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Resumen

La prediccion de energia edlica presenta grandes desafios como la integraciéon de la
red, la calidad de la energia, entre otros. Varios de estos problemas pueden arreglarse
con una calendarizacion 6ptima de energia, lo que implica que se requiere pronosticos
precisos y confiables, sin embargo, no todos los modelos de prediccién otorgan estas
cualidades. En la prediccion de energia edlica existen modelos matematicos estadis-
ticos y fisicos. Estos modelos proveen buena confiabilidad, pero la gran mayoria no
puede trabajar con series de tiempo de pocos datos, debido a que, al utilizarlos, se
crean modelos con poca precisién y pronosticos inciertos. En tesis propone construir
un modelo multiple de ARIMA (del inglés autoregressive integrated moving average)
para mejorar la precision de un solo modelo 6ptimo ARIMA de un conjunto pre-
sentado. El modelo miltiple se construye con diferentes series de tiempo de energia
generada obtenida en granjas edlicas situadas en California y Alemania. Se calcula
el modelo ARIMA 6ptimo para cada conjunto mediante el criterio AIC (Criterio de
Aikake), se selecciona un conjunto de datos a evaluar y se obtienen los residuales
ARIMA de todos los modelos. Estos fungirdn como caracteristicas a la entrada de
una red neuronal para pre-entrenarla y encontrar un modelo completamente nuevo.
El objetivo es obtener un modelo hibrido que mejore la precision en el pronostico en
comparacion a la red neuronal y el modelo ARIMA.
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Abstract

Wind power forecasting presents great challenges such as grid integration, power
quality, among others. Several of these problems can be fixed with optimal energy
scheduling, which implies that accurate and reliable forecasts are required, however,
not all forecast models provide these qualities. In the prediction of wind energy there
are statistical and physical mathematical models. These models provide good reliabi-
lity, but the vast majority cannot work with time series of few data, because, using
them, models with little precision and uncertain forecasts are created. In thesis he
proposes to build a multiple ARIMA (autoregressive integrated moving average) mo-
del to improve the accuracy of a single optimal ARIMA model from a presented set.
The multiple model is built with different time series of generated energy obtained
in wind farms located in California and Germany. The optimal ARIMA model for
each set is calculated using the AIC criterion (Aikake’s Criterion), a data set to be
evaluated is selected and the ARIMA residuals of all the models are obtained. These
will serve as features at the input of a neural network to pre-train it and find a com-
pletely new model. The objective is to obtain a hybrid model that improves forecast
accuracy compared to the neural network and the ARIMA model.
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Capitulo 1

Introduccion

Hoy en dia, las fuentes de energia alternativas han ganado mucha importancia debido
a que garantizan un funcionamiento que no contamina el medio ambiente. Con recur-
sos nucleares y combustibles fosiles limitados, las tecnologias de energia solar y edlica
han superado su cuota de mercado. Ademés de crear un impacto ambiental positivo,
la energia edlica ha abierto nuevas oportunidades de empleo a nivel mundial[l]. Desde
de la revolucion industrial, la generacion de energia para el aprovechamiento de las
cadenas productivas y el consumo de la poblacién humana es casi exclusivamente a
partir de combustibles fosiles y derivados de ellos. Algunos de los problemas relevan-
tes son el cambio climatico, la contaminacién del aire, la contaminacion del suelo, los
problemas de salud de la poblacién cercana a las plantas generadoras|2|. El medio
ambiente se ha visto afectado por los procesos productivos industriales humanos y
por el uso indiscreto de los recursos energéticos. Es urgente cambiar el paradigma
de la generacion de energia a métodos alternativos para abandonar gradualmente el
uso de combustibles fosiles y favorecer métodos mas amigables con el medio ambiente.

1.1. Enfoque de las energias renovables

La evoluciéon de las tecnologias de energia renovable durante la tdltima década ha
trascendido todas las expectativas. La capacidad instalada mundial y la producciéon
de todas las tecnologias renovables han aumentado sustancialmente, las politicas de
apoyo han seguido extendiéndose a mas paises en todas las regiones del mundo. A
principios de la década de 1970 cuando la crisis energética y el colapso econémico
dieron como resultado el crecimiento de las fuentes de energia renovable, paises en
desarrollo como Dinamarca, Estados Unidos, Espana y Alemania iniciaron el negocio
de las energias renovables debido al cambio climatico.

Una fuente de energia renovable es aquella cuya viabilidad tangible sigue siendo ili-
mitada ademés de poder utilizarse en su forma bruta. Se considera “sostenible” si
conserva los rasgos sociales, econémicos y ambientales para las generaciones futuras.
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Dado que las reservas de carboén son limitadas, las fuentes alternativas de energia
han ingresado al mercado para proporcionar una ruta sostenible y econémica para
consumir energia limpia. La produccién de energia a partir de fuentes renovables esta
aumentando a un ritmo constante y ha llevado al crecimiento econémico en muchos
paises en desarrollo. Una de las principales razones para promover las fuentes de ener-
gia renovable es la preocupacién ambiental que causa el agotamiento de la capa de
ozono en la atmosfera y las emisiones de gases de efecto invernadero. Como resultado
de las incesantes actividades industriales, surgié el primer tratado internacional, el
Protocolo de Kioto, una extension de la Convencion Marco de las Naciones Unidas
sobre el Cambio Climatico (CMNUCC) con el lema de frenar las emisiones de gases
artificiales [3]. Estas emisiones de gases incluyen didxido de carbono (C'Os), 6xido
nitroso (N2O), metano (CHy) y hexafluoruro de azufre (SFg). Ademaés, las partes
se han comprometido a reducir las emisiones a nivel nacional. Sin embargo, existen
algunos paises que no se comprometen con esta meta debido a su bajo ingreso per
capita. También existen algunas excepciones a las emisiones en forma de transporte
maritimo internacional y aviacion. La forma maéas limpia de producciéon de energia a
partir de fuentes renovables sigue floreciendo en el sector energético, lo que genera
enormes inversiones de los sectores ptublico y privado.

El recuento de instalaciones provenientes de fuentes renovables se ha duplicado
desde 2007. Entre las fuentes renovables, las energias e6lica y solar han sido un foco
de atencion para los legisladores que creen que el viento es un combustible limpio. 2015
fue testigo de un aumento del 44 % en la energia edlica en comparaciéon con 2014. Con
la tecnologia adecuada disponible, la energia de fuentes de energia renovables puede
aprovecharse adecuadamente. Las tecnologias de energia hidroeléctrica, solar y edlica
se consideraron los principales impulsores del mercado. Con la energia edlica marina
cada vez mas dominante en el mercado competitivo, se ha observado una disminucion
constante en el costo nivelado de la energia (LCOE). China representa la produccion
de energia méas grande del mundo a partir de fuentes de energia renovable, una asom-
brosa capacidad instalada de 647 GW, que consiste en 313 GW de energia de fuentes
hidroeléctricas. Paises como Alemania, Suecia y Dinamarca se centran en integrar
proporciones cada vez mayores de energia solar fotovoltaica y edlica en los sistemas
de redes de servicios piblicos mejorando las politicas reguladoras e incorporando un
sistema de transmision mejorado para ampliar las areas de equilibrio. Mientras tan-
to, los paises también estan invirtiendo fuertemente en almacenamiento de energia
para reducir un impacto significativo de la intermitencia [!]. Las fuentes de energia
renovable han tenido un impacto significativo en las economias en desarrollo. Especi-
ficamente, la energia edlica ha estado en el centro de atenciéon debido a su naturaleza
limpia y ecologica. Disponible en forma libre, el régimen del viento para un terreno
en particular depende esencialmente de variables climaticas como la temperatura, la
presion y la humedad del aire ambiente. Sin embargo, la energia eélica padece de
desafios como la integracion de la red, la calidad de la energia, la gestion de reservas,
el manejo de la saturacion y la prevision precisa.
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Los estudios de integracion de la red para la energia edlica han revelado muchos desa-
fios técnicos y socioculturales. El factor principal que determina una buena integracion
en la red de energia edlica es la capacidad de generacion de los parques edlicos. Para
los parques eo6licos terrestres, la proximidad a la red eléctrica ha demostrado ser un
factor beneficioso que, en tltima instancia, reduce los costos de transmision y auxi-
liares. Una calendarizacion 6ptima en la generacion de energia para un parque edlico
implica pronosticos precisos y confiables. En términos de flexibilidad, la energia edlica
se enfrenta a enormes desafios, por ejemplo un cambio repentino en la magnitud y
direccion de la velocidad del viento. Este fenémeno se denomina evento de rampa.
Tales eventos pueden manejarse mejor si los pronoésticos de energia edlica se hacen con
alta precision. La prediccion de la energia edlica se inicié a principios de la década de
1980 para modelar la velocidad del viento como series de tiempo [4]. Brown et al., han
estudiado los modelos de series de tiempo esencialmente para simular la velocidad y la
potencia del viento. Los pronosticos de velocidad del viento se transforman en pronos-
ticos de energia edlica mediante una ley de transformacion. Primero, la velocidad del
viento se pronostica a una altura de base y luego se extrapola a la altura del cubo de
la turbina utilizando la ley logaritmica o la ley de potencia. Se han aplicado modelos
de series de tiempo como los modelos de media moévil autorregresiva (ARMA en inglés
Autoregressive Moving Average) y de media movil integrada autorregresiva (ARIMA
en inglés Autoregressive Integrated Moving Average) para pronosticar la velocidad
del viento y planificar el despacho de energia edlica para un funcionamiento éptimo
del sistema de energia. Sin embargo, la precisién obtenida con estos modelos es baja
debido a varias limitaciones planteadas por la naturaleza no lineal y estocastica de la
velocidad del viento [1].

El ano 2020 fue el mejor de la historia para la industria eélica mundial, con un
crecimiento interanual del 53 %. La instalacion de mas de 93 GW de energia eolica
en un ano ha sido desafiante, con interrupciones tanto en la cadena de suministro
global como en la construccion del proyecto, ha demostrado la increible capacidad de
recuperacion de la industria edlica.

Los 93 GW de nuevas instalaciones elevan la capacidad global acumulada de ener-
gia edlica hasta 743 GW. En el mercado onshore, se instalaron 86,9 GW, un aumento
del 59 % en comparaciéon con 2019. China y los Estados Unidos siguieron siendo los
mercados mas grandes del mundo para nuevas incorporaciones onshore, y las dos prin-
cipales economias del mundo juntas aumentaron su participaciéon de mercado entre un
15% v 76 %. A nivel regional, 2020 también fue un ano récord para las instalaciones
en tierra en Asia Pacifico, América del Norte y América Latina. Las tres regiones
combinadas instalaron un total de 74 GW de nueva capacidad edlica terrestre el ano
pasado, o un 76 % maés que el afio anterior |5]. La generacion de energia edlica terrestre
ha alcanzado la madurez tecnologica de ser competitiva con las opciones de genera-
cion de energia de menor costo en muchos lugares. Por ejemplo, en México en 2012 la
capacidad instalada aument6 en un 76 % con respecto a la capacidad total instalada
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de generacion de energia edlica a fines de 2011, debido a la creciente explotacion del
intenso recurso en el estado de Oaxaca.

En Oaxaca en el corredor de la Venta a la Mata pasando por la Ventosa, la velocidad
del viento promedio anual es superior a 9 m/s a 30 m sobre el nivel del suelo con una
direccion del viento dominante de Norte-Noroeste/Norte-Noreste 70 % del tiempo [6].
Estas condiciones de vientos intensos altamente favorables en Oaxaca representan una
fuente apreciable de energia renovable de bajo costo, ademéas de las grandes reservas
de combustibles fosiles de México, lo que hace que su explotacion sea una prioridad.
En México, el Centro Nacional de Control de Energia (CENACE) es responsable del
control de despacho de energia para el Sistema Eléctrico Nacional. El CENACE utili-
za un sistema de informacién para preparar estrategias previas al envio. Este sistema
toma en cuenta: disponibilidad, derrateo, restricciones y otros factores que afectan la
capacidad de despacho de las unidades generadoras, asi como la prevision de deman-
da eléctrica. Recientemente, se ha desarrollado un nimero considerable de modelos
de prediccion de la velocidad del viento utilizando una variedad de métodos, algunos
simples y otros que combinan varias técnicas |7].

1.2. Motivaciéon y planteamiento del problema

Recientemente, el uso de energias limpias ha crecido a gran escala en los tltimos
anos, aun asi, los combustibles fosiles no dejan de ser relevantes para el uso de la vida
diaria, casi el 86 % de fuentes de energia son fosiles, lo que se busca cambiar para el
futuro es reducir ese porcentaje usando energias limpias como la edlica. Aunque en
Meéxico se cuenta con alrededor 68 parques eblicos aproximadamente, no existen una
buena cantidad de articulos y proyectos destinados a la prediccién de energia edlica
en el pais. El obtener y acceder a esta informacion puede ayudar tanto a calcular la
generacion de energia edlica, asi como, obtener informacion respecto a la vida tutil de
los generadores y a gran escala conocer la factibilidad de crear un parque edlico en
una zona geografica predeterminada del pafis.

Se han investigado modelos basados en IA (Inteligencia Artificial) para la predic-

cion del viento. [8] y [9] usan aprendizaje por reforzamiento, [10] y [11] usan logica
difusa, [12], [13], [14], y [15] utilizan SVM (del inglés support vector machine). Pasari
et. al. [16] tuvo en cuenta la funcion de activacion de la memoria a largo plazo, la

unidad lineal rectificada y el algoritmo de optimizaciéon de Adam, para realizar un
modelo de prediccion de la velocidad del viento basado en redes neuronales artificiales.
Navas et. al. [17] utilizo6 diferentes redes neuronales, como el modelo de red neuro-
nal de multicapa-perceptron, la red neuronal de funciéon de base radial y la regresion
categorica, para predecir con precision la velocidad del viento. Amir et. al.[13] cons-
truyé un modelo basado en redes neuronales artificiales, que mide la velocidad del
viento con mayor precision, utilizando algoritmos de entrenamiento, regularizacion
bayesiana, Levenberg Marquardt y gradiente conjugado escalado. Madhiarasan [19]
realizé una red neuronal de funcién de base radial recursiva utilizando tres variables,
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que son la direcciéon del viento, la temperatura y la velocidad del viento para mejorar
los sistemas eléctricos. Navas [17] y Madhiarasa [19] utilizaron redes neuronales para
mejorar la precision de la prediccion.

Sin embargo, los métodos anteriores no funcionan bien cuando los conjuntos de
datos de energia edlica tienen muestras pequenas o faltan datos, ya que los méto-
dos basados en estadistica y aprendizaje automético necesitan grandes datos para
entrenar los modelos. Para mejorar la prediccion, especialmente a largo plazo con
muestras pequenas, utilizamos el método de multimodelos y redes neuronales para
ARIMA. Usaremos la técnica de transferencia de aprendizaje para expandir los datos
de entrenamiento con los conjuntos de datos de otros parques edlicos. También com-
binaremos varios modelos de parques edlicos con redes neuronales. La idea basica es
usar el conocimiento de diferentes lugares de monitoreo para evitar el problema de
entrenamiento causado por muestras pequenas.

1.3. Objetivo y contribucién de la tesis

La contribucion objetivo fue desarrollar un modelo para la prediccion de energia eo-
lica con conjuntos de datos de serie de tiempo, y obtener una mejora de prediccién
que supere los estandares del modelo ARIMA. En esta tesis se construyé un nuevo
modelo que se basa en utilizar conjuntos de datos de 3 diferentes granjas edlicas con
distintas localizaciones del mundo. Con el fin de obtener diversas caracteristicas y
obtener un modelo predictivo. Esta propuesta no se limita a la combinaciéon de un
solo modelo ARIMA con red neuronal, como lo proponen [[20], [21]]. La diferencia
radica en desarrollar una estrategia multimodelo; que se refiere a construir modelos
ARIMA 6ptimos para cada conjunto de datos, entrenar tales modelos y posterior-
mente unirlos mediante una red neuronal. Entre la unién de los modelos se utiliza
como base el principio de aprendizaje por transferencia; en el que desea construir
un dominio mas grande para mejorar caracteristicas de un modelo predictivo. Con
las pruebas realizadas se comprueba que el modelo funciona para diversos conjuntos,
en este caso los tres propuestos; mejora la precision de cada modelo respecto a un
modelo solamente basado en ARIMA; aporta una mejora significativa a un modelo
creado con pocos datos, y puede ser aplicado en su mayoria a datos basados en series
de tiempo que constan de una sola variable. Concluyendo que el modelo propuesto
obtiene buena precision en las predicciones segtin las métricas de mediciéon de errores.
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1.4. Organizacion de la tesis

La organizacion del documento esta seccionada de la siguiente manera. En el capitulo
1 se describe de modo resumido la energia edlica, asi como los tipos de clasificacion
que existen para la velocidad y la energia generada por viento. Se analiza la energia
en forma de serie de tiempo y se da una definiciéon de esta, para después abordar el
comportamiento més basico de una serie en su forma estacionaria. En el capitulo 2
plantea los tipos de modelado para la predicciéon de series de tiempo, enfocandose en
la forma lineal de una serie estacionaria. El capitulo 3 continua los tipos de modelos
para series con enfoque a las no estacionarias e introduce a los modelos multiples. El
capitulo 4 se centra en modelos no lineales de prediccion, especificamente las redes
neuronales que son fundamentales para el modelo planteado, y las formas de medir
el error de una predicciéon a través de las métricas de estimacion. El capitulo 5 es
la concentracion del estado del arte, posteriormente se realiza un contraste con el
modelo planteado, que propone resolver la prediccion edlica mediante la estrategia de
multimodelos ARIMA. El capitulo 6 detalla la aplicacion del modelo miltiple ARIMA
y los resultados que se obtuvieron al ejecutar este modelo. Por ultimo, el capitulo 7
describe las conclusiones del trabajo y los trabajos a futuro.



Capitulo 2

Fundamentos

El viento es una fuente de energia que ha sido utilizada en variadas aplicaciones. En la
actualidad, el uso de la energia e6lica ha evolucionado principalmente en la generacion
de electricidad. En este capitulo se dara una introducciéon al viento como una variable
fisica estocastica, se describira una vista general de los mecanismos y métodos que
existen para predecir la energia edlica en estos tltimos anos. Por tultimo, analizaremos
el viento como tnica variable respecto al tiempo, para conocer a detalle el concepto
de series de tiempo e introducir los tipos de serie estacionaria y no estacionaria.

