
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Computación

Sistema de criptografía y
esteganografía para la

confidencialidad de información en
aplicaciones de transmisión para

dispositivos de IdC
Tesis que presenta

Gerardo Alejandro Ruiz Avendaño

para obtener el Grado de

Maestro en Ciencias en Computación

Directores de la Tesis

Dra. Brisbane Ovilla Martínez
Dr. Amilcar Meneses Viveros

Ciudad de México Agosto 2022

ii

Resumen

Internet de las Cosas (IdC) ha revolucionado la forma en cómo se realizan actividades
en distintos ámbitos, desde el cotidiano hasta el industrial, por ello cada día hay
una mayor cantidad de dispositivos interconectados que ayudan a tener un flujo de
información que contribuyen en la realización de dichas tareas. Sin embargo, con la
creciente tasa de información también se enfrentan vulnerabilidades para proteger los
datos y evitar hacer mal uso de ellos, por tal motivo se busca implementar técnicas
de seguridad como criptografía ligera y esteganografía de red. La primera, permite
cifrar los datos para que no sean posibles de interpretar por entidades no autorizadas,
y con la importante característica de ser algoritmos enfocados especialmente para
dispositivos con recursos limitados. La esteganografía de red oculta la información
sensible que se quiere transferir con la ayuda de protocolos de comunicación usados en
IdC. En el presente trabajo se propone adoptar dos sistemas utilizando criptografía
y esteganografía para dar confidencialidad y ocultamiento a la información que se
quiere transmitir entre dispositivos de IdC. El primero enfocado en cifrar y ocultar la
información que se quiere compartir usando un campo del protocolo de comunicación
MQTT. El segundo sistema cifra la información a compartir y oculta la llave de cifrado
para ser compartida de manera segura. Se ha implementado con ayuda de la tecnología
FPGA el cifrador SIMON para observar a nivel de hardware su comportamiento. Y
a nivel de software se utiliza el cifrador SPECK. Un broker es un dispositivo que
se encarga de aceptar conexiones de red de clientes, aceptar mensajes publicados y
procesar solicitudes de suscripción. En este trabajo se utilizan dos tipos de brokers,
uno instalado en una computadora de escritorio y otro broker público en la nube.

iii

iv CAPÍTULO 0. RESUMEN

Abstract

Internet of Things (IoT) has revolutionized the way in which activities are carried out
in different areas, from daily to industrial, for this reason every day there is a greater
number of interconnected devices that help to have a flow of information that con-
tributes in carrying out these tasks. However, with the growing rate of information,
vulnerabilities are also faced to protect the data and avoid misusing it, for this reason
it’s sought to implement security techniques such as light cryptography and network
steganography. The first allows data is encrypted so that they are not possible to
interpret by unauthorized entities, and with the important characteristic of being al-
gorithms focused especially on devices with limited resources. Network steganography
hides sensitive information that is transferred with the help of communication pro-
tocols used in IoT. In the present work, it’s proposed to adopt two systems using
cryptography and steganography to give confidentiality and concealment to the in-
formation that is transmitted between IdC devices. The first focused on encrypting
and hiding the information to be shared using a field of the MQTT communication
protocol. The second system encrypts the information is shared and hides the encry-
ption key to be shared safely. The SIMON cipher has been implemented with the
help of FPGA technology to observe its behavior at the hardware level. And at the
software level, the SPECK cipher is used.A broker is a device that is responsible for
accepting client network connections, accepting published messages, and processing
subscription requests. Two types of brokers are used to implement the systems, one
installed on a desktop computer and another public broker in the cloud.

v

vi CAPÍTULO 0. ABSTRACT

Agradecimientos

Agradezco al CONACYT por el apoyo económico que me brindo para el estudio de
esta maestría y al Cinvestav por aceptarme en su programa de maestría y por los
conocimientos adquiridos en estos dos años.

A los doctores que me impartieron clases durante la maestría, especialmente a
mis directores de tesis la Dra. Brisbane Ovilla Martínez y al Dr. Amilcar Meneses
Viveros por su apoyo en el desarrollo de esta tesis, y a mis sinodales el Dr. Luis Ge-
rardo de la Fraga y el Dr. Cuauhtemoc Mancillas López, por su tiempo y comentarios.

A mi madre Rosa y mis hermanos Alvaro y Esmeralda por apoyarme toda mi
vida. Y a mis amigos que me acompañaron en estos años.

vii

viii CAPÍTULO 0. AGRADECIMIENTOS

Índice general

Resumen iii

Abstract v

Agradecimientos vii

Índice de figuras x

Índice de tablas xii

1. Introducción 1
1.1. Motivación . 2
1.2. Planteamiento del problema . 3
1.3. Propuesta de solución . 3
1.4. Objetivos . 4
1.5. Organización de la tesis . 4

2. Preliminares 7
2.1. Internet de las Cosas . 7
2.2. Vulnerabilidad en IdC . 9
2.3. Protocolos de comunicación para dispositivos con recursos limitados . 12
2.4. Protocolo MQTT . 15

2.4.1. MQTT v5.0 . 17
2.5. Esteganografía . 19
2.6. Criptografía ligera . 23

2.6.1. Cifrador SIMON . 25
2.6.2. Cifrador SPECK . 28

3. Estado del arte 33
3.1. Seguridad en IdC con un enfoque general 33
3.2. Esteganografía con un enfoque general 34
3.3. Esteganografía usando un protocolo de comunicación 35
3.4. Seguridad en IdC que usa esteganografía en general 36
3.5. Seguridad IdC usando criptografía o esteganografía con un protocolo

de comunicación como objeto portador 36

ix

x ÍNDICE GENERAL

4. Descripción del sistema 41
4.1. Red del sistema . 41
4.2. Esquema del sistema . 42

4.2.1. Paquete de control PUBLISH 42
4.3. Funciones estego . 45

4.3.1. Función estego bit menos significativo 45
4.3.2. Función estego bit menos significativo nibble 46

4.4. Esquemas del sistema . 47
4.4.1. Esquema de ocultamiento de información 47
4.4.2. Esquema de ocultamiento de llave de cifrado 47

5. Implementación 49
5.1. Petalinux . 49
5.2. Clientes MQTT . 50

5.2.1. Cliente-publicador . 51
5.2.2. Cliente-suscriptor . 52

5.3. Función estego software . 53
5.4. Función estego hardware . 54
5.5. Cifrador SIMON software . 54
5.6. Descifrador SIMON . 55
5.7. Cifrador SIMON hardware . 55
5.8. Cifrador SPECK software . 58
5.9. Descifrador SPECK software . 59
5.10. Sistema embebido . 60
5.11. Broker público . 60

6. Resultados 63

7. Conclusiones y trabajo a futuro 73

Bibliografía 77

A. Instalación Petalinux 85

B. Creación de proyecto Petalinux 87

C. Funciones esteganográficas 91
C.1. Función Uno a uno . 91
C.2. Función Intercalado . 91
C.3. Función Fin de cadena . 91

Índice de figuras

2.1. Arquitecturas para el sistema de IdC 8
2.2. Protocolos en cada capa del modelo OSI para IdC 13
2.3. Tendencias de protocolos de comunicación en 2018 14
2.4. Principales protocolos de comunicación en 2020 14
2.5. Diagrama de la arquitectura de red MQTT 16
2.6. Diagrama que muestra el intercambio de paquetes para realizar la co-

nexión entre los clientes y el broker 18
2.7. División de la criptología [1] . 19
2.8. Diagrama general de un sistema esteganográfico 20
2.9. Red de Feistel para la función de ronda del cifrador SIMON 26
2.10. Generación de llave de ronda para el cifrador SIMON 28
2.11. Red de Feistel para la función de ronda del cifrado SPECK 30
2.12. Generación de la llave de ronda para el cifrador SPECK 31

4.1. Encabezado fijo del paquete PUBLISH 43
4.2. Encabezado variable del paquete PUBLISH 44
4.3. Propiedades del paquete PUBLISH 45
4.4. Diagrama de la función estego bit menos significativo 46
4.5. Diagrama de la función estego bit menos significativo nibble 46
4.6. Diagrama del esquema para ocultar la información a compartir 48
4.7. Diagrama del esquema para ocultar la llave de cifrado 48

5.1. Diagrama del modo de operación CBC 51
5.2. Diagrama de la función bit menos significativo en hardware. 54
5.3. Diagrama para la generación de la llave de ronda en la función de ronda

para el descifrado SIMON . 56
5.4. Diagrama de estados del cifrador SIMON en hardware 57
5.5. Red de Feistel implementado en FPGA. 57
5.6. Generación de llaves de ronda en FPGA. 58
5.7. Funcionamiento del cifrador SIMON en FPGA. 58
5.8. Red de Feistel para el descifrado de SPECK. 59
5.9. Diagrama del sistema embebido para el sistema. 60
5.10. Diagrama del sistema usando un broker público. 61

xi

xii ÍNDICE DE FIGURAS

6.1. Captura de paquetes del esquema ocultación de información 64
6.2. Información de paquetes PUBLISH 66
6.3. Tiempo en realizarse el cifrado y función estego del esquema ocultación

de información . 67
6.4. Captura de paquetes del esquema ocultación de llave 68
6.5. Tiempo en realizarse el cifrado y función estego del esquema ocultación

de llave de cifrado . 69
6.6. Tiempo de ejecución del sistema con el cifrador Speck 70

C.1. Diagrama de la función estego Uno a uno 92
C.2. Diagrama de la función estego Intercalado 92
C.3. Diagrama de la función estego Fin de cadena 92

Índice de tablas

2.1. Estructura de un paquete de control MQTT 16
2.2. Encabezado fijo para un paquete de control MQTT 17
2.3. Paquetes de control MQTT v5.0 . 17
2.4. Parámetros SIMON . 27

3.1. Trabajos relacionados . 39

xiii

xiv ÍNDICE DE TABLAS

Capítulo 1

Introducción

En los últimos años Internet de las Cosas (IdC) ha aumentado su presencia en el uso
cotidiano e industrial. Esto facilita, por ejemplo, procesos de fabricación de productos,
que se realizan dado a la autonomía que se le brinda a los dispositivos y actuadores.
Los dispositivos que se utilizan en IdC deben ser pequeños y por este motivo cuentan
con recursos limitados. En las aplicaciones desarrolladas para IdC se busca tener un
bajo consumo de energía y poca cantidad de almacenamiento. La información que se
transmite en ocasiones es sensible, y es necesario establecer métodos de seguridad que
brinden a la información confidencialidad e integridad, por mencionar algunos.

Hoy en día se han propuesto diversos protocolos para la comunicación de dispo-
sitivos de IdC tales como CoAP, XMPP, MQTT [2], entre otros, para intercambiar
información. Uno de los protocolos más utilizado es MQTT, este es un protocolo de
transporte de mensajes en una red tipo publicación-suscripción. Es principalmente
utilizado en dispositivos que posean recursos limitados. Actualmente se trabaja con
las versiones 3.1.1 y 5.0. Sin embargo, este protocolo no ofrece un método de seguridad
más allá de la capa de red por estar montado en TCP/IP o SSL. En el artículo [3] se
muestra que usando el motor de búsqueda Shodan en un servidor público de MQTT
se puede lograr un ataque de denegación de servicios a los clientes conectados, obtener
datos de esos clientes o enviar datos incorrectos. En el mismo artículo se analiza el
método de autenticación que brinda MQTT, si un atacante se encuentra en la misma
red solo necesita rastrear el tráfico de red y encontrar el paquete CONNECT para que
pueda revelar el nombre de usuario y contraseña, debido a que el protocolo MQTT
no posee un mecanismo de seguridad general. Por esta razón es importante que se
brinde seguridad a la información que se transmite y así evitar fugas de información.

Los algoritmos convencionales de criptografía son costosos en términos de cálculos
computacionales. Es indispensable optar por soluciones que no afecten el rendimien-
to del dispositivo de IdC. En esta tesis se abordan dos técnicas para incrementar la
seguridad de la información que se desea intercambiar, la primera es la criptografía
ligera que brinda confidencialidad y protege la información y la segunda es la estega-
nografía que oculta dicha información. La esteganografía consiste en utilizar un objeto
portador, como puede ser una imagen o video, e insertar en sus datos la información
que se quiere ocultar. Este método necesita de una función estego que inserte la in-

1

2 Introducción

formación dentro del objeto portador y una función estego inversa para recuperar la
información. La función estego debe proporcionar tres características fundamentales:
robustez, imperceptibilidad y capacidad [4].

La esteganografía de red consiste en utilizar al datagrama de un protocolo de
comunicación como el objeto portador. En este trabajo de tesis, los datagramas del
protocolo MQTT se utilizan como objetos portadores. Los datagramas del protocolo
estarán presentes siempre que haya comunicación. Por tal motivo los datagramas
de MQTT se seleccionaron como objetos portadores y así aprovechar un recurso ya
existente en el dispositivo y evitar el uso de más recursos.

La criptografía ligera [5] es una sub-rama de la criptografía convencional, desarrolla
primitivas criptográficas que se adecuen a las necesidades de los dispositivos con
recursos limitados. Las primitivas se enfocan en desarrollo de hardware y software.
El algoritmo SIMON [6] se enfoca en implementación por hardware y se basa en una
red de Feistel con rotaciones a la izquierda y derecha, operaciones binarias AND y
XOR. El algoritmo SPECK [6] se enfoca en implementación por software y se basa en
rotaciones a la izquierda y derecha, operaciones binarias XOR y una suma algebraica.
Estos algoritmos fueron seleccionados debido a los tamaños de bloques pequeños y su
bajo requerimiento de recursos computacionales.

1.1. Motivación

Hoy en día IdC ha tenido un gran aumento de uso en los últimos años. Por tal
motivo el número de dispositivos en uso aumenta así como el tráfico de información
para realizar los procesos. Es necesario proveer de seguridad a la información que sea
sensible para así evitar que terceros no autorizados conozcan dicha información.

Los métodos de seguridad convencionales requieren de un poder de cómputo prohi-
bitivo en dispositivos con recursos limitados. Existen métodos que proporcionan se-
guridad a la información sin utilizar un alto procesamiento, por ejemplo, la estegano-
grafía. La esteganografía oculta información dentro de un objeto portador que puede
ser una imagen, un audio, un video o un protocolo de comunicación. Los protocolos
de comunicación como HTTP/HTTPS y UDP tienen un alto peso además que tienen
un diseño complejo en su encabezado, por lo tanto, para dispositivos restringidos se
desarrollan protocolos que sea ligeros y pocos complejos y así no utilizar más recursos
de los necesarios.

En IdC se utilizan diferentes protocolos de comunicación, como son CoAP, MQTT,
y XMPP, entre otros. Su principal característica es su ligereza y sencillez en su da-
tagrama. El protocolo MQTT es el más utilizado en IdC para el intercambio de
información, sin embargo, al poseer las características mencionadas anteriormente su
seguridad es poco eficaz, teniendo solo usuarios y contraseñas como método de se-
guridad. La seguridad es de vital importancia en el intercambio de la información,
por lo que se necesita agregar seguridad, pero utilizando recursos ya existentes en el
dispositivo sin agregar elementos que afecten el rendimiento.

La criptografía ligera es otro método que proporciona confidencialidad a la infor-

Capítulo 1 3

mación, los algoritmos desarrollados se adecuan a las limitaciones de los dispositivos
con recursos limitados, no utilizando mucho procesamiento ni una gran cantidad de
almacenamiento.

1.2. Planteamiento del problema

IdC es una red de vehículos, dispositivos físicos, software y elementos electrónicos
todos conectados para facilitar el intercambio de datos. El propósito de IdC es pro-
porcionar la infraestructura de información tecnológica para el intercambio de “cosas”.
Las limitaciones de los dispositivos IdC incluyen el presupuesto energético, la conec-
tividad y la capacidad computacional [7].

A pesar de sus limitaciones, IdC hoy en día es una tecnología capaz de implementar
un amplio rango de aplicaciones. Debido al tipo de datos que manejan muchas de las
aplicaciones de IdC, necesitan implementar mecanismos que protejan los datos en
distintos niveles. Por ejemplo, ocultar su transmisión, o proteger su confidencialidad,
por mencionar algunos. No obstante, se ha prestado poca atención a la seguridad,
ya que las técnicas y algoritmos actuales para proveer seguridad no fueron diseñados
para ser implementados en dispositivos con tantas limitaciones de hardware, y se debe
considerar que en IdC se prioriza el consumo de energía.

Se puede plantear la siguiente hipótesis: Existe un sistema basado en criptografía
y esteganografía con características y usos de recursos adecuado para proveer confi-
dencialidad y ocultamiento en aplicaciones de comunicación de datos utilizando un
campo del protocolo de comunicación MQTT en dispositivos de IdC.

Se plantea desarrollar un sistema que involucre esteganografía y criptografía ligera
utilizando un campo del protocolo MQTT. Se debe desarrollar una función estegano-
gráfica que permita ocultar la información dentro del campo del protocolo MQTT y
poder ser transmitida por la red que MQTT maneja sin ser percibida por un usuario
ajeno. Los algoritmos de criptografía ligera que se seleccionaron para utilizar son el
SIMON y SPECK. El algoritmo SIMON está diseñado para una implementación en
hardware, mientras que el algoritmo SPECK está diseñado para implementarse en
software.

1.3. Propuesta de solución

En este trabajo se plantea diseñar un sistema que permita la ocultación de la infor-
mación y al mismo tiempo provea confidencialidad en el intercambio de información
entre dispositivos de IdC, desarrollando funciones esteganográficas que utilizan como
objeto portador el protocolo de comunicación MQTT, y previamente la información
es cifrada mediante los algoritmos SPECK, en software, y SIMON, en hardware.

4 Introducción

1.4. Objetivos

General

Obtener un sistema de bajo consumo de recursos para el ocultamiento y cifrado de
información transmitida entre dispositivos de IdC a través del protocolo de comuni-
cación MQTT.

Particulares

1. Ocultar información en uno de los campos del protocolo MQTT.

2. Proveer confidencialidad a la información mediante un algoritmo criptográfico
adecuado para IdC.

3. Desarrollar funciones esteganográficas para el ocultamiento de la información.

4. Validar la solución propuesta en torno a las limitaciones de los dispositivos de
IdC, considerando sus capacidades de hardware y software.

1.5. Organización de la tesis

En el capítulo 2 se presenta los preliminares sobre IdC, su definición, su arquitectura
y los protocolos que se manejan es esta red de dispositivos. Se analiza el protocolo
MQTT v5.0, la arquitectura en la que trabaja, la forma del datagrama, los tipos de
paquetes de control que maneja, la seguridad en la que trabaja y cómo funciona el
intercambio de información.

En el capítulo 3 se describe el estado del arte, que presenta los trabajos relacio-
nados con seguridad en IoT, uso de esteganografía en un ámbito en general, el uso
de esteganografía desarrollado en un FPGA, el uso de esteganografía usando como
objeto portador un protocolo de comunicación con un enfoque general, uso de este-
ganografía en general con un enfoque a IdC y los trabajos de esteganografía usando
protocolos de comunicación con un enfoque en IdC.

En el capítulo 4 se describen los dos esquemas que se manejan en la tesis, ocultando
la información que se va a compartir y ocultando la llave que se utilizó para cifrar la
información. Además, se describen dos funciones esteganográficas que se diseñaron e
implementaron para ocultar la información en el protocolo MQTT.

En el capítulo 5 se describe como se implementó el sistema, mencionando los
dispositivos y software que se utilizaron para el desarrollo de las aplicaciones que
se necesitan para el intercambio de información. Se describe el funcionamiento del
cliente-publicador que oculta y cifra la información para posteriormente ser enviada
por el protocolo MQTT, también se describe el funcionamiento del cliente-suscriptor
que obtiene la información oculta y la descifra para que se pueda visualizar dicha

Capítulo 1 5

información. Se describen los descifradores SIMON y SPECK que se implementaron
en software y hardware.

En el capítulo 6 se muestran los resultados obtenidos durante las pruebas de la
implementación de los clientes en software y hardware.

En el capítulo 7 se presentan las conclusiones y trabajo a futuro.

6 Introducción

Capítulo 2

Preliminares

2.1. Internet de las Cosas

En los últimos años internet ha sido una gran herramienta para el desarrollo tec-
nológico ya sea en cuestiones de entretenimiento, laboral o industrial. Cada año se
busca incrementar la capacidad de datos que se pueden intercambiar, lo cual se ha
logrado gracias al aumento en la interconexión de pequeños dispositivos, a lo que se
le ha denominado como Internet de las Cosas (IdC) [8]. IdC es una red de vehículos,
dispositivos físicos, software y elementos electrónicos conectados para facilitar el in-
tercambio de información. Su propósito es proveer la infraestructura de información
tecnológica para el intercambio de “cosas” [7]. Este modelo de red logra que disposi-
tivos con recursos limitados y que poseen una capacidad de comunicación puedan ser
conectados a Internet para poder trabajar en ese entorno [8].

IdC permite que los dispositivos logren adquirir cierta inteligencia ya que pue-
den llevar a cabo varias operaciones y de esas operaciones tomar ciertas acciones que
son necesarias para realizar el trabajo con base en la información que se recopila del
entorno. El sistema de IdC ha sido preparado para soportar el aumento en el inter-
cambio de datos, los recursos informáticos que se necesiten y las infraestructuras de la
red. IdC puede ser visto como el sistema nervioso y las decisiones que se deben tomar
son proporcionadas por las diversas tecnologías que se pueden encontrar, tales como
computación en la nube, computación paralela, el análisis de big data, inteligencia
artificial, por mencionar algunas. Una perfecta combinación de estas tecnologías nos
asegura un sistema capaz de efectuar cualquier trabajo.

Para tener una conectividad confiable para una gran cantidad de dispositivos
conectados y en comunicación, IdC debe tener una arquitectura de capas que permita
ser flexible. A pesar de numerosos trabajos que hay relacionados a la arquitectura de
IdC, no se ha establecido un modelo de referencia por lo que el modelo actual se basa
en el estándar del modelo OSI (por sus siglas en ingles Open Systems Interconnection),
con modificaciones en las capas de enlace de datos, red y transporte. IdC trabaja con
el modelo de tres capas, que son percepción, red y aplicación, como se muestra en la
figura 2.1a.

