from B. This
indicator only measures the convergence of the set. The smaller the genera-
tional distance, the better the convergence of the approximation set is.

2.4.3 INVERTED GENERATIONAL DISTANCE INDICATOR

LetA = {a⃗1, . . . , a⃗n} ∈ IRm be a set of points and B = {⃗b1, . . . , b⃗n} ∈ IRm be a
reference set. Then, the Inverted Generational Distance Indicator is defined
as follows:

IIGD(A,B) =
1

n

(
n∑

i=1

d(⃗bi,A)p
) 1

p

(2.7)
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where p > 0 is a user-defined parameter (usually p = 2 is used), and d(⃗b,A)
is the Euclidean distance from vector b⃗ to its nearest element from A. The
only difference with respect to the previous indicator, is that the distances
are measured from each element in the reference set B to each of the ele-
ments in the approximation set A. This change improves the indicator sig-
nificantly, since this allows the indicator to measure not only convergence,
but also distribution and spread, given that the reference set has a good
distribution and is well spread. Once again, the smaller the inverted gener-
ational distance, the better the approximation set is.

2.4.4 S-ENERGY INDICATOR

Let A = {a⃗1, . . . , a⃗n} ∈ IRm be a set of points, its s-energy is defined as
follows:

ISe(A) =
n∑

i=1

n∑
j=1
i ̸=j

1

| a⃗i − a⃗j |s
(2.8)

where | · | represents the Euclidean distance and s > 0 is a user-defined
parameter (usually s = m− 1 is used). This indicator exclusively measures
the uniformity of the solutions. The smaller the s−energy, the better the
uniformity of the set is.

2.4.5 R2 INDICATOR

LetA = {a⃗1, . . . , a⃗n} ∈ IRm be a set of points, andW a set of m−dimensional
weight vectors, the R2 indicator is defined as follows:

IR2(A,W) =
1

|W|
∑
w⃗∈W

min
a⃗∈A
{uw⃗(a)} (2.9)

where uw⃗(a) is a utility function, parameterized by weight vectors w⃗ ∈ W ,
that assigns a real value to each solution vector. This indicator assesses
convergence, uniformity and spread of the set.
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3

Diversity

Diversity is a desirable characteristic in MOEAs populations due to two
main reasons: (1) it helps providing different solutions to the decision maker
and (2) it is necessary for a good performance of the algorithm. In Sec-
tion 3.1 we present the definition of diversity used in this work, along with
a deeper discussion on its importance. In Section 3.2 we enlist some of the
existing techniques used to maintain diversity in MOEAs.

3.1 DIVERSITY IN MULTI-OBJECTIVE EVOLUTIONARY
OPTIMIZATION

In the previous chapter we mentioned three desirable characteristics for
an approximation set A: convergence, distribution and spread. Although
there is no universal definition for diversity in the multi-objective evolu-
tionary optimization field, most authors agree that diversity measures the
latter two of these three criteria: distribution and spread [125, 1, 45, 17, 114].
Then, an approximation set with good diversity would have its solutions
uniformly distributed along the entirety of the Pareto Front. In Fig 3.1 we
show an example to illustrate these concepts in two dimensions. In Fig 3.1a
the feasible region of the MOP is shown in gray, while the corresponding
Pareto Front with its two extreme points is shown with a thicker black line.
Then in Fig 3.1b we show the image of an approximation set A1 with a poor
distribution but well spread, since it contains both of the extreme points of
the Pareto Front. Next, in Fig 3.1c, the image of approximation set A2 has
a much better distribution, but lacks solutions close to the extreme points,
causing it to be badly spread. Finally, in Fig 3.1d, the image of approxima-
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(a) F (P ∗)

(b) F (A1) (c) F (A2) (d) F (A3)

Figure 3.1: Example of a Pareto Front for a two-objective MOP (a) and three
different approximation sets for the same problem. One with a poor distri-
bution but well spread (b), another one with a good distribution but badly
spread (c), and finally one with good distribution and well spread (d).

tion set A3 exhibits a good distribution and is well spread.
Although this is the most used definition for diversity, there are some

authors who consider that an approximation set with good uniformity does
not necessarily mean that it also has good diversity, and vice versa. This
is because they consider that a set with a uniform distribution provides re-
dundant information for some objective values, whereas a good diversity
should provide decision makers the maximum amount of (different) infor-
mation [119].

3.1.1 IMPORTANCE OF DIVERSITY IN THE FINAL APPROXIMATION
SET

The goal of solving a MOP is to find solutions in the Pareto optimal set
(P∗). However, for many MOPs, this set has an infinite size, causing it to
be impossible to enumerate every single optimal solution. In this case, the
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best we can do is to aim to obtain a representative subset of P∗, which we
call the approximation set A. Ideally, this set should include solutions as
diverse as possible, because the decision-maker will have to select one or
some of these solutions. Hence, it is desirable to offer a wide variety of
Pareto optimal solutions, allowing him to select the one that adapts the best
to his specific needs [10].

3.1.2 IMPORTANCE OF DIVERSITY DURING THE EVOLUTIONARY PRO-
CESS

The solution process of any MOEA involves an intrinsic trade-off between
the goals of convergence (also known as proximity) and diversity of the
solutions. And, even though diversity tends to be considered the secondary
goal out of these two, it is also of great relevance in the process of solving
most MOPs [9].

Biologically speaking, the loss of diversity also exists in nature, in a phe-
nomenon called genetic drift, in which, due to random occurrences, gene
variants can disappear entirely, thus reducing genetic variation. In the con-
text of MOEAs, there are two well-known causes for loss of diversity:

1. Selection pressure: is the natural result of the expected value of the
selection process. Lower performing solutions (in terms of fitness val-
ues) are expected to dissappear from a finite population, which will
lead to preserving only high performing solutions.

2. Selection noise: in a finite population, random choices among iden-
tically fit solutions can occur, adding noise to the expected count for
each individual.

These two phenomena can cause premature convergence of the algo-
rithm to local optima, or even lead the population to a point where it mostly
consists of copies or slight variants of the same high performing individ-
ual [80]. Hence, diversity maintenance techniques have become a standard
component of MOEAs and are a fundamental research topic in evolutionary
computation.

3.2 DIVERSITY MAINTENANCE TECHNIQUES

The first explicit attempt to maintain diversity in an evolutionary algorithm
was made by Holland [57] who proposed the crowding operator to identify
situations in which many individuals coexist in a given niche. De Jong later
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experimented with this operator [29] creating the first experimental study
on a diversity maintenance mechanism.

Ever since, this problem has been studied thoroughly by many research-
ers [101], and different mechanisms have been proposed to preserve diver-
sity which may be classified in three main categories: density estimators,
mating restrictions and secondary populations. Each of them is discussed
in the following subsections.

3.2.1 DENSITY ESTIMATORS

The role of diversity in MOEAs has been studied by a number of researchers
(see for example [50, 126, 118, 102, 119]) over the years and the main out-
come of such studies is the fact that the density estimator has become a
standard mechanism in modern MOEAs.

Density estimators are responsible for blocking the selection mechanism
of a MOEA with the aim of allowing it to generate different solutions in
a single run. Due to this very broad definition, there are many different
density estimators, which can be grouped in the following subcategories:

3.2.1.1 NICHES AND FITNESS SHARING

Goldberg proposed the use of fitness sharing to favor unexplored regions
of the search space by penalizing the individuals in crowded regions (or
niches). Hence, individuals that are isolated in their own niches have a
better chance of being selected, since their fitness is not penalized [47]. The
shared fitness of an individual x⃗i ∈ IRm is given by the following expression:

Fsh(x⃗i) =
F0(x⃗i)∑

j∈P s(d(i, j))
(3.1)

where F0(x⃗i) is the original fitness of the individual, x⃗i, P is the population
of individuals, and s(d(x⃗i, x⃗j)) is zero if the Euclidean distance of individual
x⃗i to individual x⃗j is bigger than the niche radius σshare, and a value in
range [0, 1] otherwise. The main drawback of this method is the setting of
the parameter σshare, which defines the size of the niche considered, and it
is problem dependent [50]. In this regard, Fonseca and Fleming proposed a
method to automatically set this parameter based on the distribution of the
population at each generation [44].

In the context of many-objective optimization, one related technique that
uses distances among individuals is the Pure Diversity (PD) metric [119],
which measures the dissimilarity of solutions to the rest of the population
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using a greedy ordering and Lp-norm-based distances. One of its main ad-
vantages is that it requires no parameters. Additionally, a diversity mainte-
nance derived from PD has shown a good performance in MOPs with up to
ten objectives.

3.2.1.2 CROWDING

This technique was proposed by Deb et al. as a diversity maintenance mech-
anism for the Non-dominated Sorting Genetic Algorithm (NSGA-II) [34].
Essentially, it estimates the density of each individual by cumulatively sum-
ming up the absolute distances from the individual to its two closest neigh-
bors across all objectives.

This process is repeated for all individuals, being the only exceptions
the extreme solutions since they are automatically preserved, and the indi-
viduals with the lower crowding value are the ones that are deleted at each
generation.

However, there is a pathological problem with this technique, where it
fails to detect a crowded region. It occurs when individuals are really close
from one of its neighbors, but considerably far away from the second clos-
est neighbor. In this case, the distance from the second neighbor might help
preserving such individual, even though there are two individuals in an al-
ready crowded region (the individual in question and its closest neighbor).

Adra and Fleming have proposed an improvement to traditional crowd-
ing by using two novel density estimators DM1 and DM2 in addition to
crowding to solve many-objective optimization problems [1]. DM1 is an
adaptive strategy to regulate population diversity according to the solu-
tions dispersion (measured by the maximum spread metric) and DM2 is an
adaptive mutation operator that defines the interval in which decision vari-
ables can be mutated and is governed by both the spread metric and Deb’s
crowding measure. This proposal was evaluated using MOPs with up to 20
objectives, however, only DM1 presents favorable evidence of improving
results.

3.2.1.3 ADAPTIVE MESH

Knowles and Corne proposed the use of a position-based external archive
with the intention of obtaining a uniform distribution [71, 70]. This ap-
proach divides the objective space into a grid and defines diversity in terms
of how many solutions are located in each sub-region.

Solutions are stored in an archive using this space division, and once the
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archive has reached its maximum size, it will eliminate solutions selected
at random from the most crowded sub-region in order to store the new so-
lution. This is a useful approach with the advantage of having a simple
measurement of crowding [78, 25].

However, it has some problems related to the amount of divisions used
in the grid, since different values can generate different sub-regions to be the
most crowded. Additionally, when individuals are located in the corners
of adjacent sub-regions, it can also lead to a wrong detection of the most
crowded sub-regions [50].

3.2.1.4 CLUSTERING

Zitzler et al. proposed a clustering method to maintain the size of external
archives [144, 142] where a desirable number of “clusters” is defined and a
clustering algorithm is used to obtain them.

In this proposal each non-dominated individual initially represents a
distinct cluster. Then, if the number of clusters/individuals is greater than
the maximum archive size, the two closest individuals, considering Eu-
clidean distances, are merged into a single cluster. This process is repeated
until the number of clusters is smaller than or equal to the maximum size
of the archive. Then, the archive is trimmed by selecting only one “repre-
sentative” individual per cluster. To this end, the individual with minimal
average distance to all other points in the cluster is selected. One of the ad-
vantages of this approach is that using a high number of clusters induces
uniformity in the population [115].

3.2.1.5 USE OF ENTROPY

Farhang-Mehr and Azarm [39] proposed the use of Shannon’s entropy [111],
which measures how evenly a set of numbers is spread, to assess the diver-
sity of solutions. Shannon’s entropy is large given a set of numbers which
are approximately the same, and low when the numbers are very differ-
ent. Consequently, the higher the entropy of a solution set, the more evenly
spread throughout the feasible region is and the better coverage of the space
it provides.

This concept has been used by dividing the feasible domain into a grid
and applying an entropy-based density function to each sub-region [69, 27,
39].

More recently, in the context of many-objective optimization, Zhou et
al. [136] proposed an entropy based evolutionary algorithm with adaptive
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reference points (EARPEA) which exhibits a good performance in problems
with up to 10 objectives. However, its main drawback is that it is parameter
dependent.

3.2.2 MATING RESTRICTIONS

Mating restrictions are discussed in Goldberg’s seminal book on genetic al-
gorithms [46] as a mechanism to prevent or minimize the propagation of the
so-called “lethals” (offspring with low fitness values). In other words, mat-
ing restrictions were originally proposed as a mechanism to bias the way in
which individuals mate during recombination aiming to increase the effec-
tiveness and efficiency of a genetic algorithm. Goldberg provided a simple
example of mating restrictions based on genotypic similarities and pointed
out that, biologically, mating restrictions are equivalent to geographical iso-
lation or to establishing a barrier that constrains the flow of genes. Thus,
mating restrictions are closely related to biological speciation, which gives
rise to new species.

Deb and Goldberg [32] proposed mating restrictions in single-objective
genetic algorithms based on the phenotypic distance between the individ-
uals. In their proposal, the mating companion of an individual was se-
lected from individuals lying within a user-defined distance (defined with
a parameter called σmate). By pairing relatively similar parents in objective
space, their goal was to prevent, or decrease, the generation of lethals, hence
improving the performance of the genetic algorithm.

Ever since these two proposals were introduced, different mating restric-
tion schemes have been proposed, exploring the effect of measuring the dis-
tance between individuals in both objective and decision space, as well as
pairing similar or dissimilar individuals according to a user-defined met-
ric [43, 44, 103, 59].

Since mating restrictions determine which individuals are to be paired
in the recombination step of an evolutionary algorithm, they have a direct
effect in both the exploration and the exploitation capacity of the algorithm.
Hence, if the mating restriction biases the population towards the genera-
tion of new different individuals, it can be considered as a diversity main-
tenance technique.

In the context of MOEAs, there are some studies focused on the role of
mating restrictions. For instance, Zitzler and Thiele [143] as well as Van
Veldhuizen and Lamont [117] found that there was not enough empirical
evidence to argue that the use of mating restrictions would either improve
or worsen the performance of a MOEA. On the other hand, Ishibuchi stud-

25



CHAPTER 3. DIVERSITY

ied the use of mating restrictions using either Euclidean or Hamming dis-
tances (as well as mating of either similar or dissimilar individuals) in MOPs
with two and three objectives, finding that mating restrictions can indeed
improve the performance of MOEAs but they are problem-dependent as
well as algorithm-dependent [65, 64].

A variety of mating restriction mechanisms have been proposed in the
literature with the aim of improving the overall performance of MOEAs,
either by improving the population’s diversity or the convergence speed.
However, few of such proposals have been tested with many-objective op-
timization problems (MOPs with 4 or more objective functions.

Multi-objective evolutionary algorithms enhancement has been performed
in [128], where two decomposition-based MOEAs, namely MOEA/D [135]
and EFR [127], were improved using a mating restriction. The resulting
algorithms (MOEA/D-DU and EFR-RR) are able to outperform their origi-
nal versions in most tested problems with up to 13 objective functions. The
mechanism used consists in determining neighborhoods for each individual
based on their perpendicular distance to weight vectors in objective space.
Using this information, the mating restriction allows to balance diversity
and convergence by mating individuals within the same neighborhood in
MOEA/D or by selecting individuals from the same neighborhood in the
ranking performed in EFR.

Another modification to MOEA/D in order to improve the results ob-
tained in many-objective optimization problems is MOEA/D-LWS [120] which
implements a localized weighted sum method. This algorithm implements
a weighted sum scalarizing function paired with a mating restriction scheme
in order to use the function locally (within a hypercone around each weight
vector). This modification allows to obtain solutions in non-convex por-
tions of the Pareto fronts, which is the most well-known downside of us-
ing a weighted sum. Experimental results comparing against two other
MOEA/D variants as well as three other MOEAs show really good results
in problems with up to seven objectives.

The Enhanced-Mating-Selection-Many-Objective-NSGA-II (EMS-MO
-NSGA-II) [19] enhances MO-NSGA-II’s mating selection mechanism by
utilizing two mating mechanisms. The first one is a reference-point based
selection procedure, while the second one is a neighborhood-based selec-
tion scheme. These two strategies were experimentally evaluated, both in-
dividually and combined, by solving the DTLZ 1-4 test problems [35] with
up to 10 objectives. The results obtained showed a significant improvement
when using both strategies at the same time.

The many-objective evolutionary algorithm based on directional diver-

26



3.2. DIVERSITY MAINTENANCE TECHNIQUES

sity and favorable convergence (MaOEA-DDFC) [20] uses a scalarizing func-
tion to obtain convergence degrees of individuals in the population. Then,
using a binary tournament selection scheme, individuals are selected and
compared using both Pareto dominance and convergence degrees to create
a mating pool in which only the best individuals are chosen. This algo-
rithm was compared with respect to seven other MOEAs, obtaining good
results and improving their performance in the majority of the test prob-
lems used, which comprise problems with up to ten objectives from the
DTLZ and WFG test suites.

The constrained MOEA/D with Directed Mating and Archives of infea-
sible solutions (CMOEA/D-DMA) [85] relies on useful infeasible solutions
which are generated during the search process. Up to eight infeasible so-
lutions per weight vector are stored in an archive, and they are randomly
selected to be mated with feasible solutions. This mechanism was coupled
to cMOEA/D and used to solve the mCDTLZ problems [87] as well as m
objectives k knapsack problems [68] with up to eight objective functions.
The results obtained indicate that this algorithm outperforms the original
cMOEA/D as well as NSGA-III and TNSDM [86] (Two-stage Nondomi-
nated Sorting and Directed Mating) in most of the test instances adopted.

The spectral clustering based multi-source mating selection strategy (SMMS)
is designed to detect regularity properties and to balance population di-
versity and convergence. It was coupled to SMS-EMOA [7] giving rise to
the so-called SMMEA [121]. Given an individual x⃗, this algorithm adopts
three different sources for selecting a mate: (1) a sub-population from the
same cluster of x⃗, (2) a sub-population from a cluster adjacent to the clus-
ter containing x⃗, or (3) the whole population. The selection of one mating
source is performed using adaptive probabilities for the first two sources,
obtained from each source efficiency. This proposal was compared with re-
spect to six MOEAs in the solution of the MOPF [75], UF [131] and GLT [49]
test problems, with two and three objective functions. The results showed
that SMMEA had a significantly better performance than the other MOEAs
adopted.

3.2.3 SECONDARY POPULATIONS

In the context of evolutionary algorithms, an archive stores a population of
individuals, and the process of updating this archive consists in comparing
new solutions with those already stored and deciding which ones are kept
and which ones are discarded.

In theory, the population of any traditional MOEA can be seen as an
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archive that is updated at each generation, since new offspring individuals
are compared with the parent individuals already in the population. How-
ever, in practice, archives commonly refer to the storage of individuals in
addition to the main population of the MOEA.

According to Horn [58], every MOEA should use a secondary popula-
tion since the goal is to obtain a discrete image of a possibly continuous
Pareto front. Therefore, it is desirable to store as many solutions as possible
in order to obtain a Pareto front approximation with a good distribution.
However, even though researchers agree that secondary populations are
useful, the computational cost of maintaining an unbounded archive makes
this infeasible. Hence, there are some important questions that remain to be
answered such as the type of interaction between the main population and
the secondary one, as well as the filter used to keep the external archive at
a reasonable size.

Although the first MOEAs which implemented secondary populations
used arrays to store the solutions, several alternative data structures have
been used to this end. For instance, Mostaghim et al. [88] proposed the use
of quadtrees in the strength Pareto Evolutionary Algorithm (SPEA) [144].
Bringmann et al. [15] proposed the Approximation Guided Evolutionary algo-
rithm (AGE), which employs non-bounded files. Fieldsend et al. [41] pro-
vide some remarks on the negative consequences of bounding the secondary
population in the produced Pareto fronts. They also propose the use of two
new data structures (non-dominated trees and PQRS trees) to store and ef-
ficiently retrieve solutions in a non-bounded file.

Laumanns et al. [74] proposed a relaxed form of Pareto dominance called
ε-dominance, which is used to filter solutions in an external file. The idea
is to define a series of ε sized boxes and allow only one non-dominated
solution in each of them. However, in a later study, it has been shown that
ε-dominance can be detrimental for problems where the number of feasible
objective vectors is relatively small, since the optimization process can be
slow down drastically [60]. Additionally, other archiving strategies have
been proposed using ε-dominance and Hausdorff metrics [106, 105].

Zapotecas and Coello [81] proposed the use of Convex Hull of Individ-
ual Minima (CHIM) to maintain well distributed solutions in the secondary
population of a MOEA.