2.1. Energia edlica

El viento es aire atmosférico en movimiento. Es omnipresente y uno de los elementos
fisicos bésicos de nuestro entorno. Dependiendo de la velocidad del aire en movimien-
to, el viento puede sentirse ligero y etéreo, siendo silencioso e invisible a simple vista.
O bien, puede ser una fuerza fuerte y destructiva, ruidosa y visible como resultado
de los pesados escombros que arrastra. La velocidad del movimiento del aire defi-
ne la fuerza del viento y esta directamente relacionada con la cantidad de energia
del viento, es decir, su energia cinética. La fuente de esta energia, sin embargo, es
la radiaciéon solar. La radiacién electromagnética del sol calienta la superficie de la
Tierra de manera desigual, mas fuerte en los tropicos y mas débil en las latitudes
altas. Ademas, como resultado de una absorciéon diferencial de la luz solar por parte
del suelo, las rocas, el agua y la vegetacion, el aire en diferentes regiones se calienta
a un ritmo diferente. Este calentamiento desigual se convierte a través de procesos
convectivos en movimiento de aire, que se ajusta por la rotacion de la Tierra. Los
procesos convectivos son perturbaciones del equilibrio hidrostatico mediante el cual,
de lo contrario, las masas de aire estancadas se desplazan y se mueven en reaccién a
las fuerzas inducidas por los cambios en la densidad del aire y la flotabilidad debido
a las diferencias de temperatura. El aire es empujado desde regiones de alta a baja
presion, equilibrando la friccion y las fuerzas de inercia debidas a la rotacién de la
Tierra [22].
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Los patrones de calentamiento diferencial de la superficie de la Tierra, asi como otros
procesos térmicos como la evaporacion, la precipitacion, las nubes, la sombra y las
variaciones de la absorcion de la radiacion superficial, aparecen en diferentes escalas
de espacio y tiempo. Estos se combinan con las fuerzas dindmicas debidas a la rota-
cion de la Tierra y la redistribucion del impulso del flujo para impulsar una variedad
de procesos de generacion de viento, lo que lleva a la existencia de una gran variedad
de fenémenos edlicos. Estos vientos se pueden categorizar en funcion de su escala
espacial y mecanismos fisicos de generacion [22].
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2.2. Prediccién del viento: descripciéon general

Con el viento disponible en forma abundante, aprovechar la energia del viento es
una tarea especializada. El procesamiento de errores de la potencia y/o velocidad
del viento pronosticada y la potencia y/o velocidad del viento real desempefian un
papel fundamental en la seleccion de un algoritmo de prediccion aplicable de forma
adecuada. El pronostico del viento juega un papel importante cuando se trata de
despejar los escenarios del mercado del dia siguiente. Dado que existe una situacion
de mercado que aclarar, un esquema de pronostico de viento preciso es ttil en tales
situaciones. La clasificacion no solo simplifica el estudio, sino que también ayuda a
elegir el método correcto segtn el tipo de su aplicacion [1].

Se han propuesto e implementado distintos enfoques para el prondstico de la ge-
neracion de energia edlica. De acuerdo con diferentes estandares de clasificacion se
pueden dividir en los grupos que muestra la figura 2.1. A continuacién, se dara una
breve descripcion de cada categoria como ejemplos remarcados en la literatura.

[ Prediccion de generacion de energia/viento edlica ’
Es.cala de ObJeF|v9 ,de Tlpgs de Modelo tedrico
tiempo prediccion prediccion

b

* Modelo fisico.

* Muy corto plazo.

+ Corto plazo. . . . Modelo” . Esta.dl’.stico

+ Medio plazo. . V{entosdeturbl.na. determinista. tradicional.

+ Largo plazo. *+ Vientosde granja. ||+ Modelo + Basadoen IA.
probabilistico. * Hibrido.

* Muy largo plazo.

Figura 2.1: Tipos de clasificacién de prediccion de energia edlica.

Por escala de tiempo

En términos de la preferencia de la industria, se han desarrollado muchas herramien-
tas de pronéstico del viento basadas en el horizonte de prediccion. Las etapas de
pronostico del viento se pueden clasificar en:

» Prediccion a muy corto plazo (de unos segundos a 30 minutos)
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Prediccion a corto plazo (30 minutos a 6 horas)

Prediccion a medio plazo (de 6 a 24 horas)

Prediccion a largo plazo (24 horas a 72 horas)
» Prediccion a muy largo plazo (72 horas y mas)

La prevision a corto plazo es una opcion preferida debido a las operaciones del mer-
cado y al 6ptimo despacho de energia. En estos dias, los mercados de electricidad a
menudo siguen una estructura desregulada que permite a varios agentes de licitacion
competidores participar en el proceso minorista. Dado que la energia producida a
partir de recursos edlicos es de naturaleza estocéstica, a menudo se considera que un
mercado eléctrico diario planifica el despacho 6ptimo. Este despacho depende esencial-
mente de los programas de energia eblica proporcionados por el operador del mercado.
Una produccion de energia edlica estocastica trae errores en las grandes previsiones,
lo que exige la necesidad de capacidad de reserva para compensar las potencias defi-
citarias. Si no se dispone de suficientes reservas, el costo en el que se incurre para el
operador del mercado aumenta drasticamente. Dado que la penetracion de la energia
edlica aumenta significativamente a diario, se requieren esquemas de pronostico mas
eficientes para garantizar el equilibrio en los mercados de la electricidad [1].

Por objetivo de predicciéon

De acuerdo con los diferentes objetivos de pronoéstico, los modelos también se pueden
clasificar en dos tipos: vientos de turbina y vientos de granja eélica para prediccion
de WS (del inglés Wind Speed) y/o WP (del inglés Wind Power). El primero puede
ayudar a caracterizar la potencia de salida de una sola turbina eolica [[23], [24], [25]].
Este tltimo integra informacién de muchas turbinas eélicas para pronosticar la pro-
duccién de energia de un parque eélico completo [[26], [27], [28]]. De los dos, el ltimo
enfoque es més dificil[29].

Por tipo de predicciéon

Segun el tipo de pronostico proporcionado, los modelos WS/WP se pueden dividir
en modelos deterministas y probabilisticos [30]. Los modelos deterministas, que solo
brindan prondsticos WS/WP puntuales [[31], [32], [33], [31]], tienen un rendimien-
to de pronoéstico limitado debido a la complejidad del entorno y, a veces, generan
pronosticos insatisfactorios con muchos errores. Los modelos probabilisticos, que a
menudo brindan méas informacién para los tomadores de decisiones que los pronosti-
cos puntuales [31], pueden representar la incertidumbre en términos de intervalos de
prediccion (PI en inglés Interval Prediction) [[35], [31], [33]-36]] [29].
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Por modelo tedrico

Los modelos de prondstico también se pueden dividir en cuatro tipos segin las
diferencias en la teoria de modelos [[31], [37]]: modelos fisicos, modelos estadisticos
tradicionales, modelos basados en inteligencia artificial (Al del inglés Artificial In-
telligence) y modelos hibridos. Los modelos fisicos, como la prediccion numérica del
tiempo (NWP del inglés Numerical Weather Prediction) y el prondstico meteorolo-
gico (WRF del inglés Weather Research and Forecasting), generalmente consideran
varios factores meteorologicos (p. €j., presion del aire, humedad y temperatura) pa-
ra pronosticar el futuro WS [[38], [34]]. Estudios previos mostraron que los modelos
fisicos tenfan un mejor desempeno en el pronéstico de WS a mediano y largo plazo
[34], lo que permiti6é obtener pronosticos de WP utilizando la curva de potencia de un
aerogenerador en un WS dado [39]. Los modelos estadisticos tradicionales incluyen
el autorregresivo de media movil (ARMA) [10], el autorregresivo integrado de media
movil (ARIMA) [11], ARIMA fraccional (fFARIMA) [12] y el modelo autorregresivo
de Hammerstein [13]. A diferencia de los modelos fisicos, estos son modelos de se-
ries de tiempo que generalmente se emplean para caracterizar la fluctuacion lineal de
WS/WP en diferentes ubicaciones y, en general, muestran un buen rendimiento en
el pronostico de WS/WP a muy corto plazo y a corto plazo [35]. Con los avances en
informatica, muchos modelos basados en TA también se han utilizado ampliamente
en el pronostico de WS/WP, por ejemplo, la méquina de vectores de soporte (SVM
del inglés Support Vector Machine) [14], la maquina de vectores de soporte de mi-
nimos cuadrados (LSSVM del inglés Least-Squares Support Vector Machine) [15], la
maquina de aprendizaje extremo (ELM del inglés Extreme Learning Machine) [16],
kernel ELM (KELM del inglés Kernel Extreme Learning Machine) [17], método de
logica difusa [18], filtro de Kalman [19] y diferentes tipos de redes neuronales arti-
ficiales (ANN del inglés Artificial Neuronal Networks), incluida la red neuronal de
propagacion inversa (BPNN del inglés Backpropagation Artificial Neural Network)
[50], perceptron multicapa (MLP del inglés Multi-Layer Perceptron) [51], red neuro-
nal wavelet (WNN de inglés Wavelet Neuronal Network) [50], red Elman [52] y red
neuronal de regresion generalizada (GRNN del inglés General Regression Neuronal
Network) [50]. En la actualidad, con el desarrollo de la tecnologia de aprendizaje
profundo, las redes neuronales profundas (DNN del inglés Deep Neuronal Network),
incluida la memoria a corto plazo (LSTM del inglés Long Short-Term Memory) [16],
la red neuronal convolucional (CNN del inglés Convolutional Neuronal Network) [35],
la LSTM bidireccional (BiLSTM) [53], unidad recurrente cerrada (GRU del inglés
Gated Recurrent Unit ) [54], GRU bidireccional (BiGRU) [55], red de creencia pro-
funda (DBN del inglés Deep Belief Network) [56] y codificador automatico (AE del
inglés Automatic Encryption) [57], han atraido una mayor atencion en el prondstico
WS/WP debido a su capacidad superior para tratar problemas no lineales comple-
jos. En muchos estudios anteriores, los modelos basados en TA mostraron un mejor
rendimiento de pronostico de WS/WP que los modelos estadisticos tradicionales. Se
pueden desarrollar modelos hibridos combinando diferentes tipos de modelos para
caracterizar diferentes aspectos de la fluctuacion WS/WP [55], [29].
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2.3. Series de tiempo

Pronosticar una variable en particular puede depender de la escala temporal o espa-
cial. Las variaciones temporales con el tiempo reflejan la estocasticidad presente en
la variable. Una escala temporal para una variable se puede modelar en términos de
series de tiempo.

Una serie de tiempo es el resultado de observar los valores de una variable a
lo largo del tiempo en intervalos regulares (cada hora, cada dia, cada mes, entre
otros). Matematicamente estd compuesto por variables aleatorias en una secuencia
ordenada con respecto al tiempo, que suele ser llamada un proceso estocastico. En
un principio las series se modelaban por las 4 principales componentes: tendencia,
estacional, aleatoria y ciclica, mas adelante se explican con detalle.

Definicién de una serie de tiempo

Una serie de tiempo es un conjunto de observaciones generadas secuencialmente
a lo largo del tiempo. Si el conjunto es continuo, la serie temporal es continua. Si el
conjunto es discreto, entonces la serie temporal es discreta. Por lo tanto, las obser-
vaciones de una serie de tiempo discreta realizadas en los tiempos 7,79, -+ , 7, TN
pueden denotarse por z(71), 2(72), -, 2(7), 2(Tn). Con este contexto, consideramos
solo series de tiempo discretas, donde las observaciones se realizan en un intervalo
fijo h. Cuando tenemos N valores sucesivos de dicha serie disponibles para el anéli-
sis, escribimos zy, 29, - - - , 24, 2, para denotar observaciones realizadas en intervalos de
tiempo equidistantes 79 + h, 79+ 2h, - -+ , 79+ th, - - - , 79+ Nh. Si nombramos 75 como
origen y h como unidad de tiempo, podemos considerar z; como la observacién en el
tiempo ¢ [59].

Time Series Plot

Rendimiento Z,
s o
I T

=)
T

o
T

20 | | | | | | | | | J
10 20 30 40 50 60 70 80 90 100

Numero de repeticiones de (t)

Figura 2.2: Ejemplo de una serie de tiempo, donde z; es el rendimiento de 100 repe-
ticiones de un proceso aleatorio.
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Componentes de una serie de tiempo

Las series de tiempo se componen en cuatro caracteristicas fundamentales: tendencia,
estacional, aleatoria y ciclica. La tendencia en una serie es el cambio a largo plazo que
produce en la relacion de la media de los datos. El componente estacional es cuando
una serie presenta cierta periodicidad, variaciéon de cierto periodo ya sea semestral,
mensual, ademéas de otros. La componente aleatoria no responde a ningin patréon
de comportamiento, basicamente es el resultado de un factor aleatorio que incide
de forma aislada en una serie de tiempo. Y por ultimo la componente ciclica que,
aunque su duracién es irregular, son patrones en la serie que se identifican en ciertos
intervalos de tiempo. Cabe aclarar que para diferenciar la componente estacional de
la ciclica debemos tener en cuenta que la estacional ocurre en intervalos de tiempo
conocidos mientras que la ciclica no se puede determinar. En la figura 2.3 se muestra
el comportamiento de cada componente en distintas series de tiempo.
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Figura 2.3: Componentes de una serie de tiempo.
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Clasificacion de las series de tiempo

Los fenémenos dinamicos que desatan las series temporales pueden clasificarse en dos
tipos de clases:

= Estacionarias.
Una serie es estacionaria cuando los valores de esta son estables en un nivel
constante sin mostrar una tendencia a crecer o decrecer a largo plazo, es decir
la media y la varianza son constantes en el tiempo.
Matematicamente una serie estacionaria S; puede expresarse como:

FS(St1+k7"'7Stn+k) :FS(St17”-7Stn) (21)

Donde ¢ es el paso del tiempo y k es el paso del tiempo desplazado [1]. La figura
2.4(a) da un ejemplo claro de una serie estacionaria.

= No estacionarias.
Una serie no es estacionaria cuando las tendencias y/o variabilidad cambia con
el tiempo. Los cambios en la media determinan tendencia a crecer o decrecer a
largo plazo, por lo que la serie no oscila alrededor de un valor constante. En la
figura 2.4(b) muestra el ejemplo de una serie no estacionaria.

s Time Series Plot
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Figura 2.4: Series de tiempo de datos adquiridos de los parques edlicos de California.
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2.4. Analisis de series estacionarias

Previamente vimos que existen dos clasificaciones para las series de tiempo, estaciona-
rias y no estacionarias; en esta secciéon nos enfocaremos en el tipo de serie estacionaria,
el método ADF (del inglés Augmented Dickey-Fuller) para comprobar la clasificacion
de estacionaria, la definicién de la serie vista como un proceso estocastico, el compor-
tamiento respecto a la varianza y su correlacién en una serie de tiempo.

2.4.1. Comprobacion de serie estacionaria (Prueba Dickey-
Fuller Aumentada)

La prueba de Dickey-Fuller aumentada es la version extendida de la prueba simple de
Dickey-Fuller. Debido a que es poco probable que el término de error sea ruido blanco,
ampliaron la prueba para incluir rezagos adicionales en términos de las variables
dependientes, para eliminar el problema de la autocorrelacion. Normalmente se utiliza
la prueba de Dickey-Fuller aumentada en lugar de la prueba de Dickey-Fuller simple.
La diferencia de ambas pruebas es que se incluyen los valores rezagados de la variable
dependiente en el modelo simple, y se continua este procedimiento hasta que se elimine
la autocorrelacion. Esto puede ilustrarse como

yr = B1 + Boyr + €
Yo = P+ Paye + B3ye—1 + & (2.2)
Y = B+ Poyr + Baye—1 + Bayr—o + €

Ahora

Ay = YY1 + B1Ay—1 + €&

2.3
Ay = YY1 + BrAY—1 + BoAyo + -+ BpAyp + & (2:3)

El proceso contintia hasta que se elimine la autocorrelacion. Esta expresion se denota
como:

P
Ayy = Yy + Zﬁlﬁ%q + &
i=1

P
Ay = o+ yy—1 + Z PrAy—1 + & (2.4)

i=1

p
Ayy = a+ B+ vy — 1+ Z Bi1Ay—1 + oAy + - + BAy—p + €&

i=1

Algunas suposiciones comunes de minimos cuadrados ordinarios (OLS) se discuten
aqui:

1. € debe ser independiente.
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2. No debe haber heterocedasticidad, debe homogeneidad.
3. No deberia haber ruptura estructural, el coeficiente deberia ser estable.
4. El término de error debe tener una distribuciéon normal.

La prueba de estacionariedad en la prueba de Dickey-Fuller aumentada sigue el mis-
mo procedimiento que en la prueba de Dickey-Fuller simple. Primero, estacionario
se verifica al nivel que en primera diferencia y finalmente en segunda diferencia. A
primera diferencia la ecuacion sera la siguiente:

p
Aoy = YY1 + Z B1loyi—1 + €

=1

p
Aoyy = v+ yye—1 + Z B1loyi1 + € (2.5)

=1

p
Aoyy = o+ By +yyp—1 — 1 + Z B1loyi—1 + Poloyi—o + - 4+ Bployr—p + €
i=1

Si la serie atin no es estacionaria, se utilizan las mismas ecuaciones reemplazando
Ay con Az el proceso seré el mismo siempre y cuando la serie no se vuelva estacionaria.

Prueba de Hipotesis

Hoi’}/:()

2.6
H :v<0 (2:6)

La hipotesis nula se prueba a través de la estadistica t que viene dada por esta formula:

P L. (2.7)
SE(Y)

Si t calculado es mayor que el valor critico no rechazamos nuestra hipotesis nula.
En esta situacion la variable en consideracion sera no estacionaria y tendré raiz uni-
taria. Por otro lado, si ¢ calculado es menor que el valor critico, rechazamos nuestra
hipotesis nula. En este caso la serie subyacente seria una serie estacionaria y no tie-
ne raiz unitaria. Primero, la serie se prueba en nivel normal y en caso de que no se
vuelve estacionaria; se procede a realizar la prueba con la serie en primera y segunda
diferencia secuencialmente. Hay otro método para rechazar o no rechazar la hipotesis
nula; si el valor calculado esta en el lado derecho del valor critico, en la cola de un
lado (ver figura 2.5) no rechazamos la hipotesis nula, y si el valor calculado esté en el
lado izquierdo del valor critico, rechazamos la hipotesis nula y concluimos que la serie
no tiene raiz unitaria. El valor p también se usa para rechazar o aceptar la hipotesis
nula si el valor p < .05 rechaza la hipotesis nula y viceversa [60].
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Hy:y=0

Valor

Critico “

Rechazar Hy Aceptar Hy
NO rechazar Hy

Figura 2.5: Grafica para Dickey-Fuller aumentado

2.4.2. Proceso estocastico

Un fenémeno estadistico que evoluciona en el tiempo de acuerdo con leyes probabi-
listicas se denomina proceso estocastico. A menudo nos referiremos a él simplemente
como un proceso, omitiendo la palabra “estocéastico”. Las series de tiempo pueden
pensarse entonces como una realizaciéon particular, producida por el mecanismo de
probabilidad subyacente, del sistema en estudio. En otras palabras, al analizar una
serie de tiempo la consideramos como la realizacién de un proceso estocastico [59)].