7

8 Preliminares

(a) Arquitectura de 3 capas. (b) Arquitectura de 5 capas.

Figura 2.1: Arquitecturas para el sistema de IdC

En la capa de percepción se efectúa la interacción de los objetos y componentes
físicos, es decir, se encarga de adquirir, procesar y transmitir hacia otras capas la
información de los dispositivos conectados. La capa de red nos brinda el enrutamiento
y la transmisión de los datos teniendo como recursos para lograr esta transmisión los
dispositivos de conexión, tales como concentradores o enrutadores, las distintas redes
de comunicación como Bluetooth, WiFi, entre otras, y los protocolos de comunicación
como el IEEE 802.15.4, Zigbee, 6LoWPAN, etc. La capa de aplicación es la que se
encarga de las operaciones, todo esto en relación a los datos que fueron analizados y
procesados.

Otra variante de la arquitectura es el modelo de cinco capas (ver figura 2.1b), la
cual consta de agregar dos capas más, la capa de middleware y la capa de gestión. La
capa de middleware se encarga de permitir la gestión de servicios, es decir, recibe la
información de la capa de red, procesa y realiza cálculos con la información y permite
el enlace a una base de datos. La capa de gestión se encarga, como su nombre lo
indica, de gestionar el sistema de IdC donde determina la forma de lanzar y cargar
las aplicaciones que se usarán.

Capítulo 2 9

2.2. Vulnerabilidad en IdC

Debido a las capacidades limitadas de los dispositivos de IdC, muchos de ellos tienen
vulnerabilidades que los hacen propensos a varios ataques. Un dispositivo de IdC
vulnerable puede ser un riesgo en cualquier red, independiente a su nivel de seguridad
[9]. Muchos ataques han implicado aprovechar las vulnerabilidades de los dispositivos
de IdC, incluidas acciones como ataques de repetición, ataque de día cero y ataques de
suplantación de identidad. Se ha observado un aumento en los ataques de botnets. La
botnets Mirai es un ejemplo conocido, ataca dispositivos explotando las credenciales
predeterminadas [10, 11, 12].

Una gran cantidad de dispositivos de IdC se corrompieron y se utilizaron para
lanzar ataques de denegación de servicio (DoS) en servidores críticos. Estos ataques
utilizan el servicio de nombres de dominio (DNS) y el protocolo de tiempo de red
(NTP) como una forma de ataque DoS distribuido (DDoS). Un estudio informó que
la razón principal por la que la botnets Mirai es tan efectiva es el uso de dispositivos de
Idc de bajo costo y fáciles de instalar, desarrollados con poca o ninguna preocupación
por la seguridad [13, 12].

En IdC hay dos tipos de amenazas: amenazas contra IdC y amenazas de IdC.
Amenazas contra IdC: el 21 de octubre de 2016, se implementó un gran ataque

DDoS contra los servidores Dyn DNS y cerró muchos servicios web, incluido Twitter.
Los causantes explotaron las contraseñas y los nombres de usuario predeterminados
de las cámaras web y otros dispositivos de IdC, e instalaron la botnets Mirai [14] en
los dispositivos comprometidos. La enorme red de bots se usó para implementar el
ataque DDoS contra los servidores Dyn DNS. Las cámaras IP pueden ser vulnera-
bles mediante ataques de desbordamiento de búfer. Las lámparas Phillips Hue fueron
vulneradas a través de su protocolo de enlace ZigBee. Amenazas de IdC: los investi-
gadores también encontraron ataques de secuencias de comandos en sitios cruzados
(XSS) que explotaron la aplicación Belkin WeMo y se acceden a los datos y recursos
a los que la aplicación puede acceder [15].

Para asegurar la seguridad y privacidad de un sistema de IdC, debemos considerar
cinco perspectivas: hardware, sistema operativo/firmware, software, redes, datos gene-
rados y mantenidos dentro del sistema. Un sistema de IdC tiene pocos componentes,
los cuales deben ser inspeccionados a través de estas cinco perspectivas [15].

Seguridad del hardware: la seguridad del hardware es fundamental cuando los ata-
cantes pueden acceder físicamente a los dispositivos de IdC. Casi todos los dispositivos
de IdC tienen vulnerabilidades de hardware que pueden ser explotadas por atacantes,
incluidos los puertos de depuración UART/JTAG, múltiples opciones de arranque y
memoria flash sin cifrar [16, 17]. A través de las puertas traseras de hardware, ya sea
deshabilitado la funcionalidad de verificación o iniciando el sistema a través de una
imagen de firmware inyectada [15].

Seguridad y privacidad del sistema operativo (SO)/firmware y software: dadas las
funcionalidades a menudo limitadas de un dispositivo de IdC, se puede implementar
un sistema operativo confiable [18] en el dispositivo si el costo lo permite. Los proble-

10 Preliminares

mas de seguridad del software son similares a los sistemas informáticos tradicionales.
Las puertas traseras y los pares de claves SSL públicas y privadas se descubren reali-
zando un análisis estático en una gran cantidad de firmwares desempaquetados [19].
Una explotación del desbordamiento de búfer se encuentra analizando el protocolo de
administración de red doméstica (HNAP) [20] para que pueda usarse para ejecutar
cualquier código en el dispositivo. Un desbordamiento de búfer basado en pila de la bi-
blioteca general glibc [21] se aprovecha para atacar varios concentradores domésticos
[22, 15].

Seguridad y privacidad de la red: un sistema de IdC es un sistema en red y todo
el sistema debe estar protegido [23, 24]. La comunicación debe cifrarse para evitar
la fuga de información confidencial. La autenticación debe implementarse cuidadosa-
mente. En el proceso de emparejamiento, el controlador debe conectarse al dispositivo
de IdC para configurarlo. La mayoría de los dispositivos de IdC permiten cualquier
controlador en las proximidades para el emparejamiento. Para una implementación
a gran escala en un entorno público, cualquier persona con acceso a los dispositivos
puede reconfigurar el sistema y puede acceder al sistema. La autenticación debe con-
figurarse de manera adecuada. Un sistema de IdC puede estar compuesto por un gran
número de nodos con capacidades de detección y técnicas de seguridad para redes de
sensores que se pueden aplicar [25, 26, 15].

El ataque Mirai DDoS [14] fue posible debido a las contraseñas débiles en varios
dispositivos de IdC. Rouf et al. [23] explotan el protocolo de comunicación inalámbrica
insegura de la lectura automática de contadores. Dhanjani vulnera el sistema de
lámparas Phillips Hue y descubre que los mecanismos de autenticación no son sólidos.
Molina [27] aprovecha el KNX, un protocolo de comunicación de automatización del
hogar estandarizado, y descubre que la falta de autenticación y cifrado permite que
un atacante controle de forma remota los electrodomésticos de un hotel. Rahman et
al. [28] encuentran las vulnerabilidades del protocolo de comunicación del dispositivo
portátil (Fitbit) [15].

Análisis de Big Data: dado que la nube se encuentra entre el controlador y los
dispositivos de IdC, puede recopilar todos los datos. Tenemos que cuestionarnos ¿de-
be la nube saberlo todo y recopilar datos sobre nosotros y nuestras pertenencias?
Sin embargo, los grandes datos recopilados por la nube pueden ayudar a vencer los
ataques. Por ejemplo, un sistema de detección de intrusos adecuado en la nube puede
evitar otra ronda de ataques de Mirai. Dado que las cosas suelen ser muy específicas,
la detección de intrusos se puede simplificar [15].

Ye et al. realizaron un estudio de caso sobre la seguridad de August Smart Lock
[29], la exposición de la clave de protocolo de enlace del dispositivo y los datos de
la cuenta y la información personal del propietario, así como la susceptibilidad a los
ataques de denegación de servicio (DoS). En otro estudio, Ly y Jin [30] analizaron
el problema de la fuga de información del usuario. Examinaron el firmware de las
pulseras tecnológicas, incluidas Nike+ Fuelband, la banda Huawei, la banda Xiaomi
Mi y la banda Codoon, y encontraron seguridad insuficiente que provocó la fuga de
información del usuario [12].

Capítulo 2 11

La seguridad de las cerraduras inteligentes también ha llamado la atención de los
investigadores [31, 32]. Algunas de las cerraduras inteligentes bajo escrutinio expusie-
ron información confidencial del usuario, mientras que otras podrían ser controladas
por dispositivos no autorizados. Kim et al. [31] sugirió que las cerraduras inteligentes
modernas deberían tener los siguientes niveles de control: completo, restringido, par-
cial y mínimo. Chistiakov et al. [32] desarrollaron un nuevo diseño de seguridad para
cerraduras inteligentes utilizando un chip de memoria de solo lectura programable
borrable electrónicamente (EEPROM) [12].

El Smart Nest Learning Thermostat es otro dispositivo inteligente para el hogar
que ha sido analizado por investigadores. Hernandez et al. [17] probaron el dispo-
sitivo iniciando una imagen maliciosa a través de un puerto USB. Oren et al. [33]
descubrió ataques a televisores inteligentes que tenían como objetivo los protocolos
de comunicación de los dispositivos [12]. La tecnología de hogar inteligente permite
el control inalámbrico de puertas, luces y otros electrodomésticos. Denning et al. [34]
mencionan que este tipo de electrodomésticos son vulnerables a los ataques debido a
la falta de un administrador profesional. Denning et al. [35] y Ur et al. [36] analizaron
las políticas de control de acceso y las amenazas asociadas a este tipo de dispositivos
[12].

A medida que aumenta la cantidad de dispositivos de IdC implementados en los ho-
gares, el control de estos dispositivos se vuelve cada vez más complicado porque cada
dispositivo usa una aplicación móvil separada. Para eso están diseñados SmartThings
de Samsung o HomeKit de Apple [12].

El análisis de Samsung SmartThings realizado por Fernandes [37] identificó cuatro
posibles ataques que podrían lanzarse contra aplicaciones móviles, la indagación de los
códigos PIN de las cerraduras de las puertas, la desactivación de las configuraciones
de protección y la generación de alarmas falsas. Gyory y Chauah [38] encontraron
errores de seguridad en SmartThings que otorgaban acceso privilegiado al sistema a
un tercero [12].

Fernández et al. [39] estudiaron patrones de ataque DoS en redes VoIP. Alghamdi
et al. [40] examinaron los inconvenientes de seguridad del Protocolo de aplicación
restringida (CoAP), que es una capa de aplicación para dispositivos IdC restringidos
[12].

Cyr et al. [41] realizó un análisis de red y un análisis de firmware en relojes
inteligentes, al mismo tiempo que verificaban las vulnerabilidades de las aplicaciones
móviles. Los autores rastrearon la dirección privada del usuario desde el dispositivo
IdC, capturaron el intercambio de claves, aplicaron ingeniería inversa a la aplicación
móvil, monitorearon el tráfico entre la aplicación y el servidor Fitbit y usaron el tráfico
proxy Transport Layer Security (TLS) para interceptar y extraer datos [12].

12 Preliminares

2.3. Protocolos de comunicación para dispositivos con
recursos limitados

Con el auge de IdC se ha tratado de establecer un estándar en los protocolos que se
deben de utilizar, pero a pesar de varios esfuerzos todavía no hay un estándar fijo
con el cual trabajar, es por ello que se utilizan diversos protocolos para establecer
comunicación entre los dispositivos que conforman el sistema de IdC.

Protocolo de Aplicación Restringida (CoAP). Es el más utilizado para la capa de
aplicación, este protocolo es un subconjunto de las funciones que se establecen
en HTTP, con la diferencia que el encabezado es de baja carga y con un análisis
reducido en la complejidad, de tal forma que se pueda utilizar en dispositivos con
poca capacidad de almacenamiento y una reducida capacidad computacional.

Transporte de Telemetría de Cola de Mensajes (MQTT). Tiene dos funciones
por una parte proporciona la conectividad entre las aplicaciones que se utilizan
en el sistema de IdC, y por otro se enfoca en las redes y comunicaciones.

MQTT-SN. Está diseñado específicamente para redes de sensores, ya que se
adapta a la dinámica de la comunicación inalámbrica.

Extensible de Mensajería y Presencia (XMPP). Su funcionamiento original era
ser utilizado en las aplicaciones de chat y posteriormente se utilizó en IdC.

Cola de Mensajes Avanzado (AMQP). Está dirigido para la capa de aplicación
y es abierto para IdC y es funcional en entornos que son orientados a mensajes,
algunas características a mencionar de este protocolo son la orientación de los
mensajes, las colas y el enrutamiento.

6LowPAN. Permite transportar paquetes de IPv6 por medio de redes IEEE
802.15.4, el cual tiene un tamaño de paquete de 127 bytes, este estándar permite
lograr una compresión de los encabezados de IPv6 y UDP.

IEEE 802.15.4. Posibilita especificar una subcapa para el Control de Acceso al
Medio (MAC) y para el medio Físico (PHY), y define un formato para la trama
y el encabezado.

Bluetooth de Baja Energía (BLE). Comparado con la versión normal de Blue-
tooth, este protocolo nos brinda un rango más amplio, una latencia más baja y
un gasto energético más bajo.

Z - Wave. Fue diseñado primeramente para redes de automatización de casas
inteligentes, pero por su bajo consumo también es utilizado para sistemas de
IdC [8].

Capítulo 2 13

En la figura 2.2 [42] se muestra como se dividen los diferentes protocolos en cada
capa que conforma el modelo OSI para IdC. Se puede observar que el protocolo
MQTT, CoAP, XMPP y AMQP se encuentran en la capa de aplicación, mientras
6LoWPAN en la capa de red, Z-Wave en la capa de enlace de datos y el protocolo
IEEE 802.15.4 en la capa física.

Capa de aplicación

CoAP MQTT XMPP AMQP

Capa de transporte

UDP TCP

Capa de red

IPv6 RPL 6LoWPAN

Capa de enlace de datos

BLE Z-Wave ZigBee HomePlugGP Dash7

Capa física

IEEE 802.15.4 IEEE 802.15.4e

Figura 2.2: Protocolos en cada capa del modelo OSI para IdC

Todos estos protocolos se usan en las redes de IdC para el intercambio de informa-
ción. Sin embargo, algunos protocolos son utilizados más que otros, ya sea porque son
sencillos de utilizar o por su bajo consumo energético. En el resumen [43] que recopila
los datos de una encuesta realizada a 502 participantes para poder comprender como
los desarrolladores crean soluciones de IdC, se observa en la figura 2.3 una gráfica que
muestra los porcentajes de los protocolos IdC con más tendencia en el año 2018. En
la gráfica se puede observar que el protocolo MQTT lidera con un 62.51 %, mientras
CoAP se encuentra con un 22.92 %, AMQP con un 18.24 % y XMPP con un 4.26 %.

En el resumen que trata sobre el panorama de la industria IdC, los desafíos que se
enfrentan los desarrolladores de IdC y las oportunidades de IdC para un ecosistema
de código abierto [44], se encuentra la figura 2.4 que muestra una gráfica con los
protocolos más utilizados en el 2020. En esta gráfica se puede observar que en el
ámbito general HTTP/HTTPS lidera con un 51 % del uso, mientras que MQTT se
encuentra en segundo lugar con un 41 %. El protocolo MQTT es utilizado en gran
medida en el ámbito general solo superado por el protocolo HTTP/HTTPS que es

14 Preliminares

62.61%

54.10%

34.95%

24.92%

22.49%

18.24%

4.26%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

MQTT HTTP WebSockets HTTP/2 CoAP AMQP XMPP

Figura 2.3: Tendencias de protocolos de comunicación en 2018

ampliamente utilizado en el internet. En IdC MQTT es mayormente utilizado en
comparación con los protocolos CoAP, AMQP y XMPP.

51%

41%

33%

7%

0%

10%

20%

30%

40%

50%

60%

HTTP/HTTPS MQTT TCP/IP Sparkplug

Figura 2.4: Principales protocolos de comunicación en 2020

Capítulo 2 15

2.4. Protocolo MQTT
MQTT es un protocolo de transporte de mensajería cliente-servidor del tipo publica-
ción/suscripción mediante un tema en específico. Es ligero, abierto, simple y diseñado
para ser fácil de implementar. Estas características lo hacen ideal para su uso en mu-
chas situaciones, incluidos entornos limitados, como la comunicación en contextos
máquina a máquina (M2M) e Internet de las cosas (IdC), donde se requiere un código
pequeño y/o un escaso ancho de banda [2].

El protocolo MQTT se dio a conocer en 1999 y fue diseñado originalmente por
Andy Stanford-Clark y Alen Nipper [3]. En 2014 la versión 3.1.1 de MQTT [45] se
convirtió en un estándar de OASIS y en 2016 en el estándar de ISO/IEC 20922:2016.
En marzo del 2019 se lanzó la versión 5.0 de MQTT [2], y de igual manera que
su versión anterior acabo convirtiéndose en estándar de OASIS. Este protocolo ha
sido ampliamente utilizado como ejemplos se pueden mencionar Facebook Messenger,
Amazon IoT, OpenStack, Microsoft Azure IoT Hub, FloodNet, entre otros [46].

MQTT tiene las siguientes características.

Uso del patrón de mensajes de publicación/suscripción, proporciona distribu-
ción de mensajes de uno a muchos y desacoplamiento de aplicaciones.

Un transporte de mensajería que es independiente del contenido de la carga
útil.

Tres calidades de servicio para la entrega de mensajes.

Una sobrecarga de transporte pequeña y los intercambios de protocolo minimi-
zados para reducir el tráfico de red.

Y un mecanismo para avisar a los interesados cuando se produzca una desco-
nexión anómala [2].

MQTT ofrece tres niveles de calidad de servicio (QoS) para la entrega de mensajes:
como máximo una vez (QoS 0), donde los mensajes se entregan de acuerdo con los
mejores esfuerzos del entorno operativo y puede ocurrir la pérdida de mensajes; al
menos una vez (QoS 1), donde se asegura que los mensajes llegarán, pero pueden
ocurrir duplicados; y exactamente una vez, donde se asegura que los mensajes lleguen
exactamente una vez[2].

El protocolo MQTT se ejecuta sobre TCP/IP o sobre otros protocolos de red que
proporcionan conexiones bidireccionales ordenadas y sin pérdidas. Para el transporte
sobre TCP/IP se utiliza el puerto 1883 y para SSL/TSL se usa el 8883 [47].

La arquitectura MQTT se puede observar en la figura 2.5. Esta se compone de
tres componentes, un cliente-publicador, un cliente-suscriptor y un servidor o broker.
Un cliente MQTT es un programa o dispositivo que utiliza el protocolo MQTT para
la transferencia de información. Un cliente es responsable de abrir la conexión de
red al servidor, crear mensajes para ser publicados, publicar mensajes de aplicación
en el servidor, suscribirse para solicitar mensajes de aplicación que sea de interés

16 Preliminares

para su recepción, cancelar la suscripción para eliminar una solicitud de mensajes de
aplicación y cerrar la conexión de red al servidor [47].

Un servidor MQTT o broker es un programa o dispositivo basado en el protocolo
MQTT que actúa como una oficina postal entre editores y suscriptores. Un broker
de MQTT es responsable de aceptar conexiones de red de cliente, aceptar mensajes
de aplicaciones publicados por clientes, procesar solicitudes de suscripción y cance-
lación de suscripción de clientes, enviar mensajes de aplicación a clientes según sus
suscripciones y cerrar la conexión de red del cliente [47].

Broker

MQTT

Publicación

Figura 2.5: Diagrama de la arquitectura de red MQTT

Para el protocolo MQTT los paquetes de control tienen la misma estructura, esto
se puede observar en la tabla 2.1. La estructura general está conformada en tres
partes, el encabezado fijo, el encabezado variable y la carga útil que puede estar o no
presente. La primera parte es el encabezado fijo, que se muestra en la tabla 2.2, esta
parte se encuentra presente en todos los paquetes de control y se conforma por dos
bytes, en la primera mitad del primer byte (bits 0 al 3) son indicadores específicos
para cada paquete de control, en la segunda mitad del primer byte (bits 4 al 7) se
indica el tipo de paquete de control. El segundo byte indica la longitud restante del
paquete de control [2].

Encabezado fijo, presente en todos los paquetes de control MQTT Byte 1
Byte 2

Encabezado variable, presente en algunos paquetes de control MQTT Byte 3
Byte n

Carga útil, presente en algunos paquetes de control MQTT Byte n+ 1
Byte m

Tabla 2.1: Estructura de un paquete de control MQTT

Capítulo 2 17

Bit 7 6 5 4 3 2 1 0
Byte 1 Tipo de control de paquete MQTT Indicadores específicos para cada

tipo de paquete de control MQTT
Byte 2 Longitud restante

Tabla 2.2: Encabezado fijo para un paquete de control MQTT

2.4.1. MQTT v5.0

MQTT 5.0 fue liberado en marzo del 2019. Utiliza 15 paquetes de control, uno más
respecto a su versión anterior, estos paquetes son enumerados del 1 al 15 para ser
identificados, como se muestran en la tabla 2.3. Cada paquete puede tener un tamaño
de 2 Bytes hasta 256 MB. MQTT v5.0 agrega nuevas características con respecto a
su versión anterior. Mejora en la escalabilidad y sistemas a gran escala, un informe de
errores mejorado, una formalización de patrones comunes, incluido el descubrimiento
de capacidades y la respuesta a solicitudes, mecanismos de extensibilidad que incluyen
propiedades de usuario, mejoras de rendimiento y soporte para pequeños clientes, y
la creación y adición de nuevos campos en los paquetes de control [2].

