CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

Unidad Zacatenco

Departamento de Computacion

Sistema de criptografia y
esteganogralfia para la
confidencialidad de informacién en
aplicaciones de transmisién para
dispositivos de 1dC

Tesis que presenta

Gerardo Alejandro Ruiz Avendano

para obtener el Grado de

Maestro en Ciencias en Computaciéon

Directores de la Tesis

Dra. Brisbane Ovilla Martinez
Dr. Amilcar Meneses Viveros

Ciudad de México Agosto 2022

II

Resumen

Internet de las Cosas (IdC) ha revolucionado la forma en cémo se realizan actividades
en distintos ambitos, desde el cotidiano hasta el industrial, por ello cada dia hay
una mayor cantidad de dispositivos interconectados que ayudan a tener un flujo de
informaciéon que contribuyen en la realizacion de dichas tareas. Sin embargo, con la
creciente tasa de informacion también se enfrentan vulnerabilidades para proteger los
datos y evitar hacer mal uso de ellos, por tal motivo se busca implementar técnicas
de seguridad como criptografia ligera y esteganografia de red. La primera, permite
cifrar los datos para que no sean posibles de interpretar por entidades no autorizadas,
y con la importante caracteristica de ser algoritmos enfocados especialmente para
dispositivos con recursos limitados. La esteganografia de red oculta la informacion
sensible que se quiere transferir con la ayuda de protocolos de comunicacion usados en
IdC. En el presente trabajo se propone adoptar dos sistemas utilizando criptografia
y esteganografia para dar confidencialidad y ocultamiento a la informaciéon que se
quiere transmitir entre dispositivos de IdC. El primero enfocado en cifrar y ocultar la
informacion que se quiere compartir usando un campo del protocolo de comunicacién
MQTT. El segundo sistema cifra la informacion a compartir y oculta la llave de cifrado
para ser compartida de manera segura. Se ha implementado con ayuda de la tecnologia
FPGA el cifrador SIMON para observar a nivel de hardware su comportamiento. Y
a nivel de software se utiliza el cifrador SPECK. Un broker es un dispositivo que
se encarga de aceptar conexiones de red de clientes, aceptar mensajes publicados y
procesar solicitudes de suscripcion. En este trabajo se utilizan dos tipos de brokers,
uno instalado en una computadora de escritorio y otro broker publico en la nube.

III

v

CAPITULO 0. RESUMEN

Abstract

Internet of Things (IoT) has revolutionized the way in which activities are carried out
in different areas, from daily to industrial, for this reason every day there is a greater
number of interconnected devices that help to have a flow of information that con-
tributes in carrying out these tasks. However, with the growing rate of information,
vulnerabilities are also faced to protect the data and avoid misusing it, for this reason
it’s sought to implement security techniques such as light cryptography and network
steganography. The first allows data is encrypted so that they are not possible to
interpret by unauthorized entities, and with the important characteristic of being al-
gorithms focused especially on devices with limited resources. Network steganography
hides sensitive information that is transferred with the help of communication pro-
tocols used in IoT. In the present work, it’s proposed to adopt two systems using
cryptography and steganography to give confidentiality and concealment to the in-
formation that is transmitted between IdC devices. The first focused on encrypting
and hiding the information to be shared using a field of the MQTT communication
protocol. The second system encrypts the information is shared and hides the encry-
ption key to be shared safely. The SIMON cipher has been implemented with the
help of FPGA technology to observe its behavior at the hardware level. And at the
software level, the SPECK cipher is used.A broker is a device that is responsible for
accepting client network connections, accepting published messages, and processing
subscription requests. Two types of brokers are used to implement the systems, one
installed on a desktop computer and another public broker in the cloud.

VI

CAPITULO 0. ABSTRACT

Agradecimientos

Agradezco al CONACY'T por el apoyo econémico que me brindo para el estudio de
esta maestria y al Cinvestav por aceptarme en su programa de maestria y por los
conocimientos adquiridos en estos dos anos.

A los doctores que me impartieron clases durante la maestria, especialmente a
mis directores de tesis la Dra. Brisbane Ovilla Martinez y al Dr. Amilcar Meneses
Viveros por su apoyo en el desarrollo de esta tesis, y a mis sinodales el Dr. Luis Ge-
rardo de la Fraga y el Dr. Cuauhtemoc Mancillas Lopez, por su tiempo y comentarios.

A mi madre Rosa y mis hermanos Alvaro y Esmeralda por apoyarme toda mi
vida. Y a mis amigos que me acompanaron en estos anos.

VII

VIII CAPITULO 0. AGRADECIMIENTOS

Indice general

Resumen 111
Abstract \Y%
Agradecimientos VII
Indice de figuras X
Indice de tablas XI11
1. Introduccién 1
1.1. Motivacion e e 2
1.2. Planteamiento del problema 3
1.3. Propuestadesolucion o 3
1.4. Objetivos o 4
1.5. Organizacion de la tesis 4
2. Preliminares 7
2.1. Internet delas Cosas 7
2.2. Vulnerabilidad en IdC oL 9
2.3. Protocolos de comunicaciéon para dispositivos con recursos limitados . 12
2.4. Protocolo MQTT 15
24.1. MQTT vH.0 .« . . oo 17
2.5. Esteganografia. oo 19
2.6. Criptografia ligera 23
2.6.1. Cifrador SIMON 25
2.6.2. Cifrador SPECK 28
3. Estado del arte 33
3.1. Seguridad en IdC con un enfoque general 33
3.2. Esteganografia con un enfoque general 34
3.3. Esteganografia usando un protocolo de comunicacion 35
3.4. Seguridad en IdC que usa esteganografia en general 36
3.5. Seguridad IdC usando criptografia o esteganografia con un protocolo
de comunicacién como objeto portadoro L 36

IX

4. Descripcion del sistema
4.1.
4.2. Esquema del sistema

4.2.1. Paquete de control PUBLISH
4.3. Funciones estego
4.3.1.

4.3.2. Funcién estego bit menos significativo nibble

4.4. Esquemas del sistema
Esquema de ocultamiento de informacion . . .

4.4.1.
4.4.2. Esquema de ocultamiento de llave de cifrado

5. Implementacién
5.1. Petalinux

5.2. Clientes MQTT

5.2.1. Cliente-publicador

5.2.2. Cliente-suscriptor
5.3. Funcién estego software

5.4. Funcién estego hardware
5.5. Cifrador SIMON software

5.6. Descifrador SIMON
5.7. Cifrador SIMON hardware

5.8. Cifrador SPECK software

5.9. Descifrador SPECK software
5.10. Sistema embebido

5.11. Broker publico
6. Resultados
7. Conclusiones y trabajo a futuro
Bibliografia
A. Instalacién Petalinux
B. Creacién de proyecto Petalinux

C. Funciones esteganograficas
C.1. Funcién Uno a uno

C.2. Funcion Intercalado

C.3. Funcion Fin de cadena

Red del sistema

Funcién estego bit menos significativo

INDICE GENERAL

73
77

85

Indice de figuras

2.1. Arquitecturas para el sistema de IdC
2.2. Protocolos en cada capa del modelo OSI para IdC
2.3. Tendencias de protocolos de comunicacién en 2018
2.4. Principales protocolos de comunicacion en 2020
2.5. Diagrama de la arquitectura de red MQTT
2.6. Diagrama que muestra el intercambio de paquetes para realizar la co-

nexion entre los clientes y el broker
2.7. Division de la criptologia [1]
2.8. Diagrama general de un sistema esteganografico
2.9. Red de Feistel para la funcion de ronda del cifrador SIMON
2.10. Generacion de llave de ronda para el cifrador SIMON
2.11. Red de Feistel para la funciéon de ronda del cifrado SPECK
2.12. Generacion de la llave de ronda para el cifrador SPECK

4.1. Encabezado fijo del paquete PUBLISH
4.2. Encabezado variable del paquete PUBLISH
4.3. Propiedades del paquete PUBLISH
4.4. Diagrama de la funcion estego bit menos significativo
4.5. Diagrama de la funcion estego bit menos significativo nibble
4.6. Diagrama del esquema para ocultar la informacién a compartir
4.7. Diagrama del esquema para ocultar la llave de cifrado

5.1. Diagrama del modo de operacion CBC
5.2. Diagrama de la funcién bit menos significativo en hardware.
5.3. Diagrama para la generacion de la llave de ronda en la funcién de ronda

para el descifrado SIMON
5.4. Diagrama de estados del cifrador SIMON en hardware
5.5. Red de Feistel implementado en FPGA.
5.6. Generacion de llaves de ronda en FPGA.
5.7. Funcionamiento del cifrador SIMON en FPGA.
5.8. Red de Feistel para el descifrado de SPECK.
5.9. Diagrama del sistema embebido para el sistema.
5.10. Diagrama del sistema usando un broker publico.

XI

XII

6.1.
6.2.
6.3.

6.4.
6.5.

6.6.

C.1.
C.2.
C.3.

INDICE DE FIGURAS

Captura de paquetes del esquema ocultacion de informacion 64
Informacion de paquetes PUBLISH 66
Tiempo en realizarse el cifrado y funcién estego del esquema ocultacion

de informacion 67
Captura de paquetes del esquema ocultacion de llave 68
Tiempo en realizarse el cifrado y funcion estego del esquema ocultacion

de llave de cifrado 69
Tiempo de ejecucion del sistema con el cifrador Speck 70
Diagrama de la funciéon estego Unoauno 92
Diagrama de la funcién estego Intercalado 92

Diagrama de la funcién estego Fin de cadena 92

Indice de tablas

2.1.
2.2.
2.3.
2.4.

3.1.

Estructura de un paquete de control MQTT 16
Encabezado fijo para un paquete de control MQTT 17
Paquetes de control MQTT v5.0 17
Parametros SIMON 27
Trabajos relacionados Lo oo 39

XIII

X1V INDICE DE TABLAS

Capitulo 1

Introduccion

En los tltimos anos Internet de las Cosas (IdC) ha aumentado su presencia en el uso
cotidiano e industrial. Esto facilita, por ejemplo, procesos de fabricacién de productos,
que se realizan dado a la autonomia que se le brinda a los dispositivos y actuadores.
Los dispositivos que se utilizan en IdC deben ser pequenos y por este motivo cuentan
con recursos limitados. En las aplicaciones desarrolladas para IdC se busca tener un
bajo consumo de energia y poca cantidad de almacenamiento. La informacion que se
transmite en ocasiones es sensible, y es necesario establecer métodos de seguridad que
brinden a la informacién confidencialidad e integridad, por mencionar algunos.

Hoy en dia se han propuesto diversos protocolos para la comunicacién de dispo-
sitivos de IdC tales como CoAP, XMPP, MQTT [2], entre otros, para intercambiar
informacion. Uno de los protocolos mas utilizado es MQTT, este es un protocolo de
transporte de mensajes en una red tipo publicacion-suscripcion. Es principalmente
utilizado en dispositivos que posean recursos limitados. Actualmente se trabaja con
las versiones 3.1.1 y 5.0. Sin embargo, este protocolo no ofrece un método de seguridad
maés alla de la capa de red por estar montado en TCP/IP o SSL. En el articulo [3] se
muestra que usando el motor de busqueda Shodan en un servidor publico de MQTT
se puede lograr un ataque de denegacion de servicios a los clientes conectados, obtener
datos de esos clientes o enviar datos incorrectos. En el mismo articulo se analiza el
método de autenticacion que brinda MQTT, si un atacante se encuentra en la misma
red solo necesita rastrear el trafico de red y encontrar el paquete CONNECT para que
pueda revelar el nombre de usuario y contrasena, debido a que el protocolo MQTT
no posee un mecanismo de seguridad general. Por esta razéon es importante que se
brinde seguridad a la informacion que se transmite y asi evitar fugas de informacion.