Proceso estacionario estocastico

Una clase muy especial de procesos estocasticos, llamados procesos estacionarios,
se basa en la suposicion de que el proceso se encuentra en un estado particular de
equilibrio estadistico. Se dice que un proceso estocéstico es estrictamente estacio-
nario si sus propiedades no se ven afectadas por un cambio en el origen temporal,
es decir, si la distribucién de probabilidad conjunta asociada con m observaciones
2ty 2ty t s 21, Tealizada en cualquier conjunto de tiempos ¢y, ¢, - - - |, &, €s el mismo
que el asociado a m observaciones z, ., 2t, " s 2t,,,,, Tealizadas en los momen-
tos t11k, tosk, - -+, tmek. Por lo tanto, para que un proceso discreto sea estrictamente
estacionario, la distribucién conjunta de cualquier conjunto de observaciones no de-
be verse afectada por el desplazamiento de todos los tiempos de observaciéon hacia
adelante o hacia atras en cualquier namero entero k [59].

Media y varianza de un proceso estacionario

Cuando m = 1, la suposiciéon de proceso estacionario implica que la distribucion de
probabilidad p(z;) la misma para todo ¢ y puede escribirse como p(z) Por lo tanto, el
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proceso estocéstico tiene una media constante

pE[z] = /OO zp(2)dz (2.8)

—00

que define el nivel sobre el cuél oscila, y tiene una varianza constante

oo
7= Bl = [ (=) 2.9)
—0o0

que mide su dispersiéon sobre este nivel. Dado que la distribucién de probabilidad
p(z) es la misma para todos los tiempos ¢, su forma se puede inferir formando el
histograma de las observaciones {z1, z0, -+ , 2n5, } que componen la serie de tiempo
observada. Ademas, la media u del proceso estocastico se puede estimar mediante la
media muestral

1 N
z= N;zt (2.10)

de la serie temporal, y la varianza o2 del proceso estocéstico se puede estimar mediante
la varianza muestral de la serie temporal [59].

g 1 - 12
0= Z<Zt —Z) (2.11)

t=1

Coeficientes de Autocorrelaciéon y Autocovarianza

La suposicion de estacionariedad también implica que la distribucién de probabilidad
conjunta p(z, 2,) es la misma para todos los tiempos ¢y, t, que estan separados por
un intervalo constante. En particular, se sigue que la covarianza entre los valores z;
Y Ziik, separados por k intervalos de tiempo, o por rezago k, debe ser la misma para
todo t bajo el supuesto de estacionariedad. Esta covarianza se llama autocovarianza
en el rezago k y esta definida por:

e = covlzr, zepr] = El(ze — ) (ze0x — )] (2.12)
Del mismo modo, la autocorrelacion en el rezago £ es:

El(z — p)(Zeyr — 1))

Pk

VB — B — 1) (2.13)
_ Bl — 1) (Zisk — )]

ya que, para un proceso estacionario, la varianza o = 7, es la misma en el tiempo

t 4+ k que en el tiempo t. Por lo tanto, la autocorrelaciéon en el rezago k, es decir, la
correlacion entre z; y 21k, €s

_

p —

- (2.14)
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lo que implica, en particular, que py = 1.

También se sigue para un proceso estacionario que la naturaleza de la distribucion de
probabilidad conjunta p(z, z;4x) de valores separados por k intervalos de tiempo se
puede inferir trazando un diagrama de dispersion usando pares de valores (zy, 2111)
de la serie de tiempo, separados por un intervalo constante o rezago k. Para los datos
por lotes que se muestran en la figura 2.6, la figura 2.7a muestra un diagrama de
dispersion para el rezago k = 1, obtenido al graficar z;,; contra z;, mientras que la fi-
gura 2.7b muestra un diagrama de dispersién para el rezago k = 2, obtenido trazando
Zy1o contra z;. Vemos que los valores vecinos de la serie de tiempo estéan correlaciona-
dos. La correlacion entre z; y 2,11 parece ser negativa y la correlacion entre z; y 210
positiva [59].

Campo Z; #f

200

1 L 1 1 I 1 J
0 10 20 30 40 50 60 70

Numero de repeticiones =——

Figura 2.6: Campo z; de 70 repeticiones de un proceso aleatorio.

Proceso de ruido blanco

El ejemplo fundamental de un proceso estacionario es una secuencia de variables alea-
torias independientes e idénticamente distribuidas, indicadas como ay, - - - , as, - -+ , que
también suponemos que tienen media cero y varianza 2. Este proceso es estrictamen-
te estacionario y se denomina proceso de ruido blanco. Como la independencia implica
que las a; no estan correlacionadas, su funciéon de autocovarianza es simplemente:

o2 k=0
%:E[atatJrk]:{ Oa k#0
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80

Zt 41
Zi 42

o o] Le] o
I 1 I 1 I 1 1 1 1 1 1 1
30 40 50 60 70 80 30 40 50 60 70 80
Z; Z
(a) K =1 para datos de la figura 2.6 (b) K = 2 para datos de la figura 2.6.

Figura 2.7: Diagramas de Scatter.

Si uno se concentra solo en las propiedades de segundo orden, entonces una secuencia
de variables aleatorias a;, que no estan correlacionadas, tienen media cero y varianza
constante (02) tiene la misma funcién de autocovarianza ~y; que la anterior, y es
débilmente estacionaria (de segundo orden). Tal proceso también puede denominarse
proceso de ruido blanco (en el sentido débil), cuando el enfoque esta solo en las
propiedades de segundo orden. Aunque el proceso de ruido blanco tiene propiedades
muy bésicas, este proceso juega un papel importante en la construccion de procesos
con propiedades mucho mas interesantes y complicadas a través de operaciones de
filtrado lineal [59].

2.4.3. Funciones de auto-covarianza y auto-correlaciéon

Anteriormente se mostro que el coeficiente de autocovarianza y;, con un rezago de k,
mide la covarianza entre dos valores z; y 2. separados por una distancia de k. La
grafica de y contra el rezago k se llama funcion de autocovarianza {y;} del proceso
estocastico. De manera similar, la grafica del coeficiente de autocorrelacion p como
funcién del rezago k se llama funcién de autocorrelacion pg del proceso. Tenga en
cuenta que la funcion de autocorrelacion es adimensional, es decir, independiente de
la escala de medicién de la serie temporal. Como y;, = pro? , el conocimiento de la
funcién de autocorrelacion {p;} v la varianza o2 es equivalente al conocimiento de la
funcion de autocovarianza yi [59)].
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08 1.0 08 04 02 —01p ™

Figura 2.8: Matriz de autocorrelacién y correspondencia de funciéon de autocorrelacion
para proceso estacionario.

P

0.0

o3 [y ——
ol jr—

B

f ——

Figura 2.9: Funciéon de autocorrelacion para mitad positiva de la matriz.

La funcién de autocorrelacion, que se muestra en la figura 2.8 como un grafico
de las diagonales de la matriz de autocorrelacion, revela como cambia la correlacion
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entre dos valores cualquiera de la serie a medida que cambia su separaciéon. Como
Pk = Pk, la funciéon de autocorrelaciéon es necesariamente simétrica con respecto a
cero, y en la practica solo es necesario graficar la mitad positiva de esta funciéon. La
figura 2.9 muestra la mitad positiva de la funciéon de autocorrelacion dada en la figura
2.8. Cuando hablamos de la funcién de autocorrelacion, normalmente nos referimos a
la mitad positiva. En el pasado, la funciéon de autocorrelacion a veces se llamaba co-
rrelograma. Por lo que se ha mostrado anteriormente, un proceso estacionario normal
z; estd completamente caracterizado por su media ;1 y su funciéon de autocovarianza
Yk, 0 de manera equivalente por su media u, varianza o2 y funcién de autocorrelacion

px [59].
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Modelos para prediccion de series de
tiempo

En la actualidad existen distintos modelos de predicciéon para la energia edlica. En
especial para este tipo de energia, surge una gran popularidad modelarlos con un mé-
todo estadistico muy popular y estable como ARIMA, que tiene una mejor aplicacién
cuando los datos se presentan en una serie de tiempo. El siguiente capitulo introduce
los modelos lineales para series estacionarias (Procesos AR, MA y ARMA). Aunque
en contraste en las aplicaciones del mundo real es complicado que una serie de tiempo
tenga un comportamiento no cambiante, por ello también se introducen los modelos
lineales para series no estacionarias que se basan en un proceso de convertir dicha
serie no estacionaria en estacionaria. Para concluir el capitulo se vera un modelado
para series no estacionarias (ARIMA) visto de forma multiple.

3.1. Modelo lineal para series de tiempo estaciona-
rias

Una clase importante de modelos estocasticos para describir series de tiempo, que ha

recibido mucha atencién, comprende los llamados modelos estacionarios. Los modelos

estacionarios asumen que el proceso permanece en equilibrio estadistico con propie-

dades probabilisticas que no cambian con el tiempo, en particular, variando alrededor
de un nivel medio constante fijo y con varianza constante [59)].

La representacion de un proceso estocastico como la salida de un filtro lineal, cuya
entrada es ruido blanco a;, es decir,

Zr=a; + Va1 + Voap_o + - -+

S 3.1
=a; + Z \IJjat_j ( )
j=1
Donde 2zt = 2zt — p es la desviacion del proceso de algtin origen, o de su media, si el

23
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proceso es estacionario. El proceso lineal general 3.1 nos permite representar z; como
una suma ponderada de valores presentes y pasados del proceso de “ruido blanco” ay.
El proceso de ruido blanco a; puede considerarse como una serie de choques que im-
pulsan el sistema. Consiste en una secuencia de variables aleatorias no correlacionadas
con media cero y varianza constante, es decir
2
Ela;] =0 var|ay = o,
Dado que se supone que las variables aleatorias a; no estan correlacionadas, se deduce
que su funciéon de autocovarianza es

2
o k=0

YV = Elaag ] = { Oa k0 (3.2)

Asi, la funcién de autocorrelacion del ruido blanco tiene una forma particularmente
simple

1 k=0

pkz{O i (33)

Un resultado fundamental en el desarrollo de procesos estacionarios es el de Wold

(1938), quien estableci6 que cualquier proceso estacionario puramente no determinista

de media cero z; posee una representacién lineal como en (3.1) con 77, [Vj| <

co. Las a; no estan correlacionadas con la varianza comtn o2 pero no necesitan ser

independientes. Reservaremos el término procesos lineales para procesos z; de la forma

de (3.1) en los que las a; son variables aleatorias independientes. Para que Z; definida

por (3.1) represente un proceso estacionario valido, es necesario que los coeficientes

VU, sean absolutamente sumables, es decir, para Z;‘io |Uj| < oco. Bajo condiciones

adecuadas (Koopmans, 1974), z; es también una suma ponderada de pasados Z; y un
choque agregado a;, es decir,

Z=T1Z-1 +ToZo+ 0+ ay

— 3.4
= Z TZi—j + ay ( )
j=1

En esta forma alternativa, la desviaciéon actual Z; desde el nivel p se puede considerar
como una ‘regresion” en desviaciones pasadas Z;_1, Z;_o, -+ del proceso [59].

3.1.1. Procesos Autorregresivos AR

Consideremos el caso especial de la ecuacion (3.4) en el que solo el primer término p
de los pesos es distinto de cero. El modelo puede escribirse como:

Zt= 121+ Q220+ ... + (ﬁpit,p + a; (3.5)

Donde los simbolos ¢1, ¢, ..., ¢, son el conjunto finito de parametros de peso. El
proceso resultante se denomina proceso autorregresivo de orden p, o de una forma
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més concisa, proceso AR(p).
En particular los modelos AR(1) y AR(2).

Z = 0121 + ay

. N (3.6)
= 0121+ P22+ @
El modelo AR(p) se puede escribir en la forma equivalente
(1= ¢1B—¢oB* — -+ — ¢,B")z = ay (3.7)
o de forma sintetizada
o(B)z = a (3.8)
Esto implica que:
1 1
Z=——a; = ¢ (B)a; = (B .
z ¢(B) at ¢ ( )a't @D( )a't (3 9)

Por lo tanto, el proceso autorregresivo se puede considerar como la salida Z; de un
filtro lineal con una funcién de transferencia ¢ !B = v (B) cuando la entrada es un
ruido blanco a; [59].

3.1.2. Procesos de medias moviles M A

Tenemos que considerar el caso especial de la ecuacion (3.1). cuando solo el primer
término de ¢ de los v pesos es distinto de cero. Por tanto, el proceso puede ser escrito
tal como:

215 = Q¢ — 012,5,1 — 922,5,2 — ... Gpét,p (310)

En dénde ahora —0,, —0,,...,—0, son los stmbolos para el conjunto finito de paré-
metros de peso. Este proceso se denomina promedio mévil de orden a, que a menudo
se abrevia como MA(q). Los casos especiales de MA(1) y MA(2).

5 = a, — Oya,
2t = Qg 10¢—1 (3.11)

=a; — O1a,_1 — Orap_o

Son importantes para los modelos basados en ruido blanco. Utilizando el operador
de retroceso Ba; = a;_1, el modelo MA(q) se puede escribir en la forma equivalente
como:

%=01—-60,B—0,B>—---—0,B)a, (3.12)

o en una forma compacta

Zr = 0(B)a, (3.13)

Por lo tanto, el proceso de media moévil se puede considerar una salida z; de un filtro
lineal con funciéon de transferencia 6(B) cuando la entrada es el ruido blanco a; [59].
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3.1.3. Procesos mixtos autoregrresivos-promedio moévil

El proceso de promedio movil finito.
Z=a; — a1 = (1 — 6, B)ay 61 <1 (3.14)
también se puede escribir como un proceso autorregresivo infinito
F=—01% 0 —01% o— -+ a (3.15)

Sin embargo. si el proceso realmente fuera MA(1), no obtendriamos una representa-
cion con buenas caracteristicas utilizando un modelo autorregresivo. Por el contrario,
un proceso AR(1) no podria representarse con moderacion utilizando un modelo de
promedio mévil. En la practica, para obtener una parametrizaciéon moderada, suele
ser tutil el modelo con términos autorregresivos como de promedio mévil. El modelo
resultante

Et = ¢12t_1 + 4 ¢p2t—p + ay — Hlat_l — e — ant_q (316)

o de forma reducida

¢(B)z, = 0(B)ay (3.17)

Se denomina proceso de orden mixto autorregresivo-media movil(p,q), que abreviamos
como ARMA (p,q). Por ejemplo, el proceso ARMA(1,1) es

Z = ¢z +ap — Ora (3.18)

Ahora los escribimos como

% = ¢ Y(B)I(B)ay
_9B) 1-6,B—---—0,B (3.19)
_¢<B)at— 1—¢1B—---—¢poat

vemos que el proceso ARMA mixto se puede considerar como la salida Z; de un filtro
lineal, cuya funcion de transferencia es el cociente de dos operadores polindémicos 0(B)
y ¢(B), cuando la entrada es ruido blanco a;. Ademaés, dado que Z;, = z; — u de dénde
i = E[zt] es la media del proceso del caso estacionario, el proceso general ARMA (p,q)
también se puede escribir en términos del proceso original Z; como

d(B)z =00+ 0(B)ay (3.20)
donde la constante del término 0y esta definida por

b= (1 =1 — 2 — - — Pp) 1 (3.21)
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3.2. Modelo lineal para series de tiempo no estacio-
narias

Muchas series de tiempo en aplicaciones reales se comportan como si no tuvieran una
media fija. Aun asi, exhiben homogeneidad en el sentido de que, aparte del nivel local,
o quizés del nivel local y la tendencia, una parte de la serie se comporta de manera
muy similar a cualquier otra parte. Los modelos que describen este comportamien-
to no estacionario homogéneo se pueden obtener suponiendo que alguna diferencia
adecuada del proceso es estacionaria. En esta seccion, examinamos las propiedades
de la importante clase de modelos para los cuales la d-ésima diferencia de la serie
es un proceso autorregresivo mixto estacionario-promedio moévil. Estos modelos se
denominan procesos de promedio moévil integrado autorregresivo (ARIMA).

3.2.1. Meétodo Autorregresivo integrado de media mévil

Aunque los modelos no estacionarios del tipo descrito anteriormente son valiosos
para representar un comportamiento explosivo o evolutivo (como el crecimiento bac-
teriano), las aplicaciones que describimos no son de este tipo. Hemos visto que un
proceso ARMA es estacionario si las raices de ¢(B) = 0 se encuentran fuera del
circulo unitario y exhibe un comportamiento no estacionario explosivo si las raices se
encuentran dentro del circulo unitario. El tnico caso que queda es que las raices de
®(B) = 0 se encuentran en el circulo unitario. Resulta que los modelos resultantes
son de gran valor para representar series temporales homogéneas no estacionarias. En
particular, las series no estacionales suelen estar bien representadas por modelos en
los que una o mas de estas raices son la unidad. Consideremos el modelo

&(B)Z, = 0(B)a, (3.22)

donde ¢(B) es un operador autorregresivo no estacionario tal que d de las raices de
¢»(B) = 0 son la unidad y el resto esté fuera del circulo unitario. Entonces el modelo
se puede escribir como

o(B)z = 9(B)(1 - B)*z = 0(B)ay (3.23)

donde ¢(B) es un operador autorregresivo estacionario. Como V%%, = Viz, para
d > 1, donde V = 1 — B es el operador diferenciador, podemos escribir el modelo
como:

o(B)Vz = 0(B)ay (3.24)

Equivalentemente, el proceso queda definido por dos ecuaciones

P(B)wy = 0(B)a (3.25)

w, = Viz (3.26)
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Por lo tanto, vemos que el modelo corresponde a suponer que la d-ésima diferencia de
la serie puede representarse mediante un proceso ARMA invertible estacionario. Una
forma alternativa de ver el proceso para d > 1 resulta de invertir (3.26) para dar

Zt = det (327)

Donde S es el operador de aditivo infinito definido por:

t
Sy = Z z, = (1+ B+ B>+ )z,

o (3.28)
== (]. - B>_1.I't == V_lxt
De este modo
S=(1-B)'=v"! (3.29)
El operador S? se define de manera similar como
S2It = Sl’t + Sxt_l + Sl’t_g + -
(3.30)

t A
=Y > 2 =(01+2B+3B*+-- )

t=—00 h=—00

y asi sucesivamente para d de orden superior. La ecuacion (3.27) implica que el pro-
ceso (3.24) puede obtenerse sumando (o “integrando”) el proceso estacionario (3.25)
d veces. Por lo tanto, llamamos al proceso (3.24) un proceso de promedio movil inte-
grado autorregresivo (ARIMA).