Nombre Valor Dirección de flujo Descripción Carga útil
Reservado 0 - Reservado No hay
CONNECT 1 Cliente → Servidor Petición de conexión Obligatorio
CONNACK 2 Cliente ← Servidor Confirmación de conexión No hay
PUBLISH 3 Cliente ↔ Servidor Mensaje de publicación Opcional
PUBACK 4 Cliente ↔ Servidor Confirmación de publica-

ción
No hay

PUBREC 5 Cliente ↔ Servidor Recepción de publicación
(entrega asegurada I)

No hay

PUBREL 6 Cliente ↔ Servidor Lanzamiento de publicación
(entrega asegurada II)

No hay

PUBCOMP 7 Cliente ↔ Servidor Publicación completada
(entrega asegurada III)

No hay

SUBSCRIBE 8 Cliente → Servidor Petición de suscripción Obligatorio
SUBACK 9 Cliente ← Servidor Confirmación de suscripción Obligatorio
UNSUBSCRIBE 10 Cliente → Servidor Petición de cancelación de

suscripción
Obligatorio

UNBSUBACK 11 Cliente ← Servidor Confirmación de cancela-
ción de suscripción

Obligatorio

PINGREQ 12 Cliente → Servidor Solicitud de PING No hay
PINGRESP 13 Cliente ← Servidor Respuesta de PING No hay
DISCONNECT 14 Cliente ↔ Servidor Notificación de desconexión No hay
AUTH 15 Cliente ↔ Servidor Intercambio de autentica-

ción
No hay

Tabla 2.3: Paquetes de control MQTT v5.0

18 Preliminares

Para realizar una conexión entre clientes se debe seguir una secuencia específica.
El flujo de paquetes se puede observar en la figura 2.6. Primero ambos clientes envían
un paquete CONNECT para realizar una petición de conexión con el broker, si no
hay problemas o fallos el broker responde con un paquete CONNACK para confirmar
la conexión. En el caso del cliente-publicador se envía un paquete PUBLISH hacia
el broker con la información que se quiere intercambiar y el tema al que corresponde
la información enviada, el broker a su vez responde con un paquete PUBACK para
confirmar que el paquete se ha recibido de forma correcta. Cuando el broker ha recibido
la información por medio del paquete PUBLISH, este se encarga de direccionar la
información a los clientes-suscriptores que están conectados al mismo tema. Una vez
terminada la transmisión de información se envía un paquete DISCONNECT para
finalizar la conexión [2].

Para el cliente-suscriptor una vez que se ha establecido la conexión se procede
a realizar la suscripción del tema, para ello se envía un paquete SUBSCRIBE con
el nombre del tema al que se quiere suscribir, el broker contesta con un paquete
SUBACK para confirmar que se realizó la suscripción de forma correcta. Una vez
suscrito el cliente, este se queda esperando que el broker le envíe la información por
medio del paquete PUBLISH y cuando esta acción ocurre el cliente responde con un
paquete PUBACK para confirmar que se ha recibido la información. Cuando se quiere
terminar la suscripción se envía un paquete UNSUBSCRIBE, el broker responde con
un UNSUBACK y finalmente se envía un paquete DISCONNECT para terminar la
conexión [2].

Broker MQTTPublicador Subscriptor

CONNECT

CONNACK

PUBLISH

CONNECT

CONNACK

SUBSCRIBE

SUBACK

PUBLISHPUBACK

PUBACK

UNSUBSCRIBE

UNSUBACK

DISCONNECTDISCONNECT

Figura 2.6: Diagrama que muestra el intercambio de paquetes para realizar la conexión
entre los clientes y el broker

Capítulo 2 19

2.5. Esteganografía

La criptología es considerada como la rama de la seguridad informática que se en-
carga de estudiar el contenido que se encuentra cifrado, oculto e invisible en diferentes
portadores, las cuales son consideradas como ciencias por la relación que tienen con
otras áreas. En la figura 2.7 se muestra las diversas ramas que componen la criptolo-
gía, entre las cuales se encuentra la esteganografía y la criptografía, que se analizan
a continuación [1].

Criptología

Criptografía Criptoanálisis Esteganografía Estegoanálisis

Figura 2.7: División de la criptología [1]

La esteganografía es la ciencia que permite una comunicación de datos ocultos a
través de un objeto portador adecuado. El objetivo de la esteganografía es ocultar un
mensaje dentro de un objeto portador de tal manera que no es posible identificar si el
objeto contiene un mensaje o no, asegurando así que el mensaje solo sea accesible por
el destinatario deseado y evitando una posible fuga de información. La esteganografía
tiene varios campos de aplicación, como agencias de inteligencia, agencias militares,
imágenes médicas, transmisión de televisión, incorporación de suma de chequeo que
es una suma de corroboración para verificar la veracidad de los datos, estructuras de
datos avanzadas, sistemas de radar y detección remota, en los cuales se necesita un
nivel de seguridad alto para un correcto funcionamiento [48].

En el método esteganográfico se requiere tener los siguientes elementos impor-
tantes para su funcionamiento: el objeto portador el cual será el medio en donde se
insertan los datos ocultos; el mensaje secreto que son los datos que se quieren trans-
portar sin ser detectados; la función estego que es el método que ayuda a ocultar el
mensaje secreto en el objeto portador; la función estego inversa que permite obtener
el mensaje oculto del objeto portador una vez que se ha aplicado el ocultamiento
por medio de la función estego y una clave estego que proporciona mayor seguridad
al ocultar el mensaje, la implementación de este elemento es opcional [4, 49]. En la
figura 2.8 se puede observar un diagrama general sobre un sistema esteganográfico.

20 Preliminares

Figura 2.8: Diagrama general de un sistema esteganográfico

Una técnica esteganográfica ideal debe mantener y optimizar tres propiedades
esenciales las cuales son: robustez, la propiedad que dificulta la posibilidad de eliminar
los datos secretos del objeto estego; indetectabilidad, la propiedad de poder hacer
alguna distinción entre el objeto estego y el objeto portador y, por último; capacidad,
la cantidad máxima de datos secretos que puede ocultar el objeto portador [4].

Existen diversos métodos esteganográficos, los cuales se agrupan en dos categorías.
La primera son los métodos en el dominio espacial, en donde los elementos que inte-
gran el mensaje secreto se pueden insertar en el objeto portador sin una modificación
previa. La segunda son los métodos en el dominio de la frecuencia, en donde se mo-
difican mediante transformaciones matemáticas los elementos antes de ser insertados
[50].

Los objetos que pueden ser utilizados por la esteganografía para incrustar un
mensaje secreto pueden ser un archivo de texto, una imagen fija, audio, vídeo o un
protocolo de comunicación. A continuación, se mencionan algunas técnicas para los
distintos objetos portadores que se utilizan para la esteganografía.

La esteganografía de texto plano consiste en ocultar el mensaje secreto dentro de
un archivo de texto; usando como técnica el uso de caracteres seleccionados del objeto
portador, en donde el remitente envía una serie de números enteros al destinatario,
acordando que el mensaje secreto está oculto dentro de la posición respectiva de
las palabras subsiguientes del texto de portada. Otra técnica es el uso de espacios
en blanco adicionales en el objeto portador, cuyo funcionamiento es insertar varios
espacios en blanco adicionales entre palabras consecutivas del objeto portador, y el
número de espacios en blanco corresponde a un índice de una tabla de búsqueda [49].

Capítulo 2 21

Las imágenes fijas son el objeto portador más utilizado en esteganografía, esta
técnica aprovecha la debilidad del sistema visual humano que no puede detectar la
variación en la luminiscencia de los vectores de color en el extremo de frecuencia
más alta del espectro visual, y así ocultar el mensaje en la imagen estego y hacerla
pasar por la imagen original. Una técnica usada en la esteganografía de imágenes
es la modificación del bit menos significativo del objeto portador, se aplica en el
domino espacial, consiste en distribuir el mensaje oculto binario entre los bits menos
significativos de cada píxel de la imagen. El inconveniente con la modificación del
bit menos significativo es que es vulnerable a ataques, tales como la compresión y el
formato de imágenes. Las siguientes técnicas se aplican en el dominio de la frecuencia,
las cuales ocultan la información en partes significativas de la imagen y por lo tanto
son resistentes a los ataques que las técnicas del dominio espacial no lo son. Las
transformaciones más comunes que se utilizan son la transformada de coseno discreto
y la transformada de ondícula. La técnica de espectro ensanchado trata la imagen
como ruido y se intenta agregar ruido pseudoaleatorio al objeto portador. La técnica
estadística, modifica las características del objeto portador y las conserva en el proceso
de incrustación. La técnica de distorsión requiere que se tenga el objeto portador para
el proceso de recuperación del mensaje secreto. La técnica de generación de cobertura
se usa para ser una cobertura para la transferencia del mensaje secreto [51].

Usando como objetos portadores audio o video, el mensaje secreto se incrusta en
la señal de audio o en los fotogramas del video, en este caso al tratarse de audio
se debe tener en consideración que el sistema auditivo es más sensible a detectar
las diferencias entre dos archivos de audio en comparación con el sistema visual para
detectar la diferencia entre dos archivos de imágenes, por lo que las técnicas deben ser
más complejas para lograr engañar al sistema auditivo. Las técnicas más usadas son:
la codificación del bit menos significativo, el bit menos significativo de cada muestra
de audio se reemplaza con el correspondiente bit del mensaje secreto. La codificación
de fase codifica los bits del mensaje secreto en cambios de fase en el espectro de fase,
logrando una codificación inaudible en términos de relación señal/ruido. El espectro
ensanchado utiliza dos enfoques que son el espectro ensanchado de secuencia directa
y el espectro ensanchado por salto de frecuencia, en esta técnica se ocupa más ancho
de banda que la señal de información que se está modulando. La ocultación de eco
consiste en incrustar la señal de ruido de cobertura como un eco, y se modifican la
amplitud, la tasa de caída y el desplazamiento para representar el mensaje secreto
[52, 53].

Recientemente se ha implementado un nuevo objeto portador que resultan ser los
protocolos de comunicación, consiste en usar los campos que no son prescindibles en
el protocolo y ocultar el mensaje en ellos, este método se conoce como esteganografía
de red. La esteganografía de red se puede dividir en tres categorías: métodos que
modifican el encabezado o la carga útil de los paquetes de red, que trata en que los
campos del protocolo serán modificados y, algunos métodos dentro de esta división
también modifican la carga útil del paquete, estos métodos tienen una alta capaci-
dad de esteganografía; métodos que modifican la estructura de los flujos de paquetes,

22 Preliminares

modifican la forma en que son enviados los paquetes de red, algunos ejemplos son la
afectación en el orden de envío de los paquetes, el tiempo de retardo en la transfe-
rencia entre paquetes y; los esquemas híbridos, estos métodos combinan el método
de modificación de la cabecera del protocolo y también el flujo del paquete para así
lograr una mejor indetectabilidad del mensaje oculto.

En la esteganografía por red se utilizan como objetos portadores los datagramas
de los protocolos de comunicación y se realiza de forma que la modificación no pueda
ser detectada por los observadores de red como rastreadores o sistemas de detección
de intrusos. Las técnicas que se pueden usar para la esteganografía son las siguientes:
protocolo TCP, para este protocolo se utilizan diferentes campos que conforman el
encabezado TCP.

Campo de número de secuencia inicial. La secuencia inicial es definida de manera
distinta en cada sistema operativo por lo que resulta un medio perfecto para
enviar datos debido a su naturaleza y tamaño.

Campo bandera. Tiene un tamaño de 6 bits y puede llegar a tener 29 com-
binaciones que permiten mandar un mensaje de forma oculta sin alterar el
funcionamiento del protocolo.

Campo de puntero urgente. Está constituido por 16 bits y solo es relevante
cuando se establece URG, lo que lo hace ideal como medio para un mensaje
oculto.

En el protocolo IPv4 se utilizan los siguientes campos.

Campo identificación del paquete. Es un número aleatorio generado por el remi-
tente, si no se produce fragmentación es un campo ideal para insertar el mensaje
a ocultar.

Campo banderas. Consta de 3 bits en donde el primero es reservado, el segundo
nos indica que no hubo fragmentación y el tercero que, si hubo fragmentación,
en caso de no presentarse fragmentación el segundo bit es un valor no esencial
por lo que sirve para insertar un bit del mensaje.

Y como último en el protocolo IPv6 se pueden aprovechar los siguientes campos

Campo clase de tráfico. Tiene un tamaño de 8 bits.

Campo etiqueta de flujo. Cuyo tamaño es de 20 bits.

Campo dirección de origen. Se pueden usar 16 bytes para datos del mensaje
oculto [54].

Capítulo 2 23

2.6. Criptografía ligera

La criptografía es la práctica y el estudio de ocultar información. Es la ciencia de
rehacer mensajes para hacerlos seguros y resistentes a los ataques. En criptografía, el
mensaje original se convierte en otro mensaje en el lado del cifrado y se convierte en
el mensaje original en el lado del receptor [55]. Los algoritmos criptográficos fueron
diseñados para satisfacer las necesidades de la era de la informática de escritorio.
Esta criptografía no es adecuada para dispositivos basados en hardware y software
altamente restringidos que necesitan comunicarse de forma inalámbrica.

La criptografía en IdC se utiliza para cumplir con los siguientes objetivos de
seguridad fundamentales para el mensaje compartido.

Confidencialidad: el mensaje solo se puede visualizar por elementos, clientes, cen-
tros, dispositivos y administraciones autorizados. La información privada, las claves
y las calificaciones de seguridad deben estar protegidas de elementos no aprobados.

Integridad: el primer mensaje no se altera.
Autenticación y autorización: la disponibilidad de los dispositivos dificulta el pro-

blema de la confirmación debido al control de entrada y la idea de correspondencia
remota en los marcos de IdC.

Disponibilidad: El marco continúa llenando su necesidad y permanece ininterrum-
pidamente accesible para elementos genuinos. Se requiere que los marcos de IdC sean
efectivos para permitir que las administraciones lleguen cuando sean necesarias.

Responsabilidad: para mejorar la cordialidad de las administraciones en la condi-
ción de IdC, la responsabilidad de los marcos de IdC es fundamental [56].

La criptografía ligera aborda problemas de seguridad para dispositivos altamente
restringidos. El cifrado y descifrado ligero se implementan en plataformas, así como en
hardware y software. Debido a las estrictas restricciones de costos de estas aplicaciones
de gran volumen, las implementaciones económicas de software y hardware de los
algoritmos criptográficos son de suma importancia para comprender la visión de la
computación generalizada [6].

El objetivo de la criptografía ligera es permitir una amplia gama de aplicaciones,
como sistemas de seguridad de vehículos, medidores inteligentes, pacientes inalámbri-
cos, internet de las cosas, un sistema de transporte inteligente y sistemas de moni-
toreo. Esto se ve agravado por el hecho que estos dispositivos normalmente podrían
caracterizar la interacción directa con el mundo físico, mediante los actuadores co-
rrespondientes, lo que podría comprometer la seguridad de los usuarios en caso de
uso indebido.

En la criptografía ligera el sistema de seguridad es diseñado para dispositivos con
recursos restringidos. El enfoque que se da a un algoritmo al momento de hacerlo
liviano es en su implementación en hardware. La compuerta lógica requerida para
ejecutar cualquier programa se denomina puerta equivalente y cuanto más bajo es el
uso de puertas equivalente más ligero es el algoritmo. Para el desarrollo en software se
trata de hacer el código más pequeño posible sin afectar la seguridad. El software debe
ser compatible con el sistema operativo de los dispositivos pequeños que funcionan

24 Preliminares

con baterías [57].
Los algoritmos criptográficos se clasifican en dos categorías, cifrado de llave simé-

trica y llave asimétrica. La llave simétrica utiliza una única clave tanto para el cifrado
como para el descifrado de datos, y el cifrado asimétrico utiliza dos llaves diferentes
para cifrar y descifrar los datos. La criptografía de llave simétrica es segura y com-
parativamente rápida, su inconveniencia es que las partes que se comunican deben
compartir la llave sin comprometerla. La criptografía asimétrica utiliza dos pares de
llaves públicas y privadas. Garantiza la confidencialidad y la integridad al hacer uso
de la llave pública del receptor y, además garantiza la autenticación al usar la llave
privada del remitente para cifrar los datos. El problema del cifrado asimétrico es su
aumento en la complejidad y la ralentización del proceso [58].

Existen dos propiedades fundamentales que necesita un algoritmo criptográfico,
la confusión y la difusión. La confusión hace que la relación entre el texto cifrado y la
clave sea lo más complejo posible, mientras que la difusión disipa la estructura esta-
dística del texto plano sobre la mayor parte del texto cifrado mediante la permutación
[58].

En la criptografía simétrica se encuentran el cifrado por bloques y el cifrado por
flujo. En el cifrado por bloques, tanto el cifrado como el descifrado se realiza en
un bloque de tamaño fijo (64 bits o más), mientras que el cifrado por flujo procesa
continuamente los elementos de entrada bit a bit (o palabra a palabra). El cifrado por
flujo usa solo la propiedad de confusión, en cambio el cifrado por bloques usa tanto
la confusión como la difusión con un diseño simple [58].

Los algoritmos de criptografía ligera están diseñados manteniendo el Advanced
Encryption Standard (AES) como algoritmo estándar, debido a su estandarización
por el National Institute of Standards and Tecnology (NIST), se basa en una red
de permutaciones y sustituciones. PRESENT también se basa en la estructura de
permutación por sustitución, es eficiente en cuanto al hardware, pero la capa de
permutación del cifrado consume grandes ciclos a nivel de software. RECTANGLE es
una mejora del algoritmo PRESENT, es un cifrado de bloque ultraligero de segmento
de bits adecuado para múltiples plataformas que tienen un área muy baja en hardware
y también un rendimiento muy competitivo en software [58].

High security and lightweight (HIGHT) está basado en la estructura de red de
Feistel. CLEFIA es otro cifrador basado en una red de Feistel y fue estandarizado por
el NIST en 2007, es un cifrador equilibrado en rendimiento y seguridad, tiene un buen
rendimiento de hardware en comparación con otros cifradores por bloque. CAMELLIA
es un cifrador por bloques de clave simétrica, fue diseñado para su implementación de
software y hardware, se utiliza para tarjetas inteligentes de bajo costo para sistemas
de red con altas velocidades. TWINE se basa en una red Feistel generalizada de tipo
dos con una mezcla de bloques altamente difusiva, cabe en un hardware muy pequeño
y proporciona un rendimiento notable en software integrado. SIMON y SPECK se
introdujeron en 2013, SIMON es un cifrador que tambien están basados en una red de
Feistel, que está optimizado para el rendimiento en implementaciones de hardware,
por otro lado, SPECK se ha optimizado para implementaciones de software [58].

Capítulo 2 25

2.6.1. Cifrador SIMON

SIMON es una familia de cifrados de bloque liviano diseñados por la Agencia
de Seguridad Nacional de EE.UU y publicados en 2013. El cifrado realizado con una
palabra de n bits se denomina SIMON2n, donde n requiere tomar los valores 16, 24, 32,
48 o 64. SIMON2n con una palabra de tamaño mn bits se denomina SIMON2n/mn,
por ejemplo, SIMON64/128 se refiere a la versión de SIMON que utiliza bloques de
texto plano de 64 bits y una llave de 128 bits para cifrar el texto plano.

SIMON2n para el cifrado y descifrado utiliza las siguientes operaciones en palabras
de n-bits [6].

XOR bit a bit, ⊕

AND bit a bit, &

Desplazamiento circular a la izquierda Sj, donde j es el número de bits.

El cifrado SIMON se puede describir de forma matemática de la siguiente manera.
Para la función de ronda de SIMON2n que utiliza la llave k ∈ GF (2)n, se realiza una
red de Feistel de dos etapas Rk : GF (2)n × GF (2)n → GF (2)n × GF (2)n que esta
definida por la siguiente ecuación:

Rk(x, y) = (y ⊕ f(x)⊕ k, x), (2.1)

en donde f(x) = (Sx&S8x)⊕S2x y k es la llave de ronda. La función de ronda inversa
que se utiliza para el descifrado se puede observar en la siguiente ecuación [6]:

R−1
k (x, y) = (y, x⊕ f(y)⊕ k). (2.2)

La llave de ronda es obtenida de generar una secuencia de T palabras de llaves
k0, . . . , kT−1, donde T es el número de rondas. El mapa de cifrado se compone de la
secuencia RkT−1

, . . . , Rk1 . En la figura 2.9 se observa el diagrama de la red de Feistel
que se utiliza en el cifrador SIMON. Se ve como la información se separa en dos
bloques xi+1 del lado izquierdo y xi del lado derecho. Al bloque xi+1 se le aplican dos
desplazamientos circulares a la izquierda uno de un bit y otro de ocho bits, a estas
rotaciones se les aplica una operación AND. Posteriormente al bloque xi+1 se le aplica
otro desplazamiento circular de dos bits y se aplica una operación XOR entre la señal
obtenida por la operación AND, la señal desplazada dos bits y la señal de entrada xi.
Con la señal obtenida de la operación XOR se aplica otra operación XOR con la llave
de ronda ki y la señal obtenida será la señal de salida xi+2. La señal xi+1 se cruza
para quedar en el bloque derecho y la señal xi+2 queda del lado izquierdo [6].

26 Preliminares

𝑥𝑖+1

𝑆2

𝑆8

𝑆1

𝑥𝑖+2

𝑥𝑖

&

𝑘𝑖

𝑥𝑖+1

𝑛

Figura 2.9: Red de Feistel para la función de ronda del cifrador SIMON

Generación de las llaves de ronda

Las operaciones del cifrado SIMON son las mismas y son perfectamente simétricas
en todas las rondas, respecto al mapa de bits del desplazamiento circular en palabras
de n bits. La llave de ronda emplea una secuencia de constantes de un bit para
eliminar las propiedades del desplazamiento y la simetría. Se utilizan las constantes
z0, z1, z2, z3 y z4. Estas constantes se definen de la siguiente manera [6].

z0 = 0001100111000011010100100010111110110011100001101010010001011111

z1 = 0001011010000110010011111011100010101101000011001001111101110001

z2 = 0011001101101001111110001000010100011001001011000000111011110101

z3 = 0011110000101100111001010001001000000111101001100011010111011011

z4 = 0011110111001001010011000011101000000100011011010110011110001011

Sea c = 2n−4 = 0xff . . . fc. Para SIMON2n con m palabras de llave (km−1, . . . k1, k0)
y la secuencia de ronda zj, las llave de ronda se generan de la siguiente manera:

ki+m =


c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, si m = 2
c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, si m = 3
c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), si m = 4

(2.3)

para 0 < i < T . Para conocer la constante zj que se utiliza en el cifrado se con-
sulta la tabla 2.4, en esta se observan también los parámetros que se necesitan saber

Capítulo 2 27

para cada configuración del cifrador SIMON. El tamaño del bloque es la cantidad de
información de entrada, medida en bits, que se quiere cifrar. El tamaño de llave es
el tamaño de la llave con la que se va a cifrar la información. El tamaño de palabra
son el tamaño de los bloques que dividen la llave de cifrado. Las palabras llave son
el número de bloques que se generan al dividir la llave de cifrado. La constante de
ronda son las constantes z0 . . . z4 que se utilizan en cada configuración. El número de
rondas son las rondas totales en la que se aplica la red de Feistel a la información que
se va a cifrar. Las palabras de llave k0 a km−1 son usadas como las primeras m llaves
de ronda. Estas palabras son desplazadas en donde k0 se ubica a la derecha y km−1 a
la izquierda [6].

