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Resumen

La predicción de energía eólica presenta grandes desafíos como la integración de la
red, la calidad de la energía, entre otros. Varios de estos problemas pueden arreglarse
con una calendarización óptima de energía, lo que implica que se requiere pronósticos
precisos y confiables, sin embargo, no todos los modelos de predicción otorgan estas
cualidades. En la predicción de energía eólica existen modelos matemáticos estadís-
ticos y físicos. Estos modelos proveen buena confiabilidad, pero la gran mayoría no
puede trabajar con series de tiempo de pocos datos, debido a que, al utilizarlos, se
crean modelos con poca precisión y pronósticos inciertos. En tesis propone construir
un modelo múltiple de ARIMA (del inglés autoregressive integrated moving average)
para mejorar la precisión de un solo modelo óptimo ARIMA de un conjunto pre-
sentado. El modelo múltiple se construye con diferentes series de tiempo de energía
generada obtenida en granjas eólicas situadas en California y Alemania. Se calcula
el modelo ARIMA óptimo para cada conjunto mediante el criterio AIC (Criterio de
Aikake), se selecciona un conjunto de datos a evaluar y se obtienen los residuales
ARIMA de todos los modelos. Estos fungirán como características a la entrada de
una red neuronal para pre-entrenarla y encontrar un modelo completamente nuevo.
El objetivo es obtener un modelo híbrido que mejore la precisión en el pronóstico en
comparación a la red neuronal y el modelo ARIMA.
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Abstract

Wind power forecasting presents great challenges such as grid integration, power
quality, among others. Several of these problems can be fixed with optimal energy
scheduling, which implies that accurate and reliable forecasts are required, however,
not all forecast models provide these qualities. In the prediction of wind energy there
are statistical and physical mathematical models. These models provide good reliabi-
lity, but the vast majority cannot work with time series of few data, because, using
them, models with little precision and uncertain forecasts are created. In thesis he
proposes to build a multiple ARIMA (autoregressive integrated moving average) mo-
del to improve the accuracy of a single optimal ARIMA model from a presented set.
The multiple model is built with different time series of generated energy obtained
in wind farms located in California and Germany. The optimal ARIMA model for
each set is calculated using the AIC criterion (Aikake’s Criterion), a data set to be
evaluated is selected and the ARIMA residuals of all the models are obtained. These
will serve as features at the input of a neural network to pre-train it and find a com-
pletely new model. The objective is to obtain a hybrid model that improves forecast
accuracy compared to the neural network and the ARIMA model.
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Capítulo 1

Introducción

Hoy en día, las fuentes de energía alternativas han ganado mucha importancia debido
a que garantizan un funcionamiento que no contamina el medio ambiente. Con recur-
sos nucleares y combustibles fósiles limitados, las tecnologías de energía solar y eólica
han superado su cuota de mercado. Además de crear un impacto ambiental positivo,
la energía eólica ha abierto nuevas oportunidades de empleo a nivel mundial[1]. Desde
de la revolución industrial, la generación de energía para el aprovechamiento de las
cadenas productivas y el consumo de la población humana es casi exclusivamente a
partir de combustibles fósiles y derivados de ellos. Algunos de los problemas relevan-
tes son el cambio climático, la contaminación del aire, la contaminación del suelo, los
problemas de salud de la población cercana a las plantas generadoras[2]. El medio
ambiente se ha visto afectado por los procesos productivos industriales humanos y
por el uso indiscreto de los recursos energéticos. Es urgente cambiar el paradigma
de la generación de energía a métodos alternativos para abandonar gradualmente el
uso de combustibles fósiles y favorecer métodos más amigables con el medio ambiente.

1.1. Enfoque de las energías renovables

La evolución de las tecnologías de energía renovable durante la última década ha
trascendido todas las expectativas. La capacidad instalada mundial y la producción
de todas las tecnologías renovables han aumentado sustancialmente, las políticas de
apoyo han seguido extendiéndose a más países en todas las regiones del mundo. A
principios de la década de 1970 cuando la crisis energética y el colapso económico
dieron como resultado el crecimiento de las fuentes de energía renovable, países en
desarrollo como Dinamarca, Estados Unidos, España y Alemania iniciaron el negocio
de las energías renovables debido al cambio climático.
Una fuente de energía renovable es aquella cuya viabilidad tangible sigue siendo ili-
mitada además de poder utilizarse en su forma bruta. Se considera “sostenible” si
conserva los rasgos sociales, económicos y ambientales para las generaciones futuras.
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2 Introducción

Dado que las reservas de carbón son limitadas, las fuentes alternativas de energía
han ingresado al mercado para proporcionar una ruta sostenible y económica para
consumir energía limpia. La producción de energía a partir de fuentes renovables está
aumentando a un ritmo constante y ha llevado al crecimiento económico en muchos
países en desarrollo. Una de las principales razones para promover las fuentes de ener-
gía renovable es la preocupación ambiental que causa el agotamiento de la capa de
ozono en la atmósfera y las emisiones de gases de efecto invernadero. Como resultado
de las incesantes actividades industriales, surgió el primer tratado internacional, el
Protocolo de Kioto, una extensión de la Convención Marco de las Naciones Unidas
sobre el Cambio Climático (CMNUCC) con el lema de frenar las emisiones de gases
artificiales [3]. Estas emisiones de gases incluyen dióxido de carbono (CO2), óxido
nitroso (N2O), metano (CH4) y hexafluoruro de azufre (SF6). Además, las partes
se han comprometido a reducir las emisiones a nivel nacional. Sin embargo, existen
algunos países que no se comprometen con esta meta debido a su bajo ingreso per
cápita. También existen algunas excepciones a las emisiones en forma de transporte
marítimo internacional y aviación. La forma más limpia de producción de energía a
partir de fuentes renovables sigue floreciendo en el sector energético, lo que genera
enormes inversiones de los sectores público y privado.

El recuento de instalaciones provenientes de fuentes renovables se ha duplicado
desde 2007. Entre las fuentes renovables, las energías eólica y solar han sido un foco
de atención para los legisladores que creen que el viento es un combustible limpio. 2015
fue testigo de un aumento del 44 % en la energía eólica en comparación con 2014. Con
la tecnología adecuada disponible, la energía de fuentes de energía renovables puede
aprovecharse adecuadamente. Las tecnologías de energía hidroeléctrica, solar y eólica
se consideraron los principales impulsores del mercado. Con la energía eólica marina
cada vez más dominante en el mercado competitivo, se ha observado una disminución
constante en el costo nivelado de la energía (LCOE). China representa la producción
de energía más grande del mundo a partir de fuentes de energía renovable, una asom-
brosa capacidad instalada de 647 GW, que consiste en 313 GW de energía de fuentes
hidroeléctricas. Países como Alemania, Suecia y Dinamarca se centran en integrar
proporciones cada vez mayores de energía solar fotovoltaica y eólica en los sistemas
de redes de servicios públicos mejorando las políticas reguladoras e incorporando un
sistema de transmisión mejorado para ampliar las áreas de equilibrio. Mientras tan-
to, los países también están invirtiendo fuertemente en almacenamiento de energía
para reducir un impacto significativo de la intermitencia [1]. Las fuentes de energía
renovable han tenido un impacto significativo en las economías en desarrollo. Especí-
ficamente, la energía eólica ha estado en el centro de atención debido a su naturaleza
limpia y ecológica. Disponible en forma libre, el régimen del viento para un terreno
en particular depende esencialmente de variables climáticas como la temperatura, la
presión y la humedad del aire ambiente. Sin embargo, la energía eólica padece de
desafíos como la integración de la red, la calidad de la energía, la gestión de reservas,
el manejo de la saturación y la previsión precisa.
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Los estudios de integración de la red para la energía eólica han revelado muchos desa-
fíos técnicos y socioculturales. El factor principal que determina una buena integración
en la red de energía eólica es la capacidad de generación de los parques eólicos. Para
los parques eólicos terrestres, la proximidad a la red eléctrica ha demostrado ser un
factor beneficioso que, en última instancia, reduce los costos de transmisión y auxi-
liares. Una calendarización óptima en la generación de energía para un parque eólico
implica pronósticos precisos y confiables. En términos de flexibilidad, la energía eólica
se enfrenta a enormes desafíos, por ejemplo un cambio repentino en la magnitud y
dirección de la velocidad del viento. Este fenómeno se denomina evento de rampa.
Tales eventos pueden manejarse mejor si los pronósticos de energía eólica se hacen con
alta precisión. La predicción de la energía eólica se inició a principios de la década de
1980 para modelar la velocidad del viento como series de tiempo [4]. Brown et al., han
estudiado los modelos de series de tiempo esencialmente para simular la velocidad y la
potencia del viento. Los pronósticos de velocidad del viento se transforman en pronós-
ticos de energía eólica mediante una ley de transformación. Primero, la velocidad del
viento se pronostica a una altura de base y luego se extrapola a la altura del cubo de
la turbina utilizando la ley logarítmica o la ley de potencia. Se han aplicado modelos
de series de tiempo como los modelos de media móvil autorregresiva (ARMA en inglés
Autoregressive Moving Average) y de media móvil integrada autorregresiva (ARIMA
en inglés Autoregressive Integrated Moving Average) para pronosticar la velocidad
del viento y planificar el despacho de energía eólica para un funcionamiento óptimo
del sistema de energía. Sin embargo, la precisión obtenida con estos modelos es baja
debido a varias limitaciones planteadas por la naturaleza no lineal y estocástica de la
velocidad del viento [1].

El año 2020 fue el mejor de la historia para la industria eólica mundial, con un
crecimiento interanual del 53 %. La instalación de más de 93 GW de energía eólica
en un año ha sido desafiante, con interrupciones tanto en la cadena de suministro
global como en la construcción del proyecto, ha demostrado la increíble capacidad de
recuperación de la industria eólica.

Los 93 GW de nuevas instalaciones elevan la capacidad global acumulada de ener-
gía eólica hasta 743 GW. En el mercado onshore, se instalaron 86,9 GW, un aumento
del 59 % en comparación con 2019. China y los Estados Unidos siguieron siendo los
mercados más grandes del mundo para nuevas incorporaciones onshore, y las dos prin-
cipales economías del mundo juntas aumentaron su participación de mercado entre un
15 % y 76 %. A nivel regional, 2020 también fue un año récord para las instalaciones
en tierra en Asia Pacífico, América del Norte y América Latina. Las tres regiones
combinadas instalaron un total de 74 GW de nueva capacidad eólica terrestre el año
pasado, o un 76 % más que el año anterior [5]. La generación de energía eólica terrestre
ha alcanzado la madurez tecnológica de ser competitiva con las opciones de genera-
ción de energía de menor costo en muchos lugares. Por ejemplo, en México en 2012 la
capacidad instalada aumentó en un 76 % con respecto a la capacidad total instalada



4 Introducción

de generación de energía eólica a fines de 2011, debido a la creciente explotación del
intenso recurso en el estado de Oaxaca.
En Oaxaca en el corredor de la Venta a la Mata pasando por la Ventosa, la velocidad
del viento promedio anual es superior a 9 m/s a 30 m sobre el nivel del suelo con una
dirección del viento dominante de Norte-Noroeste/Norte-Noreste 70 % del tiempo [6].
Estas condiciones de vientos intensos altamente favorables en Oaxaca representan una
fuente apreciable de energía renovable de bajo costo, además de las grandes reservas
de combustibles fósiles de México, lo que hace que su explotación sea una prioridad.
En México, el Centro Nacional de Control de Energía (CENACE) es responsable del
control de despacho de energía para el Sistema Eléctrico Nacional. El CENACE utili-
za un sistema de información para preparar estrategias previas al envío. Este sistema
toma en cuenta: disponibilidad, derrateo, restricciones y otros factores que afectan la
capacidad de despacho de las unidades generadoras, así como la previsión de deman-
da eléctrica. Recientemente, se ha desarrollado un número considerable de modelos
de predicción de la velocidad del viento utilizando una variedad de métodos, algunos
simples y otros que combinan varias técnicas [7].

1.2. Motivación y planteamiento del problema

Recientemente, el uso de energías limpias ha crecido a gran escala en los últimos
años, aun así, los combustibles fósiles no dejan de ser relevantes para el uso de la vida
diaria, casi el 86 % de fuentes de energía son fósiles, lo que se busca cambiar para el
futuro es reducir ese porcentaje usando energías limpias como la eólica. Aunque en
México se cuenta con alrededor 68 parques eólicos aproximadamente, no existen una
buena cantidad de artículos y proyectos destinados a la predicción de energía eólica
en el país. El obtener y acceder a esta información puede ayudar tanto a calcular la
generación de energía eólica, así como, obtener información respecto a la vida útil de
los generadores y a gran escala conocer la factibilidad de crear un parque eólico en
una zona geográfica predeterminada del país.

Se han investigado modelos basados en IA (Inteligencia Artificial) para la predic-
ción del viento. [8] y [9] usan aprendizaje por reforzamiento, [10] y [11] usan lógica
difusa, [12], [13], [14], y [15] utilizan SVM (del inglés support vector machine). Pasari
et. al. [16] tuvo en cuenta la función de activación de la memoria a largo plazo, la
unidad lineal rectificada y el algoritmo de optimización de Adam, para realizar un
modelo de predicción de la velocidad del viento basado en redes neuronales artificiales.
Navas et. al. [17] utilizó diferentes redes neuronales, como el modelo de red neuro-
nal de multicapa-perceptron, la red neuronal de función de base radial y la regresión
categórica, para predecir con precisión la velocidad del viento. Amir et. al.[18] cons-
truyó un modelo basado en redes neuronales artificiales, que mide la velocidad del
viento con mayor precisión, utilizando algoritmos de entrenamiento, regularización
bayesiana, Levenberg Marquardt y gradiente conjugado escalado. Madhiarasan [19]
realizó una red neuronal de función de base radial recursiva utilizando tres variables,
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que son la dirección del viento, la temperatura y la velocidad del viento para mejorar
los sistemas eléctricos. Navas [17] y Madhiarasa [19] utilizaron redes neuronales para
mejorar la precisión de la predicción.

Sin embargo, los métodos anteriores no funcionan bien cuando los conjuntos de
datos de energía eólica tienen muestras pequeñas o faltan datos, ya que los méto-
dos basados en estadística y aprendizaje automático necesitan grandes datos para
entrenar los modelos. Para mejorar la predicción, especialmente a largo plazo con
muestras pequeñas, utilizamos el método de multimodelos y redes neuronales para
ARIMA. Usaremos la técnica de transferencia de aprendizaje para expandir los datos
de entrenamiento con los conjuntos de datos de otros parques eólicos. También com-
binaremos varios modelos de parques eólicos con redes neuronales. La idea básica es
usar el conocimiento de diferentes lugares de monitoreo para evitar el problema de
entrenamiento causado por muestras pequeñas.

1.3. Objetivo y contribución de la tesis
La contribución objetivo fue desarrollar un modelo para la predicción de energía eó-
lica con conjuntos de datos de serie de tiempo, y obtener una mejora de predicción
que supere los estándares del modelo ARIMA. En esta tesis se construyó un nuevo
modelo que se basa en utilizar conjuntos de datos de 3 diferentes granjas eólicas con
distintas localizaciones del mundo. Con el fin de obtener diversas características y
obtener un modelo predictivo. Esta propuesta no se limita a la combinación de un
solo modelo ARIMA con red neuronal, como lo proponen [[20], [21]]. La diferencia
radica en desarrollar una estrategia multimodelo; que se refiere a construir modelos
ARIMA óptimos para cada conjunto de datos, entrenar tales modelos y posterior-
mente unirlos mediante una red neuronal. Entre la unión de los modelos se utiliza
como base el principio de aprendizaje por transferencia; en el que desea construir
un dominio más grande para mejorar características de un modelo predictivo. Con
las pruebas realizadas se comprueba que el modelo funciona para diversos conjuntos,
en este caso los tres propuestos; mejora la precisión de cada modelo respecto a un
modelo solamente basado en ARIMA; aporta una mejora significativa a un modelo
creado con pocos datos, y puede ser aplicado en su mayoría a datos basados en series
de tiempo que constan de una sola variable. Concluyendo que el modelo propuesto
obtiene buena precisión en las predicciones según las métricas de medición de errores.
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1.4. Organización de la tesis
La organización del documento está seccionada de la siguiente manera. En el capítulo
1 se describe de modo resumido la energía eólica, así como los tipos de clasificación
que existen para la velocidad y la energía generada por viento. Se analiza la energía
en forma de serie de tiempo y se da una definición de esta, para después abordar el
comportamiento más básico de una serie en su forma estacionaria. En el capítulo 2
plantea los tipos de modelado para la predicción de series de tiempo, enfocándose en
la forma lineal de una serie estacionaria. El capítulo 3 continua los tipos de modelos
para series con enfoque a las no estacionarias e introduce a los modelos múltiples. El
capítulo 4 se centra en modelos no lineales de predicción, específicamente las redes
neuronales que son fundamentales para el modelo planteado, y las formas de medir
el error de una predicción a través de las métricas de estimación. El capítulo 5 es
la concentración del estado del arte, posteriormente se realiza un contraste con el
modelo planteado, que propone resolver la predicción eólica mediante la estrategia de
multimodelos ARIMA. El capítulo 6 detalla la aplicación del modelo múltiple ARIMA
y los resultados que se obtuvieron al ejecutar este modelo. Por último, el capítulo 7
describe las conclusiones del trabajo y los trabajos a futuro.



Capítulo 2

Fundamentos

El viento es una fuente de energía que ha sido utilizada en variadas aplicaciones. En la
actualidad, el uso de la energía eólica ha evolucionado principalmente en la generación
de electricidad. En este capítulo se dará una introducción al viento como una variable
física estocástica, se describirá una vista general de los mecanismos y métodos que
existen para predecir la energía eólica en estos últimos años. Por último, analizaremos
el viento cómo única variable respecto al tiempo, para conocer a detalle el concepto
de series de tiempo e introducir los tipos de serie estacionaria y no estacionaria.