Los modelos ARIMA para series de tiempo no estacionarias, que también fueron
considerados anteriormente por Yaglom (1955), son de fundamental importancia para
el pronostico y el control, como lo discutieron Box y Jenkins (1962, 1963, 1965, 1968a,
1968b, 1969) y Box et al. (1967a). Los procesos no estacionarios también fueron ana-
lizados por Zadeh y Ragazzini (1950), Kalman (1960) y Kalman y Bucy (1961). Un
procedimiento anterior para el analisis de series de tiempo que empleaba la diferencia-
cion fue el método de diferencia variable (ver Tintner (1940) y Rao y Tintner (1963)).
Sin embargo, la motivacion, los métodos y los objetivos de este procedimiento eran
bastante diferentes de los discutidos aqui. Técnicamente, el operador de suma infinita
S = (1 —-DB)—1en (3.27) no se puede usar para definir los procesos ARIMA no
estacionarios, ya que las sumas infinitas involucradas no seran convergentes. En su
lugar, podemos considerar el operador de sumatoria finita S,, para cualquier entero
positivo m, dado por

1—-B™
1-B

Sm=01+B+B*+... 4+ B™" ) = (3.31)
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De manera similar, el operador de suma doble finita se puede definir como

m—1m—1
SH=3"N"B'=(1+2B+3B8+ - +mB™")
parfe (3.32)
~ 1-B™—-mB™"(1 - B)
B (1-DB)

ya que (1 — B)Sfﬁ) = S,, —mB™, y asi sucesivamente. Entonces, la relacion entre un
proceso ARMA integrado z; con d = 1, por ejemplo, y el proceso ARMA estacionario
correspondiente w; = (1 — B)z;, en términos de valores que se remontan a un origen
temporal anterior k < t, se puede expresar como

— St_k —

1 _Bt—kwt ~ 1 _ Btk
de modo que z; = wy + wy_1 + - -+ + Wiy1 + 2 se puede considerar como la suma
de un numero finito de términos del proceso estacionario w més un valor de inicia-
lizacion del proceso z en el tiempo k. Por lo tanto, en la definiciéon formal de las
propiedades estocésticas de un proceso ARIMA no estacionario generado en (3.22),
normalmente seria necesario especificar las condiciones de inicializaciéon del proceso
en algiin momento k en el pasado finito (pero posiblemente remoto). Sin embargo,
estas especificaciones de condiciones iniciales tendran poco efecto en la mayoria de
las caracteristicas importantes del proceso.

El modelo (3.24) es equivalente a representar el proceso z; como la salida de un filtro
lineal (a menos que d = 0, este es un filtro lineal inestable), cuya entrada es ruido
blanco a;. Alternativamente, podemos considerarlo como un dispositivo para trans-
formar el proceso altamente dependiente y posiblemente no estacionario z;, en una
secuencia de variables aleatorias no correlacionadas a;, es decir, para transformar el
proceso en ruido blanco. Si en (3.24), el operador autorregresivo ¢(B) es de orden
p, se toma la d-ésima diferencia, y el operador de media moévil §(B) es de orden g,
decimos que tenemos un modelo ARIMA de orden (p, d, ¢), o simplemente un proceso

ARIMA(p, d, q).

2 (wy + Wy + -+ + Wiy1) (3.33)

3.3. Construccion del modelo multiple ARIMA

Los modelos ARIMA son efectivos para moldear una serie de tiempo de un conjunto
de datos. Sin embargo, hay casos en los que el modelo no logra obtener buenos re-
sultados de precision y esto se debe a que la serie de tiempo tiene pocos datos o las
caracteristicas son insuficientes para obtener un modelo correcto de prediccion. Por
ello, la propuesta es la creacion de un modelo ARIMA multiple mediante distintos
conjuntos de datos con la unién de una red neuronal para combinar las caracteristicas
de cada conjunto.

A continuacion, se detalla el diseno que conlleva un modelo ARIMA para después
generalizar esta técnica y lograr el calculo para los multiples modelos.
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3.3.1. Diseno de la estructura del modelo ARTMA

El pronéstico de series de tiempo consiste en predecir con cierto grado de precision los
valores futuros en funcién de los valores pasados de una serie de tiempo. Entonces,
el pronostico de series de tiempo es un proceso de modelado de series de tiempo.
El objeto del modelado de series de tiempo con el modelo ARIMA es encontrar un
modelo ARIMA adecuado, tal que el error de modelado definido por

e = Y — U

se minimiza, aqui s = ARIM Ag(p, q, d) es la salida del modelo ARIMA. El modelado
de series de tiempo incluye las siguientes dos partes:

1. Determinacion de la estructura.
Para encontrar buenos 6rdenes de modelo p, q y d, de modo que el modelo
ARIMA de orden (p, q, d) tenga la mejor precision de prondstico con parametros
fijos 0,
(p,q.d) = min {[ARIM A (p, ¢.d) -y} (3.34)

p,q,d

2. Estimacion de parametros.
Estimar los parametros del modelo #, de modo que el ARIMA tenga la mejor
precision de prondstico con estructura fija (p, q, d)

0 = min {[ARIM Ay (p, q,d) — v’} (3.35)

Es imposible obtener el modelo ARIM Ay (p*, ¢*,d*), porque la determinacion
de la estructura (3.34) necesita el parametro 6ptimo #*, mientras que la estima-
cion del parametro (3.35) necesita la estructura 6ptima (p*, ¢*, d*) . Tradicional-
mente, se adopta el método de caminata aleatoria para encontrar la estructura
ARIMA (p, q,d), luego, en funcion de la estructura obtenida, los parametros 6
se estiman utilizando los datos de entrenamiento. Si no se satisface la precision
del pronéstico, se debe volver a aplicar la caminata aleatoria para encontrar otra
combinacion (p, ¢, d). Este proceso contintia hasta que el error de pronostico es
lo suficientemente pequeno. Este es un proceso lento e ineficiente. En general
no podemos encontrar la estructura ARIMA 6ptima. Utilizamos los siguientes
dos criterios para determinar (p, ¢, d): criterio de informacion de Akaike (AIC)
y criterio de informacion bayesiano (BIC). Ambos siguen el mismo concepto:
evaluar tanto el error de entrenamiento como la complejidad. El objetivo de
estos criterios es que el modelo sea lo mas simple posible, y a su vez garantice
un buen ajuste con los datos de entrenamiento. Suponga que el conjunto de
datos D consta de N datos, {y1, - ,yn}-

AIC :2(p+q+1)—-2L

BIC :In(N)(p+q+1) — 2L (3.36)
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donde (p+ ¢+ 1) es el numero de parametros de estructura de ARIMA (p, ¢, d),
L es el valor méximo de la funcion de verosimilitud para el modelo ARIMA, se

estima como
1 N
L=NIn (N ;1 6?) . e =T — Yy

donde ¢ es la salida del modelo ARIMA. Podemos ver en (3.36), AIC penaliza a
los modelos que utilizan més pardametros de estructura, se desean puntuaciones
AIC maés bajas. Entonces, si hay dos modelos en la misma serie temporal, se
preferira el que tenga menos valor p 4+ ¢ porque tiene una puntuacion AIC més
baja.

3.3.2. Identificacion del coeficiente del modelo ARIMA

Una vez que se determinan (p, g, d), se utiliza el método de minimos cuadrados para
estimar el pardmetro 6. Para los i-ésimos datos

0(i) =lar (4)---ap(i),by(i)---by ()], i=1--N (3.37)

Doénde n es el tamano de los datos, la forma vectorial del modelo ARIMA esta repre-
sentado por la siguiente forma

Ti—1

ye=lar -+ @y by oo by "EZP (3.38)

_Etfq_

Como los ruidos ¢;_;, k = 0---¢q, no estan disponibles, puede estimarlos usando los
valores anteriores

p q
€ =1 — (Z akz’“) Y — <Z bkzk> é (3.39)
k=1 k=1

Entonces el modelo ARIMA se convierte en

Y =0Y +E (3.40)
Donde - o
Y1 o YN
Y = [yt—l o Yt—p, € gt—q]T y Y = z{p’l gp’N

€1,1 €1,N

€1 " €N
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E=[er -+ €piq] es el vector de error residual. El objetivo de la identificacion del

parametro es: -
min [[Y; — oY ||? (3.41)

Como (3.40) es un proceso lineal en parametros, el valor 6ptimo solucion de 6 es
o=[VYT] YTy (3.42)

Finalmente, obtenemos [ modelos ARIMA o6ptimos, M; --- M;, con [ conjuntos de
datos de entrenamiento, M; - - - M;. El proceso del modelo ARIMA para el prondstico
de series de tiempo se muestra en la Figura 3.1.

/ * Prueba de Dickey- \

Fuller Aumentado.

Preprocesamiento o Estructura
ARIMA(p,d,q).
* Normalizacion.
Datos * Limpieza de
| .
D; datos. ARIMA, :
* Deteccion de * Prueba de AIC.
Anomalias.

* Identificacion de
coeficientes dptimos.

N

Figura 3.1: Arquitectura del modelo ARIMA para pronéstico de series de tiempo.

3.3.3. ARIMA mailtiple

Cuando se tienen [ conjuntos de diferentes datos

{7}, o={1,2,..,1}

podemos entrenar [ modelos ARIMA M - - - M; usando el enfoque de modelado ARI-
MA tnico propuesto en la seccion anterior para determinar (p, ¢, d) para cada conjunto
de datos o, y para estimar los parametros de cada (p, ¢, d)-orden el modelo ARIMA
usados en (3.42). El vector de parametros 6; esta asociado a un modelo ARIMA M.
Los multiples ARIMA se presentan como:

ARIM Ay (p',q',d"), i€o (3.43)

El modelo ARIMAg: (p', ¢, d") puede predecir los conjuntos de datos {y:}.
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Modelo de aprendizaje automatico
para prediccion

La gran mayoria de los métodos de aprendizaje automatico utilizados en la préactica
implican técnicas de aprendizaje supervisado. En el aprendizaje supervisado, se usa un
algoritmo para aprender una funcién de mapeo aproximada de la variable de entrada
x a la salida y = f(z) para cuando haya nuevos datos de entrada, podamos predecir
la salida de esos datos. En el caso de las redes neuronales no es el mejor método para
modelar una serie de tiempo, pero el modelo que se busca requiere de un mecanismo
que extraiga las mejores caracteristicas de los modelos ARIMA pre-entrenados y los
combine para obtener un modelo de buena prediccion. En este capitulo se verd a
detalle la representacion de una red neuronal y las métricas de estimacion que suelen
medir el error de las predicciones.

4.1. Redes neuronales

Las redes neuronales artificiales (ANN) son modelos de clasificacion que pueden apren-
der limites de decision altamente complejos y no lineales tinicamente a partir de los
datos. Han obtenido una amplia aceptacién en varias aplicaciones, como el procesa-
miento de la vision, asistentes de voz y el lenguaje, donde se ha demostrado repeti-
damente que superan a otros modelos de clasificacion (y, en algunos casos, incluso al
rendimiento humano). Histéricamente, el estudio de las redes neuronales artificiales
se inspir6 en los intentos de emular los sistemas neuronales biologicos. El cerebro
humano se compone principalmente de células nerviosas llamadas neuronas, unidas
entre si con otras neuronas a través de hilos de fibra llamados axones. Cada vez que
se estimula una neurona (p. €j., en respuesta a un estimulo), transmite activaciones
nerviosas a través de axones a otras neuronas. Las neuronas receptoras recogen estas
activaciones nerviosas utilizando estructuras llamadas dendritas, que son extensiones
del cuerpo celular de la neurona. La fuerza del punto de contacto entre una dendrita
y un axon, conocida como sinapsis, determina la conectividad entre las neuronas. Los
neurocientificos han descubierto que el cerebro humano aprende cambiando la fuerza
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de la conexion sindptica entre las neuronas tras la estimulacion repetida por el mismo
impulso [61].

El cerebro humano consta de aproximadamente 100 mil millones de neuronas que
estan interconectadas de manera compleja, lo que nos permite aprender nuevas tareas
y realizar actividades regulares. Tenga en cuenta que una sola neurona solo realiza una
funcion modular simple, que es responder a las activaciones nerviosas provenientes
de las neuronas emisoras conectadas en su dendrita y transmitir su activacion a las
neuronas receptoras a través de los axones. Sin embargo, es la composicion de estas
funciones simples las que juntas pueden expresar funciones complejas. Esta idea esta
en la base de la construccion de redes neuronales artificiales [01].

Analoga a la estructura de un cerebro humano, una red neuronal artificial se com-
pone de una serie de unidades de procesamiento, llamadas nodos, que estan conectados
entre si a través de enlaces dirigidos. Los nodos corresponden a neuronas que realizan
las unidades bésicas de computo, mientras que los enlaces dirigidos corresponden a
conexiones entre neuronas, constituidos por axones y dendritas. Ademés, el peso de
un enlace dirigido entre dos neuronas representa la fuerza de la conexién sinaptica
entre neuronas. Al igual que en los sistemas neuronales bioldgicos, el objetivo princi-
pal de ANN es adaptar los pesos de los enlaces hasta que se ajusten a las relaciones
de entrada y salida de los datos subyacentes [61].

La motivacion basica detras del uso de un modelo ANN es extraer caracteris-
ticas tutiles de los atributos originales que son mas relevantes para la clasificacion.
Mediante el uso de una combinacién compleja de nodos interconectados, los mode-
los ANN pueden extraer conjuntos de caracteristicas mucho méas sustanciosos, lo que
da como resultado un buen rendimiento de clasificacion. Ademas, los modelos ANN
proporcionan una forma natural de representar caracteristicas en miltiples niveles de
abstraccion, donde las caracteristicas complejas se ven como composiciones de carac-
teristicas mas simples. En muchos problemas de clasificaciéon, modelar tal jerarquia
de caracteristicas resulta muy util. Por ejemplo, para detectar un rostro humano en
una imagen, primero podemos identificar caracteristicas de bajo nivel, como bordes
afilados con diferentes degradados y orientaciones. Estas caracteristicas se pueden
combinar para identificar partes faciales como ojos, nariz, orejas y labios. Finalmen-
te, se puede utilizar una disposicion adecuada de las partes faciales para identificar
correctamente un rostro humano. Los modelos ANN proporcionan una arquitectura
poderosa para representar una abstraccion jerarquica de caracteristicas, desde niveles
inferiores de abstraccion (p. ej., bordes) hasta niveles superiores (p. €j., partes facia-

les) [61].

Las redes neuronales artificiales han tenido una larga historia de desarrollos que
abarca méas de cinco décadas de investigacion. Aunque los modelos clasicos de ANN
sufrieron varios desafios que obstaculizaron el progreso durante mucho tiempo, han
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resurgido con una gran popularidad debido a una serie de desarrollos recientes en
la dltima década, conocidos colectivamente como aprendizaje profundo. En esta sec-
cion, examinamos los enfoques clésicos para aprender modelos ANN, desde el modelo
mas simple llamado perceptrones hasta arquitecturas mas complejas llamadas redes
neuronales multicapa [01].

4.1.1. Perceptréon

Un perceptréon es un tipo basico de modelo ANN que involucra dos tipos de nodos:
nodos de entrada, que se usan para representar los atributos de entrada, y un nodo
de salida, que se usa para representar la salida del modelo. La figura 4.1b ilustra la
arquitectura béasica de un perceptron que toma tres atributos de entrada {z1, zo, x3}
y produce una salida binaria y.

Xe | X2 | Xz | ¥
1 0 0o |-
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1 -1
0 1 0o |-
0 1 1 1
0 0 0 -1
(a) Datos de entrada. (b) Perceptron.

Figura 4.1: Funcion booleana modelada mediante un perceptron.

El perceptréon consta de dos tipos de nodos: nodos de entrada, que se utilizan
para representar los atributos de entrada, y un nodo de salida, que se utiliza para
representar la salida del modelo. Los nodos en una arquitectura de red neuronal se
conocen comunmente como neuronas o unidades. En un perceptréon, cada nodo de
entrada esté conectado a través de un enlace ponderado al nodo de salida. El enlace
ponderado se utiliza para emular la fuerza de la conexion sinaptica entre las neuronas.
Al igual que en los sistemas neuronales biol6gicos, entrenar un modelo de perceptron
equivale a adaptar los pesos de los enlaces hasta que se ajusten a las relaciones de
entrada y salida de los datos subyacentes. Un perceptron calcula su valor de salida
(9), realizando una suma ponderada en sus entradas, restando un factor de sesgo ¢ de
la suma y luego examinando el signo del resultado. El modelo que se muestra en la
figura 4.1b tiene tres nodos de entrada, cada uno de los cuales tiene un peso idéntico
de w = 0.3 al nodo de salida y un factor de sesgo de t = 0, 4. La salida calculada por
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el modelo es

5= { 1, i 0.327 +0.329 + 0.325 — 0.4 > 0; (4.1)

1, i 0.37; +0.325 + 0375 — 0.4 < 0.

Por ejemplo, si 1 = 1, 9 = 1, 3 = 0 el resultado de la salida darfia y = 1 dado
que 0.3z; + 0.3x5 + 0.3x3 — 0.4 es positivo. Por otro lado, si x1 =0, xo =1, x3=0
entonces §j = —1 porque la suma ponderada restada por el factor de sesgo es negativa.
Se tiene que tomar en cuenta la diferencia entre los nodos de entrada y salida de
un perceptron. Un nodo de entrada simplemente transmite el valor que recibe al
enlace de salida sin realizar ninguna transformacion. El nodo de salida, por otro
lado, es un dispositivo matemético que calcula la suma ponderada de sus entradas,
resta el término de sesgo y luego produce una salida que depende del signo de la
suma resultante. Mas especificamente, la salida de un modelo de perceptrén se puede
expresar mateméticamente de la siguiente manera:

g = signo(wgry + Wg_1T4—1 + - -+ + Wy + wizy — 1) (4.2)

donde wy, wo, ..., wy son los pesos de los enlaces de entrada, zi, s, ..., x4 son los
valores de los atributos de entrada y d es la cantidad de datos. La funcién de signo,
que actiia como una funcién de activaciéon para la neurona de salida, emite un valor
de +1 si su argumento es positivo y —1 si su argumento es negativo. El modelo de
perceptron se puede escribir en una forma més compacta de la siguiente manera:

U= Signolwyy + wg_1Tq-1 + -+ + wixy + wezro| = signo(w - x) (4.3)

donde wy = —t, g =1, y w -z es el producto escalar entre el vector de peso w y el
vector de atributo de entrada x [61].