Tamaño de
bloque 2n

Tamaño de
llave mn

Tamaño de
palabra n

Palabras
llave m

Constante
de ronda

Número de
rondas T

32 64 16 4 z0 32
48 72 24 3 z0 36

96 4 z1 36
64 96 32 3 z2 42

128 4 z3 44
96 96 48 2 z2 52

144 3 z3 54
128 128 64 2 z2 68

192 3 z3 69
256 4 z4 72

Tabla 2.4: Parámetros SIMON

Los diagramas para la generación de las llaves de ronda se observan en la figura
2.10. En la figura 2.10a se observa el diagrama cuando el número de palabras de llave
es dos, se observa como al bloque ki+1 se le hace un desplazamiento circular de tres bits
hacia la derecha y se obtiene otra señal con el bloque ki+1 desplazado circularmente
cuatro bits a la derecha, a estas señales se les aplica un XOR con el bloque de llave
ki. A la señal obtenida se le aplica una operación XOR con la constante de ronda y
el valor de c y así obtener la siguiente llave de ronda [6].

En la figura 2.10b, se muestra el diagrama cuando el número de palabras de llave
es igual a tres. Se toma el bloque de llave ki+2 y se aplican los desplazamientos
circulares hacia la derecha de tres y cuatro bits, posteriormente se aplica la operación
XOR entre estas señales y la señal del bloque ki. A esta señal obtenida se aplica una
operación XOR con la constante de ronda y el valor de c para obtener la siguiente
llave de ronda [6].

Se observa en la figura 2.10c el diagrama cuando la llave se separa en cuatro
palabras de llave. En este caso se toma el bloque ki+3 para aplicar el desplazamiento
circular a la derecha de tres y cuatro bits. A diferencia de los diagramas anteriores,
en este diagrama se aplica la operación XOR a la señal desplazada tres bits a la
derecha con el bloque ki+1, se realiza una operación XOR entre la señal obtenida

28 Preliminares

anteriormente junto con la señal desplazada cuatro bits a la derecha y el bloque ki.
Finalmente, para obtener la llave de ronda siguiente se aplica una operación XOR
entre la señal resultante anterior, la constante de ronda y el valor de c [6].

𝑘𝑖+1 𝑘𝑖

𝑆−3

𝑆−1

𝑐 ⊕ 𝑧𝑗 𝑖
𝑛

(a) m = 2 palabras de llave.

𝑘𝑖+2 𝑘𝑖

𝑆−3

𝑆−1

𝑐 ⊕ 𝑧𝑗 𝑖 𝑛

𝑘𝑖+1

(b) m = 3 palabras de llave.

𝑘𝑖+3 𝑘𝑖+2 𝑘𝑖+1 𝑘𝑖

𝑆−3

𝑆−1

𝑐 ⊕ 𝑧𝑗 𝑖

(c) m = 4 palabras de llave.

Figura 2.10: Generación de llave de ronda para el cifrador SIMON

2.6.2. Cifrador SPECK

SPECK se ha diseñado para tener un rendimiento excelente tanto en hardware
como en software. Sin embargo, ha sido optimizado para trabajar en microcontrola-

Capítulo 2 29

dores. La notación que se utiliza para describir la configuración del cifrador SPECK
es simular a la del cifrador SIMON. Si se especifica una configuración SPECK96/144
se refiere a un cifrado con un tamaño de bloque de 96 bits y una llave de 144 bits.

El cifrador SPECK utiliza las siguientes operaciones con palabras de n bits [6].

XOR bit a bit ⊕,

Adición módulo 2n +,

Desplazamiento a la izquierda y derecha, Sj y S−j respectivamente, donde j es
el número de bits.

Para k ∈ GF (2)n, la ecuación que define la función de ronda del cifrador SPECK
es la siguiente:

Rk(x, y) = ((S−αx+ y)⊕ k, Sβy ⊕ (S−αx+ y)⊕ k), (2.4)

donde los valores de las rotaciones son α = 7 y β = 2 en caso de que n = 16 (tamaño
de bloque = 32), y α = 8 y β = 2 para otros tamaños de bloque.

La ecuación que se utiliza para la función de ronda inversa, que es necesaria para
el descifrado, usa la substracción modular en lugar de la adición modular y se define
en la ecuación (2.5) [6].

R−1
k (x, y) = (Sα((x⊕ k)− S−β(x⊕ y)), S−β(x⊕ y)) (2.5)

La llave de ronda se obtiene de una secuencia que es generada mediante T palabras
de llave (k0, . . . , kT−1), donde T es el número de rondas.

En la figura 2.11 se observa el diagrama para el cifrador SPECK. El bloque de
información de entrada se divide en dos bloques x2i a la derecha y x2i+1 a la izquierda.
Al bloque x2i+1 se le aplica un desplazamiento circular a la derecha de α bits. Esta
señal se suma con el bloque x2i, y se aplica una operación XOR con la llave de ronda,
esta señal es el bloque de salida a la izquierda x2i+3 . A la señal del bloque x2i se
le aplica un desplazamiento a la izquierda de β bits, y se aplica una operación XOR
con la señal del bloque de salida x2i+3, la señal resultante es el bloque de salida a la
izquierda x2i+2 [6].

30 Preliminares

𝑥2𝑖+1

𝑥2𝑖+3

𝑥2𝑖

𝑥2𝑖+2

𝑆−𝛼

𝑆𝛽

+

𝑘𝑖

Figura 2.11: Red de Feistel para la función de ronda del cifrado SPECK

Generación de llave de ronda

La generación de llave de ronda ki se realiza mientras se ejecuta la función de
ronda. Sea K una llave para el cifrador de bloques SPECK2n, se puede escribir como
K = (ℓm−2, . . . , ℓ0, k0), en donde ℓi, k0 ∈ GF (2)n, para un valor de m en {2, 3, 4}. Los
valores de las secuencias ki y ℓi estan definidas por las siguientes ecuaciones:

ℓi+m−1 = (ki + S−αℓi)⊕ i (2.6)
ki+1 = Sβki ⊕ ℓi+m−1 (2.7)

donde ki es la i-ésima llave de ronda para 0 ≤ i < T . En la figura 2.12 se puede
observar el diagrama para la generación de las llaves de ronda del cifrado SPECK.
La llave de ronda ki es la llave que se va generando mientras que los bloques de llave
ℓ2i+1 . . . ℓi se van desplazando y funcionan como entrada de la siguiente ronda. Ri

representa la red de Feistel que se utiliza para el cifrado SPECK, el bloque de salida
del lado izquierdo se utiliza para el desplazamiento de los bloques de llave y el bloque
de salida de la derecha es la llave de ronda siguiente [6].

Capítulo 2 31

ℓ𝑖 𝑘𝑖ℓ2𝑖+1

𝑅𝑖

⋯

Figura 2.12: Generación de la llave de ronda para el cifrador SPECK

32 Preliminares

Capítulo 3

Estado del arte

La tecnología IdC ha ido en aumento en los últimos años y ha sido un gran tema
de interés en la comunidad, sin embargo, con el aumento de su uso también aumen-
tan las vulnerabilidades y se descubren fallas que no estaban contempladas. En una
tecnología que permite el intercambio de información se debe garantizar al usuario
que su información permanecerá segura y no será de conocimiento para un tercero no
autorizado.

En esta sección se presentan los trabajos relacionados a esta tesis, para ello se
muestran cinco temas que tienen relación con el tema que se trabaja en la tesis, es-
tos son trabajos de seguridad en IdC con un enfoque general, esteganografía con un
enfoque general, esteganografía usando como objeto portador un protocolo de comuni-
cación, seguridad en IdC que usa esteganografía en general y para finalizar seguridad
en IdC usando esteganografía como objeto portador el protocolo de comunicación.

3.1. Seguridad en IdC con un enfoque general

Dorri, et. al [59], proponen un método de cadena de bloques ligero escalable (LSB),
que proporciona seguridad de extremo a extremo optimizado para los requisitos de
IdC. El LSB fue desarrollado con un algoritmo de gestión de rendimiento distribuido
que garantiza que el rendimiento de la cadena de bloques no se desvié de la carga
acumulada de transacciones de la red. Los resultados que obtuvieron fueron que el LSB
es altamente seguro, ya que si los nodos clave fallan se puede observar una degradación
excelente. Sus simulaciones mostraron que su arquitectura reduce el ancho de banda
y el tiempo de procesamiento en comparación con los métodos clásicos de cadena de
bloques.

Sarker, et. al [60], mencionan que el uso de inteligencia artificial, en especial so-
luciones de aprendizaje automático y profundo, son de gran importancia para desa-
rrollar un sistema de seguridad para el sistema IdC. Se presenta una investigación
sobre la inteligencia de seguridad de IdC, que se basa en tecnologías de aprendizaje
automático y profundo para proteger los datos de ataques cibernéticos. Concluyeron
que el sistema antes de tomar una decisión inteligente debe desarrollar un algoritmo

33

34 Estado del arte

de aprendizaje eficaz con el conocimiento de seguridad adquirido con la aplicación de
destino, además que las soluciones enfocadas en aprendizaje profundo son un camino
prometedor para implementaciones futuras de seguridad en IdC.

Kudithi y Sakthivel [61], utilizan criptografía de curva elíptica ya que proporciona
mejores estándares de seguridad en comparación con otros algoritmos criptográficos
convencionales. Se enfocaron en mejorar la velocidad de cómputo y el área requerida
para la implementación de hardware, y así lograr una manera eficiente de usar los
recursos de hardware compartidos y los mecanismos de programación para curvas
elípticas en coordenadas afines. Desarrollaron una arquitectura de hardware para
realizar una multiplicación escalar y así reducir el área y el número de ciclos utilizados
en comparación con otros diseños que utilizan las mismas coordenadas afines.

Otro método de seguridad es el trabajo realizado por Al-Refai y Alawneh [62],
ellos proponen y desarrollan un marco de seguridad IdC mejorando la autenticación y
autorización. Utilizaron un método de autenticación de un identificador, mejorándolo
en términos de expandir el identificador estándar al agregar información de verifica-
ción de identidad y un nivel de permiso de autorización para los datos de la carga
útil del identificador. Posteriormente el servicio cifra la carga útil para evitar que los
datos sean comprometidos en caso de un robo de datos. La autenticación se realiza
mediante una técnica inteligente basada en una marca de tiempo que refleja el tiempo
real de la solicitud enviada. Además de utilizar una huella dactilar biométrica para
aumentar el nivel de seguridad de autenticación y evitar ataques de fuerza bruta.
Concluyeron con los resultados de sus pruebas, que su sistema protege las redes y los
protocolos de IdC de diferentes ataques y la carga que se agrega al dispositivo IdC es
muy baja.

3.2. Esteganografía con un enfoque general

Tomando en cuenta los trabajos realizados utilizando esteganografía con un enfoque
general para ocultar información se encontraron los siguientes. AlWatyan, et. al [4],
realizaron un método automatizado para proteger un mensaje utilizando dos niveles
de seguridad. El primer nivel cifra los datos utilizando el método de cifrado “Character
Bit Shuffle”. En el segundo nivel los datos cifrados se ocultan dentro de la imagen
insertando dos bits en las dos posiciones menos significativas de los píxeles de 32
bits de la imagen, llamando a esta técnica LSB 1-1-0. Concluyeron que su método
LSB 1-1-0 produce un PSNR promedio de 54.16 dB, esto demuestra que las imágenes
generadas por esta técnica tienen una fuerte imperceptibilidad, además se reduce el
área en un 80 % en comparación con otros trabajos.

Kait y Chauhan [63] trabajaron con la esteganografía de segmentación de com-
plejidad de plano de bits (BPCS) que da una mejor imperceptibilidad visual. Esta
técnica utiliza regiones que son similares al ruido en los planos de bits de la imagen
portadora. Para incrustar la información dentro de las imágenes se requieren de cálcu-
los intensivos, por lo tanto, la técnica se implementa en una FPGA para aumentar
la velocidad de procesamiento. Al final encontraron que la arquitectura de hardware

Capítulo 3 35

FPGA de la técnica BPCS muestra una mejora significativa en comparación con una
implementación LSB.

En [64] Martínez, et. al presentaron la arquitectura y la implementación en FPGA
de un sistema de ocultamiento de señales de voz ocultándolo en un ruido que proviene
de las propias componentes Wavelet de la señal. La conclusión a la que llegaron fue
que su ventaja es aprovechar los componentes de la señal y no utilizar otra señal como
lo hacen otros métodos esteganográficos que utilizan circuitos adicionales para alma-
cenar o procesar la señal extra. El sistema completo está compuesto por el codificador
y el decodificador que tienen la capacidad de trabajar en tiempo real.

3.3. Esteganografía usando un protocolo de comuni-
cación

El concepto de esteganografía de red fue introducido en 2003 [65], donde se utiliza
un protocolo de comunicación como objeto portador, donde Szczypiorski analizó el
datagrama del protocolo TCP/IP para descubrir los posibles campos que se pueden
utilizar para ocultar información. En esta misma línea, Kundur y Ahsan [66], investi-
gan dos enfoques para ocular información, el primero manipulando el encabezado de
los paquetes y el segundo utilizando el campo de número de secuencia inicial, además
encontraron que se pueden utilizar los campos del protocolo que no son utilizados. Los
trabajos relacionados con esteganografía de red que se encontraron son los siguientes.

Melo, et. al [67] usaron el campo número de secuencia inicial del protocolo TCP,
con hipótesis de que es más difícil detectar debido al valor arbitrario que puede
tener. Proponen aumentar la indetectabilidad agregando identificadores dinámicos.
Con las diferentes técnicas de clasificación que utilizaron observaron que el esquema
que propusieron tiene una menor tasa de detectabilidad y es menos detectable en
comparación con otras técnicas.

En su trabajo Bobade y Goudar [54] utilizan el protocolo IPv6 para ocultar in-
formación cifrada mediante el algoritmo RSA, en el campo de etiqueta de flujo con
un tamaño de 20 bits. Ellos concluyeron que no es posible la detección de la informa-
ción debido a las transformaciones y cálculos aleatorios aplicados en el algoritmo de
codificación.

Como parte de su investigación Xue, et. al [68] desarrollan un sistema estegano-
gráfico de dos niveles, en el nivel superior se utiliza para transmitir el texto cifrado.
En el nivel inferior se utiliza para entregar la llave de cifrado de forma encubierta.
Se utilizan los paquetes como TCP y UDP que representan un 0 y 1 respectivamente
que se utiliza para codificar la clave como método del nivel inferior. Los resultados
que obtuvieron mostraron que se logra un alto ancho de banda y una fuerte indetec-
tabilidad.

Aprovechando el mecanismo de retransmisión del protocolo TCP Brodzki y Bie-
niasz [69] sobrescriben la carga útil de los segmentos TCP sin calcular las sumas
de verificación, este segmento se puede considerar como incorrecto y se pueden ex-

36 Estado del arte

traer datos ocultos. A pesar de considerarse incorrecto el segmento se retransmite
de acuerdo con las especificaciones del protocolo y la comunicación no se ve afecta-
da. Realizaron un análisis estadístico que mostró la alta resiliencia de la técnica a la
detección.

3.4. Seguridad en IdC que usa esteganografía en ge-
neral

En los siguientes trabajos se abordan temas como esteganografía en IdC pero usando
como objeto portador un elemento distinto a un protocolo de comunicación. En el
trabajo Geethanjali, et. al [70] presenta una técnica que combina criptografía y es-
teganografía como método de seguridad para la transferencia de información. Para
la parte criptográfica utilizaron curva elíptica y en la parte esteganográfica utiliza-
ron el bit menos significativo. Concluyeron que su técnica logra un mayor grado de
seguridad en los datos en una red IdC. Evaluaron sus resultados con los parámetros
MSE, PSNR, eficiencia de incorporación y complejidad de tiempo y los compararon
con técnicas existentes como FMO, XOR y OMME.

En el artículo [7] Khari, et. realizan una combinación de técnicas criptográficas
y esteganográficas para la seguridad en una red IdC. Usando criptografía elíptica de
Galois para cifrar los datos y Matriz XOR para ocultar los datos cifrados, además
de utilizar Adaptive Firefly 1 para optimizar la selección de bloques de cobertura
dentro de la imagen. Con lo realizado concluyeron que se mejoró la seguridad debido
a la capacidad avanzada de ocultación de datos, simulando el sistema en MATLAB
encontraron que se logra una eficiencia de aproximadamente 86 % en la incorporación
de esteganografía.

3.5. Seguridad IdC usando criptografía o estegano-
grafía con un protocolo de comunicación como
objeto portador

Los trabajos que incorporan esteganografía con un protocolo de comunicación como
objeto portador son los siguientes. Trujillo, et al. [71], proponen integrar un méto-
do de criptografía basado en el caos como seguridad adicional para proteger datos
confidenciales, en este caso se utilizan imágenes RGB, de extremo a extremo. Ellos
introducen un algoritmo simple, seguro y eficiente que mejora la aleatoriedad de los
mapas caóticos 1D que ayuda en el cifrado de imágenes en tiempo real. Este algo-
ritmo es factible de implementar en dispositivos de telecomunicaciones que emplean
multiprocesadores, o cualquier dispositivo IdC con capacidades de procesamiento de
imágenes. El sistema se verificó utilizando enlaces M2M a través del protocolo MQTT

1Algoritmo metaheurístico inspirado en el comportamiento del centelleo de las luciérnagas

Capítulo 3 37

en internet. El análisis mostró que el algoritmo de cifrado propuesto que utiliza la
función mod1023 ofrece robustez y alta seguridad contra varios ataques. La imple-
mentación fue realizada en una computadora personal con un reloj de 2.9 GHz y
usando las secuencias mejoradas con el mapa Logistic 1D alcanza un rendimiento de
hasta 47.44 Mb/s, y la implementación en Raspberry Pi 4 alcanza los 10.53 Mb/s.

Almohammedi y Shepelev [72] analizaron el rendimiento de un sistema basado
en el modelo de cadena de Markov 2-D en relación con el estándar IEEE 802.11p
para redes IdC. Encontraron que los valores del rendimiento del sistema de canal
esteganográfico para tramas de datos y control son bajos a medida que aumenta la tasa
de tráfico, el número de vehículos, el tamaño del paquete y el valor de BER, además
el valor del rendimiento del sistema del canal esteganográfico basado en tramas de
datos y control disminuye cuando la capacidad del canal es pequeña y el tamaño de
la red es grande.

En su trabajo Velinov, et. al [46], analizaron el protocolo MQTT v3.1.1 para
encontrar una manera viable de ocultar información, encontrando siete canales en-
cubiertos directos y seis indirectos que evaluaron y categorizaron con base en un
enfoque de patrones de ocultación de información de red. Realizando la implementa-
ción de dos canales encubiertos indirectos demostraron la viabilidad de la ocultación
de información en el protocolo MQTT v3.1.1.

En el artículo de Koziak, et. al [73], modificaron un sistema de detección de in-
trusos para detectar ciertos tipos de esteganografía, esto mediante el software Zeek.
Realizaron pruebas en protocolos, tales como, ICMP, TCP, IP, MQTT y SIP. Demos-
traron que con la implementación de su sistema lograron detectar la mayoría de los
casos de pruebas esteganográficas.

Una investigación acerca de canales encubiertos en el protocolo MQTT v5.0 fue
realizada por Mileva, et. al [74]. Esta investigación se encuentra relacionada con el
trabajo de Velinov, et. al [46] y este trabajo es una actualización con respecto a la
nueva versión del protocolo, dado que incluye nuevas características y nuevos campos.
Encontraron que hay nuevos canales encubiertos que no eran viables para la versión
anterior de MQTT, añadieron un nuevo patrón de ocultación que utiliza reconexiones.
Su implementación la realizan con dos canales indirectos y evalúan su ancho de banda,
la robustez, y su indetectabilidad.

En la tabla 3.1 se puede observar un resumen de los trabajos revisados y como se
relacionan con los temas que se quiere abordar en el presente trabajo.

Título Autor(es) IdC FPGA Criptografía
o estegano-
grafía

Protocolo
de comuni-
cación

A lightweight scalable
blockchain

Dorri, Kanhere,
et al. 2019 [59]

✓

38 Estado del arte

Internet of things (IoT)
security intelligence:
a comprehensive over-
view, machine learning
solutions and research
directions

Sarker, Khan,
et al. 2022 [60]

✓

High-performance ECC
processor architecture
design for IoT security
applications

Kudithi y
Sakthivel, 2019
[61]

✓ ✓

User authentication and
authorization frame-
work in IoT protocols

Al-Refai y
Alawneh, 2022
[62]

✓

Security approach for
LSB steganography ba-
sed FPGA implementa-
tion

AlWatyan, et
al. 2017 [4]

✓ ✓

BPCS Steganography
for Data Security Using
FPGA Implementation

Kait, Chauhan.
2015 [63]

✓ ✓

Message Concealment
System of Voice Signals
Implemented on FPGA

Martínez et al.
2016 [64]

✓ ✓

Enhanced TCP Sequen-
ce Number Stegano-
graphy using Dynamic
Identifier

Melo, Sison,
Medina 2019
[67]

✓ ✓

Secure data communi-
cation using protocol
steganography in IPv6

Bobade 2015
[54]

✓ ✓

The Solution of Key
Transmission in Multi-
Level Network Stegano-
graphy

Xue et al. 2017
[68]

✓ ✓

Yet Another Network
Steganography Techni-
que Based on TCP Re-
transmissions

Brodzki, Bie-
niasz 2019 [69]

✓ ✓

Enhanced Data Encry-
ption in IoT using ECC
Cryptography and LSB
Steganography

Geethanjali et
al. 2021 [70]

✓ ✓

Capítulo 3 39

Securing Data in In-
ternet of Things (IoT)
Using Cryptography
and Steganography
Techniques

Khari et al.
2019 [7]

✓ ✓

Saturation Throughput
Analysis of Stegano-
graphy in the IEEE
802.11p Protocol in the
Presence of Non-Ideal
Transmission Channel

Almohammedi,
Shepelev 2021
[72]

✓ ✓

Real-time RGB ima-
ge encryption for IoT
applications using en-
hanced sequences from
chaotic maps

Trujillo-Toledo,
et al. 2021 [71]

✓ ✓ ✓

Covert Channels in the
MQTT-Based Internet
of Things

Veilinov, et al.
2019 [46]

✓ ✓ ✓

How to make an intru-
sion detection system
aware of steganographic
transmission

Kosiak, et al.
2021 [73]

✓ ✓ ✓

Comprehensive analysis
of MQTT 5.0 suscepti-
bility to network covert
channels

Mileva, et al.
2021 [74]

✓ ✓ ✓

Tabla 3.1: Trabajos relacionados

40 Estado del arte

Capítulo 4

Descripción del sistema

En este capítulo se aborda una descripción del sistema propuesto en esta tesis. Men-
cionando primero cómo se utiliza la red del protocolo MQTT y cómo se debe hacer
la conexión y las peticiones pertinentes para el funcionamiento de la red. Posterior-
mente se hace una descripción del sistema, en donde se menciona el objeto portador
que se utiliza, y qué configuración del objeto se utiliza. Se describen dos esquemas
como parte de la propuesta de este trabajo, el primero para ocultar la información a
compartir, y el segundo para ocultar la llave de cifrado. Y finalmente se presenta la
descripción de las funciones estego que se utilizaron para ocultar la información.