2.1. Energía eólica

El viento es aire atmosférico en movimiento. Es omnipresente y uno de los elementos
físicos básicos de nuestro entorno. Dependiendo de la velocidad del aire en movimien-
to, el viento puede sentirse ligero y etéreo, siendo silencioso e invisible a simple vista.
O bien, puede ser una fuerza fuerte y destructiva, ruidosa y visible como resultado
de los pesados escombros que arrastra. La velocidad del movimiento del aire defi-
ne la fuerza del viento y está directamente relacionada con la cantidad de energía
del viento, es decir, su energía cinética. La fuente de esta energía, sin embargo, es
la radiación solar. La radiación electromagnética del sol calienta la superficie de la
Tierra de manera desigual, más fuerte en los trópicos y más débil en las latitudes
altas. Además, como resultado de una absorción diferencial de la luz solar por parte
del suelo, las rocas, el agua y la vegetación, el aire en diferentes regiones se calienta
a un ritmo diferente. Este calentamiento desigual se convierte a través de procesos
convectivos en movimiento de aire, que se ajusta por la rotación de la Tierra. Los
procesos convectivos son perturbaciones del equilibrio hidrostático mediante el cual,
de lo contrario, las masas de aire estancadas se desplazan y se mueven en reacción a
las fuerzas inducidas por los cambios en la densidad del aire y la flotabilidad debido
a las diferencias de temperatura. El aire es empujado desde regiones de alta a baja
presión, equilibrando la fricción y las fuerzas de inercia debidas a la rotación de la
Tierra [22].

7
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Los patrones de calentamiento diferencial de la superficie de la Tierra, así como otros
procesos térmicos como la evaporación, la precipitación, las nubes, la sombra y las
variaciones de la absorción de la radiación superficial, aparecen en diferentes escalas
de espacio y tiempo. Estos se combinan con las fuerzas dinámicas debidas a la rota-
ción de la Tierra y la redistribución del impulso del flujo para impulsar una variedad
de procesos de generación de viento, lo que lleva a la existencia de una gran variedad
de fenómenos eólicos. Estos vientos se pueden categorizar en función de su escala
espacial y mecanismos físicos de generación [22].
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2.2. Predicción del viento: descripción general
Con el viento disponible en forma abundante, aprovechar la energía del viento es
una tarea especializada. El procesamiento de errores de la potencia y/o velocidad
del viento pronosticada y la potencia y/o velocidad del viento real desempeñan un
papel fundamental en la selección de un algoritmo de predicción aplicable de forma
adecuada. El pronóstico del viento juega un papel importante cuando se trata de
despejar los escenarios del mercado del día siguiente. Dado que existe una situación
de mercado que aclarar, un esquema de pronóstico de viento preciso es útil en tales
situaciones. La clasificación no solo simplifica el estudio, sino que también ayuda a
elegir el método correcto según el tipo de su aplicación [1].

Se han propuesto e implementado distintos enfoques para el pronóstico de la ge-
neración de energía eólica. De acuerdo con diferentes estándares de clasificación se
pueden dividir en los grupos que muestra la figura 2.1. A continuación, se dará una
breve descripción de cada categoría como ejemplos remarcados en la literatura.

Predicción de generación de energía/viento eólica 

Escala de 
tiempo

Objetivo de 
predicción

Tipos de 
predicción

Modelo teórico

• Muy corto plazo.
• Corto plazo.
• Medio plazo.
• Largo plazo.
• Muy largo plazo.

• Vientos de turbina.
• Vientos de granja.

• Modelo físico.
• Estadístico

tradicional.
• Basado en IA.
• Híbrido.

• Modelo
determinista.

• Modelo
probabilístico.

Figura 2.1: Tipos de clasificación de predicción de energía eólica.

Por escala de tiempo

En términos de la preferencia de la industria, se han desarrollado muchas herramien-
tas de pronóstico del viento basadas en el horizonte de predicción. Las etapas de
pronóstico del viento se pueden clasificar en:

Predicción a muy corto plazo (de unos segundos a 30 minutos)
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Predicción a corto plazo (30 minutos a 6 horas)

Predicción a medio plazo (de 6 a 24 horas)

Predicción a largo plazo (24 horas a 72 horas)

Predicción a muy largo plazo (72 horas y más)

La previsión a corto plazo es una opción preferida debido a las operaciones del mer-
cado y al óptimo despacho de energía. En estos días, los mercados de electricidad a
menudo siguen una estructura desregulada que permite a varios agentes de licitación
competidores participar en el proceso minorista. Dado que la energía producida a
partir de recursos eólicos es de naturaleza estocástica, a menudo se considera que un
mercado eléctrico diario planifica el despacho óptimo. Este despacho depende esencial-
mente de los programas de energía eólica proporcionados por el operador del mercado.
Una producción de energía eólica estocástica trae errores en las grandes previsiones,
lo que exige la necesidad de capacidad de reserva para compensar las potencias defi-
citarias. Si no se dispone de suficientes reservas, el costo en el que se incurre para el
operador del mercado aumenta drásticamente. Dado que la penetración de la energía
eólica aumenta significativamente a diario, se requieren esquemas de pronóstico más
eficientes para garantizar el equilibrio en los mercados de la electricidad [1].

Por objetivo de predicción

De acuerdo con los diferentes objetivos de pronóstico, los modelos también se pueden
clasificar en dos tipos: vientos de turbina y vientos de granja eólica para predicción
de WS (del inglés Wind Speed) y/o WP (del inglés Wind Power). El primero puede
ayudar a caracterizar la potencia de salida de una sola turbina eólica [[23], [24], [25]].
Este último integra información de muchas turbinas eólicas para pronosticar la pro-
ducción de energía de un parque eólico completo [[26], [27], [28]]. De los dos, el último
enfoque es más difícil[29].

Por tipo de predicción

Según el tipo de pronóstico proporcionado, los modelos WS/WP se pueden dividir
en modelos deterministas y probabilísticos [30]. Los modelos deterministas, que solo
brindan pronósticos WS/WP puntuales [[31], [32], [33], [34]], tienen un rendimien-
to de pronóstico limitado debido a la complejidad del entorno y, a veces, generan
pronósticos insatisfactorios con muchos errores. Los modelos probabilísticos, que a
menudo brindan más información para los tomadores de decisiones que los pronósti-
cos puntuales [31], pueden representar la incertidumbre en términos de intervalos de
predicción (PI en inglés Interval Prediction) [[35], [31], [33]–[36]] [29].
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Por modelo teórico

Los modelos de pronóstico también se pueden dividir en cuatro tipos según las
diferencias en la teoría de modelos [[34], [37]]: modelos físicos, modelos estadísticos
tradicionales, modelos basados en inteligencia artificial (AI del inglés Artificial In-
telligence) y modelos híbridos. Los modelos físicos, como la predicción numérica del
tiempo (NWP del inglés Numerical Weather Prediction) y el pronóstico meteoroló-
gico (WRF del inglés Weather Research and Forecasting), generalmente consideran
varios factores meteorológicos (p. ej., presión del aire, humedad y temperatura) pa-
ra pronosticar el futuro WS [[38], [34]]. Estudios previos mostraron que los modelos
físicos tenían un mejor desempeño en el pronóstico de WS a mediano y largo plazo
[34], lo que permitió obtener pronósticos de WP utilizando la curva de potencia de un
aerogenerador en un WS dado [39]. Los modelos estadísticos tradicionales incluyen
el autorregresivo de media móvil (ARMA) [40], el autorregresivo integrado de media
móvil (ARIMA) [41], ARIMA fraccional (f-ARIMA) [42] y el modelo autorregresivo
de Hammerstein [43]. A diferencia de los modelos físicos, estos son modelos de se-
ries de tiempo que generalmente se emplean para caracterizar la fluctuación lineal de
WS/WP en diferentes ubicaciones y, en general, muestran un buen rendimiento en
el pronóstico de WS/WP a muy corto plazo y a corto plazo [38]. Con los avances en
informática, muchos modelos basados en IA también se han utilizado ampliamente
en el pronóstico de WS/WP, por ejemplo, la máquina de vectores de soporte (SVM
del inglés Support Vector Machine) [44], la máquina de vectores de soporte de mí-
nimos cuadrados (LSSVM del inglés Least-Squares Support Vector Machine) [45], la
máquina de aprendizaje extremo (ELM del inglés Extreme Learning Machine) [46],
kernel ELM (KELM del inglés Kernel Extreme Learning Machine) [47], método de
lógica difusa [48], filtro de Kalman [49] y diferentes tipos de redes neuronales arti-
ficiales (ANN del inglés Artificial Neuronal Networks), incluida la red neuronal de
propagación inversa (BPNN del inglés Backpropagation Artificial Neural Network)
[50], perceptrón multicapa (MLP del inglés Multi-Layer Perceptron) [51], red neuro-
nal wavelet (WNN de inglés Wavelet Neuronal Network) [50], red Elman [52] y red
neuronal de regresión generalizada (GRNN del inglés General Regression Neuronal
Network) [50]. En la actualidad, con el desarrollo de la tecnología de aprendizaje
profundo, las redes neuronales profundas (DNN del inglés Deep Neuronal Network),
incluida la memoria a corto plazo (LSTM del inglés Long Short-Term Memory) [46],
la red neuronal convolucional (CNN del inglés Convolutional Neuronal Network) [35],
la LSTM bidireccional (BiLSTM) [53], unidad recurrente cerrada (GRU del inglés
Gated Recurrent Unit ) [54], GRU bidireccional (BiGRU) [55], red de creencia pro-
funda (DBN del inglés Deep Belief Network) [56] y codificador automático (AE del
inglés Automatic Encryption) [57], han atraído una mayor atención en el pronóstico
WS/WP debido a su capacidad superior para tratar problemas no lineales comple-
jos. En muchos estudios anteriores, los modelos basados en IA mostraron un mejor
rendimiento de pronóstico de WS/WP que los modelos estadísticos tradicionales. Se
pueden desarrollar modelos híbridos combinando diferentes tipos de modelos para
caracterizar diferentes aspectos de la fluctuación WS/WP [58], [29].
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2.3. Series de tiempo
Pronosticar una variable en particular puede depender de la escala temporal o espa-
cial. Las variaciones temporales con el tiempo reflejan la estocasticidad presente en
la variable. Una escala temporal para una variable se puede modelar en términos de
series de tiempo.

Una serie de tiempo es el resultado de observar los valores de una variable a
lo largo del tiempo en intervalos regulares (cada hora, cada día, cada mes, entre
otros). Matemáticamente está compuesto por variables aleatorias en una secuencia
ordenada con respecto al tiempo, que suele ser llamada un proceso estocástico. En
un principio las series se modelaban por las 4 principales componentes: tendencia,
estacional, aleatoria y cíclica, más adelante se explican con detalle.

Definición de una serie de tiempo

Una serie de tiempo es un conjunto de observaciones generadas secuencialmente
a lo largo del tiempo. Si el conjunto es continuo, la serie temporal es continua. Si el
conjunto es discreto, entonces la serie temporal es discreta. Por lo tanto, las obser-
vaciones de una serie de tiempo discreta realizadas en los tiempos τ1, τ2, · · · , τt, τN
pueden denotarse por z(τ1), z(τ2), · · · , z(τt), z(τN). Con este contexto, consideramos
solo series de tiempo discretas, donde las observaciones se realizan en un intervalo
fijo h. Cuando tenemos N valores sucesivos de dicha serie disponibles para el análi-
sis, escribimos z1, z2, · · · , zt, zn para denotar observaciones realizadas en intervalos de
tiempo equidistantes τ0+h, τ0+2h, · · · , τ0+ th, · · · , τ0+Nh. Si nombramos τ0 como
origen y h como unidad de tiempo, podemos considerar zt como la observación en el
tiempo t [59].

10 20 30 40 50 60 70 80 90 100

Número de repeticiones de (t)

-20

-15

-10

-5

0

5

10

15

R
e
n
d
im

ie
n
to

 Z
t 

Time Series Plot

Serie de tiempo

Figura 2.2: Ejemplo de una serie de tiempo, donde zt es el rendimiento de 100 repe-
ticiones de un proceso aleatorio.
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Componentes de una serie de tiempo

Las series de tiempo se componen en cuatro características fundamentales: tendencia,
estacional, aleatoria y cíclica. La tendencia en una serie es el cambio a largo plazo que
produce en la relación de la media de los datos. El componente estacional es cuando
una serie presenta cierta periodicidad, variación de cierto periodo ya sea semestral,
mensual, además de otros. La componente aleatoria no responde a ningún patrón
de comportamiento, básicamente es el resultado de un factor aleatorio que incide
de forma aislada en una serie de tiempo. Y por último la componente cíclica que,
aunque su duración es irregular, son patrones en la serie que se identifican en ciertos
intervalos de tiempo. Cabe aclarar que para diferenciar la componente estacional de
la cíclica debemos tener en cuenta que la estacional ocurre en intervalos de tiempo
conocidos mientras que la cíclica no se puede determinar. En la figura 2.3 se muestra
el comportamiento de cada componente en distintas series de tiempo.
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Figura 2.3: Componentes de una serie de tiempo.
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Clasificación de las series de tiempo

Los fenómenos dinámicos que desatan las series temporales pueden clasificarse en dos
tipos de clases:

Estacionarias.
Una serie es estacionaria cuando los valores de esta son estables en un nivel
constante sin mostrar una tendencia a crecer o decrecer a largo plazo, es decir
la media y la varianza son constantes en el tiempo.
Matemáticamente una serie estacionaria St puede expresarse como:

FS(St1+k
, ..., Stn+k

) = FS(St1 , ..., Stn) (2.1)

Donde t es el paso del tiempo y k es el paso del tiempo desplazado [1]. La figura
2.4(a) da un ejemplo claro de una serie estacionaria.

No estacionarias.
Una serie no es estacionaria cuando las tendencias y/o variabilidad cambia con
el tiempo. Los cambios en la media determinan tendencia a crecer o decrecer a
largo plazo, por lo que la serie no oscila alrededor de un valor constante. En la
figura 2.4(b) muestra el ejemplo de una serie no estacionaria.
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Figura 2.4: Series de tiempo de datos adquiridos de los parques eólicos de California.
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2.4. Análisis de series estacionarias

Previamente vimos que existen dos clasificaciones para las series de tiempo, estaciona-
rias y no estacionarias; en esta sección nos enfocaremos en el tipo de serie estacionaria,
el método ADF (del inglés Augmented Dickey-Fuller) para comprobar la clasificación
de estacionaria, la definición de la serie vista como un proceso estocástico, el compor-
tamiento respecto a la varianza y su correlación en una serie de tiempo.

2.4.1. Comprobación de serie estacionaria (Prueba Dickey-
Fuller Aumentada)

La prueba de Dickey-Fuller aumentada es la versión extendida de la prueba simple de
Dickey-Fuller. Debido a que es poco probable que el término de error sea ruido blanco,
ampliaron la prueba para incluir rezagos adicionales en términos de las variables
dependientes, para eliminar el problema de la autocorrelación. Normalmente se utiliza
la prueba de Dickey-Fuller aumentada en lugar de la prueba de Dickey-Fuller simple.
La diferencia de ambas pruebas es que se incluyen los valores rezagados de la variable
dependiente en el modelo simple, y se continua este procedimiento hasta que se elimine
la autocorrelación. Esto puede ilustrarse como

yt = β1 + β2yt + ϵt

yt = β1 + β2yt + β3yt−1 + ϵt

yt = β1 + β2yt + β3yt−1 + β4yt−2 + ϵt

(2.2)

Ahora

∆yt = γyt−1 + β1∆yt−1 + ϵt

∆yt = γyt−1 + β1∆yt−1 + β2∆yt−2 + · · ·+ βp∆yt−p + ϵt
(2.3)

El proceso continúa hasta que se elimine la autocorrelación. Esta expresión se denota
como:

∆yt = γyt−1 +

p∑
i=1

β1∆yt−1 + ϵt

∆yt = α + γyt−1 +

p∑
i=1

β1∆yt−1 + ϵt

∆yt = α + βt + γyt−1 − 1 +

p∑
i=1

β1∆yt−1 + β2∆yt−2 + · · ·+ βp∆yt−p + ϵt

(2.4)

Algunas suposiciones comunes de mínimos cuadrados ordinarios (OLS) se discuten
aquí:

1. ϵ debe ser independiente.
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2. No debe haber heterocedasticidad, debe homogeneidad.

3. No debería haber ruptura estructural, el coeficiente debería ser estable.

4. El término de error debe tener una distribución normal.

La prueba de estacionariedad en la prueba de Dickey-Fuller aumentada sigue el mis-
mo procedimiento que en la prueba de Dickey-Fuller simple. Primero, estacionario
se verifica al nivel que en primera diferencia y finalmente en segunda diferencia. A
primera diferencia la ecuación será la siguiente:

∆2yt = γyt−1 +

p∑
i=1

β1∆2yt−1 + ϵt

∆2yt = α + γyt−1 +

p∑
i=1

β1∆2yt−1 + ϵt

∆2yt = α + βt + γyt−1 − 1 +

p∑
i=1

β1∆2yt−1 + β2∆2yt−2 + · · ·+ βp∆2yt−p + ϵt

(2.5)

Si la serie aún no es estacionaria, se utilizan las mismas ecuaciones reemplazando
∆2 con ∆3 el proceso será el mismo siempre y cuando la serie no se vuelva estacionaria.

Prueba de Hipótesis

H0 : γ = 0

H1 : γ < 0
(2.6)

La hipótesis nula se prueba a través de la estadística t que viene dada por esta fórmula:

t =
γ̂ − γH0

SE(γ̂)
(2.7)

Si t calculado es mayor que el valor crítico no rechazamos nuestra hipótesis nula.
En esta situación la variable en consideración será no estacionaria y tendrá raíz uni-
taria. Por otro lado, si t calculado es menor que el valor crítico, rechazamos nuestra
hipótesis nula. En este caso la serie subyacente sería una serie estacionaria y no tie-
ne raíz unitaria. Primero, la serie se prueba en nivel normal y en caso de que no se
vuelve estacionaria; se procede a realizar la prueba con la serie en primera y segunda
diferencia secuencialmente. Hay otro método para rechazar o no rechazar la hipótesis
nula; si el valor calculado está en el lado derecho del valor crítico, en la cola de un
lado (ver figura 2.5) no rechazamos la hipótesis nula, y si el valor calculado está en el
lado izquierdo del valor crítico, rechazamos la hipótesis nula y concluimos que la serie
no tiene raíz unitaria. El valor p también se usa para rechazar o aceptar la hipótesis
nula si el valor p < .05 rechaza la hipótesis nula y viceversa [60].
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Valor
Crítico

𝑯𝟎: 𝜸 = 𝟎

𝑨𝒄𝒆𝒑𝒕𝒂𝒓 𝑯𝟎𝑹𝒆𝒄𝒉𝒂𝒛𝒂𝒓 𝑯𝟎
𝑵𝑶 𝒓𝒆𝒄𝒉𝒂𝒛𝒂𝒓 𝑯𝟎

Figura 2.5: Gráfica para Dickey-Fuller aumentado

2.4.2. Proceso estocástico

Un fenómeno estadístico que evoluciona en el tiempo de acuerdo con leyes probabi-
lísticas se denomina proceso estocástico. A menudo nos referiremos a él simplemente
como un proceso, omitiendo la palabra “estocástico”. Las series de tiempo pueden
pensarse entonces como una realización particular, producida por el mecanismo de
probabilidad subyacente, del sistema en estudio. En otras palabras, al analizar una
serie de tiempo la consideramos como la realización de un proceso estocástico [59].