Another proposal is to locally maximize the hypervolume dominated by
the archive [72]. This has led to more recent studies on the convergence of
archiving algorithms with respect to the hypervolume [14, 13].
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3.3 SUMMARY

Diversity is a desirable property in approximation sets provided by MOEAs
to the decision maker and an elemental component that aids the algorithm
to avoid premature convergence. In this chapter we have described some
of the diversity maintenance techniques used in traditional MOEAs as well
as some of the proposals made specifically for many-objective optimization
problems. However, there is still room for improvement in several of these
diversity maintenance techniques. Particularly, the use of different of these
techniques remains to be explored with more detail in many-objective op-
timization problems. In the following two chapters we explore the use of
mating restrictions based on a performance indicator used to assess diver-
sity (s-energy) and their effect in many-objective optimization problems.
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S-energy based mating
restrictions

In MOEAs, mating restrictions determine the criterion used to pair the in-
dividuals from the population in the recombination step of the algorithm.
In doing so, they can significantly impact the exploration and exploitation
capabilities of the search process. In terms of diversity maintenance, mat-
ing restrictions are useful because they can bias the population towards the
generation of offspring individuals which are relatively different from the
parents, increasing the diversity in the population. This can be achieved by
combining parents with different characteristics. In order to determine how
different two individuals are there are several metrics which can be used.
In this chapter, we explore the use of the s-energy performance indicator
to measure the contribution of each individual to the whole population’s
diversity, and we present some new mating restriction schemes based on
these contributions along with their experimental validation.

4.1 STATE OF THE ART MATING RESTRICTIONS

Initially, mating restrictions were based on distance between individuals in
objective space (although distance in decision space has also been used).
However, there have been different proposals using clustering in addition
to these distances, as well as other restrictions based on additional mea-
sures.

One of these proposals using clustering is the mating restriction strategy
based on survival length [76] (MRSL), which is a self-adaptive mechanism
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that employs clustering to obtain the structure of the population and then
assigns different probabilities to individuals in each cluster based on their
corresponding survival length.

The underlying idea of this proposal is that individuals with a high sur-
vival length are high-quality individuals and the surrounding area should
be exploited, while individuals with a low survival length are newly gen-
erated, and therefore, exploration is needed to assess their quality. Exper-
imental results implementing MRSL in five MOEAs of the state-of-the-art
show that its use improves results when solving MOPs having two and
three objectives.

Another similar proposal is the decomposition based multiobjective evo-
lutionary algorithm with self-adaptive mating restriction strategy [77]
(MOEA/D-MRS). This algorithm implements another mating restriction based
on survival length. However, this approach is specifically designed for a de-
composition-based MOEA, which is MOEA/D. It was compared to other
MOEA/D variants, obtaining better results in most of the test problems
adopted.

The fuzzy c-means clustering-based mating restriction [132] (FMR) is an-
other restriction in which clustering is used to discover the structure of the
population. However, solutions have different degrees of membership to
each cluster, resulting in the fact that one solution can belong to more than
one cluster. This is used to generate a mating pool for each individual, which
contains the individuals with which they can mate. FCMMO is a MOEA
designed around FMR and it utilizes differential evolution to recombine
individuals from a given mating pool and the hypervolume-based environ-
mental selection mechanism of the SMS-EMOA [7]. FCMMO obtained good
experimental results with respect to five other MOEAs in MOPs with two
and three objectives.

Finally, the Manifold Learning-Based Mating Restriction Strategy (MRML)
is another mechanism which aims to improve the performance of a MOEA
by calculating the manifold distances between individuals, which considers
both objective and decision space distances. MRML employs a niche radius
R to obtain the neighborhood of a solution based on the previously calcu-
lated manifold distances. Once the neighborhood of a solution has been ob-
tained, it is paired to the closest solution as its mating companion, and the
remaining solutions in the neighborhood are discarded. This causes that
some solutions cannot be paired due to missing individuals. However, this
is solved by recombining such individuals with mutated versions of them-
selves. MRML was coupled to three MOEAs and was used to solve MOPs
with complicated Pareto sets, having two and three objectives, obtaining
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good results [91].
All of the proposals mentioned above have been validated adopting

test problems with complex Pareto sets or considerably difficult features
from the GLT [49], UF [131] and WFG [63] test suites. Concerning the
MOEAs adopted to compare results, the most commonly used are well-
known MOEAs such as NSGA-II, SMS-EMOA, SPEA/R, SPEA2 and MOEA/D-
DE. However, in all cases, three is a maximum number of objectives consid-
ered, which may be due to the considerable computational cost involved in
the use of clustering techniques or to the additional cost of using hypervolume-
based selection in approaches such as FCMMO.

4.2 S-ENERGY BASED MATING RESTRICTIONS

In this section, we propose the use of the s-energy indicator to design 4
different mating restrictions. We also provide experimental validation of
these restrictions to assess their performance.

4.2.1 S-ENERGY

Riesz s-energy (Es) was proposed by Hardin and Saff [51], and has been
used as a performance indicator to measure the uniformity of the distribu-
tion of a set of points [37]. Given a set X = {x⃗1, x⃗2, . . . , x⃗n} of m-dimensional
points, its s-energy is defined as follows:

Es(X) =
n∑

i=1

n∑
j=1
i ̸=j

1

| x⃗i − x⃗j |s
(4.1)

where | · | represents the Euclidean distance and s > 0 is a fixed parameter.
In this work, we use s = m − 1 in all cases. This indicator should be mini-
mized in order to obtain a population with a good diversity. Moreover, the
individual s-energy contribution (Csi) of a given point x⃗i may be computed
as:

Csi = Es(X)− Es(X \ {x⃗i}) (4.2)

where x⃗i ∈ X . Since Es(X) is to be minimized, a high value of Csi means
that the individual x⃗i is in a “crowded” region, since at least one other in-
dividual in the population is relatively close to it. On the other hand, a
low Csi value means that the individual x⃗i has a better contribution to the
global distribution, since it is in a “non-crowded” region. Using this infor-
mation, we can rank the population based on their individual contribution
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measured in objective space, considering the individual with the highest
contribution as the worst individual, and the individual with the lowest
contribution as the best one. Given such ranking, we can establish different
mating restriction schemes which may favor the reproduction of the indi-
viduals with the best contributions. This is the core underlying idea of our
proposed s-energy based mating restriction (SMR) schemes, and our goal
is to use population diversity information to improve the performance of
the evolutionary search. In the following two subsections we describe the
different restrictions proposed.

4.2.2 SMR1: SIMILAR VS. DISSIMILAR

The first two schemes we propose are the most intuitive in terms of consid-
ering s-energy contributions: (1) pairing individuals with similar contribu-
tions and (2) pairing individuals with dissimilar contributions.

Both restrictions require the computation of the contribution Csi for each
individual in the population, at every generation. Once these contributions
have been obtained, we rank the population according to these values and
we proceed to pair individuals as follows.

In the first strategy, called SMR1_SIM, we choose the best individual
from the population and we pair it with the second best individual. Then,
we repeat this process with the next two best individuals from the popula-
tion until all individuals are paired. This is illustrated in Figure 4.1.

The second strategy SMR1_DIS pairs the best individual from the popu-
lation with the worst individual. Once again, this process is repeated with
the second best and the second worst individuals, and so on, until all pairs
of parents are obtained, as depicted in Figure 4.2.

These two schemes are evidently the simplest possible mating restric-
tions using s−energy individual contributions. Intuitively, we expect
SMR1_SIM to pair the best individuals (meaning the ones with low s-energy
individual contributions) with each other, which would combine individu-
als in non-clustered regions, and would potentially generate offspring in
the regions between them. However, it will also pair the worst individuals
(meaning the ones with high s-energy invidivual contributions) with each
other, which would pair individuals in clustered regions with other indi-
viduals that are also in clustered regions, potentially creating offspring in
already crowded regions. On the other hand, we expect SMR1_DIS to pair
the best individuals (located in non-clustered regions) with the worst ones
(located in clustered regions). This seems to be more useful than the previ-
ous restriction, as it could potentially prevent the generation of solutions in
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Figure 4.1: Example of our proposed SMR1_SIM mechanism.

already crowded regions.

4.2.3 SMR2 AND SMR3: MATING POOL AND REPLACEMENT

In addition to the previous restrictions, we proposed another variants of
SMR1_DIS, in which instead of directly pairing the best individual and the
worst individual, a mating pool containing a fixed number of worst solu-
tions is created. The size of the mating pool is set by σpool > 0, which is
a user-defined parameter. Once the best individual is paired with an in-
dividual from the mating pool, they are both no longer considered in the
current iteration, and the worst individual gets replaced by the next worst
individual available. Next, the second best individual gets paired with an
individual from the updated mating pool, and so on until finding all pairs.
This mechanism is illustrated in Figure 4.3.

We adopted two criteria to select individuals from the mating pool: (1)
select the solution in the mating pool with the largest Euclidean distance
to the individual considered as the best one, and (2) select the solution in
the mating pool with the smallest Euclidean distance to the best individ-
ual. This yields two different mating restrictions, called SMR2 and SMR3,
respectively.

In both cases the Euclidean distance is measured in objective space, and
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Figure 4.2: Example of our proposed SMR1_DIS mechanism.

these distances do not need to be additionally computed, since they were
already obtained when computing s-energy individual contributions.

Since both SMR2 and SMR3 are variants of SMR1_DIS, we still expect
them to improve population diversity by pairing an individual from a clus-
tered region with an individual from a non-clustered region. However, we
add the mating pool to either increase, or decrease the Euclidean distance
between the paired individuals. This is done to emphasize either behavior
(individuals that may be close or far from each other), since the compari-
son of s-energy individual contributions only provides information of how
good or bad individuals are in terms of how many other individuals are
close to them, but it doesn’t provide information about the distance between
the individuals compared.

Moreover, it is important to notice that in both SMR2 and SMR3 it will
occur that individuals with similar contributions will be paired at some
point of the mating restriction strategy, which could once again, potentially
generate offspring in already clustered regions. Hence, we propose another
feature to avoid this, which we call replacement.

Since the pairing of individuals with similar contributions will always
occur in the last pairs formed, we propose to replace a percentage of the
last pairs of parents with some other, hopefully more useful, pairs. This
mechanism is shown in Figure 4.4. In order to create these new pairs, we
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Figure 4.3: Example of replacement technique after applying the mating re-
striction scheme.

select the best individual from the population and we pair it with a mutated
version of this same individual. Then, we select the second best individual
and repeat the process with a mutated version of it, and so on.

Using this replacement feature, we aim to improve the exploitation ca-
pability of the algorithm in the vicinity of the individuals with the best con-
tributions. The implementation of this feature yields mating restrictions
SMR2_R and SMR3_R. In this work, we considered 1

6
of the population as

the percentage to be replaced.

4.3 EXPERIMENTAL VALIDATION

In order to evaluate the impact of our proposed mating restrictions we im-
plemented them in NSGA-III [33] and compared the results obtained with
and without our s-energy based mating restrictions. We adopted the Deb-
Thiele-Laumanns-Zitzler (DTLZ) [35] and Walking-Fish-Group (WFG) [63]
test suites, since they contain scalable MOPs with solutions that include
Pareto sets with different geometrical features.

In order to assess the quality of the approximation sets obtained, we
adopted the hypervolume (HV) performance indicator [138] as well as the
inverted generational distance (IGD) [23]. Additionally, we also used s-
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Figure 4.4: Example of the SMR2/SMR3 mechanism with replacement feature.

energy [51] in order to directly measure the distribution of approximation
sets, since both the hypervolume and IGD measure it indirectly.

Even though s-energy is the core of all of our mating restrictions, we
only employed it as a quality criterion to rank individuals, and not as a
performance indicator to be specifically improved. Hence, s-energy values
are only used for comparison purposes, since its direct minimization is not
part of our proposal.

We performed 30 independent executions using each algorithm, and we
averaged the values of each performance indicator. We present these results
in the following tables, where the best value for each indicator is written in
boldface, and the cases where the use of a mating restriction improved the
results of the original NSGA-III are shown in gray.

Using this experimental setup we first compared SMR1_SIM and SMR1_DIS
against NSGA-III, and we obtained the results shown in Table 4.1. SMR1_SIM
outperforms the original NSGA-III in 27 out of 48 test problems when com-
paring hypervolume values, in 26 problems when using IGD and in 18 test
problems when using s-energy. It can be seen that SMR1_SIM shows a clear
advantage in the WFG test problems with 2 and 5 objectives. On the other
hand, SMR1_DIS only outperforms 19 of the HV values, 22 of the IGD val-
ues, and 26 of the s-energy values, being less consistent than SMR_SIM.

In Table 4.2 we present the results of comparing SMR2 with and without
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Table 4.1: Comparison of the average HV, IGD and S-energy values obtained
when using SMR1_SIM and SMR1_DIS.
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CHAPTER 4. S-ENERGY BASED MATING RESTRICTIONS

the replacement feature against NSGA-III. SMR2 without replacement pro-
duces improvements in 16 ouf of 48 problems regarding the hypervolume,
and it produces improvements in 20 problems regarding both the IGD and
s-energy indicators. SMR2 with replacement improves the results obtained
in 21 out of the 48 problems using hypervolume and IGD, while it improves
27 of the results obtained with s-energy. The latter mating restriction ob-
tains particularly good results in the DTLZ problems with 3 objectives as
well as in the WFG test problems with 2 objectives. However, both of these
fail to obtain good results in problems with 5 objectives, which could be an
indicator of a bad scaling capability.

The results obtained when comparing SMR3 with and without replace-
ment against NSGA-III are shown in Table 4.3. In this case, SMR3 without
replacement produces improvements in 26 out of 48 test instances with re-
spect to the hypervolume, and it produces improvements in 22 problems
with respect to both the IGD and s-energy indicators. This approach was
able to produce good results in the WFG test problems with 2 and 5 objec-
tives. In contrast, its version with replacement achieves an improvement in
27 problems with respect to the three indicators used.

In addition to the above results, we decided to evaluate the performance
of the two best performing strategies (SMR2_R and SMR3_R) with a differ-
ent mating pool size (σpool = 5). These results are shown in Table 4.4. Con-
cerning SMR2_R, it outperformed the original NSGA-III in 20 out of the 48
test problems with respect to the hypervolume, in 21 problems with respect
to the IGD indicator, and in 27 problems with respect to the s-energy. This
approach obtained good results in the DTLZ test problems with 3 objectives
and in the WFG test problems with 2 objectives. However, it performed
poorly in both the DTLZ and the WFG test problems with 5 objectives. On
the other hand, SMR3_R improved the results obtained in 29 problems with
respect to the hypervolume, in 27 problems with respect to the IGD indica-
tor, and in 21 problems with respect to the s-energy. This approach obtained
particularly good results in the DTLZ test problems with 3 objectives, and
in the WFG test problems with 2 and 5 objectives.

4.4 SUMMARY

In this chapter, we presented three different mating restriction strategies
as well as an experimental evaluation of their implementation in the well-
known NSGA-III. From the results obtained we can state that the mating
restrictions tested in our study do have an impact on the algorithms’ final
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Table 4.2: Comparison of the average HV, IGD and S-energy values obtained
when using SMR2 with and without replacement, with σpool = 3.
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Table 4.3: Comparison of the average HV, IGD and S-energy values obtained
when using SMR3 with and without replacement, with σpool = 3.
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4.4. SUMMARY

Table 4.4: Comparison of the average HV, IGD and S-energy values obtained
when using SMR2 and SMR3 with replacement with σpool = 5.
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CHAPTER 4. S-ENERGY BASED MATING RESTRICTIONS

convergence. However, no single mating restriction was able to improve all
the test problem instances adopted. The best overall performing strategy
was SMR3_R, which outperformed the original algorithm in 60.4% of the
test problems adopted considering the hypervolume indicator.

Regarding similar vs. dissimilar contributions pairing, our experimental
results indicated that the combination of individuals with a similar contri-
bution was slightly better than the alternative. Additionally, the replace-
ment strategy proved to be very useful in both SMR2 and SMR3, since it
not only increased the number of problems improved, but it also produced
higher hypervolume values in most of the test instances. This may be a di-
rect consequence of exploiting the area surrounding the individuals with
the best s-energy contribution (i.e., the individuals in the least crowded re-
gions). Moreover, the change of mating pool size caused a good perfor-
mance of SMR3_R in MOPs with 5 objectives. However, it caused a slight
worsening in MOPs with 2 objectives. This is more evidence that the mating
restriction effect seems to be problem-dependent and scale-dependent.

Because of these reasons, we considered that the best way of contin-
uing this work was to propose a mating restriction meta-strategy, which is
able to employ different strategies depending on information obtained from
the particular problem being solved. This proposal is presented in the next
chapter.
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5

Ensemble of S-energy based
mating restrictions

5.1 INTRODUCTION

The s-energy based mating restrictions (SMR) presented in the previous
chapter exhibit a certain amount of improvement in some test problems.
However, no single SMR was able to produce a significant amount of im-
provements in the results since they seem to be both problem and scale
dependent. Hence, we decided to combine them in an ensemble of mat-
ing restrictions which is able to decide which SMR to use at different points
during the execution of the MOEA.

5.1.1 S-ENERGY BASED MATING RESTRICTIONS USED

We selected the following four SMRs to create our ensemble of mating re-
strictions:

• SMR1_SIM: This restriction mates individuals with similar s-energy
contribution values. The first pair is formed with the two best indi-
viduals from the population. The next pair will select the next two
best individuals from the remaining individuals, and so on, until all
pairs are formed.

• SMR1_DIS: This restriction pairs individuals with dissimilar s-energy
contributions. The first pair selects the best individual and the worst
individual. The next pair mates the second best individual with the
second worst. This is repeated with the remaining individuals.
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CHAPTER 5. ENSEMBLE OF S-ENERGY BASED MATING RESTRICTIONS

• SMR3: This restriction employs a mating pool with size σpool > 0,
which is a user defined parameter. In this pool are contained the worst
individuals from the population which have not been selected yet.
SMR3 pairs the best individual from the population with one of the
individuals in the mating pool. In order to select one individual from
the mating pool, Euclidean distances in objective space are measured
and the individual with the smallest distance is selected. In our en-
semble we adopted this restriction twice: the first one with σpool = 5,
and the second one with σpool = 9.

We combined these SMRs to create an ensemble of mating restrictions
which is described in detail in the following section.

5.2 ENSEMBLE OF sENERGY BASED MATING RESTRIC-
TIONS

The ensemble we propose combines the simultaneous use of four SMRs at
each generation. However, since we already have experimental evidence
that no single SMR is able to improve the quality of the results obtained
across different benchmark problems, we propose the use of two metrics to
adapt the number of pairs that will be generated at each generation using
each of the restrictions. In doing so, we allow different SMRs to be more
predominantly used at certain points of the search process according to their
performance in the past generations. This is because one SMR may be better
than the rest during the first stages of the algorithm, but not in the latter, or
there could be one SMR that works really well with one type of problem, but
that performs badly in other problems. In order to measure the performance
of each SMR, we propose the use of the following two metrics:

• Mating restriction’s efficiency: It is the percentage of children gener-
ated by each SMR that were selected to survive in the next generation.
It is obtained by computing the quotient of the number of selected in-
dividuals which are offspring of a certain mating restriction divided
by the total number of children generated by this restriction so far.

• Mating restriction’s dominance: It is the sum of individuals generated
by each mating restriction which dominate either (or both) of their
parents. In contrast with efficiency, we propose this value to be ob-
tained using only the information from the last few generations, de-
termined by a user-defined parameter tr > 0.
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5.2. ENSEMBLE OF sENERGY BASED MATING RESTRICTIONS

The idea behind using two metrics is to obtain a combination of “global”
and “local” information, in the context of the search process performed by
the algorithm. In this sense, we use mating restriction’s dominance to ob-
tain “local” information since it only considers the last few generations. On
the other hand, we use mating restriction’s efficiency as a “global” informa-
tion indicator, since it stores how efficient each restriction has been from the
beginning of the algorithm. We alternate between these two metrics in the
following way.

During the first tr generations, we use mating restriction’s dominance to
determine the number of pairs to be obtained with each restriction, allow-
ing the ones which have generated better children in the last generations
to be the ones with more offspring in the next generation. Here, we call
better children to the ones that Pareto-dominate their parents. However,
every tr generations the dominance metric will be reset to zero (in order
for it to reflect local behavior information), and at this restarting point mat-
ing restriction’s efficiency will be used to assign the number of pairs to be
selected with each restriction instead of dominance. This is to ensure that
restrictions which have proven to be the most useful in the solution of the
current problem keep being used throughout the execution, even if they
may not be the ones with better offspring in a given particular generation.
In this work, we propose the use of tr = 5, which we determined to be a
good value after experimental validation.