Aprendizaje del modelo perceptrén

Durante la fase de entrenamiento de un modelo de perceptrén, los parametros de
peso w se ajustan hasta que las salidas del perceptron se vuelven consistentes con las
verdaderas salidas de los ejemplos de entrenamiento. En el algoritmo 1 se proporciona
un resumen del algoritmo de aprendizaje del perceptréon. El calculo clave para este
algoritmo es la formula de actualizaciéon de peso dada en la linea 7 del pseudocodigo:

donde w(k) es el parametro de peso asociado con el i-ésimo enlace de entrada des-
pués de la k-ésima iteracion, A es un pardmetro conocido como tasa de aprendizaje y
x;; es el valor del j-ésimo atributo del ejemplo de entrenamiento x;. La justificacion de
la formula de actualizacion de peso es bastante intuitiva. La ecuacion 4.4 muestra que
la nueva ponderacion w**! es una combinacion de la anterior ponderacion w® y un
término proporcional al error de prediccion, (y — ¢). Si la prediccion es correcta, en-
tonces el peso permanece sin cambios. En caso contrario, se modifica de las siguientes
formas:
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» Siy = +1y g = —1, entonces el error de prediccion es (y — y) = 2. Para
compensar el error, necesitamos aumentar el valor de la salida pronosticada
aumentando los pesos de todos los enlaces con entradas positivas y disminuyendo
los pesos de todos los enlaces con entradas negativas.

» Siy; = —1y gy = +1, entonces el error (y — y) = —2. Para compensar, nece-
sitamos disminuir el valor de la salida prevista al disminuir los pesos de todos
los enlaces con entradas positivas y aumentar los pesos de todos los enlaces con
entradas negativas.

Algorithm 1 Aprendizaje de un perceptrén

1. Tenemos que D = {(x;,y;) | i = 1,2,..., N} un conjunto de datos de entrena-
miento

Inicializamos el vector de pesos con valores random, w'®

repeat

for cada ejemplo de entrenamiento (z;,y;) € D do
(k)

%

Calcular la salida predictiva
for cada peso w; do
. k (k
Actualizar el peso, w*+!) = w§ ) 4 Ay — yl( ))xij
end for
end for

until se cumpla la condicion de parada =0

[t
<

En la féormula de actualizacion de peso, los enlaces que mas contribuyen al tér-
mino de error son los que requieren el mayor ajuste. Sin embargo, los pesos no deben
cambiarse demasiado drasticamente porque el término de error se calcula solo para el
ejemplo de entrenamiento actual. De lo contrario, se desharan los ajustes realizados
en iteraciones anteriores. La tasa de aprendizaje A, un parametro cuyo valor esté entre
0 y 1, se puede utilizar para controlar la cantidad de ajustes realizados en cada itera-
cion. Si A esté cerca de 0, entonces el nuevo peso esté influenciado principalmente por
el valor del peso anterior. Por otro lado, si A esta cerca de 1, entonces el nuevo peso
es sensible a la cantidad de ajuste realizado en la iteraciéon actual. En algunos casos,
se puede utilizar un valor de A adaptativo; inicialmente, A\ es moderadamente grande
durante las primeras iteraciones y luego disminuye gradualmente en las iteraciones
posteriores [61].
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Figura 4.2: Frontera de decision del perceptron.

El modelo de perceptron que se muestra en la ecuacion 4.3 es lineal en sus para-
metros w y atributos x. Debido a esto, el limite de decisién de un perceptréon, que
se obtiene al establecer y = 0, es un hiperplano lineal que separa los datos en dos
clases, -1 y +1. La figura 4.2 muestra el limite de decisiéon obtenido al aplicar el algo-
ritmo de aprendizaje del perceptron al conjunto de datos proporcionado en la figura
4.1. Se garantiza que el algoritmo de aprendizaje del perceptréon convergera a una
solucion 6ptima (siempre que la tasa de aprendizaje sea lo suficientemente pequena)
para problemas de clasificacién linealmente separables. Si el problema no es lineal-
mente separable, el algoritmo no converge. La figura 4.3 muestra un ejemplo de datos
separables no lineales proporcionados por la funcion XOR. El perceptréon no puede
encontrar la soluciéon correcta para estos datos porque no existe un hiperplano lineal
que pueda separar perfectamente las instancias de entrenamiento [61].

1.5 T T T
1t + 0 :
Xi | X | ¥
0 [0 Xp 051 1
1 0 1
0 1 1
1] 1] Or 0 + I
-0.5 ! 1
-0.5 0 0.5 1.5
X4

Figura 4.3: Problema de clasificaciéon de una compuerta XOR.
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4.1.2. Red neuronal artificial multicapa

Una red neuronal artificial tiene una estructura méas compleja que la de un modelo
de perceptron. Las complejidades adicionales pueden surgir de varias maneras:

1. La red puede contener varias capas intermedias entre sus capas de entrada y
salida. Estas capas intermedias se denominan capas ocultas y los nodos inte-
grados en estas capas se denominan nodos ocultos. La estructura resultante se
conoce como red neuronal multicapa (consulte la figura 4.4). En una red neu-
ronal feed-forward, los nodos en una capa estan conectados solo a los nodos en
la siguiente capa. El perceptron es una red neuronal de alimentacion directa
de una sola capa porque tiene solo una capa de nodos, la capa de salida, que
realiza operaciones mateméticas complejas. En una red neuronal recurrente, los
enlaces pueden conectar nodos dentro de la misma capa o nodos de una capa a
las capas anteriores [(1].

WARCARCR I
A IO NONONON®

Capa
Oculta

Capa de
Salida

’JZ
Figura 4.4: Ejemplo de una red neuronal multicapa.

2. La red puede utilizar tipos de funciones de activacion distintos de la funcién de
senal. Los ejemplos de otras funciones de activacion incluyen las funciones de
tangente lineal, sigmoide (logistica) e hiperbdlica, como se muestra en la figura
4.5. Estas funciones de activacion permiten que los nodos ocultos y de salida
produzcan valores de salida que no son lineales en sus parametros de entrada.

Estas complejidades adicionales permiten que las redes neuronales multicapa modelen
relaciones mas complejas entre las variables de entrada y salida. Por ejemplo, considere
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el problema XOR descrito en la secciéon anterior. Las instancias se pueden clasificar
mediante dos hiperplanos que dividen el espacio de entrada en sus respectivas clases,
como se muestra en la figura 4.6a. Debido a que un perceptrén puede crear solo un
hiperplano, no puede encontrar la soluciéon 6ptima. Este problema se puede abordar
utilizando una red neuronal de alimentacién hacia adelante de dos capas, como se
muestra en la figura 4.6b. Intuitivamente, podemos pensar en cada nodo oculto como
un perceptréon que intenta construir uno de los dos hiperplanos, mientras que el nodo
de salida simplemente combina los resultados de los perceptrones para producir el
limite de decision que se muestra en la figura 4.6a.

Funcién lineal

Funcién Sigmoide

0.5¢ 0.5F
0 0
—0.5} -05}
1 L I I 1 L L I
-1 -0.5 0 0.5 -1 -0.5 0 0.5
1 Funcién Tanh . Funcién Signo
1l
0.5¢
0.5t
0 Or
-05¢
-0.5}
-1
1 ! ! —15 1 1 !

-0.5

0.5

Figura 4.5: Funciones de activacion

-0.5

0.5

para redes neuronales.
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(a) Frontera de decision. (b) Topologia de red neuronal.

Figura 4.6: Problema XOR visto desde una red neuronal de dos capas.

Para aprender los pesos de un modelo ANN, necesitamos un algoritmo eficiente
que converja a la solucién correcta cuando se proporciona una cantidad suficiente de
datos de entrenamiento. Un enfoque es tratar cada nodo oculto o nodo de salida en
la red como una unidad de perceptron independiente y aplicar la misma féormula de
actualizacion de peso que la ecuacion 4.4. Obviamente, este enfoque no funcionara
porque carecemos de conocimiento a priori sobre los verdaderos resultados de los
nodos ocultos. Esto dificulta determinar el término de error, (y — ), asociado con
cada nodo oculto. A continuacién, se presenta una metodologia para aprender los
pesos de una red neuronal basada en el enfoque de descenso de gradiente [(1].

Aprendizaje en una red neuronal multicapa

El objetivo del algoritmo de aprendizaje ANN es determinar un conjunto de pesos w
que minimicen la suma total de errores al cuadrado:

B(w) = 33— i) (45)

La suma de los errores al cuadrado depende de w porque la clase predicha ¢ es una
funcion de los pesos asignados a los nodos ocultos y de salida. La figura 4.7 muestra
un ejemplo de la superficie de error en funciéon de sus dos parametros, wy y wsy. Este
tipo de superficie de error suele encontrarse cuando g; es una funciéon lineal de sus
parametros, w. Si reemplazamos § = w - x en la ecuaciéon 4.5, entonces la funciéon
de error se vuelve cuadrética en sus parametros y se puede encontrar facilmente una
solucion minima global [61].
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Figura 4.7: Superficie de error F(w;, ws) para el modelo de 2 parametros.

En la mayoria de los casos, la salida de una ANN es una funciéon no lineal de
sus parametros debido a la eleccién de sus funciones de activacion (p. ej., funcion
sigmoidea o tanh). Como resultado, ya no es sencillo derivar una solucién para w que
garantice ser globalmente ¢ptima. Se han desarrollado algoritmos codiciosos como
los basados en el método de descenso de gradiente para resolver de manera eficiente
el problema de optimizaciéon. La féormula de actualizacion de peso utilizada por el
método de descenso de gradiente se puede escribir de la siguiente manera:

OE(w)

(9wj

donde A es la tasa de aprendizaje. El segundo término establece que el peso debe
aumentarse en una direcciéon que reduzca el término de error general. Sin embargo,
debido a que la funcién de error no es lineal, es posible que el método de descenso de
gradiente quede atrapado en un minimo local. El método de descenso de gradiente
se puede utilizar para aprender los pesos de la salida y los nodos ocultos de una
red neuronal. Para los nodos ocultos, el calculo no es trivial porque es dificil evaluar
su término de error, 0E/0w;, sin saber cudles deberian ser sus valores de salida.
Se ha desarrollado una técnica conocida como retropropagacion para abordar este
problema. Hay dos fases en cada iteracion del algoritmo: la fase de avance y la fase
de retroceso. Durante la fase de avance, los pesos obtenidos de la iteraciéon anterior se
utilizan para calcular el valor de salida de cada neurona de la red. El calculo avanza
en la direccion de avance; es decir, las salidas de las neuronas en el nivel k se calculan
antes de calcular las salidas en el nivel k£ 4+ 1. Durante la fase hacia atrés, la formula
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de actualizacion del peso se aplica en la direcciéon inversa. En otras palabras, los pesos
en el nivel k + 1 se actualizan antes de que se actualicen los pesos en el nivel k. Este
enfoque de retropropagacién nos permite utilizar los errores de las neuronas en la
capa k + 1 para estimar los errores de las neuronas en la capa k [01].

4.1.3. Consideraciones a tomar en el diseno de una red neu-
ronal

Antes de entrenar una red neuronal para aprender una tarea de clasificacion, se deben
considerar los siguientes problemas de diseno.

1. Se debe determinar el nimero de nodos en la capa de entrada. Asigne un nodo
de entrada a cada variable de entrada numérica o binaria. Si la variable de
entrada es categorica, podriamos crear un nodo para cada valor categorico o
codificar la variable k-aria usando nodos de entrada [log, k|.

2. Se debe establecer el nimero de nodos en la capa de salida. Para un problema
de dos clases, es suficiente usar un solo nodo de salida. Para un problema de
clase k, hay k nodos de salida.

3. Se debe seleccionar la topologia de la red (por ejemplo, el nimero de capas
y nodos ocultos, y la arquitectura de red recurrente o de avance). Tenga en
cuenta que la representacion de la funcion de destino depende de los pesos de
los enlaces, la cantidad de nodos y capas ocultos, los sesgos en los nodos y el tipo
de funcion de activacion. Encontrar la topologia correcta no es una tarea fécil.
Una forma de hacer esto es comenzar desde una red totalmente conectada con
una cantidad suficientemente grande de nodos y capas ocultas, y luego repetir
el procedimiento de creaciéon de modelos con una cantidad menor de nodos.
Este enfoque puede llevar mucho tiempo. Alternativamente, en lugar de repetir
el procedimiento de creacion de modelos, podriamos eliminar algunos de los
nodos y repetir el procedimiento de evaluacion del modelo para seleccionar la
complejidad correcta.

4. Los pesos y sesgos deben inicializarse. Las asignaciones aleatorias suelen ser
aceptables.

5. Los ejemplos de entrenamiento con valores faltantes deben eliminarse o reem-

plazarse con los valores méas probables o interpolando los datos [(1].

4.1.4. Caracteristicas de una red neuronal

A continuacién se resumen las caracteristicas generales de una red neuronal artificial:

1. Las redes neuronales multicapa con al menos una capa oculta son aproxima-
dores universales; es decir, se pueden usar para aproximar cualquier funcion
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objetivo. Dado que una ANN tiene un espacio de hipotesis muy expresivo, es
importante elegir la topologia de red apropiada para un problema dado para
evitar el sobreajuste del modelo.

2. ANN puede manejar funciones redundantes porque los pesos se aprenden auto-
maticamente durante el paso de entrenamiento. Los pesos de las caracteristicas
redundantes tienden a ser muy pequenos.

3. Las redes neuronales son bastante sensibles a la presencia de ruido en los datos
de entrenamiento. Un enfoque para manejar el ruido es usar un conjunto de
validacion para determinar el error de generalizacion del modelo. Otro enfoque
es disminuir el peso por algtun factor en cada iteracion.

4. El método de descenso de gradiente utilizado para aprender los pesos de una
ANN a menudo converge a algiin minimo local. Una forma de escapar del minimo
local es agregar un término de impulso a la féormula de actualizacion del peso.

5. Entrenar una ANN es un proceso que requiere mucho tiempo, especialmente
cuando la cantidad de nodos ocultos es grande. Sin embargo, los ejemplos de
prueba se pueden clasificar rapidamente [(1].

4.2. Meétricas de estimacion

Los métodos de clasificacion y pronostico idealmente debe ser evaluados en las situa-
ciones para las cuales seran empleados. La mayoria de estos modelos estan basados
en procedimientos metodologicos o la obtencion de una muestra de errores. Por lo
anterior se debe efectuar un chequeo para verificar que la propuesta corresponde a
una buena precision. A continuacién, se describen distintos tipos de métricas de pre-
cision que miden error a la salida de cada modelo y muestran distintas caracteristicas
respecto a los datos evaluados [61].

Para describir cada elemento de las formulas de las mediciones estandarizamos
que Y; es el i-ésimo valor previsto, el elemento X; es el i-ésimo valor actual de un
conjunto de datos y N es el nimero de muestras que este contiene.

= MSE se puede utilizar si hay valores atipicos que deben detectarse. De hecho,
MSE es excelente para atribuir pesos mas grandes a tales puntos, gracias a la
norma Ls: claramente, si el modelo final genera una prediccion muy mala, la
parte cuadrada de la funcion resalta el error [62].

1 & )
MSE = > (Y- X)) (4.7)

=1

(el mejor valor = 0, el peor valor = +00)
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» Las mediciones de MSE y RMSE estan mono6tonamente relacionadas (a través
de la raiz cuadrada). Un arreglo de modelos de regresion basada en MSE sera
idéntica a un arreglo de modelos basada en RMSE [62].

1 & ,
RMSE = |+ > (Y- X)) (4.8)

i=1
(el mejor valor = 0, el peor valor = +00)

= MAE se puede utilizar si los valores atipicos representan partes danadas de
los datos. Por defecto, MAE no penaliza demasiado los valores atipicos de en-
trenamiento (la norma L; de alguna manera suaviza todos los errores de los
posibles valores atipicos), proporcionando asi una medida de rendimiento gené-
rica y acotada para el modelo. Por otro lado, si el conjunto de prueba también
tiene muchos valores atipicos, el rendimiento del modelo sera mediocre [62].

1
MAE = =) Vi - X (4.9)

(el mejor valor = 0, el peor valor = +00)

= MAPE es otra métrica de desempeno para modelos de regresion, teniendo una
interpretacion muy intuitiva en términos de error relativo: por su definicion, se
recomienda su uso en tareas donde es méas importante ser sensible a variaciones
relativas que a variaciones absolutas (De Myttenaere et al. 2016). Sin embargo,
también tiene una serie de inconvenientes, siendo los mas criticos la restriccién
de su uso a datos estrictamente positivos por definicién y su sesgo hacia pro-
nosticos bajos, lo que lo hace inadecuado para modelos predictivos donde se
esperan grandes errores (Armstrong y Collopy, 1992) [62].

N
1 | X; — Y
MAPE = = 51100 4.10
N2X, % (4.10)

)

(el mejor valor = 0, el peor valor = +00)

» El coeficiente de determinacion o R? (Wright, 1921) puede interpretarse como la
proporcién de la varianza de la variable dependiente que es predecible a partir
de las variables independientes [(2].

R*=1- ngv—lm — X (4.11)
Doim (Xi — X;)?

(el mejor valor = 1, el peor valor = —o00)
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= SMAPE es el error porcentual absoluto medio simétrico definido inicialmente

por Armstrong (1985), y luego refinado en su version actual por Flores (1986)
y Makridakis (1993), SMAPE fue propuesto para enmendar los inconvenientes
de la métrica MAPE [62].

N

100 % Y- Xi|
SMAPE = -100% 4.12
RPNV ERNAITE 412)

(el mejor valor = 0, el peor valor = 2)
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Modelo hibridos

Los métodos hibridos son la combinacién de uno o més modelos como los que muestra
el esquema 2.1. Lo que buscan al crear estos modelos es combinar las caracteristicas
que ofrece cada uno de ellos y conformar un nuevo modelo que mejore la precision
o prevision de los datos. El inicio de este capitulo describe algunos de los modelos
hibridos utilizados en la literatura, mientras que la segunda parte es la explicacion
del modelo planteado partiendo de los modelos multiples ARIMA que se vieron en el
capitulo 3.

5.1. Modelos hibridos

En la actualidad, existen distintos métodos aplicados a resolver la prediccion de
la energia edlica en el mundo. A continuacion, se exponen los ejemplos mas actuales
que este campo ha podido resolver y los resultados que se han obtenido de cada uno
de los trabajos.

El primero de ellos es una propuesta realizada en México por Cadenas et al. 2010
[20]. El modelo empleado en este trabajo es el uso de un modelo hibrido ARIMA-ANN
para prediccion de horizonte a corto plazo. Se ocuparon datos de México provenientes
de Baja California, Zacatecas y Quintana Roo en estos buscan probar que la combi-
nacion de ARIMA-ANN es una buena opcién; en donde el modelo ARIMA representa
la parte lineal de las series y la ANN considera la parte no lineal. Se obtuvo buenos
resultados predictivos de esta combinacion.