Proceso estacionario estocástico

Una clase muy especial de procesos estocásticos, llamados procesos estacionarios,
se basa en la suposición de que el proceso se encuentra en un estado particular de
equilibrio estadístico. Se dice que un proceso estocástico es estrictamente estacio-
nario si sus propiedades no se ven afectadas por un cambio en el origen temporal,
es decir, si la distribución de probabilidad conjunta asociada con m observaciones
zt1 , zt2 , · · · , ztm , realizada en cualquier conjunto de tiempos t1, t2, · · · , tm, es el mismo
que el asociado a m observaciones zt1+k

, zt2+k
, · · · , ztm+k

, realizadas en los momen-
tos t1+k, t2+k, · · · , tm+k. Por lo tanto, para que un proceso discreto sea estrictamente
estacionario, la distribución conjunta de cualquier conjunto de observaciones no de-
be verse afectada por el desplazamiento de todos los tiempos de observación hacia
adelante o hacia atrás en cualquier número entero k [59].

Media y varianza de un proceso estacionario

Cuando m = 1, la suposición de proceso estacionario implica que la distribución de
probabilidad p(zt) la misma para todo t y puede escribirse como p(z) Por lo tanto, el
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proceso estocástico tiene una media constante

µE[zt] =

∫ ∞

−∞
zp(z)dz (2.8)

que define el nivel sobre el cuál oscila, y tiene una varianza constante

σ = E[zt − µ]2 =
∫ ∞

−∞
(z − µ)2p(z)dz (2.9)

que mide su dispersión sobre este nivel. Dado que la distribución de probabilidad
p(z) es la misma para todos los tiempos t, su forma se puede inferir formando el
histograma de las observaciones {z1, z2, · · · , zN , } que componen la serie de tiempo
observada. Además, la media µ del proceso estocástico se puede estimar mediante la
media muestral

z̄ =
1

N

N∑
t=1

zt (2.10)

de la serie temporal, y la varianza σ2
z del proceso estocástico se puede estimar mediante

la varianza muestral de la serie temporal [59].

σ2
z =

1

N

N∑
t=1

(zt − z̄)2 (2.11)

Coeficientes de Autocorrelación y Autocovarianza

La suposición de estacionariedad también implica que la distribución de probabilidad
conjunta p(zt1 , zt2) es la misma para todos los tiempos t1, t2, que están separados por
un intervalo constante. En particular, se sigue que la covarianza entre los valores zt
y zt+k, separados por k intervalos de tiempo, o por rezago k, debe ser la misma para
todo t bajo el supuesto de estacionariedad. Esta covarianza se llama autocovarianza
en el rezago k y está definida por:

γk = cov[zt, zt+k] = E[(zt − µ)(zt+k − µ)] (2.12)

Del mismo modo, la autocorrelación en el rezago k es:

ρk =
E[(zt − µ)(Zt+k − µ)]√
E[(zt − µ)2]E[(zt+k − µ)2]

=
E[(zt − µ)(Zt+k − µ)]

σ2
z

(2.13)

ya que, para un proceso estacionario, la varianza σ2
z = γ0 es la misma en el tiempo

t + k que en el tiempo t. Por lo tanto, la autocorrelación en el rezago k, es decir, la
correlación entre zt y zt+k, es

ρ =
γk
γ0

(2.14)
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lo que implica, en particular, que ρ0 = 1.

También se sigue para un proceso estacionario que la naturaleza de la distribución de
probabilidad conjunta ρ(zt, zt+k) de valores separados por k intervalos de tiempo se
puede inferir trazando un diagrama de dispersión usando pares de valores (zt, zt+k)
de la serie de tiempo, separados por un intervalo constante o rezago k. Para los datos
por lotes que se muestran en la figura 2.6, la figura 2.7a muestra un diagrama de
dispersión para el rezago k = 1, obtenido al graficar zt+1 contra zt, mientras que la fi-
gura 2.7b muestra un diagrama de dispersión para el rezago k = 2, obtenido trazando
zt+2 contra zt. Vemos que los valores vecinos de la serie de tiempo están correlaciona-
dos. La correlación entre zt y zt+1 parece ser negativa y la correlación entre zt y zt+2

positiva [59].

𝐶𝑎𝑚𝑝𝑜 𝑍𝑡

𝑁𝑢𝑚𝑒𝑟𝑜 𝑑𝑒 𝑟𝑒𝑝𝑒𝑡𝑖𝑐𝑖𝑜𝑛𝑒𝑠

Figura 2.6: Campo zt de 70 repeticiones de un proceso aleatorio.

Proceso de ruido blanco

El ejemplo fundamental de un proceso estacionario es una secuencia de variables alea-
torias independientes e idénticamente distribuidas, indicadas como a1, · · · , at, · · · , que
también suponemos que tienen media cero y varianza σ2

a. Este proceso es estrictamen-
te estacionario y se denomina proceso de ruido blanco. Como la independencia implica
que las at no están correlacionadas, su función de autocovarianza es simplemente:

γk = E[atat+k] =

{
σ2
a k = 0
0 k ̸= 0
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(a) K = 1 para datos de la figura 2.6 (b) K = 2 para datos de la figura 2.6.

Figura 2.7: Diagramas de Scatter.

Si uno se concentra solo en las propiedades de segundo orden, entonces una secuencia
de variables aleatorias at, que no están correlacionadas, tienen media cero y varianza
constante (σ2

a) tiene la misma función de autocovarianza γk que la anterior, y es
débilmente estacionaria (de segundo orden). Tal proceso también puede denominarse
proceso de ruido blanco (en el sentido débil), cuando el enfoque está solo en las
propiedades de segundo orden. Aunque el proceso de ruido blanco tiene propiedades
muy básicas, este proceso juega un papel importante en la construcción de procesos
con propiedades mucho más interesantes y complicadas a través de operaciones de
filtrado lineal [59].

2.4.3. Funciones de auto-covarianza y auto-correlación

Anteriormente se mostró que el coeficiente de autocovarianza yk, con un rezago de k,
mide la covarianza entre dos valores zt y zt+k separados por una distancia de k. La
gráfica de yk contra el rezago k se llama función de autocovarianza {yk} del proceso
estocástico. De manera similar, la gráfica del coeficiente de autocorrelación ρk como
función del rezago k se llama función de autocorrelación ρk del proceso. Tenga en
cuenta que la función de autocorrelación es adimensional, es decir, independiente de
la escala de medición de la serie temporal. Como yk = ρkσ

2
z , el conocimiento de la

función de autocorrelación {pk} y la varianza σ2
z es equivalente al conocimiento de la

función de autocovarianza yk [59].
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Figura 2.8: Matriz de autocorrelación y correspondencia de función de autocorrelación
para proceso estacionario.

Figura 2.9: Función de autocorrelación para mitad positiva de la matriz.

La función de autocorrelación, que se muestra en la figura 2.8 como un gráfico
de las diagonales de la matriz de autocorrelación, revela cómo cambia la correlación
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entre dos valores cualquiera de la serie a medida que cambia su separación. Como
ρk = ρk, la función de autocorrelación es necesariamente simétrica con respecto a
cero, y en la práctica solo es necesario graficar la mitad positiva de esta función. La
figura 2.9 muestra la mitad positiva de la función de autocorrelación dada en la figura
2.8. Cuando hablamos de la función de autocorrelación, normalmente nos referimos a
la mitad positiva. En el pasado, la función de autocorrelación a veces se llamaba co-
rrelograma. Por lo que se ha mostrado anteriormente, un proceso estacionario normal
zt está completamente caracterizado por su media µ y su función de autocovarianza
yk, o de manera equivalente por su media µ, varianza σ2

z y función de autocorrelación
ρk [59].
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Modelos para predicción de series de
tiempo

En la actualidad existen distintos modelos de predicción para la energía eólica. En
especial para este tipo de energía, surge una gran popularidad modelarlos con un mé-
todo estadístico muy popular y estable como ARIMA, que tiene una mejor aplicación
cuando los datos se presentan en una serie de tiempo. El siguiente capitulo introduce
los modelos lineales para series estacionarias (Procesos AR, MA y ARMA). Aunque
en contraste en las aplicaciones del mundo real es complicado que una serie de tiempo
tenga un comportamiento no cambiante, por ello también se introducen los modelos
lineales para series no estacionarias que se basan en un proceso de convertir dicha
serie no estacionaria en estacionaria. Para concluir el capítulo se verá un modelado
para series no estacionarias (ARIMA) visto de forma múltiple.

3.1. Modelo lineal para series de tiempo estaciona-
rias

Una clase importante de modelos estocásticos para describir series de tiempo, que ha
recibido mucha atención, comprende los llamados modelos estacionarios. Los modelos
estacionarios asumen que el proceso permanece en equilibrio estadístico con propie-
dades probabilísticas que no cambian con el tiempo, en particular, variando alrededor
de un nivel medio constante fijo y con varianza constante [59].

La representación de un proceso estocástico como la salida de un filtro lineal, cuya
entrada es ruido blanco at, es decir,

z̃t = at +Ψ1at−1 +Ψ2at−2 + · · ·

= at +
∞∑
j=1

Ψjat−j
(3.1)

Donde zt = zt − µ es la desviación del proceso de algún origen, o de su media, si el

23
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proceso es estacionario. El proceso lineal general 3.1 nos permite representar zt como
una suma ponderada de valores presentes y pasados del proceso de “ruido blanco” at.
El proceso de ruido blanco at puede considerarse como una serie de choques que im-
pulsan el sistema. Consiste en una secuencia de variables aleatorias no correlacionadas
con media cero y varianza constante, es decir

E[at] = 0 var[at] = σ2
a

Dado que se supone que las variables aleatorias at no están correlacionadas, se deduce
que su función de autocovarianza es

γk = E[atat+k] =

{
σ2
a k = 0
0 k ̸= 0

(3.2)

Así, la función de autocorrelación del ruido blanco tiene una forma particularmente
simple

ρk =

{
1 k = 0
0 k ̸= 0

(3.3)

Un resultado fundamental en el desarrollo de procesos estacionarios es el de Wold
(1938), quien estableció que cualquier proceso estacionario puramente no determinista
de media cero zt posee una representación lineal como en (3.1) con

∑∞
j=0 |Ψj| <

∞. Las at no están correlacionadas con la varianza común σ2
a pero no necesitan ser

independientes. Reservaremos el término procesos lineales para procesos z̃t de la forma
de (3.1) en los que las at son variables aleatorias independientes. Para que z̃t definida
por (3.1) represente un proceso estacionario válido, es necesario que los coeficientes
Ψj sean absolutamente sumables, es decir, para

∑∞
j=0 |Ψj| < ∞. Bajo condiciones

adecuadas (Koopmans, 1974), zt es también una suma ponderada de pasados z̃t y un
choque agregado at, es decir,

z̃ = π1z̃t−1 + π2z̃t−2 + · · ·+ at

=
∞∑
j=1

πz̃t−j + at
(3.4)

En esta forma alternativa, la desviación actual z̃t desde el nivel µ se puede considerar
como una ‘regresión” en desviaciones pasadas z̃t−1, z̃t−2, · · · del proceso [59].

3.1.1. Procesos Autorregresivos AR

Consideremos el caso especial de la ecuación (3.4) en el que solo el primer término p
de los pesos es distinto de cero. El modelo puede escribirse como:

z̃t = ϕ1z̃t−1 + ϕ2z̃t−2 + ...+ ϕpz̃t−p + at (3.5)

Donde los simbolos ϕ1, ϕ2, ..., ϕp son el conjunto finito de parámetros de peso. El
proceso resultante se denomina proceso autorregresivo de orden p, o de una forma



Capítulo 3 25

más concisa, proceso AR(p).
En particular los modelos AR(1) y AR(2).

z̃t = ϕ1z̃t−1 + at

= ϕ1z̃t−1 + ϕ2z̃t−2 + at
(3.6)

El modelo AR(p) se puede escribir en la forma equivalente

(1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p)z̃t = at (3.7)

o de forma sintetizada
ϕ(B)z̃t = at (3.8)

Esto implica que:

z̃ =
1

ϕ(B)
at = ϕ−1(B)at = ψ(B)at (3.9)

Por lo tanto, el proceso autorregresivo se puede considerar como la salida z̃t de un
filtro lineal con una función de transferencia ϕ−1B = ψ(B) cuando la entrada es un
ruido blanco at [59].

3.1.2. Procesos de medias móviles MA

Tenemos que considerar el caso especial de la ecuación (3.1). cuando solo el primer
término de q de los ψ pesos es distinto de cero. Por tanto, el proceso puede ser escrito
tal como:

z̃t = at − θ1z̃t−1 − θ2z̃t−2 − ...− θpz̃t−p (3.10)

En dónde ahora −θ1,−θ2, . . . ,−θq son los símbolos para el conjunto finito de pará-
metros de peso. Este proceso se denomina promedio móvil de orden a, que a menudo
se abrevia como MA(q). Los casos especiales de MA(1) y MA(2).

z̃t = at − θ1at−1

= at − θ1at−1 − θ2at−2

(3.11)

Son importantes para los modelos basados en ruido blanco. Utilizando el operador
de retroceso Bat = at−1, el modelo MA(q) se puede escribir en la forma equivalente
como:

z̃t = (1− θ1B − θ2B2 − · · · − θqBq)at (3.12)

o en una forma compacta
Z̃T = θ(B)at (3.13)

Por lo tanto, el proceso de media móvil se puede considerar una salida z̃t de un filtro
lineal con función de transferencia θ(B) cuando la entrada es el ruido blanco at [59].
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3.1.3. Procesos mixtos autoregrresivos-promedio móvil

El proceso de promedio móvil finito.

z̃t = at − θ1at−1 = (1− θ1B)at |θ1| < 1 (3.14)

también se puede escribir como un proceso autorregresivo infinito

z̃ = −θ1z̃t−1 − θ21 z̃t−2 − · · ·+ at (3.15)

Sin embargo. si el proceso realmente fuera MA(1), no obtendríamos una representa-
ción con buenas características utilizando un modelo autorregresivo. Por el contrario,
un proceso AR(1) no podría representarse con moderación utilizando un modelo de
promedio móvil. En la práctica, para obtener una parametrización moderada, suele
ser útil el modelo con términos autorregresivos como de promedio móvil. El modelo
resultante

z̃t = ϕ1z̃t−1 + · · ·+ ϕpz̃t−p + at − θ1at−1 − · · · − θqat−q (3.16)

o de forma reducida
ϕ(B)z̃t = θ(B)at (3.17)

Se denomina proceso de orden mixto autorregresivo-media móvil(p,q), que abreviamos
como ARMA(p,q). Por ejemplo, el proceso ARMA(1,1) es

z̃t = ϕ1z̃t−1 + at − θ1at−1 (3.18)

Ahora los escribimos como

z̃t = ϕ−1(B)θ(B)at

=
θ(B)

ϕ(B)
at =

1− θ1B − · · · − θqBq

1− ϕ1B − · · · − ϕpBp
at

(3.19)

vemos que el proceso ARMA mixto se puede considerar como la salida Z̃t de un filtro
lineal, cuya función de transferencia es el cociente de dos operadores polinómicos θ(B)
y ϕ(B), cuando la entrada es ruido blanco at. Además, dado que z̃t = zt−µ de dónde
µ = E[zt] es la media del proceso del caso estacionario, el proceso general ARMA(p,q)
también se puede escribir en términos del proceso original z̃t como

ϕ(B)zt = θ0 + θ(B)at (3.20)

dónde la constante del término θ0 está definida por

θ0 = (1− ϕ1 − ϕ2 − · − ϕp)µ (3.21)
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3.2. Modelo lineal para series de tiempo no estacio-
narias

Muchas series de tiempo en aplicaciones reales se comportan como si no tuvieran una
media fija. Aun así, exhiben homogeneidad en el sentido de que, aparte del nivel local,
o quizás del nivel local y la tendencia, una parte de la serie se comporta de manera
muy similar a cualquier otra parte. Los modelos que describen este comportamien-
to no estacionario homogéneo se pueden obtener suponiendo que alguna diferencia
adecuada del proceso es estacionaria. En esta sección, examinamos las propiedades
de la importante clase de modelos para los cuales la d-ésima diferencia de la serie
es un proceso autorregresivo mixto estacionario-promedio móvil. Estos modelos se
denominan procesos de promedio móvil integrado autorregresivo (ARlMA).