Los algoritmos convencionales de criptografia son costosos en términos de calculos
computacionales. Es indispensable optar por soluciones que no afecten el rendimien-
to del dispositivo de IdC. En esta tesis se abordan dos técnicas para incrementar la
seguridad de la informacién que se desea intercambiar, la primera es la criptografia
ligera que brinda confidencialidad y protege la informacion y la segunda es la estega-
nografia que oculta dicha informacién. La esteganografia consiste en utilizar un objeto
portador, como puede ser una imagen o video, e insertar en sus datos la informacion
que se quiere ocultar. Este método necesita de una funcion estego que inserte la in-

2 Introduccion

formacion dentro del objeto portador y una funciéon estego inversa para recuperar la
informacion. La funcién estego debe proporcionar tres caracteristicas fundamentales:
robustez, imperceptibilidad y capacidad [1].

La esteganografia de red consiste en utilizar al datagrama de un protocolo de
comunicaciéon como el objeto portador. En este trabajo de tesis, los datagramas del
protocolo MQTT se utilizan como objetos portadores. Los datagramas del protocolo
estaran presentes siempre que haya comunicacién. Por tal motivo los datagramas
de MQTT se seleccionaron como objetos portadores y asi aprovechar un recurso ya
existente en el dispositivo y evitar el uso de mas recursos.

La criptografia ligera [5] es una sub-rama de la criptografia convencional, desarrolla
primitivas criptograficas que se adecuen a las necesidades de los dispositivos con
recursos limitados. Las primitivas se enfocan en desarrollo de hardware y software.
El algoritmo SIMON [(] se enfoca en implementacion por hardware y se basa en una
red de Feistel con rotaciones a la izquierda y derecha, operaciones binarias AND y
XOR. El algoritmo SPECK [0] se enfoca en implementacion por software y se basa en
rotaciones a la izquierda y derecha, operaciones binarias XOR y una suma algebraica.
Estos algoritmos fueron seleccionados debido a los tamanos de bloques pequenos y su
bajo requerimiento de recursos computacionales.

1.1. Motivacidon

Hoy en dia IdC ha tenido un gran aumento de uso en los tltimos anos. Por tal
motivo el nimero de dispositivos en uso aumenta asi como el trafico de informacion
para realizar los procesos. Es necesario proveer de seguridad a la informacion que sea
sensible para asi evitar que terceros no autorizados conozcan dicha informacién.

Los métodos de seguridad convencionales requieren de un poder de computo prohi-
bitivo en dispositivos con recursos limitados. Existen métodos que proporcionan se-
guridad a la informacion sin utilizar un alto procesamiento, por ejemplo, la estegano-
grafia. La esteganografia oculta informacion dentro de un objeto portador que puede
ser una imagen, un audio, un video o un protocolo de comunicaciéon. Los protocolos
de comunicacion como HTTP/HTTPS y UDP tienen un alto peso ademas que tienen
un diseno complejo en su encabezado, por lo tanto, para dispositivos restringidos se
desarrollan protocolos que sea ligeros y pocos complejos y asi no utilizar mas recursos
de los necesarios.

En IdC se utilizan diferentes protocolos de comunicacion, como son CoAP, MQTT,
y XMPP, entre otros. Su principal caracteristica es su ligereza y sencillez en su da-
tagrama. El protocolo MQTT es el mas utilizado en IdC para el intercambio de
informacion, sin embargo, al poseer las caracteristicas mencionadas anteriormente su
seguridad es poco eficaz, teniendo solo usuarios y contrasenas como método de se-
guridad. La seguridad es de vital importancia en el intercambio de la informacion,
por lo que se necesita agregar seguridad, pero utilizando recursos ya existentes en el
dispositivo sin agregar elementos que afecten el rendimiento.

La criptografia ligera es otro método que proporciona confidencialidad a la infor-

Capitulo 1 3

macion, los algoritmos desarrollados se adecuan a las limitaciones de los dispositivos
con recursos limitados, no utilizando mucho procesamiento ni una gran cantidad de
almacenamiento.

1.2. Planteamiento del problema

IdC es una red de vehiculos, dispositivos fisicos, software y elementos electréonicos
todos conectados para facilitar el intercambio de datos. El propoésito de 1dC es pro-
porcionar la infraestructura de informacion tecnologica para el intercambio de “cosas”.
Las limitaciones de los dispositivos IdC incluyen el presupuesto energético, la conec-
tividad y la capacidad computacional |7].

A pesar de sus limitaciones, IdC hoy en dia es una tecnologia capaz de implementar
un amplio rango de aplicaciones. Debido al tipo de datos que manejan muchas de las
aplicaciones de IdC, necesitan implementar mecanismos que protejan los datos en
distintos niveles. Por ejemplo, ocultar su transmision, o proteger su confidencialidad,
por mencionar algunos. No obstante, se ha prestado poca atencion a la seguridad,
ya que las técnicas y algoritmos actuales para proveer seguridad no fueron disenados
para ser implementados en dispositivos con tantas limitaciones de hardware, y se debe
considerar que en IdC se prioriza el consumo de energia.

Se puede plantear la siguiente hipotesis: Existe un sistema basado en criptografia
y esteganografia con caracteristicas y usos de recursos adecuado para proveer confi-
dencialidad y ocultamiento en aplicaciones de comunicacion de datos utilizando un
campo del protocolo de comunicacion MQTT en dispositivos de IdC.

Se plantea desarrollar un sistema que involucre esteganografia y criptografia ligera
utilizando un campo del protocolo MQTT. Se debe desarrollar una funcién estegano-
grafica que permita ocultar la informacion dentro del campo del protocolo MQTT y
poder ser transmitida por la red que MQTT maneja sin ser percibida por un usuario
ajeno. Los algoritmos de criptografia ligera que se seleccionaron para utilizar son el
SIMON y SPECK. El algoritmo SIMON est& disenado para una implementacién en
hardware, mientras que el algoritmo SPECK esté disenado para implementarse en
software.

1.3. Propuesta de solucién

En este trabajo se plantea disenar un sistema que permita la ocultaciéon de la infor-
maciéon y al mismo tiempo provea confidencialidad en el intercambio de informaciéon
entre dispositivos de IdC, desarrollando funciones esteganogréficas que utilizan como
objeto portador el protocolo de comunicacion MQTT, y previamente la informacion
es cifrada mediante los algoritmos SPECK, en software, y SIMON, en hardware.

4 Introduccion

1.4. Objetivos

General

Obtener un sistema de bajo consumo de recursos para el ocultamiento y cifrado de
informacion transmitida entre dispositivos de IdC a través del protocolo de comuni-
cacion MQTT.

Particulares

1. Ocultar informacién en uno de los campos del protocolo MQTT.

2. Proveer confidencialidad a la informacién mediante un algoritmo criptografico
adecuado para IdC.

3. Desarrollar funciones esteganograficas para el ocultamiento de la informacion.

4. Validar la solucion propuesta en torno a las limitaciones de los dispositivos de
IdC, considerando sus capacidades de hardware y software.

1.5. Organizacién de la tesis

En el capitulo 2 se presenta los preliminares sobre IdC, su definicién, su arquitectura
y los protocolos que se manejan es esta red de dispositivos. Se analiza el protocolo
MQTT v5.0, la arquitectura en la que trabaja, la forma del datagrama, los tipos de
paquetes de control que maneja, la seguridad en la que trabaja y como funciona el
intercambio de informacion.

En el capitulo 3 se describe el estado del arte, que presenta los trabajos relacio-
nados con seguridad en IoT, uso de esteganografia en un d&mbito en general, el uso
de esteganografia desarrollado en un FPGA, el uso de esteganografia usando como
objeto portador un protocolo de comunicacién con un enfoque general, uso de este-
ganografia en general con un enfoque a IdC y los trabajos de esteganografia usando
protocolos de comunicacién con un enfoque en IdC.

En el capitulo 4 se describen los dos esquemas que se manejan en la tesis, ocultando
la informacion que se va a compartir y ocultando la llave que se utilizé para cifrar la
informacion. Ademas, se describen dos funciones esteganograficas que se disefiaron e
implementaron para ocultar la informacién en el protocolo MQTT.

En el capitulo 5 se describe como se implement6 el sistema, mencionando los
dispositivos y software que se utilizaron para el desarrollo de las aplicaciones que
se necesitan para el intercambio de informacién. Se describe el funcionamiento del
cliente-publicador que oculta y cifra la informacion para posteriormente ser enviada
por el protocolo MQTT, también se describe el funcionamiento del cliente-suscriptor
que obtiene la informacién oculta y la descifra para que se pueda visualizar dicha

Capitulo 1

informacion. Se describen los descifradores SIMON y SPECK que se implementaron

en software y hardware.
En el capitulo 6 se muestran los resultados obtenidos durante las pruebas de la

implementacion de los clientes en software y hardware.
En el capitulo 7 se presentan las conclusiones y trabajo a futuro.

Introduccion

Capitulo 2

Preliminares

2.1. Internet de las Cosas

En los ultimos anos internet ha sido una gran herramienta para el desarrollo tec-
nologico ya sea en cuestiones de entretenimiento, laboral o industrial. Cada ano se
busca incrementar la capacidad de datos que se pueden intercambiar, lo cual se ha
logrado gracias al aumento en la interconexion de pequenos dispositivos, a lo que se
le ha denominado como Internet de las Cosas (IdC) [¢]. IdC es una red de vehiculos,
dispositivos fisicos, software y elementos electronicos conectados para facilitar el in-
tercambio de informaciéon. Su propédsito es proveer la infraestructura de informaciéon
tecnologica para el intercambio de “cosas” [7]. Este modelo de red logra que disposi-
tivos con recursos limitados y que poseen una capacidad de comunicacién puedan ser
conectados a Internet para poder trabajar en ese entorno [3].

IdC permite que los dispositivos logren adquirir cierta inteligencia ya que pue-
den llevar a cabo varias operaciones y de esas operaciones tomar ciertas acciones que
son necesarias para realizar el trabajo con base en la informacion que se recopila del
entorno. El sistema de IdC ha sido preparado para soportar el aumento en el inter-
cambio de datos, los recursos informéaticos que se necesiten y las infraestructuras de la
red. IdC puede ser visto como el sistema nervioso y las decisiones que se deben tomar
son proporcionadas por las diversas tecnologias que se pueden encontrar, tales como
computacion en la nube, computacion paralela, el anélisis de big data, inteligencia
artificial, por mencionar algunas. Una perfecta combinacion de estas tecnologias nos
asegura un sistema capaz de efectuar cualquier trabajo.

Para tener una conectividad confiable para una gran cantidad de dispositivos
conectados y en comunicacion, IdC debe tener una arquitectura de capas que permita
ser flexible. A pesar de numerosos trabajos que hay relacionados a la arquitectura de
IdC, no se ha establecido un modelo de referencia por lo que el modelo actual se basa
en el estandar del modelo OSI (por sus siglas en ingles Open Systems Interconnection),
con modificaciones en las capas de enlace de datos, red y transporte. IdC trabaja con
el modelo de tres capas, que son percepcion, red y aplicaciéon, como se muestra en la
figura 2.1a.

8 Preliminares

Capa de Gestion

Capa de Aplicacion

Capa Middleware

Capa de Red
Capa Red

Capa de Percepcion Capa de Percepcion

(a) Arquitectura de 3 capas. (b) Arquitectura de 5 capas.

Figura 2.1: Arquitecturas para el sistema de 1dC

En la capa de percepcion se efectiia la interaccion de los objetos y componentes
fisicos, es decir, se encarga de adquirir, procesar y transmitir hacia otras capas la
informacion de los dispositivos conectados. La capa de red nos brinda el enrutamiento
y la transmision de los datos teniendo como recursos para lograr esta transmision los
dispositivos de conexion, tales como concentradores o enrutadores, las distintas redes
de comunicacion como Bluetooth, WiFi, entre otras, y los protocolos de comunicacion
como el IEEE 802.15.4, Zighee, 6LoOWPAN, etc. La capa de aplicacion es la que se
encarga de las operaciones, todo esto en relacion a los datos que fueron analizados y
procesados.