47
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Ve=Le+nl+e

Figura 5.1: Modelo propuesto por Cadenas et al. 2010

El modelo realizado por Liu et al. 2012.[63]. Es una comparativa que muestra
dos modelos hibridos; el primero es ARIMA con la unién de una red neuronal y el
segundo combina ARIMA junto a un filtro de Kalman. Los datos son provenientes de
una granja de energia edlica localizada China, en donde el horizonte de prediccién no
es mostrado, pero se obtienen buenos resultados de predicciéon en la combinacion del
modelo hibrido ARIMA-Kalman.

Prediccion
ARIMA Modelo ANN Wl — Step }

Datos de serie de Comparativa de
tiempo WS modelos

ARIMA | Filtro de Kalman — P mﬁ“i‘/’" J
Multi - Step

Figura 5.2: Modelo propuesto por Liu et al. 2012

El siguiente trabajo realizado por Yan-Fei et al. 2015 [6/].Es un modelo propuesto
para una predicciéon a muy corto plazo que busca resolver un problema de viento en
los trenes de japon, la primera parte es descomponer las series de tiempo de la velo-
cidad del viento mediante la descomposicion empirica (EMD por sus siglas en inglés
Empirical Mode Decomposition), esto lo que hace es descomponer la serie en series de
baja y alta frecuencia de una forma muy parecida a la EWT y después crear modelos
recursivos ARIMA, una vez obtenidos estos se procede a obtener las predicciones de
tales modelos para después hacer una inversion para regresar a una serie original y
obtener la prediccion.
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Descomposicion
EMD de WS M
en subcapas

Datos WS
del tren

Prediccién

— ARIMA Recursivo y regresar a EMD

Predicciones
finales

!

Calculo de sumas

Figura 5.3: Modelo propuesto por Yan-Fei et al. 2015

El modelo realizado por Wang et al. 2015 [65] es una propuesta para una pre-
diccion a corto plazo, son dos parques edlicos localizados en china. Se realiza un
pre-procesamiento de la senal mediante una transformada Wavelet (EWT por sus
siglas en inglés Empirical Wavelet Transform), posteriormente, se hace una evalua-
cién de distintos métodos estadisticos de prediccion como: ARIMA, LSSVM, ELM y
SVM. Cada salida de estos modelos se combinaré en una tltima etapa, mediante un
modelo de probabilidad gaussiana GPR para predecir la distribucion de la velocidad
del viento futura. El modelo propuesto muestra que supera a todos los modelos en
solitario (ARIMA, LSSVM, ELM y SVM) sin utilizar una primera etapa de EWT.

Otro modelo referente realizado por Liu et al. 2015 [64]. Es una propuesta para
una prediccién a muy corto plazo que busca resolver un problema de viento en los
trenes de japon. La primera parte es descomponer las series de tiempo de la veloci-
dad del viento mediante la descomposicién empirica (EMD por sus siglas en inglés
Empirical Mode Decomposition). El propoésito del EMD es descomponer la serie en
sub-series de baja y alta frecuencia de una forma muy parecida a la EWT y posterior-
mente, crear modelos recursivos de ARIMA. Una vez obtenidos se procede a obtener
las predicciones de los modelos para después hacer una inversion para regresar a una
serie original y obtener la prediccion.

El articulo realizado por Aasim et al. 2015 [66]. Utiliza los datos de la estacion
Malin Head en Irlanda con los modelos ARIMA y WT-ARIMA. En el objetivo es
pronosticar la velocidad del viento y proponer un nuevo modelo ARIMA basado en
WT (del inglés Wavelet) repetido (RWT-ARIMA), que mejora la precision del modelo
para el prondstico de la velocidad del viento a muy corto plazo. Se realizé una compa-
racion del modelo RWT-ARIMA propuesto con los modelos ARIMA y WT-ARIMA.
Los modelos fueron sometidos a varias escalas de tiempo de prondstico, como 1 min,
3 min, 5 min, 7 min y 10 minutos.
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El siguiente modelo tiene bases similares a [(4], realizado por Yunus et al. 2016
[11]. En el cual se presenta un modelo hibrido con prediccion a corto plazo. En el que
se aplica una descomposicién de frecuencias, donde la serie de tiempo se separa en
componentes de alta y baja frecuencia, una vez se obtiene esta separacion, se procede
a construir un modelo ARIMA de las series divididas. Al obtener la prediccion de los
modelos ARIMA realizados con las sub-series, estas deben invertirse a través de un
tratamiento de frecuencias para obtener una sola serie. Los resultados de prediccion
de este proceso deben alcanzar un error aceptable y de no ser asi se repite el mismo
procedimiento hasta alcanzar un error minimo.

Este trabajo es uno subsecuente de Cadenas et al. 2016 [7]. Esta nueva propues-
ta se basa en un modelo multivariante desarrollado por una red neuronal artificial
ex6gena autorregresiva no lineal (NARX). Se compar6 con un modelo ARIMA para
datos de México ubicados en los estados de Hidalgo y Oaxaca. Es una prediccion de
horizonte a corto plazo en que el modelo NARX muestra una mejora respecto a un
modelo ARIMA de un solo conjunto de datos.

El siguiente trabajo es una comparativa que muestra como se adaptan los modelos
mas usados en la literatura a los horizontes de tiempo. Nair et al. 2017 [67]. Realizo
un articulo que muestra los diferentes modelos de prediccién como lo son redes neuro-
nales, ARIMA y la combinacién de ambos ARIMA-ANN, para distintos horizontes de
tiempo y comprobar en qué horizonte estos modelos son més aptos y con una mejor
prediccion. El resultado comprueba que los modelos hibridos tienen mejores resulta-
dos. Las series de tiempo fueron adquiridas de 3 sitios distintos en Tamil Nadu, India.

En este articulo Dimitru et al. 2019 [68]. Comparan dos modelos muy usados en
el area de la prediccion de energia edlica, como son el modelo ARIMA y la FFANN.
Los datos provienen de una serie de tiempo de produccion de electricidad, medidos en
todo el mes de marzo 2018 del operador de sistema eléctrico nacional de Rumania. El
objetivo es mostrar la capacidad de ambos modelos y realizar una comparativa para
una prediccién a corto plazo. Los resultados muestran que ARIMA obtiene menos
error en las métricas de mediciéon que una red neuronal. Sin embargo, en un segundo
intento se realizé una segunda configuracion de FFANN (del inglés FeedForward Ar-
ticial Neuronal Network), para realizar una mejora sobre el mismo modelo de ANN.
El resultado demuestra que una simple reconfiguracion de la red puede mejorar el
modelo de la prediccion por encima de un 15 % en las métricas de medicion de errores.
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— ARIMA —

Datos de Rumania Comparativa de
WP modelos

— FFANN —

Figura 5.4: Modelo propuesto por Dimitru et al. 2019

Este articulo realizado por Niu et al. 2020 [51]. Adoptan un nuevo modelo de
pronostico hibrido que combina la descomposiciéon modal empirica (EMD) y la red
neuronal de regresion general (GRNN) optimizada por el algoritmo de optimizacion
de la mosca de la fruta (FOA). En este nuevo modelo, las series originales de ve-
locidad del viento se descomponen primero en una colecciéon de funciones de modo
intrinseco (FMI) y un residuo. El error porcentual absoluto medio de los resultados
del pronostico en dos casos es respectivamente 8,95 % y 9,87 %, lo que sugiere que el
enfoque hibrido supera a los modelos comparados, lo que brinda orientacién para el
pronostico futuro de la velocidad del viento.

Este articulo propuesto por Zhang et al. 2021 [69]. Desarrolla un modelo autorre-
gresivo dindmico adaptativo (ARDA) basado en la mejora del modelo autorregresivo
(AR). El método de estimacion de parametros fijos del modelo AR se mejora en el
modelo propuesto a un método de estimaciéon de pardmetros paso a paso dinamica-
mente adaptable. Los coeficientes del modelo se actualizan de forma adaptativa en
funcion de las caracteristicas de los datos de energia edlica, lo que mejora la precision
del modelo propuesto. La precision de prediccion del modelo propuesto se mejora ain
més mediante la funcién residual. El modelo se adapta bien a datos de energia edlica
con diferentes grados de volatilidad. El modelo ARDA y otros dos modelos se proba-
ron utilizando datos de energia edlica estacionaria y fluctuante (unidad: segundos), y
se compararon los resultados de prediccion de energia edlica en diferentes longitudes
de paso de pronostico. El modelo ARDA es més preciso, con una tasa de célculo
mas rapida y una mejor adaptabilidad dindmica a las fluctuaciones de datos que los
modelos ARIMA y LSTM.
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5.2. Modelo hibrido multiple ARIMA

Esta comprobado que modelo ARIMA es efectivo para el prondstico de series tempo-
rales de un solo conjunto de datos. No obstante, cuando faltan datos, hay ruido o los
conjuntos de entrenamiento contienen pocos datos, los modelos ARIMA no son efec-
tivos. El modelo miltiple ARIMA busca mejorar estas deficiencias utilizando més de
un conjunto de datos, para crear un modelo ARIMA por cada conjunto y unir todas
sus caracteristicas mediante una red neuronal. Mejorando la precisiéon y robustez del
modelo ARIMA original.

5.2.1. ARIMA maltiple

Cuando se tienen [ conjuntos de diferentes datos

{7}, o={1,2,..,1}

Es posible entrenar [ modelos ARIMA M - - - M; usando el enfoque de modelado ARI-
MA para determinar (p, ¢, d) para cada conjunto de datos o, y estimar los pardametros
de cada (p, q,d)-orden el modelo ARIMA usados en (3.42). El vector de parametros
0; esta asociado a un modelo ARIMA M;. Los miltiples ARIMA se presentan como:

ARIM Ay (p',q',d"), i€o (5.1)

El modelo ARIM Ag: (p', ¢', d") puede predecir los conjuntos de datos {y:}.

5.2.2. Transferencia de aprendizaje en multiples modelos ARI-
MA

Si hay incertidumbres en los conjuntos de datos de entrenamiento {37} o se tienen
pocos datos, los modelos de prediccion no pueden dar buenos resultados. Utilizando
la propuesta de aprendizaje por transferencia y modelos miltiples se busca resolver
estos problemas.

La propiedad fundamental del aprendizaje por transferencia es que puede rete-
ner y reutilizar el conocimiento aprendido previamente. Consiste en modelos pre-
entrenados, donde los pesos finales de estos modelos se utilizan como condiciones
iniciales del entrenamiento secuencial. Esto se puede adoptar como un método comin
para entrenar redes neuronales con menos informacién. Cuando los datos de entrena-
miento son pocos y no se sienten completos, podemos tomar datos de otros conjuntos
de datos similares. En este modelo nos inspirandonos en esta idea, proponemos el
siguiente enfoque de aprendizaje por transferencia que se muestra en la siguiente
ecuacion, donde A, y Ay son dos dominios relacionados y k se refiere a cada uno de
los datos contenidos en ellos

Ao =Yo(k) = [ya(k — 1), y.(k — 2), ..., yo(k — )]

Ry = oK) = [k — 1), go(k — 2). ook — ) 5:2)
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Suponemos que existe alguna relacion (explicita o implicita) entre estos dominios,
luego podemos usar el conocimiento de A, para compensar la efectividad de los datos
faltantes en Ay, es decir, podemos usar {A,, A} para entrenar el modelo M, o podemos
usar A\, para entrenar previamente el modelo M,, luego usamos A, para entrenar con
precision el modelo M,, pero lo mas importante para un aprendizaje exitoso es que el
dominio con més informacién transfiere caracteristicas al dominio con datos pequenos.

En el caso general, tenemos [ modelo de prediccion y conjuntos de datos {A;, - -+, Ay},
cada tarea de prediccion se puede representar mediante un modelo ARIMA
donde i = {1,--- ,l} i € 0. Sea S un conjunto cerrado y acotado que representa un
espacio de parametros de dimension finita

ARIMA; (D;)

donde D; es el i-ésimo conjunto de datos, ARIM A; es i-ésimo modelo ARIMA.

El vector de parametros del modelo #° € S, ya que todos los modelos se pueden
parametrizar de la misma forma. Definimos 8% como los pardmetros sub6ptimos del
i-6simo modelo ARIMA. Existe una regién de limite cerrado Q, tal que 6 € Q,
entonces

0" € S
Esto significa que podemos combinar todos los M;, © = 1,--- |l de manera adecuada,
aunque sus dominios sean diferentes.

5.2.3. ARIMA miuiltiple combinado con redes neuronales

Las redes neuronales son modelos basados en datos. Son mas flexibles que ARIMA,
pero la precision del modelado para una serie de tiempo es peor que ARIMA. La
combinacion de redes neuronales y ARIMA puede utilizar ambas ventajas de estos
dos modelos. Para el modelo ARIMA tnico, existen varios tipos de compensacion,
como la compensacion directa [70).

y=ARIMA(D)+ ynn

Aqui, la red neuronal se usa para aprender el error de modelado de ARIMA(D). O
combinacién de productos [71].

y=ARIMA(D) % ye, ye= ARIJ\;/ZJZp g,d)

donde ARIMA (p, q,d) es el resultado previo al entrenamiento. O conexion serie [36]

ynn = > 06> wiAi,), A, = ARIMA (p,q,d) (5.4)

7j=1 o=1
Para la propuesta de este modelo se utiliza una red neuronal que combina varios
modelos ARIMA. Se construyeron 2 estrategias para combinarlos: 1) ARIMA multiple
con fusion de redes neuronales; 2) ARIMA multiple con compensacion de red neuronal.
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Combinacién de modelos ARIMA usando redes neuronales

El modelo de red neuronal mas popular es el perceptron multicapa (MLP). Un
MLP de dos capas se puede escribir como

gi(k +1) qus Zvojyl —o0+1) (5.5)

donde g;(k + 1) es la salida del MLP, ¢ es la funcién activa no lineal, V,; y W, son
los pesos, ny v ng son el niimero de neuronas en las dos capas.

Para usar una red neuronal para combinar diferentes modelos ARIMA, se requiere
el aprendizaje de transferencia discutido anteriormente, es decir, diferentes conjuntos
de datos con sus propios modelos ARIMA pueden ayudar a otro modelo ARIMA a
mejorar su precision de prediccion. El esquema de combinacion de diferentes modelos
ARIMA utilizando una red neuronal se muestra en la Figura 5.5.

:_ eimimimimimimimimimim ,..i y;(k + 1)
—  ARIMA,

— o Falk+1)
—  ARIMA,

:_...__...__..,__...I }’,\l(k+1)
—  ARIMA,

Red Neuronal

Figura 5.5: Esquema de combinacién del modelo ARIMA y ANN.

La salida de los miltiples modelos ARIMA es

Z A, (k)

donde A,(k) es el resultado de cada modelo ARIMA obtenido en la figura 3.1,

Gni(k +1) Zqu (5.6)

A, (k)= ARIMA, (D;), o=1---1,
La tarea principal es entrenar (5.6) con el error de entrenamiento
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tal que
* *] ‘ 2
V", W’] = argmin > el (k+1) (5.7)

donde V' = {V,;}, W = {W;}. Con el algoritmo de retropropagacion se obtiene
[V*,W*| . Donde ARIM A, (D;) es entrenado por su propio conjunto de datos D;
como en la figura 5.5, posteriormente la red neuronal NN; es entrenada por D;, tal
que Yn;(k + 1) de (5.6) es mejor que g;(k + 1)

La diferencia entre el método ARIMA multiple propuesto y los métodos hibridos que
presenta la literatura [[72],[71]], es que las entradas a NN de (5.6) son la salida de
modelos ARIMA "multiples", mientras que las entradas a NN en [[72],[71]] son de uno
solo modelo ARIMA. Una ventaja del modelo propuesto es que posible extraer més
caracteristicas aplicando las técnicas de aprendizaje por transferencia en multiples
conjuntos de datos.

Compensaciéon de modelos ARIMA usando red neuronal

Este modelo se modifico del propuesto original a través de los experimentos realizados,
debido a que no todos los modelos se adaptaron de forma correcta. Por tanto, el
esquema considera usar una compensacion a la red neuronal, con el motivo de que
aprenda del error de predicciéon del modelo ARIMA, vea la Figura 5.6.

D [0, 7i@), - yi(K)] ———  ARIMA,

Filk+1)

e —- 2k +1)
- ARIMA, —— ]

S — Filk +1)

Vitk+1)

Red Neuronal

Figura 5.6: Esquema de combinacién del modelo ARIMA y ANN con compensacion.

Después del primer paso de entrenamiento como en la Figura 3.1, la predicciéon el

error del modelo ARIMA es
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La salida de los multiples modelos ARIMA es la misma que (5.6), pero A,(k) es
A, (k) = ARIMA, (D,), o=1---1, o#i
El error de entrenamiento es
éi(k+1)=e (k+1)—gn(k+1)
La minimizacion del error de entrenamiento es

* *] z ~2
VW = argr‘%l;Zei (k+1) (5.8)

Después de entrenar la red neuronal, la prediccion del i-ésimo modelo es

ARIMA; (D;) + §ni(k + 1)
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Pronéstico de energia edblica con
modelo hibrido multiple ARIMA

En este capitulo se describen los conjuntos de datos con més detalle; la transforma-
cion de cada conjunto a serie de tiempo utilizando como unidad de tiempo los dias
respecto a la energia eolica generada en Giga Watts, la comprobacion de la prueba
ADF para verificar si una serie es estacionaria o en su defecto en que diferencia se
vuelve estacionaria, la obtencion de los parametros (p, d, q) para construir los modelos
ARIMA, la unién de estos modelos con la red neuronal, la eleccion de la red neuronal
y los codigos en Python y MATLAB que beneficiaron a cumplir las tareas anteriores.

6.1. Conjuntos de datos

La parte de los datos fue y es una problemética que surge del pais; los datos respecto
a energia eléctrica no se pueden conseguir de ninguna forma que no sea pasando por
la Comision Federal de Electricidad (CFE) de México. Esto complico uno de los obje-
tivos principales que era recabar datos de granjas edlicas en México, algunos articulos
[20], [7] han podido trabajar con estos datos haciendo prediccion de la velocidad del
viento, pero mencionan que los datos son propiedad de CFE, por tanto, no provienen
de una base que pueda ser utilizada. Por ello decidimos plantear el modelo con con-
juntos de acceso libre y en un futuro incluir datos de México.

Se obtuvieron 3 bases de datos de distintos sitios: Kaggle (plataforma web de
datos y competencias online), Alemania y California. Posteriormente se realizo el
procesamiento de los conjuntos para convertirlos en un formato en dias de energia
eblica generada. A continuacion, se describira cada una de las bases de datos antes de
realizar la limpieza de anomalias y la conversion a serie de tiempo de dias respecto a
energia generada.

27
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Datos Kaggle.