3.2.1. Método Autorregresivo integrado de media móvil

Aunque los modelos no estacionarios del tipo descrito anteriormente son valiosos
para representar un comportamiento explosivo o evolutivo (como el crecimiento bac-
teriano), las aplicaciones que describimos no son de este tipo. Hemos visto que un
proceso ARMA es estacionario si las raíces de ϕ(B) = 0 se encuentran fuera del
círculo unitario y exhibe un comportamiento no estacionario explosivo si las raíces se
encuentran dentro del círculo unitario. El único caso que queda es que las raíces de
ϕ(B) = 0 se encuentran en el círculo unitario. Resulta que los modelos resultantes
son de gran valor para representar series temporales homogéneas no estacionarias. En
particular, las series no estacionales suelen estar bien representadas por modelos en
los que una o más de estas raíces son la unidad. Consideremos el modelo

ϕ(B)z̃t = θ(B)at (3.22)

donde ϕ(B) es un operador autorregresivo no estacionario tal que d de las raíces de
ϕ(B) = 0 son la unidad y el resto está fuera del círculo unitario. Entonces el modelo
se puede escribir como

ϕ(B)z̃t = ϕ(B)(1−B)dz̃t = θ(B)at (3.23)

donde ϕ(B) es un operador autorregresivo estacionario. Como ∇dz̃t = ∇dzt, para
d ≥ 1, donde ∇ = 1 − B es el operador diferenciador, podemos escribir el modelo
como:

ϕ(B)∇dzt = θ(B)at (3.24)

Equivalentemente, el proceso queda definido por dos ecuaciones

ϕ(B)wt = θ(B)at (3.25)

y
wt = ∇dzt (3.26)
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Por lo tanto, vemos que el modelo corresponde a suponer que la d-ésima diferencia de
la serie puede representarse mediante un proceso ARMA invertible estacionario. Una
forma alternativa de ver el proceso para d ≥ 1 resulta de invertir (3.26) para dar

zt = Sdwt (3.27)

Dónde S es el operador de aditivo infinito definido por:

Sxt =
t∑

h=−∞

xh = (1 +B +B2 + ·)xt

= (1−B)−1xt = ∇−1xt

(3.28)

De este modo
S = (1−B)−1 = ∇−1 (3.29)

El operador S2 se define de manera similar como

S2xt = Sxt + Sxt−1 + Sxt−2 + ·

=
t∑

t=−∞

i∑
h=−∞

xh = (1 + 2B + 3B2 + · · · )xt
(3.30)

y así sucesivamente para d de orden superior. La ecuación (3.27) implica que el pro-
ceso (3.24) puede obtenerse sumando (o “integrando”) el proceso estacionario (3.25)
d veces. Por lo tanto, llamamos al proceso (3.24) un proceso de promedio móvil inte-
grado autorregresivo (ARIMA).

Los modelos ARIMA para series de tiempo no estacionarias, que también fueron
considerados anteriormente por Yaglom (1955), son de fundamental importancia para
el pronóstico y el control, como lo discutieron Box y Jenkins (1962, 1963, 1965, 1968a,
1968b, 1969) y Box et al. (1967a). Los procesos no estacionarios también fueron ana-
lizados por Zadeh y Ragazzini (1950), Kalman (1960) y Kalman y Bucy (1961). Un
procedimiento anterior para el análisis de series de tiempo que empleaba la diferencia-
ción fue el método de diferencia variable (ver Tintner (1940) y Rao y Tintner (1963)).
Sin embargo, la motivación, los métodos y los objetivos de este procedimiento eran
bastante diferentes de los discutidos aquí. Técnicamente, el operador de suma infinita
S = (1 − B) − 1 en (3.27) no se puede usar para definir los procesos ARlMA no
estacionarios, ya que las sumas infinitas involucradas no serán convergentes. En su
lugar, podemos considerar el operador de sumatoria finita Sm para cualquier entero
positivo m, dado por

Sm = (1 +B +B2 + · · ·+Bm−1) =
1−Bm

1−B
(3.31)
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De manera similar, el operador de suma doble finita se puede definir como

S(2)
m =

m−1∑
j=0

m−1∑
i=j

Bi = (1 + 2B + 3B2 + · · ·+mBm−1)

=
1−Bm −mBm(1−B)

(1−B)2

(3.32)

ya que (1−B)S
(2)
m = Sm −mBm, y así sucesivamente. Entonces, la relación entre un

proceso ARMA integrado zt con d = 1, por ejemplo, y el proceso ARMA estacionario
correspondiente wt = (1− B)zt, en términos de valores que se remontan a un origen
temporal anterior k < t, se puede expresar como

zt =
St−k

1−Bt−k
wt =

1

1−Bt−k
(wt + wt−1 + · · ·+ wk+1) (3.33)

de modo que zt = wt + wt−1 + · · · + wk+1 + zk se puede considerar como la suma
de un número finito de términos del proceso estacionario w más un valor de inicia-
lización del proceso z en el tiempo k. Por lo tanto, en la definición formal de las
propiedades estocásticas de un proceso ARIMA no estacionario generado en (3.22),
normalmente sería necesario especificar las condiciones de inicialización del proceso
en algún momento k en el pasado finito (pero posiblemente remoto). Sin embargo,
estas especificaciones de condiciones iniciales tendrán poco efecto en la mayoría de
las características importantes del proceso.
El modelo (3.24) es equivalente a representar el proceso zt como la salida de un filtro
lineal (a menos que d = 0, este es un filtro lineal inestable), cuya entrada es ruido
blanco at. Alternativamente, podemos considerarlo como un dispositivo para trans-
formar el proceso altamente dependiente y posiblemente no estacionario zt, en una
secuencia de variables aleatorias no correlacionadas at, es decir, para transformar el
proceso en ruido blanco. Si en (3.24), el operador autorregresivo ϕ(B) es de orden
p, se toma la d-ésima diferencia, y el operador de media móvil θ(B) es de orden q,
decimos que tenemos un modelo ARIMA de orden (p, d, q), o simplemente un proceso
ARIMA(p, d, q).

3.3. Construcción del modelo múltiple ARIMA
Los modelos ARIMA son efectivos para moldear una serie de tiempo de un conjunto
de datos. Sin embargo, hay casos en los que el modelo no logra obtener buenos re-
sultados de precisión y esto se debe a que la serie de tiempo tiene pocos datos o las
características son insuficientes para obtener un modelo correcto de predicción. Por
ello, la propuesta es la creación de un modelo ARIMA múltiple mediante distintos
conjuntos de datos con la unión de una red neuronal para combinar las características
de cada conjunto.

A continuación, se detalla el diseño que conlleva un modelo ARIMA para después
generalizar esta técnica y lograr el cálculo para los múltiples modelos.
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3.3.1. Diseño de la estructura del modelo ARIMA

El pronóstico de series de tiempo consiste en predecir con cierto grado de precisión los
valores futuros en función de los valores pasados de una serie de tiempo. Entonces,
el pronóstico de series de tiempo es un proceso de modelado de series de tiempo.
El objeto del modelado de series de tiempo con el modelo ARIMA es encontrar un
modelo ARIMA adecuado, tal que el error de modelado definido por

et = yt − ŷt

se minimiza, aquí ŷt = ARIMAθ(p, q, d) es la salida del modelo ARIMA. El modelado
de series de tiempo incluye las siguientes dos partes:

1. Determinación de la estructura.
Para encontrar buenos órdenes de modelo p, q y d, de modo que el modelo
ARIMA de orden (p, q, d) tenga la mejor precisión de pronóstico con parámetros
fijos θ,

(p, q, d) = mı́n
p,q,d

{
[ARIMAθ (p, q, d)− yt]2

}
(3.34)

2. Estimación de parámetros.
Estimar los parámetros del modelo θ, de modo que el ARIMA tenga la mejor
precisión de pronóstico con estructura fija (p, q, d)

θ = mı́n
θ

{
[ARIMAθ (p, q, d)− yt]2

}
(3.35)

Es imposible obtener el modelo ARIMAθ∗(p
∗, q∗, d∗), porque la determinación

de la estructura (3.34) necesita el parámetro óptimo θ∗, mientras que la estima-
ción del parámetro (3.35) necesita la estructura óptima (p∗, q∗, d∗) . Tradicional-
mente, se adopta el método de caminata aleatoria para encontrar la estructura
ARIMA (p, q, d), luego, en función de la estructura obtenida, los parámetros θ
se estiman utilizando los datos de entrenamiento. Si no se satisface la precisión
del pronóstico, se debe volver a aplicar la caminata aleatoria para encontrar otra
combinación (p, q, d). Este proceso continúa hasta que el error de pronóstico es
lo suficientemente pequeño. Este es un proceso lento e ineficiente. En general
no podemos encontrar la estructura ARIMA óptima. Utilizamos los siguientes
dos criterios para determinar (p, q, d): criterio de información de Akaike (AIC)
y criterio de información bayesiano (BIC). Ambos siguen el mismo concepto:
evaluar tanto el error de entrenamiento como la complejidad. El objetivo de
estos criterios es que el modelo sea lo más simple posible, y a su vez garantice
un buen ajuste con los datos de entrenamiento. Suponga que el conjunto de
datos D consta de N datos, {y1, · · · , yN}.

AIC : 2(p+ q + 1)− 2L
BIC : ln(N)(p+ q + 1)− 2L (3.36)
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donde (p+ q+1) es el número de parámetros de estructura de ARIMA (p, q, d),
L es el valor máximo de la función de verosimilitud para el modelo ARIMA, se
estima como

L = N ln

(
1

N

N∑
t=1

e2t

)
, et = ŷt − yt

donde ŷt es la salida del modelo ARIMA. Podemos ver en (3.36), AIC penaliza a
los modelos que utilizan más parámetros de estructura, se desean puntuaciones
AIC más bajas. Entonces, si hay dos modelos en la misma serie temporal, se
preferirá el que tenga menos valor p+ q porque tiene una puntuación AIC más
baja.

3.3.2. Identificación del coeficiente del modelo ARIMA

Una vez que se determinan (p, q, d), se utiliza el método de mínimos cuadrados para
estimar el parámetro θ. Para los i-ésimos datos

θ (i) = [a1 (i) · · · ap (i) , b1 (i) · · · bq (i)] , i = 1 · · ·N (3.37)

Dónde n es el tamaño de los datos, la forma vectorial del modelo ARIMA está repre-
sentado por la siguiente forma

yt =
[
a1 · · · ap b1 · · · bq

]


xt−1
...

xt−p

ϵt
...

ϵt−q


(3.38)

Como los ruidos ϵt−k, k = 0 · · · q, no están disponibles, puede estimarlos usando los
valores anteriores

ϵ̂t = ŷt −

(
p∑

k=1

akz
−k

)
yt −

(
q∑

k=1

bkz
−k

)
ϵ̂t (3.39)

Entonces el modelo ARIMA se convierte en

Y = θȲ + E (3.40)

Dónde

Y = [yt−1 · · · yt−p, ϵ̂t · · · ϵ̂t−q]
T , Ȳ =



ŷ1,1 · · · ŷ1,N
...

...
ŷp,1 ŷp,N
ϵ̂1,1 ϵ̂1,N
...
ϵ̂q,1 · · · ϵ̂q,N


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E =
[
e1 · · · ep+q

]
es el vector de error residual. El objetivo de la identificación del

parámetro es:
mı́n
θ
∥Yt − θȲ ∥2 (3.41)

Como (3.40) es un proceso lineal en parámetros, el valor óptimo solución de θ es

θ =
[
Ȳ Ȳ T

]−1
Ȳ TY (3.42)

Finalmente, obtenemos l modelos ARIMA óptimos, M1 · · ·Ml, con l conjuntos de
datos de entrenamiento, M1 · · ·Ml. El proceso del modelo ARIMA para el pronóstico
de series de tiempo se muestra en la Figura 3.1.

𝐷𝑎𝑡𝑜𝑠
𝐷𝑖

• Normalización.
• Limpieza de 

datos.
• Detección de 

Anomalias.

Preprocesamiento

• Prueba de Dickey-
Fuller Aumentado.

• Estructura 
ARIMA(p,d,q).

• Prueba de AIC.

• Identificación de 
coeficientes óptimos.

𝐴𝑅𝐼𝑀𝐴𝑖

Figura 3.1: Arquitectura del modelo ARIMA para pronóstico de series de tiempo.

3.3.3. ARIMA múltiple

Cuando se tienen l conjuntos de diferentes datos

{yσt } , σ = {1, 2, ..., l}

podemos entrenar l modelos ARIMA M1 · · ·Ml usando el enfoque de modelado ARI-
MA único propuesto en la sección anterior para determinar (p, q, d) para cada conjunto
de datos σ, y para estimar los parámetros de cada (p, q, d)-orden el modelo ARIMA
usados en (3.42). El vector de parámetros θi está asociado a un modelo ARIMA Mi.
Los múltiples ARIMA se presentan como:

ARIMAθi
(
pi, qi, di

)
, i ∈ σ (3.43)

El modelo ARIMAθi (p
i, qi, di) puede predecir los conjuntos de datos {yit}.
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Modelo de aprendizaje automático
para predicción

La gran mayoría de los métodos de aprendizaje automático utilizados en la práctica
implican técnicas de aprendizaje supervisado. En el aprendizaje supervisado, se usa un
algoritmo para aprender una función de mapeo aproximada de la variable de entrada
x a la salida y = f(x) para cuando haya nuevos datos de entrada, podamos predecir
la salida de esos datos. En el caso de las redes neuronales no es el mejor método para
modelar una serie de tiempo, pero el modelo que se busca requiere de un mecanismo
que extraiga las mejores características de los modelos ARIMA pre-entrenados y los
combine para obtener un modelo de buena predicción. En este capítulo se verá a
detalle la representación de una red neuronal y las métricas de estimación que suelen
medir el error de las predicciones.

4.1. Redes neuronales

Las redes neuronales artificiales (ANN) son modelos de clasificación que pueden apren-
der límites de decisión altamente complejos y no lineales únicamente a partir de los
datos. Han obtenido una amplia aceptación en varias aplicaciones, como el procesa-
miento de la visión, asistentes de voz y el lenguaje, donde se ha demostrado repeti-
damente que superan a otros modelos de clasificación (y, en algunos casos, incluso al
rendimiento humano). Históricamente, el estudio de las redes neuronales artificiales
se inspiró en los intentos de emular los sistemas neuronales biológicos. El cerebro
humano se compone principalmente de células nerviosas llamadas neuronas, unidas
entre sí con otras neuronas a través de hilos de fibra llamados axones. Cada vez que
se estimula una neurona (p. ej., en respuesta a un estímulo), transmite activaciones
nerviosas a través de axones a otras neuronas. Las neuronas receptoras recogen estas
activaciones nerviosas utilizando estructuras llamadas dendritas, que son extensiones
del cuerpo celular de la neurona. La fuerza del punto de contacto entre una dendrita
y un axón, conocida como sinapsis, determina la conectividad entre las neuronas. Los
neurocientíficos han descubierto que el cerebro humano aprende cambiando la fuerza
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de la conexión sináptica entre las neuronas tras la estimulación repetida por el mismo
impulso [61].

El cerebro humano consta de aproximadamente 100 mil millones de neuronas que
están interconectadas de manera compleja, lo que nos permite aprender nuevas tareas
y realizar actividades regulares. Tenga en cuenta que una sola neurona solo realiza una
función modular simple, que es responder a las activaciones nerviosas provenientes
de las neuronas emisoras conectadas en su dendrita y transmitir su activación a las
neuronas receptoras a través de los axones. Sin embargo, es la composición de estas
funciones simples las que juntas pueden expresar funciones complejas. Esta idea está
en la base de la construcción de redes neuronales artificiales [61].

Análoga a la estructura de un cerebro humano, una red neuronal artificial se com-
pone de una serie de unidades de procesamiento, llamadas nodos, que están conectados
entre sí a través de enlaces dirigidos. Los nodos corresponden a neuronas que realizan
las unidades básicas de cómputo, mientras que los enlaces dirigidos corresponden a
conexiones entre neuronas, constituidos por axones y dendritas. Además, el peso de
un enlace dirigido entre dos neuronas representa la fuerza de la conexión sináptica
entre neuronas. Al igual que en los sistemas neuronales biológicos, el objetivo princi-
pal de ANN es adaptar los pesos de los enlaces hasta que se ajusten a las relaciones
de entrada y salida de los datos subyacentes [61].

La motivación básica detrás del uso de un modelo ANN es extraer caracterís-
ticas útiles de los atributos originales que son más relevantes para la clasificación.
Mediante el uso de una combinación compleja de nodos interconectados, los mode-
los ANN pueden extraer conjuntos de características mucho más sustanciosos, lo que
da como resultado un buen rendimiento de clasificación. Además, los modelos ANN
proporcionan una forma natural de representar características en múltiples niveles de
abstracción, donde las características complejas se ven como composiciones de carac-
terísticas más simples. En muchos problemas de clasificación, modelar tal jerarquía
de características resulta muy útil. Por ejemplo, para detectar un rostro humano en
una imagen, primero podemos identificar características de bajo nivel, como bordes
afilados con diferentes degradados y orientaciones. Estas características se pueden
combinar para identificar partes faciales como ojos, nariz, orejas y labios. Finalmen-
te, se puede utilizar una disposición adecuada de las partes faciales para identificar
correctamente un rostro humano. Los modelos ANN proporcionan una arquitectura
poderosa para representar una abstracción jerárquica de características, desde niveles
inferiores de abstracción (p. ej., bordes) hasta niveles superiores (p. ej., partes facia-
les) [61].

Las redes neuronales artificiales han tenido una larga historia de desarrollos que
abarca más de cinco décadas de investigación. Aunque los modelos clásicos de ANN
sufrieron varios desafíos que obstaculizaron el progreso durante mucho tiempo, han
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resurgido con una gran popularidad debido a una serie de desarrollos recientes en
la última década, conocidos colectivamente como aprendizaje profundo. En esta sec-
ción, examinamos los enfoques clásicos para aprender modelos ANN, desde el modelo
más simple llamado perceptrones hasta arquitecturas más complejas llamadas redes
neuronales multicapa [61].

4.1.1. Perceptrón

Un perceptrón es un tipo básico de modelo ANN que involucra dos tipos de nodos:
nodos de entrada, que se usan para representar los atributos de entrada, y un nodo
de salida, que se usa para representar la salida del modelo. La figura 4.1b ilustra la
arquitectura básica de un perceptrón que toma tres atributos de entrada {x1, x2, x3}
y produce una salida binaria y.

(a) Datos de entrada.

𝑋1

𝑋2

𝑋3

𝑤2 = 0.3

𝑤3 = 0.3

ො𝑦

𝑏 = 0.4

𝑤1 = 0.3

Nodos 
de 

entrada

Nodo 
de 

salida

(b) Perceptrón.

Figura 4.1: Función booleana modelada mediante un perceptrón.