We show the pseudocode of a generic MOEA implementing our ensem-
ble in Algorithm 1. Since this ensemble can be implemented in a wide vari-
ety of MOEAs, we do not get into the details of some generic steps such as
the population initialization (line 1), the individuals’ crossover and muta-
tion (lines 17 and 18) and selection of individuals which will survive to the
next generation (line 23).

In lines 2-10 we show the ensemble’s variables initialization. For the
very first generation, each mating restriction will be assigned an equal num-
ber of pairs (mating restriction size) to be selected with it (line 5). Then, dur-
ing the main loop of the algorithm (lines 11-38), the following will occur. In
line 12 we will obtain the pairing from each restriction in the ensemble, ac-
cording to the mating restriction size, previously set. Next, in lines 13-22
we will generate the offspring population using the pairing generated us-
ing the SMRs from the ensemble. In this part, we use a procedure to store
the dominance information of each pair of children generated for each SMR
(line 19). In line 23, the final population of this generation is selected (either
directly from the offspring population or from a combination of offspring
and parents population). Here, we require to count how many individu-
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CHAPTER 5. ENSEMBLE OF S-ENERGY BASED MATING RESTRICTIONS

Algorithm 1: Main algorithm of the mating restrictions ensemble.
Input: MOP, tr

1 MOEA_InitializePopulation(P⃗p)
2 nr ← 4
3 t← 0
4 for i← 1 to nr do
5 mrsize[i]← P⃗p.size/nr

6 mrdom[i]← 0
7 mreffic[i]← 0
8 mroffspring[i]← 0
9 mrselected[i]← 0

10 end
11 while stopping criterion not fulfilled do
12 mrpairing ← MR_select(P⃗p,mrsize)
13 P⃗0 ← ∅
14 for i← 1 to P⃗ .size do
15 p1 ← P⃗ [mrpairing[i]]

16 p2 ← P⃗ [mrpairing[i+ 1]]
17 c1, c2 ← MOEA_crossover(p1, p2)
18 c1, c2 ← MOEA_mutate(p1, p2)
19 MR_dominates(mrdom, p1, p2, c1, c2)
20 P⃗0 ← P⃗0 ∪ {c1, c2}
21 i← i+ 2

22 end
23 P⃗p,mrselected ← MOEA_select (P⃗p, P⃗0)
24 for i← 1 to nr do
25 mroffspring[i]← mroffspring[i] +mrsize[i]
26 mreffic[i]← mrselected[i]/mroffspring[i]

27 end
28 if t == tr then
29 MR_adjust(P⃗p,mrsize,mreffic)
30 for i← 1 to nr do
31 MRdom[i]← 0
32 end
33 t← 0

34 else
35 MR_adjust(P⃗p,mrsize,mrdom)
36 end
37 t← t+ 1

38 end48
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als generated with each mating restriction made it into the final population
to update the efficiency of each restriction. Next, we update this efficiency
(lines 24-27). Finally, if tr generations have already passed, mating restric-
tions’ dominance will be set to zero and mating restrictions’ efficiency will
be used to assign each restriction size (lines 29-33). If it is not the case,
mating restrictions’ dominance will be used instead (line 35). The auxiliary
procedures of this algorithm are shown in Algorithms 2, 3 and 4.

First, the mating restrictions ensemble selection mechanism is shown in
Algorithm 2, and it simply consists of obtaining the regular pairing from
each individual mating restriction (lines 4-6), and then the selection of the
first pairs from each pairing, according to the predefined mating restriction
size (lines 7-13).

Algorithm 2: MR_select

Input : P⃗ ,mrsize
Output: mrpairing

1 nr ← 4
2 counter ← 0
3 mrpairing ← {0, 0, . . . , 0}
4 for i← 1 to nr do
5 Pairi = SMRi(P⃗ )
6 end
7 for i← 1 to nr do
8 for j ← 1 to mrsize[i] do
9 mrpairing[counter] = Pairi[j]

10 mrpairing[counter + 1] = Pairi[j + 1]
11 counter ← counter + 2

12 end
13 end
14 return mrpairing

Next, the update of the dominance metric is shown in Algorithm 3.
Given a pair of parents and their corresponding children, we add the num-
ber of parents that each child dominates (lines 2-8). Then, we store this
value adding it to the previous dominance value of the corresponding SMR
(lines 9-10).

Finally, in Algorithm 4, we show the procedure used to adjust each mat-
ing restriction size according to a given metric (either efficiency or domi-
nance, since the steps are the same for both of them). Given the metric,
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Algorithm 3: MR_dominates
Input: mrdom, p1, p2, c1, c2

1 counter ← 0
2 for ci ∈ {c1, c2} do
3 for pi ∈ {p1, p2} do
4 if ci Pareto dominates pi then
5 counter ← counter + 1
6 end
7 end
8 end
9 mr ← mating restriction used to generate p1 and p2

10 mrdom[mr]← mrdom[mr] + counter

we compute its total sum (line 2) and then we use direct proportions to as-
sign each mating restriction size (lines 3-5), which means that the number of
pairs that will be generated with each SMR in the next generation is directly
proportional to each restriction’s contribution to the metric sum.

Algorithm 4: MR_adjust

Input: P⃗ ,mrsize,mrmetric

1 nr ← 4
2 metric_sum←

∑nr

i=1mrmetric[i]
3 for i← 1 to nr do
4 mrsize[i] = mrmetric[i]/metric_sum ∗ P⃗ .size
5 end

The computational cost of implementing our mating restrictions ensem-
ble is directly related to the cost of computing s-energy contributions of
each individual in the population. This is because these contributions are
required for all the mating restrictions adopted in the ensemble, and be-
cause it is the most computational time consuming part of the algorithm.

Using a naive approach, the calculation of an individual’s s-energy con-
tribution is O(n2), being n the size of the population. However, since we
need to obtain the contribution of each individual, the total computational
cost raises up to O(n3) per generation. However, this can be done more
efficiently, using the memoization structure proposed in [37], producing a
total computational cost of O(n2) to compute all the individuals’ s-energy
contributions. Once these contributions are obtained, this information can
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be used by all four mating restrictions, so it will only be performed once per
generation.

On the other hand, the mating restriction selection procedure has a com-
putational cost of O(n), while the dominance metric update has a computa-
tional cost of O(nm2), being m the number of objectives. Both the efficiency
metric update and the mating restriction size adjustment procedure have a
computational cost of O(nr), being nr = 4 the number of mating restrictions
used in the ensemble.

Finally, the total cost of implementing our ensemble is O(n2 + nm2) per
generation, which reduces to O(n2) for populations with over 100 individ-
uals and problems with up to 10 objectives.

5.3 EXPERIMENTAL VALIDATION

In order to validate the functionality of our proposed ensemble, we imple-
mented it in NSGA-III, so that we could solve a series of test problems with
and without the ensemble to compare the results obtained. Once again we
adopted the DTLZ and the WFG test suites. From these, we used DTLZ1-
DTLZ7 and WFG1-WFG9 with 2-7 objectives, to assess how well the en-
semble performs in problems with many objectives (more than three). This
gives a total of 96 test problems, each of which we solved 30 times using
both the original NSGA-III implementation and the one with the ensem-
ble of mating restrictions incorporated within it. We adopted three perfor-
mance indicators to compare the Pareto approximations obtained in each of
these test instances. The indicators used were the hypervolume (HV), the
inverted generational distance (IGD), and the s-energy. The performance in-
dicator values obtained were compared using the Wilcoxon rank-sum test
at a confidence interval of 95%.

Our experimental results are shown in Tables 5.1- 5.3. In each pair of
columns, the best value is shown in boldface, while the cells in gray rep-
resent the values that are statistically better according to the Wilcoxon test
used.

From Table 5.1, we can observe that the use of our ensemble of mat-
ing restrictions produced a better performance in 57 out of the 96 test in-
stances when comparing with respect to the hypervolume, while it only
had a worst performance in one test problem (DTLZ3 with 3 objectives). In
the remaining 38 problems, results are statistically similar at a confidence
interval of 95%. From Table 5.2, regarding s-energy values, the ensemble
outperformed the original algorithm in 20 test problems, whereas the orig-
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Table 5.1: Comparison of the average hypervolume values obtained using the
proposed mating restrictions ensemble in NSGA-III.

Number of Hypervolume Number of HypervolumeProblem
objectives NSGA-III NSGA-III+Ensemble objectives NSGA-III NSGA-III+Ensemble

DTLZ1 5.3357E-01 5.3368E-01 2.9055E-01 2.9054E-01
DTLZ2 4.1999E-01 4.2013E-01 1.3054E+00 1.3064E+00
DTLZ3 4.1811E-01 4.1800E-01 3.9891E+05 3.9891E+05
DTLZ4 3.3742E-01 3.6844E-01 1.3021E+00 1.3021E+00
DTLZ5 4.1999E-01 4.2013E-01 1.2508E+02 1.2619E+02
DTLZ6 4.6875E+00 4.7444E+00 6.2840E+03 6.3378E+03
DTLZ7 7.3494E-01 7.3499E-01 3.0123E+00 3.0622E+00
WFG1 6.1667E-01 5.9821E-01 1.0342E+02 1.0699E+02
WFG2 1.3095E+00 1.3119E+00 3.4511E+03 3.3359E+03
WFG3 3.8506E+00 3.9094E+00 2.5916E+03 2.5810E+03
WFG4 2.2182E+00 2.2363E+00 3.0867E+03 3.2460E+03
WFG5 1.9551E+00 1.9620E+00 3.0391E+03 3.1292E+03
WFG6 2.6415E+00 2.6216E+00 2.7510E+03 2.8592E+03
WFG7 2.0603E+00 2.1096E+00 2.9288E+03 3.0308E+03
WFG8 3.2720E+00 3.3934E+00 3.2599E+03 3.3744E+03
WFG9

2

2.2130E+00 2.2053E+00

5

2.8869E+03 2.9086E+03
DTLZ1 8.7400E-01 8.7383E-01 6.5860E+00 6.5860E+00
DTLZ2 7.4898E-01 7.4905E-01 1.7054E+00 1.7078E+00
DTLZ3 7.4327E-01 7.3947E-01 1.9893E+06 1.9893E+06
DTLZ4 6.4110E-01 6.8052E-01 1.5375E+00 1.5453E+00
DTLZ5 1.3322E-01 1.3872E-01 4.1175E+02 4.1222E+02
DTLZ6 4.2607E+01 4.2730E+01 5.6260E+04 5.8987E+04
DTLZ7 1.5000E+00 1.5079E+00 3.5956E+00 3.6867E+00
WFG1 3.0108E+01 3.1520E+01 1.8159E+01 1.8701E+01
WFG2 3.9822E+01 4.0654E+01 3.4097E+04 3.3910E+04
WFG3 2.6393E+01 2.6680E+01 2.3652E+04 2.3992E+04
WFG4 2.3866E+01 2.4057E+01 3.9876E+04 4.2229E+04
WFG5 2.2018E+01 2.2069E+01 4.0046E+04 4.1580E+04
WFG6 2.2226E+01 2.2362E+01 4.1404E+04 4.3121E+04
WFG7 2.4337E+01 2.4397E+01 3.8606E+04 4.0161E+04
WFG8 2.4152E+01 2.4370E+01 4.2133E+04 4.3719E+04
WFG9

3

2.3192E+01 2.2571E+01

6

4.0286E+04 4.0794E+04
DTLZ1 3.1888E+00 3.1888E+00 4.0388E+00 4.0387E+00
DTLZ2 1.1648E+00 1.1644E+00 1.7665E+00 1.7699E+00
DTLZ3 7.7152E+01 7.7161E+01 1.3269E+14 1.3269E+14
DTLZ4 1.0208E+00 1.1058E+00 2.5112E+00 2.5227E+00
DTLZ5 3.8983E+00 3.9205E+00 7.3010E+02 7.2946E+02
DTLZ6 8.4201E+02 8.4454E+02 3.7784E+05 3.9944E+05
DTLZ7 2.2224E+00 2.2505E+00 3.7340E+00 3.8467E+00
WFG1 2.0317E+02 2.1846E+02 3.7775E+00 4.2824E+00
WFG2 3.5401E+02 3.5210E+02 4.0164E+05 3.9833E+05
WFG3 3.2675E+02 3.2734E+02 5.5539E+05 5.6725E+05
WFG4 2.4600E+02 2.4978E+02 5.9929E+05 6.1767E+05
WFG5 2.3152E+02 2.3346E+02 6.0194E+05 6.2018E+05
WFG6 2.3278E+02 2.3480E+02 5.4668E+05 5.6211E+05
WFG7 2.5949E+02 2.6122E+02 5.7509E+05 5.9665E+05
WFG8 2.8328E+02 2.8470E+02 7.3226E+05 7.3653E+05
WFG9

4

2.3721E+02 2.3435E+02

7

5.6265E+05 5.6151E+05
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Table 5.2: Comparison of the average s-energy values obtained using the pro-
posed mating restrictions ensemble in NSGA-III.

Number of S-energy Number of S-energyProblem
objectives NSGA-III NSGA-III+Ensemble objectives NSGA-III NSGA-III+Ensemble

DTLZ1 1.1956E+05 1.1723E+05 1.6853E+11 6.9391E+10
DTLZ2 5.3542E+04 5.3392E+04 2.0765E+10 1.3373E+11
DTLZ3 5.3496E+04 5.4529E+04 1.1463E+11 1.3830E+11
DTLZ4 3.9162E+04 4.4493E+04 8.0186E+10 1.3632E+11
DTLZ5 5.3542E+04 5.3392E+04 3.2513E+11 3.1227E+12
DTLZ6 5.1342E+04 7.4879E+04 2.7431E+10 1.5967E+11
DTLZ7 8.6183E+04 8.8229E+05 1.8919E+10 1.0755E+11
WFG1 1.3790E+05 1.0715E+05 2.4901E+10 1.5357E+10
WFG2 1.3326E+05 6.6367E+04 3.6792E+07 6.7396E+09
WFG3 2.8483E+04 2.5233E+04 3.5651E+10 1.6769E+11
WFG4 2.5083E+04 2.9992E+04 1.3402E+03 5.7594E+05
WFG5 2.3735E+04 2.1515E+04 2.1655E+06 7.1581E+07
WFG6 2.3202E+04 2.4043E+04 3.3400E+06 9.9717E+07
WFG7 4.0793E+04 3.5452E+04 1.1611E+06 2.0022E+10
WFG8 5.6673E+04 8.1960E+04 9.5577E+05 3.7906E+07
WFG9

2

2.3704E+04 1.9445E+05

5

8.6278E+04 3.7789E+03
DTLZ1 3.6472E+06 5.0248E+09 2.2901E+05 2.0608E+05
DTLZ2 1.8627E+05 1.5963E+06 6.6797E+04 6.6926E+04
DTLZ3 1.1968E+06 1.5548E+07 6.6059E+04 6.1406E+04
DTLZ4 5.2214E+11 2.8705E+11 7.7555E+04 7.8952E+04
DTLZ5 7.4448E+11 6.9681E+11 6.8224E+04 9.4598E+04
DTLZ6 1.4683E+11 5.2693E+11 1.5554E+04 1.7993E+05
DTLZ7 1.7976E+06 1.9217E+10 4.1904E+04 4.3668E+04
WFG1 1.4561E+06 1.2302E+07 8.1161E+04 1.0444E+05
WFG2 1.5196E+05 1.4073E+06 2.8538E+04 2.8846E+04
WFG3 1.9949E+07 1.1890E+10 2.3608E+04 9.0770E+04
WFG4 5.1545E+03 5.4314E+03 9.5086E+03 9.4351E+03
WFG5 1.1436E+05 1.3130E+04 9.5051E+03 9.4559E+03
WFG6 1.7143E+04 1.1931E+04 9.4639E+03 9.4293E+03
WFG7 3.1662E+05 2.6767E+04 9.4405E+03 9.4211E+03
WFG8 1.1761E+08 4.1370E+05 9.6780E+03 9.6254E+03
WFG9

3

1.4636E+04 8.1013E+03

6

1.0119E+04 1.0014E+04
DTLZ1 2.8918E+09 4.5400E+06 2.8691E+11 1.8059E+12
DTLZ2 8.4928E+04 8.4942E+04 2.7608E+05 2.8053E+05
DTLZ3 3.9478E+07 2.1937E+07 7.1103E+11 1.8082E+12
DTLZ4 2.1598E+11 6.8190E+10 9.3437E+11 3.9384E+12
DTLZ5 5.2442E+11 2.5628E+12 1.4659E+12 3.2859E+12
DTLZ6 1.9505E+11 4.2948E+11 1.4011E+10 7.1655E+10
DTLZ7 1.7251E+08 5.6368E+09 1.1474E+11 4.4794E+11
WFG1 1.2278E+09 2.6709E+09 7.5017E+11 4.0344E+12
WFG2 5.0981E+07 6.2388E+09 2.0529E+11 2.3815E+11
WFG3 3.8606E+09 1.1193E+11 3.4851E+11 1.3329E+12
WFG4 1.2469E+03 1.2170E+03 1.3301E+02 4.5438E+09
WFG5 1.4598E+03 1.4079E+03 2.0522E+02 1.8461E+02
WFG6 1.2446E+03 1.2099E+03 9.7861E+01 8.4634E+01
WFG7 1.1993E+03 1.1790E+03 9.8455E+01 8.4844E+01
WFG8 1.6037E+06 5.1743E+06 4.8377E+09 2.3037E+11
WFG9

4

1.5574E+03 1.5563E+03

7

1.7632E+02 5.3218E+04
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Table 5.3: Comparison of the average IGD values obtained using the proposed
mating restrictions ensemble in NSGA-III.

Number of IGD Number of IGDProblem
objectives NSGA-III NSGA-III+Ensemble objectives NSGA-III NSGA-III+Ensemble

DTLZ1 1.8466E-03 1.7915E-03 5.0368E-02 5.0654E-02
DTLZ2 4.0073E-03 3.9632E-03 1.5560E-01 1.5548E-01
DTLZ3 4.4526E-03 4.4405E-03 2.0915E-01 1.9739E-01
DTLZ4 2.0079E-01 1.2698E-01 1.6338E-01 1.6333E-01
DTLZ5 4.0073E-03 3.9632E-03 2.3114E-01 1.9705E-01
DTLZ6 1.0889E-01 8.1561E-02 1.9394E+00 1.7942E+00
DTLZ7 5.1686E-03 5.1674E-03 2.7940E-01 2.6670E-01
WFG1 1.5035E+00 1.4348E+00 1.9929E+00 1.9588E+00
WFG2 6.5824E-01 6.5764E-01 5.0293E-01 6.4402E-01
WFG3 6.9185E-02 3.5092E-02 5.9354E-01 6.2907E-01
WFG4 4.8849E-02 3.3118E-02 9.4493E-01 9.2570E-01
WFG5 9.2752E-02 8.4103E-02 9.5438E-01 9.3867E-01
WFG6 6.3791E-02 6.7504E-02 9.3486E-01 9.2226E-01
WFG7 3.6238E-01 2.7336E-01 9.2918E-01 9.1124E-01
WFG8 2.1185E-01 1.7505E-01 9.9004E-01 9.6865E-01
WFG9

2

3.9788E-02 4.0386E-02

5

1.0043E+00 1.0102E+00
DTLZ1 1.8958E-02 1.9614E-02 6.4333E-02 6.2869E-02
DTLZ2 4.9361E-02 4.9359E-02 2.1009E-01 2.0974E-01
DTLZ3 4.9667E-02 5.0218E-02 2.6801E-01 3.7702E-01
DTLZ4 2.2900E-01 1.6367E-01 2.2195E-01 2.1492E-01
DTLZ5 5.9339E-02 2.3632E-02 3.5843E-01 3.3632E-01
DTLZ6 1.2659E-01 1.1320E-01 3.6113E+00 3.1331E+00
DTLZ7 6.8762E-02 7.0361E-02 4.1830E-01 3.8385E-01
WFG1 1.2766E+00 1.2311E+00 2.2494E+00 2.2314E+00
WFG2 3.3398E-01 2.9433E-01 7.5766E-01 7.9188E-01
WFG3 1.1101E-01 1.0206E-01 8.5291E-01 8.7398E-01
WFG4 2.0165E-01 2.0121E-01 1.4087E+00 1.3843E+00
WFG5 2.1580E-01 2.1530E-01 1.4132E+00 1.3932E+00
WFG6 2.1430E-01 2.1276E-01 1.3901E+00 1.3730E+00
WFG7 2.0034E-01 2.0050E-01 1.3870E+00 1.3647E+00
WFG8 2.6456E-01 2.5984E-01 1.4386E+00 1.4086E+00
WFG9

3

2.2803E-01 2.3811E-01

6

1.5206E+00 1.5023E+00
DTLZ1 4.0922E-02 4.1081E-02 8.8486E-02 9.3266E-02
DTLZ2 1.1382E-01 1.1385E-01 2.8168E-01 2.8133E-01
DTLZ3 1.2657E-01 1.1775E-01 7.6479E-01 1.0279E+00
DTLZ4 2.9346E-01 1.9139E-01 3.1834E-01 3.0798E-01
DTLZ5 1.1110E-01 8.8104E-02 5.1439E-01 5.0450E-01
DTLZ6 5.7990E-01 4.7092E-01 3.8287E+00 3.1421E+00
DTLZ7 2.0624E-01 2.0128E-01 6.0591E-01 5.9054E-01
WFG1 1.6261E+00 1.5393E+00 2.6143E+00 2.5898E+00
WFG2 4.5992E-01 4.7892E-01 1.1664E+00 1.1423E+00
WFG3 2.9053E-01 3.0261E-01 9.0588E-01 8.3514E-01
WFG4 5.6932E-01 5.7066E-01 2.0410E+00 2.0628E+00
WFG5 5.6728E-01 5.6884E-01 2.0456E+00 2.0481E+00
WFG6 5.6924E-01 5.6907E-01 2.0245E+00 2.0205E+00
WFG7 5.7119E-01 5.7204E-01 2.0327E+00 2.0233E+00
WFG8 6.2484E-01 6.2229E-01 2.1442E+00 2.2305E+00
WFG9

4

5.7438E-01 5.7430E-01

7

2.1393E+00 2.1357E+00
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inal algorithm obtained better values in 24 test problems. Finally, from Ta-
ble 5.3, the ensemble improved the results obtained in 45 problems when
comparing IGD values, while the original algorithm only had better results
in 7 test problems.