Conjunto de datos obtenido en la competencia Global Energy forescasting Competi-
tion 2012. Los valores de las series de tiempo son recolectados de 7 granjas eodlicas
en un periodo comprendido entre julio 2009 y junio del 2012, para las pruebas se
tomaron los datos de la primera granja en un periodo comprendido entre 1 de julio
2009 hasta el 31 de diciembre de 2010. El formato de la fecha del conjunto es de la
forma 2009071102 siendo los primeros 4 ntimeros el ano (2009), los dos siguientes el
mes (07), los consiguientes dos el dia (11) y los tltimos la hora (02) presentada en
un formato de 24 horas. En la figura 6.1 se observa una visualizaciéon de los datos
y una flecha que nos senala la variable de energia generada que se utiliz6, cada co-
lumna representa una granja distinta y las mediciones de energia edlica que obtuvo
en los distintos tiempos. Mediante una sumatoria de las horas en cada fecha se obtu-
vo la serie de tiempo de los datos de Kaggle. Informacion a detalle de los datos en [73].

¥

A B C D E F G H
1 |date wpl wp2 wp3 wpd wp5s wpb wp7
2 | 2009070100 0.045 0.233 0.494 0.105 0.056 0.118 0.051
3 | 2009070101 0.085 0.249 0.257 0.105 0.066 0.066 0.051
4 , 2009070102 0.02 0.175 0.178 0.033 0.015 0.026 0
2009070103 A 0.085 0.109 0.022 0.01 0.013 o
6 | 2009070104 0.045 B 0.079 0.039 0.01 o o
7 | 2009070105 0.035 0.011 0 0.066 0.015 0.013 o
& | 2009070106 0.005 1] 0.069 05 0.015 0.079 o
9 | 2009070107 1] 0.011 o 0.017 025 0.013 0.025
10 | 2009070108 1] 0.016 o 0.017 0.046 o o
2 0 0 9 0 7 0 1 0 2
| | | |
Ao Mes Dia Hora

Figura 6.1: Datos de Kaggle y visualizacion del formato de fechas.
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Datos California.

Datos obtenidos en la pagina de la ISO (Independent System Operator) California,
compania que administra el flujo de electricidad en un 80 % de lineas de transmision
de alta tension y larga distancia de California. Los datos se presentan en columnas
de fecha, hora (formato de 24 horas), junto con los siguientes tipos de energia: bio-
gas, geotérmica, biomasa, hidro, edlica total, solar fotovoltaica y solar térmica. En
la figura 6.2 se observa el formato de los datos de tiempo con los que se cred una
sumatoria de las horas para conformar los dias para la serie de tiempo, mientras que
una flecha nos indica la columna elegida de la energia edlica. El registro del periodo
tomado para la serie de tiempo fue del 1 de septiembre de 2011 hasta 31 de agosto
del 2012. Informacion a detalle de los datos en [74].

¥

A B C D E F G H | J
1 |TIMESTAMP BIOGAS BIOMASS GEQOTHERMA Hour SMALL HYDR SOLAR SOLAR PV SOLAR THERI'WIND TOTAL
2 ?/21/2011 0:00 177 372 984 1 516 o 1607
=] 7/21/2011 1:00 176 373 984 2 509 ) 1619
4 ?/21/2011 2:00 177 371 985 3 506 o 1660
5 ?/21/2011 3:00 177 374 985 4 504 o 1633
5 ?/21/2011 A4:00 177 377 984 = 508 o 1520
r 7/21/2011 5:00 T 371 930 B 510 il 1406
a 7/21/2011 6:00 176 3 979 7 521 10 1391
g 7/21/2011 7:00 176 378 9 a8 524 84 1341
1 7/21/2011 8:00 176 380 975 526 169 1220
1 7/21/2011 9:00 175 381 973 10 5 254 1025
2 | 7/21/2011 10:00 175 383 971 11 530 3 798
7 /21 / 2011 4:00
Y |
Fecha Hora

Figura 6.2: Datos de California y visualizacion del formato de fechas.
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Datos Alemania.

Conjunto de datos obtenido del sitio netztransparenz, contiene informacion publicada
conjuntamente por 4 operadores de sistemas de transmision alemanes. Las granjas eo-
licas pertenecen a las siguientes empresas: Tennet, 50Hertz, TransnetBW y Amprion.
El conjunto seleccionado para los experimentos fue Tennet. Los datos de generacion
de energia son tomados en intervalos de quince minutos dando un total de 96 medicio-
nes por dia. De esta forma al hacer la sumatoria de las 96 mediciones se obtuvieron
las mediciones para cada fecha correspondiente. En la figura 6.3 se observa que la
primera columna corresponde a las fechas y cada fila a partir de la segunda columna
son los pasos de medicion del tiempo que fueron sumados para asi obtener una serie
de tiempo en dias. Informacion a detalle de los datos en [75].

A B T D E F CP cQ CR cs
Date .| 0:00:00 0:15:00 0:30:00 0:45:00 1:00:00 ... 23:00:00 23:15:00 23:30:00 23:45:00

1
2 |23/08/2019 9.68 10.16 11.39 12.09 71.26 71.95 69.97 69.58
3 |24/08/2019 67.94 .52 64.48 64.78 65.75 59.04 96.57 94.75 91.73
4 |25/08/2019 89.38 88.9 85.13 81.46 37.6 35.46 34 33.47
5 |26/08/2019 33.71 31.84 32.75 33.33 57.53 58.15 55.76 54.34
6 |27/08/2019 52.65 47.95 .01 43.8 41 55.96 56.48 55.19
7 |28/08/2019 53.12 49.72 47, 47.76 47.25 20.54 17 12.47
8 |29/08/2019 11.28 10.49 11.65 12.96 14.57 8.87 8.47 8.44
9 |30/08/2019 8.47 8.45 9.19 9.7 9.5 14.95 . 15.66 15.99
10 (31/08/2019 16.14 16.98 17.51 17 16.91 ... 164.38 156.88 .93 121.01
31/ 08 / 2019 0:15:00
| |
Fecha Tiempo

Figura 6.3: Datos de Tennet-Alemania y visualizacion del formato de fechas.
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6.2. Pre-procesamiento de datos

Respecto al horizonte de prediccion se decidié tomar una prediccion de largo plazo,
debido a la naturaleza de los conjuntos. Varios articulos mencionan que los modelos
estadisticos y basados en aprendizaje automatico funcionan mejor con predicciones
a corto plazo, esto quiere decir que las predicciones tienen que ir en la mediciéon de
minutos (revisar 2.2), en nuestro caso optamos por una medicién en dias debido a
que las bases originales tenian perdidas de mediciones en bastantes horas del dia, por
tanto, para hacer mas homogéneos los datos realizamos las sumatorias de todas la
mediciones y sintetizamos las series respecto a dias.

Para el procesamiento de los datos utilizamos el lenguaje Python version 3, en
el siguiente codigo 6.2 se explica la normalizacion para los conjuntos de datos y asi
crear cada una de las series estacionarias.

Una vez obtenidos los tres conjuntos de datos seleccionados (Kaggle (Granja 1), Ca-
lifornia, Alemania (Tennet)) fueron normalizados alrededor de los valores [0, 20] para
evitar anomalias y redundancias entre estos, se utiliz6 la ecuaciéon de normalizacién
siguiente:

x; — min(x)

Xnorm<i) =

-~ maz(z) — min(x) (6.1)

Donde z; es cada dato de la serie de tiempo, mientras que min(x) esta denotado por
0 y max(z) esta denotado por 20, para asi obtener la relacion a la que pertenece cada
dato entre las cotas propuestas.

from sklearn.datasets import load iris

from sklearn.preprocessing import MinMaxScaler
from sklearn import preprocessing

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

serie = pd.read csv(’datos.csv’,parse dates=True,index col=0)
minmaxsca = preprocessing.MinMaxScaler (feature range=(0,20))

x _scaler = minmaxsca. fit transform (serie)

df = pd.DataFrame(x _scaler)

serieenerg = df][0]

Como se puede observar en cédigo anterior, en la linea 8 tomamos los datos de
cada serie en un formato .csv, dénde posteriormente en el c6digo pasamos a realizar
la normalizacion con el procedimiento de Python x scaler y una vez lo movemos a
un objeto podemos visualizar su contenido y graficar cada una de las series.

Las siguientes graficas muestran los conjuntos de datos normalizados en el margen
antes mencionado, todos los datos se componen por fecha en dias en el eje de las

abscisas, mientras que en el eje de las ordenadas muestra la energia generada en Giga
Watts (GW).



62 Prondstico de energia edlica con modelo hibrido maltiple ARIMA

Base de Datos (Granja de California-ISO)
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Figura 6.4: Serie de tiempo normalizada de los datos California del periodo compren-
dido entre 1 de septiembre de 2011 hasta 31 de agosto del 2012.

Base de datos (Alemania-Tennet)
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Figura 6.5: Serie de tiempo normalizada de los datos Alemania-Tennet del periodo
comprendido entre 23 de agosto de 2019 hasta 22 de septiembre del 2020.
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Base de datos (Kaggle-Granja 1)

® \ \ \ \
—Granja 1 Kaggle

Energia
o
I
|

3
T
|

| | | | I | | |
0

Sep 2010 Oct 2010 Nov 2010 Dec 2010 Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul2011 Aug 2011 Sep 2011
Time

Figura 6.6: Serie de tiempo normalizada de los datos Kaggle (Granja 1) del periodo
comprendido entre 1 de septiembre de 2010 hasta 30 de agosto del 2011.

Al poder visualizar como se han creado nuestras series de tiempo en la forma
correcta, se debe analizar si las series son estacionarias o en qué diferencia la serie
puede convertirse en estacionaria.

6.3. Prueba estacionaria

Es esencial para el modelo ARIMA conocer si la serie de tiempo es o no estacionaria,
dado que uno de los pardmetros del modelo ARIMA requiere de saber de cuantas
diferencias requiere una serie para convertirse en estacionaria o si la serie ya lo era,
el parametro d toma el valor de 0.

A continuacion, se presenta el analisis que se obtuvo por medio del método Dickey-
Fuller aumentado (ADF en inglés Augmented Dickey-Fuller).

Serie ADF Estadistico | p-valor 1% 5% 10% | HO d
Kaggle |-2.153723 0.22346750 -3.449 | -2.870 | -2.571 | not stationary | 0
Kaggle | -7.903060 4.1355332e-12 | -3.449 | -2.870 | -2.571 | stationary 1

Germany | -2.898682 0.0455013 -3.447 | -2.869 | -2.569 | stationary 0
California | -1.226807 0.661958 -3.449 | -2.870 | -2.571 | not stationary | 0
California | -9.737932 8.649381e-17 | -3.449 | -2.870 | -2.571 | stationary 1

Tabla 6.1: Resultado de la prueba Dickey-Fuller en los conjuntos de datos
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El codigo 6.3 da como resultado la respuesta de la prueba ADF para las diferentes
series de tiempo:

resultado = adfuller(serieenerg)
print (?ADF Statistic: %f ’ % result[0])
print (’p-value: %f > % result|[1])
print (’Critical Values: ’)
for key,value in result [4].items():
print (’\t%s: %.3f’> % (key, value))
if resultado[0]< resultado [4]["5%"]:
print ("Es estacionaria")
else:
print ("No estacionaria")

Para explicar el codigo anterior se utiliza la funciéon adfuller directamente sobre nues-
tra serie de tiempo normalizada, esta nos arrojard el resultado de la prueba en la
cual buscamos comparar con nuestros valores criticos en los distintos porcentajes de
aceptacion. Si el valor del ADF es menor que el valor critico al 5% la serie puede
determinarse estacionaria, se puede considerar también el valor del 10 % y el 1 % pero
estos sirven como un limite superior e inferior que delimitan el resultado de la prueba.

Con base en la subseccion 2.4.1 y con apoyo en la figura 2.5 se resume lo siguiente:
Para determinar que la series son estacionarias, en la tabla 6.1, se pueden observar los
valores criticos del 1%, 5% y 10 % deben compararse con el resultado de la prueba
para determinar si la hipotesis de Dickey-Fuller se rechaza o se acepta, en caso de
aceptar la hipotesis indicaria tener una raiz unitaria y por tanto la serie se determi-
na como no estacionaria, mientras que, si se rechaza, la serie se determinara como
estacionaria. Por tanto el conjunto de Kaggle es estacionario hasta la primer dife-
renciacion debido a que en la primera prueba (diferenciacion 0) obtiene un valor de
-2.153, viendo todos los valores criticos y comparando, se puede determinar qué valor
ADF (Kaggle) de la prueba es menor a todos estos, por tanto, la serie de tiempo nece-
sita diferenciarse, asi como también el conjunto de California presenta una tendencia
similar, en la primera prueba el valor de ADF (California) es de -1.22, comparandolo
con los valores criticos se obtiene que es menor a todos ellos, pero al diferenciar una
primera vez logra superarlos, mientras que el conjunto de Alemania al obtener un
valor del ADF en -2.898 al compararlo con el 1% de valor critico la prueba no seria
valida, a pesar de ello, logra ser mayor que los otros valores criticos (5% y 10%) y
por tanto, la serie queda determinada como estacionaria.
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6.4. Entrenamiento de los modelos ARIMA

Los ARIMA de los 3 modelos en un inicio se trabajaron en la parte de Python y pos-
teriormente fueron pasados a lenguaje R para comprobar un mecanismo de ensamble
que surgié como prueba, para comprobar que se tuvieran bien los modelos ARIMA
optimos verificamos con la app Econometric Modeler de MATLAB que tuviéramos
los mismos resultados de estimacion de AIC y resulté tan conveniente que a partir
del calculo de los modelos ARIMA, todo lo demas fue desarrollado en MATLAB por
la facil uniéon que nos representd crear la red neuronal.

Para comenzar el entrenamiento de los modelos ARIMA se requiere especificar
los tres parametros de orden (p,d,q), en donde el significado de cada uno de ellos se
refiere a lo siguiente.

» p es el orden del término AR (del inglés Autoregressive) que usa los valores
pasados en la ecuaciéon de regresion para la serie temporal.

= d es el nimero de diferenciaciones requeridas para hacer que la serie de tiempo
sea estacionario.

= g es el orden del término MA (del inglés Moving Average) que representa el
error del modelo como una combinacién de términos de errores anteriores.

Para crear los modelos ARIMA de cada conjunto de datos se determinan los pa-
rametros de p, d y q. En el caso del pardmetro d fue calculado mediante el método
de Dickey-Fuller Aumentado en el apartado anterior, los dos parametros restantes re-
quieren de un anéalisis de las graficas de autocorrelacion total (ACF Autocorrelation
Function) y autocorrelacion parcial (PAF Partial Autocorrelation Function).

Las siguientes graficas determinan las pruebas de autocorrelacion parcial y auto-
correlacion, las cuales determinan el nimero de p coeficientes de autoregresiones que
necesita la serie de tiempo y el ntimero de g coeficientes de media moévil para construir
el modelado de las series. Las graficas no devuelven un modelo en particular para cada
serie de tiempo, su funcion es delimitar los parametros del modelo ARIMA que mejor
aproximan la serie de tiempo que se quiere modelar. Este método requiere generar
un algoritmo de caminata aleatoria o una busqueda a fuerza bruta para encontrar los
mejores parametros, para evitar el uso de un algoritmo de ese estilo, procedimos a
ocupar el método de criterio de Aikake mencionado en la secciéon 3.3.1.

A continuacién se describen las caracteristicas que contienen cada una de las
graficas respecto a los pardametros p y ¢ para cada serie de tiempo:
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Figura 6.7: ACF/PCF Analisis para el conjunto de datos de Alemania.

La figura 6.7a muestra el analisis del ACF y determina los posibles candidatos para
el parametro q. El analisis del grafico dictamina que las opciones para el parametro
son 1, 2, 3, 4 y 5. Para examinar el caso de p se selecciona la grafica 6.7b, en donde
se determina que los posibles candidatos son 1 y 2. Dando como resultado varias
combinaciones para el conjunto de datos de Alemania
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Figura 6.8: ACF/PCF Analisis para el conjunto de datos de California.
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El procedimiento anterior tiene que repetirse para el conjunto de California. Con
base en la figura 6.8a, al observar el grafico ACF se determina que las opciones para
gson 1,2, 3,4, 5y 6, mientras que la grafica 6.8b se utiliza para la eleccion de p y
de esta forma los posibles candidatos son 1, 2, 3 y 4.

ACF Kaggle Farm 1 . . PP:F Kﬂg}:l|e Fa.rm1 - -
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Figura 6.9: ACF/PCF Analisis para el conjunto de datos de Kaggle.

Reutilizando el procedimiento de los anteriores conjuntos, en la figura 6.9 co-
rrespondiente a Kaggle se procede a determinar los candidatos posibles para cada
parametro, al revisar el grafico ACF 6.9a se determina que las opciones adecuadas
son 1, 2 y 3, mientras la grafica 6.9b de PAF determina que las mejores opciones para
psonl, 2y 3.

La tabla 6.2 es un breve resumen de los parametros candidatos que pueden cons-
truir los modelos ARIMA para las series de tiempo.

Serie p d q
Alemania | 1,2 011,2,34,5
California | 1,2,3,456 | 1 | 1,234

Kaggle | 1,2 1 1,2,3

Tabla 6.2: Resumen de los parametros ARIMA candidatos obtenidos con las pruebas
de ACF, PAF y la prueba Dickey-Fuller aumentada.
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La tabla 6.2 acota el rango de busqueda de los parametros (p, d, q) para la selec-
cion de un modelo 6ptimo en cada conjunto de datos. Sin embargo, como ya se ha
mencionado requiere de una busqueda por fuerza fruta para medir la predicciéon de
cada modelo, se descarto esa idea para utilizar el criterio AIC (Aikake Information
Criterion).

Una vez evaluados los pardametros (p,d,q) y obteniendo todos los modelos posibles,
procedemos a usar el AIC para compararlos. Las puntuaciones més bajas son mejores,
y AIC penaliza a los modelos que utilizan méas parametros. Entonces, si dos modelos
tienen la misma cantidad de variacion, el que tenga menos pardmetros tendra una
ponderacion AIC méas baja y seré el modelo de mejor ajuste.

El codigo para encontrar el mejor modelo de parametros es el siguiente:

modeloopt = auto arima(serieenerg ,trace=True,seasonal=True, stepwise=
True, approximation=True,suppress warnings=True)

Con la funcién auto arima podemos determinar el modelo mejor adaptado a cada
serie de tiempo, basdndonos en el AIC obtenido.