El perceptrón consta de dos tipos de nodos: nodos de entrada, que se utilizan
para representar los atributos de entrada, y un nodo de salida, que se utiliza para
representar la salida del modelo. Los nodos en una arquitectura de red neuronal se
conocen comúnmente como neuronas o unidades. En un perceptrón, cada nodo de
entrada está conectado a través de un enlace ponderado al nodo de salida. El enlace
ponderado se utiliza para emular la fuerza de la conexión sináptica entre las neuronas.
Al igual que en los sistemas neuronales biológicos, entrenar un modelo de perceptrón
equivale a adaptar los pesos de los enlaces hasta que se ajusten a las relaciones de
entrada y salida de los datos subyacentes. Un perceptrón calcula su valor de salida
(ŷ), realizando una suma ponderada en sus entradas, restando un factor de sesgo t de
la suma y luego examinando el signo del resultado. El modelo que se muestra en la
figura 4.1b tiene tres nodos de entrada, cada uno de los cuales tiene un peso idéntico
de w = 0.3 al nodo de salida y un factor de sesgo de t = 0, 4. La salida calculada por
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el modelo es
ŷ =

{
1, si 0.3x1 + 0.3x2 + 0.3x3 − 0.4 > 0;
−1, si 0.3x1 + 0.3x2 + 0.3x3 − 0.4 < 0.

(4.1)

Por ejemplo, si x1 = 1, x2 = 1, x3 = 0 el resultado de la salida daría ŷ = 1 dado
que 0.3x1 + 0.3x2 + 0.3x3 − 0.4 es positivo. Por otro lado, si x1 = 0, x2 = 1, x3 = 0
entonces ŷ = −1 porque la suma ponderada restada por el factor de sesgo es negativa.
Se tiene que tomar en cuenta la diferencia entre los nodos de entrada y salida de
un perceptrón. Un nodo de entrada simplemente transmite el valor que recibe al
enlace de salida sin realizar ninguna transformación. El nodo de salida, por otro
lado, es un dispositivo matemático que calcula la suma ponderada de sus entradas,
resta el término de sesgo y luego produce una salida que depende del signo de la
suma resultante. Más específicamente, la salida de un modelo de perceptrón se puede
expresar matemáticamente de la siguiente manera:

ŷ = signo(wdxd + wd−1xd−1 + · · ·+ w2x2 + w1x1 − t) (4.2)

donde w1, w2, ..., wd son los pesos de los enlaces de entrada, x1, x2, ..., xd son los
valores de los atributos de entrada y d es la cantidad de datos. La función de signo,
que actúa como una función de activación para la neurona de salida, emite un valor
de +1 si su argumento es positivo y −1 si su argumento es negativo. El modelo de
perceptrón se puede escribir en una forma más compacta de la siguiente manera:

ŷ = signo[wdxd + wd−1xd−1 + · · ·+ w1x1 + w0x0] = signo(w · x) (4.3)

donde w0 = −t, x0 = 1, y w · x es el producto escalar entre el vector de peso w y el
vector de atributo de entrada x [61].

Aprendizaje del modelo perceptrón

Durante la fase de entrenamiento de un modelo de perceptrón, los parámetros de
peso w se ajustan hasta que las salidas del perceptrón se vuelven consistentes con las
verdaderas salidas de los ejemplos de entrenamiento. En el algoritmo 1 se proporciona
un resumen del algoritmo de aprendizaje del perceptrón. El cálculo clave para este
algoritmo es la fórmula de actualización de peso dada en la linea 7 del pseudocódigo:

wk+1
j = wk

j + λ(yi − ŷki )xij (4.4)

donde w(k) es el parámetro de peso asociado con el i-ésimo enlace de entrada des-
pués de la k-ésima iteración, λ es un parámetro conocido como tasa de aprendizaje y
xij es el valor del j-ésimo atributo del ejemplo de entrenamiento xi. La justificación de
la fórmula de actualización de peso es bastante intuitiva. La ecuación 4.4 muestra que
la nueva ponderación wk+1 es una combinación de la anterior ponderación w(k) y un
término proporcional al error de predicción, (y − ŷ). Si la predicción es correcta, en-
tonces el peso permanece sin cambios. En caso contrario, se modifica de las siguientes
formas:
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Si y = +1 y ŷ = −1, entonces el error de predicción es (y − ŷ) = 2. Para
compensar el error, necesitamos aumentar el valor de la salida pronosticada
aumentando los pesos de todos los enlaces con entradas positivas y disminuyendo
los pesos de todos los enlaces con entradas negativas.

Si yi = −1 y ŷ = +1, entonces el error (y − ŷ) = −2. Para compensar, nece-
sitamos disminuir el valor de la salida prevista al disminuir los pesos de todos
los enlaces con entradas positivas y aumentar los pesos de todos los enlaces con
entradas negativas.

Algorithm 1 Aprendizaje de un perceptrón
1: Tenemos que D = {(xi, yi) | i = 1, 2, ..., N} un conjunto de datos de entrena-

miento
2: Inicializamos el vector de pesos con valores random, w(0)

3: repeat
4: for cada ejemplo de entrenamiento (xi, yi) ∈ D do
5: Calcular la salida predictiva ŷ

(k)
i

6: for cada peso wj do
7: Actualizar el peso, w(k+1) = w

(k)
j + λ(yi − ŷ(k)i )xij

8: end for
9: end for

10: until se cumpla la condición de parada =0

En la fórmula de actualización de peso, los enlaces que más contribuyen al tér-
mino de error son los que requieren el mayor ajuste. Sin embargo, los pesos no deben
cambiarse demasiado drásticamente porque el término de error se calcula solo para el
ejemplo de entrenamiento actual. De lo contrario, se desharán los ajustes realizados
en iteraciones anteriores. La tasa de aprendizaje λ, un parámetro cuyo valor está entre
0 y 1, se puede utilizar para controlar la cantidad de ajustes realizados en cada itera-
ción. Si λ está cerca de 0, entonces el nuevo peso está influenciado principalmente por
el valor del peso anterior. Por otro lado, si λ está cerca de 1, entonces el nuevo peso
es sensible a la cantidad de ajuste realizado en la iteración actual. En algunos casos,
se puede utilizar un valor de λ adaptativo; inicialmente, λ es moderadamente grande
durante las primeras iteraciones y luego disminuye gradualmente en las iteraciones
posteriores [61].
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Figura 4.2: Frontera de decisión del perceptrón.

El modelo de perceptrón que se muestra en la ecuación 4.3 es lineal en sus pará-
metros w y atributos x. Debido a esto, el límite de decisión de un perceptrón, que
se obtiene al establecer ŷ = 0, es un hiperplano lineal que separa los datos en dos
clases, -1 y +1. La figura 4.2 muestra el límite de decisión obtenido al aplicar el algo-
ritmo de aprendizaje del perceptrón al conjunto de datos proporcionado en la figura
4.1. Se garantiza que el algoritmo de aprendizaje del perceptrón convergerá a una
solución óptima (siempre que la tasa de aprendizaje sea lo suficientemente pequeña)
para problemas de clasificación linealmente separables. Si el problema no es lineal-
mente separable, el algoritmo no converge. La figura 4.3 muestra un ejemplo de datos
separables no lineales proporcionados por la función XOR. El perceptrón no puede
encontrar la solución correcta para estos datos porque no existe un hiperplano lineal
que pueda separar perfectamente las instancias de entrenamiento [61].

Figura 4.3: Problema de clasificación de una compuerta XOR.
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4.1.2. Red neuronal artificial multicapa

Una red neuronal artificial tiene una estructura más compleja que la de un modelo
de perceptrón. Las complejidades adicionales pueden surgir de varias maneras:

1. La red puede contener varias capas intermedias entre sus capas de entrada y
salida. Estas capas intermedias se denominan capas ocultas y los nodos inte-
grados en estas capas se denominan nodos ocultos. La estructura resultante se
conoce como red neuronal multicapa (consulte la figura 4.4). En una red neu-
ronal feed-forward, los nodos en una capa están conectados solo a los nodos en
la siguiente capa. El perceptrón es una red neuronal de alimentación directa
de una sola capa porque tiene solo una capa de nodos, la capa de salida, que
realiza operaciones matemáticas complejas. En una red neuronal recurrente, los
enlaces pueden conectar nodos dentro de la misma capa o nodos de una capa a
las capas anteriores [61].

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

ෝ𝑦

Capa de 
Entrada

Capa 
Oculta

Capa de 
Salida

Figura 4.4: Ejemplo de una red neuronal multicapa.

2. La red puede utilizar tipos de funciones de activación distintos de la función de
señal. Los ejemplos de otras funciones de activación incluyen las funciones de
tangente lineal, sigmoide (logística) e hiperbólica, como se muestra en la figura
4.5. Estas funciones de activación permiten que los nodos ocultos y de salida
produzcan valores de salida que no son lineales en sus parámetros de entrada.

Estas complejidades adicionales permiten que las redes neuronales multicapa modelen
relaciones más complejas entre las variables de entrada y salida. Por ejemplo, considere
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el problema XOR descrito en la sección anterior. Las instancias se pueden clasificar
mediante dos hiperplanos que dividen el espacio de entrada en sus respectivas clases,
como se muestra en la figura 4.6a. Debido a que un perceptrón puede crear solo un
hiperplano, no puede encontrar la solución óptima. Este problema se puede abordar
utilizando una red neuronal de alimentación hacia adelante de dos capas, como se
muestra en la figura 4.6b. Intuitivamente, podemos pensar en cada nodo oculto como
un perceptrón que intenta construir uno de los dos hiperplanos, mientras que el nodo
de salida simplemente combina los resultados de los perceptrones para producir el
límite de decisión que se muestra en la figura 4.6a.

Figura 4.5: Funciones de activación para redes neuronales.
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Figura 4.6: Problema XOR visto desde una red neuronal de dos capas.

Para aprender los pesos de un modelo ANN, necesitamos un algoritmo eficiente
que converja a la solución correcta cuando se proporciona una cantidad suficiente de
datos de entrenamiento. Un enfoque es tratar cada nodo oculto o nodo de salida en
la red como una unidad de perceptrón independiente y aplicar la misma fórmula de
actualización de peso que la ecuación 4.4. Obviamente, este enfoque no funcionará
porque carecemos de conocimiento a priori sobre los verdaderos resultados de los
nodos ocultos. Esto dificulta determinar el término de error, (y − ŷ), asociado con
cada nodo oculto. A continuación, se presenta una metodología para aprender los
pesos de una red neuronal basada en el enfoque de descenso de gradiente [61].

Aprendizaje en una red neuronal multicapa

El objetivo del algoritmo de aprendizaje ANN es determinar un conjunto de pesos w
que minimicen la suma total de errores al cuadrado:

E(w) =
1

2

N∑
i=1

(yi − ŷi)2 (4.5)

La suma de los errores al cuadrado depende de w porque la clase predicha ŷ es una
función de los pesos asignados a los nodos ocultos y de salida. La figura 4.7 muestra
un ejemplo de la superficie de error en función de sus dos parámetros, w1 y w2. Este
tipo de superficie de error suele encontrarse cuando ŷi es una función lineal de sus
parámetros, w. Si reemplazamos ŷ = w · x en la ecuación 4.5, entonces la función
de error se vuelve cuadrática en sus parámetros y se puede encontrar fácilmente una
solución mínima global [61].
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Figura 4.7: Superficie de error E(w1, w2) para el modelo de 2 parámetros.

En la mayoría de los casos, la salida de una ANN es una función no lineal de
sus parámetros debido a la elección de sus funciones de activación (p. ej., función
sigmoidea o tanh). Como resultado, ya no es sencillo derivar una solución para w que
garantice ser globalmente óptima. Se han desarrollado algoritmos codiciosos como
los basados en el método de descenso de gradiente para resolver de manera eficiente
el problema de optimización. La fórmula de actualización de peso utilizada por el
método de descenso de gradiente se puede escribir de la siguiente manera:

wj ←− wj − λ
∂E(w)

∂wj

(4.6)

donde λ es la tasa de aprendizaje. El segundo término establece que el peso debe
aumentarse en una dirección que reduzca el término de error general. Sin embargo,
debido a que la función de error no es lineal, es posible que el método de descenso de
gradiente quede atrapado en un mínimo local. El método de descenso de gradiente
se puede utilizar para aprender los pesos de la salida y los nodos ocultos de una
red neuronal. Para los nodos ocultos, el cálculo no es trivial porque es difícil evaluar
su término de error, ∂E/∂wj, sin saber cuáles deberían ser sus valores de salida.
Se ha desarrollado una técnica conocida como retropropagación para abordar este
problema. Hay dos fases en cada iteración del algoritmo: la fase de avance y la fase
de retroceso. Durante la fase de avance, los pesos obtenidos de la iteración anterior se
utilizan para calcular el valor de salida de cada neurona de la red. El cálculo avanza
en la dirección de avance; es decir, las salidas de las neuronas en el nivel k se calculan
antes de calcular las salidas en el nivel k + 1. Durante la fase hacia atrás, la fórmula
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de actualización del peso se aplica en la dirección inversa. En otras palabras, los pesos
en el nivel k + 1 se actualizan antes de que se actualicen los pesos en el nivel k. Este
enfoque de retropropagación nos permite utilizar los errores de las neuronas en la
capa k + 1 para estimar los errores de las neuronas en la capa k [61].

4.1.3. Consideraciones a tomar en el diseño de una red neu-
ronal

Antes de entrenar una red neuronal para aprender una tarea de clasificación, se deben
considerar los siguientes problemas de diseño.

1. Se debe determinar el número de nodos en la capa de entrada. Asigne un nodo
de entrada a cada variable de entrada numérica o binaria. Si la variable de
entrada es categórica, podríamos crear un nodo para cada valor categórico o
codificar la variable k-aria usando nodos de entrada ⌈log2 k⌉.

2. Se debe establecer el número de nodos en la capa de salida. Para un problema
de dos clases, es suficiente usar un solo nodo de salida. Para un problema de
clase k, hay k nodos de salida.

3. Se debe seleccionar la topología de la red (por ejemplo, el número de capas
y nodos ocultos, y la arquitectura de red recurrente o de avance). Tenga en
cuenta que la representación de la función de destino depende de los pesos de
los enlaces, la cantidad de nodos y capas ocultos, los sesgos en los nodos y el tipo
de función de activación. Encontrar la topología correcta no es una tarea fácil.
Una forma de hacer esto es comenzar desde una red totalmente conectada con
una cantidad suficientemente grande de nodos y capas ocultas, y luego repetir
el procedimiento de creación de modelos con una cantidad menor de nodos.
Este enfoque puede llevar mucho tiempo. Alternativamente, en lugar de repetir
el procedimiento de creación de modelos, podríamos eliminar algunos de los
nodos y repetir el procedimiento de evaluación del modelo para seleccionar la
complejidad correcta.

4. Los pesos y sesgos deben inicializarse. Las asignaciones aleatorias suelen ser
aceptables.

5. Los ejemplos de entrenamiento con valores faltantes deben eliminarse o reem-
plazarse con los valores más probables o interpolando los datos [61].

4.1.4. Características de una red neuronal

A continuación se resumen las características generales de una red neuronal artificial:

1. Las redes neuronales multicapa con al menos una capa oculta son aproxima-
dores universales; es decir, se pueden usar para aproximar cualquier función
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objetivo. Dado que una ANN tiene un espacio de hipótesis muy expresivo, es
importante elegir la topología de red apropiada para un problema dado para
evitar el sobreajuste del modelo.

2. ANN puede manejar funciones redundantes porque los pesos se aprenden auto-
máticamente durante el paso de entrenamiento. Los pesos de las características
redundantes tienden a ser muy pequeños.

3. Las redes neuronales son bastante sensibles a la presencia de ruido en los datos
de entrenamiento. Un enfoque para manejar el ruido es usar un conjunto de
validación para determinar el error de generalización del modelo. Otro enfoque
es disminuir el peso por algún factor en cada iteración.

4. El método de descenso de gradiente utilizado para aprender los pesos de una
ANN a menudo converge a algún mínimo local. Una forma de escapar del mínimo
local es agregar un término de impulso a la fórmula de actualización del peso.

5. Entrenar una ANN es un proceso que requiere mucho tiempo, especialmente
cuando la cantidad de nodos ocultos es grande. Sin embargo, los ejemplos de
prueba se pueden clasificar rápidamente [61].

4.2. Métricas de estimación
Los métodos de clasificación y pronóstico idealmente debe ser evaluados en las situa-
ciones para las cuales serán empleados. La mayoría de estos modelos están basados
en procedimientos metodológicos o la obtención de una muestra de errores. Por lo
anterior se debe efectuar un chequeo para verificar que la propuesta corresponde a
una buena precisión. A continuación, se describen distintos tipos de métricas de pre-
cisión que miden error a la salida de cada modelo y muestran distintas características
respecto a los datos evaluados [61].

Para describir cada elemento de las fórmulas de las mediciones estandarizamos
que Yi es el i-ésimo valor previsto, el elemento Xi es el i-ésimo valor actual de un
conjunto de datos y N es el número de muestras que este contiene.

MSE se puede utilizar si hay valores atípicos que deben detectarse. De hecho,
MSE es excelente para atribuir pesos más grandes a tales puntos, gracias a la
norma L2: claramente, si el modelo final genera una predicción muy mala, la
parte cuadrada de la función resalta el error [62].

MSE =
1

N

N∑
i=1

(Yi −Xi)
2 (4.7)

(el mejor valor = 0, el peor valor = +∞)
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Las mediciones de MSE y RMSE están monótonamente relacionadas (a través
de la raíz cuadrada). Un arreglo de modelos de regresión basada en MSE será
idéntica a un arreglo de modelos basada en RMSE [62].

RMSE =

√√√√ 1

N

N∑
i=1

(Yi −Xi)2 (4.8)

(el mejor valor = 0, el peor valor = +∞)

MAE se puede utilizar si los valores atípicos representan partes dañadas de
los datos. Por defecto, MAE no penaliza demasiado los valores atípicos de en-
trenamiento (la norma L1 de alguna manera suaviza todos los errores de los
posibles valores atípicos), proporcionando así una medida de rendimiento gené-
rica y acotada para el modelo. Por otro lado, si el conjunto de prueba también
tiene muchos valores atípicos, el rendimiento del modelo será mediocre [62].

MAE =
1

N

N∑
i=1

|Yi −Xi| (4.9)

(el mejor valor = 0, el peor valor = +∞)

MAPE es otra métrica de desempeño para modelos de regresión, teniendo una
interpretación muy intuitiva en términos de error relativo: por su definición, se
recomienda su uso en tareas donde es más importante ser sensible a variaciones
relativas que a variaciones absolutas (De Myttenaere et al. 2016). Sin embargo,
también tiene una serie de inconvenientes, siendo los más críticos la restricción
de su uso a datos estrictamente positivos por definición y su sesgo hacia pro-
nósticos bajos, lo que lo hace inadecuado para modelos predictivos donde se
esperan grandes errores (Armstrong y Collopy, 1992) [62].