4.1. Red del sistema

El sistema se basa en la arquitectura publicador-suscriptor que utiliza el protoco-
lo MQTT, en la figura 2.5 se puede observar como la red está compuesta por tres
elementos, un cliente-publicador, un cliente-suscriptor y un dispositivo centralizado
llamado broker. Se necesita tener un cliente que publique el mensaje y otro que lo
reciba, el broker se encarga de direccionar los mensajes mediante el nombre del tema,
así varios dispositivos pueden conectarse, pero solo aquellos que se suscriban al mismo
tema podrán recibir el mensaje.

En la figura 2.6 se visualiza la forma en que el protocolo MQTT realiza la comu-
nicación, primero el cliente-publicador envía el paquete de control CONNECT para
establecer la conexión y una vez establecida se pueden enviar paquetes PUBLISH que
contendrán la información que se desea compartir. Finalmente se envía un paquete
DISCONNECT para indicar que se termina la conexión con el broker.

Es necesario tener un cliente-suscriptor, de manera similar que el cliente-publicador,
primero se envía un paquete CONNECT para establecer la conexión con el broker y
el cliente-suscriptor, después se envía un paquete SUBSCRIBE con el nombre del te-
ma al que se quiere suscribir, esto indica al broker que se debe enviar la información
que esté relacionada a ese tema, al dispositivo que se acaba de conectar. El cliente
se queda esperando hasta que reciba un paquete PUBLISH por parte del broker pa-
ra así recibir la información. Si es necesario terminar con la suscripción se envía un

41

42 Descripción del sistema

paquete UNSUBSCRIBE y posteriormente un paquete DISCONNECT para indicar
el término de la conexión.

Usando la arquitectura de red del protocolo MQTT, se diseña un esquema que
pueda ocultar información cifrada en el protocolo MQTT. El enfoque que se pensó es
ocultar información sensible en un campo del protocolo MQTT que lo permita, y así
desarrollar funciones esteganográficas que ayuden a esta tarea. El sistema otorgará
confidencialidad y ocultamiento a la información que se desea compartir a través del
protocolo MQTT.

4.2. Esquema del sistema

La esteganografía consiste en ocultar información dentro de un objeto portador que
puede ser texto, imágenes, audio, entre otros. Recientemente se utiliza como objeto
portador los protocolos de comunicación y es de interés poder utilizar campos del
protocolo que no se utilicen y que no afecten su funcionamiento. A continuación, se
presenta un análisis del protocolo MQTT, específicamente del paquete PUBLISH,
para encontrar un campo que permita el ocultamiento de información.

4.2.1. Paquete de control PUBLISH

El protocolo MQTT resulta interesante para trabajar, debido a que es el más utilizado
entre los protocolos de comunicación enfocados en IdC como se vio en el capítulo 2.
En ese mismo capítulo se observa que el protocolo MQTT v5.0 se conforma por
15 paquetes de control destinados para una tarea específica, que va desde iniciar
una conexión, enviar o recibir mensajes, hasta la finalización de la conexión. De los
paquetes de control el más utilizado es el paquete PUBLISH. Los demás paquetes en
su mayoría se envían una vez en todo el proceso de comunicación. Por ejemplo, el
paquete CONNECT se envía solo cuando se quiere iniciar la conexión con el broker, y
el paquete CONNACK solo se envía cuando la conexión ha sido realizada de manera
correcta, además este es enviado por el broker, y así con la mayoría de los paquetes.
El paquete PINGREQ es enviado más veces para corroborar que el cliente sigue
conectado, pero se envía cada intervalo de tiempo determinado y no es eficiente en
la velocidad de envío de la información. El paquete PUBLISH se envía cada que se
quiere compartir información y es normal tener un alto tráfico de este paquete, por
lo que no es de extrañar si muchos paquetes son enviados en poco tiempo [2].

El paquete PUBLISH, al igual que los demás paquetes está conformado por un
encabezado fijo, un encabezado variable y la carga útil. En la figura 4.1 se muestra
como está conformado el encabezado fijo. Este encabezado tiene una longitud de 2
bytes. En el primer byte se encuentran los siguientes campos: en el primer bit se
encuentra el campo RETAIN que indica si el mensaje va a ser retenido para que
quede guardado o no en el broker, de los bits 1 al 2 está el campo nivel de QoS qué
índica con que nivel de calidad será enviado el mensaje, el campo indicador DUP que
establece si el paquete PUBLISH ya a sido enviado y de ser así se intenta volver a

Capítulo 4 43

entregar dicho paquete en caso de un fallo en el envío, y en los bits 4 al 7 el campo
tipo de paquete de control, que toma un valor de 0011 en número binario para indicar
que es un paquete de tipo PUBLISH. El segundo byte indica la longitud restante del
paquete [2].

Bit 7 6 5 4 3 2 1 0

Byte 1 Tipo de control de paquete MQTT(3) Indicador DUP Nivel de QoS RETAIN

0 0 1 1 X X X X

Byte 2 Longitud restante

Figura 4.1: Encabezado fijo del paquete PUBLISH

El siguiente elemento es el encabezado variable. Para cada paquete el encabezado
variable contiene diferentes campos. El encabezado variable del paquete PUBLISH se
muestra en la figura 4.2, en ella se pueden observar como primer elemento la longitud
del nombre del tema, el tipo de dato que maneja es un entero sin signo de 16 bits,
que se encuentra separado en dos bytes, el primero contiene el byte más significativo
(MSB) y el segundo el byte menos significativo (LSB). Posteriormente se encuentra
el campo de nombre del tema, que almacena como su nombre lo indica el nombre del
tema y el tipo de dato que maneja es una cadena codificada en UTF-8 y puede tener
una longitud de 0 a 65 535 bytes. El siguiente campo es el identificador de paquete,
en este campo se deja un identificador que en caso de que se utilice una calidad de
servicio QoS 1 o QoS 2 este identificador sirve para formar un único conjunto por
separado entre el cliente y el broker, este paquete se conforma de dos bytes y al igual
que la longitud del nombre del tema utiliza un tipo entero de 16 bits sin signo y
se divide en MSB y LSB. Como últimos dos campos se encuentran la longitud de
propiedades que es un entero de byte variable y las propiedades, estas pueden estar
o no presentes dependiendo de las propiedades que se utilicen en el paquete [2].

Los campos anteriormente descritos tienen una función que no puede ser cambiada,
por tal motivo no pueden ser utilizadas para ocultar información, ya que un cambio
en su valor altera por completo la funcionalidad del paquete. Es necesario evaluar los
campos presentes en las propiedades y seleccionar uno que pueda ser utilizado para
ocultar información.

En las propiedades del paquete PUBLISH, mostrado en la figura 4.3, se encuen-
tra los siguientes campos. Indicador de formato de la carga útil, en este campo se
utiliza un byte para indicar si la carga útil tiene bytes no especificados (0x00) o si
la carga útil tiene datos en formato UTF-8. Intervalo de caducidad del mensaje, este
campo está conformado por cuatro bytes y utiliza un tipo entero de 32 bits sin signo,
indica que si ha pasado el tiempo establecido y el servidor no ha logrado iniciar la
entrega del paquete a un suscriptor coincidente, se debe eliminar el mensaje para ese
suscriptor. Alias del tema, este campo tiene un tamaño de dos bytes y utiliza el tipo
entero de 16 bits sin signo, se utiliza para aligerar el tamaño del paquete utilizán-

44 Descripción del sistema

0 1 2 3 4 5 6 7

Longitud de la cadena de nombre del tema (MSB) Byte 1

Longitud de la cadena de nombre del tema (LSB) Byte 2

Nombre del tema
Byte 3

⋮
Byte 65538

Identificador de paquete PUBLISH (MSB) Byte 65539

Identificador de paquete PUBLISH (LSB) Byte 65540

Longitud de propiedades Byte 65541

Propiedades
Byte 65542

⋮
Byte n

Figura 4.2: Encabezado variable del paquete PUBLISH

dolo en lugar del nombre del tema. Tema de respuesta, el tipo de dato que utiliza
es una cadena de caracteres codificada en UTF-8, este campo se utiliza para enviar
un mensaje de respuesta a todos los suscriptores que reciben el mensaje. Datos de
correlación, el tamaño utilizado es un byte y se usan los bits que lo componen, se
utiliza para identificar para que solicitud es el mensaje de respuesta cuando se recibe.
Propiedad del usuario, utiliza una cadena de caracteres codificados en UTF-8, puede
aparecer varias veces para representar varios pares de nombre y valor cuyo significado
e interpretación solo conocen los programas de aplicación responsables de enviarlos y
recibirlos. Identificador de suscripción utiliza un formato de entero variable, utilizado
por MQTT, este campo puede tener un valor de 1 a 268 435 55 y como su nombre lo
indica representa el identificador de la suscripción. Tipo de contenido, usa una cadena
de caracteres codificada en UTF-8, en este campo se puede describir el contenido del
mensaje que se está enviando [2].

Evaluando los campos descritos anteriormente, se puede hacer un análisis de cuál
es el mejor campo para ocultar información. La información que regularmente se
envía por MQTT es texto y por tanto los campos que utilizan caracteres pueden
ser muy predecibles en cuanto a ocultar la información, debido a que, si se hace
de forma directa la inserción, se puede observar el contenido del campo y no se
lograría el objetivo de ocultar información. Quedan los campos que utilizan un tamaño
determinado de bits estos utilizan un tipo numérico y pueden ser ideales si se desarrolla
de forma correcta una función estego que permita ocultar información, el único campo
disponible que no tenga un uso específico es el campo intervalo de caducidad del
mensaje, debido a que no afecta si se cambia el valor que contiene y no afecta el
funcionamiento del paquete.

Capítulo 4 45

Longitud de la cadena de nombre del tema (MSB)

Longitud de la cadena de nombre del tema (LSB)

Nombre del tema

Identificador de paquete PUBLISH (MSB)

Identificador de paquete PUBLISH (LSB)

Longitud de propiedades

Propiedades

Indicador de formato de la carga útil

Intervalo de caducidad del mensaje

Alias del tema

Tema de respuesta

Datos de correlación

Propiedad del usuario

Identificador de suscripción

Tipo de contenido

Figura 4.3: Propiedades del paquete PUBLISH

4.3. Funciones estego
La función estego inserta la información a ocultar dentro del objeto portador, esta
función debe brindar indetectabilidad, robustez y capacidad para asegurar un correc-
to ocultamiento de la información. Con base a lo descrito anteriormente se propone
diseñar e implementar una función estego utilizando como objeto portador el data-
grama del protocolo MQTT v5.0 en el campo intervalo de caducidad del mensaje,
tomando en cuenta todas las características del objeto portador y de la función es-
tego para una correcta implementación. A continuación, se muestran dos funciones
desarrolladas para este trabajo.

4.3.1. Función estego bit menos significativo

Para el desarrollo de esta función estego se toma en cuenta que no debe ser complicada
en términos de operaciones, debido al tipo de dispositivos con los que se quieren
trabajar. Por lo tanto, basándose en una técnica utilizada para la esteganografía de
imágenes, en donde se oculta la información bit a bit en el bit menos significativo
de los píxeles que conforman la imagen, esto se hace para no deformar de manera
evidente la imagen original. En el campo intervalo de caducidad del mensaje del
paquete PUBLISH, se inserta la información en el bit menos significativo de los 32
bits de este campo. Así se descompone la información en bits y cada bit se inserta en
un paquete PUBLISH para ser enviado.

En la figura 4.4 se observa de forma gráfica el funcionamiento de esta función. La
cadena “Hola a todos, esta es una prueba”, se descompone en bits, para ejemplificar
esto se toma el caracter ‘H’ y se descompone en bits que equivale al número en binario
“01001000”, estos bits se insertan en el bit menos significativo del campo y en cada

46 Descripción del sistema

paquete se envía un bit de la información.

H o l a a t o d o s , e s t a e s u n a p r u e b a

H

0

1

0

0

1

0

0

0

1 0

1 1

1 0

1 0

1 1

1 0

1 0

1 0

Campo intervalo de caducidad del mensaje

V
al

o
r

eq
u

iv
al

en
te

 e
n

 b
it

s
d

el
 c

ar
ác

te
r

‘H
’

Figura 4.4: Diagrama de la función estego bit menos significativo

4.3.2. Función estego bit menos significativo nibble

Esta función toma como base la función anterior. Para este caso se dividen los 32
bits en bloques de 4 bits (nibble) y en cada bit menos significativo de cada nibble se
inserta un bit de información a ocultar. Con esto se busca usar menos paquetes para
enviar la información y así aumentar su capacidad. En la figura 4.5 se muestra cómo
se realiza esta función. Usando el texto “Hola a todos, esta es una prueba” se separa
la información en bits, para el ejemplo se toma el caracter ‘H’ y se descompone en
bits que corresponde al número “01001000”, y en cada bit menos significativo de los
nibbles se inserta un bit de información.

0 1H 0 0 1 0 0 0

1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0

H o l a a t o d o s , e s t a e s u n a p r u e b a

Valor equivalente en bits del carácter ‘H’

Campo intervalo de caducidad del mensaje

Figura 4.5: Diagrama de la función estego bit menos significativo nibble

Capítulo 4 47

4.4. Esquemas del sistema

El sistema se diseña para utilizar un cifrador, una función estego, el objeto porta-
dor, una función estego inversa y un descifrador. Con estos elementos se diseñaron
dos esquemas. El primero se enfoca en ocultar la información sensible que se quiere
compartir. El segundo en ocultar la llave que se usa para cifrar la información. La
llave de cifrado posee una dificultad al ser compartida, debido a que si algún terce-
ro no autorizado logra conocer la llave podrá acceder a la información que se está
compartiendo, por eso es necesario lograr compartir la llave por un medio seguro.

4.4.1. Esquema de ocultamiento de información

El esquema mostrado en la figura 4.6, se representa en bloques los elementos que
constituyen el sistema propuesto. Con este sistema se busca ingresar la información,
cifrarla y ocultarla. El primer paso es ingresar la información en el cifrador, para el
caso de este trabajo es el cifrador SIMON o SPECK dependiendo del dispositivo. Estos
cifradores requieren una llave para realizar el cifrado y por tanto se define una que
será previamente compartida para que ambos clientes tengan el conocimiento de la
llave. Después mediante la función estego la información que fue previamente cifrada
se inserta en el objeto portador, es este caso el datagrama del protocolo MQTT, y así
se podrá enviar la información de forma oculta. El paquete PUBLISH de MQTT es
enviado al broker que a su vez lo envía al cliente-suscriptor que recibe el paquete. Una
vez que se ha recibido el paquete se procede a utilizar la función estego inversa para
recuperar la información que fue ocultada en el datagrama del paquete PUBLISH
de MQTT. Esta información se va almacenando hasta que se termina de recibir la
información completa. Cuando la información se ha terminado de recibir se procede
a separarla en bloques y así proceder con el descifrado de la información usando la
llave previamente compartida. Una vez que se termina con el descifrado se obtiene la
información original.

4.4.2. Esquema de ocultamiento de llave de cifrado

Para el cifrado simétrico se necesita compartir la llave para utilizarla en el descifrado.
Es necesario que al compartir la llave se haga con sumo cuidado, y así evitar que
terceros no autorizados logren tener conocimiento de la llave, ya que si se logra conocer
se puede acceder a la información y eso es algo no deseado. Por tal motivo se diseñó
un esquema que permita compartir la llave de forma oculta usando esteganografía.
En la figura 4.7 se observa el diagrama del esquema que realiza el ocultamiento de
la llave. Primero la información pasa por el cifrador y usando la llave se cifra la
información y se coloca en la carga útil del paquete PUBLISH. La llave que se utiliza
se oculta dentro del paquete PUBLISH con la ayuda de la función estego y se envían
los paquetes necesarios para compartir todo el tamaño de la llave. Una vez que se ha
terminado de enviar toda la información de la llave de cifrado se procede a obtener

48 Descripción del sistema

CifradorTexto Función estego

Objeto portador

Función estego

inversa
DescifradorTexto

Llave

Llave

Figura 4.6: Diagrama del esquema para ocultar la información a compartir

la llave que se ocultó con el uso de la función estego inversa. Cuando se tiene la llave
y la información, se descifra la información para así obtener el mensaje original.

CifradorTexto Función estego

Objeto portador

Función estego

inversa
DescifradorTexto

Llave

Llave

Carga útil del

objeto portador

Carga útil del

objeto portador

Figura 4.7: Diagrama del esquema para ocultar la llave de cifrado

La gran diferencia entre ambos esquemas es la información que se oculta. Ambos
esquemas buscan compartir de forma segura un tipo de información y así evitar una
posible fuga de información. Ambos esquemas comparten el objeto portador que es el
protocolo MQTT y la función estego que se utiliza es la misma. En el primer esquema
se busca obtener un sistema de seguridad que nos permita intercambiar información
de forma segura aplicando confidencialidad y ocultamiento a la información que se
quiere intercambiar. En el segundo esquema se busca aplica seguridad a dos elementos
de información, por un lado, aplicar confidencialidad a la información que se quiere
compartir y ocultación a la llave de cifrado.

Capítulo 5

Implementación

La implementación del cliente-publicador en hardware se hace en una tarjeta PYNQ
Z2 que posee un procesador Cortex-A9 Dual Core ARM y una FPGA de 1.3 M de
puertas reconfigurables. En la implementación en software, se utiliza únicamente el
procesador para la ejecución del programa, este se encargará de realizar el cifrador
de la información, crear el paquete del protocolo MQTT, agregar la información en
el campo correspondiente y enviar el paquete al destinatario deseado.

El procesador necesita un sistema para operar. El sistema que Xilinx ofrece es
petalinux, esta herramienta brinda un sistema operativo basado en Yocto. Este sis-
tema operativo ofrece un entorno en Linux. Al ser una versión simplificada hay que
seleccionar los elementos que se quieren tener instalados desde la configuración del
sistema.

Para la implementación completa en software se utiliza una Raspberry Pi 4 que
contedrá el cliente-publicador y se encargará de realizar el cifrado, la función estego,
la creación del paquete MQTT y el envío de dicho paquete. El sistema instalado es
Raspberry Pi OS que está basado en Linux y la conexión será mediante el puerto
Ethernet.

El broker se utilizará de dos maneras. Primero será alojado junto con el cliente-
suscriptor en una computadora de escritorio donde se recibirán todos los paquetes
que se enviarán de los dispositivos mencionados anteriormente. La segunda forma
será utilizar un broker público para asegurar que se puede enviar información a la
nube y recuperar sin problemas.

5.1. Petalinux

Petalinux es un kit de desarrollo de software (SDK) de Linux integrado dirigido a
diseños de sistema en un chip (System on Chip) basados en FPGA. Permite per-
sonalizar, construir e implementar soluciones de Linux embebido en los sistemas de
procesamiento de Xilinx. Diseñada a medida para acelerar la productividad del dise-
ño, la solución funciona con las herramientas de diseño de hardware de Xilinx para
facilitar el desarrollo de sistemas Linux para Versal, Zynq UltraScale MPSoC, SoC

49

50 Implementación

Zynq-7000 y MicroBlaze.
Para el desarrollo del sistema primero se debe desarrollar el esquema completo

que involucra el procesador y el FPGA para que se realicen las conexiones necesarias
que sirvan como puente de enlace entre el procesador y el FPGA. El enlace se realiza
por medio del software Vivado. Vivado se encarga de realizar las conexiones internas
necesarias para habilitar la comunicación de información entre el procesador y el
FPGA.

En Vivado se crea un nuevo diseño y se agrega el bloque del procesador ZYNQ.
Posteriormente se crea un nuevo bloque IP que contendrá la configuración de hardware
para la implementación de la función estego. También se crea un nuevo bloque IP que
tendrá la configuración de hardware del cifrador SIMON. Se agregan los dos bloques
creados al diseño y se selecciona la conexión automática de los bloques agregados.

Una vez que los bloques han sido creados y se han conectados, se procede a realizar
una síntesis del diseño para corroborar que no hay fallos en la configuración y conexión
del diseño. Una vez que la síntesis se realizó sin fallos se procede a exportar el diseño
del hardware para poder crear la configuración de petalinux necesaria.

Ahora que se tiene la configuración de hardware se procede a configurar y construir
el proyecto de de petalinux que se utilizará para el sistema. Esto se puede observar
en el apéndice B.

5.2. Clientes MQTT

El sistema operativo del procesador se encuentra en funcionamiento, ahora se desa-
rrollarán los clientes publicador y suscriptor para realizar la comunicación. Para la
creación de los clientes es necesaria una biblioteca que brinde los recursos necesarios
para crear la conexión, además se busca que pueda trabajar con la versión 5.0 de
MQTT, dado que los campos seleccionados para ocultar información solo existen en
esta versión. El software seleccionado es Mosquitto que nos brinda el broker, y las
bibliotecas para crear clientes que utilicen la versión 5.0 de MQTT.