Alemania|TenneTTSO] California Kaggle|Granja 1]
Model AIC Model AIC Model AIC
ARIMA (1,0,4) | 1544.3 | ARIMA(0,1,2) | 1367.3 | ARIMA(1,1,2) | 1336.2
ARIMA(L,1,4) | 15448 | ARIMA(0,1,3) | 13685 | ARIMA(2,1,1) | 1337.1
ARIMA(2,05) | 15450 | ARIMA(1,1,2) | 13688 | ARIMA(2,1,3) | 1337.8
ARIMA(1,1,2) | 1546.7 | ARIMA(0,1,4) | 1360.2 | ARIMA(L,1,3) | 13382
ARIMA(2,1,3) | 15469 | ARIMA(L1,3) | 1369.7 | ARIMA(2,1.2) | 13383
ARIMA(1,1,3) 1547.0 ARIMA(1,1,4) 1371.2 ARIMA(1,1,1) 1340.1
ARIMA(2,0,2) | 1554.3 | ARIMA(2,1,3) | 1371.3
ARIMA(1,0,2) | 15548 | ARIMA(G,12) | 1376.4

Tabla 6.3: AIC de los modelos ARIMA para los conjuntos de datos

La tabla 6.3 muestra AIC de los mejores modelos obtenidos de las combinaciones
de parametros de la tabla 6.2, organizados de menor a mayor, es por ello que se
determina que el modelo ARIMA (1,0,4) es el mejor para el conjunto de Alemania,
el modelo ARIMA (0,1,2) es la mejor opciéon para California y por tltimo el modelo
ARIMA (1,1,2) fue el seleccionado para Kaggle.
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6.5. Prediccién del modelo ARIMA miiltiple

Para la eleccion de la red neuronal de primera instancia se utiliz6 la app de Regres-
sion Learner de MATLAB, que da la opcién de optimizar una red neuronal con los
datos de entrenamiento y encontrar un modelo optimizado basado en el error MSE
calculado. A pesar de ello las combinaciones de redes neuronales que sugerian fue-
ron combinaciones 3 capas con neuronas entre (1-100) en la primera capa y (1-10)
neuronas en la segunda capa. Se probaron las combinaciones posibles sugeridas del
software, pero ninguna de estas nos dio un resultado satisfactorio. Por ello se cre6 una
red neuronal bésica manteniendo las 3 capas sugeridas por el software, pero con un
tamano de neuronas alrededor de (1-10), dando una mejor respuesta la combinacion
de red de 3 neuronas en la capa de entrada, 2 en la capa oculta y 1 en la capa de salida.

A continuacién, se presentan los resultados de predicciéon para el modelo propues-
to, cabe destacar que la configuracion de la red neuronal fue determinada por una
configuracion de 3 capas, en donde la capa de entrada son 3 neuronas, la capa oculta
consta de 2 neuronas y la tltima capa que pertenece a la capa de salida consta de
una sola neurona. Cada conjunto de datos fue divido en dos partes: los datos de en-
trenamiento, que constan del 75 % en cada serie de tiempo y los datos de prueba que
son el 25 % restante de los datos de cada conjunto.
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6.5.1. Predicciéon del conjunto de prueba para granja California-
ISO

Esta seccion muestra los resultados obtenidos por el modelo ARIMA-multiple, asi
como los resultados obtenidos por el ARIMA(0,1,2) para el conjunto de datos de
California.

Forecasting ARIMAMULTI-ANN and Original Data
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(a) Modelo ARIMA(0,1,2) de California. (b) ARIMA-multiple de California.

Figura 6.10: Resultado de predicciéon de los modelos con los datos de California.

La figura 6.10a es el resultado de los datos de prueba para ARIMA(0,1,2)-California
6ptimo, mientras que la figura 6.10 es la respuesta del modelo ARIMA-multiple para
California. Aunque se puede apreciar comparando las dos graficas que la respuesta
es mejor en 6.10b, se procede a analizar las métricas obtenidas entre estos dos modelos.

Modelo MAE | SMAPE | RMSE | RSQ
ARIMA(0,1,2) California 2.4117 | 0.2676 3.139 | 0.3428
ARIMA-Multi California | 0.6181 | 0.0715 | 1.263 | 0.8934

Tabla 6.4: Métricas para los modelos de California

La tabla 6.4 muestra una comparativa de las métricas para los datos de prueba
aplicados en California. Cada una de las métricas en el modelo ARIMA-Multiple
presenta un error menor de casi el 50 % respecto al otro modelo. En el caso del MAE
presenta una mejora del 74.37 % y la métrica nos indica que cuanto mas cercano a 0,
se obtiene un mejor rendimiento. Para la métrica SMAPE la mejora es del 73.28 %,
esta métrica nos indica que cuando se acerca a 0 el rendimiento del modelo es de
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buena prediccion. La métrica RMSE se comporta de forma similar a la MAE, la
mejora que presenta el modelo miltiple es de 59.76 % respecto al modelo ARIMA. La
ultima métrica es el RSQ con una mejora del 55.06 %, en este caso cuando la métrica
es cercana 1, el modelo se acopla mejor a los datos originales. Se puede observar que
el modelo ARIMA-miiltiple de California respecto a su ARIMA 6ptimo, no solo la
respuesta grafica, las métricas de errores también muestran que el ARIMA-Muiltiple es
mejor para el caso de los datos de California. Con base en los porcentajes de resultados
de las métricas de medicion de los siguientes articulos [20], [64], [67], [66] podemos
determinar las métricas no tienen anomalias y corresponden a un buen resultado de
prediccion.

6.5.2. Prediccion del conjunto de prueba para granja Tennet-
Alemania

Esta secciéon muestra los resultados obtenidos por el modelo ARIMA-miltiple, asi
como los resultados obtenidos por los modelos 6ptimos ARIMA para el conjunto de
datos de Tennet-Alemania.
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(a) Modelo ARIMA (1,0,4) de Alemania. (b) ARIMA-multiple de Alemania.

Figura 6.11: Resultado de predicciéon de los modelos con los datos de Alemania.

La figura 6.11a es el resultado de los datos de prueba evaluados en el modelo
ARIMA-Alemania 6ptimo, mientras que la figura 6.11b es la respuesta de la salida
del ARIMA-multiple para Alemania. Como en el anterior modelo de California, la
prediccién en la figura 6.11b también coincide con una mejora de respuesta a compa-
racion del ARIMA(1,0,4) 6ptimo para Tennet-Alemania. Sin embargo, la respuesta
grafica debe compararse de forma numérica en la siguiente tabla de mediciones de
error.
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Model MAE | SMAPE | RMSE | RSQ
ARIMA (1,0,4) Alemania 1.4644 | 0.6931 | 2.1952 | 0.1435
ARIMA-Multi Alemania | 0.0687 | 0.1239 | 0.0811 | 0.9988

Tabla 6.5: Métricas para los modelos de Alemania

La tabla 6.5 muestra una comparativa de las métricas para los datos de prue-
ba aplicados en Alemania-Tennet. Cada una de las métricas en el modelo ARIMA-
Multiple presenta un error menor en promedio del 80 % respecto al otro modelo. En
el caso del MAE presenta una mejora del 89 % y la métrica nos indica que cuanto
mas cercano a (, se obtiene un mejor rendimiento. Para la métrica SMAPE la mejora
es del 82.1%, al igual que la métrica MAE nos indica que cuando se acerca a 0 el
rendimiento del modelo es de buena prediccion. Con la métrica RMSE tiene un com-
portamiento igual a las anteriores, la mejora que presenta el modelo miltiple con esta
métrica es de 89 % respecto al modelo ARIMA. La ultima métrica RSQ tiene una
mejora del 84.6 %, en este caso cuando la métrica es cercana 1, el modelo se acopla
mejor a los datos originales. Se puede observar que ARIMA-multiple de Alemania
respecto a su ARIMA(1,0,4) 6ptimo, obtiene resultados graficos muy cercanos a los
datos del conjunto original, en cuanto a las métricas de errores, estas muestran que el
modelo ARIMA-miiltiple es mejor para el caso de los datos de Alemania-Tennet. Con
base en los porcentajes de resultados de las métricas de medicion de los siguientes
articulos [20], [67], [66], [64] podemos determinar las métricas no tienen anomalias y
corresponden a un buen resultado de prediccion.

6.5.3. Predicciéon del conjunto de prueba para granja 1 Kaggle

Esta seccién muestra los resultados obtenidos por el modelo ARIMA-miltiple, asi
como los resultados obtenidos por el modelo 6ptimo ARIMA(1,1,2) para el conjunto
de datos de Kaggle.

Para el caso de la base de datos Kaggle, se obtuvo un resultado no esperado al
comparar el modelo ARIMA maultiple y el ARIMA 6ptimo.
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Forecasting ARIMA(1,1,2) and Original Data Forecasting ARIMAMULTI-ANN and Original Data

25

25

—— Prccton o s
Prediclion ARIMA(1,1,2) rediction 5

2r1
27

15

o

0 50 100 150 200 260 300

0 50 00 150 200 250 300
(a) Modelo ARIMA (1,1,2) de Kaggle. (b) ARIMA-multiple de Kaggle.

Figura 6.12: Resultado de predicciéon de los modelos con los datos de Kaggle.

La figura 6.12a es el resultado de datos de prueba evaluados en el modelo ARIMA-
Kaggle 6ptimo, mientras que la figura 6.12b es la respuesta del modelo ARIMA miilti-
ple para Kaggle. Contrario a los casos anteriores, Kaggle no logra obtener una buena
predicciéon en su modelo miltiple a comparacion del modelo ARIMA 6ptimo. La tabla
6.6 es la comparativa de métricas de ambos modelos, en este caso el modelo ARIMA
optimo de Kaggle es un 14.32% con mejores resultados que el ARIMA-multiple.
Aunque las métricas de SMAPE con (5.72%) y RMSE con (5.35 %) muestran que el
ARIMA maultiple tiene mejor respuesta de prediccion, la métrica RSQ califica a am-
bos modelos como insuficientes para predecir. La respuesta obtenida en las gréficas
nos muestran que la prediccion no es nada precisa. Para encontrar una soluciéon se ha
propuesto una técnica de compensacion que mejora el modelo ARIMA-multiple.

Model MAE [ SMAPE [ RMSE | RSQ
ARIMA (1,1,2) Kaggle | 1.6051 | 0.9938 | 2.2486 | -0.1485
ARIMA-Multi Kaggle | 1.8351 | 0.9369 | 2.1223 | -0.0231

Tabla 6.6: Métricas para los modelos de Kaggle
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Forecasting ARIMAMULTI-ANN COMP and Original Data
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Figura 6.13: Modelo de ARIMA-multiple compensado

La figura 6.13 es la respuesta del diagrama 5.6 del modelo ARIMA-miiltiple com-
pensado, el modelo miltiple se resta con los residuales del modelo ARIMA 6ptimo.
Esto conlleva a un modelo compensado con el error y la respuesta nos presenta una
mejora de su antecesor el ARIMA-multiple Kaggle.

Model MAE | SMAPE | RMSE | RSQ
ARIMA-Multi Kaggle compensado | 1.2064 | 0.8582 | 1.435 | 0.5322
ARIMA-Multi Kaggle 1.8351 | 0.9369 | 2.1223 | -0.0231
ARIMA(1,1,2) Kaggle 1.6051 | 0.9938 | 2.2486 | -0.1485

Tabla 6.7: Métricas para los modelos Kaggle y el modelo compensado

La tabla 6.7 determina la mejora del modelo miltiple compensado para Kaggle a
través de las métricas de error. En el caso del MAE presenta una mejora del 24 % y
la métrica nos indica que cuanto mas cercano a 0 se obtiene un mejor rendimiento.
Para la métrica SMAPE la mejora es del 13.64 % del modelo compensado hacia el
ARIMA o6ptimo para Kaggle. Con la métrica RMSE el modelo multiple compensado
es de 36.18 % mejor respecto al modelo ARIMA. La ultima métrica es el RSQ con una
mejora del 69.6 % en el modelo ARIMA-multiple compensado, en este caso cuando
la métrica es cercana 1, el modelo se acopla mejor a los datos originales. Se puede
observar que el modelo ARIMA-multiple compensado de Kaggle respecto a su ARI-
MA 6ptimo y ARIMA-multiple presenta una mejora en la prediccion. En conclusion,
no hace falta comparar directamente las métricas del modelo ARIMA-miiltiple com-
pensado contra el ARIMA-multiple, puesto que las mejoras contra el modelo ARIMA
optimo de Kaggle son por encima del 10 %, mostrando que estan por encima de los
resultados y con una respuesta grafica superior a ambos modelos.
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Conclusiones y trabajos futuros

7.1. Conclusiones

Se construy6 un algoritmo de estrategia multimodelo con base en modelos ARIMA y
redes neuronales. Generalmente en distintos articulos se menciona la union de estos
modelos por medio de las sumas de predicciones en las que separan la parte lineal,
la parte no lineal y el error (§ = vy, + yu + €;). Podriamos decir que es un modelo
més de compensaciéon que una uniéon de estos. Por ello el planteamiento que conside-
ramos fue entrenar los modelos ARIMA hasta llegar a los mejores modelos que puede
tener cada conjunto de datos. Utilizando el criterio AIC y basandonos en la teoria
que proporciona la transferencia de aprendizaje, de entrenar una red neuronal a par-
tir de modelos ya pre-entrenados. Desde mi punto de vista esto significaba otorgar
una mayor cantidad de caracteristicas a nuestros conjuntos, porque en la actualidad
los modelos mas modernos implican tomar en cuenta las condiciones meteorologicas
que presenta el area de ubicacion en la que esta localizada la granja. Con el fin de
determinar el comportamiento del viento a partir de temporadas. Sin embargo, se
requiere una gran cantidad de datos, que lamentablemente en un pais como México
es complicado conseguir una base de datos con esa informacién y llega ser hasta cierto
punto imposible, debido a que hay demasiada restricciéon por parte de las empresas
que trabajan con este tipo de energias. Por ello el planteamiento fue obtener caracte-
risticas de lugares completamente distintos y hacer la uniéon de modelos para que se
consideren mas caracteristicas distintas areas, el lugar de solo proponer méas datos de
granjas e6licas ubicadas en un mismo lugar. Cabe resaltar que nuestro objetivo fue
un poco acotado debido a que no pudimos compararlo con otro modelo un poco més
robusto, pero en un futuro se planea realizar una comparativa con otros modelos y
una mejora para el modelo realizado.

Otro de los objetivos planteado fue utilizar un conjunto (Kaggle) con menos datos
que los otros 2 conjuntos. Como bien hemos mencionado realmente pocos modelos
de prediccion pueden trabajar con conjuntos que contienen menos datos, en este ca-
so era cerca de un 10 % menos datos que los otros conjuntos. Los modelos ARIMA
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no pueden realizar una buena predicciéon con conjuntos con menos datos y las ANN
mucho menos. Se requiere de una gran cantidad de datos para obtener suficientes ca-
racteristicas y obtener un modelo que pronostique buenas predicciones. Nuevamente
a través de la transferencia de aprendizaje, buscamos una oportunidad para mejorar
el conjunto de datos, y de esta forma proporcionarle mas caracteristicas a un modelo
de predicciéon; dando como resultado un modelo con mayor estabilidad y con mejoras
de prediccion. Aunque esto no resulté en una mejora para los 3 modelos planteados,
dos de los tres conjuntos, lograron obtener aprendizaje de un conjunto mayor que
dio mejoras en su modelo. Los datos de Kaggle crearon el tinico modelo donde no
existe una mejora con solo aplicar la estrategia multimodelo. Por ello consideramos
apoyarnos en la idea de hacer una compensacion al modelo, sumando el modelo obte-
nido menos la prediccién del modelo ARIMA para ese conjunto de datos. Al realizar
las pruebas de la compensacion nos otorgd mejores resultados que el modelo ARIMA
optimo para Kaggle y aunque no es un porcentaje muy alto de mejora, se obtiene un
modelo estable con buena prediccion. Atun falta fortalecer esta estrategia de compen-
sacion para un modelo con pocos datos, debido a que es posible que se requieran méas
caracteristicas, y eso solo se consigue con mas conjuntos de datos.

El dltimo objetivo fue obtener resultados aceptables en las métricas comparati-
vas, como bien podemos observar en la secciéon 6.5 al comparar ambos modelos los
resultados obtenidos tienen mejoras altamente buenas en comparaciéon con los mo-
delos ARIMA. Aunque el objetivo estd un poco acotado como tal, debido a que la
comparativa es con el modelo ARIMA y no con otros modelos actuales, el modelo es
bastante estable. Las tltimas pruebas que realicé fue ver si nuestro modelo logra man-
tener buenas predicciones cuando se somete a una prueba de repeticiones, Se sometio
de 50-100 repeticiones, entregando un cambio en las métricas del 1% en promedio
para el caso de 100 repeticiones. Lo que nos demuestra que no fue un caso de la ca-
sualidad el que obtenga buenas predicciones. Regresando al punto de la comparativa,
como tal la idea es continuar con este modelo y llevarlo a comparar en un primer
punto con otros mecanismos de aprendizaje automatico; cambiar la red neuronal por
otro mecanismo como SVM, KNN u otro mecanismo. El segundo punto es comparar
el modelo ARIMA-multiple con modelos mas robustos para verificar que las métricas
vuelven a estar a favor de nuestro modelo.
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7.2. Trabajo a futuro

El trabajo tiene varias areas de oportunidad en las que se puede aprovechar el
mismo modelo o complementar para obtener otros beneficios mejores, a continuacion,
listaré varias propuestas:

» La primera propuesta es implementar una fase de descomposicion de frecuencia
en las series de tiempo antes de entrar al modelo ARIMA, para obtener mas
caracteristicas tanto de frecuencia alta y baja. Al tener mas series de tiempo por
usar el método de descomposicion de frecuencias le otorgaréd a la red neuronal
caracteristicas mas provechosas, obteniendo un modelo més completo.

= La siguiente propuesta es ocupar distintos métodos de aprendizaje automéatico
y verificar cual es el mejor para la uniéon de los modelos. En palabras simples
es cambiar la ANN por un SVM, KNN, u otros modelos. Esto para observar
el comportamiento y los resultados que nos arrojan las métricas de medicion y
con base en ello determinar si podemos encontrar un método mejor o seguir con
una red neuronal.

» Conseguir los datos fue complicado, pero una propuesta interesante seria con-
seguir datos de granjas edlicas ubicadas en México y poner a prueba el modelo.
Durante el proceso de la tesis, intentamos hablar con personas que ya habian
desarrollado articulos respecto a energia edlica ocupando datos de CFE. Sin
embargo, no fue posible que nos prestaran los datos.

= Probar el funcionamiento del modelo con distintas series de tiempo que ten-
gan una variable distinta a la energfa, en particular el modelo debe funcionar
para distintas variables (prediccién de movimientos sismicos, por ejemplo) que
correspondan a una serie de tiempo.

= Obtener una base de datos con datos meteorologicos y con base en ello crear
series de tiempo para construir modelos més precisos. Realmente en muchos
articulos mencionan que para tener una predicciéon mas completa se deben ana-
lizar los datos meteorologicos de la granja eodlica, pero conseguir ese tipo de
datos es demasiado complicado. Por ello una buena prueba seria conseguir ese
tipo de datos y comprobar el funcionamiento del modelo.
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