Otra variante de la arquitectura es el modelo de cinco capas (ver figura 2.1b), la
cual consta de agregar dos capas més, la capa de middleware y la capa de gestion. La
capa de middleware se encarga de permitir la gestion de servicios, es decir, recibe la
informacion de la capa de red, procesa y realiza calculos con la informacién y permite
el enlace a una base de datos. La capa de gestion se encarga, como su nombre lo
indica, de gestionar el sistema de IdC donde determina la forma de lanzar y cargar
las aplicaciones que se usarén.

Capitulo 2 9

2.2. Vulnerabilidad en IdC

Debido a las capacidades limitadas de los dispositivos de IdC, muchos de ellos tienen
vulnerabilidades que los hacen propensos a varios ataques. Un dispositivo de 1dC
vulnerable puede ser un riesgo en cualquier red, independiente a su nivel de seguridad
[9]. Muchos ataques han implicado aprovechar las vulnerabilidades de los dispositivos
de IdC, incluidas acciones como ataques de repeticion, ataque de dia cero y ataques de
suplantacion de identidad. Se ha observado un aumento en los ataques de botnets. La
botnets Mirai es un ejemplo conocido, ataca dispositivos explotando las credenciales
predeterminadas |10, 11, 12].

Una gran cantidad de dispositivos de IdC se corrompieron y se utilizaron para
lanzar ataques de denegacion de servicio (DoS) en servidores criticos. Estos ataques
utilizan el servicio de nombres de dominio (DNS) y el protocolo de tiempo de red
(NTP) como una forma de ataque DoS distribuido (DDoS). Un estudio informé que
la razon principal por la que la botnets Mirai es tan efectiva es el uso de dispositivos de
Idc de bajo costo y faciles de instalar, desarrollados con poca o ninguna preocupacion
por la seguridad [13, 12].

En IdC hay dos tipos de amenazas: amenazas contra IdC y amenazas de 1dC.

Amenazas contra IdC: el 21 de octubre de 2016, se implementd un gran ataque
DDoS contra los servidores Dyn DNS y cerré muchos servicios web, incluido Twitter.
Los causantes explotaron las contrasenas y los nombres de usuario predeterminados
de las camaras web y otros dispositivos de IdC, e instalaron la botnets Mirai |[11] en
los dispositivos comprometidos. La enorme red de bots se us6 para implementar el
ataque DDoS contra los servidores Dyn DNS. Las cdmaras IP pueden ser vulnera-
bles mediante ataques de desbordamiento de bufer. Las lamparas Phillips Hue fueron
vulneradas a través de su protocolo de enlace ZigBee. Amenazas de 1dC: los investi-
gadores también encontraron ataques de secuencias de comandos en sitios cruzados
(XSS) que explotaron la aplicacion Belkin WeMo y se acceden a los datos y recursos
a los que la aplicacion puede acceder [15].

Para asegurar la seguridad y privacidad de un sistema de IdC, debemos considerar
cinco perspectivas: hardware, sistema operativo/firmware, software, redes, datos gene-
rados y mantenidos dentro del sistema. Un sistema de IdC tiene pocos componentes,
los cuales deben ser inspeccionados a través de estas cinco perspectivas [15].

Seguridad del hardware: la seguridad del hardware es fundamental cuando los ata-
cantes pueden acceder fisicamente a los dispositivos de IdC. Casi todos los dispositivos
de IdC tienen vulnerabilidades de hardware que pueden ser explotadas por atacantes,
incluidos los puertos de depuracion UART /JTAG, multiples opciones de arranque y
memoria flash sin cifrar [16, 17]. A través de las puertas traseras de hardware, ya sea
deshabilitado la funcionalidad de verificacion o iniciando el sistema a través de una
imagen de firmware inyectada [15].

Seguridad y privacidad del sistema operativo (SO)/firmware y software: dadas las
funcionalidades a menudo limitadas de un dispositivo de IdC, se puede implementar
un sistema operativo confiable [15] en el dispositivo si el costo lo permite. Los proble-

10 Preliminares

mas de seguridad del software son similares a los sistemas informaticos tradicionales.
Las puertas traseras y los pares de claves SSL puiblicas y privadas se descubren reali-
zando un analisis estatico en una gran cantidad de firmwares desempaquetados [19)].
Una explotacion del desbordamiento de bifer se encuentra analizando el protocolo de
administracion de red doméstica (HNAP) [20] para que pueda usarse para ejecutar
cualquier codigo en el dispositivo. Un desbordamiento de biifer basado en pila de la bi-
blioteca general glibe [21] se aprovecha para atacar varios concentradores domésticos

22, 19].

Seguridad y privacidad de la red: un sistema de IdC es un sistema en red y todo
el sistema debe estar protegido [23, 24]. La comunicacion debe cifrarse para evitar
la fuga de informacion confidencial. La autenticaciéon debe implementarse cuidadosa-
mente. En el proceso de emparejamiento, el controlador debe conectarse al dispositivo
de IdC para configurarlo. La mayoria de los dispositivos de IdC permiten cualquier
controlador en las proximidades para el emparejamiento. Para una implementacion
a gran escala en un entorno publico, cualquier persona con acceso a los dispositivos
puede reconfigurar el sistema y puede acceder al sistema. La autenticacion debe con-
figurarse de manera adecuada. Un sistema de IdC puede estar compuesto por un gran
ntmero de nodos con capacidades de deteccion y técnicas de seguridad para redes de
sensores que se pueden aplicar [25, 26, 15].

El ataque Mirai DDoS [11] fue posible debido a las contrasenas débiles en varios
dispositivos de IdC. Rouf et al. [23] explotan el protocolo de comunicacion inalambrica
insegura de la lectura automatica de contadores. Dhanjani vulnera el sistema de
lamparas Phillips Hue y descubre que los mecanismos de autenticaciéon no son sélidos.
Molina [27] aprovecha el KNX, un protocolo de comunicacion de automatizacion del
hogar estandarizado, y descubre que la falta de autenticacion y cifrado permite que
un atacante controle de forma remota los electrodomésticos de un hotel. Rahman et
al. [28] encuentran las vulnerabilidades del protocolo de comunicacion del dispositivo
portatil (Fitbit) [15].

Analisis de Big Data: dado que la nube se encuentra entre el controlador y los
dispositivos de IdC, puede recopilar todos los datos. Tenemos que cuestionarnos ;de-
be la nube saberlo todo y recopilar datos sobre nosotros y nuestras pertenencias?
Sin embargo, los grandes datos recopilados por la nube pueden ayudar a vencer los
ataques. Por ejemplo, un sistema de deteccion de intrusos adecuado en la nube puede
evitar otra ronda de ataques de Mirai. Dado que las cosas suelen ser muy especificas,
la deteccion de intrusos se puede simplificar [15].

Ye et al. realizaron un estudio de caso sobre la seguridad de August Smart Lock
[29], la exposicion de la clave de protocolo de enlace del dispositivo y los datos de
la cuenta y la informaciéon personal del propietario, asi como la susceptibilidad a los
ataques de denegacion de servicio (DoS). En otro estudio, Ly y Jin [30] analizaron
el problema de la fuga de informacién del usuario. Examinaron el firmware de las
pulseras tecnologicas, incluidas Nike+ Fuelband, la banda Huawei, la banda Xiaomi
Mi y la banda Codoon, y encontraron seguridad insuficiente que provoco la fuga de
informacion del usuario [12].

Capitulo 2 11

La seguridad de las cerraduras inteligentes también ha llamado la atencion de los
investigadores [31, 32]. Algunas de las cerraduras inteligentes bajo escrutinio expusie-
ron informacion confidencial del usuario, mientras que otras podrian ser controladas
por dispositivos no autorizados. Kim et al. [31] sugiri6 que las cerraduras inteligentes
modernas deberfan tener los siguientes niveles de control: completo, restringido, par-
cial y minimo. Chistiakov et al. [32| desarrollaron un nuevo diseno de seguridad para
cerraduras inteligentes utilizando un chip de memoria de solo lectura programable
borrable electrénicamente (EEPROM) [12].

El Smart Nest Learning Thermostat es otro dispositivo inteligente para el hogar
que ha sido analizado por investigadores. Hernandez et al. [17] probaron el dispo-
sitivo iniciando una imagen maliciosa a través de un puerto USB. Oren et al. [33]
descubri6 ataques a televisores inteligentes que tenian como objetivo los protocolos
de comunicacion de los dispositivos [12]. La tecnologia de hogar inteligente permite
el control inalambrico de puertas, luces y otros electrodomésticos. Denning et al. [34]
mencionan que este tipo de electrodomésticos son vulnerables a los ataques debido a
la falta de un administrador profesional. Denning et al. [35] y Ur et al. [30] analizaron
las politicas de control de acceso y las amenazas asociadas a este tipo de dispositivos

[12].

A medida que aumenta la cantidad de dispositivos de IdC implementados en los ho-
gares, el control de estos dispositivos se vuelve cada vez mas complicado porque cada
dispositivo usa una aplicaciéon moévil separada. Para eso estan disenados SmartThings
de Samsung o HomeKit de Apple [12].

El anélisis de Samsung SmartThings realizado por Fernandes [37] identifico cuatro
posibles ataques que podrian lanzarse contra aplicaciones moéviles, la indagacion de los
coddigos PIN de las cerraduras de las puertas, la desactivacion de las configuraciones
de proteccion y la generacion de alarmas falsas. Gyory y Chauah [38] encontraron
errores de seguridad en SmartThings que otorgaban acceso privilegiado al sistema a
un tercero [12].

Fernandez et al. [39] estudiaron patrones de ataque DoS en redes VoIP. Alghamdi
et al. [10] examinaron los inconvenientes de seguridad del Protocolo de aplicacion
restringida (CoAP), que es una capa de aplicacion para dispositivos IdC restringidos

[12].

Cyr et al. [11] realizo6 un anéalisis de red y un analisis de firmware en relojes
inteligentes, al mismo tiempo que verificaban las vulnerabilidades de las aplicaciones
moviles. Los autores rastrearon la direccion privada del usuario desde el dispositivo
IdC, capturaron el intercambio de claves, aplicaron ingenieria inversa a la aplicacion
movil, monitorearon el trafico entre la aplicacion y el servidor Fitbit y usaron el tréafico
proxy Transport Layer Security (TLS) para interceptar y extraer datos [12].

12 Preliminares

2.3. Protocolos de comunicaciéon para dispositivos con
recursos limitados

Con el auge de IdC se ha tratado de establecer un estdndar en los protocolos que se
deben de utilizar, pero a pesar de varios esfuerzos todavia no hay un estdndar fijo
con el cual trabajar, es por ello que se utilizan diversos protocolos para establecer
comunicacion entre los dispositivos que conforman el sistema de IdC.

= Protocolo de Aplicacion Restringida (CoAP). Es el mas utilizado para la capa de
aplicacion, este protocolo es un subconjunto de las funciones que se establecen
en HTTP, con la diferencia que el encabezado es de baja carga y con un analisis
reducido en la complejidad, de tal forma que se pueda utilizar en dispositivos con
poca capacidad de almacenamiento y una reducida capacidad computacional.

» Transporte de Telemetria de Cola de Mensajes (MQTT). Tiene dos funciones
por una parte proporciona la conectividad entre las aplicaciones que se utilizan
en el sistema de IdC, y por otro se enfoca en las redes y comunicaciones.

= MQTT-SN. Esta disenado especificamente para redes de sensores, ya que se
adapta a la dinamica de la comunicacion inalambrica.

» Extensible de Mensajeria y Presencia (XMPP). Su funcionamiento original era
ser utilizado en las aplicaciones de chat y posteriormente se utiliz6 en IdC.

» Cola de Mensajes Avanzado (AMQP). Esta dirigido para la capa de aplicacion
y es abierto para IdC y es funcional en entornos que son orientados a mensajes,
algunas caracteristicas a mencionar de este protocolo son la orientaciéon de los
mensajes, las colas y el enrutamiento.

= 6LowPAN. Permite transportar paquetes de IPv6 por medio de redes IEEE
802.15.4, el cual tiene un tamaio de paquete de 127 bytes, este estandar permite
lograr una compresiéon de los encabezados de IPv6 y UDP.