From these results, we can observe that the use of our ensemble does
improve the performance of NSGA-III in more than half of the test prob-
lems when comparing HV values. In particular, good results were obtained
in problems with 5 and 6 objectives (there were improvements in 68% of
the test problems adopted) and in problems with 2 and 3 objectives (im-
provement of 62% of the test problems adopted). On the other hand, the
worst performing scenarios were the problems with 4 and 7 objectives (43%
and 50% of the test problems improved, respectively). Regarding the test
problems adopted, the WFG test suite was the one with the largest number
of problems improved (around 64%), while the DTLZ test problems had a
smaller improvement (52%).

Regarding the IGD values, a similar behavior was obtained, being the
problems with 6 and 2 objectives the ones with a larger number of problems
improved (68% and 62%, respectively). However, problems with 3 and 4
objectives were the least improved (only 31%).

Concerning the s-energy results, this was the only performance indicator
for which the original algorithm obtained a better overall performance than
the ensemble. The only exceptions are problems with 2, 4 and 6 objectives,
where the ensemble improved more problems than the original algorithm.

In Fig. 5.1 we show the average execution time required to solve all 16
test problems used with the different numbers of objectives. From these
values, we can observe that there is a slight increase in execution time due to
the use of the mating restriction ensemble. Nonetheless, such time increase
is, in all cases, smaller than one second.
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Figure 5.1: Average execution time of our proposal compared against the orig-
inal NSGA-III.

5.4 SUMMARY

In this chapter, we presented an ensemble of four s-energy based mating re-
strictions along with its experimental validation, where we implemented it
in NSGA-III and compare the obtained results against the standard version
of this same MOEA. We proposed the use of two performance measures to
balance the number of pairs generated with each of the SMRs according to
their performance in the current execution. This feature provides flexibility
to our proposal, allowing different SMRs to be more predominantly used
for different problems and even at different moments of the search process.

The experimental results show that the implementation of our ensem-
ble improves more than half of the test instances used (57 out of 96), which
comprised MOPs with 2-7 objectives. It is important to notice that in ad-
dition to the improvement of these test instances, the remanining instances
obtained a similar performance to the original NSGA-III (with the exception
of only one test instance). Hence, our ensemble allows to obtain similar or
better results in most cases without a degradation of the performance in a
considerable group of problems. This is a major improvement compared to
the performance of individual SMRs, which were able to improve results
in certain test instances but at the expense of worsening several others. We
also believe that the experimental results obtained with our ensemble are
clearly indicate that the use of mating restrictions is a viable way of im-
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proving MOEA results even in many-objective problems.
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6

Use of Grammatical Evolution
to design new scalarizing

functions

6.1 INTRODUCTION

MOEAs can be broadly classified into 3 categories: Pareto dominance-based,
decomposition-based and indicator-based [116]. In this chapter, we present
an alternative to generate new elements that can improve the performance
of decomposition-based MOEAs, namely the generation of new scalarizing
functions using grammatical evolution.

Decomposition-based MOEAs work by transforming a MOP into two or
more single-objective optimization problems, which are solved simultane-
ously using neighborhood search [134]. One of the advantages of this sort of
MOEAs is that they are not easily affected by selection pressure issues [124],
which makes them particularly useful in MOPs with many objectives (4 or
more). These MOEAs use scalarizing functions to aggregate the multiple
objective functions into a single function. There are multiple scalarizing
functions with different properties, such as the optimality of the solutions
found (weak/strong Pareto optimality), as well as with different require-
ments (reference points, utopian/Nadir objective vector, aspiration levels
or additional classifications) [83].

The performance of decomposition-based MOEAs is closely related to
both, the scalarizing function adopted, which can determine the type of so-
lutions found [92], as well as the weight vectors used, since they strongly
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determine the distribution of such solutions [137]. In this work, we propose
a methodology to produce new scalarizing functions to improve the perfor-
mance of these MOEAs.1 It is important to mention that here, we extend the
methodology originally presented in [96], by using a different (improved)
implementation, as well as by including a comprehensive series of experi-
ments and a new application which is described in the next chapter.

Genetic Programming (GP) is a well-known evolutionary computation
technique that allows the automatic generation of computer programs to
solve a given problem. Similar to other evolutionary techniques, this is
achieved by genetically breeding a population of individuals and applying
genetic operators iteratively until a certain termination criteria is met. How-
ever, the most distinctive feature of GP is that the individuals encode com-
puter programs, usually using tree data structures [73]. On the other hand,
Grammatical Evolution (GE) is a well-known variant of GP. They both share
many similarities, but GE is a grammar-based form of GP. Hence, whereas
GP’s individuals usually consist of trees, GE genotypes are usually integer
or binary lists [90]. Consequently, one of the main advantages of GE is its
versatility and that it can be easily applied to different problem domains.
The two main elements needed to implement GE are: (1) a grammar to de-
fine the syntax of potential solutions, usually given in a Backus-Naur form,
and (2) a fitness function to evaluate such solutions[89].

We chose a Python-coded GE implementation that is able to generate
new scalarizing functions which can improve the performance of decom-
position-based MOEAs. However, our implementation has the potential to
be modified to also generate new elements that could potentially improve
different types of MOEAs.

6.2 PREVIOUS RELATED WORK

There are several works involving the use of GP to automatically generate
components that improve different Artificial Intelligence algorithms. For in-
stance, a GP based system (EvoCK) [2] has been combined with a Machine
Learning (ML) algorithm specialized in planning (Hamlet) [8], giving rise
to Hamlet-EvoCK [3], which alleviates some of the handicaps of the origi-
nal approach. One of these handicaps is that the ML technique can refine its
behavior when being presented an appropriate set of examples. However,
when the example-space is large, it deteriorates its performance due to the

1It is worth mentioning that indicator-based MOEAs based on R2 also use scalarizing
functions [16].
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computational time required. Then, in Hamlet-EvoCK, the authors propose
to use the GP system to generate examples with certain characteristics, such
as simplicity, while also evolving the population of examples based on a
fitness function that measures the efficiency of such examples. Another ex-
ample is the use of GP to automatically develop Artificial Neural Networks
(ANNs), which can be done by evolution of the weights, by evolution of the
architectures or by evolution of the learning rules. In [94] and [93] two pro-
posals are made to achieve this automatic generation of ANNs requiring
minimal to no human intervention and obtaining either average or better
results than other automatic ANN generation techniques. More recently, a
GP hyperheuristic was proposed in [129] to evolve scheduling heuristics for
dynamic flexible job-scheduling problems. The generation of these heuris-
tics is performed only with the selected features determined by the GP, since
feature selection is a key part of this process.

In the context of automatic generation of scalarizing functions, to the
best of our knowledge, the only related work is the one presented in [96]. In
that work, a hybrid implementation is presented combining EllenGP [18],
which is a GP implementation with local search used to generate scalar-
izing functions, and MOMBI-II [54], which is a MOEA adopted to assess
the performance of the scalarizing functions generated. The search process
of these new scalarizing functions involves coding the new functions into
MOMBI-II and use it to solve a given MOP. In this work, we use a very
similar methodology, but we extend the number of training MOPs solved
in the search process to 2 instead of only 1, along with some other modifi-
cations such as the addition of a threshold to reduce the number of function
evaluations invested in scalarizing functions which obtain bad results in a
sample MOP. The increase in the number of training MOPs is proposed to
favor the generation of scalarizing functions with a good performance in
MOPs different from the one used in the training process.

6.3 PROPOSED IMPLEMENTATION

We decided to use PonyGE2, which is a grammatical evolution implemen-
tation coded in Python [40]. This implementation handles the creation and
reproduction of individuals until a certain stopping criterion is met. In all
our experiments, this stopping criterion is a given maximum number of
generations reached.

Therefore, our main contribution is the methodology used to create new
scalarizing functions using PonyGE2. To do this, we adopted two compo-
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nents: a MOEA that uses scalarizing functions (MOMBI-II) and a perfor-
mance indicator (hypervolume) to assess the quality of the functions gener-
ated. An overview of this process is shown in Fig 6.1.

Figure 6.1: Diagram of grammatical evolution used to generate scalarizing
functions.

MOMBI-II is a metaheuristic developed to solve many-objective opti-
mization problems [54]. We adopted MOMBI-II in our implementation be-
cause it is a competitive algorithm which has shown a good performance
when compared against state-of-the-art MOEAs in benchmark problems
with up to 10 objectives. Additionally, it uses scalarizing functions, since
it is based on the R2 indicator. By default, it uses the Achievement Scalariz-
ing Function (ASF) [123] which is defined as follows:

ASF (f⃗(x⃗), w⃗) := max
i∈1,...,m

(
fi(x⃗)

wi

)
(6.1)

where f⃗(x⃗) is the image of x⃗ in objective space and w⃗ ∈ IRm is a weight vec-
tor. However, other scalarizing functions can be used, such as the Tcheby-
cheff (TCH) scalarizing function [11], defined as follows:

TCH(f⃗(x⃗), w⃗) := max
i∈1,...,m

(wi|fi(x⃗)|) . (6.2)
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Another commonly used scalarizing function in decomposition-based
MOEAs is the Penalty Boundary Intersection (PBI) [133], defined as follows:

PBI(f⃗(x⃗), w⃗) := θd2 − d1 (6.3)

where d1 :=
∣∣∣f⃗(x⃗) · w⃗/∥w⃗∥

∣∣∣ , d2 :=
∥∥∥f⃗(x⃗)− d1w⃗/∥w⃗∥

∥∥∥ and θ is a penalty
parameter, usually set by default as θ = 5.

We implemented each of the new scalarizing functions generated by
PonyGE2, replacing ASF. Then, we used this modified version of MOMBI-
II to solve multiple MOPs. Finally, we used the hypervolume to assess the
quality of the Pareto fronts obtained. The average hypervolume values ob-
tained were used to set the fitness of the new function.

6.3.1 FITNESS FUNCTION

The fitness function that we propose to guide the search process of PonyGE2
requires the following information:

• The parameters needed to define the training MOP. This includes the
MOP, the number of objectives, the number of executions and the max-
imum number of function evaluations. For example, we could define
that the training MOP is DTLZ4, with 2 objectives, considering 30 exe-
cutions with a maximum number of 50,000 function evaluations each.

• The maximum hypervolume value for each of the MOPs defined, along
with the reference point used to obtain such hypervolume value. This
value is used to normalize hypervolume results. Following the previ-
ous example, the maximum hypervolume for DTLZ4 with 2 objectives
can be set to 0.210 considering the reference point [1,1].

These parameters are enough for GE to generate new scalarizing functions.
However, we included a step where we solve the training MOP with a
smaller number of function evaluations and a lower number of executions
to improve the search speed, because the use of the hypervolume can make
the process computationally expensive. Thus, we need the following addi-
tional parameters:

• The parameters needed to define the sample MOP, which is the same
as the training MOP, but with a lower number of function evaluations
and a lower number of executions as well. This sample MOP is used
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to determine if the current function is worth performing more eval-
uations. Once again, following the previous example, we define the
sample MOP to be DTLZ4, with 2 objectives, but considering 15 exe-
cutions with a maximum number of 10,000 function evaluations.

• The maximum hypervolume value corresponding to the sample MOP.
We need this since a lower number of function evaluations results in a
different maximum hypervolume value.

• A hypervolume threshold that defines the percentage of the real max-
imum hypervolume that should be attained by the executions per-
formed using the sample MOP in order to perform the full executions
of the main training MOP. In case this threshold is not attained, no
more function evaluations are spent in the current individual.

In Algorithm 5, we show the fitness function in detail, given the de-
coded phenotype of the individual (i.e., the scalarizing function) as well
as the aforementioned parameters. We start by initializing variables (lines
1-2). Then, we use MOMBI-II with the new scalarizing function to solve
the sample MOP. Then, we obtain the hypervolume of the corresponding
Pareto front and we store this value. This process is repeated (lines 3-7)
to obtain an average hypervolume (line 8). If the average hypervolume is
below some percentage of the real hypervolume (defined by the threshold
parameter) we normalize the average hypervolume (line 10) and then we
penalize this value by dividing it by the number of MOPs (line 11). This
penalty is simply intended to significantly decrease the fitness of individu-
als that do not reach the threshold in order to avoid the propagation of such
individuals in the population. We chose to divide the current fitness by the
number of MOPs as it is a simple way of decreasing the fitness while still
keeping a remainder of the original fitness in case that most of the popula-
tion contains bad individuals, which may occur in the first generations of
the execution. In the event that the average hypervolume is greater than the
desired threshold, we proceed to evaluate each of the desired MOPs using
the new scalarizing function (lines 15-19). For each MOP, after averaging its
hypervolume (line 20) and normalizing it (line 21), we cumulatively store
this value to be the individual’s final fitness (line 22).

When incorporating the new scalarizing functions in MOMBI-II we used
the max operator in the following way. Given the decoded phenotype to
be SF (fi(x⃗), wi), where f⃗(x⃗) is the objective functions vector and w⃗ is the
weight vector, we obtain the final Grammatical Evolution Scalarizing Func-
tion (GE_SF) as follows:
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Algorithm 5: Fitness function used to generate scalarizing functions
Input : pheno-

type, ⃗MOP = {mop1, . . . ,mopj}, H⃗V = {hv1, . . . , hvj}, N⃗ =
{n1, . . . , nj}, sample_mop, sample_hv, sample_n, threshold;

Output: fitness;
1 fitness← 0;
2 avg_hv ← 0;
3 for i← 0 to sample_n do
4 PFi ←MOMBI2(sample_mop, phenotype);
5 aux_hv ← compute hypervolume value of PFi;
6 avg_hv ← avg_hv + aux_hv;
7 end
8 avg_hv ← avg_hv/sample_n;
9 if avg_hv < threshold ∗ sample_hv then

10 fitness← avg_hv/sample_hv;
11 fitness← fitness/size( ⃗MOP );
12 else
13 foreach mop ∈ ⃗MOP do
14 avg_hv ← 0;
15 for i← 0 to nj do
16 PFi ←MOMBI2(mopi, phenotype);
17 aux_hv ← compute hypervolume value of PFi;
18 avg_hv ← avg_hv + aux_hv;
19 end
20 avg_hv ← avg_hv/ni;
21 avg_hv ← avg_hv/hvi ;
22 fitness← fitness+ avg_hv;
23 end
24 end
25 return fitness;
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GE_SF (f⃗(x⃗), w⃗) := max
i∈1,...,m

(SF (fi(x⃗), wi)). (6.4)

6.3.2 GRAMMAR

The grammar used to generate the phenotypes consists of basic arithmetic
operations and the square root, as shown below.

< e > ::= < e > + < e > | < e > − < e > | < e > ∗ < e > | < e > / < e >
| sqrt(< e >) | < c >< c > . < c >< c > | fi(x⃗) | wi

< c > ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We deliberately chose not to include more complex functions in the gram-
mar, such as trigonometric functions, because some previous experiments
showed that they generate poor performing scalarizing functions. In Ta-
ble 6.1 we show 4 scalarizing functions generated using our implementa-
tion and the same grammar previously described, but with the addition of
trigonometric functions (sin, cos, tan, sin−1, cos−1 and tan−1). We performed
a hypervolume comparison against ASF in 96 test instances, and we show
the amount of problems improved (+), worsened (-) or with a similar per-
formance (∼).

Table 6.1: Scalarizing functions generated using trigonometric functions.

Training
SF (fi(x⃗), wi)

Hypervolume comparison

problem + - ∼
DTLZ1 max{sin(

∑
fi(x⃗) + fi(x⃗)/wi/0.21)} − 0.27 ∗ 34.44 0 96 0

DTLZ2 max{tan−1(tan−1(
√

0.41 ∗ 14.77 + fi(x⃗)/wi))} + 1.77 ∗
∑

fi(x⃗) 0 96 0

WFG1 max{cos−1(fi(x⃗)) + wi/fi(x⃗)} + 0.38 ∗
∑

fi(x⃗) 0 96 0

WFG3 max{cos−1(fi(x⃗)/wi)} ∗ sin(0.98 + sin(max f(x⃗)) + 1/m
∑

fi(x⃗) 2 92 2

Out of the 96 test instances, three of the four generated functions ob-
tained worse results than ASF in every single problem, while the remain-
ing function was only able to improve two of the test instances. Thus,
our hypothesis is that the use of trigonometric functions leads to an over-
specification of the scalarizing functions in the training process, resulting
in functions that have a really bad generalization when used to solve dif-
ferent problems. Hence, we did not include trigonometric functions in the
following experiments.
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6.4 EXPERIMENTAL WORK

Using the implementation previously described, we performed a series of
executions adopting the benchmark problems from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [35] and Walking-Fish-Group (WFG) [62] test suites.

We chose one test problem per execution. However, we solved the prob-
lem with 2, 3 and 5 objectives, in an attempt to create scalarizing functions
which could have a good performance in different dimensions. We used
DTLZ1-DTLZ7 and WFG1-WFG9. In tables 6.2 to 6.17 we show the param-
eters that we adopted for each execution. As can be seen, the sample MOP
is exactly the same as the one adopted for training. However, in our exper-
iments, we only performed 3 MOMBI-II executions. Then, if the function
is worth more evaluations we proceed to execute MOMBI-II for each of the
training MOPs for a total of 30 times.