Mosquitto

Mosquitto proporciona implementaciones de servidor y cliente que cumplen con los
estándares del protocolo MQTT. Mosquitto está diseñado para usarse en todas las si-
tuaciones en las que se necesita una mensajería ligera, particularmente en dispositivos
restringidos con recursos limitados. Mosquitto es un proyecto de Eclipse Foundation.
Mosquitto consta de tres partes; el servidor principal de Mosquitto o broker, los clien-
tes mosquitto_pub y mosquitto_sub que sirven para comunicarse con un servidor
MQTT y por último una biblioteca para clientes MQTT escrita en C [75].

Capítulo 5 51

5.2.1. Cliente-publicador

Para desarrollar el cliente-publicador se siguen los siguientes pasos. Primero se debe
ingresar la información que se va a cifrar, luego se deben iniciar las variables que
almacenará el texto que se ira dividiendo en bloques. Posteriormente se inicializa la
biblioteca de Mosquitto y se configura para que los paquetes que se utilizan sean de la
versión 5.0 de MQTT. Para realizar la conexión entre el cliente y el broker lo primero
es enviar un paquete CONNECT, donde se especifica la dirección IP del broker y el
puerto que se utiliza. Cuando el broker envía un paquete CONNACK para informar
que se ha establecido conexión, se ejecuta una función que nos informa de dicho evento
en donde se programa un mensaje para informar de la conexión exitosa.

Ahora que la conexión se ha establecido, se procede a separar por bloques la
información, esto depende de la configuración del cifrador, para esta implementación
se utilizó la configuración 32/64 para ambos cifradores SIMON y SPECK, esto debido
a que la información que se desea transmitir es pequeña, se quieren compartir datos
muy específicos como nombres o edades. La información del tamaño del bloque se
cifra y se utiliza el modo Cipher block chaining (CBC) para el cifrador por bloques.
En la figura 5.1, se muestra el cifrado mediante el modo de operación CBC. Este
consiste en ingresar un bloque del texto que se quiere cifrar y realizar una operación
XOR con un vector de inicialización. El vector de inicialización (IV) se conforma de
una parte generada de manera aleatoria y usando el modo contador para cada bloque
del texto. El resultado de la operación XOR pasa al cifrador para finalmente obtener
el bloque cifrado. Para los siguientes bloques se utiliza el bloque cifrado anterior en
lugar del bloque IV para generar los nuevos bloques cifrados.

Cifrador por

bloques
Llave

Cifrador por

bloques
Llave

Cifrador por

bloques
Llave

Texto

Vector de inicialización (IV)

Texto cifrado

Texto Texto

Texto cifrado Texto cifrado

Figura 5.1: Diagrama del modo de operación CBC

Cada bloque de la información cifrada pasa a la función estego Bit menos signifi-
cativo nibble, en donde se calcula un valor aleatorio entero de 32 bits para el campo
intervalo de caducidad del mensaje y se utiliza la función estego Bit menos significati-
vo nibble que divide un dato de 32 bits en 8 nibbles y almacena un bit de información
en cada bit menos significativo de los nibbles.

52 Implementación

Con la información cifrada se agrega el valor entero a una variable que tiene
el formato para las propiedades variables del protocolo MQTT. Posteriormente se
publica el mensaje, estableciendo el nombre del tema al que se va a publicar, el
mensaje que se quiere publicar y la lista que contiene las propiedades variables, se
ejecuta la función que nos permite saber que se ha enviado y se ha recibido o si
hubo un error en el mensaje. Así llega el mensaje al destinatario que se ha suscrito al
mismo tema y se procede a recibir y visualizar el mensaje que se cifró y ocultó. En el
algoritmo 1 se observa el pseudocódigo del cliente-publicador.

Algoritmo 1 Pseudocódigo cliente-publicador
Entrada: Información a compartir, llave para cifrado, configuración del cifrador
Salida: Información cifrada, paquetes PUBLISH
1: Ingresar información a ocultar
2: Iniciar biblioteca Mosquitto
3: Crear paquete MQTT
4: Enviar paquete CONNECT
5: Separar información en bloques de tamaño n
6: Cifrar la información
7: Generar número aleatorio de 32 bits
8: Aplicar función stego
9: Enviar paquete PUBLISH con la información oculta

10: Enviar paquete que indique el termino del envío de la información
11: Enviar paquete DISCONNECT

5.2.2. Cliente-suscriptor

El cliente-suscriptor debe seguir el siguiente orden. Primero se inicializa la biblioteca
de Mosquitto y posteriormente se indica que se trabaja con la versión 5.0 de MQTT. Se
establece la conexión mediante el envío del paquete CONNECT con la dirección IP del
broker y el puerto que se utilizará para la comunicación, y si se realizó correctamente se
ejecuta la función que muestra un mensaje. Una vez que la conexión se ha establecido
se manda el paquete SUBSCRIBE para establecer la suscripción al tema que se desea.
El tema debe ser el mismo al que el cliente-publicador envía la información, así todos
los clientes que estén conectados reciben el mensaje en la carga útil, pero solo el
cliente que tenga el algoritmo para extraer la información oculta y el descifrador
puede visualizar el texto que es envió de forma oculta.

El cliente-suscriptor se queda en espera de recibir la información y cuando se
detecta el envío de un paquete PUBLISH se ejecuta una función para realizar una
acción. Para el sistema se envía información y el cliente-suscriptor recibe dicha in-
formación, en cada paquete se extraen los bits correspondientes a la información que
se envía de forma oculta y se van almacenando, el cliente se detiene cuando en el
campo intervalo del mensaje recibe un valor específico, en este caso el valor 169 que

Capítulo 5 53

corresponde al carácter ®en código ASCII. Cuando se recibe este valor el cliente da
por hecho que se ha compartido toda la información y procede a realizar el descifrado
de la información. Cuando la información ha terminado de ser descifrada se puede
visualizar la información original que se compartió.

Algoritmo 2 Pseudocódigo cliente-suscriptor
Entrada: Paquetes PUBLISH, llave de cifrado, configuración del cifrador
Salida: Información original
1: Iniciar biblioteca Mosquitto
2: Crear paquete MQTT
3: Enviar paquete CONNECT
4: Enviar paquete SUBSCRIBE
5: while No se recibe paquete PUBLISH do
6: Queda en espera
7: end while
8: if Se recibe un paquete PUBLISH que no indica el termino de la información

then
9: Se extrae el dato usando la función estego inversa

10: Se añade lo obtenido a la información previamente obtenida
11: else
12: Separar la información recibida en bloques de tamaño n
13: Se descifra la información
14: Visualización de la información original
15: end if

5.3. Función estego software
La función estego que se utiliza para la implementación es bit menos significativo
nibble. En software esta función se implementa primero calculando un valor numérico
aleatorio de 32 bits para el campo intervalo de caducidad del mensaje. Posteriormente
se aplica una operación AND con el número en hexadecimal “EEEEEEEE” y dejar
con un valor de ‘0’ binario el bit menos significativo de cada nibble que componen
el campo de 32 bits. Finalmente se insertan los bits de la información en el valor
calculado para ocultar la información.

Algoritmo 3 Pseudocódigo función bit menos significativo nibble
Entrada: Información de entrada
Salida: Intervalo aleatorio con información insertada
1: Generar aleatoriamente un valor de 32 bits
2: Operación AND entre el valor aleatorio y el número en hexadecimal “EEEEEEEE”
3: Insertar la información bit por bit en el bit menos significativo de cada nibble

54 Implementación

5.4. Función estego hardware

En hardware la función bit menos significativo nibble se implementa de la siguiente
forma. Primero se declaran cinco bloques de 32 bits para la entrada, uno para la
información que se va a ocultar y los otros cuatro bloques son cuatro valores aleatorios
diferentes en donde se insertará la información. En FPGA el manejo de bits es más
directo y se puede ocultar más información en 4 cuatro paquetes al mismo tiempo
dada la ejecución concurrente de la FPGA. El valor aleatorio se calcula cuatro veces
en software y a continuación la inserción en bits se hace en hardware. En la figura 5.2
se observa el diagrama de la función estego desarrollada en hardware.

Intervalo 1

Intervalo 2

Intervalo 3

Intervalo 4

Entrada

Intervalo estego 3

Intervalo estego 2

Intervalo estego 1

Intervalo estego 4

23:16

15:8

7:0

31:24

15:8

Figura 5.2: Diagrama de la función bit menos significativo en hardware.

5.5. Cifrador SIMON software

En software la implementación del cifrador SIMON se realizó en forma de biblioteca,
en este caso para la configuración SIMON64/32. La función recibe como parámetros
la configuración como un valor entero, el apuntador del bloque de información del
tamaño de la configuración seleccionada y el apuntador al bloque que contiene la
llave para cifrar la información.

Siguiendo el diagrama de la red de Feistel el bloque de información de entrada se
separa en dos. Se inicializa los bloques que almacenaran las llaves de ronda con la
llave que se ingresa. Se calculan las operaciones que se observan en la red de Feistel
para obtener la información cifrada. La información se devuelve con un apuntador que
contiene la información cifrada. Ahora que la información ha sido cifrada se puede
enviar sin ningún problema a través del protocolo MQTT.

Capítulo 5 55

5.6. Descifrador SIMON
Para el descifrar la información mediante el algoritmo SIMON se debe tener en cuenta
que al generar llaves de ronda se necesita la última generada para lograr obtener la
información original. Para descifrar la información se necesita generar la última llave
para ir en retroceso e ir obteniendo en orden inverso las llaves de ronda. Para ello el
diagrama para generar la llave de ronda se modifica para ir recuperando las llaves en
la ronda correspondiente.

El diagrama que se muestra en la figura 5.3, se observa el flujo del desplazamiento
de los registros va en dirección contraria y que se quiere calcular el valor de la llave
ki. Las ecuaciones que describen este diagrama es la siguiente.

ki =


c⊕ (zj)i ⊕ ki+2 ⊕ (I ⊕ S−1)S−3ki+1, si m = 2
c⊕ (zj)i ⊕ ki+3 ⊕ (I ⊕ S−1)S−3ki+2, si m = 3
c⊕ (zj)i ⊕ ki+4 ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), si m = 4

(5.1)

Para representar con mayor claridad el diagrama se agregan los bloques con etique-
ta ki para señalar la llave que será la próxima a calcularse.En las ecuaciones anteriores
ki+4, ki+3 y ki+2 representan las últimas llaves de ronda dependiendo del número de
bloques es que se separan las llaves para el cifrado. La llave que se necesita calcular
es ki ya que es una llave anterior a ki+1 y no la siguiente a ki+m. El proceso es simular
el cifrado, pero cambiando el sentido del desplazamiento de los registros.

5.7. Cifrador SIMON hardware
El cifrador SIMON implementado en hardware se basa en el diagrama de estados
mostrado en la figura 5.4. El primer estado es el RESET, este estado se presenta cada
vez que el sistema es reiniciado. El siguiente estado es IDLE que es el estado inactivo
del sistema y cada que se acaba un estado se regresa a él. Si se está en el estado
IDLE y la configuración del cifrador es “11” se inicia el cifrado de la información
en el estado CIPHER_START. CIPHER_RUN es el estado siguiente y se encarga
de verificar que se cumpla el número de rondas necesarias para la configuración,
una vez que se cumplen el número de rondas se procede a ir al siguiente estado.
CIPHER_FINISH_1 y CIPHER_FINISH_2 son los estados siguientes y se utilizan
para realizar los últimos movimientos del cifrado y así obtener el valor cifrado de la
información. CIPHER_LATCH es el último estado y se encarga de guardar el cifrado
de la información en los registros de salida del cifrador.

En la figura 5.5 se muestra el diagrama implementado en FPGA de la red de
Feistel en donde se utilizan compuertas AND y XOR así como desplazamientos a la
derecha y los tamaños de datos manejados son de 16 bits y el bloque ki se calcula con
el generador de llaves de ronda.

La generación de llaves de ronda se implementa en FPGA y la figura 5.6 se observa
el diagrama de su implementación. Se implementa con operaciones XOR, desplaza-
mientos a la derecha de tres y un bit y con constantes para cada ronda.

56 Implementación

𝑘𝑖+2 𝑘𝑖+1

𝑆−3

𝑆−1

𝑐 ⊕ (𝑧𝑗)𝑖

𝑘𝑖

(a) m = 2 palabras de llave

𝑘𝑖+3 𝑘𝑖+1

𝑆−3

𝑆−1

𝑘𝑖

𝑘𝑖+2

𝑐 ⊕ (𝑧𝑗)𝑖

(b) m = 3 palabras de llave

𝑘𝑖+4 𝑘𝑖+3 𝑘𝑖+2 𝑘𝑖+1

𝑆−3

𝑆−1

𝑘𝑖

𝑐 ⊕ (𝑧𝑗)𝑖

(c) m = 4 palabras de llave

Figura 5.3: Diagrama para la generación de la llave de ronda en la función de ronda
para el descifrado SIMON

El cifrador funciona un determinado número de rondas. El cifrador habilita la
generación de llaves para cada ronda y este a su vez genera la llave de ronda para que
el cifrador utilice esta llave para realizar las operaciones pertinentes. El número de

Capítulo 5 57

1 2 3 4

5

67

1. RESET

2. IDLE

3. CIPHER START

4. CIPHER RUN

5. CIPHER FINISH 1

6. CIPHER FINISH 2

7. CIPHER :LATCH

’11’

𝑛 < 𝑛𝑢𝑚 𝑟𝑜𝑛𝑑𝑎𝑠

𝑛 = 𝑛𝑢𝑚 𝑟𝑜𝑛𝑑𝑎𝑠

’00’

’01’

’10’

Figura 5.4: Diagrama de estados del cifrador SIMON en hardware

<< 8

<< 2

<< 1

𝑥𝑖+1

𝑥𝑖 𝑥𝑖+2

𝑥𝑖+1

𝑘𝑖

16 bits

16 bits

16 bits

16 bits

Figura 5.5: Red de Feistel implementado en FPGA.

rondas totales de operación debe ser igual al número de rondas - 2, que se muestra en
la tabla 2.4 que depende de la configuración del cifrador, y así terminar con el proceso
de cifrado. En la figura 5.7 se muestra el diagrama de lo descrito anteriormente.

58 Implementación

>> 3

>> 1

𝑘𝑖

𝑘𝑖+1

𝑘𝑖+2

𝑘𝑖+3

𝑐 ⊕ 𝑧𝑗 𝑖

16 bits

16 bits

16 bits

16 bits

16 bits

Figura 5.6: Generación de llaves de ronda en FPGA.

Red de

Feistel

Generador

de llaves de

ronda

Contador

de ronda

= 0
+

COMP

𝐴
𝐴 = 𝐵

𝐵
Número de

rondas - 2

Si Estado =

KEY_SCHEDULE_RUN

Si Estado = CIPHER_RUN

1 bit
16 bits

Figura 5.7: Funcionamiento del cifrador SIMON en FPGA.

5.8. Cifrador SPECK software

El cifrador SPECK se programó, al igual que el cifrador SIMON, como una biblioteca.
La función utiliza tres parámetros, el primero es la configuración con la que trabajará

Capítulo 5 59

el cifrador, el segundo un apuntador a la información que se desea cifrar y por último
un apuntador a la llave que se necesita para el cifrado. A continuación, la información
se separa en dos registros de entrada a la red de Feistel y la llave se agrega a los
registros para su separación dependiendo de la configuración utilizada. Posteriormente
se aplica la red de Feistel que se muestra en la figura 2.11 y aplicar el diagrama de
la figura 2.12 para calcular la llave de ronda de cada ronda. Finalmente se regresa
el valor cifrado para ese bloque de información y se procede a realizar el cifrado del
siguiente bloque de información o continuar con lo siguiente si no hay información.

5.9. Descifrador SPECK software

Para el descifrado SPECK se sigue el flujo contrario de la red de Feistel para el
cifrado. En la figura 5.8 se puede observar el diagrama que describe la red de Feistel
para el descifrado. Las rotaciones de bits se realizan de manera inversa, es decir si en
el cifrado se realizó una rotación a la derecha, para el descifrado se debe realizar una
rotación a la izquierda en la misma cantidad de bits. En lugar de la adición módulo
2n, se realiza una sustracción módulo 2n y las operaciones XOR se conservan solo
cambiando los datos con los que se realiza la operación.

𝑥2𝑖+3 𝑥2𝑖+2

𝑆−𝛽

𝑥2𝑖+1 𝑥2𝑖

𝑘𝑖

−

𝑆𝛼

Figura 5.8: Red de Feistel para el descifrado de SPECK.

En el caso de la generación de llave de ronda, al utilizar la red de Feistel, diagrama
mostrado en la figura 2.12 se denota como Ri, se utiliza también el diagrama de la
figura 2.11 para realizar la generación de llaves de ronda de forma inversa. Una vez
que se han calculado las llaves de ronda se procede a seguir con el algoritmo para
descifrar y así obtener la información original.

60 Implementación

5.10. Sistema embebido
En la implementación por hardware se utiliza un sistema embebido. Este sistema

utiliza un procesador que tiene conexión con una FPGA. Para el sistema propuesto
el algoritmo de cifrado SIMON y la función estego se implementan en la parte de la
FPGA, mientras la parte del cliente-publicador se implementa en el procesador. Los
datos son transferidos a través de bloques de 32 bits para el ingreso a la FPGA y su
salida. Este diagrama se muestra en la figura 5.9.

Función estego

Cifrador SIMON

Figura 5.9: Diagrama del sistema embebido para el sistema.

5.11. Broker público
El broker se implementa en una computadora de escritorio para poder registrar a

los paquetes recibidos y realizar un análisis. En la actualidad los servicios en la nube
son de gran importancia dado a la gran cantidad de información que se comparte, por
tal motivo es necesario lograr una conexión con un broker público. Un broker público
permite realizar una conexión de varios usuarios a través de un servidor en la nube,
de esta manera cualquiera puede tener acceso a este servidor.

Existe una gran variedad de brokers públicos, HiveMQ y Mosquitto por mencionar
algunos. Para esta implementación se utiliza el servidor proporcionado por Mosquitto
que se utiliza como un entorno de prueba. El servidor utilizado es “test.mosquitto.org”
en el puerto 1883 que no necesita seguridad TLS. Al ser un broker público no hay
necesidad de utilizar autenticación ya que cualquier usuario puede conectarse. Los
clientes se modifican para que se puedan conectar al servidor en la nube en el puerto
seleccionado.

En la figura 5.10 se observa los elementos que conforman el sistema para un ser-
vidor público. La información de entrada para el cliente-publicador son el mensaje
en texto que se quiere compartir y la llave que se usa para cifrar dicha información.
La información se cifra y se oculta mediante la función estego, esto da como resul-
tado un paquete PUBLISH que contiene de manera oculta información que se quiere
compartir. El paquete se envía a un broker público, indicando la dirección host y el

Capítulo 5 61

puerto utilizado. El broker se encarga de direccionar el mensaje publicado al cliente
suscrito al tema en que se publica el mensaje, el tema debe ser único ya que cualquier
dispositivo conectado a dicho tema recibirá el mensaje. El mensaje es recibido por el
cliente-suscriptor, se extrae la información con la ayuda de la función estego inversa,
se descifra la información con la llave de cifrado previamente compartida y se obtiene
el mensaje original.

CifradorTexto

Llave

Función estego

Paquete

PUBLISH

Paquete

PUBLISH

Función

estego inversa
Descifrador Texto

Llave

Cliente-publicador Cliente-suscriptor

Broker público

(internet)

Figura 5.10: Diagrama del sistema usando un broker público.

62 Implementación

Capítulo 6

Resultados

La implementación del sistema se realiza de dos maneras. El primer método se realiza
en software con la ayuda de una Raspberry Pi 4 con una memoria microSD de 32
GB para el almacenamiento del sistema operativo y archivos, y una computadora
de escritorio con sistema operativo Linux funcionando como broker. El dispositivo
Raspberry funciona como cliente-publicador y se encarga de realizar la recepción de
la información, el cifrado de la información, realizar la función estego para insertar la
información y el envío del paquete PUBLISH. La computadora se encarga de alojar
el broker que redirecciona la información, y el cliente que recibe dicha información,
la descifra y muestra la información original.

Lo primero a analizar son las tres propiedades necesarias para la esteganografía,
robustez, indetectabilidad y capacidad. La robustez es la propiedad que dificulta eli-
minar la información del objeto portador. Hay que revisar cuanta robustez es brindada
por el protocolo MQTT, esta puede verse afectada si algún otro cliente-publicador
publica en el mismo tema, y se pueden perder el orden de los paquetes y afectar
la información que se recibe. Para evitar este tipo de problemas se puede utilizar
una funcionalidad que permita del lado del broker para especificar que cliente puede
publicar en un tema en específico.

El protocolo MQTT permite la reconexión mediante el identificador de cliente
(ClientID), por tal motivo si ocurre una desconexión el dispositivo podrá conectarse
de nuevo y seguir enviando la información sin problemas. Con estos dos mecanismos
se asegura tener una robustez en la intermitencia de los datos o alguna perdida de
desconexión.

Para la capacidad se evalúa para cada función estego. En la función bit menos
significativo en cada paquete se puede ocultar un bit de información, es decir si
la información tiene un tamaño de n bits, se necesitarán n paquetes para que la
información sea enviada. La función bit menos significativo nibble oculta un bit en
cada nibble que conforma el campo de 32 bits, se pueden formar ocho nibbles en el
campo por tal motivo se pueden ocultar ocho bits (un byte) de información en cada
paquete. En la ecuación 6.1 se representa como calcular el número de paquetes que
se deben enviar para compartir la información.

63

64 Resultados

Num. de paquetes =
Tamaño de la información(n)

8
(6.1)

La indetectabilidad es la propiedad que no permite detectar diferencia entre el
objeto portador y el objeto portador con información insertada, es decir es difícil
detectar la información que se ocultó. El mensaje puede ser detectado con facilidad
si el mensaje se inserta de forma directa en el campo. Para realizar la prueba de
indetectabilidad de usa el software Wireshark. Con la ayuda del software se puede
observar la información que contiene el paquete PUBLISH que se ha enviado, la
cadena que se quiere ocultar es “Hola a todos, esta es una prueba”, el nombre del
tema “prueba” y “Hola” como carga útil.