= [EEE 802.15.4. Posibilita especificar una subcapa para el Control de Acceso al
Medio (MAC) y para el medio Fisico (PHY), y define un formato para la trama
y el encabezado.

» Bluetooth de Baja Energia (BLE). Comparado con la versién normal de Blue-
tooth, este protocolo nos brinda un rango mas amplio, una latencia mas baja y
un gasto energético més bajo.

» 7 - Wave. Fue disenado primeramente para redes de automatizacion de casas

inteligentes, pero por su bajo consumo también es utilizado para sistemas de
IdC [3].

Capitulo 2 13

En la figura 2.2 [12] se muestra como se dividen los diferentes protocolos en cada
capa que conforma el modelo OSI para IdC. Se puede observar que el protocolo
MQTT, CoAP, XMPP y AMQP se encuentran en la capa de aplicacion, mientras
6LoWPAN en la capa de red, Z-Wave en la capa de enlace de datos y el protocolo
IEEE 802.15.4 en la capa fisica.

Capa de aplicacion
CoAP MQTT XMPP AMQP

!

Capa de transporte

UDP TCP
Capa de red
IPv6 RPL 6LoWPAN

Il

Capa de enlace de datos

BLE Z-Wave ZigBee HomePlugGP Dash7
Capa fisica
IEEE 802.15.4 IEEE 802.15.4e

Figura 2.2: Protocolos en cada capa del modelo OSI para IdC

Todos estos protocolos se usan en las redes de IdC para el intercambio de informa-
cion. Sin embargo, algunos protocolos son utilizados més que otros, ya sea porque son
sencillos de utilizar o por su bajo consumo energético. En el resumen [13]| que recopila
los datos de una encuesta realizada a 502 participantes para poder comprender como
los desarrolladores crean soluciones de IdC, se observa en la figura 2.3 una grafica que
muestra los porcentajes de los protocolos IdC con mas tendencia en el ano 2018. En
la grafica se puede observar que el protocolo MQTT lidera con un 62.51 %, mientras
CoAP se encuentra con un 22.92 %, AMQP con un 18.24 % y XMPP con un 4.26 %.

En el resumen que trata sobre el panorama de la industria IdC, los desafios que se
enfrentan los desarrolladores de IdC y las oportunidades de IdC para un ecosistema
de codigo abierto |11], se encuentra la figura 2.4 que muestra una grafica con los
protocolos mas utilizados en el 2020. En esta gréafica se puede observar que en el
ambito general HTTP/HTTPS lidera con un 51 % del uso, mientras que MQTT se
encuentra en segundo lugar con un 41 %. El protocolo MQTT es utilizado en gran
medida en el ambito general solo superado por el protocolo HT'TP/HTTPS que es

14

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

Preliminares
62.61%
54.10%
34.95%
24.92%
22.49%
18.24%

4.26%

MQTT HTTP WebSockets HTTP/2 CoAP AMQP XMPP

Figura 2.3: Tendencias de protocolos de comunicacion en 2018

ampliamente utilizado en el internet. En IdC MQTT es mayormente utilizado en
comparacion con los protocolos CoAP, AMQP y XMPP.

60%

50%

40%

30%

20%

10%

0%

51%

41%

33%

7%

HTTP/HTTPS MQTT TCP/IP Sparkplug

Figura 2.4: Principales protocolos de comunicaciéon en 2020

Capitulo 2 15

2.4. Protocolo MQTT

MQTT es un protocolo de transporte de mensajeria cliente-servidor del tipo publica-
cion /suscripcion mediante un tema en especifico. Es ligero, abierto, simple y disenado
para ser facil de implementar. Estas caracteristicas lo hacen ideal para su uso en mu-
chas situaciones, incluidos entornos limitados, como la comunicacién en contextos
maquina a maquina (M2M) e Internet de las cosas (IdC), donde se requiere un codigo
pequeno y/o un escaso ancho de banda [2].

El protocolo MQTT se dio a conocer en 1999 y fue disenado originalmente por
Andy Stanford-Clark y Alen Nipper [3]. En 2014 la version 3.1.1 de MQTT [15] se
convirtié en un estandar de OASIS y en 2016 en el estandar de ISO/IEC 20922:2016.
En marzo del 2019 se lanzé la version 5.0 de MQTT [2], y de igual manera que
su version anterior acabo convirtiéndose en estandar de OASIS. Este protocolo ha
sido ampliamente utilizado como ejemplos se pueden mencionar Facebook Messenger,
Amazon IoT, OpenStack, Microsoft Azure IoT Hub, FloodNet, entre otros [10].

MQTT tiene las siguientes caracteristicas.

» Uso del patréon de mensajes de publicacion /suscripcion, proporciona distribu-
cion de mensajes de uno a muchos y desacoplamiento de aplicaciones.

= Un transporte de mensajeria que es independiente del contenido de la carga
atil.

= Tres calidades de servicio para la entrega de mensajes.

= Una sobrecarga de transporte pequena y los intercambios de protocolo minimi-
zados para reducir el trafico de red.

= Y un mecanismo para avisar a los interesados cuando se produzca una desco-
nexion anémala [2].

MQTT ofrece tres niveles de calidad de servicio (QoS) para la entrega de mensajes:
como méaximo una vez (QoS 0), donde los mensajes se entregan de acuerdo con los
mejores esfuerzos del entorno operativo y puede ocurrir la pérdida de mensajes; al
menos una vez (QoS 1), donde se asegura que los mensajes llegaran, pero pueden
ocurrir duplicados; y exactamente una vez, donde se asegura que los mensajes lleguen
exactamente una vez|2].

El protocolo MQTT se ejecuta sobre TCP/IP o sobre otros protocolos de red que
proporcionan conexiones bidireccionales ordenadas y sin pérdidas. Para el transporte
sobre TCP/IP se utiliza el puerto 1883 y para SSL/TSL se usa el 8883 [17].

La arquitectura MQTT se puede observar en la figura 2.5. Esta se compone de
tres componentes, un cliente-publicador, un cliente-suscriptor y un servidor o broker.
Un cliente MQT'T es un programa o dispositivo que utiliza el protocolo MQTT para
la transferencia de informacién. Un cliente es responsable de abrir la conexiéon de
red al servidor, crear mensajes para ser publicados, publicar mensajes de aplicacion
en el servidor, suscribirse para solicitar mensajes de aplicacion que sea de interés

16 Preliminares

para su recepcion, cancelar la suscripcion para eliminar una solicitud de mensajes de
aplicacion y cerrar la conexion de red al servidor [17].

Un servidor MQTT o broker es un programa o dispositivo basado en el protocolo
MQTT que actiia como una oficina postal entre editores y suscriptores. Un broker
de MQTT es responsable de aceptar conexiones de red de cliente, aceptar mensajes
de aplicaciones publicados por clientes, procesar solicitudes de suscripciéon y cance-
lacion de suscripcion de clientes, enviar mensajes de aplicacion a clientes segtin sus
suscripciones y cerrar la conexion de red del cliente [17].

Publicacién > Broker
MQTT

Figura 2.5: Diagrama de la arquitectura de red MQTT

Para el protocolo MQTT los paquetes de control tienen la misma estructura, esto
se puede observar en la tabla 2.1. La estructura general estd conformada en tres
partes, el encabezado fijo, el encabezado variable y la carga ttil que puede estar o no
presente. La primera parte es el encabezado fijo, que se muestra en la tabla 2.2, esta
parte se encuentra presente en todos los paquetes de control y se conforma por dos
bytes, en la primera mitad del primer byte (bits 0 al 3) son indicadores especificos
para cada paquete de control, en la segunda mitad del primer byte (bits 4 al 7) se
indica el tipo de paquete de control. El segundo byte indica la longitud restante del
paquete de control [2].

Encabezado fijo, presente en todos los paquetes de control MQTT gﬁg ;

i Byte 3
Encabezado variable, presente en algunos paquetes de control MQTT Byte n
Carga 1util, presente en algunos paquetes de control MQTT B}];t;t:;; 1

Tabla 2.1: Estructura de un paquete de control MQTT

Capitulo 2

17

Bit [7]6]5] 4 3[2]1] 0
Byte 1 | Tipo de control de paquete MQTT | Indicadores especificos para cada
tipo de paquete de control MQTT
Byte 2 Longitud restante
Tabla 2.2: Encabezado fijo para un paquete de control MQTT
2.4.1. MQTT v5.0

MQTT 5.0 fue liberado en marzo del 2019. Utiliza 15 paquetes de control, uno mas
respecto a su version anterior, estos paquetes son enumerados del 1 al 15 para ser
identificados, como se muestran en la tabla 2.3. Cada paquete puede tener un tamano
de 2 Bytes hasta 256 MB. MQTT v5.0 agrega nuevas caracteristicas con respecto a
su version anterior. Mejora en la escalabilidad y sistemas a gran escala, un informe de
errores mejorado, una formalizacién de patrones comunes, incluido el descubrimiento
de capacidades y la respuesta a solicitudes, mecanismos de extensibilidad que incluyen
propiedades de usuario, mejoras de rendimiento y soporte para pequenos clientes, y
la creacion y adicion de nuevos campos en los paquetes de control [2].

Nombre Valor | Direccion de flujo | Descripcion Carga util

Reservado 0 - Reservado No hay

CONNECT 1 Cliente — Servidor | Peticién de conexién Obligatorio

CONNACK 2 Cliente < Servidor | Confirmacién de conexion No hay

PUBLISH 3 Cliente <> Servidor | Mensaje de publicaciéon Opcional

PUBACK 4 Cliente <+ Servidor | Confirmaciéon de publica- | No hay
cion

PUBREC 5 Cliente <+ Servidor | Recepcion de publicacién | No hay
(entrega asegurada 1)

PUBREL 6 Cliente <+ Servidor | Lanzamiento de publicacién | No hay
(entrega asegurada II)

PUBCOMP 7 Cliente <+ Servidor | Publicacién completada | No hay
(entrega asegurada III)

SUBSCRIBE 8 Cliente — Servidor | Peticién de suscripcion Obligatorio

SUBACK 9 Cliente - Servidor | Confirmacién de suscripcién | Obligatorio

UNSUBSCRIBE 10 Cliente — Servidor | Peticién de cancelacion de | Obligatorio
suscripcion

UNBSUBACK 11 Cliente < Servidor | Confirmacién de cancela- | Obligatorio
cion de suscripcion

PINGREQ 12 Cliente — Servidor | Solicitud de PING No hay

PINGRESP 13 Cliente <— Servidor | Respuesta de PING No hay

DISCONNECT 14 Cliente » Servidor | Notificacién de desconexién | No hay

AUTH 15 Cliente <+ Servidor | Intercambio de autentica- | No hay
cion

Tabla 2.3: Paquetes de control MQTT v5.0

18 Preliminares

Para realizar una conexion entre clientes se debe seguir una secuencia especifica.
El flujo de paquetes se puede observar en la figura 2.6. Primero ambos clientes envian
un paquete CONNECT para realizar una peticion de conexion con el broker, si no
hay problemas o fallos el broker responde con un paquete CONNACK para confirmar
la conexion. En el caso del cliente-publicador se envia un paquete PUBLISH hacia
el broker con la informacién que se quiere intercambiar y el tema al que corresponde
la informacion enviada, el broker a su vez responde con un paquete PUBACK para
confirmar que el paquete se ha recibido de forma correcta. Cuando el broker ha recibido
la informacion por medio del paquete PUBLISH, este se encarga de direccionar la
informacion a los clientes-suscriptores que estan conectados al mismo tema. Una vez
terminada la transmision de informacion se envia un paquete DISCONNECT para
finalizar la conexion [2].