MAPE =
1

N

N∑
i=1

|Xi − Yi|
Xi

· 100% (4.10)

(el mejor valor = 0, el peor valor = +∞)

El coeficiente de determinación o R2 (Wright, 1921) puede interpretarse como la
proporción de la varianza de la variable dependiente que es predecible a partir
de las variables independientes [62].

R2 = 1−
∑N

i=1(Yi −Xi)
2∑N

i=1(X̄i −Xi)2
(4.11)

(el mejor valor = 1, el peor valor = −∞)
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SMAPE es el error porcentual absoluto medio simétrico definido inicialmente
por Armstrong (1985), y luego refinado en su versión actual por Flores (1986)
y Makridakis (1993), SMAPE fue propuesto para enmendar los inconvenientes
de la métrica MAPE [62].

SMAPE =
100%

N

N∑
i=1

|Yi −Xi|
(|Yi|+ |Xi|)/2

· 100% (4.12)

(el mejor valor = 0, el peor valor = 2)
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Modelo híbridos

Los métodos híbridos son la combinación de uno o más modelos como los que muestra
el esquema 2.1. Lo que buscan al crear estos modelos es combinar las características
que ofrece cada uno de ellos y conformar un nuevo modelo que mejore la precisión
o previsión de los datos. El inicio de este capítulo describe algunos de los modelos
híbridos utilizados en la literatura, mientras que la segunda parte es la explicación
del modelo planteado partiendo de los modelos múltiples ARIMA que se vieron en el
capítulo 3.

5.1. Modelos híbridos

En la actualidad, existen distintos métodos aplicados a resolver la predicción de
la energía eólica en el mundo. A continuación, se exponen los ejemplos más actuales
que este campo ha podido resolver y los resultados que se han obtenido de cada uno
de los trabajos.

El primero de ellos es una propuesta realizada en México por Cadenas et al. 2010
[20]. El modelo empleado en este trabajo es el uso de un modelo híbrido ARIMA-ANN
para predicción de horizonte a corto plazo. Se ocuparon datos de México provenientes
de Baja California, Zacatecas y Quintana Roo en estos buscan probar que la combi-
nación de ARIMA-ANN es una buena opción; en donde el modelo ARIMA representa
la parte lineal de las series y la ANN considera la parte no lineal. Se obtuvo buenos
resultados predictivos de esta combinación.

47
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Figura 5.1: Modelo propuesto por Cadenas et al. 2010

El modelo realizado por Liu et al. 2012.[63]. Es una comparativa que muestra
dos modelos híbridos; el primero es ARIMA con la unión de una red neuronal y el
segundo combina ARIMA junto a un filtro de Kalman. Los datos son provenientes de
una granja de energía eólica localizada China, en donde el horizonte de predicción no
es mostrado, pero se obtienen buenos resultados de predicción en la combinación del
modelo híbrido ARIMA-Kalman.
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Figura 5.2: Modelo propuesto por Liu et al. 2012

El siguiente trabajo realizado por Yan-Fei et al. 2015 [64].Es un modelo propuesto
para una predicción a muy corto plazo que busca resolver un problema de viento en
los trenes de japón, la primera parte es descomponer las series de tiempo de la velo-
cidad del viento mediante la descomposición empírica (EMD por sus siglas en inglés
Empirical Mode Decomposition), esto lo que hace es descomponer la serie en series de
baja y alta frecuencia de una forma muy parecida a la EWT y después crear modelos
recursivos ARIMA, una vez obtenidos estos se procede a obtener las predicciones de
tales modelos para después hacer una inversión para regresar a una serie original y
obtener la predicción.
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Figura 5.3: Modelo propuesto por Yan-Fei et al. 2015

El modelo realizado por Wang et al. 2015 [65] es una propuesta para una pre-
dicción a corto plazo, son dos parques eólicos localizados en china. Se realiza un
pre-procesamiento de la señal mediante una transformada Wavelet (EWT por sus
siglas en inglés Empirical Wavelet Transform), posteriormente, se hace una evalua-
ción de distintos métodos estadísticos de predicción como: ARIMA, LSSVM, ELM y
SVM. Cada salida de estos modelos se combinará en una última etapa, mediante un
modelo de probabilidad gaussiana GPR para predecir la distribución de la velocidad
del viento futura. El modelo propuesto muestra que supera a todos los modelos en
solitario (ARIMA, LSSVM, ELM y SVM) sin utilizar una primera etapa de EWT.

Otro modelo referente realizado por Liu et al. 2015 [64]. Es una propuesta para
una predicción a muy corto plazo que busca resolver un problema de viento en los
trenes de japón. La primera parte es descomponer las series de tiempo de la veloci-
dad del viento mediante la descomposición empírica (EMD por sus siglas en inglés
Empirical Mode Decomposition). El propósito del EMD es descomponer la serie en
sub-series de baja y alta frecuencia de una forma muy parecida a la EWT y posterior-
mente, crear modelos recursivos de ARIMA. Una vez obtenidos se procede a obtener
las predicciones de los modelos para después hacer una inversión para regresar a una
serie original y obtener la predicción.

El articulo realizado por Aasim et al. 2015 [66]. Utiliza los datos de la estación
Malin Head en Irlanda con los modelos ARIMA y WT-ARIMA. En el objetivo es
pronosticar la velocidad del viento y proponer un nuevo modelo ARIMA basado en
WT (del inglés Wavelet) repetido (RWT-ARIMA), que mejora la precisión del modelo
para el pronóstico de la velocidad del viento a muy corto plazo. Se realizó una compa-
ración del modelo RWT-ARIMA propuesto con los modelos ARIMA y WT-ARIMA.
Los modelos fueron sometidos a varias escalas de tiempo de pronóstico, como 1 min,
3 min, 5 min, 7 min y 10 minutos.
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El siguiente modelo tiene bases similares a [64], realizado por Yunus et al. 2016
[41]. En el cual se presenta un modelo híbrido con predicción a corto plazo. En el que
se aplica una descomposición de frecuencias, donde la serie de tiempo se separa en
componentes de alta y baja frecuencia, una vez se obtiene esta separación, se procede
a construir un modelo ARIMA de las series divididas. Al obtener la predicción de los
modelos ARIMA realizados con las sub-series, estas deben invertirse a través de un
tratamiento de frecuencias para obtener una sola serie. Los resultados de predicción
de este proceso deben alcanzar un error aceptable y de no ser así se repite el mismo
procedimiento hasta alcanzar un error mínimo.

Este trabajo es uno subsecuente de Cadenas et al. 2016 [7]. Esta nueva propues-
ta se basa en un modelo multivariante desarrollado por una red neuronal artificial
exógena autorregresiva no lineal (NARX). Se comparó con un modelo ARIMA para
datos de México ubicados en los estados de Hidalgo y Oaxaca. Es una predicción de
horizonte a corto plazo en que el modelo NARX muestra una mejora respecto a un
modelo ARIMA de un solo conjunto de datos.

El siguiente trabajo es una comparativa que muestra como se adaptan los modelos
más usados en la literatura a los horizontes de tiempo. Nair et al. 2017 [67]. Realizó
un artículo que muestra los diferentes modelos de predicción como lo son redes neuro-
nales, ARIMA y la combinación de ambos ARIMA-ANN, para distintos horizontes de
tiempo y comprobar en qué horizonte estos modelos son más aptos y con una mejor
predicción. El resultado comprueba que los modelos híbridos tienen mejores resulta-
dos. Las series de tiempo fueron adquiridas de 3 sitios distintos en Tamil Nadu, India.

En este artículo Dimitru et al. 2019 [68]. Comparan dos modelos muy usados en
el área de la predicción de energía eólica, como son el modelo ARIMA y la FFANN.
Los datos provienen de una serie de tiempo de producción de electricidad, medidos en
todo el mes de marzo 2018 del operador de sistema eléctrico nacional de Rumania. El
objetivo es mostrar la capacidad de ambos modelos y realizar una comparativa para
una predicción a corto plazo. Los resultados muestran que ARIMA obtiene menos
error en las métricas de medición que una red neuronal. Sin embargo, en un segundo
intento se realizó una segunda configuración de FFANN (del inglés FeedForward Ar-
ticial Neuronal Network), para realizar una mejora sobre el mismo modelo de ANN.
El resultado demuestra que una simple reconfiguración de la red puede mejorar el
modelo de la predicción por encima de un 15 % en las métricas de medición de errores.
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Figura 5.4: Modelo propuesto por Dimitru et al. 2019

Este artículo realizado por Niu et al. 2020 [54]. Adoptan un nuevo modelo de
pronóstico híbrido que combina la descomposición modal empírica (EMD) y la red
neuronal de regresión general (GRNN) optimizada por el algoritmo de optimización
de la mosca de la fruta (FOA). En este nuevo modelo, las series originales de ve-
locidad del viento se descomponen primero en una colección de funciones de modo
intrínseco (FMI) y un residuo. El error porcentual absoluto medio de los resultados
del pronóstico en dos casos es respectivamente 8,95 % y 9,87 %, lo que sugiere que el
enfoque híbrido supera a los modelos comparados, lo que brinda orientación para el
pronóstico futuro de la velocidad del viento.

Este artículo propuesto por Zhang et al. 2021 [69]. Desarrolla un modelo autorre-
gresivo dinámico adaptativo (ARDA) basado en la mejora del modelo autorregresivo
(AR). El método de estimación de parámetros fijos del modelo AR se mejora en el
modelo propuesto a un método de estimación de parámetros paso a paso dinámica-
mente adaptable. Los coeficientes del modelo se actualizan de forma adaptativa en
función de las características de los datos de energía eólica, lo que mejora la precisión
del modelo propuesto. La precisión de predicción del modelo propuesto se mejora aún
más mediante la función residual. El modelo se adapta bien a datos de energía eólica
con diferentes grados de volatilidad. El modelo ARDA y otros dos modelos se proba-
ron utilizando datos de energía eólica estacionaria y fluctuante (unidad: segundos), y
se compararon los resultados de predicción de energía eólica en diferentes longitudes
de paso de pronóstico. El modelo ARDA es más preciso, con una tasa de cálculo
más rápida y una mejor adaptabilidad dinámica a las fluctuaciones de datos que los
modelos ARIMA y LSTM.
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5.2. Modelo híbrido múltiple ARIMA
Está comprobado que modelo ARIMA es efectivo para el pronóstico de series tempo-
rales de un solo conjunto de datos. No obstante, cuando faltan datos, hay ruido o los
conjuntos de entrenamiento contienen pocos datos, los modelos ARIMA no son efec-
tivos. El modelo múltiple ARIMA busca mejorar estas deficiencias utilizando más de
un conjunto de datos, para crear un modelo ARIMA por cada conjunto y unir todas
sus características mediante una red neuronal. Mejorando la precisión y robustez del
modelo ARIMA original.

5.2.1. ARIMA múltiple

Cuando se tienen l conjuntos de diferentes datos

{yσt } , σ = {1, 2, ..., l}

Es posible entrenar l modelos ARIMA M1 · · ·Ml usando el enfoque de modelado ARI-
MA para determinar (p, q, d) para cada conjunto de datos σ, y estimar los parámetros
de cada (p, q, d)-orden el modelo ARIMA usados en (3.42). El vector de parámetros
θi está asociado a un modelo ARIMA Mi. Los múltiples ARIMA se presentan como:

ARIMAθi
(
pi, qi, di

)
, i ∈ σ (5.1)

El modelo ARIMAθi (p
i, qi, di) puede predecir los conjuntos de datos {yit}.

5.2.2. Transferencia de aprendizaje en múltiples modelos ARI-
MA

Si hay incertidumbres en los conjuntos de datos de entrenamiento {yσt } o se tienen
pocos datos, los modelos de predicción no pueden dar buenos resultados. Utilizando
la propuesta de aprendizaje por transferencia y modelos múltiples se busca resolver
estos problemas.

La propiedad fundamental del aprendizaje por transferencia es que puede rete-
ner y reutilizar el conocimiento aprendido previamente. Consiste en modelos pre-
entrenados, donde los pesos finales de estos modelos se utilizan como condiciones
iniciales del entrenamiento secuencial. Esto se puede adoptar como un método común
para entrenar redes neuronales con menos información. Cuando los datos de entrena-
miento son pocos y no se sienten completos, podemos tomar datos de otros conjuntos
de datos similares. En este modelo nos inspirándonos en esta idea, proponemos el
siguiente enfoque de aprendizaje por transferencia que se muestra en la siguiente
ecuación, donde Λa y Λb son dos dominios relacionados y k se refiere a cada uno de
los datos contenidos en ellos

Λa = Ya(k) = [ya(k − 1), ya(k − 2), ..., ya(k − n)]
Λb = Yb(k) = [yb(k − 1), yb(k − 2), ..., yb(k − n)]

(5.2)
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Suponemos que existe alguna relación (explícita o implícita) entre estos dominios,
luego podemos usar el conocimiento de Λb para compensar la efectividad de los datos
faltantes en Λb, es decir, podemos usar {Λa,Λb} para entrenar el modeloMa o podemos
usar Λb para entrenar previamente el modelo Ma, luego usamos Λa para entrenar con
precisión el modelo Ma, pero lo más importante para un aprendizaje exitoso es que el
dominio con más información transfiere características al dominio con datos pequeños.
En el caso general, tenemos l modelo de predicción y conjuntos de datos {Λi, · · · ,Λl},
cada tarea de predicción se puede representar mediante un modelo ARIMA

ŷi(k) = ARIMAi[(ŷi(k − 1), ŷi(k − 2), ..., ŷi(k − n)] (5.3)

dónde i = {1, · · · , l} i ∈ σ. Sea S un conjunto cerrado y acotado que representa un
espacio de parámetros de dimensión finita

ARIMAi (Di)

donde Di es el i-ésimo conjunto de datos, ARIMAi es i-ésimo modelo ARIMA.

El vector de parámetros del modelo θi ∈ S, ya que todos los modelos se pueden
parametrizar de la misma forma. Definimos θi∗ como los parámetros subóptimos del
i-ésimo modelo ARIMA. Existe una región de límite cerrado Ω, tal que θi∗ ∈ Ω,
entonces

θi∗ ∈ S
Esto significa que podemos combinar todos los Mi, i = 1, · · · , l de manera adecuada,
aunque sus dominios sean diferentes.

5.2.3. ARIMA múltiple combinado con redes neuronales

Las redes neuronales son modelos basados en datos. Son más flexibles que ARIMA,
pero la precisión del modelado para una serie de tiempo es peor que ARIMA. La
combinación de redes neuronales y ARIMA puede utilizar ambas ventajas de estos
dos modelos. Para el modelo ARIMA único, existen varios tipos de compensación,
como la compensación directa [70].

y = ARIMA (D) + yNN

Aquí, la red neuronal se usa para aprender el error de modelado de ARIMA(D). O
combinación de productos [71].

y = ARIMA (D) ∗ yc, yc =
yNN

ARIMA (p, q, d)

donde ARIMA (p, q, d) es el resultado previo al entrenamiento. O conexión serie [36]

yNN =

n2∑
j=1

vjϕ(

n1∑
o=1

wijAt−o), At−o = ARIMA (p, q, d) (5.4)

Para la propuesta de este modelo se utiliza una red neuronal que combina varios
modelos ARIMA. Se construyeron 2 estrategias para combinarlos: 1) ARIMA múltiple
con fusión de redes neuronales; 2) ARIMA múltiple con compensación de red neuronal.
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Combinación de modelos ARIMA usando redes neuronales

El modelo de red neuronal más popular es el perceptrón multicapa (MLP). Un
MLP de dos capas se puede escribir como

ŷi(k + 1) =
n∑

j=1

Wjϕ

[
l∑

o=1

Voj ŷi(k − o+ 1)

]
(5.5)

donde ŷi(k + 1) es la salida del MLP, ϕ es la función activa no lineal, Voj y Wj son
los pesos, n1 y n2 son el número de neuronas en las dos capas.
Para usar una red neuronal para combinar diferentes modelos ARIMA, se requiere
el aprendizaje de transferencia discutido anteriormente, es decir, diferentes conjuntos
de datos con sus propios modelos ARIMA pueden ayudar a otro modelo ARIMA a
mejorar su precisión de predicción. El esquema de combinación de diferentes modelos
ARIMA utilizando una red neuronal se muestra en la Figura 5.5.
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𝑒𝑖(𝑘 + 1)

Figura 5.5: Esquema de combinación del modelo ARIMA y ANN.

La salida de los múltiples modelos ARIMA es

ŷni(k + 1) =
n∑

j=1

Wjϕ

[
l∑

o=1

VojAo (k)

]
(5.6)

donde Ao(k) es el resultado de cada modelo ARIMA obtenido en la figura 3.1,

Ao (k) = ARIMAo (Di) , o = 1 · · · l,

La tarea principal es entrenar (5.6) con el error de entrenamiento

ei (k + 1) = yi(k + 1)− ŷni(k + 1)
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tal que
[V ∗,W ∗] = argmı́n

V,W

∑
e2i (k + 1) (5.7)

dónde V = {Voj} , W = {Wj} . Con el algoritmo de retropropagación se obtiene
[V ∗,W ∗] . Donde ARIMAj (Dj) es entrenado por su propio conjunto de datos Dj

como en la figura 5.5, posteriormente la red neuronal NNi es entrenada por Di, tal
que ŷni(k + 1) de (5.6) es mejor que ŷi(k + 1)

ŷi(k + 1) = ARIMAi (Di)

La diferencia entre el método ARIMA múltiple propuesto y los métodos híbridos que
presenta la literatura [[72],[71]], es que las entradas a NN de (5.6) son la salida de
modelos ARIMA "múltiples", mientras que las entradas a NN en [[72],[71]] son de uno
solo modelo ARIMA. Una ventaja del modelo propuesto es que posible extraer más
características aplicando las técnicas de aprendizaje por transferencia en múltiples
conjuntos de datos.

Compensación de modelos ARIMA usando red neuronal

Este modelo se modificó del propuesto original a través de los experimentos realizados,
debido a que no todos los modelos se adaptaron de forma correcta. Por tanto, el
esquema considera usar una compensación a la red neuronal, con el motivo de que
aprenda del error de predicción del modelo ARIMA, vea la Figura 5.6.
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ෝ𝑦𝑖(𝑘 + 1)

Figura 5.6: Esquema de combinación del modelo ARIMA y ANN con compensación.