En la figura 6.1 se muestra los paquetes capturados por Wireshark, se filtran los
paquetes para solo encontrar paquetes relacionados al paquete MQTT. En el cuadro
rojo se puede observar los paquetes que usa el cliente-publicador, ya que estos son
los mensajes que se quieren analizar, y se visualiza un paquete CONNECT como su
paquete de respuesta CONNACK para posteriormente tener los paquetes PUBLISH
que contienen la información. En el cuadro azul se muestra cómo se conforma la
información que se recopilo, nos da la información del protocolo, el sistema operativo
del sistema, el puerto de salida y, de entrada, la longitud, entre otra información. Y
en el cuadro verde se observa la información del paquete que se recopilo, se observa
dicha información en formato hexadecimal y ASCII.

Figura 6.1: Captura de paquetes del esquema ocultación de información

65

La figura 6.2a muestra el contenido que conforma el paquete PUBLISH. Se analiza
el campo intervalo de caducidad de mensaje, en donde se puede observar que tiene
un valor numérico de 86302684 y un valor hexadecimal 0524DFDC y caracteres ·$··.
Para la figura 6.2b se muestra el paquete consecutivo al anterior cuyo valor numérico
es 214893118, 0CCF023E en hexadecimal y ···> como caracteres. Y en la figura 6.2c
se muestra otro paquete que sigue con los anteriores, el valor numérico es 838353855,
el hexadecimal 31F843BF y los caracteres 1·C·.

Observando los valores anteriores, se puede apreciar que entre ellos no hay relación
alguna en ninguno de los valores, además no se guarda relación alguna con la cadena
original. Por tal motivo si varios paquetes son interceptados y analizados es poco
probable que se encuentre una relación entre ellos y la información oculta. Con lo
anterior se asegura que es difícil detectar la información que se oculta lo que brinda
una alta indetectabilidad a la función estego.

A continuación, se realiza un análisis en el tiempo de cifrado y estego junto con
el tiempo de ejecución para el esquema de ocultación de la información. El tiempo
del cifrado se une con el tiempo de la realización de la función estego dado que es
el tiempo del sistema. El tiempo del sistema se debe conocer y observar cómo se
desempeña en ambas plataformas. Para ello se realizan 100 muestras y se grafican los
tiempos del sistema y de ejecución. Se utiliza un mensaje con tamaño de 128 bits.

En la figura 6.3a se observa el tiempo que tarda el sistema en realizar el cifrado
y la función estego en la tarjeta con el procesador Cortex-A9 y la FPGA y en la
figura 6.3b el tiempo realizado por la Raspberry pi 4. Como se puede observar en la
ejecución en FPGA el tiempo no es estable y en ocasiones realiza tiempos abruptos,
van desde 20 ns hasta 0.07 s. En la Raspberry se observa un tiempo promedio de 0.8
ms. Los tiempos de la Raspberry no son menores que 0.5 ms. En términos de tiempo
el sistema desarrollado en la FPGA puede tener tiempos menores y lo hace mejor
computacionalmente frente al implementado en Raspberry pi 4.

66 Resultados

(a) Primer paquete

(b) Segundo paquete

(c) Tercer paquete

Figura 6.2: Información de paquetes PUBLISH

67

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

T
ie

m
p

o
 (

s)

Número de muestra

(a) FPGA

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

(b) Raspberry pi 4

Figura 6.3: Tiempo en realizarse el cifrado y función estego del esquema ocultación
de información

En el esquema de ocultación de la llave de cifrado se analizan los paquetes que
se capturan en Wireshark. En la figura 6.4 se muestra el contenido de dos paquetes
PUBLISH. El contenido marcado en azul muestra el penúltimo paquete que se envió

68 Resultados

en donde se puede observar como el campo intervalo del mensaje contiene el número
42C59843 en hexadecimal, que contiene los ocho últimos bits de la información que se
ocultó es decir la llave de cifrado, y la carga útil se tiene el mensaje “hola”. El siguiente
paquete marcado en color rojo marca el fin del envío de información mediante el valor
A9, en hexadecimal, en el campo, en este paquete se envía la información cifrada en
la carga útil. Los paquetes no tienen relación entre sí y en el paquete final se observa
la información cifrada, pero la llave de cifrado no se observa dado que se ocultó por
la función estego.

Figura 6.4: Captura de paquetes del esquema ocultación de llave

En la figura 6.5a se observa una gráfica con el tiempo en segundos que tarda el
cifrado y la función estego usando la FPGA, y la figura 6.5b se muestra la gráfica
de tiempo igual en segundos usando una Raspberry Pi 4. El tiempo que emplea la
FPGA es mayor a la Raspberry por tal motivo, en este esquema es preferible usar el
software en lugar de hardware para ocultar la llave de cifrado. La forma de ocultar
la llave es correcta, la información cifrada se puede conocer dado que la carga útil es
visible, pero la llave se puede compartir y es difícil poder encontrar la relación que
hay entre los paquetes involucrados.

69

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

(a) FPGA

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

(b) Raspberry pi 4

Figura 6.5: Tiempo en realizarse el cifrado y función estego del esquema ocultación
de llave de cifrado

El sistema utiliza, además del cifrador SIMON, el cifrador SPECK. Este cifrador
es diseñado para su implementación en software. Este sistema solo fue implementado
en una Raspberry Pi 4. En las figuras 6.6a y 6.6b se muestra el tiempo de ejecución

70 Resultados

del cifrado y de la función estego, y el tiempo de ejecución del programa completo.
El tiempo del cifrado y de la función estego se encuentra en un rango entre 0.0006 y
0.001 s, el tiempo es muy intermitente y no presenta un tiempo constante, esto puede
deberse a la forma es que se cifra la información y el manejo de bits en software
para la función estego. El tiempo de ejecución del sistema presenta un tiempo más
constante entre 0.008 y 0.009, presenta tiempos menores en algunas pruebas, pero en
general el tiempo es consistente.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

(a) Cifrado y función estego

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

(b) Sistema completo

Figura 6.6: Tiempo de ejecución del sistema con el cifrador Speck

71

La implementación usando un broker público se logró con éxito. Ambos clientes,
publicador como suscriptor, se conectaron y el intercambio de información se logró
satisfactoriamente. El cliente-publicador realiza las operaciones de cifrado y la ocul-
tación de la información, los paquetes generados son enviados al broker público y este
a su vez envía los paquetes al cliente-suscriptor. La información oculta se recupera
de forma correcta cuando se reciben los paquetes del lado del suscriptor, se extrae la
información oculta y se descifra.

72 Resultados

Capítulo 7

Conclusiones y trabajo a futuro

Este trabajo presenta un sistema que oculta y brinda confidencialidad a la in-
formación usando el protocolo de comunicación MQTT en dispositivos de IdC. El
protocolo MQTT v5.0 mostró ser un buen objeto portador. Este protocolo es poco
complejo y liviano lo que lo hace ideal para trabajar con dispositivos con recursos
limitados. La versión 5.0 contiene más campos que sirven para ocultar información
a diferencia de la versión 3.1.1, lo que lo vuelve un excelente candidato para usar
como objeto portador. El paquete PUBLISH es el más idóneo para utilizar debido
a que es usado para intercambiar información entre los clientes y el broker y no es
extraño que una gran cantidad de estos paquetes sean intercambiados a comparación
de otros paquetes como CONNECT o SUBSCRIBE que solo se envía un par de ve-
ces. Los paquetes se conforman de un encabezado fijo, un encabezado variable y la
carga útil, el encabezado fijo no puede ser modificado o el paquete no funcionará de
manera correcta, la carga útil contiene la información que se quiere compartir y no
es preferible modificarla porque es fácil de visualizar, el encabezado variable contiene
varios campos que se pueden utilizar para ocultar información unos más viables que
otros que dependen de la función estego que se desarrolle para la ocultación.

La información se cifra mediante dos algoritmos criptográficos ligeros, SIMON y
SPECK. El primero se enfoca en hardware y el segundo en software. SIMON se imple-
mentó en hardware y software para realizar un análisis sobre el tiempo de ejecución.
En las figuras 6.3a y 6.3b se muestran los tiempos del cifrado y la función estego
de la ejecución en FPGA y Raspberry respectivamente, en la FPGA los tiempos son
algo variables pero logra tener tiempos menores en comparación con el tiempo en
la Raspberry. El cifrado que se realiza no afecta la función estego por tal motivo si
se logra proveer confidencialidad con un algoritmo que se adecua a dispositivos de
recursos limitados.

Se desarrollaron cinco funciones esteganográficas (las primeras tres funciones se
detallan en el Apéndice C) que están enfocadas para cuatro campos, tema de res-
puesta, tipo de contenido, nombre del tema e intervalo de caducidad del mensaje. Los
tres primeros campos utilizan el tipo de dato UTF-8 y el último utiliza un entero sin
signo de 32 bits. La primera función estego llama uno a uno se utilizan dos campos,
tema de respuesta y tipo de contenido. Se inserta la información de tal manera que los

73

74 Conclusiones y trabajo a futuro

caracteres en las posiciones pares se insertan en las posiciones pares del campo tema
de respuesta y los caracteres en las posiciones impares se insertan en las posiciones
impares del campo tipo de contenido y las posiciones vacías se llenan con caracteres
obtenidos de forma aleatoria. La segunda función estego llamada intercalado parte la
cadena de caracteres original en dos y la primera mitad los inserta en las posiciones
pares del campo tema de respuesta y la segunda mitad en las posiciones impares.
Ambas funciones trabajan con caracteres y al no transformar la información se lo-
gra apreciar una relación entre el mensaje original y la cadena obtenida al aplicar la
función estego, otro problema que se encuentra es que solo se pueden usar caracteres
alfanuméricos y si se aplica un cifrado no es seguro que la información solo contenga
estos caracteres lo cual hace inviable estas dos funciones.

La tercera función estego llamada fin de cadena, utiliza el principio de delimitar
una cadena. Cuando se quiere expresar el fin de una cadena se utiliza el caracter
‘\0’ y así el sistema detecta el tamaño de una cadena. Para esta función se agrega
este carácter y seguido se añade la información que se quiere ocultar, así usando
la forma en que el bróker detecta el nombre del tema se averigua si es factible el
uso de esta función. Al realizar los experimentos y al usar el software Wireshark se
observó una alerta. Dicha alerta mostraba que se detectaba un error en la creación
del paquete, esto no es deseado ya que indica a alguien que analiza el paquete que
hay una modificación. Esta alerta se dejó pasar y se observó el comportamiento del
broker, la información no llegaba al cliente suscrito al tema por lo que esta función es
inviable.

Las últimas dos funciones se describen en este trabajo de tesis y se pudo observar
que logran ocultar información. Al analizarse con Wireshark no se encontró relación
alguna entre los paquetes que se envían y con la información original que se ocultó.
Logrando así dos funciones que permiten ocultar información que cumplen con la
robustez, capacidad e indetectabilidad propiedades necesarias en una función estego.

La implementación en FPGA requería un sistema operativo para el procesador
Cortex-A9, con la que la placa trabaja. La primera opción FreeRTOS posee una
biblioteca para el uso del protocolo MQTT, sin embargo, solo funciona para la versión
3.1.1 y al trabajar con la versión 5.0 no es compatible con el sistema. Se trato de añadir
la versión nueva a FreeRTOS para así utilizar el sistema operativo, no obstante, no
se logró el objetivo y por falta de tiempo se tuvo que dejar el desarrollo de esta
implementación.

El siguiente sistema operativo es Petalinux, un sistema basado en Yocto que nos
permite recrear un entorno de Linux enfocado en sistemas embebidos de Xilinx. Los
paquetes necesarios están disponibles desde la creación del proyecto petalinux, la ver-
sión disponible 1.6.12 cuenta con soporte para la versión 5.0 que permite el desarrollo
del sistema planteado en el presente documento. Por lo que es posible el desarrollo
del sistema usando una FPGA para el proceso de cifrado y de la función estego.

Se desarrollo el sistema en una Raspberry Pi 4 para así comparar el comporta-
miento del sistema en ambos dispositivos. En el primer esquema la FPGA en el cifrado
y la función estego en ocasiones el tiempo es mucho menor comparado con el tiempo

75

en la Raspberry y en otras el tiempo es diez veces mayor, esto puede ser producido
por el tiempo que se tarda en enviar la información o por la misma naturaleza de la
FPGA. Para el segundo esquema se puede apreciar que el desarrollo en software es
más eficiente en términos de tiempo.

Dado que se logró implementar ambos esquemas en los dispositivos seleccionados,
se puede concluir que este sistema es capaz de ser utilizado en dispositivos con recursos
limitados, ya que no se necesita un sistema tan complejo para realizar las funciones
esteganográficas desarrolladas y los cifradores SIMON y SPECK están diseñados para
trabajar en un entorno con recursos limitados.

Un broker público permite una conexión a cualquier usuario. No es necesario
usar credenciales de autenticación. Se usa el broker de Mosquitto con dirección host
“test.mosquitto.org” y en el puerto 1883. En este puerto no hay seguridad, y no es
necesaria debido a que ya se otorga seguridad con el sistema implementado. Aunque
los paquetes sean interceptados si no se logra saber que dentro del campo intervalo
de caducidad se ocultó información, y además se debe conocer la función estego, el
algoritmo de cifrado y la llave de cifrado para conocer la información que se compartió.

En las pruebas usando un broker público se logró enviar y recibir de manera
correcta. Se puede concluir que no se necesita un broker en específico, ya que las
modificaciones se realizan en los clientes. El bróker queda sin modificar y solo se
necesitan los clientes para lograr añadir seguridad a la información. No se modifica el
bróker y esto permite que cualquier bróker pueda ser utilizado para este sistema.

Hay tres trabajos relacionados con el trabajo realizado. El primer trabajo reali-
zado por Kosiak, et al. [73] plantea utilizar un sistema de detección de intrusos para
detectar ciertos tipos de esteganografía mediante el software Zeek. En este trabajo
se analiza el protocolo MQTT v3.1.1 y lograron detectar la mayoría de los casos. En
comparación con el trabajo presentado, se utiliza la versión 5.0 que es la más actual
en el momento de realizar el trabajo, además no presenta una función estego que
inserte la información en el paquete del protocolo.

En el trabajo realizado por Velinov, et al. [46] utiliza el protocolo MQTT v3.1.1
para encontrar canales encubiertos en dicho protocolo. Desarrollaron dos tipos de
canales, siete directos y seis indirectos. Los primeros solo necesitan que el emisor y
el receptor permanezcan activos para la transmisión de información y los segundos
no necesariamente necesitan que ambos dispositivos estén activos, pero necesitan
un intermediario para la comunicación. Los canales directos utilizan un campo del
protocolo para ocultar información, sin embargo, no utilizan una función estego para
insertar la información, en su lugar insertan directamente la información. Las pruebas
que realizaron solo fueron enfocadas en los canales indirectos que se basan en indicar
un ‘1’ binario si un campo en específico es utilizado y un ‘0’ si el campo no es utilizado.

Mileva, et al. [74] sigue el trabajo realizado por Velinov, et al. [46], en este trabajo
se analiza el protocolo MQTT v5.0 para encontrar nuevos canales directos e indi-
rectos, dado que la nueva versión añade campos nuevos. Encontraron nuevos canales
además de los encontrados en el trabajo anterior, sin embargo, su implementación
sigue enfocada en canales indirectos que presentan un valor ‘1’ binario si un campo

76 Conclusiones y trabajo a futuro

está presente y un ‘0’ si no lo está.
Estos trabajos se asemejan a el trabajo realizado, no obstante, hay técnicas que

no se aplican en los trabajos anteriores mencionados. Estos son utilizar una función
estego para la inserción de la información al objeto portador además de agregar un
cifrador y utilizar la versión más actual de este protocolo.

Como trabajo a futuro se propone sustituir el sistema operativo Petalinux, por
uno más liviano como FreeRTOS ya que en este momento no hay biblioteca para el
protocolo MQTT v5.0. Implementar más funciones esteganográficas para tener más
variedad en la forma de ocultar la información. Este trabajo se enfoca en el protocolo
MQTT, pero se puede ampliar más el panorama al utilizar más protocolos tales como
CoAP o XMPP como medios para ocultar la información. Desarrollar a futuro la
implementación del cifrador y la función estego como un circuito integrado de un
único propósito.

Bibliografía

[1] Maria Guadalupe Parra. Sistema computacional para la detección de información
oculta en archivos de audio digital utilizando la transformada rápida de fourier:
Detesteg audio 1.0, Aug 2016.

[2] OASIS Standard. MQTT version 5.0. Retrieved June, 22:2020, 2019.

[3] Syaiful Andy, Budi Rahardjo, and Bagus Hanindhito. Attack scenarios and secu-
rity analysis of mqtt communication protocol in iot system. In 2017 4th Interna-
tional Conference on Electrical Engineering, Computer Science and Informatics
(EECSI), pages 1–6. IEEE, 2017.

[4] Abdullah AlWatyan, Wesam Mater, Omar Almutairi, Mohammed Almutairi,
Aisha Al-Noori, et al. Security approach for LSB steganography based FPGA
implementation. In 2017 7th International Conference on Modeling, Simulation,
and Applied Optimization (ICMSAO), pages 1–5. IEEE, 2017.

[5] National Institute of Standars and Technology. Lightweight cryptography.
https://csrc.nist.gov/Projects/Lightweight-Cryptography, 2017. [Acce-
dido el 22 de Noviembre de 2021].

[6] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. cryptology eprint archive, 2013.

[7] Manju Khari, Aditya Kumar Garg, Amir H Gandomi, Rashmi Gupta, Rizwan
Patan, and Balamurugan Balusamy. Securing data in internet of things (IoT)
using cryptography and steganography techniques. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 50(1):73–80, 2019.

[8] Anshuman Kalla, Pawani Prombage, and Madhusanka Liyanage. Introduction
to iot. IoT Security: Advances in Authentication, pages 1–25, 2020.

[9] Omkar Badve, BB Gupta, and Shashank Gupta. Reviewing the security features
in contemporary security policies and models for multiple platforms. In Hand-
book of Research on Modern Cryptographic Solutions for Computer and Cyber
Security, pages 479–504. IGI Global, 2016.

77

https://csrc.nist.gov/Projects/Lightweight-Cryptography

78 BIBLIOGRAFÍA

[10] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
Ddos in the iot: Mirai and other botnets. Computer, 50(7):80–84, 2017.

[11] Brij B Gupta. Computer and cyber security: principles, algorithm, applications,
and perspectives. CRC Press, 2018.

[12] Omnia Abu Waraga, Meriem Bettayeb, Qassim Nasir, and Manar Abu Talib.
Design and implementation of automated iot security testbed. Computers &
Security, 88:101648, 2020.

[13] James A Jerkins. Motivating a market or regulatory solution to iot insecurity
with the mirai botnet code. In 2017 IEEE 7th annual computing and communi-
cation workshop and conference (CCWC), pages 1–5. IEEE, 2017.

[14] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In 26th USENIX security
symposium (USENIX Security 17), pages 1093–1110, 2017.

[15] Zhen Ling, Kaizheng Liu, Yiling Xu, Yier Jin, and Xinwen Fu. An end-to-
end view of iot security and privacy. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1–7. IEEE, 2017.

[16] Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and security
in internet of things and wearable devices. IEEE Transactions on Multi-Scale
Computing Systems, 1(2):99–109, 2015.

[17] Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin. Smart nest
thermostat: A smart spy in your home. Black Hat USA, (2015), 2014.

[18] Bryan Parno, Jonathan M McCune, and Adrian Perrig. Bootstrapping trust in
modern computers. Springer Science & Business Media, 2011.

[19] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A
{Large-Scale} analysis of the security of embedded firmwares. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 95–110, 2014.

[20] Mathieu Stephan. Hacking the d-link dsp-w215 smart plug, May 2014.

[21] Critical security flaw: Glibc stack-based buffer overflow in getaddrinfo() (cve-
2015-7547), Feb 2016.

[22] Ms Smith. Security holes in the 3 most popular smart home hubs and honeywell
tuxedo touch. Network World, 2015.

[23] Ishtiaq Rouf, Hossen Mustafa, Miao Xu, Wenyuan Xu, Rob Miller, and Marco
Gruteser. Neighborhood watch: Security and privacy analysis of automatic meter
reading systems. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 462–473, 2012.

BIBLIOGRAFÍA 79

[24] Chaoshun Zuo, Wubing Wang, Zhiqiang Lin, and Rui Wang. Automatic forgery
of cryptographically consistent messages to identify security vulnerabilities in
mobile services. In NDSS, 2016.

[25] Xuanxia Yao, Xiaoguang Han, Xiaojiang Du, and Xianwei Zhou. A lightweight
multicast authentication mechanism for small scale iot applications. IEEE Sen-
sors Journal, 13(10):3693–3701, 2013.

[26] Xiaojiang Du and Hsiao-Hwa Chen. Security in wireless sensor networks. IEEE
Wireless Communications, 15(4):60–66, 2008.

[27] Jesus Molina. Learn how to control every room at a luxury hotel remotely: The
dangers of insecure home automation deployment. Black Hat USA, 2014, 2014.

[28] Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. Fit and vul-
nerable: Attacks and defenses for a health monitoring device. arXiv preprint
arXiv:1304.5672, 2013.

[29] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. Security analysis of internet-
of-things: A case study of august smart lock. In 2017 IEEE conference on com-
puter communications workshops (INFOCOM WKSHPS), pages 499–504. IEEE,
2017.

[30] Kelvin Ly and Yier Jin. Security studies on wearable fitness trackers. In 38th An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, 2016.

[31] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse
Walker. Challenges in access right assignment for secure home networks. In 5th
USENIX Workshop on Hot Topics in Security (HotSec 10), 2010.

[32] Sergei Chistiakov et al. Secure storage and transfer of data in a smart lock
system. 2017.

[33] Yossef Oren and Angelos D Keromytis. From the aether to the
{Ethernet—Attacking} the internet using broadcast digital television. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 353–368, 2014.

[34] Tamara Denning and Tadayoshi Kohno. Empowering consumer electronic secu-
rity and privacy choices: Navigating the modern home. In Symposium on Usable
Privacy and Security (SOUPS). Citeseer, 2013.