Table 6.2: Parameters adopted to generate scalarizing functions using DTLZ1.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ1

2 2.434 [1.6,1.6] 30
3 3.322 [1.5,1.5,1.5] 30
5 7.565 [1.5,1.5,1.5,1.5,1.5] 30

Sample MOP 2 2.433 [1.6,1.6] 3

Table 6.3: Parameters adopted to generate scalarizing functions using DTLZ2.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ2

2 3.21 [2,2] 30
3 7.353 [2,2,2] 30
5 31.598 [2,2,2,2,2] 30

Sample MOP 2 3.21 [2,2] 3

Additionally, for each execution, we set the maximum number of gener-
ations to 40, and the threshold to 0.15. To validate the performance of the
best scalarizing functions obtained in each execution, we used each of them
to solve all 16 test problems (DTLZ1-DTLZ7 and WFG1-WFG9) considering
2, 3, 4, 5, 6 and 7 objectives. This generates a total of 96 test problems. We
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Table 6.4: Parameters adopted to generate scalarizing functions using DTLZ3.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ3

2 3.619 [2.1,2.1] 30
3 8.637 [2.1,2.1,2.1] 30
5 40.484 [2.1,2.1,2.1,2.1,2.1] 30

Sample MOP 2 2.111 [2.1,2.1] 3

Table 6.5: Parameters adopted to generate scalarizing functions using DTLZ4.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ4

2 3.21 [2,2] 30
3 7.37 [2,2,2] 30
5 31.686 [2,2,2,2,2] 30

Sample MOP 2 3.21 [2,2] 3

Table 6.6: Parameters adopted to generate scalarizing functions using DTLZ5.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ5

2 3.21 [2,2] 30
3 4.731 [1.8,1.8,2] 30
5 104.98 [1.8,1.8,4.4,4.5,2] 30

Sample MOP 2 3.21 [2,2] 3

Table 6.7: Parameters adopted to generate scalarizing functions using DTLZ6.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ6

2 5.26 [2.5,2.5] 30
3 6.522 [2,2,2.2] 30
5 2997.455 [4,3.5,8.5,9.7,2.8] 30

Sample MOP 2 4.662 [2.5,2.5] 3
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Table 6.8: Parameters adopted to generate scalarizing functions using DTLZ7.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
DTLZ7

2 4.148 [1.9,5] 30
3 11.878 [1.9,1.9,7] 30
5 86.182 [1.9,1.9,2,2,11.8] 30

Sample MOP 2 4.146 [1.9,5] 3

Table 6.9: Parameters adopted to generate scalarizing functions using WFG1.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG1

2 5.308 [3.7,4.1] 30
3 71.692 [3.5,5.6,6.5] 30
5 81.055 [3.6,2.2,2.7,2.9,5.6] 30

Sample MOP 2 4.724 [3.7,4.1] 3

Table 6.10: Parameters adopted to generate scalarizing functions using WFG2.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG2

2 7.444 [2.4,5.1] 30
3 80.645 [2.8,4.6,6.9] 30
5 3492.889 [2.5,4,5.5,7.2,9.3] 30

Sample MOP 2 7.381 [2.4,5.1] 3

Table 6.11: Parameters adopted to generate scalarizing functions using WFG3.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG3

2 11.311 [3.1,5.1] 30
3 59.045 [4,3.1,7.1] 30
5 10353.854 [3.9,5.3,7.6,8.6,11.1] 30

Sample MOP 2 10.743 [3.1,5.1] 3
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Table 6.12: Parameters adopted to generate scalarizing functions using WFG4.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG4

2 8.897 [3.1,5.1] 30
3 83.189 [3.1,5.1,7.1] 30
5 9901.827 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 8.031 [3.1,5.1] 3

Table 6.13: Parameters adopted to generate scalarizing functions using WFG5.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG5

2 8.668 [3.1,5.1] 30
3 79.515 [3.1,5.1,7.1] 30
5 9437.534 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 8.044 [3.1,5.1] 3

Table 6.14: Parameters adopted to generate scalarizing functions using WFG6.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG6

2 8.827 [3.1,5.1] 30
3 80.543 [3.1,5.1,7.1] 30
5 9506.954 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 8.297 [3.1,5.1] 3

Table 6.15: Parameters adopted to generate scalarizing functions using WFG7.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG7

2 7.836 [3.1,5.3] 30
3 83.5 [3.1,5.1,7.1] 30
5 9989.461 [3.1,5.1,7.1,9.1,11.1] 30

Sample MOP 2 7.303 [3.1,5.3] 3
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Table 6.16: Parameters adopted to generate scalarizing functions using WFG8.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG8

2 8.89 [3.3,5.2] 30
3 83.425 [3.3,5.1,7.1] 30
5 11786.065 [4,5.5,7.1,9.1,11.1] 30

Sample MOP 2 7.702 [3.3,5.2] 3

Table 6.17: Parameters adopted to generate scalarizing functions using WFG9.

Problem m
Maximum Reference

n
Hypervolume point

Training MOPs
WFG9

2 8.945 [3.1,5.1] 30
3 79.929 [3.2,5.1,7.1] 30
5 9195.075 [3.2,5.2,7.2,9.2,11.2] 30

Sample MOP 2 8.608 [3.1,5.1] 3

performed 30 independent runs and computed the hypervolume and the
s-energy values of each Pareto front. S-energy is a performance indicator
used to measure the uniformity of the distribution of a set of points. The
lower the s-energy value the more uniform the distribution is [37]. Then,
we used the Wilcoxon rank-sum test under the null hypothesis that the in-
dicator results generated with each new scalarizing function come from the
same distribution as the indicator results generated with ASF, considering
a confidence level of 5%. We counted the number of problems where the
null hypothesis is rejected and the new scalarizing function indicator aver-
age is greater than that of ASF under the column “+” of each comparison.
Conversely, if the null hypothesis is rejected but the ASF indicator average
is greater, we count these under the column “-”. Finally, all problems in
which the null hypothesis could not be rejected are counted in the column
“∼”. We show these results in Table 6.18, including the execution time re-
quired to complete the 40 generations. These executions were performed
on an Intel Core i7-8700 CPU, with 16 GB of RAM.

From these initial results, we can observe that many scalarizing func-
tions (especifically those generated using DTLZ3, DTLZ6, WFG4-WFG9)
include the fi(x⃗)/wi term from the original ASF. In fact, the scalarizing func-
tion generated with DTLZ3 was indeed, ASF. The best performing function
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Table 6.18: Behavior of scalarizing functions generated with Grammatical
Evolution. The comparison of the hypervolume and S-energy values show the
number of test problems (a total of 96) in which the results improved(+),
worsened(-) or were similar(∼) with respect to ASF.

Training
SF (fi(x⃗), wi)

Execution Hypervolume comparison S-energy comparison
problem time (s) + - ∼ + - ∼
DTLZ1 fi(x⃗) ∗ wi 4455.67 17 59 20 21 48 27
DTLZ2 wi/wi/wi + wi − √

wi +
√

fi(x⃗) 3997.07 10 82 4 3 83 10
DTLZ3 fi(x⃗)/wi 3949.98 0 0 96 0 0 96
DTLZ4 √

wi ∗ fi(x⃗) 3403.82 9 81 6 34 49 13
DTLZ5

√
fi(x⃗) + wi 5831.65 15 72 9 31 53 12

DTLZ6 fi(x⃗)/wi + fi(x⃗) 4667.40 44 23 29 37 25 34
DTLZ7 fi(x⃗) ∗ wi 4357.98 17 59 20 21 48 27
WFG1 √

wi ∗ 84.75 + fi(x⃗) ∗ fi(x⃗) 8338.57 3 92 1 1 91 4
WFG2

√
fi(x⃗) ∗ wi ∗ wi 11567.13 19 72 5 10 81 5

WFG3 wi + 01.52 +
√

fi(x⃗) 11135.62 15 72 9 30 50 13
WFG4 fi(x⃗)/wi − wi − wi 12056.09 19 71 6 4 74 18
WFG5 fi(x⃗)/wi − wi − wi 9838.63 19 71 6 4 74 18
WFG6 fi(x⃗)/wi − wi ∗ wi 11726.39 13 58 25 14 48 34
WFG7 fi(x⃗)/wi − fi(x⃗) 9361.49 15 73 8 8 63 25
WFG8 fi(x⃗)/wi − wi − wi 11093.16 19 71 6 4 74 18
WFG9 fi(x⃗)/wi − wi/fi(x⃗) 10509.27 11 7 78 11 13 72

is the one generated with DTLZ6, as it outperforms ASF in more problems
(44) and it worsens them in 23 problems with respect to the hypervolume.
A similar behavior is observed with respect to the s-energy values. How-
ever, we considered that it should be possible to obtain a better scalarizing
function using more test problems and more generations.

Hence, we performed another round of experiments. This time we used
two different MOPs per execution. In Table 6.19 we present the param-
eters of the problems used to generate another scalarizing function. The
threshold parameter was set to 0.15 and we set the maximum number of
generations to 80.

Table 6.19: Parameters adopted to generate a scalarizing function using
DTLZ4 and WFG4.

Maximum Reference
Problem Objectives

Hypervolume point
n

DTLZ4 2 0.210 [1,1] 30
DTLZ4 3 0.420 [1,1,1] 30
DTLZ4 5 0.7 [1,1,1,1,1] 30
WFG4 2 2.100 [2.1,4.1] 30
WFG4 3 21.500 [2.1,4.1,6.1] 30

Training MOPs

WFG4 5 2035 [2.1,4.1,6.1,8.1,10.1] 30
Sample MOP DTLZ4 2 0.210 [1,1] 3

We performed three independent executions using these parameters,
and here we present the best performing individual, which we call GE_SF1,
and it is defined as follows:
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GE_SF1(f⃗(x⃗), w⃗) := max
i∈1,...,m

(
fi(x⃗)

wi

∗ fi(x⃗) +
fi(x⃗)

wi

− fi(x⃗)

)
. (6.5)

Additionally, we performed three independent executions using I-DTLZ4
as the training problem, which is a variant belonging to the inverse DTLZ
test problems [66]. The number of objectives used was 2, with a maximum
hypervolume of 18.0, a reference point [1,1] and n set to 30. The resulting
function, GE_SF2, is defined as follows.

GE_SF2(f⃗(x⃗), w⃗) := max
i∈1,...,m

(
fi(x⃗) + wi + 1− fi(x⃗)

22.42

)
. (6.6)

6.5 RESULTS

To assess the performance of GE_SF1 and GE_SF2 we coupled them with
MOMBI-II and solved the benchmark problems DTLZ1-DTLZ7, WFG1-WFG9
and I-DTLZ1-I-DTLZ7 using 2, 3, 4, 5, 6 and 7 objectives. We performed
30 independent executions and measured the hypervolume values of the
Pareto fronts generated. We repeated the same process with the original
ASF, as well as with TCH and PBI.

In the following 3 tables, we show the best average hypervolume for
each problem in boldface. Aditionally, we performed the Wilcoxon rank-
sum test under the null hypothesis that the hypervolume results generated
with one scalarizing function come from the same distribution as the hy-
pervolume results generated with another scalarizing function, considering
a confidence level of 5%. This test was performed with each pair of scalar-
izing functions, and we show the cases in which the null hypothesis was
rejected and the current function’s average hypervolume is greater under
the “+” column of each function. Additionally, we indicate with gray cells
all of the scalarizing function results in which the null hypothesis could not
be rejected when comparing against the best result (marked in boldface).

In Tables 6.20 and 6.21 we show the average results of the hypervolume
indicator in standard benchmark problems (DTLZ and WFG).

On the other hand, in Table 6.22 we show the average results of the hy-
pervolume indicator in the inverse DTLZ problems.

From Tables 6.20 and 6.21 we counted the number of gray cells of each
scalarizing function (i.e., the best performing functions for each problem)
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Table 6.20: Hypervolume comparison using different scalarizing functions in
problems with 2-4 objectives.

Problem m
ASF(1) PBI(2) TCH(3) GE_SF1(4) GE_SF2(5)
HV + HV + HV + HV + HV +

DTLZ1

2

2.327E-01 − 2.337E-01 1
5 2.337E-01 1

5 2.337E-01 1
5 2.336E-01 1

DTLZ2 4.182E-01 − 4.201E-01 1
3 4.201E-01 1 4.203E-01 1,

2,3 4.205E-01 1,
2,
3,
4

DTLZ3 4.172E-01 − 4.174E-01 − 4.188E-01 1
2 4.188E-01 1

2 4.191E-01 1
2

DTLZ4 2.988E-01 5 3.101E-01 1,
3,5 3.101E-01 1

5 3.103E-01 1,
2,
3,
5 2.692E-01 −

DTLZ5 4.182E-01 − 4.201E-01 1
3 4.201E-01 1 4.203E-01 1,

2,3 4.205E-01 1,
2,
3,
4

DTLZ6 1.274E+00 − 1.268E+00 − 1.261E+00 − 1.291E+00 3 1.265E+00 −
DTLZ7 6.433E-01 − 6.445E-01 1 6.447E-01 1,

2,5 6.448E-01 1,
2,
3,
5 6.446E-01 1

2

WFG1 2.252E+00 2,
3,5 1.519E+00 − 1.589E+00 2 2.363E+00 1,

2,
3,
5 1.546E+00 −

WFG2 4.906E+00 2,
3,5 4.300E+00 − 4.315E+00 2 4.929E+00 1,

2,
3,
5 4.323E+00 2

3

WFG3 4.529E+00 2,
3,5 4.470E+00 − 4.491E+00 2 4.543E+00 1,

2,
3,
5 4.503E+00 2

3

WFG4 2.272E+00 2,
3,5 2.223E+00 − 2.235E+00 2

5 2.281E+00 1,
2,
3,
5 2.223E+00 −

WFG5 1.973E+00 2,
3,5 1.963E+00 − 1.966E+00 2 1.980E+00 1,

2,
3,
5 1.965E+00 2

WFG6 2.024E+00 − 2.047E+00 − 2.062E+00 − 2.035E+00 − 2.071E+00 1
4

WFG7 2.686E+00 2,
3,5 2.350E+00 − 2.371E+00 2

5 2.707E+00 1,
2,
3,
5 2.343E+00 −

WFG8 3.795E+00 2
5 3.424E+00 − 3.743E+00 2 3.848E+00 1,

2,5 3.747E+00 2

WFG9 1.997E+00 − 2.210E+00 1
4 2.221E+00 1,

2,4 1.917E+00 − 2.216E+00 1
4

DTLZ1

3

3.805E+01 5 3.845E+01 1,
3,
4,
5 3.844E+01 1,

4,5 3.805E+01 5 3.614E+01 −
DTLZ2 7.394E-01 3

5 7.494E-01 1,
3,
4,
5 7.099E-01 5 7.410E-01 1,

3,5 6.533E-01 −
DTLZ3 2.387E+02 − 2.408E+02 1,

3,
4,
5 2.408E+02 1,

4,5 2.387E+02 − 2.075E+02 −
DTLZ4 8.609E-01 3

5 8.704E-01 1,
3,
4,
5 8.111E-01 5 8.628E-01 1,

3,5 7.519E-01 −
DTLZ5 2.188E+01 4 2.207E+01 1

4 2.212E+01 1,
2,
4,
5 2.182E+01 − 2.211E+01 1,

2,4

DTLZ6 2.079E+02 4 2.087E+02 1
4 2.094E+02 1,

2,4 2.074E+02 − 2.097E+02 1,
2,
3,
4

DTLZ7 1.449E+00 2,
3,5 1.409E+00 3 1.389E+00 − 1.450E+00 2,

3,5 1.344E+00 −
WFG1 3.462E+01 2

5 3.265E+01 5 3.504E+01 2
5 3.504E+01 2

5 2.692E+01 −
WFG2 4.455E+01 2,

3,5 4.440E+01 3
5 4.333E+01 5 4.486E+01 1,

2,
3,
5 4.088E+01 −

WFG3 4.824E+01 2
5 4.785E+01 − 4.850E+01 1,

2,
4,
5 4.819E+01 2

5 4.788E+01 −
WFG4 2.401E+01 2,

3,5 2.312E+01 3
5 2.190E+01 5 2.409E+01 1,

2,
3,
5 2.063E+01 −

WFG5 2.192E+01 2,
3,5 2.172E+01 3

5 1.987E+01 5 2.203E+01 1,
2,
3,
5 1.917E+01 −

WFG6 2.444E+01 2,
3,5 2.352E+01 3

5 2.218E+01 5 2.450E+01 2,
3,5 2.088E+01 −

WFG7 2.426E+01 2,
3,5 2.359E+01 3

5 2.206E+01 5 2.434E+01 1,
2,
3,
5 2.075E+01 −

WFG8 2.566E+01 2,
3,5 2.547E+01 3

5 2.461E+01 5 2.591E+01 1,
2,
3,
5 2.335E+01 −

WFG9 2.519E+01 2,
3,5 2.391E+01 3

5 2.313E+01 − 2.555E+01 1,
2,
3,
5 2.237E+01 −

DTLZ1

4

1.015E+01 5 1.034E+01 1,
3,
4,
5 1.033E+01 1,

4,5 1.016E+01 5 8.635E+00 −
DTLZ2 1.014E+00 3

5 1.032E+00 1,
3,
4,
5 8.857E-01 5 1.016E+00 1,

3,5 7.018E-01 −
DTLZ3 1.017E+00 3

5 1.018E+00 1,
3,5 8.739E-01 5 1.018E+00 3

5 7.006E-01 −
DTLZ4 1.021E+00 3,

4,5 1.032E+00 1,
3,
4,
5 8.642E-01 5 1.018E+00 3

5 7.113E-01 −
DTLZ5 4.380E+01 5 4.420E+01 1,

3,
4,
5 4.419E+01 1,

4,5 4.382E+01 5 4.350E+01 −
DTLZ6 6.929E+03 2

5 6.890E+03 − 6.925E+03 2
5 6.934E+03 1,

2,
3,
5 6.909E+03 2

DTLZ7 1.872E+00 2,
3,5 1.820E+00 3

5 1.607E+00 − 1.875E+00 1,
2,
3,
5 1.701E+00 3

WFG1 2.510E+02 2
5 2.419E+02 5 2.753E+02 1,

2,
4,
5 2.504E+02 2

5 2.038E+02 −
WFG2 3.868E+02 2,

3,5 3.695E+02 3
5 3.623E+02 − 3.873E+02 2,

3,5 3.616E+02 −
WFG3 3.774E+02 5 3.886E+02 1,

3,
4,
5 3.836E+02 1,

4,5 3.788E+02 5 3.729E+02 −
WFG4 2.511E+02 2,

3,
4,
5 2.421E+02 3

5 1.623E+02 − 2.499E+02 2,
3,5 1.612E+02 −

WFG5 2.331E+02 2,
3,5 2.301E+02 3

5 1.473E+02 − 2.334E+02 2,
3,5 1.530E+02 3

WFG6 2.341E+02 2,
3,5 2.289E+02 3

5 1.367E+02 − 2.337E+02 2,
3,5 1.517E+02 3

WFG7 2.538E+02 2,
3,5 2.516E+02 3

5 1.706E+02 5 2.547E+02 1,
2,
3,
5 1.636E+02 −

WFG8 2.944E+02 3
5 3.130E+02 1,

3,
4,
5 2.142E+02 − 3.106E+02 1,

3,5 2.205E+02 3

WFG9 2.228E+02 3
5 2.273E+02 1,

3,5 1.461E+02 − 2.294E+02 1,
3,5 1.580E+02 3
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6.5. RESULTS

Table 6.21: Hypervolume comparison using different scalarizing functions in
problems with 5-7 objectives.