Para el cliente-suscriptor una vez que se ha establecido la conexién se procede
a realizar la suscripcion del tema, para ello se envia un paquete SUBSCRIBE con
el nombre del tema al que se quiere suscribir, el broker contesta con un paquete
SUBACK para confirmar que se realizé la suscripcion de forma correcta. Una vez
suscrito el cliente, este se queda esperando que el broker le envie la informacién por
medio del paquete PUBLISH y cuando esta accion ocurre el cliente responde con un
paquete PUBACK para confirmar que se ha recibido la informacion. Cuando se quiere
terminar la suscripcion se envia un paquete UNSUBSCRIBE, el broker responde con
un UNSUBACK vy finalmente se envia un paquete DISCONNECT para terminar la
conexion |[2].

Publicador Broker MQTT Subscriptor
] CONNECT '_]
CONNACK CONNECT

CONNACK
SUBSCRIBE
PUBLISH SUBACK
PUBACK PUBLISH
PUBACK
UNSUBSCRIBE
UNSUBACK
DISCONNECT . DISCONNECT

Figura 2.6: Diagrama que muestra el intercambio de paquetes para realizar la conexion
entre los clientes y el broker

Capitulo 2 19

2.5. Esteganografia

La criptologia es considerada como la rama de la seguridad informaética que se en-
carga de estudiar el contenido que se encuentra cifrado, oculto e invisible en diferentes
portadores, las cuales son consideradas como ciencias por la relacién que tienen con
otras areas. En la figura 2.7 se muestra las diversas ramas que componen la criptolo-
gia, entre las cuales se encuentra la esteganografia y la criptografia, que se analizan
a continuacion [1].

Criptologia

Criptografia Criptoanalisis Esteganografia Estegoanalisis

Figura 2.7: Division de la criptologia [!]

La esteganografia es la ciencia que permite una comunicacién de datos ocultos a
través de un objeto portador adecuado. El objetivo de la esteganografia es ocultar un
mensaje dentro de un objeto portador de tal manera que no es posible identificar si el
objeto contiene un mensaje o no, asegurando asi que el mensaje solo sea accesible por
el destinatario deseado y evitando una posible fuga de informaciéon. La esteganografia
tiene varios campos de aplicacion, como agencias de inteligencia, agencias militares,
imégenes médicas, transmision de television, incorporacion de suma de chequeo que
es una suma de corroboracion para verificar la veracidad de los datos, estructuras de
datos avanzadas, sistemas de radar y detecciéon remota, en los cuales se necesita un
nivel de seguridad alto para un correcto funcionamiento [18].

En el método esteganografico se requiere tener los siguientes elementos impor-
tantes para su funcionamiento: el objeto portador el cual sera el medio en donde se
insertan los datos ocultos; el mensaje secreto que son los datos que se quieren trans-
portar sin ser detectados; la funcién estego que es el método que ayuda a ocultar el
mensaje secreto en el objeto portador; la funcién estego inversa que permite obtener
el mensaje oculto del objeto portador una vez que se ha aplicado el ocultamiento
por medio de la funcién estego y una clave estego que proporciona mayor seguridad
al ocultar el mensaje, la implementacion de este elemento es opcional [1, 19]. En la
figura 2.8 se puede observar un diagrama general sobre un sistema esteganografico.

20 Preliminares

Clave estego

Mensaje
Funcion estego Objeto estego

fe

Objeto portador

Canal de

comunicacion

Funcién estego

inversa
f 1 Objeto estego
E

Mensaje

Clave estego

Figura 2.8: Diagrama general de un sistema esteganogréfico

Una técnica esteganografica ideal debe mantener y optimizar tres propiedades
esenciales las cuales son: robustez, la propiedad que dificulta la posibilidad de eliminar
los datos secretos del objeto estego; indetectabilidad, la propiedad de poder hacer
alguna distincion entre el objeto estego y el objeto portador y, por iltimo; capacidad,
la cantidad méaxima de datos secretos que puede ocultar el objeto portador [1].

Existen diversos métodos esteganograficos, los cuales se agrupan en dos categorias.
La primera son los métodos en el dominio espacial, en donde los elementos que inte-
gran el mensaje secreto se pueden insertar en el objeto portador sin una modificacion
previa. La segunda son los métodos en el dominio de la frecuencia, en donde se mo-
difican mediante transformaciones matematicas los elementos antes de ser insertados
[50].

Los objetos que pueden ser utilizados por la esteganografia para incrustar un
mensaje secreto pueden ser un archivo de texto, una imagen fija, audio, video o un
protocolo de comunicaciéon. A continuacién, se mencionan algunas técnicas para los
distintos objetos portadores que se utilizan para la esteganografia.

La esteganografia de texto plano consiste en ocultar el mensaje secreto dentro de
un archivo de texto; usando como técnica el uso de caracteres seleccionados del objeto
portador, en donde el remitente envia una serie de niimeros enteros al destinatario,
acordando que el mensaje secreto estd oculto dentro de la posicion respectiva de
las palabras subsiguientes del texto de portada. Otra técnica es el uso de espacios
en blanco adicionales en el objeto portador, cuyo funcionamiento es insertar varios
espacios en blanco adicionales entre palabras consecutivas del objeto portador, y el
niumero de espacios en blanco corresponde a un indice de una tabla de busqueda [19].

Capitulo 2 21

Las imagenes fijas son el objeto portador mas utilizado en esteganografia, esta
técnica aprovecha la debilidad del sistema visual humano que no puede detectar la
variacion en la luminiscencia de los vectores de color en el extremo de frecuencia
mas alta del espectro visual, y asi ocultar el mensaje en la imagen estego y hacerla
pasar por la imagen original. Una técnica usada en la esteganografia de iméagenes
es la modificacion del bit menos significativo del objeto portador, se aplica en el
domino espacial, consiste en distribuir el mensaje oculto binario entre los bits menos
significativos de cada pixel de la imagen. El inconveniente con la modificacion del
bit menos significativo es que es vulnerable a ataques, tales como la compresion y el
formato de imagenes. Las siguientes técnicas se aplican en el dominio de la frecuencia,
las cuales ocultan la informacién en partes significativas de la imagen y por lo tanto
son resistentes a los ataques que las técnicas del dominio espacial no lo son. Las
transformaciones més comunes que se utilizan son la transformada de coseno discreto
y la transformada de ondicula. La técnica de espectro ensanchado trata la imagen
como ruido y se intenta agregar ruido pseudoaleatorio al objeto portador. La técnica
estadistica, modifica las caracteristicas del objeto portador y las conserva en el proceso
de incrustacion. La técnica de distorsion requiere que se tenga el objeto portador para
el proceso de recuperacion del mensaje secreto. La técnica de generacion de cobertura
se usa para ser una cobertura para la transferencia del mensaje secreto [51].

Usando como objetos portadores audio o video, el mensaje secreto se incrusta en
la senal de audio o en los fotogramas del video, en este caso al tratarse de audio
se debe tener en consideraciéon que el sistema auditivo es mas sensible a detectar
las diferencias entre dos archivos de audio en comparaciéon con el sistema visual para
detectar la diferencia entre dos archivos de imagenes, por lo que las técnicas deben ser
més complejas para lograr enganar al sistema auditivo. Las técnicas mas usadas son:
la codificacion del bit menos significativo, el bit menos significativo de cada muestra
de audio se reemplaza con el correspondiente bit del mensaje secreto. La codificacion
de fase codifica los bits del mensaje secreto en cambios de fase en el espectro de fase,
logrando una codificacion inaudible en términos de relacion senal /ruido. El espectro
ensanchado utiliza dos enfoques que son el espectro ensanchado de secuencia directa
y el espectro ensanchado por salto de frecuencia, en esta técnica se ocupa mas ancho
de banda que la senal de informacién que se estd modulando. La ocultacion de eco
consiste en incrustar la sefial de ruido de cobertura como un eco, y se modifican la
amplitud, la tasa de caida y el desplazamiento para representar el mensaje secreto

[52, 53],

Recientemente se ha implementado un nuevo objeto portador que resultan ser los
protocolos de comunicacién, consiste en usar los campos que no son prescindibles en
el protocolo y ocultar el mensaje en ellos, este método se conoce como esteganografia
de red. La esteganografia de red se puede dividir en tres categorias: métodos que
modifican el encabezado o la carga ttil de los paquetes de red, que trata en que los
campos del protocolo serdn modificados y, algunos métodos dentro de esta division
también modifican la carga ttil del paquete, estos métodos tienen una alta capaci-
dad de esteganografia; métodos que modifican la estructura de los flujos de paquetes,

22 Preliminares

modifican la forma en que son enviados los paquetes de red, algunos ejemplos son la
afectacion en el orden de envio de los paquetes, el tiempo de retardo en la transfe-
rencia entre paquetes y; los esquemas hibridos, estos métodos combinan el método
de modificacién de la cabecera del protocolo y también el flujo del paquete para asi
lograr una mejor indetectabilidad del mensaje oculto.

En la esteganografia por red se utilizan como objetos portadores los datagramas
de los protocolos de comunicacion y se realiza de forma que la modificaciéon no pueda
ser detectada por los observadores de red como rastreadores o sistemas de deteccion
de intrusos. Las técnicas que se pueden usar para la esteganografia son las siguientes:
protocolo TCP, para este protocolo se utilizan diferentes campos que conforman el
encabezado TCP.

= Campo de nimero de secuencia inicial. La secuencia inicial es definida de manera
distinta en cada sistema operativo por lo que resulta un medio perfecto para
enviar datos debido a su naturaleza y tamano.

= Campo bandera. Tiene un tamano de 6 bits y puede llegar a tener 29 com-
binaciones que permiten mandar un mensaje de forma oculta sin alterar el
funcionamiento del protocolo.

= Campo de puntero urgente. Esta constituido por 16 bits y solo es relevante
cuando se establece URG, lo que lo hace ideal como medio para un mensaje
oculto.

En el protocolo IPv4 se utilizan los siguientes campos.

= Campo identificacion del paquete. Es un nmero aleatorio generado por el remi-
tente, si no se produce fragmentacion es un campo ideal para insertar el mensaje
a ocultar.

» Campo banderas. Consta de 3 bits en donde el primero es reservado, el segundo
nos indica que no hubo fragmentacion y el tercero que, si hubo fragmentacion,

en caso de no presentarse fragmentacion el segundo bit es un valor no esencial
por lo que sirve para insertar un bit del mensaje.

Y como 1ultimo en el protocolo IPv6 se pueden aprovechar los siguientes campos

= Campo clase de trafico. Tiene un tamano de 8 bits.
= Campo etiqueta de flujo. Cuyo tamano es de 20 bits.

= Campo direccion de origen. Se pueden usar 16 bytes para datos del mensaje
oculto [54].

Capitulo 2 23

2.6. Criptografia ligera

La criptografia es la practica y el estudio de ocultar informacion. Es la ciencia de
rehacer mensajes para hacerlos seguros y resistentes a los ataques. En criptografia, el
mensaje original se convierte en otro mensaje en el lado del cifrado y se convierte en
el mensaje original en el lado del receptor [55]. Los algoritmos criptograficos fueron
disenados para satisfacer las necesidades de la era de la informética de escritorio.
Esta criptografia no es adecuada para dispositivos basados en hardware y software
altamente restringidos que necesitan comunicarse de forma inalambrica.

La criptografia en IdC se utiliza para cumplir con los siguientes objetivos de
seguridad fundamentales para el mensaje compartido.

Confidencialidad: el mensaje solo se puede visualizar por elementos, clientes, cen-
tros, dispositivos y administraciones autorizados. La informacion privada, las claves
y las calificaciones de seguridad deben estar protegidas de elementos no aprobados.

Integridad: el primer mensaje no se altera.

Autenticacion y autorizacion: la disponibilidad de los dispositivos dificulta el pro-
blema de la confirmacion debido al control de entrada y la idea de correspondencia
remota en los marcos de IdC.

Disponibilidad: EI marco contintia llenando su necesidad y permanece ininterrum-
pidamente accesible para elementos genuinos. Se requiere que los marcos de IdC sean
efectivos para permitir que las administraciones lleguen cuando sean necesarias.

Responsabilidad: para mejorar la cordialidad de las administraciones en la condi-
cion de IdC, la responsabilidad de los marcos de IdC es fundamental [56].