Después del primer paso de entrenamiento como en la Figura 3.1, la predicción el
error del modelo ARIMA es

ei (k + 1) = yi(k + 1)− ARIMAi (Di)
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La salida de los múltiples modelos ARIMA es la misma que (5.6), pero Ao(k) es

Ao (k) = ARIMAo (Do) , o = 1 · · · l, o ̸= i

El error de entrenamiento es

êi (k + 1) = ei (k + 1)− ŷni(k + 1)

La minimización del error de entrenamiento es

[V ∗,W ∗] = argmı́n
V,W

∑
ê2i (k + 1) (5.8)

Después de entrenar la red neuronal, la predicción del i-ésimo modelo es

ARIMAi (Di) + ŷni(k + 1)
o ARIMAi (Di) + êi (k + 1)
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Pronóstico de energía eólica con
modelo híbrido múltiple ARIMA

En este capítulo se describen los conjuntos de datos con más detalle; la transforma-
ción de cada conjunto a serie de tiempo utilizando como unidad de tiempo los días
respecto a la energía eólica generada en Giga Watts, la comprobación de la prueba
ADF para verificar si una serie es estacionaria o en su defecto en que diferencia se
vuelve estacionaria, la obtención de los parámetros (p, d, q) para construir los modelos
ARIMA, la unión de estos modelos con la red neuronal, la elección de la red neuronal
y los códigos en Python y MATLAB que beneficiaron a cumplir las tareas anteriores.

6.1. Conjuntos de datos
La parte de los datos fue y es una problemática que surge del país; los datos respecto
a energía eléctrica no se pueden conseguir de ninguna forma que no sea pasando por
la Comisión Federal de Electricidad (CFE) de México. Esto complicó uno de los obje-
tivos principales que era recabar datos de granjas eólicas en México, algunos artículos
[20], [7] han podido trabajar con estos datos haciendo predicción de la velocidad del
viento, pero mencionan que los datos son propiedad de CFE, por tanto, no provienen
de una base que pueda ser utilizada. Por ello decidimos plantear el modelo con con-
juntos de acceso libre y en un futuro incluir datos de México.

Se obtuvieron 3 bases de datos de distintos sitios: Kaggle (plataforma web de
datos y competencias online), Alemania y California. Posteriormente se realizó el
procesamiento de los conjuntos para convertirlos en un formato en días de energía
eólica generada. A continuación, se describirá cada una de las bases de datos antes de
realizar la limpieza de anomalías y la conversión a serie de tiempo de días respecto a
energía generada.

57
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Datos Kaggle.

Conjunto de datos obtenido en la competencia Global Energy forescasting Competi-
tion 2012. Los valores de las series de tiempo son recolectados de 7 granjas eólicas
en un periodo comprendido entre julio 2009 y junio del 2012, para las pruebas se
tomaron los datos de la primera granja en un periodo comprendido entre 1 de julio
2009 hasta el 31 de diciembre de 2010. El formato de la fecha del conjunto es de la
forma 2009071102 siendo los primeros 4 números el año (2009), los dos siguientes el
mes (07), los consiguientes dos el día (11) y los últimos la hora (02) presentada en
un formato de 24 horas. En la figura 6.1 se observa una visualización de los datos
y una flecha que nos señala la variable de energía generada que se utilizó, cada co-
lumna representa una granja distinta y las mediciones de energía eólica que obtuvo
en los distintos tiempos. Mediante una sumatoria de las horas en cada fecha se obtu-
vo la serie de tiempo de los datos de Kaggle. Información a detalle de los datos en [73].

2 0 0 9 0 7 0 1 0 2

Año Mes Día Hora

Figura 6.1: Datos de Kaggle y visualización del formato de fechas.
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Datos California.

Datos obtenidos en la página de la ISO (Independent System Operator) California,
compañía que administra el flujo de electricidad en un 80 % de líneas de transmisión
de alta tensión y larga distancia de California. Los datos se presentan en columnas
de fecha, hora (formato de 24 horas), junto con los siguientes tipos de energía: bio-
gas, geotérmica, biomasa, hidro, eólica total, solar fotovoltaica y solar térmica. En
la figura 6.2 se observa el formato de los datos de tiempo con los que se creó una
sumatoria de las horas para conformar los días para la serie de tiempo, mientras que
una flecha nos indica la columna elegida de la energía eólica. El registro del periodo
tomado para la serie de tiempo fue del 1 de septiembre de 2011 hasta 31 de agosto
del 2012. Información a detalle de los datos en [74].

7  /  21  /  2011 4:00

Fecha Hora

Figura 6.2: Datos de California y visualización del formato de fechas.
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Datos Alemania.

Conjunto de datos obtenido del sitio netztransparenz, contiene información publicada
conjuntamente por 4 operadores de sistemas de transmisión alemanes. Las granjas eó-
licas pertenecen a las siguientes empresas: Tennet, 50Hertz, TransnetBW y Amprion.
El conjunto seleccionado para los experimentos fue Tennet. Los datos de generación
de energía son tomados en intervalos de quince minutos dando un total de 96 medicio-
nes por día. De esta forma al hacer la sumatoria de las 96 mediciones se obtuvieron
las mediciones para cada fecha correspondiente. En la figura 6.3 se observa que la
primera columna corresponde a las fechas y cada fila a partir de la segunda columna
son los pasos de medición del tiempo que fueron sumados para así obtener una serie
de tiempo en días. Información a detalle de los datos en [75].

…

…

31 /  08  /  2019 0:15:00

Fecha Tiempo

Figura 6.3: Datos de Tennet-Alemania y visualización del formato de fechas.
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6.2. Pre-procesamiento de datos

Respecto al horizonte de predicción se decidió tomar una predicción de largo plazo,
debido a la naturaleza de los conjuntos. Varios artículos mencionan que los modelos
estadísticos y basados en aprendizaje automático funcionan mejor con predicciones
a corto plazo, esto quiere decir que las predicciones tienen que ir en la medición de
minutos (revisar 2.2), en nuestro caso optamos por una medición en días debido a
que las bases originales tenían perdidas de mediciones en bastantes horas del día, por
tanto, para hacer más homogéneos los datos realizamos las sumatorias de todas la
mediciones y sintetizamos las series respecto a días.

Para el procesamiento de los datos utilizamos el lenguaje Python versión 3, en
el siguiente código 6.2 se explica la normalización para los conjuntos de datos y así
crear cada una de las series estacionarias.
Una vez obtenidos los tres conjuntos de datos seleccionados (Kaggle (Granja 1), Ca-
lifornia, Alemania (Tennet)) fueron normalizados alrededor de los valores [0, 20] para
evitar anomalías y redundancias entre estos, se utilizó la ecuación de normalización
siguiente:

Xnorm(i) =
xi −min(x)

max(x)−min(x)
(6.1)

Donde xi es cada dato de la serie de tiempo, mientras que min(x) está denotado por
0 y max(x) está denotado por 20, para así obtener la relación a la que pertenece cada
dato entre las cotas propuestas.

1 from s k l e a rn . da ta s e t s import l o ad_ i r i s
2 from s k l e a rn . p r ep ro c e s s i ng import MinMaxScaler
3 from s k l e a rn import pr ep ro c e s s i ng
4 import numpy as np
5 import matp lo t l i b . pyplot as p l t
6 import pandas as pd
7

8 s e r i e = pd . read_csv (’datos.csv’ , parse_dates=True , index_col=0)
9 minmaxsca = prep ro c e s s i ng . MinMaxScaler ( feature_range =(0 ,20) )

10 x_sca ler = minmaxsca . f i t_trans fo rm ( s e r i e )
11 df = pd . DataFrame ( x_sca ler )
12 s e r i e e n e r g = df [ 0 ]

Como se puede observar en código anterior, en la línea 8 tomamos los datos de
cada serie en un formato .csv, dónde posteriormente en el código pasamos a realizar
la normalización con el procedimiento de Python x_scaler y una vez lo movemos a
un objeto podemos visualizar su contenido y graficar cada una de las series.

Las siguientes gráficas muestran los conjuntos de datos normalizados en el margen
antes mencionado, todos los datos se componen por fecha en días en el eje de las
abscisas, mientras que en el eje de las ordenadas muestra la energía generada en Giga
Watts (GW).
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Figura 6.4: Serie de tiempo normalizada de los datos California del periodo compren-
dido entre 1 de septiembre de 2011 hasta 31 de agosto del 2012.
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Figura 6.5: Serie de tiempo normalizada de los datos Alemania-Tennet del periodo
comprendido entre 23 de agosto de 2019 hasta 22 de septiembre del 2020.



Capítulo 6 63

Sep 2010 Oct 2010 Nov 2010 Dec 2010 Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011 Aug 2011 Sep 2011

Time

0

5

10

15

20

25

E
n

e
rg

ía

Base de datos (Kaggle-Granja 1)

Granja 1 Kaggle

Figura 6.6: Serie de tiempo normalizada de los datos Kaggle (Granja 1) del periodo
comprendido entre 1 de septiembre de 2010 hasta 30 de agosto del 2011.

Al poder visualizar como se han creado nuestras series de tiempo en la forma
correcta, se debe analizar si las series son estacionarias o en qué diferencia la serie
puede convertirse en estacionaria.

6.3. Prueba estacionaria
Es esencial para el modelo ARIMA conocer si la serie de tiempo es o no estacionaria,
dado que uno de los parámetros del modelo ARIMA requiere de saber de cuantas
diferencias requiere una serie para convertirse en estacionaria o si la serie ya lo era,
el parámetro d toma el valor de 0.

A continuación, se presenta el análisis que se obtuvo por medio del método Dickey-
Fuller aumentado (ADF en inglés Augmented Dickey-Fuller).

Serie ADF Estadístico p-valor 1 % 5 % 10 % H0 d
Kaggle -2.153723 0.22346750 -3.449 -2.870 -2.571 not stationary 0
Kaggle -7.903060 4.1355332e-12 -3.449 -2.870 -2.571 stationary 1

Germany -2.898682 0.0455013 -3.447 -2.869 -2.569 stationary 0
California -1.226807 0.661958 -3.449 -2.870 -2.571 not stationary 0
California -9.737932 8.649381e-17 -3.449 -2.870 -2.571 stationary 1

Tabla 6.1: Resultado de la prueba Dickey-Fuller en los conjuntos de datos
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El código 6.3 da como resultado la respuesta de la prueba ADF para las diferentes
series de tiempo:

1 r e su l t ado = ad f u l l e r ( s e r i e e n e r g )
2 print (’ADF Statistic: %f ’ % r e s u l t [ 0 ] )
3 print (’p-value: %f ’ % r e s u l t [ 1 ] )
4 print (’Critical Values: ’ )
5 for key , va lue in r e s u l t [ 4 ] . i tems ( ) :
6 print (’\t %s: %.3f’ % (key , va lue ) )
7 i f r e su l t ado [0] < r e su l t ado [ 4 ] [ "5 %" ] :
8 print ("Es estacionaria" )
9 else :

10 print ("No estacionaria" )

Para explicar el código anterior se utiliza la función adfuller directamente sobre nues-
tra serie de tiempo normalizada, esta nos arrojará el resultado de la prueba en la
cual buscamos comparar con nuestros valores críticos en los distintos porcentajes de
aceptación. Si el valor del ADF es menor que el valor crítico al 5 % la serie puede
determinarse estacionaria, se puede considerar también el valor del 10 % y el 1 % pero
estos sirven como un límite superior e inferior que delimitan el resultado de la prueba.

Con base en la subsección 2.4.1 y con apoyo en la figura 2.5 se resume lo siguiente:
Para determinar que la series son estacionarias, en la tabla 6.1, se pueden observar los
valores críticos del 1 %, 5 % y 10 % deben compararse con el resultado de la prueba
para determinar si la hipótesis de Dickey-Fuller se rechaza o se acepta, en caso de
aceptar la hipótesis indicaría tener una raíz unitaria y por tanto la serie se determi-
na como no estacionaria, mientras que, si se rechaza, la serie se determinará como
estacionaria. Por tanto el conjunto de Kaggle es estacionario hasta la primer dife-
renciación debido a que en la primera prueba (diferenciación 0) obtiene un valor de
-2.153, viendo todos los valores críticos y comparando, se puede determinar qué valor
ADF (Kaggle) de la prueba es menor a todos estos, por tanto, la serie de tiempo nece-
sita diferenciarse, así como también el conjunto de California presenta una tendencia
similar, en la primera prueba el valor de ADF (California) es de -1.22, comparándolo
con los valores críticos se obtiene que es menor a todos ellos, pero al diferenciar una
primera vez logra superarlos, mientras que el conjunto de Alemania al obtener un
valor del ADF en -2.898 al compararlo con el 1 % de valor crítico la prueba no sería
valida, a pesar de ello, logra ser mayor que los otros valores críticos (5 % y 10 %) y
por tanto, la serie queda determinada como estacionaria.
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6.4. Entrenamiento de los modelos ARIMA

Los ARIMA de los 3 modelos en un inicio se trabajaron en la parte de Python y pos-
teriormente fueron pasados a lenguaje R para comprobar un mecanismo de ensamble
que surgió como prueba, para comprobar que se tuvieran bien los modelos ARIMA
óptimos verificamos con la app Econometric Modeler de MATLAB que tuviéramos
los mismos resultados de estimación de AIC y resultó tan conveniente que a partir
del cálculo de los modelos ARIMA, todo lo demás fue desarrollado en MATLAB por
la fácil unión que nos representó crear la red neuronal.

Para comenzar el entrenamiento de los modelos ARIMA se requiere especificar
los tres parámetros de orden (p,d,q), en donde el significado de cada uno de ellos se
refiere a lo siguiente.

p es el orden del término AR (del inglés Autoregressive) que usa los valores
pasados en la ecuación de regresión para la serie temporal.

d es el número de diferenciaciones requeridas para hacer que la serie de tiempo
sea estacionario.

q es el orden del término MA (del inglés Moving Average) que representa el
error del modelo como una combinación de términos de errores anteriores.

Para crear los modelos ARIMA de cada conjunto de datos se determinan los pa-
rámetros de p, d y q. En el caso del parámetro d fue calculado mediante el método
de Dickey-Fuller Aumentado en el apartado anterior, los dos parámetros restantes re-
quieren de un análisis de las gráficas de autocorrelación total (ACF Autocorrelation
Function) y autocorrelación parcial (PAF Partial Autocorrelation Function).

Las siguientes gráficas determinan las pruebas de autocorrelación parcial y auto-
correlación, las cuales determinan el número de p coeficientes de autoregresiones que
necesita la serie de tiempo y el número de q coeficientes de medía móvil para construir
el modelado de las series. Las gráficas no devuelven un modelo en particular para cada
serie de tiempo, su función es delimitar los parámetros del modelo ARIMA que mejor
aproximan la serie de tiempo que se quiere modelar. Este método requiere generar
un algoritmo de caminata aleatoria o una búsqueda a fuerza bruta para encontrar los
mejores parámetros, para evitar el uso de un algoritmo de ese estilo, procedimos a
ocupar el método de criterio de Aikake mencionado en la sección 3.3.1.

A continuación se describen las características que contienen cada una de las
gráficas respecto a los parámetros p y q para cada serie de tiempo:
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(a) Autocorrelación. (b) Autocorrelación parcial.

Figura 6.7: ACF/PCF Análisis para el conjunto de datos de Alemania.

La figura 6.7a muestra el análisis del ACF y determina los posibles candidatos para
el parámetro q. El análisis del gráfico dictamina que las opciones para el parámetro
son 1, 2, 3, 4 y 5. Para examinar el caso de p se selecciona la gráfica 6.7b, en donde
se determina que los posibles candidatos son 1 y 2. Dando como resultado varias
combinaciones para el conjunto de datos de Alemania

(a) Autocorrelación. (b) Autocorrelación parcial.

Figura 6.8: ACF/PCF Análisis para el conjunto de datos de California.
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El procedimiento anterior tiene que repetirse para el conjunto de California. Con
base en la figura 6.8a, al observar el gráfico ACF se determina que las opciones para
q son 1, 2, 3, 4, 5 y 6, mientras que la gráfica 6.8b se utiliza para la elección de p y
de esta forma los posibles candidatos son 1, 2, 3 y 4.

(a) Autocorrelación. (b) Autocorrelación parcial.

Figura 6.9: ACF/PCF Análisis para el conjunto de datos de Kaggle.

Reutilizando el procedimiento de los anteriores conjuntos, en la figura 6.9 co-
rrespondiente a Kaggle se procede a determinar los candidatos posibles para cada
parámetro, al revisar el gráfico ACF 6.9a se determina que las opciones adecuadas
son 1, 2 y 3, mientras la gráfica 6.9b de PAF determina que las mejores opciones para
p son 1, 2 y 3.

La tabla 6.2 es un breve resumen de los parámetros candidatos que pueden cons-
truir los modelos ARIMA para las series de tiempo.

Serie p d q
Alemania 1,2 0 1,2,3,4,5
California 1,2,3,4,5,6 1 1,2,3,4
Kaggle 1,2 1 1,2,3

Tabla 6.2: Resumen de los parámetros ARIMA candidatos obtenidos con las pruebas
de ACF, PAF y la prueba Dickey-Fuller aumentada.
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La tabla 6.2 acota el rango de búsqueda de los parámetros (p, d, q) para la selec-
ción de un modelo óptimo en cada conjunto de datos. Sin embargo, como ya se ha
mencionado requiere de una búsqueda por fuerza fruta para medir la predicción de
cada modelo, se descartó esa idea para utilizar el criterio AIC (Aikake Information
Criterion).

Una vez evaluados los parámetros (p,d,q) y obteniendo todos los modelos posibles,
procedemos a usar el AIC para compararlos. Las puntuaciones más bajas son mejores,
y AIC penaliza a los modelos que utilizan más parámetros. Entonces, si dos modelos
tienen la misma cantidad de variación, el que tenga menos parámetros tendrá una
ponderación AIC más baja y será el modelo de mejor ajuste.

El código para encontrar el mejor modelo de parámetros es el siguiente:

1 modeloopt = auto_arima ( s e r i e en e r g , t r a c e=True , s ea sona l=True , s t epwi s e=
True , approximation=True , suppress_warnings=True )

Con la función auto_arima podemos determinar el modelo mejor adaptado a cada
serie de tiempo, basándonos en el AIC obtenido.