Problem m
ASF(1) PBI(2) TCH(3) GE_SF1(4) GE_SF2(5)
HV + HV + HV + HV + HV +

DTLZ1

5

7.580E-02 3,
4,5 7.673E-02 1,

3,
4,
5 7.467E-02 5 7.575E-02 3

5 6.270E-02 −
DTLZ2 1.291E+00 3

5 1.308E+00 1,
3,
4,
5 1.146E+00 5 1.294E+00 1,

3,5 7.531E-01 −
DTLZ3 1.129E+04 4

5 1.129E+04 1,
4,5 1.130E+04 1,

2,
4,
5 1.128E+04 5 8.178E+03 −

DTLZ4 1.304E+00 3
5 1.308E+00 1,

3,5 1.146E+00 5 1.310E+00 1,
2,
3,
5 7.864E-01 −

DTLZ5 1.198E+02 − 1.285E+02 1,
3,
4,
5 1.238E+02 1

4 1.222E+02 1 1.229E+02 1
4

DTLZ6 9.618E+04 2,
3,5 9.590E+04 3 9.510E+04 − 9.626E+04 1,

2,
3,
5 9.593E+04 3

DTLZ7 2.985E+00 3
5 2.994E+00 1,

3,5 2.588E+00 5 3.006E+00 1,
2,
3,
5 1.886E+00 −

WFG1 9.512E+02 2,
4,5 9.023E+02 5 1.022E+03 1,

2,
4,
5 9.355E+02 2

5 8.513E+02 −
WFG2 3.952E+03 2,

3,5 3.842E+03 5 3.899E+03 2,
4,5 3.878E+03 2

5 3.801E+03 −
WFG3 5.134E+03 3 5.141E+03 3

5 4.812E+03 − 5.196E+03 1,
2,
3,
5 5.094E+03 3

WFG4 2.980E+03 2,
3,5 2.864E+03 3

5 1.955E+03 5 2.989E+03 1,
2,
3,
5 1.593E+03 −

WFG5 2.767E+03 2,
3,5 2.749E+03 3

5 1.534E+03 − 2.793E+03 1,
2,
3,
5 1.485E+03 −

WFG6 2.890E+03 2,
3,5 2.850E+03 3

5 1.069E+03 − 2.908E+03 2,
3,5 1.532E+03 3

WFG7 3.085E+03 2,
3,5 3.059E+03 3

5 2.076E+03 5 3.094E+03 1,
2,
3,
5 1.631E+03 −

WFG8 4.742E+03 3
5 5.218E+03 1,

3,
4,
5 3.059E+03 − 4.861E+03 1,

3,5 3.092E+03 −
WFG9 2.690E+03 3

5 2.815E+03 1,
3,5 1.192E+03 − 2.751E+03 1,

3,5 1.667E+03 3

DTLZ1

6

4.607E-02 3
5 4.643E-02 1,

3,
4,
5 4.597E-02 5 4.604E-02 5 3.836E-02 −

DTLZ2 1.536E+00 3
5 1.549E+00 1,

3,
4,
5 1.432E+00 5 1.539E+00 1,

3,5 8.118E-01 −
DTLZ3 7.854E+03 4

5 7.857E+03 1,
3,
4,
5 7.857E+03 1,

4,5 7.854E+03 5 7.301E+03 −
DTLZ4 1.548E+00 3

5 1.551E+00 1,
3,5 1.438E+00 5 1.555E+00 1,

2,
3,
5 8.471E-01 −

DTLZ5 4.951E+01 2
3 4.444E+01 − 4.806E+01 2 5.031E+01 1,

2,3 5.037E+01 1,
2,3

DTLZ6 3.316E+05 2,
3,5 3.297E+05 3 3.150E+05 − 3.318E+05 2,

3,5 3.295E+05 3

DTLZ7 3.173E+00 3,
4,5 3.206E+00 1,

3,
4,
5 2.736E+00 5 3.145E+00 3

5 1.915E+00 −
WFG1 2.555E+02 2

5 2.414E+02 − 2.683E+02 1,
2,
4,
5 2.561E+02 2

5 2.403E+02 −
WFG2 4.426E+04 2 4.334E+04 − 4.580E+04 1,

2,5 4.519E+04 1,
2,5 4.458E+04 1

2

WFG3 7.153E+04 2,
3,5 6.801E+04 3 6.512E+04 − 7.230E+04 1,

2,
3,
5 6.924E+04 3

WFG4 3.845E+04 2,
3,5 3.681E+04 3

5 2.644E+04 5 3.929E+04 1,
2,
3,
5 1.886E+04 −

WFG5 3.849E+04 2,
3,5 3.236E+04 3

5 2.207E+04 5 3.910E+04 1,
2,
3,
5 1.893E+04 −

WFG6 4.297E+04 2,
3,5 4.218E+04 3

5 1.429E+04 − 4.324E+04 1,
2,
3,
5 2.127E+04 3

WFG7 4.006E+04 2,
3,5 3.265E+04 5 2.835E+04 5 4.036E+04 1,

2,
3,
5 1.903E+04 −

WFG8 6.954E+04 3
5 7.983E+04 1,

3,
4,
5 3.340E+04 − 7.044E+04 1,

3,5 4.440E+04 3

WFG9 3.328E+04 3
5 3.763E+04 1,

3,
4,
5 1.251E+04 − 3.454E+04 1,

3,5 2.141E+04 3

DTLZ1

7

3.240E-02 3,
4,5 3.258E-02 1,

3,
4,
5 3.176E-02 5 3.227E-02 3

5 2.622E-02 −
DTLZ2 1.761E+00 3,

4,5 1.773E+00 1,
3,
4,
5 1.366E+00 5 1.751E+00 3

5 8.475E-01 −
DTLZ3 1.744E+00 3

5 1.754E+00 1,
3,5 1.339E+00 5 1.755E+00 1,

3,5 9.017E-01 −
DTLZ4 1.773E+00 3,

4,5 1.774E+00 1,
3,
4,
5 1.469E+00 5 1.771E+00 3

5 9.113E-01 −
DTLZ5 8.148E+00 2

3 6.169E+00 − 7.842E+00 2 8.228E+00 2
3 8.532E+00 1,

2,
3,
4

DTLZ6 6.208E+05 3
5 6.302E+05 1,

3,5 4.979E+05 − 6.281E+05 1,
3,5 6.166E+05 3

DTLZ7 3.360E+00 3,
4,5 3.197E+00 3

5 2.468E+00 5 3.307E+00 2,
3,5 2.446E+00 −

WFG1 1.392E+02 2 1.237E+02 − 1.675E+02 1,
2,
4,
5 1.429E+02 1,

2,5 1.391E+02 2

WFG2 6.303E+05 2
5 6.070E+05 − 6.350E+05 2

5 6.223E+05 2
5 6.176E+05 2

WFG3 1.105E+06 2
3 1.075E+06 3 9.999E+05 − 1.094E+06 2

3 1.109E+06 2
3

WFG4 5.364E+05 3
5 5.426E+05 1,

3,5 3.237E+05 5 5.506E+05 1,
3,5 2.694E+05 −

WFG5 5.268E+05 2,
3,5 3.514E+05 3

5 2.125E+05 − 5.402E+05 1,
2,
3,
5 2.420E+05 3

WFG6 6.158E+05 2,
3,5 5.490E+05 3

5 3.520E+05 5 6.150E+05 3
5 2.901E+05 −

WFG7 5.822E+05 2,
3,5 5.345E+05 3

5 3.862E+05 5 5.904E+05 1,
3,5 2.800E+05 −

WFG8 9.453E+05 3
5 1.196E+06 1,

3,
4,
5 2.015E+05 − 9.908E+05 1,

3,5 5.819E+05 3

WFG9 4.745E+05 3
5 6.323E+05 1,

3,
4,
5 1.526E+05 − 5.271E+05 1,

3,5 3.747E+05 3
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Table 6.22: Hypervolume comparison using different scalarizing functions in
inverted problems.

Problem m
ASF(1) PBI(2) TCH(3) GE_SF1(4) GE_SF2(5)
HV + HV + HV + HV + HV +

DTLZ1_MINUS

2

1.503E+05 2
5 1.50E+05 5 1.503E+05 2

5 1.503E+05 2
5 1.50E+05 −

DTLZ2_MINUS 9.56E+00 2 9.53E+00 − 9.56E+00 2 9.56E+00 1,
2,3 9.572E+00 1,

2,
3,
4

DTLZ3_MINUS 3.79E+06 2 3.78E+06 − 3.79E+06 2 3.79E+06 1,
2,3 3.794E+06 1,

2,
3,
4

DTLZ4_MINUS 9.56E+00 2 9.53E+00 − 9.56E+00 2 9.56E+00 1,
2,3 9.572E+00 1,

2,
3,
4

DTLZ5_MINUS 9.56E+00 2 9.53E+00 − 9.56E+00 2 9.56E+00 1,
2,3 9.572E+00 1,

2,
3,
4

DTLZ6_MINUS 9.44E+01 2 9.42E+01 − 9.44E+01 2 9.45E+01 1,
2,3 9.455E+01 1,

2,
3,
4

DTLZ7_MINUS 6.55E-01 2 4.28E-01 − 6.55E-01 2 6.55E-01 2 6.548E-01 1,
2,
3,
4

DTLZ1_MINUS

3

1.76E+07 2
3 1.74E+07 − 1.76E+07 2 1.82E+07 1,

2,3 2.176E+07 1,
2,
3,
4

DTLZ2_MINUS 1.88E+01 − 1.91E+01 1,
3,4 1.89E+01 1 1.91E+01 1

3 2.025E+01 1,
2,
3,
4

DTLZ3_MINUS 4.70E+09 − 4.76E+09 1
3 4.71E+09 1 4.76E+09 1,

2,3 5.053E+09 1,
2,
3,
4

DTLZ4_MINUS 1.88E+01 − 1.91E+01 1
3 1.88E+01 1 1.91E+01 1

3 2.025E+01 1,
2,
3,
4

DTLZ5_MINUS 1.95E+01 2
3 1.95E+01 3 1.93E+01 − 1.96E+01 1,

2,3 2.024E+01 1,
2,
3,
4

DTLZ6_MINUS 5.90E+02 − 5.96E+02 1
3 5.92E+02 1 5.98E+02 1,

2,3 6.286E+02 1,
2,
3,
4

DTLZ7_MINUS 4.44E-01 2
3 1.80E-01 − 4.01E-01 2 4.45E-01 1,

2,3 4.453E-01 1,
2,
3,
4

DTLZ1_MINUS

4

5.00E+08 2
3 4.17E+08 3 1.25E+08 − 6.25E+08 1,

2,3 1.345E+09 1,
2,
3,
4

DTLZ2_MINUS 1.69E+01 − 2.20E+01 1,
3,4 2.14E+01 1

4 2.05E+01 1 3.223E+01 1,
2,
3,
4

DTLZ3_MINUS 2.67E+12 − 3.42E+12 1,
3,4 3.39E+12 1

4 3.25E+12 1 5.069E+12 1,
2,
3,
4

DTLZ4_MINUS 1.67E+01 − 2.18E+01 1,
3,4 2.13E+01 1

4 2.04E+01 1 3.224E+01 1,
2,
3,
4

DTLZ5_MINUS 2.31E+01 − 2.75E+01 1,
3,4 2.60E+01 1

4 2.42E+01 1 3.256E+01 1,
2,
3,
4

DTLZ6_MINUS 1.88E+03 − 2.32E+03 1,
3,4 2.21E+03 1

4 2.13E+03 1 3.145E+03 1,
2,
3,
4

DTLZ7_MINUS 1.905E+00 2,
3,
4,
5 2.00E-01 − 1.40E+00 2 1.86E+00 2,

3,5 1.85E+00 2
3

DTLZ1_MINUS

5

7.49E+08 2 6.10E+07 − 1.74E+10 1,
2,4 9.61E+08 2 4.107E+10 1,

2,
3,
4

DTLZ2_MINUS 1.58E+00 − 2.22E+01 1,
3,4 2.00E+01 1

4 1.28E+01 1 4.467E+01 1,
2,
3,
4

DTLZ3_MINUS 3.40E+14 − 2.24E+15 1,
3,4 2.04E+15 1

4 1.32E+15 1 4.424E+15 1,
2,
3,
4

DTLZ4_MINUS 1.66E+00 − 2.20E+01 1,
3,4 1.88E+01 1

4 1.26E+01 1 4.460E+01 1,
2,
3,
4

DTLZ5_MINUS 1.81E+01 − 3.55E+01 1,
3,4 3.34E+01 1

4 2.06E+01 1 4.563E+01 1,
2,
3,
4

DTLZ6_MINUS 2.26E+03 − 8.08E+03 1,
3,4 7.36E+03 1

4 4.45E+03 1 1.374E+04 1,
2,
3,
4

DTLZ7_MINUS 2.04E+00 2
3 1.00E-01 − 1.58E+00 2 2.188E+00 1,

2,3 1.911E+00 2
3

DTLZ1_MINUS

6

2.73E+10 2 8.05E+08 − 1.874E+11 1,
2,
4,
5 3.39E+10 2 1.13E+11 1,

2,4

DTLZ2_MINUS 2.70E+00 − 2.58E+01 1,
3,4 4.09E+00 1

4 3.01E+00 1 4.872E+01 1,
2,
3,
4

DTLZ3_MINUS 2.08E+17 − 1.67E+18 1,
3,4 4.62E+17 1

4 2.62E+17 1 3.048E+18 1,
2,
3,
4

DTLZ4_MINUS 1.04E+00 − 2.46E+01 1,
3,4 3.10E+00 1 1.68E+00 1 4.834E+01 1,

2,
3,
4

DTLZ5_MINUS 2.06E+01 − 4.02E+01 1,
3,4 2.96E+01 1

4 2.09E+01 1 5.094E+01 1,
2,
3,
4

DTLZ6_MINUS 8.08E+03 − 2.93E+04 1,
3,4 9.66E+03 1

4 8.47E+03 1 4.756E+04 1,
2,
3,
4

DTLZ7_MINUS 3.968E+00 2,
3,5 1.60E+00 − 3.48E+00 2 3.785E+00 2,

3,5 3.19E+00 2

DTLZ1_MINUS

7

3.333E+12 2,
3,5 1.24E+11 3

5 4.88E+09 5 3.321E+12 2,
3,5 1.99E+09 −

DTLZ2_MINUS 3.24E+00 3 2.29E+01 1,
3,4 2.30E-02 − 2.96E+00 3 3.890E+01 1,

2,
3,
4

DTLZ3_MINUS 1.50E+20 3 9.72E+20 1,
3,4 2.97E+18 − 1.60E+20 3 1.553E+21 1,

2,
3,
4

DTLZ4_MINUS 1.17E+00 3 2.15E+01 1,
3,4 3.53E-03 − 1.27E+00 3 3.810E+01 1,

2,
3,
4

DTLZ5_MINUS 2.24E+01 3 2.98E+01 1,
3,4 1.33E+01 − 2.24E+01 3 4.337E+01 1,

2,
3,
4

DTLZ6_MINUS 2.64E+04 3 7.29E+04 1,
3,4 2.52E+03 − 2.69E+04 3 1.187E+05 1,

2,
3,
4

DTLZ7_MINUS 3.745E+00 2
5 1.60E+00 − 3.919E+00 2

5 3.457E+00 2
5 2.38E+00 2
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and grouped them by number of objectives. We show these results in Ta-
ble 6.23. Here, we can observe that GE_SF1 is the best performing scalariz-
ing function, having the best results in 56 out of 96 test instances, followed
by PBI, which obtained the best results in 36 cases. This is the behavior we
were looking for by combining DTLZ4 and WFG4, which is to improve the
performance obtained with ASF. However, not only GE_SF1 outperformed
ASF, but it also outperformed the other scalarizing functions adopted in
this comparison. Conversely, GE_SF2 is the scalarizing function with the
worst performance, as it only obtained the best results in 10 test instances,
which was also an expected behavior since it was trained using I-DTLZ4.
Nonetheless it is interesting to see that it was able to obtain top results in
DTLZ5 with 2, 6 and 7 objectives as well as DTLZ6 with 2 and 3 objectives,
even though it was not designed to successfully solve standard MOPs.

Even though GE_SF1 attained the largest number of problems improved,
it is evident that not even this function is able to outperform the others
in every test problem, since it only obtained top results in 58.33% of the
test instances. This is also an expected behavior since we are dealing with
many different types of problems/number of objectives/geometries, which
makes it difficult for a single scalarizing function to improve results in every
possible setup.

Table 6.23: Number of DTLZ and WFG problems in which each scalarizing
function obtained the best performance (or a statistically similar performance
to the best one) using the hypervolume indicator.

Test Total
problems

m
problems

ASF PBI TCH GE_SF1 GE_SF2

2 16 1 3 5 12 6
3 16 3 4 3 9 1
4 16 4 8 1 8 0
5 16 2 5 2 10 0
6 16 1 6 2 9 1

DTLZ1-7, WFG1-9

7 16 4 10 2 8 2
Total 15 36 15 56 10

From Table 6.22 we counted the number of gray cells of each scalariz-
ing function and we show these results in Table 6.24. These results corre-
spond to the validation using inverse DTLZ problems. Here, we can ob-
serve that GE_SF2, which was generated specifically using an inverse test
MOP in the search process of PonyGE2, obtains the largest number of prob-
lems improved. Overall, GE_SF2 is able to obtain top results in 36 out of 42
test instances.

Finally, we performed two additional comparisons against MOEA/D [133]
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Table 6.24: Number of I-DTLZ problems in which each scalarizing function
obtained the best performance (or a statistically similar performance to the
best one) using the hypervolume indicator.

Test Total
problems

m
problems

ASF PBI TCH GE_SF1 GE_SF2

2 7 1 0 1 1 6
3 7 0 0 0 0 7
4 7 1 0 0 0 6
5 7 0 0 0 1 7
6 7 1 0 1 1 5

I-DTLZ1-7

7 7 2 0 1 2 5
Total 5 0 3 5 36

and NSGA-III, as well as the default version of MOMBI-II with ASF. In
the first comparison, shown in Table 6.25 we compare these three MOEAs
against MOMBI-II with GE_SF1, since it was the best performing scalarizing
function for standard MOPs. In this comparison, MOMBI-II with GE_SF1
obtained the largest number of top results, with 54 out of 96, followed by
NSGA-III with 40 top results.

Table 6.25: Comparison of the number of problems improved, using the hy-
pervolume indicator, with different MOEAs in the DTLZ and the WFG test
problems.

Test Total
problems

m
problems

MOEA/D NSGA-III MOMBI-IIASF MOMBI-IIGESF1

2 16 4 5 0 14
3 16 3 8 3 10
4 16 2 7 6 7
5 16 3 5 2 9
6 16 1 5 2 9

DTLZ1-7,
WFG1-9

7 16 3 10 4 5
Total 16 40 17 54

In the second comparison against other MOEAs, we compared the per-
formance of GE_SF2, since it was the best performing scalarizing function
for inverted MOPs. These results are shown in Table 6.26. Similar to the
scalarizing functions comparison from Table 6.22, MOMBI-II with GE_SF2
obtained the best results across all dimensions, and significantly improved
the results obtained by all the other MOEAs.

In Figure 6.2 we show the contour lines of the 5 scalarizing functions
used in our comparisons, with 5 different weight vectors. All these plots are
shown in the interval [0,1] for two objectives, for an easier comparison. We
can observe that the contour lines from ASF and GE_SF1 are really similar.
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Table 6.26: Comparison of the number of problems improved, using the hy-
pervolume indicator, with different MOEAs in the I-DTLZ problems.

Test Total
problems

m
problems

MOEA/D NSGA-III MOMBI-IIASF MOMBI-IIGE_SF2

2 7 1 2 1 5
3 7 0 0 1 6
4 7 0 0 1 6
5 7 1 0 0 7
6 7 0 1 1 5

I-DTLZ1-7

7 7 0 1 2 5
Total 2 4 6 34

In an analogous way, the contour lines of TCH and GE_SF2 also share some
similarities. However, GE_SF1 exhibits a sharper steepness with respect to
ASF, since for all 5 weight vectors it reached a smaller value in the lower
values of the plot. Conversely, GE_SF2 exhibits a lower steepness when
compared to TCH, since this time TCH reaches the smallest values with all
the 5 weight vectors adopted.

Finally, we show a comparison of the Pareto fronts obtained in each in-
verted test problem with 2 objectives in Fig. 6.3 and in inverted problems
with 3 objectives in Fig. 6.4. The fronts shown in these figures correspond
to the results at the median of the hypervolume values obtained from 30
independent executions. In all cases, we can observe that the Pareto fronts
generated with GE_SF2 have a better distribution than those generated with
ASF.

It is particularly interesting to notice that there was no weight vector
adaptation mechanism used in the inverse problems, meaning that the same
weight vectors used for the standard DTLZ and WFG test problems are used
to solve the inverse DTLZ problems. However, from the plots presented in
Figures 6.3 and 6.4 it is noticeable that GE_SF2 is replacing the role of a
weight vector adaptation, which would typically be an easier way to im-
prove the obtained results in inverse problems.
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Figure 6.2: Contour lines for ASF, TCH, PBI, GE_SF1 and GE_SF2 with
different weight vectors w⃗.
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(a) I −DTLZ1 (b) I −DTLZ2 (c) I −DTLZ3

(d) I −DTLZ4 (e) I −DTLZ5 (f) I −DTLZ6

(g) I −DTLZ7

Figure 6.3: Pareto fronts obtained using ASF (left) and GE_SF2 (right) in
DTLZ inverse problems with 2 objectives.