La criptografia ligera aborda problemas de seguridad para dispositivos altamente
restringidos. El cifrado y descifrado ligero se implementan en plataformas, asi como en
hardware y software. Debido a las estrictas restricciones de costos de estas aplicaciones
de gran volumen, las implementaciones econémicas de software y hardware de los
algoritmos criptograficos son de suma importancia para comprender la vision de la
computacion generalizada [0].

El objetivo de la criptografia ligera es permitir una amplia gama de aplicaciones,
como sistemas de seguridad de vehiculos, medidores inteligentes, pacientes inalambri-
cos, internet de las cosas, un sistema de transporte inteligente y sistemas de moni-
toreo. Esto se ve agravado por el hecho que estos dispositivos normalmente podrian
caracterizar la interaccion directa con el mundo fisico, mediante los actuadores co-
rrespondientes, lo que podria comprometer la seguridad de los usuarios en caso de
uso indebido.

En la criptografia ligera el sistema de seguridad es disenado para dispositivos con
recursos restringidos. El enfoque que se da a un algoritmo al momento de hacerlo
liviano es en su implementacion en hardware. La compuerta logica requerida para
ejecutar cualquier programa se denomina puerta equivalente y cuanto mas bajo es el
uso de puertas equivalente mas ligero es el algoritmo. Para el desarrollo en software se
trata de hacer el codigo mas pequeno posible sin afectar la seguridad. El software debe
ser compatible con el sistema operativo de los dispositivos pequenos que funcionan

24 Preliminares

con baterias [57].

Los algoritmos criptograficos se clasifican en dos categorias, cifrado de llave simé-
trica y llave asimétrica. La llave simétrica utiliza una tnica clave tanto para el cifrado
como para el descifrado de datos, y el cifrado asimétrico utiliza dos llaves diferentes
para cifrar y descifrar los datos. La criptografia de llave simétrica es segura y com-
parativamente rapida, su inconveniencia es que las partes que se comunican deben
compartir la llave sin comprometerla. La criptografia asimétrica utiliza dos pares de
llaves publicas y privadas. Garantiza la confidencialidad y la integridad al hacer uso
de la llave publica del receptor y, ademés garantiza la autenticacion al usar la llave
privada del remitente para cifrar los datos. El problema del cifrado asimétrico es su
aumento en la complejidad y la ralentizacion del proceso [58].

Existen dos propiedades fundamentales que necesita un algoritmo criptografico,
la confusion y la difusion. La confusion hace que la relacion entre el texto cifrado y la
clave sea lo mas complejo posible, mientras que la difusién disipa la estructura esta-
distica del texto plano sobre la mayor parte del texto cifrado mediante la permutacion
[55].

En la criptografia simétrica se encuentran el cifrado por bloques y el cifrado por
flujo. En el cifrado por bloques, tanto el cifrado como el descifrado se realiza en
un bloque de tamano fijo (64 bits o mas), mientras que el cifrado por flujo procesa
continuamente los elementos de entrada bit a bit (o palabra a palabra). El cifrado por
flujo usa solo la propiedad de confusion, en cambio el cifrado por bloques usa tanto
la confusion como la difusién con un diseno simple [55].

Los algoritmos de criptografia ligera estan disenados manteniendo el Advanced
Encryption Standard (AES) como algoritmo estdndar, debido a su estandarizacion
por el National Institute of Standards and Tecnology (NIST), se basa en una red
de permutaciones y sustituciones. PRESENT también se basa en la estructura de
permutacién por sustitucion, es eficiente en cuanto al hardware, pero la capa de
permutacion del cifrado consume grandes ciclos a nivel de software. RECTANGLE es
una mejora del algoritmo PRESENT es un cifrado de bloque ultraligero de segmento
de bits adecuado para multiples plataformas que tienen un area muy baja en hardware
y también un rendimiento muy competitivo en software [55].

High security and lightweight (HIGHT) esta basado en la estructura de red de
Feistel. CLEFIA es otro cifrador basado en una red de Feistel y fue estandarizado por
el NIST en 2007, es un cifrador equilibrado en rendimiento y seguridad, tiene un buen
rendimiento de hardware en comparacion con otros cifradores por bloque. CAMELLIA
es un cifrador por bloques de clave simétrica, fue disenado para su implementacion de
software y hardware, se utiliza para tarjetas inteligentes de bajo costo para sistemas
de red con altas velocidades. TWINE se basa en una red Feistel generalizada de tipo
dos con una mezcla de bloques altamente difusiva, cabe en un hardware muy pequeno
y proporciona un rendimiento notable en software integrado. SIMON y SPECK se
introdujeron en 2013, SIMON es un cifrador que tambien estan basados en una red de
Feistel, que esta optimizado para el rendimiento en implementaciones de hardware,
por otro lado, SPECK se ha optimizado para implementaciones de software [58].

Capitulo 2 25

2.6.1. Cifrador SIMON

SIMON es una familia de cifrados de bloque liviano diseniados por la Agencia
de Seguridad Nacional de EE.UU y publicados en 2013. El cifrado realizado con una
palabra de n bits se denomina SIMON2n, donde n requiere tomar los valores 16, 24, 32,
48 0 64. SIMON2n con una palabra de tamano mn bits se denomina SIMON2n /mn,
por ejemplo, SIMONG64/128 se refiere a la version de SIMON que utiliza bloques de
texto plano de 64 bits y una llave de 128 bits para cifrar el texto plano.

SIMON2n para el cifrado y descifrado utiliza las siguientes operaciones en palabras

de n-bits [0].

= XOR bit a bit, ®
= AND bit a bit, &

» Desplazamiento circular a la izquierda S7, donde j es el nimero de bits.

El cifrado SIMON se puede describir de forma matematica de la siguiente manera.
Para la funcion de ronda de SIMON2n que utiliza la llave k € GF(2)", se realiza una
red de Feistel de dos etapas Ry : GF(2)" x GF(2)" — GF(2)" x GF(2)" que esta
definida por la siguiente ecuacion:

en donde f(x) = (Sz&S%x)® S?z y k es la llave de ronda. La funcién de ronda inversa
que se utiliza para el descifrado se puede observar en la siguiente ecuacion [6]:

RMzy) = (y,x @ fy) & k). (2.2)

La llave de ronda es obtenida de generar una secuencia de T' palabras de llaves
ko, ..., kr_1, donde T es el numero de rondas. El mapa de cifrado se compone de la
secuencia Ry, ,,..., Rg,. En la figura 2.9 se observa el diagrama de la red de Feistel
que se utiliza en el cifrador SIMON. Se ve como la informaciéon se separa en dos
bloques x;,1 del lado izquierdo y z; del lado derecho. Al bloque x;, se le aplican dos
desplazamientos circulares a la izquierda uno de un bit y otro de ocho bits, a estas
rotaciones se les aplica una operaciéon AND. Posteriormente al bloque z;,1 se le aplica
otro desplazamiento circular de dos bits y se aplica una operaciéon XOR entre la senal
obtenida por la operacion AND, la senal desplazada dos bits y la senal de entrada ;.
Con la senal obtenida de la operacion XOR se aplica otra operacién XOR con la llave
de ronda k; y la senal obtenida sera la senal de salida z;,,. La senal z;,; se cruza
para quedar en el bloque derecho y la senal x;, 5 queda del lado izquierdo [6].

26 Preliminares

Xit+1 Xi

&G

Me
P

Xi+2 Xi+1

Figura 2.9: Red de Feistel para la funcion de ronda del cifrador SIMON

Generacion de las llaves de ronda

Las operaciones del cifrado SIMON son las mismas y son perfectamente simétricas
en todas las rondas, respecto al mapa de bits del desplazamiento circular en palabras
de n bits. La llave de ronda emplea una secuencia de constantes de un bit para
eliminar las propiedades del desplazamiento y la simetria. Se utilizan las constantes
20, 21, 22, 23 ¥ 24. Estas constantes se definen de la siguiente manera [0].

2o = 0001100111000011010100100010111110110011100001101010010001011111

z1 = 0001011010000110010011111011100010101101000011001001111101110001
z5 = 0011001101101001111110001000010100011001001011000000111011110101
z3 = 0011110000101100111001010001001000000111101001100011010111011011
z4 = 0011110111001001010011000011101000000100011011010110011110001011
Seac=2"—4=0xff...fc. Para SIMON2n con m palabras de llave (k,,_1, ... k1, ko)

y la secuencia de ronda z;, las llave de ronda se generan de la siguiente manera:

c@(Zj)i@ki@(]®5_l)5_3ki+1, sim =2
kier = cD (Zj)l D k?z D (I D Sil)sigkﬂ_g, sim=3 (23)
c@(zj)i@kiGB(I@Sil)(S*‘g’ng@kiH), sim=4

para 0 < ¢ < T'. Para conocer la constante z; que se utiliza en el cifrado se con-
sulta la tabla 2.4, en esta se observan también los parametros que se necesitan saber

Capitulo 2 27

para cada configuracion del cifrador SIMON. El tamano del bloque es la cantidad de
informacion de entrada, medida en bits, que se quiere cifrar. El tamano de llave es
el tamano de la llave con la que se va a cifrar la informacion. El tamano de palabra
son el tamano de los bloques que dividen la llave de cifrado. Las palabras llave son
el niimero de bloques que se generan al dividir la llave de cifrado. La constante de
ronda son las constantes zj ... z4 que se utilizan en cada configuraciéon. El nimero de
rondas son las rondas totales en la que se aplica la red de Feistel a la informacion que
se va a cifrar. Las palabras de llave kg a k,,_1 son usadas como las primeras m llaves
de ronda. Estas palabras son desplazadas en donde kj se ubica a la derecha y k,,_1 a
la izquierda [0].

Tamano de Tamano de | Tamano de Palabras Constante Numero de
bloque 2n llave mn palabra n llave m de ronda rondas T’
32 64 16 4 2 32
48 72 24 3 2o 36
96 4 21 36
64 96 32 3 29 42
128 4 23 44
96 96 48 2 29 52
144 3 Z3 54
128 128 64 2 29 68
192 3 Z3 69
256 4 24 72

Tabla 2.4: Parametros SIMON

Los diagramas para la generacion de las llaves de ronda se observan en la figura
2.10. En la figura 2.10a se observa el diagrama cuando el numero de palabras de llave
es dos, se observa como al bloque k; 1 se le hace un desplazamiento circular de tres bits
hacia la derecha y se obtiene otra senal con el bloque k;,; desplazado circularmente
cuatro bits a la derecha, a estas senales se les aplica un XOR con el bloque de llave
k;. A la senal obtenida se le aplica una operaciéon XOR con la constante de ronda y
el valor de ¢ y asi obtener la siguiente llave de ronda [6].

En la figura 2.10b, se muestra el diagrama cuando el nimero de palabras de llave
es igual a tres. Se toma el bloque de llave k; o y se aplican los desplazamientos
circulares hacia la derecha de tres y cuatro bits, posteriormente se aplica la operacién
XOR entre estas senales y la senal del bloque k;. A esta senal obtenida se aplica una
operacion XOR con la constante de ronda y el valor de ¢ para obtener la siguiente
llave de ronda [0].

Se observa en la figura 2.10c el diagrama cuando la llave se separa en cuatro
palabras de llave. En este caso se toma el bloque k;, 3 para aplicar el desplazamiento
circular a la derecha de tres y cuatro bits. A diferencia de los diagramas anteriores,
en este diagrama se aplica la operacion XOR a la senal desplazada tres bits a la
derecha con el bloque k;;;, se realiza una operacion XOR entre la senal obtenida

28 Preliminares

anteriormente junto con la senal desplazada cuatro bits a la derecha y el bloque k;.
Finalmente, para obtener la llave de ronda siguiente se aplica una operacion XOR
entre la senal resultante anterior, la constante de ronda y el valor de ¢ [6].