[35] Tamara Denning, Tadayoshi Kohno, and Henry M Levy. Computer security and
the modern home. Communications of the ACM, 56(1):94–103, 2013.

[36] Blase Ur, Jaeyeon Jung, and Stuart Schechter. Intruders versus intrusiveness:
teens’ and parents’ perspectives on home-entryway surveillance. In Proceedings

80 BIBLIOGRAFÍA

of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pages 129–139, 2014.

[37] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis of emer-
ging smart home applications. In 2016 IEEE symposium on security and privacy
(SP), pages 636–654. IEEE, 2016.

[38] Nathaniel Gyory and M Chuah. Iotone: Integrated platform for heterogeneous
iot devices. In 2017 International Conference on Computing, Networking and
Communications (ICNC), pages 783–787. IEEE, 2017.

[39] Eduardo Fernandez, Juan Pelaez, and Maria Larrondo-Petrie. Attack patterns:
A new forensic and design tool. In IFIP International Conference on Digital
Forensics, pages 345–357. Springer, 2007.

[40] Thamer A Alghamdi, Aboubaker Lasebae, and Mahdi Aiash. Security analysis
of the constrained application protocol in the internet of things. In Second in-
ternational conference on future generation communication technologies (FGCT
2013), pages 163–168. IEEE, 2013.

[41] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. Security analysis of
wearable fitness devices (fitbit). Massachusetts Institute of Technology, 1, 2014.

[42] Cheena Sharma and Naveen Kumar Gondhi. Communication protocol stack for
constrained iot systems. In 2018 3rd International Conference On Internet of
Things: Smart Innovation and Usages (IoT-SIU), pages 1–6. IEEE, 2018.

[43] Eclipse Foundation. IoT Developer Survey Results, Apr 2018.

[44] Eclipse Foundation. 2020 IoT Developer Survey Key Findings, Oct 2020.

[45] OASIS Standard. Mqtt version 3.1. 1. URL http://docs. oasis-open. org/mqt-
t/mqtt/v3, 1:29, 2014.

[46] Aleksandar Velinov, Aleksandra Mileva, Steffen Wendzel, and Wojciech Mazur-
czyk. Covert channels in the MQTT-Based internet of things. IEEE Access,
7:161899–161915, 2019.

[47] Biswajeeban Mishra and Attila Kertesz. The use of mqtt in m2m and iot systems:
A survey. IEEE Access, 8:201071–201086, 2020.

[48] C Vanmathi and S Prabu. A survey of state of the art techniques of stega-
nography. International Journal of Engineering and Technology, 5(1):376–379,
2013.

[49] Soumyendu Das, Subhendu Das, Bijoy Bandyopadhyay, and Sugata Sanyal.
Steganography and steganalysis: different approaches. arXiv preprint ar-
Xiv:1111.3758, 2011.

BIBLIOGRAFÍA 81

[50] Sanghamitra Debnath, Manashee Kalita, and Swanirbhar Majumder. A review
on hardware implementation of steganography. In 2017 Devices for Integrated
Circuit (DevIC), pages 149–152. IEEE, 2017.

[51] Ken Kabeen and Peter Gent. Image compression and discrete cosine transform.
College of Redwoods.

[52] Mark Noto. MP3Stego: Hiding text in MP3 files. Sans Institute, page 5, 2001.

[53] Udit Budhia and Deepa Kundur. Digital video steganalysis exploiting collusion
sensitivity. In Sensors, and Command, Control, Communications, and Intelligen-
ce (C3I) Technologies for Homeland Security and Homeland Defense III, volume
5403, pages 210–221. International Society for Optics and Photonics, 2004.

[54] Sandip Bobade and Rajeshawari Goudar. Secure data communication using
protocol steganography in IPv6. In 2015 International Conference on Computing
Communication Control and Automation, pages 275–279, 2015.

[55] Sattar B Sadkhan and Akbal O Salman. A survey on lightweight-cryptography
status and future challenges. In 2018 International Conference on Advance of
Sustainable Engineering and its Application (ICASEA), pages 105–108. IEEE,
2018.

[56] Hamidreza Damghani, Heliasadat Hosseinian, and Leila Damghani. Crypto-
graphy review in IoT. In 2019 4th Conference on Technology In Electrical and
Computer Engineering (ETECH2019), 2019.

[57] Deena Nath Gupta and Rajendra Kumar. Lightweight cryptography: an IoT
perspective. Trivium, 80(1):2580, 2019.

[58] Isha Bhardwaj, Ajay Kumar, and Manu Bansal. A review on lightweight cry-
ptography algorithms for data security and authentication in IoTs. In 2017 4th
International Conference on Signal Processing, Computing and Control (ISPCC),
pages 504–509. IEEE, 2017.

[59] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. Lsb: A
lightweight scalable blockchain for iot security and anonymity. Journal of Parallel
and Distributed Computing, 134:180–197, 2019.

[60] Iqbal H Sarker, Asif Irshad Khan, Yoosef B Abushark, and Fawaz Alsolami.
Internet of things (IoT) security intelligence: a comprehensive overview, machine
learning solutions and research directions. Mobile Networks and Applications,
pages 1–17, 2022.

[61] Thirumalesu Kudithi and R Sakthivel. High-performance ECC processor archi-
tecture design for IoT security applications. The Journal of Supercomputing,
75(1):447–474, 2019.

82 BIBLIOGRAFÍA

[62] Ammar Mohammad, Hasan Al-Refai, and Ali Ahmad Alawneh. User authenti-
cation and authorization framework in iot protocols. Computers, 11(10), 2022.

[63] Vikas S Kait and Bina Chauhan. BPCS steganography for data security using
FPGA implementation. In 2015 International Conference on Communications
and Signal Processing (ICCSP), pages 1887–1891. IEEE, 2015.

[64] Alejandro Martinez, Alberto Ramos, Isaac Compean, and Raquel Avila. Message
concealment system of voice signals implemented on FPGA. IEEE Latin America
Transactions, 14(8):3554–3559, 2016.

[65] Krzysztof Szczypiorski. Steganography in TCP/IP networks. In State of the Art
and a Proposal of a New System–HICCUPS, Institute of Telecommunications’
seminar, Warsaw University of Technology, Poland. Citeseer, 2003.

[66] Deepa Kundur and Kamran Ahsan. Practical internet steganography: data hi-
ding in IP. Proc. Texas wksp. security of information systems, 2003.

[67] Princess Marie B Melo, Ariel M Sison, and Ruji P Medina. Enhanced TCP
sequence number steganography using dynamic identifier. In 2019 IEEE Eurasia
Conference on IOT, Communication and Engineering (ECICE), pages 482–485.
IEEE, 2019.

[68] Pengfei Xue, Jingsong Hu, Ronggui Hu, and Yourui Wang. The solution of key
transmission in multi-level network steganography. In 2017 International Con-
ference on Computer Technology, Electronics and Communication (ICCTEC),
pages 1391–1394, 2017.

[69] Artur M. Brodzki and Jędrzej Bieniasz. Yet another network steganography
technique basedon TCP retransmissions. In 2019 5th International Conference
on Frontiers of Signal Processing (ICFSP), pages 35–39, 2019.

[70] Geethanjali G, C Ashwin, Bharath V P, Avinash A, and Anurag Hiremath. En-
hanced data encryption in IoT using ECC cryptography and LSB steganography.
In 2021 International Conference on Design Innovations for 3Cs Compute Com-
municate Control (ICDI3C), pages 173–177, 2021.

[71] DA Trujillo-Toledo, OR López-Bonilla, EE García-Guerrero, E Tlelo-Cuautle,
D López-Mancilla, O Guillén-Fernández, and E Inzunza-González. Real-time
RGB image encryption for IoT applications using enhanced sequences from chao-
tic maps. Chaos, Solitons & Fractals, 153:111506, 2021.

[72] Akram A. Almohammedi and Vladimir Shepelev. Saturation throughput analy-
sis of steganography in the IEEE 802.11p protocol in the presence of non-ideal
transmission channel. IEEE Access, 9:14459–14469, 2021.

BIBLIOGRAFÍA 83

[73] Tomasz Koziak, Katarzyna Wasielewska, and Artur Janicki. How to make an
intrusion detection system aware of steganographic transmission. In European
interdisciplinary cybersecurity conference, pages 77–82, 2021.

[74] Aleksandra Mileva, Aleksandar Velinov, Laura Hartmann, Steffen Wendzel, and
Wojciech Mazurczyk. Comprehensive analysis of MQTT 5.0 susceptibility to
network covert channels. computers & security, 104:102207, 2021.

[75] Roger A. Light. Mosquitto: server and client implementation of the mqtt proto-
col. Journal of Open Source Software, 2(13):265, 2017.

84 BIBLIOGRAFÍA

Apéndice A

Instalación Petalinux

Petalinux es el sistema operativo que se instala en la tarjeta PYNQZ-Z2 para el proce-
sador Cortex-A9. La versión que se utiliza para la implementación de este trabajo es la
versión 2021.2 que se puede descargar del siguiente enlace https://www.xilinx.com/
support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/
2021-2.html.

Para la instalación de Petalinux v2021.2 es necesario instalar los siguientes pa-
quetes para el sistema operativo Ubuntu, que es donde se realizó la instalación de
Petalinux, para su correcto funcionamiento. El archivo xlsx que contiene la lista de pa-
quetes que se deben instalar, dependiendo del sistema operativo Linux que se utiliza,
se puede descargar del siguiente enlace https://support.xilinx.com/s/article/
000032521?language=en_US. La línea de comandos para instalar los paquetes nece-
sarios es la siguiente.

$ sudo apt-get install iproute2 gawk python3 python build-essential gcc git make
net-tools libncurses5-dev tftpd zlib1g-dev libssl-dev flex bison libselinux1
gnupg wget git-core diffstat chrpath socat xterm autoconf libtool tar unzip
texinfo zlib1g-dev gcc-multilib automake zlib1g:i386 screen pax gzip cpio
python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git
python3-jinja2 libegl1-mesa libsdl1.2-dev pylint3

Petalinux necesita que el sistema host /bin/sh sea “bash”. Si el sistema operativo
es Ubuntu el sistema host determinado es “dash”, por lo tanto es necesario cambiar
el sistema host mediante el siguiente comando.

$ sudo dpkg-reconfigure dash

Cuando el archivo de instalación se ha descargado se procede a otorgarle permisos
de escritura para instalar los archivos necesarios para el uso de Petalinux. El comando
necesario es el siguiente.

$ chmod 755 ./petalinux-v2021.2-final-installer.run

Se puede instalar Petalinux en la carpeta donde se descargo, el manual de instala-

85

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-2.html
https://support.xilinx.com/s/article/000032521?language=en_US
https://support.xilinx.com/s/article/000032521?language=en_US

86 Instalación Petalinux

ción recomienda que no se instale Petalinux como usuario root, esto debido a que los
archivos se pueden sobrescribir archivos y corromper el sistema. En caso que se quiera
especificar la dirección del archivo de registros, la dirección en donde se quiere instalar
Petalinux o más opciones. El comando completo queda de la siguiente manera.

$./petalinux-v2021.2-final-installer.run [--log <LOGFILE>] [-d|--dir
<INSTALL_DIR>] [options]

Para este trabajo se creo una carpeta en la ubicación home y posteriormente se
instalo Petalinux en la ubicación que se acaba de crear. Esto se realiza mediante los
siguientes comandos.

$ mkdir -p /home/<usuario>/petalinux/2021.2
$ $./petalinux-v2021.2-final-installer.run --dir /home/<usuario>/petalinux/2021.2

Para habilitar el entorno del trabajo de Petalinux se utiliza el siguiente comando.

$ source <directorio-instalacion-Petalinux>/settings.sh

Se puede verificar que se habilita correctamente el entorno con el siguiente coman-
do

$ echo $PETALINUX

Se obtiene la dirección en donde se instaló Petalinux y así se puede verificar que
Petalinux se ha instalado de manera correcta y poder empezar a configurar el proyecto
de Petalinux.

Apéndice B

Creación de proyecto Petalinux

Para crear el proyecto de Petalinux lo primero que se debe hacer es habilitar el entorno
de trabajo para poder utilizar los comandos propios de Petalinux, esto se muestra en
el Apéndice A. Una vez que se ha habilitado el entorno de trabajo se procede a
desarrollar el proyecto.

Lo primero es crear un proyecto a partir de una configuración de hardware cons-
truida previamente mediante un archivo creado en el software Vivado que permite
realizar la configuración de hardware para un uso deseado, con los componentes y
programación de hardware deseados. Para la creación del proyecto se utiliza el si-
guiente comando.

$ petalinux-create --type project --template <plataforma> --name
<nombre_del_proyecto>

El comando para crear el proyecto es petalinux-create y se especifica que será un
proyecto mediante el argumento --type, con el argumento --template se especifica
la plataforma en que se desarrolla el proyecto, estas pueden ser versal, para los
dispositivos Versal ACAP, zynqMP para los dispositivos Zynq UltraScale + MPSoC,
zynq para dispositivos Zynq-7000 y microblaze para dispositivos con procesadores
MicroBlaze. Esto crea el proyecto en la dirección en la que se ejecutó este comando.

Cuando se crea el proyecto se crea una carpeta con el nombre que se asignó que
contendrá todos los archivos que se utilizaran para la creación del sistema Petalinux.
Es necesario ingresar a la carpeta con el siguiente comando.

$ cd <nombre-del-proyecto>

Se debe configurar el proyecto con la configuración de hardware exportada en
el archivo XSA que se ha creado previamente, por lo tanto se utiliza el siguiente
comando.

$ petalinux-config --get-hw-description <directorio-archivo-XSA>

Cuando se ejecuta este comando se abre el menú de configuración del sistema, se
pueden cambiar cosas como el nombre de la máquina, configuraciones ethernet, entre

87

88 Creación de proyecto Petalinux

otros, para una mayor profundidad se puede consultar la guia de referencia.
Si se desea configurar el U-boot que es el gestor de arranque de la segunda etapa de

carga del sistema operativo Linux. Si se desea realizar una configuración en especifico
del u-boot se ejecuta el siguiente comando que despliega el menú de configuración.

$ petalinux-config -c u-boot

Si se quiere configurar el kernel del sistema se utiliza el siguiente comando para
abrir el menú de configuración.

$ petalinux-config -c kernel

Para la creación del proyecto en este trabajo de tesis se modificó la configuración
en la opción Library routines → Default contiguous memory area size, de manera
predeterminada el valor es de 16, y se cambio el valor a 6144.

El siguiente paso es configurar los paquetes que se quieren tener en el sistema
Petalinux, se debe abrir el menú para seleccionar los paquetes que se quieren añadir.
En esta tesis se necesitan instalados los paquetes de mosquitto-dev, que contiene
las bibliotecas para crear los clientes de mosquitto, mosquitto-clients, que instala los
clientes de prueba para mosquitto, mosquitto, que instala el broker MQTT y por
último se necesita el paquete esencial que contiene el compilador gcc para compilar
el cliente que se crea.

El paquete esencial se encuentra en el menú de configuración en la ruta Package
→ misc, los paquetes de mosquitto no se encuentran habilitados en el menú. Por
tanto es necesario verificar si el paquete se encuentra en el sistema Yocto, que el
sistema en el que esta basado Petalinux, esto se puede realizar buscado mosquitto en
la siguiente página web https://layers.openembedded.org/layerindex/branch/
master/recipes/. Mosquitto se encuentra en el sistema y se debe habilitar para
que se pueda añadir el paquete al sistema Petalinux. Esto se realiza de la siguiente
manera. Primero se deben añadir las siguientes líneas en <carpeta-proyecto>/project-
spec/meta-user/conf/user-rootfsconfig.

$ CONFIG_mosquitto
$ CONFIG_mosquitto-clients
$ CONFIG_mosquitto-dev

Con los comandos anteriores se habilitan los paquete en user-package, donde se
muestra una lista de todos los paquetes que se ha agregado, en este caso se seleccionan
los paquetes de mosquitto para que se puedan utilizar en el sistema.

Para finalizar se construirá el proyecto con base en las características y paquetes
seleccionados, esto se realiza utilizando el siguiente comando.

$ petalinux-build

Esto compila y construye el proyecto Petalinux, si hay algún error se muestra en la
consola o en un archivo log que describe el error por el cual no se construyó el sistema,

https://layers.openembedded.org/layerindex/branch/master/recipes/
https://layers.openembedded.org/layerindex/branch/master/recipes/

89

en ocasiones se genera error en la construcción pero basta con volver a ejecutar el
comando para generar de forma correcta la construcción. Una vez el proyecto haya
sido construido, se procede a generar la imagen que inicia el sistema. La imagen se
genera con el siguiente comando.

$ petalinux-package --boot --force --fsbl images/linux/zynq_fsbl.elf --fpga
images/linux/system.bit --u-boot

En la carpeta <carpeta-proyecto>/images/linux se crearan los archivos necesarios
para la imagen del sistema. Para almacenar estos archivos se necesita una memoria
microSD. La memoria debe tener dos particiones, una en formato FAT32 y otra en
formato EXT4. La partición FAT32 debe tener un tamaño mínimo de 500 MB. En
la carpeta donde se generaron los archivos para la imagen, se seleccionan y copian
los archivos BOOT.bin, boot.scr, image.ub en la partición FAT32. Los archivos del
sistema operativo se debe colocar en la partición EXT4. Con el archivo rootfs.tar.gz
se utiliza el siguiente comando para que se extraigan los archivos en dicha partición.
Es necesario que este comando se ejecute como usuario root.

$ sudo tar -xzvf rootfs.tar.gz -C /media/<nombre-memoriaSD>

Una vez copiado los archivos, se procede a colocar la memoria microSD en la
placa y cambiar el arranque a SD. Se enciende la placa y de manera serial se obtiene
la información de arranque del sistema, la conexión serial se realizó con la ayuda
del software Vitis de Xilinx. Si todo esta correcto aparecerá en la ventana serial lo
siguiente.

$ root@<nombre-del-pryecto>:

Esto nos indica que el sistema ha arrancado de manera correcta y se puede trabajar
en él.

90 Creación de proyecto Petalinux

Apéndice C

Funciones esteganográficas

En este Apéndice se muestran las funciones esteganográficas que se desarrollaron y
se descartaron por no cumplir con los criterios necesarios para ocultar la información
de manera correcta.

C.1. Función Uno a uno

Esta función separa la información en caracteres de 8 bits, y utiliza los campos
Tema de respuesta y Tipo de contenido. El algoritmo por seguir es colocar los carac-
teres con índices pares en el campo Tema de respuesta y los caracteres con índices
impares en el campo Tipo de contenido. Se rellenan los espacios vacíos con caracte-
res generados de manera aleatoria. En la figura C.1 se muestra de manera gráfica la
inserción de los caracteres en los campos mencionados.

C.2. Función Intercalado

Se separa la información en caracteres de 8 bits y se utiliza el campo Tema de
respuesta para ocultar la información.Esta función se aplica de manera que el caracter
en la posición cero de la información a ocultar se inserta en la posición cero de campo,
posteriormente el carácter en la posición n se coloca en la posición uno del campo,
el caracter en la posición uno de la cadena se coloca en la posición dos del campo,
el caracter en la posición n – 1 dela cadena se coloca en la posición tres del campo
y así sucesivamente. En la figura C.2 se puede apreciar el diagrama que muestra
gráficamente la función.

C.3. Función Fin de cadena

Los datos se separan en caracteres de 8 bits y se utiliza el campo Nombre del
tema. El funcionamiento es el siguiente, se agrega primero el nombre del tema, se

91

92 Funciones esteganográficas

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

CA 1 CA 3 CA 5 CA 7 CA 9 CA 11 CA 13 CA 15 CA 17 CA 19 CA 21 CA 23 CA 25 CA 27 CA 29

Tipo de contenido

Tema de respuesta

0 CA 2 CA 4 CA 6 CA 8 CA 10 CA 12 CA 14 CA 16 CA 18 CA 20 CA 22 CA 24 CA 26 CA 28 CA

Caracteres aleatorios

adicionales

Caracteres aleatorios

adicionales

Figura C.1: Diagrama de la función estego Uno a uno

0 29 1 28 2 27 3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13 16 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Cadena original

Tema de respuesta

Figura C.2: Diagrama de la función estego Intercalado

agrega el caracter fin de cadena ‘\0’ y se inserta el mensaje a ocultar. En la figura
C.3, se muestra de manera gráfica el método que se utiliza para esta función.

‘t’ ‘o’ ‘p’ ‘i’ ‘c’ ‘\0’ ‘o’ ‘c’ ‘u’ ‘l’ ‘t’ ‘o’

Figura C.3: Diagrama de la función estego Fin de cadena

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Motivación
	Planteamiento del problema
	Propuesta de solución
	Objetivos
	Organización de la tesis

	Preliminares
	Internet de las Cosas
	Vulnerabilidad en IdC
	Protocolos de comunicación para dispositivos con recursos limitados
	Protocolo MQTT
	MQTT v5.0

	Esteganografía
	Criptografía ligera
	Cifrador SIMON
	Cifrador SPECK

	Estado del arte
	Seguridad en IdC con un enfoque general
	Esteganografía con un enfoque general
	Esteganografía usando un protocolo de comunicación
	Seguridad en IdC que usa esteganografía en general
	Seguridad IdC usando criptografía o esteganografía con un protocolo de comunicación como objeto portador

	Descripción del sistema
	Red del sistema
	Esquema del sistema
	Paquete de control PUBLISH

	Funciones estego
	Función estego bit menos significativo
	Función estego bit menos significativo nibble

	Esquemas del sistema
	Esquema de ocultamiento de información
	Esquema de ocultamiento de llave de cifrado

	Implementación
	Petalinux
	Clientes MQTT
	Cliente-publicador
	Cliente-suscriptor

	Función estego software
	Función estego hardware
	Cifrador SIMON software
	Descifrador SIMON
	Cifrador SIMON hardware
	Cifrador SPECK software
	Descifrador SPECK software
	Sistema embebido
	Broker público

	Resultados
	Conclusiones y trabajo a futuro
	Bibliografía
	Instalación Petalinux
	Creación de proyecto Petalinux
	Funciones esteganográficas
	Función Uno a uno
	Función Intercalado
	Función Fin de cadena