6.6 SUMMARY

In this chapter we have presented a methodology that allows the auto-
matic generation of scalarizing functions using grammatical evolution. Us-
ing this methodology we have generated two different scalarizing func-
tions (GE_SF1 and GE_SF2). The former was obtained using DTLZ4 and
WFG4 and the latter was obtained using I-DTLZ4. We have provided ex-
perimental evidence that shows that these two functions outperform ASF,
TCH and PBI in the test problems considered, as well as other MOEAs such
as MOEA/D and NSGA-III. GE_SF1 obtained the largest number of wins
in the comparisons using the standard DTLZ and WFG problems, whereas
GE_SF2 obtained the largest number of wins in the comparisons using the
inverted DTLZ problems. Since our methodology employs hypervolume
calculations, it can become computationally expensive. In the worst case,
which occurred when using WFG4 as the training problem, it took 12,056
seconds to complete 40 generations, averaging close to 300 seconds per gen-
eration. However, it is important to notice that this is the cost of generating
the scalarizing function. Once we have obtained it, using such a scalarizing
function has a similar computational cost to that of ASF or TCH.
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(a) I −DTLZ1 (b) I −DTLZ2

(c) I −DTLZ3 (d) I −DTLZ4

(e) I −DTLZ5 (f) I −DTLZ6

(g) I −DTLZ7

Figure 6.4: Pareto fronts obtained using ASF (left) and GE_SF2 (right) in
the DTLZ inverse problems with 3 objectives.
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Also, in the case of standard benchmark problems, the percentage of
problems with top results obtained with GE_SF1 was under 60%, which
evidences that even the best performing scalarizing function from our com-
parisons is not able to generalize the improvements in all benchmark prob-
lems. Thus, we can conjecture that in order to achieve improvements in
more test instances, an ensemble of multiple complementary scalarizing
functions could be used, and possibly couple it to a weight vector adap-
tation mechanism.

Finally, the functions found using GE were trained using a specific prob-
lem or specific data, but there is evidence that they can generalize their good
performance to problems/data that were not considered in the training.
Based on this evidence, we believe that this implementation can be used
to obtain better results in a wide variety of problems.
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7

Use of Grammatical Evolution
to obtain hypervolume

approximations

7.1 INTRODUCTION

Indicator-based MOEAs adopt performance indicators to measure the qual-
ity of a given individual with respect to the rest of the population and use
this information to assign its fitness value. The individual with the worst
contribution is usually deleted from the population and replaced in the next
generation [141]. One of the most widely used indicators in these algo-
rithms is the hypervolume. This is due to the fact that the hypervolume is
Pareto compliant, which means that it preserves the order imposed by the
Pareto dominance relation [38]. Additionally, it provides both convergence
and (to some extent) diversity information, since a set with a better cover-
age of the Pareto front will have a better hypervolume value. Nonetheless,
the main drawback of the hypervolume is that its computational cost in-
creases exponentially with the number of objectives. This has motivated a
lot of research aiming to find more efficient ways of calculating it [53, 122]
or ways of approximating it [5, 36, 110] to reduce its computational cost.

In this chapter, we present another application of the Grammatical Evo-
lution (GE) implementation presented in the previous chapter. This addi-
tional application allows the generation of new hypervolume approxima-
tions, which decrease the computational time required while still having a
good performance.
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7.2 HYPERVOLUME APPROXIMATIONS

7.2.1 MONTE CARLO APPROXIMATION

One of the most popular methods to approximate the hypervolume value of
a non-dominated set is the Monte Carlo approach [5]. Given a data set X =
{x1, . . . , xn}, xi ∈ IRm we can approximate its hypervolume by sampling a
given number of points in the region delimited by X . Then, for each sample
point we determine if it is dominated by any xi, counting the dominated
sample points in variable hits. Then, the Monte Carlo approximation is
obtained using the following expression:

MC(X) = λ(X) ∗ hits

sample size
. (7.1)

The quality of the approximation depends on the sample size: the larger
the sample is, the better the approximation results. However, the computa-
tional cost increases proportionally to this value.

7.2.2 R2 HYPERVOLUME APPROXIMATION

Another recent proposal to approximate both the hypervolume value of a
non-dominated set and the individual hypervolume contribution is based
on the use of the R2 indicator [108]. This is a linear-based approach, defined
as follows:

RHV
2 (X,Λ, r⃗,m) =

1

|Λ|
∑
λ⃗∈Λ

max
x⃗∈X

(
gmtch(x⃗|λ⃗, r⃗)

)m
(7.2)

where X is a set of non-dominated solutions x⃗ ∈ IRm, Λ is a set of direc-
tion vectors, each direction vector λ⃗ = {λ1, . . . , λm} ∈ Λ satisfies ∥λ∥2 = 1
and λi ≥ 0, i = 1, . . . ,m, r⃗ = {r, . . . , r} is the reference point and m is the
dimensionality of the space. The function gmtch is defined as follows.

gmtch(x⃗|λ⃗, r⃗) = min
j∈1,...,m

(
|rj − aj|

λj

)
. (7.3)

7.2.3 GP GENERATED APPROXIMATIONS

A GP-based methodology was recently proposed to approximate, in an effi-
cient way, the hypervolume value and the individual hypervolume contri-
bution in 3, 4 and 5 dimensional spaces [100]. For each data set X ∈ IRn×m,
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there are some statistical features that are obtained in order to use these
approximations. These features are shown in Table 7.1. All of them are
obtained for each of the m objectives in the data.

Table 7.1: Statistical features extracted from data to obtain its hypervolume
approximation.

Notation Statistical feature
µ⃗ mean
σ⃗ standard deviation
Q⃗1 1st quartile
Q⃗2 2nd quartile
Q⃗3 3rd quartile
κ⃗ kurtosis
λ⃗ skewness

The hypervolume approximation functions for 3, 4 and 5 dimensions are
defined as shown in eqns (7.4), (7.5) and (7.6) respectively. These equations
were extracted from the source code provided in [100].

M3
4,6(X) =

6236736683876353 ∗ µ⃗1 ∗ µ⃗2 ∗ Q⃗11
4503599627370496

− 3173082762593237 ∗ µ⃗2

2251799813685248
− 1771343023238655 ∗ µ⃗3

2251799813685248

− 5290754323525305 ∗ σ⃗1

4503599627370496
− 8680371570911475 ∗ Q⃗11

36028797018963968

− 2893457190303825 ∗ |γ⃗3|
36028797018963968

− 5906898887207671 ∗ log(κ⃗1)

36028797018963968

− 6829965597182259 ∗ log(σ⃗3)

9007199254740992 ∗ log(10)

− 2294397315973779 ∗ log(κ⃗2 + γ⃗2 + Q⃗22 ∗ γ⃗1)
18014398509481984 ∗ log(10)

− 2893457190303825 ∗ Q⃗23 ∗ γ⃗1
36028797018963968

− 6826873663546647 ∗ Q⃗23 ∗ γ⃗2
36028797018963968

− 6066879653575323 ∗ µ⃗1

4503599627370496
+

1215041356731309 ∗ Q⃗23 ∗ Q⃗11 ∗ γ⃗2
4503599627370496

+
5647080252797291

2251799813685248
(7.4)
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M4
5,6(X) =

3818342324243663 ∗ (σ⃗9
3)

1/2

17592186044416
− 8367714107802115 ∗ Q⃗14

9007199254740992

− 4684844483679697 ∗ sin(sin(µ⃗2 ∗ σ⃗4))

1125899906842624

− 4831284340333437 ∗ sin((σ⃗2
2 ∗ γ⃗2)/ cos(Q⃗13))

4503599627370496

− 3387877962052739 ∗ exp(exp(σ⃗3
3))

70368744177664
− 8649112683782109 ∗ Q⃗13

18014398509481984

+
2421873864284579

35184372088832 ∗ cos(σ⃗3)
+

188607530293811 ∗ 1/ tan(σ⃗4)
1/4

562949953421312

− 12795601803451 ∗ µ⃗1 ∗ σ⃗3

8796093022208

− 3714273495887619 ∗ Q⃗12 ∗ cos(Q⃗12) ∗ sin(γ⃗4)
18014398509481984

+
8842052222550475

140737488355328
(7.5)
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M5
1,5(X) =

226757085449091 ∗ µ⃗4

562949953421312
− 49212418854775 ∗ µ⃗1

140737488355328

+
316327101333597 ∗ Q⃗22

562949953421312
+

4208801459950455 ∗ Q⃗23
18014398509481984

+
4208801459950455 ∗ σ⃗2

9007199254740992
− 4420306567464985 ∗ σ⃗3

281474976710656

+
1059206653244855 ∗ Q⃗15

18014398509481984
+

50672178223625 ∗ Q⃗31
70368744177664

+
8274937251716701 ∗ sin−1(sin−1(Q⃗22 ∗ σ⃗3))

2251799813685248

− 8229011520467723 ∗ sin−1(σ⃗2
3)

562949953421312

+
2896651095433129 ∗ sin−1(tan(σ⃗3))

281474976710656

+
501121421306637 ∗ cos(Q⃗22 + Q⃗23 − Q⃗15 + Q⃗34 + Q⃗35 + log(κ⃗3))

4503599627370496

+
5140569679074477 ∗ cos(µ⃗3 + µ⃗4 + Q⃗15 + Q⃗31 + |σ⃗2|)

4503599627370496

− 49212418854775 ∗ tan(Q⃗22)

281474976710656
+

2896651095433129 ∗ tan(σ⃗3)

281474976710656

− 49212418854775

281474976710656 ∗ cos(Q⃗35)
+

4208801459950455 ∗ Q⃗31 ∗ Q⃗34
18014398509481984

− 49212418854775 ∗ Q⃗12 ∗ γ⃗5
281474976710656

− 5.2299056961053288716811948688701 ∗ Q⃗22 ∗ sin(σ⃗5)

+ 0.27075243546777693026683664356824.

(7.6)

These approximations were obtained using a similar methodology to the
one we propose in our work. However, instead of obtaining information
from the population as a whole, and building approximation functions with
such information, we use point-wise information, meaning that we evaluate
the approximation functions iteratively using each of the points in the data.
This increases the computational timeO(n), where n is the number of points
in the data, but also improves the quality of the approximation.
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7.3 PROPOSED IMPLEMENTATION

We propose to generate hypervolume approximations by averaging a cu-
mulative-sum of function values. We used the same implementation de-
scribed in the previous chapter (PonyGE2 [40]). However, we made some
modifications described in this section in order to generate hypervolume
approximations instead of scalarizing functions.

The overall process is depicted in Fig 7.1. First, we obtain the approxima-
tion of the hypervolume of some training data using the new approximation
function. Then, we obtain the mean squared error using this hypervolume
approximation and the real hypervolume and assign the individual’s fitness
accordingly.

Figure 7.1: Diagram of grammatical evolution used to generate hypervolume
approximations.

7.3.1 FITNESS FUNCTION

In Algorithm 6 we present the outline of the corresponding fitness function.
In order to evaluate the fitness of each individual we require its decoded
phenotype, a training set X⃗ = {X1, . . . , Xn}, where each Xi contains a set of
non-dominated points, and the corresponding set of real hypervolume val-

90



7.3. PROPOSED IMPLEMENTATION

ues I⃗H = {I1, . . . , In}, where Ii is the real hypervolume of the file Xi. Then,
we iterate through each file Xi to evaluate the phenotype using vector-wise
information. This means that for a given file of size n we will evaluate the
phenotype n times, storing the result in a cumulative-sum variable. Then,
we average this value with respect to n. This process is repeated with ev-
ery training set, and we use the average mean squared error (MSE) of each
approximation to assign the final fitness.

Algorithm 6: Fitness function used to generate hypervolume ap-
proximations using our proposal
Input : phenotype, X⃗ = {X1, . . . , Xn}, I⃗H = {I1, . . . , In};
Output: fitness;

1 mse← 0;
2 for i← 0 to n do
3 approximation← 0;
4 foreach x⃗ ∈ Xi do
5 approximation← approximation+evaluate(phenotype,x⃗);
6 end
7 approximation← approximation/size(Xi);
8 mse← mse+ (Ii − approximation)2;
9 end

10 fitness← mse/size(X⃗);
11 return fitness;

7.3.2 GRAMMAR

We adopted two different grammars to generate hypervolume approxima-
tions. The first one is shown below, where x⃗ ∈ IRm corresponds to the m-
dimensional non-dominated points in a given training set X of size n, and
⃗sum ∈ IRm stores the sum of all objectives of x⃗ considering sumj =

∑n
i=1 xi,j .

In contrast with the grammar adopted to generate scalarizing functions, we
decided to include sin, cos, log and exp in addition of the basic arithmetic
operators.

91



CHAPTER 7. USE OF GRAMMATICAL EVOLUTION TO OBTAIN
HYPERVOLUME APPROXIMATIONS

< e > ::= < e > + < e > | < e > − < e > | < e > ∗ < e > | < e > / < e >
sin(< e >)| cos(< e >)| log(< e >)| exp(< e >)
x⃗ | ⃗sum | n
< c >< c > . < c >< c >

< c > ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The second grammar adopted is similar to the previous one, but with
the addition of the statistical features used in [100]. In a similar way to ⃗sum,
all statistical features are calculated component-wise.

< e > ::= < e > + < e > | < e > − < e > | < e > ∗ < e > | < e > / < e >
sin(< e >)| cos(< e >)| log(< e >)| exp(< e >)
x⃗ | ⃗sum | n
µ⃗ (mean) | σ⃗ (standard deviation)
Q⃗1 (1st quartile) | Q⃗2 (2nd quartile) | Q⃗3 (3rd quartile)
κ⃗ (kurtosis) | λ⃗ (skewness)
< c >< c > . < c >< c >

< c > ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .

7.3.3 TRAINING AND VALIDATION DATA

In order to generate our training/validation data, we used some of the dif-
ferent geometries provided by problems from the DTLZ and from the WFG
test suites. In Table 7.2, we show the problems adopted to generate sets
with different geometries. There is a difference in the number of problems
since some problems (such as DTLZ5 and WFG3) are degenerate with 3 or
more objectives, changing the shape that they present in their 2-objectives
versions.

We used NSGA-III [33] to solve each of the selected problems and stored
the population every 100 generations. For problems with 2 objectives we set
the population size to be 100 individuals, whereas the problems with 3 and
4 objectives were set to 120 individuals and the problems with 5 objectives
were set to 140 individuals. Then, we filtered each of the resulting files to
delete all dominated solutions present in the data. This changed the size
of elements in each file, since not all solutions are non-dominated in each
generation. Next, we normalized the remaining solutions to the interval
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Table 7.2: Test problems used in the generation of training/validation sets
grouped by their geometry.

(a) Problems used to generate 2-
dimensional training sets

Geometry Test problems
Linear DTLZ1

Concave DTLZ2
Mixed DTLZ7, WFG1, WFG2

(b) Problems used to generate 3, 4 and
5 dimensional training sets

Geometry Test problems
Linear DTLZ1, WFG3
Convex WFG2
Concave DTLZ2, DTLZ5
Mixed DTLZ7, WFG1

[0,1]. This is done to avoid the definition of a reference point in the hyper-
volume approximation function’s grammar. Once these files were obtained,
we randomly separated them into the training and the validation set. The
total number of data files generated with each problem, as well as the size of
the corresponding training/validation sets are shown in Table 7.3. The final
training/validation sets were created by combining all resulting files from
each problem in each dimension, creating 4 different pairs of training/vali-
dation sets (one pair per dimension).

In Fig. 7.2 we show the computational time used in each step of the pro-
cess to create the training/validation data. In the first step we used the
PlatEMO [113] implementation of NSGA-III to store the populations. Then,
we used Python scripts to Pareto filter such files and to normalize them.
Finally, we employed a C implementation [48] to obtain the real hypervol-
ume values of each file. All these steps were performed and measured on
an Intel Core i7-8700 CPU, with 16 GB of RAM.

7.4 EXPERIMENTAL WORK

We performed 8 different executions, considering the two grammars previ-
ously described for each of the four training sets generated. The maximum
number of generations was set to 300, whereas the population size was set
to 20. Here, we present the best result obtained from each of these execu-
tions.

In eqns (7.7), (7.8), (7.9) and (7.10) we present the best hypervolume ap-
proximation functions found using the first grammar for data with 2, 3, 4
and 5 objectives, respectively.
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Table 7.3: Number of files generated using each of the selected test problems.

Objectives Problem Total files Training set Validation set
generated size size

2

DTLZ1 996 491 505
DTLZ2 891 432 459
DTLZ7 894 433 461
WFG1 750 383 367
WFG2 747 363 384

3

DTLZ1 832 438 394
DTLZ2 868 401 467
DTLZ5 832 416 416
DTLZ7 832 431 401
WFG1 750 388 362
WFG2 832 400 432
WFG3 832 398 434

4

DTLZ1 873 408 465
DTLZ2 868 435 433
DTLZ5 832 404 428
DTLZ7 832 411 421
WFG1 750 382 368
WFG2 832 433 399
WFG3 832 421 411

5

DTLZ1 831 406 425
DTLZ2 833 406 427
DTLZ5 792 401 391
DTLZ7 792 392 400
WFG1 752 362 390
WFG2 792 406 386
WFG3 792 375 417
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Figure 7.2: Computational times used to generate the training/validation sets
used for hypervolume approximations.
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GEHV 12D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1/ cos(x⃗i,2 + sin(34.56))

+ sin(sin(x⃗i,1/ cos(sin(x⃗i,2))

+ x⃗i,2 ∗ cos(sin(sin(x⃗i,1 ∗ sin(n− x⃗i,2 ∗ cos(sin(
√

log(n)))

∗
√

x⃗i,2/ cos(sin(sin(sin(sin(x⃗i,1 ∗ sin(x⃗i,2)))

∗ cos(sin(cos(sin(sin(sin(sin(cos(cos(x⃗i,1 ∗ sin(x⃗i,2))))

∗ x⃗i,2/ cos(x⃗i,2))) ∗ cos(sin(x⃗i,1 ∗ sin(x⃗i,2) ∗ x⃗i,2/ sin(exp(x⃗i,2))

∗ x⃗i,2 ∗ x⃗i,2) ∗ x⃗i,2)))))) ∗ x⃗i,2 ∗ cos(sin(sin(sin(x⃗i,1 ∗ sin(x⃗i,2)

∗ cos(sin(sin(sin(cos(07.07 + x⃗i,1) ∗ ⃗sum1 ∗ sin(x⃗i,1

∗ sin(x⃗i,2) ∗ x⃗i,2/ cos(x⃗i,2))))))) ∗ cos(exp(x⃗i,1) ∗ n)) ∗ x⃗i,2)

∗ cos(n))))) ∗ sin(sin(n ∗ sin(18.34)) ∗ cos(sin(x⃗i,2))

+ x⃗i,2)) ∗ x⃗i,2) ∗ sin(sin(x⃗i,1 ∗ sin(18.71))

∗ log(sin(exp(sin(34.51))))))) ∗ sin(
√

x⃗i,2)))

)
(7.7)

GEHV 13D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1 + sin(cos(x⃗i,3)) ∗ exp(x⃗i,3/

√
cos(x⃗i,3)))

+ cos(sin(x⃗i,2 ∗ sin(exp(x⃗i,2)) + cos(sin(cos(cos(x⃗i,3)

∗ cos(sin(cos(log(cos(cos(n+ x⃗i,3)))) ∗ x⃗i,3

+ x⃗i,3/ cos(sin(cos( ⃗sum1))))/ cos(sin(n

∗ sin(cos(cos(x⃗i,3 + cos(sin( ⃗sum2)− x⃗i,2

− cos(x⃗i,1 + sin(cos(x⃗i,3)) + ⃗sum2)))))

+ cos(n+ x⃗i,3)− x⃗i,3))))))))

)
(7.8)

GEHV 14D(X) =
1

n

n∑
i=1

cos(x⃗i,1 + x⃗i,2 ∗ x⃗i,3 + x⃗i,4) (7.9)
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GEHV 15D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1 + sin(x⃗i,5) + x⃗i,3 ∗ sin(x⃗i,1 + sin(x⃗i,1)

− sin(sin( ⃗sum5/98.27 ∗ x⃗i,4 ∗ x⃗i,3

+ sin(sin(x⃗i,5 − x⃗i,3 + sin(sin(98.22))

− sin( ⃗sum2 − ⃗sum3 + x⃗i,1)− sin(x⃗i,5 ∗ sin(x⃗i,5) + x⃗i,3 + n)

− x⃗i,4 + x⃗i,1 − sin(x⃗i,5) + x⃗i,3 ∗ sin( ⃗sum1 + 68.66))− sin(x⃗i,2)

+ x⃗i,5 ∗ x⃗i,5 − x⃗i,3 − x⃗i,1 + sin(exp(sin( ⃗sum1

∗ sin( ⃗sum1 + sin(x⃗i,2)− x⃗i,5 ∗ sin(x⃗i,3 + x⃗i,2 ∗ x⃗i,5 + ⃗sum1

+
√

x⃗i,5 ∗ x⃗i,3 ∗ sin(sin(x⃗i,5))))))) + x⃗i,3 ∗ sin(x⃗i,1/n ∗ sin(x⃗i,2)

∗ x⃗i,5 + sin(
√

⃗sum4 − 98.06 + x⃗i,3 ∗
√

x⃗i,1 + ⃗sum3 − x⃗i,2 ∗ x⃗i,5

∗ sin(cos(98.67) + x⃗i,5 + 96.65 ∗ 97.82 ∗ sin(exp(x⃗i,1) ∗ x⃗i,3

− 98.62 ∗ sin(x⃗i,1 ∗ x⃗i,1) + exp(sin( ⃗sum1 + x⃗i,2 ∗ x⃗i,5 + ⃗sum1

+ 29.20 ∗
√

x⃗i,5))− x⃗i,3) + exp(n)) ∗ sin(x⃗i,3 ∗ exp( ⃗sum3)

∗ x⃗i,4 + x⃗i,1 + ⃗sum2 ∗ sin(x⃗i,3) ∗ x⃗i,3) ∗ sin( ⃗sum1 ∗ x⃗i,1))))))

∗ sin(x⃗i,1)− sin(sin(
√

⃗sum5 + ⃗sum3 +

√√
x⃗i,3))))

)
.