Ki+1 ki
c® (7),
_.E? n
&)
Fan Jan
D N>
(a) m = 2 palabras de llave.
Kiv2 Kiv1 ki
&)
n
&)
b A
N N
(b) m = 3 palabras de llave.
Kits Kitz Kit1 ki

c® (%),
—4

O O

"
D,
"

A
\J

(c) m = 4 palabras de llave.

Figura 2.10: Generacion de llave de ronda para el cifrador SIMON

2.6.2. Cifrador SPECK

SPECK se ha disenado para tener un rendimiento excelente tanto en hardware
como en software. Sin embargo, ha sido optimizado para trabajar en microcontrola-

Capitulo 2 29

dores. La notacién que se utiliza para describir la configuracion del cifrador SPECK
es simular a la del cifrador SIMON. Si se especifica una configuracion SPECK96 /144
se refiere a un cifrado con un tamano de bloque de 96 bits y una llave de 144 bits.

El cifrador SPECK utiliza las siguientes operaciones con palabras de n bits [6].

= XOR bit a bit @,

s Adicién modulo 2™ +,

» Desplazamiento a la izquierda y derecha, S/ y S~/ respectivamente, donde j es
el niimero de bits.

Para k € GF(2)", la ecuacion que define la funcion de ronda del cifrador SPECK
es la siguiente:

Ri(z,y) = (S°z+y) Dk, SPy® (S™ %z + 1) @ k), (2.4)

donde los valores de las rotaciones son a = 7y § = 2 en caso de que n = 16 (tamano
de bloque = 32), y a = 8 y § = 2 para otros tamanos de bloque.

La ecuacion que se utiliza para la funcién de ronda inversa, que es necesaria para
el descifrado, usa la substracciéon modular en lugar de la adicién modular y se define
en la ecuacion (2.5) [0].

RNz, y) = (S*(z @ k) — S P (z@y)), S (z ®y)) (2.5)

La llave de ronda se obtiene de una secuencia que es generada mediante T palabras
de llave (ko, ..., kr_1), donde T es el nimero de rondas.

En la figura 2.11 se observa el diagrama para el cifrador SPECK. El bloque de
informacion de entrada se divide en dos bloques z9; a la derecha y x9;,1 a la izquierda.
Al bloque z9;11 se le aplica un desplazamiento circular a la derecha de a bits. Esta
senal se suma con el bloque z9;, y se aplica una operaciéon XOR con la llave de ronda,
esta senal es el bloque de salida a la izquierda zs;,3 . A la senal del bloque x; se
le aplica un desplazamiento a la izquierda de § bits, y se aplica una operacién XOR
con la senal del bloque de salida z9;,3, la senal resultante es el bloque de salida a la
izquierda x9; o [0].

30 Preliminares

o 9

N
N

X2i+3 X2i+2

Figura 2.11: Red de Feistel para la funciéon de ronda del cifrado SPECK

Generacion de llave de ronda

La generacion de llave de ronda k; se realiza mientras se ejecuta la funcién de
ronda. Sea K una llave para el cifrador de bloques SPECK2n, se puede escribir como
K = (by_2,...,0o, ko), en donde ¢;, kg € GF(2)", para un valor de m en {2,3,4}. Los
valores de las secuencias k; y ¢; estan definidas por las siguientes ecuaciones:

gi-ﬁ-m—l = (k’l + S_a&') D1
kiyi = S°ki @ liym

donde k; es la i-ésima llave de ronda para 0 < ¢ < T. En la figura 2.12 se puede
observar el diagrama para la generacion de las llaves de ronda del cifrado SPECK.
La llave de ronda k; es la llave que se va generando mientras que los bloques de llave
loivq ... ¢; se van desplazando y funcionan como entrada de la siguiente ronda. R;
representa la red de Feistel que se utiliza para el cifrado SPECK, el bloque de salida
del lado izquierdo se utiliza para el desplazamiento de los bloques de llave y el bloque
de salida de la derecha es la llave de ronda siguiente [6].

Capitulo 2

£2i+1

Figura 2.12: Generacion de la llave de ronda para el cifrador SPECK

31

32

Preliminares

Capitulo 3

Estado del arte

La tecnologia IdC ha ido en aumento en los tdltimos anos y ha sido un gran tema
de interés en la comunidad, sin embargo, con el aumento de su uso también aumen-
tan las vulnerabilidades y se descubren fallas que no estaban contempladas. En una
tecnologia que permite el intercambio de informacion se debe garantizar al usuario
que su informacién permanecera segura y no seré de conocimiento para un tercero no
autorizado.

En esta seccion se presentan los trabajos relacionados a esta tesis, para ello se
muestran cinco temas que tienen relacion con el tema que se trabaja en la tesis, es-
tos son trabajos de seguridad en IdC con un enfoque general, esteganografia con un
enfoque general, esteganografia usando como objeto portador un protocolo de comuni-
cacion, seguridad en IdC que usa esteganografia en general y para finalizar seguridad
en IdC usando esteganografia como objeto portador el protocolo de comunicacion.

3.1. Seguridad en IdC con un enfoque general

Dorri, et. al [59], proponen un método de cadena de bloques ligero escalable (LSB),
que proporciona seguridad de extremo a extremo optimizado para los requisitos de
IdC. El LSB fue desarrollado con un algoritmo de gestién de rendimiento distribuido
que garantiza que el rendimiento de la cadena de bloques no se desvié de la carga
acumulada de transacciones de la red. Los resultados que obtuvieron fueron que el LSB
es altamente seguro, ya que si los nodos clave fallan se puede observar una degradacion
excelente. Sus simulaciones mostraron que su arquitectura reduce el ancho de banda
y el tiempo de procesamiento en comparacion con los métodos clasicos de cadena de
bloques.

Sarker, et. al [60], mencionan que el uso de inteligencia artificial, en especial so-
luciones de aprendizaje automético y profundo, son de gran importancia para desa-
rrollar un sistema de seguridad para el sistema IdC. Se presenta una investigacion
sobre la inteligencia de seguridad de IdC, que se basa en tecnologias de aprendizaje
automatico y profundo para proteger los datos de ataques cibernéticos. Concluyeron
que el sistema antes de tomar una decision inteligente debe desarrollar un algoritmo

33

34 Estado del arte

de aprendizaje eficaz con el conocimiento de seguridad adquirido con la aplicacion de
destino, ademas que las soluciones enfocadas en aprendizaje profundo son un camino
prometedor para implementaciones futuras de seguridad en IdC.

Kudithi y Sakthivel [61], utilizan criptografia de curva eliptica ya que proporciona
mejores estandares de seguridad en comparaciéon con otros algoritmos criptograficos
convencionales. Se enfocaron en mejorar la velocidad de computo y el area requerida
para la implementacion de hardware, y asi lograr una manera eficiente de usar los
recursos de hardware compartidos y los mecanismos de programacién para curvas
elipticas en coordenadas afines. Desarrollaron una arquitectura de hardware para
realizar una multiplicacion escalar y asi reducir el area y el niimero de ciclos utilizados
en comparacion con otros disenos que utilizan las mismas coordenadas afines.

Otro método de seguridad es el trabajo realizado por Al-Refai y Alawneh [62],
ellos proponen y desarrollan un marco de seguridad IdC mejorando la autenticacion y
autorizacion. Utilizaron un método de autenticacion de un identificador, mejorandolo
en términos de expandir el identificador estandar al agregar informacion de verifica-
cion de identidad y un nivel de permiso de autorizacion para los datos de la carga
util del identificador. Posteriormente el servicio cifra la carga ttil para evitar que los
datos sean comprometidos en caso de un robo de datos. La autenticacion se realiza
mediante una técnica inteligente basada en una marca de tiempo que refleja el tiempo
real de la solicitud enviada. Ademés de utilizar una huella dactilar biométrica para
aumentar el nivel de seguridad de autenticacion y evitar ataques de fuerza bruta.
Concluyeron con los resultados de sus pruebas, que su sistema protege las redes y los
protocolos de IdC de diferentes ataques y la carga que se agrega al dispositivo IdC es
muy baja.

3.2. Esteganografia con un enfoque general

Tomando en cuenta los trabajos realizados utilizando esteganografia con un enfoque
general para ocultar informacion se encontraron los siguientes. AlWatyan, et. al 1],
realizaron un método automatizado para proteger un mensaje utilizando dos niveles
de seguridad. El primer nivel cifra los datos utilizando el método de cifrado “ Character
Bit Shuffle’. En el segundo nivel los datos cifrados se ocultan dentro de la imagen
insertando dos bits en las dos posiciones menos significativas de los pixeles de 32
bits de la imagen, llamando a esta técnica LSB 1-1-0. Concluyeron que su método
LSB 1-1-0 produce un PSNR promedio de 54.16 dB, esto demuestra que las imégenes
generadas por esta técnica tienen una fuerte imperceptibilidad, ademas se reduce el
area en un 80 % en comparacion con otros trabajos.

Kait y Chauhan [63] trabajaron con la esteganografia de segmentacion de com-
plejidad de plano de bits (BPCS) que da una mejor imperceptibilidad visual. Esta
técnica utiliza regiones que son similares al ruido en los planos de bits de la imagen
portadora. Para incrustar la informacion dentro de las imagenes se requieren de célcu-
los intensivos, por lo tanto, la técnica se implementa en una FPGA para aumentar
la velocidad de procesamiento. Al final encontraron que la arquitectura de hardware

Capitulo 3 35

FPGA de la técnica BPCS muestra una mejora significativa en comparacién con una
implementacion LSB.

En [641] Martinez, et. al presentaron la arquitectura y la implementacion en FPGA
de un sistema de ocultamiento de senales de voz ocultandolo en un ruido que proviene
de las propias componentes Wavelet de la senal. La conclusion a la que llegaron fue
que su ventaja es aprovechar los componentes de la senal y no utilizar otra senal como
lo hacen otros métodos esteganograficos que utilizan circuitos adicionales para alma-
cenar o procesar la senal extra. El sistema completo estd compuesto por el codificador
y el decodificador que tienen la capacidad de trabajar en tiempo real.

3.3. Esteganografia usando un protocolo de comuni-
caciéon

El concepto de esteganografia de red fue introducido en 2003 [65], donde se utiliza
un protocolo de comunicacién como objeto portador, donde Szczypiorski analizo el
datagrama del protocolo TCP/IP para descubrir los posibles campos que se pueden
utilizar para ocultar informacion. En esta misma linea, Kundur y Ahsan [60], investi-
gan dos enfoques para ocular informacion, el primero manipulando el encabezado de
los paquetes y el segundo utilizando el campo de ntimero de secuencia inicial, ademés
encontraron que se pueden utilizar los campos del protocolo que no son utilizados. Los
trabajos relacionados con esteganografia de red que se encontraron son los siguientes.

Melo, et. al [(7] usaron el campo ntimero de secuencia inicial del protocolo TCP,
con hipoétesis de que es mas dificil detectar debido al valor arbitrario que puede
tener. Proponen aumentar la indetectabilidad agregando identificadores dindmicos.
Con las diferentes técnicas de clasificacion que utilizaron observaron que el esquema
que propusieron tiene una menor tasa de detectabilidad y es menos detectable en
comparacion con otras técnicas.

En su trabajo Bobade y Goudar [54] utilizan el protocolo IPv6 para ocultar in-
formacion cifrada mediante el algoritmo RSA, en el campo de etiqueta de flujo con
un tamano de 20 bits. Ellos concluyeron que no es posible la deteccion de la informa-
cién debido a las transformaciones y calculos aleatorios aplicados en el algoritmo de
codificacion.

Como parte de su investigacion Xue, et. al [68] desarrollan un sistema estegano-
grafico de dos niveles, en el nivel superior se utiliza para transmitir el texto cifrado.
En el nivel inferior se utiliza para entregar la llave de cifrado de forma encubierta.
Se utilizan los paquetes como TCP y UDP que representan un 0 y 1 respectivamente
que se utiliza para codificar la clave como método del nivel inferior. Los resultados
que obtuvieron mostraron que se logra un alto ancho de banda y una fuerte indetec-
tabilidad.