Alemania[TenneTTSO] California Kaggle[Granja 1]
Model AIC Model AIC Model AIC

ARIMA(1,0,4) 1544.3 ARIMA(0,1,2) 1367.3 ARIMA(1,1,2) 1336.2
ARIMA(1,1,4) 1544.8 ARIMA(0,1,3) 1368.5 ARIMA(2,1,1) 1337.1
ARIMA(2,0,5) 1545.0 ARIMA(1,1,2) 1368.8 ARIMA(2,1,3) 1337.8
ARIMA(1,1,2) 1546.7 ARIMA(0,1,4) 1369.2 ARIMA(1,1,3) 1338.2
ARIMA(2,1,3) 1546.9 ARIMA(1,1,3) 1369.7 ARIMA(2,1,2) 1338.3
ARIMA(1,1,3) 1547.0 ARIMA(1,1,4) 1371.2 ARIMA(1,1,1) 1340.1
ARIMA(2,0,2) 1554.3 ARIMA(2,1,3) 1371.3
ARIMA(1,0,2) 1554.8 ARIMA(6,1,2) 1376.4

Tabla 6.3: AIC de los modelos ARIMA para los conjuntos de datos

La tabla 6.3 muestra AIC de los mejores modelos obtenidos de las combinaciones
de parámetros de la tabla 6.2, organizados de menor a mayor, es por ello que se
determina que el modelo ARIMA (1,0,4) es el mejor para el conjunto de Alemania,
el modelo ARIMA (0,1,2) es la mejor opción para California y por último el modelo
ARIMA (1,1,2) fue el seleccionado para Kaggle.
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6.5. Predicción del modelo ARIMA múltiple
Para la elección de la red neuronal de primera instancia se utilizó la app de Regres-
sion Learner de MATLAB, que da la opción de optimizar una red neuronal con los
datos de entrenamiento y encontrar un modelo optimizado basado en el error MSE
calculado. A pesar de ello las combinaciones de redes neuronales que sugerían fue-
ron combinaciones 3 capas con neuronas entre (1-100) en la primera capa y (1-10)
neuronas en la segunda capa. Se probaron las combinaciones posibles sugeridas del
software, pero ninguna de estas nos dio un resultado satisfactorio. Por ello se creó una
red neuronal básica manteniendo las 3 capas sugeridas por el software, pero con un
tamaño de neuronas alrededor de (1-10), dando una mejor respuesta la combinación
de red de 3 neuronas en la capa de entrada, 2 en la capa oculta y 1 en la capa de salida.

A continuación, se presentan los resultados de predicción para el modelo propues-
to, cabe destacar que la configuración de la red neuronal fue determinada por una
configuración de 3 capas, en donde la capa de entrada son 3 neuronas, la capa oculta
consta de 2 neuronas y la última capa que pertenece a la capa de salida consta de
una sola neurona. Cada conjunto de datos fue divido en dos partes: los datos de en-
trenamiento, que constan del 75 % en cada serie de tiempo y los datos de prueba que
son el 25 % restante de los datos de cada conjunto.
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6.5.1. Predicción del conjunto de prueba para granja California-
ISO

Esta sección muestra los resultados obtenidos por el modelo ARIMA-múltiple, así
como los resultados obtenidos por el ARIMA(0,1,2) para el conjunto de datos de
California.

(a) Modelo ARIMA(0,1,2) de California. (b) ARIMA-múltiple de California.

Figura 6.10: Resultado de predicción de los modelos con los datos de California.

La figura 6.10a es el resultado de los datos de prueba para ARIMA(0,1,2)-California
óptimo, mientras que la figura 6.10 es la respuesta del modelo ARIMA-múltiple para
California. Aunque se puede apreciar comparando las dos gráficas que la respuesta
es mejor en 6.10b, se procede a analizar las métricas obtenidas entre estos dos modelos.

Modelo MAE SMAPE RMSE RSQ
ARIMA(0,1,2) California 2.4117 0.2676 3.139 0.3428

ARIMA-Multi California 0.6181 0.0715 1.263 0.8934

Tabla 6.4: Métricas para los modelos de California

La tabla 6.4 muestra una comparativa de las métricas para los datos de prueba
aplicados en California. Cada una de las métricas en el modelo ARIMA-Múltiple
presenta un error menor de casi el 50 % respecto al otro modelo. En el caso del MAE
presenta una mejora del 74.37 % y la métrica nos indica que cuanto más cercano a 0,
se obtiene un mejor rendimiento. Para la métrica SMAPE la mejora es del 73.28 %,
esta métrica nos indica que cuando se acerca a 0 el rendimiento del modelo es de
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buena predicción. La métrica RMSE se comporta de forma similar a la MAE, la
mejora que presenta el modelo múltiple es de 59.76 % respecto al modelo ARIMA. La
última métrica es el RSQ con una mejora del 55.06 %, en este caso cuando la métrica
es cercana 1, el modelo se acopla mejor a los datos originales. Se puede observar que
el modelo ARIMA-múltiple de California respecto a su ARIMA óptimo, no solo la
respuesta gráfica, las métricas de errores también muestran que el ARIMA-Múltiple es
mejor para el caso de los datos de California. Con base en los porcentajes de resultados
de las métricas de medición de los siguientes artículos [20], [64], [67], [66] podemos
determinar las métricas no tienen anomalías y corresponden a un buen resultado de
predicción.

6.5.2. Predicción del conjunto de prueba para granja Tennet-
Alemania

Esta sección muestra los resultados obtenidos por el modelo ARIMA-múltiple, así
como los resultados obtenidos por los modelos óptimos ARIMA para el conjunto de
datos de Tennet-Alemania.

(a) Modelo ARIMA (1,0,4) de Alemania. (b) ARIMA-múltiple de Alemania.

Figura 6.11: Resultado de predicción de los modelos con los datos de Alemania.

La figura 6.11a es el resultado de los datos de prueba evaluados en el modelo
ARIMA-Alemania óptimo, mientras que la figura 6.11b es la respuesta de la salida
del ARIMA-múltiple para Alemania. Como en el anterior modelo de California, la
predicción en la figura 6.11b también coincide con una mejora de respuesta a compa-
ración del ARIMA(1,0,4) óptimo para Tennet-Alemania. Sin embargo, la respuesta
gráfica debe compararse de forma numérica en la siguiente tabla de mediciones de
error.
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Model MAE SMAPE RMSE RSQ
ARIMA (1,0,4) Alemania 1.4644 0.6931 2.1952 0.1435

ARIMA-Multi Alemania 0.0687 0.1239 0.0811 0.9988

Tabla 6.5: Métricas para los modelos de Alemania

La tabla 6.5 muestra una comparativa de las métricas para los datos de prue-
ba aplicados en Alemania-Tennet. Cada una de las métricas en el modelo ARIMA-
Múltiple presenta un error menor en promedio del 80 % respecto al otro modelo. En
el caso del MAE presenta una mejora del 89 % y la métrica nos indica que cuanto
más cercano a 0, se obtiene un mejor rendimiento. Para la métrica SMAPE la mejora
es del 82.1 %, al igual que la métrica MAE nos indica que cuando se acerca a 0 el
rendimiento del modelo es de buena predicción. Con la métrica RMSE tiene un com-
portamiento igual a las anteriores, la mejora que presenta el modelo múltiple con esta
métrica es de 89 % respecto al modelo ARIMA. La última métrica RSQ tiene una
mejora del 84.6 %, en este caso cuando la métrica es cercana 1, el modelo se acopla
mejor a los datos originales. Se puede observar que ARIMA-múltiple de Alemania
respecto a su ARIMA(1,0,4) óptimo, obtiene resultados graficos muy cercanos a los
datos del conjunto original, en cuanto a las métricas de errores, estas muestran que el
modelo ARIMA-múltiple es mejor para el caso de los datos de Alemania-Tennet. Con
base en los porcentajes de resultados de las métricas de medición de los siguientes
artículos [20], [67], [66], [64] podemos determinar las métricas no tienen anomalías y
corresponden a un buen resultado de predicción.

6.5.3. Predicción del conjunto de prueba para granja 1 Kaggle

Esta sección muestra los resultados obtenidos por el modelo ARIMA-múltiple, así
como los resultados obtenidos por el modelo óptimo ARIMA(1,1,2) para el conjunto
de datos de Kaggle.

Para el caso de la base de datos Kaggle, se obtuvo un resultado no esperado al
comparar el modelo ARIMA múltiple y el ARIMA óptimo.
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(a) Modelo ARIMA (1,1,2) de Kaggle. (b) ARIMA-múltiple de Kaggle.

Figura 6.12: Resultado de predicción de los modelos con los datos de Kaggle.

La figura 6.12a es el resultado de datos de prueba evaluados en el modelo ARIMA-
Kaggle óptimo, mientras que la figura 6.12b es la respuesta del modelo ARIMA múlti-
ple para Kaggle. Contrario a los casos anteriores, Kaggle no logra obtener una buena
predicción en su modelo múltiple a comparación del modelo ARIMA óptimo. La tabla
6.6 es la comparativa de métricas de ambos modelos, en este caso el modelo ARIMA
óptimo de Kaggle es un 14.32 % con mejores resultados que el ARIMA-múltiple.
Aunque las métricas de SMAPE con (5.72 %) y RMSE con (5.35 %) muestran que el
ARIMA múltiple tiene mejor respuesta de predicción, la métrica RSQ califica a am-
bos modelos como insuficientes para predecir. La respuesta obtenida en las gráficas
nos muestran que la predicción no es nada precisa. Para encontrar una solución se ha
propuesto una técnica de compensación que mejora el modelo ARIMA-múltiple.

Model MAE SMAPE RMSE RSQ
ARIMA(1,1,2) Kaggle 1.6051 0.9938 2.2486 -0.1485

ARIMA-Multi Kaggle 1.8351 0.9369 2.1223 -0.0231

Tabla 6.6: Métricas para los modelos de Kaggle
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Figura 6.13: Modelo de ARIMA-múltiple compensado

La figura 6.13 es la respuesta del diagrama 5.6 del modelo ARIMA-múltiple com-
pensado, el modelo múltiple se resta con los residuales del modelo ARIMA óptimo.
Esto conlleva a un modelo compensado con el error y la respuesta nos presenta una
mejora de su antecesor el ARIMA-múltiple Kaggle.

Model MAE SMAPE RMSE RSQ
ARIMA-Multi Kaggle compensado 1.2064 0.8582 1.435 0.5322

ARIMA-Multi Kaggle 1.8351 0.9369 2.1223 -0.0231
ARIMA(1,1,2) Kaggle 1.6051 0.9938 2.2486 -0.1485

Tabla 6.7: Métricas para los modelos Kaggle y el modelo compensado

La tabla 6.7 determina la mejora del modelo múltiple compensado para Kaggle a
través de las métricas de error. En el caso del MAE presenta una mejora del 24 % y
la métrica nos indica que cuanto más cercano a 0 se obtiene un mejor rendimiento.
Para la métrica SMAPE la mejora es del 13.64 % del modelo compensado hacia el
ARIMA óptimo para Kaggle. Con la métrica RMSE el modelo múltiple compensado
es de 36.18 % mejor respecto al modelo ARIMA. La última métrica es el RSQ con una
mejora del 69.6 % en el modelo ARIMA-múltiple compensado, en este caso cuando
la métrica es cercana 1, el modelo se acopla mejor a los datos originales. Se puede
observar que el modelo ARIMA-múltiple compensado de Kaggle respecto a su ARI-
MA óptimo y ARIMA-múltiple presenta una mejora en la predicción. En conclusión,
no hace falta comparar directamente las métricas del modelo ARIMA-múltiple com-
pensado contra el ARIMA-múltiple, puesto que las mejoras contra el modelo ARIMA
óptimo de Kaggle son por encima del 10 %, mostrando que están por encima de los
resultados y con una respuesta gráfica superior a ambos modelos.



Capítulo 7

Conclusiones y trabajos futuros

7.1. Conclusiones

Se construyó un algoritmo de estrategia multimodelo con base en modelos ARIMA y
redes neuronales. Generalmente en distintos artículos se menciona la unión de estos
modelos por medio de las sumas de predicciones en las que separan la parte lineal,
la parte no lineal y el error (ŷ = yl + ynl + et). Podríamos decir que es un modelo
más de compensación que una unión de estos. Por ello el planteamiento que conside-
ramos fue entrenar los modelos ARIMA hasta llegar a los mejores modelos que puede
tener cada conjunto de datos. Utilizando el criterio AIC y basándonos en la teoría
que proporciona la transferencia de aprendizaje, de entrenar una red neuronal a par-
tir de modelos ya pre-entrenados. Desde mi punto de vista esto significaba otorgar
una mayor cantidad de características a nuestros conjuntos, porque en la actualidad
los modelos más modernos implican tomar en cuenta las condiciones meteorológicas
que presenta el área de ubicación en la que está localizada la granja. Con el fin de
determinar el comportamiento del viento a partir de temporadas. Sin embargo, se
requiere una gran cantidad de datos, que lamentablemente en un país como México
es complicado conseguir una base de datos con esa información y llega ser hasta cierto
punto imposible, debido a que hay demasiada restricción por parte de las empresas
que trabajan con este tipo de energías. Por ello el planteamiento fue obtener caracte-
rísticas de lugares completamente distintos y hacer la unión de modelos para que se
consideren más características distintas áreas, el lugar de solo proponer más datos de
granjas eólicas ubicadas en un mismo lugar. Cabe resaltar que nuestro objetivo fue
un poco acotado debido a que no pudimos compararlo con otro modelo un poco más
robusto, pero en un futuro se planea realizar una comparativa con otros modelos y
una mejora para el modelo realizado.

Otro de los objetivos planteado fue utilizar un conjunto (Kaggle) con menos datos
que los otros 2 conjuntos. Como bien hemos mencionado realmente pocos modelos
de predicción pueden trabajar con conjuntos que contienen menos datos, en este ca-
so era cerca de un 10 % menos datos que los otros conjuntos. Los modelos ARIMA

75
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no pueden realizar una buena predicción con conjuntos con menos datos y las ANN
mucho menos. Se requiere de una gran cantidad de datos para obtener suficientes ca-
racterísticas y obtener un modelo que pronostique buenas predicciones. Nuevamente
a través de la transferencia de aprendizaje, buscamos una oportunidad para mejorar
el conjunto de datos, y de esta forma proporcionarle más características a un modelo
de predicción; dando como resultado un modelo con mayor estabilidad y con mejoras
de predicción. Aunque esto no resultó en una mejora para los 3 modelos planteados,
dos de los tres conjuntos, lograron obtener aprendizaje de un conjunto mayor que
dio mejoras en su modelo. Los datos de Kaggle crearon el único modelo donde no
existe una mejora con solo aplicar la estrategia multimodelo. Por ello consideramos
apoyarnos en la idea de hacer una compensación al modelo, sumando el modelo obte-
nido menos la predicción del modelo ARIMA para ese conjunto de datos. Al realizar
las pruebas de la compensación nos otorgó mejores resultados que el modelo ARIMA
óptimo para Kaggle y aunque no es un porcentaje muy alto de mejora, se obtiene un
modelo estable con buena predicción. Aún falta fortalecer esta estrategia de compen-
sación para un modelo con pocos datos, debido a que es posible que se requieran más
características, y eso solo se consigue con más conjuntos de datos.

El último objetivo fue obtener resultados aceptables en las métricas comparati-
vas, cómo bien podemos observar en la sección 6.5 al comparar ambos modelos los
resultados obtenidos tienen mejoras altamente buenas en comparación con los mo-
delos ARIMA. Aunque el objetivo está un poco acotado como tal, debido a que la
comparativa es con el modelo ARIMA y no con otros modelos actuales, el modelo es
bastante estable. Las últimas pruebas que realicé fue ver si nuestro modelo logra man-
tener buenas predicciones cuando se somete a una prueba de repeticiones, Se sometió
de 50-100 repeticiones, entregando un cambio en las métricas del 1 % en promedio
para el caso de 100 repeticiones. Lo que nos demuestra que no fue un caso de la ca-
sualidad el que obtenga buenas predicciones. Regresando al punto de la comparativa,
como tal la idea es continuar con este modelo y llevarlo a comparar en un primer
punto con otros mecanismos de aprendizaje automático; cambiar la red neuronal por
otro mecanismo como SVM, KNN u otro mecanismo. El segundo punto es comparar
el modelo ARIMA-múltiple con modelos más robustos para verificar que las métricas
vuelven a estar a favor de nuestro modelo.
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7.2. Trabajo a futuro
El trabajo tiene varias áreas de oportunidad en las que se puede aprovechar el

mismo modelo o complementar para obtener otros beneficios mejores, a continuación,
listaré varias propuestas:

La primera propuesta es implementar una fase de descomposición de frecuencia
en las series de tiempo antes de entrar al modelo ARIMA, para obtener más
características tanto de frecuencia alta y baja. Al tener más series de tiempo por
usar el método de descomposición de frecuencias le otorgará a la red neuronal
características más provechosas, obteniendo un modelo más completo.

La siguiente propuesta es ocupar distintos métodos de aprendizaje automático
y verificar cual es el mejor para la unión de los modelos. En palabras simples
es cambiar la ANN por un SVM, KNN, u otros modelos. Esto para observar
el comportamiento y los resultados que nos arrojan las métricas de medición y
con base en ello determinar si podemos encontrar un método mejor o seguir con
una red neuronal.

Conseguir los datos fue complicado, pero una propuesta interesante sería con-
seguir datos de granjas eólicas ubicadas en México y poner a prueba el modelo.
Durante el proceso de la tesis, intentamos hablar con personas que ya habían
desarrollado artículos respecto a energía eólica ocupando datos de CFE. Sin
embargo, no fue posible que nos prestaran los datos.

Probar el funcionamiento del modelo con distintas series de tiempo que ten-
gan una variable distinta a la energía, en particular el modelo debe funcionar
para distintas variables (predicción de movimientos sísmicos, por ejemplo) que
correspondan a una serie de tiempo.

Obtener una base de datos con datos meteorológicos y con base en ello crear
series de tiempo para construir modelos más precisos. Realmente en muchos
artículos mencionan que para tener una predicción más completa se deben ana-
lizar los datos meteorológicos de la granja eólica, pero conseguir ese tipo de
datos es demasiado complicado. Por ello una buena prueba sería conseguir ese
tipo de datos y comprobar el funcionamiento del modelo.
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