(7.10)

In eqns (7.11), (7.12), (7.13) and (7.14) we present the best hypervolume
approximation functions found using the second grammar for data with 2,
3, 4 and 5 objectives, respectively.

GEHV 22D(X) =
1

n

n∑
i=1

sin(cos(Q⃗22 ∗ cos(σ⃗1) + Q⃗21)) (7.11)
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GEHV 23D(X) =
1

n

n∑
i=1

(
cos(µ⃗1 + µ⃗3 + sin(sin(Q⃗12 ∗ sin(sin(Q⃗21 ∗ λ⃗1 ∗ x⃗i,3

+ sin(
√

sin(x⃗i,2)) ∗ µ⃗3)) + exp(σ⃗2) ∗ Q⃗12 ∗ σ⃗2

∗ (x⃗i,2 + x⃗i,1 + sin(µ⃗1 + µ⃗3 + sin(sin(Q⃗12

∗ sin(sin(x⃗i,3 ∗ λ⃗1 ∗ sin(
√√

x⃗i,2) ∗ Q⃗33 + Q⃗12

∗ sin(cos(sin(x⃗i,2 ∗ x⃗i,1 ∗ sin(sin(sin(Q⃗33 + Q⃗12))

∗ sin(cos(µ⃗1 + µ⃗3 ∗ µ⃗1 ∗ µ⃗3 − sin(sin(Q⃗12

∗ sin(sin( ⃗sum3 ∗ σ⃗1)) + ⃗sum2 ∗ λ⃗1 ∗ x⃗i,3

∗ sin(
√√

x⃗i,2))))))) + µ⃗3 ∗ exp(σ⃗2)− Q⃗12 ∗ σ⃗2))))

+

√
x⃗i,2 +

√
x⃗i,2 + x⃗i,1 ∗ sin(µ⃗1 + µ⃗1 + µ⃗3

+ sin(sin(µ⃗1 ∗ µ⃗3 ∗ Q⃗13 ∗ Q⃗13)) + Q⃗12

∗ sin(sin(Q⃗21 ∗ λ⃗1 ∗ cos(sin(
√
sin(x⃗i,2))) + µ⃗3

∗ exp(σ⃗2))) + Q⃗12 ∗ σ⃗2

∗ (x⃗i,2 + x⃗i,1 + sin(sin(sin(Q⃗33 + σ⃗1))

∗ sin(cos(x⃗i,3 ∗ sin(κ⃗2)− σ⃗2
2))) + x⃗i,2 +

√
x⃗i,2)

1/2)

∗ log(µ⃗1 + µ⃗3))) + Q⃗21))
1/2)))

)
(7.12)

98



7.4. EXPERIMENTAL WORK

GEHV 24D(X) =
1

n

n∑
i=1

(
cos(x⃗i,1 + Q⃗13 + Q⃗24 + exp(Q⃗34) ∗ σ⃗2 ∗ σ⃗4

∗ cos(x⃗i,1 ∗ Q⃗34 ∗ σ⃗2 ∗ σ⃗4 ∗ cos(Q⃗34 ∗ σ⃗4)

∗ exp(κ⃗3) ∗ x⃗i,3 ∗ σ⃗4 ∗ cos( ⃗sum4) ∗ σ⃗4 ∗ cos(Q⃗14)

∗ x⃗i,1 + Q⃗13 + Q⃗24 − λ⃗2 ∗ σ⃗2 ∗ λ⃗4 + Q⃗13

+ σ⃗2
3/ exp(Q⃗34) ∗ Q⃗11 ∗ σ⃗4 ∗ Q⃗31 − λ⃗2 ∗ σ⃗2

∗ λ⃗4 + Q⃗13 + Q⃗21 ∗ exp(Q⃗34) ∗ x⃗i,1 ∗ σ⃗4 ∗ σ⃗2 ∗ x⃗i,1

∗ Q⃗31 − λ⃗2 ∗ σ⃗2 ∗ κ⃗2 + Q⃗13 + σ⃗2
3 ∗ x⃗i,4

∗ exp(Q⃗31) ∗ λ⃗2 ∗ Q⃗34 ∗ κ⃗2 + Q⃗13 + σ⃗2 ∗ exp(Q⃗31)

∗ σ⃗2 ∗ σ⃗4 ∗ σ⃗4 ∗ cos(µ⃗4 ∗ σ⃗2 ∗ σ⃗2 ∗ σ⃗4

∗ cos(x⃗i,1 ∗ σ⃗2
4 ∗ σ⃗2

4 ∗ x⃗i,3 ∗ x⃗i,2 ∗ cos(Q⃗14)

∗ ⃗sum3 + exp(x⃗i,2)− Q⃗13 ∗ Q⃗24 + λ⃗2 ∗ σ⃗2)

∗ Q⃗12 ∗ σ⃗2
2 + sin(κ⃗2 + Q⃗13 ∗ σ⃗2

3 ∗ Q⃗13 ∗ σ⃗2
3 ∗ x⃗i,4

− exp(Q⃗31) ∗ λ⃗2 ∗ σ⃗2 ∗ σ⃗1 + µ⃗2 ∗ σ⃗2 ∗ Q⃗33 ∗ σ⃗2

∗ σ⃗4 ∗ cos(Q⃗31) ∗ λ⃗4 + Q⃗13 + σ⃗2
3) ∗ exp(σ⃗2)

∗ Q⃗24 ∗ σ⃗2 ∗ σ⃗1 + µ⃗2 ∗ σ⃗2 ∗ Q⃗33 ∗ σ⃗2 ∗ σ⃗4

∗ cos(Q⃗31) ∗ λ⃗4 + Q⃗13 + σ⃗2
3 ∗ exp(σ⃗2) ∗ Q⃗24 ∗ λ⃗2

∗ λ⃗2 ∗ σ⃗2 ∗ κ⃗2 + Q⃗13 + σ⃗2 ∗ σ⃗2 ∗ σ⃗4 ∗ cos(Q⃗24)

+ λ⃗2 ∗ σ⃗2 ∗ Q⃗12 ∗ σ⃗2
2 + sin( ⃗sum3 ∗ exp(Q⃗31))

∗ σ⃗2 ∗ σ⃗2
3 + cos(Q⃗31)) ∗ λ⃗4 + exp(Q⃗12) ∗ σ⃗2

3 ∗ σ⃗2

∗σ⃗2 ∗ σ⃗4 ∗ λ⃗4 ∗ ⃗sum4))

)

(7.13)

GEHV 25D(X) =
1

n

n∑
i=1

cos(Q⃗35 ∗ x⃗i,5 + µ⃗4 + µ⃗1). (7.14)

In Fig 7.3 we show the computational time required to generate each of
these 8 hypervolume approximations. It is important to notice that even
though the execution times are considerably high, this process does not
need to be repeated each time that we want to obtain the hypervolume ap-
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Figure 7.3: Computational time used to generate each of the hypervolume
approximation functions using our proposal.

proximation of a given data set. The actual time needed to obtain hypervol-
ume approximations, once the hypervolume approximation functions have
been obtained, are shown and compared in the next section.

7.5 RESULTS

In order to validate the performance of our hypervolume approximation
functions, we compared them against the Monte Carlo method, considering
10,000 sample points, against the RH

2 V approximation and against the GP-
generated approximations [100] using two measures: the average MSE and
the average execution time. All these approximations were obtained using
Python in the same hardware previously described.

For the RH
2 V approximation, we used the simplex lattice design method [133]

to generate an initial set of weight vectors. Then, for each weight vector w⃗,
we generated the corresponding direction vector λ⃗ = w⃗

∥w⃗∥2 , as stated in [109].
In total, we used 9870 direction vectors for 2 and 3-dimensions, 9880 vectors
for 4-dimensions and 8855 vectors for 5 dimensions. On the other hand, the
reference point r⃗ = {r, . . . , r}was defined as follows for all the experiments.
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r = 1 +
1

H
(7.15)

where H is an integer satisfying CH+m−1
m−1 ≤ N < CH+m

m−1 , and Cn
m is the total

number of combinations for choosing m elements from a set of n elements,
as used in [107].

In Table 7.4, we present the comparison of different hypervolume ap-
proximations using MSE on the validation data previously described. In
this table we used a gradient to better illustrate the results. The darker the
cell, the better the value, which in this case is the smallest value. In all 4
cases, Monte Carlo obtained the smallest error with a two orders of magni-
tude improvement compared to the second best performing approximation,
which are the approximations generated using our proposal. Although all
8 of our approximations share the same order of magnitude, which in turn
is two or three orders of magnitude better than the GP-generated approx-
imations, the use of the second grammar produced slightly better results
in 3, 4 and 5-dimensional data. This hints that the use of statistical features
provides useful information to generate better hypervolume approximation
functions. The next best performing approximations are the GP-generated
approximations. Lastly, RHV

2 , obtained the worst result in all cases.

Table 7.4: Average MSE comparison of hypervolume approximations in vali-
dation data.

Average MSE
m Validation files

Mm GEHV 1mD GEHV 2mD Monte Carlo RHV
2

2 2176 - 2.211E-03 3.721E-03 2.209E-05 4.709E-02
3 2906 1.431E-01 2.242E-03 2.018E-03 1.542E-05 8.770E-01
4 2925 2.129E-01 5.879E-03 2.436E-03 1.459E-05 9.202E+00
5 2836 2.765E-01 5.272E-03 5.238E-03 1.395E-05 7.357E+01

On the other hand, we present the comparison of the average computa-
tional time, per file, in Table 7.5. Once again, the darker the cell, the bet-
ter the value, meaning the smallest value. Here, we can observe that the
GP-generated approximations obtained the best results in all three avail-
able cases, whereas Monte Carlo obtained the worst results in 2 and 3-
dimensional data, and RHV

2 obtained the worst results in 4 and 5-dimensional
data. Regarding the approximations generated with our proposal, they
ranged from one order up to two orders of magnitude worsening compared
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to the best results. This is an expected behavior, since our averaging variant
involves an additional iteration of the data against the GP-generated ap-
proximations. Additionaly, most of the functions generated with our pro-
posal are more complex. However, three of our eight functions obtained rel-
atively better execution times due to them being the simplest equations gen-
erated with our proposal, namely GEHV 14D, GEHV 22D and GEHV 25D.

Table 7.5: Average computational time comparison of hypervolume approxi-
mations in validation data.

Average Computation Time (s)
m Validation files

Mm GEHV 1mD GEHV 2mD Monte Carlo RHV
2

2 2176 - 2.050E-02 1.983E-03 2.224E+00 1.518E+00
3 2906 9.935E-04 1.755E-02 3.288E-02 3.032E+00 2.910E+00
4 2925 1.038E-03 2.617E-03 3.988E-02 2.405E+00 3.873E+00
5 2836 1.113E-03 3.311E-02 2.670E-03 2.340E+00 4.518E+00

From these results we can notice that although Monte Carlo obtained
the best approximations in terms of quality (measured by MSE), it is also
the most computationally costly. In contrast, our functions obtained better
values in terms of quality against the GP-generated approximations at the
expense of increasing the computational time required.

Finally, we used the average ratio HVapprox

HVreal
to illustrate better the im-

provement of the approximations obtained with our functions against the
GP-generated approximations. The closer this value is to 100%, the closer
the approximation is to the real hypervolume value. A value smaller than
100% represents an underestimation. Consequently a value greater than
100% indicates an overestimation of the hypervolume. In Tables 7.6 to 7.8
we show the average ratio for all available approximations in the validation
data classified by the problem used to generate each file.

From these results we can observe that the approximation functions gen-
erated with our proposal have a consistent behavior close to 100% in the
final average for all three tables. However, this does not occur with the
GP-generated approximations. In 3-dimensional data there is an average
overestimation of 186.43%, whereas in 4-dimensional data there is an aver-
age overestimation of 175.97%. Finally, in 5-dimensional data, the average
overestimation consists of 173.5%.
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Table 7.6: Average HVapprox

HVreal
ratio comparison of hypervolume approximations

in 3-dimensional validation data.

Validation Validation HVapprox/HVreal

set files M3
4,6 GEHV 13D GEHV 23D

DTLZ1_3D 394 143.67% 94.50% 93.59%
DTLZ2_3D 467 161.85% 99.23% 106.01%
DTLZ5_3D 416 333.23% 110.20% 106.61%
DTLZ7_3D 401 184.97% 94.77% 99.97%
WFG1_3D 362 164.59% 105.03% 99.73%
WFG2_3D 432 150.79% 97.81% 93.96%
WFG3_3D 434 165.92% 113.92% 102.01%

Average 186.43% 102.21% 100.27%

Table 7.7: Average HVapprox

HVreal
ratio comparison of hypervolume approximations

in 4-dimensional validation data.

Validation Validation HVapprox/HVreal

set files M4
5,6 GEHV 14D GEHV 24D

DTLZ1_4D 465 151.95% 90.89% 95.04%
DTLZ2_4D 433 172.80% 106.59% 106.68%
DTLZ5_4D 428 223.63% 105.03% 98.16%
DTLZ7_4D 421 199.50% 96.65% 99.92%
WFG1_4D 368 161.74% 96.78% 100.02%
WFG2_4D 399 153.36% 93.39% 97.64%
WFG3_4D 411 168.79% 118.16% 99.67%

Average 175.97% 101.07% 99.59%
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Table 7.8: Average HVapprox

HVreal
ratio comparison of hypervolume approximations

in 5-dimensional validation data.

Validation Validation HVapprox/HVreal

set files M5
1,5 GEHV 15D GEHV 25D

DTLZ1_5D 425 161.56% 93.58% 94.70%
DTLZ2_5D 427 160.83% 96.46% 100.86%
DTLZ5_5D 391 171.04% 96.86% 91.84%
DTLZ7_5D 400 189.48% 107.87% 99.04%
WFG1_5D 390 168.16% 96.92% 98.99%
WFG2_5D 386 163.94% 95.71% 97.06%
WFG3_5D 417 199.49% 114.09% 120.85%

Average 173.50% 100.21% 100.48%

7.6 SUMMARY

In this chapter we have proposed a methodology based on grammatical
evolution to generate hypervolume approximations and we obtained two
different approximation functions for 2, 3, 4 and 5-dimensional data. We
used two different grammars, one composed by basic arithmetic operators
and trigonometric functions, and the second one adding statistical features
of the data. From our results we can conclude that the use of statistical fea-
tures seems to generate better approximation functions using our proposal.
In all cases, we found a consistent behavior in our experimental validation,
both in terms of quality and computational cost: Monte Carlo obtained
the best quality values while the GP-generated approximations obtained
the best execution time values. However, approximations found with our
proposal obtained better trade-offs between these two measures, since they
consistently obtained better quality values when compared against the GP-
generated approximations at a significantly lower computational time when
compared against the Monte Carlo method.

Even though the hypervolume becomes very computationally expensive
with 5 or more objectives, we consider that the methodology that we pro-
posed here can be easily extended to generate approximations for higher
dimensional spaces.

Also, we showed a ratio comparison, between the hypervolume approx-
imation and the real hypervolume, which we consider to be evidence that
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the approximation functions generated with GP are possibly not general-
izing its good performance in the type of data files that we created in this
work. This is particularly noticeable in validation data generated for DTLZ5
with 3 dimensions (with an average overestimation of 333.23%) and DTLZ5
with 4 dimensions (with an average overestimation of 223.63%). These are
the extreme cases, but we can find bad quality approximations across all the
validation data adopted. However, this same behavior is potentially also
present in the approximations we created using GE for different validation
data. We believe that both GP and GE are able to generate good results for
a certain type of data and even obtain a good generalization but up to a
certain point. And in order to ensure a consistent capability to generalize in
different data/problems it seems to be necessary to use a large number of
different training data.
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Conclusions

Evolutionary computation techniques, specifically MOEAs, are one of the
most useful techniques used to solve multi-objective optimization prob-
lems. However, many-objective optimization problems raise additional chal-
lenges to MOEAs, leaving room for improvement in different aspects. Na-
mely, diversity maintenance in many-objective problems, is one area that
could benefit from more studies and proposals, due to the fact that there is
still no consensus on some basic aspects such as which is a representative
population size according to the number of objectives, which distribution
of solutions is the most adequate, or even a formal definition of diversity.

8.1 OUR CONTRIBUTIONS

In this thesis we have presented our work related to two different aspects
of MOEAs in many-objective optimization, which are:

1. The use of s-energy based mating restrictions.

2. The generation of new scalarizing functions and hypervolume ap-
proximations using grammatical evolution.

The first subject is directly related to diversity maintenance, while the
second one leads to the generation of new density estimators.

8.1.1 S-ENERGY MATING RESTRICTIONS

This work includes the proposal of several mating restrictions based on s-
energy, which has been used to assess diversity in MOEAs’ populations.
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Additionally, we have created an ensemble of four of these mating restric-
tions that adapts the number of pairs created with each of the mating restric-
tions throughout the MOEA’s execution. Our experimental results show an
improvement in the results obtained by incorporating this ensemble against
the original algorithm.

From these results we can mainly conclude that, even though diversity
is often considered a secondary goal in the optimization process (being con-
vergence the main one), the use of a diversity maintenance technique (such
as mating restrictions) that are based in a diversity metric (such as s-energy)
can produce a considerable improvement in convergence (measured by the
hypervolume) in many-objective optimization problems.

8.1.2 USE OF GRAMMATICAL EVOLUTION TO IMPROVE MOEAS
COMPONENTS

In this work we have produced new scalarizing functions and new hy-
pervolume approximations using a grammatical evolution/MOEA hybrid
implementation. The former are functions used in decomposition-based
MOEAs, while the latter are used both in indicator-based MOEAs and to
assess MOEAs’ results.

Our new scalarizing functions exhibit an improvement when compared
against some state-of-the-art functions. And our experiments around in-
verse benchmark problems show that scalarizing functions have a direct
effect on the diversity of the solutions found. This is because, traditionally,
weight vectors need to be modified when working with inverse problems in
decomposition-based MOEAs. However, the functions found by our gram-
matical evolution implementation was able to obtain solutions with a signif-
icantly better distribution than the other functions used in the comparison
without changing the weight vectors. This is an expected behavior, since in
this case the new functions were specifically trained in this type of inverse
problems, but this raises the possibility of changing the scalarizing function
instead of the weight vectors when dealing with such problems.

On the other hand, the experimental validation of our new hypervol-
ume approximations against state-of-the-art methods show that our pro-
posal represents a good trade-off between accuracy (improving results ob-
tained by most of the other approximations) and computational cost (reduc-
ing the execution time of the most accurate approximation).

Both of these results lead us to believe that the use of grammatical evo-
lution to produce different MOEA’s components, such as a new density es-
timator, is a promising research area.
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8.2 FUTURE WORK

There are different paths for future research that can be derived from the
work presented in this thesis.

1. New s-energy based mating restrictions can be proposed using decision-
space information for multi-modal multi-objective optimization prob-
lems.

2. An automatic parameters tuning tool, such as the Irace package [79],
could be used to select the best mating pool sizes in the s-energy based
mating restrictions, or even to select which is the best combination of
mating restrictions to generate the ensemble.

3. Our grammatical evolution implementation used to generate scalariz-
ing functions could be modified to generate new functions, but with
the goal of improving an explicit combination of diversity and conver-
gence metrics, since the ones we have generated were created with the
goal of maximizing the hypervolume obtained by the approximation
sets obtained.

4. The scalarizing functions we have generated could be incorporated in
an ensemble that is able to select which function to use depending on
their performance in the given MOP.t

5. More hypervolume approximations could be generated for higher di-
mensional spaces or considering training sets with different character-
istics.

6. Our grammatical evolution implementation could be modified to gen-
erate new diversity maintenance techniques, such as density estima-
tors.
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