Aprovechando el mecanismo de retransmision del protocolo TCP Brodzki y Bie-
niasz |09] sobrescriben la carga ttil de los segmentos TCP sin calcular las sumas
de verificacion, este segmento se puede considerar como incorrecto y se pueden ex-

36 Estado del arte

traer datos ocultos. A pesar de considerarse incorrecto el segmento se retransmite
de acuerdo con las especificaciones del protocolo y la comunicacién no se ve afecta-
da. Realizaron un analisis estadistico que mostro la alta resiliencia de la técnica a la
deteccion.

3.4. Seguridad en IdC que usa esteganografia en ge-
neral

En los siguientes trabajos se abordan temas como esteganografia en IdC pero usando
como objeto portador un elemento distinto a un protocolo de comunicacién. En el
trabajo Geethanjali, et. al [70] presenta una técnica que combina criptografia y es-
teganografia como método de seguridad para la transferencia de informacion. Para
la parte criptografica utilizaron curva eliptica y en la parte esteganografica utiliza-
ron el bit menos significativo. Concluyeron que su técnica logra un mayor grado de
seguridad en los datos en una red IdC. Evaluaron sus resultados con los parametros
MSE, PSNR, eficiencia de incorporacion y complejidad de tiempo y los compararon
con técnicas existentes como FMO, XOR y OMME.

En el articulo [7] Khari, et. realizan una combinacion de técnicas criptograficas
y esteganograficas para la seguridad en una red IdC. Usando criptografia eliptica de
Galois para cifrar los datos y Matriz XOR para ocultar los datos cifrados, ademas
de utilizar Adaptive Firefly ! para optimizar la selecciéon de bloques de cobertura
dentro de la imagen. Con lo realizado concluyeron que se mejoré la seguridad debido
a la capacidad avanzada de ocultacion de datos, simulando el sistema en MATLAB
encontraron que se logra una eficiencia de aproximadamente 86 % en la incorporacion
de esteganografia.

3.5. Seguridad IdC usando criptografia o estegano-
grafia con un protocolo de comunicacién como
objeto portador

Los trabajos que incorporan esteganografia con un protocolo de comunicacién como
objeto portador son los siguientes. Trujillo, et al. [71]|, proponen integrar un méto-
do de criptografia basado en el caos como seguridad adicional para proteger datos
confidenciales, en este caso se utilizan imagenes RGB, de extremo a extremo. Ellos
introducen un algoritmo simple, seguro y eficiente que mejora la aleatoriedad de los
mapas cadticos 1D que ayuda en el cifrado de imagenes en tiempo real. Este algo-
ritmo es factible de implementar en dispositivos de telecomunicaciones que emplean
multiprocesadores, o cualquier dispositivo IdC con capacidades de procesamiento de
imagenes. El sistema se verifico utilizando enlaces M2M a través del protocolo MQTT

L Algoritmo metaheuristico inspirado en el comportamiento del centelleo de las luciérnagas

Capitulo 3 37

en internet. El analisis mostré que el algoritmo de cifrado propuesto que utiliza la
funcion mod1023 ofrece robustez y alta seguridad contra varios ataques. La imple-
mentacion fue realizada en una computadora personal con un reloj de 2.9 GHz y
usando las secuencias mejoradas con el mapa Logistic 1D alcanza un rendimiento de
hasta 47.44 Mb/s, y la implementacion en Raspberry Pi 4 alcanza los 10.53 Mb/s.

Almohammedi y Shepelev [72] analizaron el rendimiento de un sistema basado
en el modelo de cadena de Markov 2-D en relaciéon con el estandar IEEE 802.11p
para redes IdC. Encontraron que los valores del rendimiento del sistema de canal
esteganografico para tramas de datos y control son bajos a medida que aumenta la tasa
de trafico, el nimero de vehiculos, el tamanio del paquete y el valor de BER, ademés
el valor del rendimiento del sistema del canal esteganografico basado en tramas de
datos y control disminuye cuando la capacidad del canal es pequena y el tamano de
la red es grande.

En su trabajo Velinov, et. al [10], analizaron el protocolo MQTT v3.1.1 para
encontrar una manera viable de ocultar informacion, encontrando siete canales en-
cubiertos directos y seis indirectos que evaluaron y categorizaron con base en un
enfoque de patrones de ocultacion de informacion de red. Realizando la implementa-
cion de dos canales encubiertos indirectos demostraron la viabilidad de la ocultacion
de informacién en el protocolo MQTT v3.1.1.

En el articulo de Koziak, et. al [73], modificaron un sistema de deteccion de in-
trusos para detectar ciertos tipos de esteganografia, esto mediante el software Zeek.
Realizaron pruebas en protocolos, tales como, ICMP, TCP, IP, MQTT y SIP. Demos-
traron que con la implementaciéon de su sistema lograron detectar la mayoria de los
casos de pruebas esteganograficas.

Una investigacion acerca de canales encubiertos en el protocolo MQTT v5.0 fue
realizada por Mileva, et. al [71]. Esta investigacion se encuentra relacionada con el
trabajo de Velinov, et. al [16] y este trabajo es una actualizacion con respecto a la
nueva version del protocolo, dado que incluye nuevas caracteristicas y nuevos campos.
Encontraron que hay nuevos canales encubiertos que no eran viables para la version
anterior de MQTT, anadieron un nuevo patréon de ocultacion que utiliza reconexiones.
Su implementacion la realizan con dos canales indirectos y evaliian su ancho de banda,
la robustez, y su indetectabilidad.

En la tabla 3.1 se puede observar un resumen de los trabajos revisados y como se
relacionan con los temas que se quiere abordar en el presente trabajo.

TiTUuLO AUTOR(ES) IdC | FPGA | Criptograffa | Protocolo
o estegano- | de comuni-
grafia cacion

A lightweight scalable | Dorri, Kanhere, | v/
blockchain et al. 2019 [59]

38

Estado del arte

Internet of things (IoT)
security intelligence:
a comprehensive over-
view, machine learning
solutions and research
directions

Sarker, Khan,
et al. 2022 [60]

High-performance ECC
processor architecture
design for IoT security
applications

Kudithi y
Sakthivel, 2019

[61]

User authentication and
authorization frame-
work in IoT protocols

Al-Refai y
Alawneh, 2022

[02]

Security approach for
LSB steganography ba-
sed FPGA implementa-
tion

AlWatyan, et
al. 2017 ||

BPCS Steganography
for Data Security Using
FPGA Implementation

Kait, Chauhan.
2015 [63]

Message Concealment
System of Voice Signals
Implemented on FPGA

Martinez et al.
2016 [64]

Enhanced TCP Sequen-
ce Number Stegano-
graphy using Dynamic
Identifier

Melo, Sison,
Medina 2019

[67]

Secure data communi-
cation wusing protocol
steganography in IPv6

Bobade 2015
[54]

The Solution of Key
Transmission in Multi-

Level Network Stegano-
graphy

Xue et al. 2017
[65]

Yet Another Network
Steganography Techni-
que Based on TCP Re-
transmissions

Brodzki, Bie-
niasz 2019 [69]

Enhanced Data Encry-
ption in IoT using ECC
Cryptography and LSB
Steganography

Geethanjali et
al. 2021 [70]

Capitulo 3

39

Securing Data in In-
ternet of Things (IoT)
Using Cryptography
and Steganography
Techniques

Khari et
2019 [7]

al. | v v

Saturation Throughput
Analysis of Stegano-
graphy in the IEEE
802.11p Protocol in the
Presence of Non-Ideal
Transmission Channel

Almohammedi, | v/ v
Shepelev 2021

[72]

Real-time RGB ima-
ge encryption for IoT
applications using en-
hanced sequences from
chaotic maps

Trujillo-Toledo, | v v

et al. 2021 |

|

Covert Channels in the | Veilinov, et al. | v/ v
MQTT-Based Internet | 2019 [10]
of Things
How to make an intru- | Kosiak, et al. | v/ v
sion detection system | 2021 73]
aware of steganographic
transmission
Comprehensive analysis | Mileva, et al. | v/ v
of MQTT 5.0 suscepti- | 2021 [74]
bility to network covert
channels
Tabla 3.1: Trabajos relacionados

40

Estado del arte

Capitulo 4

Descripcion del sistema

En este capitulo se aborda una descripcion del sistema propuesto en esta tesis. Men-
cionando primero como se utiliza la red del protocolo MQTT y cémo se debe hacer
la conexion y las peticiones pertinentes para el funcionamiento de la red. Posterior-
mente se hace una descripcion del sistema, en donde se menciona el objeto portador
que se utiliza, y qué configuraciéon del objeto se utiliza. Se describen dos esquemas
como parte de la propuesta de este trabajo, el primero para ocultar la informaciéon a
compartir, y el segundo para ocultar la llave de cifrado. Y finalmente se presenta la
descripcion de las funciones estego que se utilizaron para ocultar la informacion.

4.1. Red del sistema

El sistema se basa en la arquitectura publicador-suscriptor que utiliza el protoco-
lo MQTT, en la figura 2.5 se puede observar como la red estd compuesta por tres
elementos, un cliente-publicador, un cliente-suscriptor y un dispositivo centralizado
llamado broker. Se necesita tener un cliente que publique el mensaje y otro que lo
reciba, el broker se encarga de direccionar los mensajes mediante el nombre del tema,
asi varios dispositivos pueden conectarse, pero solo aquellos que se suscriban al mismo
tema podran recibir el mensaje.

En la figura 2.6 se visualiza la forma en que el protocolo MQTT realiza la comu-
nicacion, primero el cliente-publicador envia el paquete de control CONNECT para
establecer la conexiéon y una vez establecida se pueden enviar paquetes PUBLISH que
contendran la informacion que se desea compartir. Finalmente se envia un paquete
DISCONNECT para indicar que se termina la conexion con el broker.

Es necesario tener un cliente-suscriptor, de manera similar que el cliente-publicador,
primero se envia un paquete CONNECT para establecer la conexion con el broker y
el cliente-suscriptor, después se envia un paquete SUBSCRIBE con el nombre del te-
ma al que se quiere suscribir, esto indica al broker que se debe enviar la informacion
que esté relacionada a ese tema, al dispositivo que se acaba de conectar. El cliente
se queda esperando hasta que reciba un paquete PUBLISH por parte del broker pa-
ra asi recibir la informacién. Si es necesario terminar con la suscripcion se envia un

41

42 Descripcion del sistema

paquete UNSUBSCRIBE y posteriormente un paquete DISCONNECT para indicar
el término de la conexion.

Usando la arquitectura de red del protocolo MQTT, se disena un esquema que
pueda ocultar informacién cifrada en el protocolo MQTT. El enfoque que se penso es
ocultar informacion sensible en un campo del protocolo MQTT que lo permita, y asi
desarrollar funciones esteganograficas que ayuden a esta tarea. El sistema otorgara

confidencialidad y ocultamiento a la informacion que se desea compartir a través del
protocolo MQT'T.

4.2. Esquema del sistema

La esteganografia consiste en ocultar informaciéon dentro de un objeto portador que
puede ser texto, imagenes, audio, entre otros. Recientemente se utiliza como objeto
portador los protocolos de comunicaciéon y es de interés poder utilizar campos del
protocolo que no se utilicen y que no afecten su funcionamiento. A continuacién, se
presenta un anélisis del protocolo MQTT, especificamente del paquete PUBLISH,
para encontrar un campo que permita el ocultamiento de informacion.

4.2.1. Paquete de control PUBLISH

El protocolo MQT'T resulta interesante para trabajar, debido a que es el més utilizado
entre los protocolos de comunicaciéon enfocados en IdC como se vio en el capitulo 2.
En ese mismo capitulo se observa que el protocolo MQTT v5.0 se conforma por
15 paquetes de control destinados para una tarea especifica, que va desde iniciar
una conexion, enviar o recibir mensajes, hasta la finalizacion de la conexién. De los
paquetes de control el mas utilizado es el paquete PUBLISH. Los demas paquetes en
su mayoria se envian una vez en todo el proceso de comunicacion. Por ejemplo, el
paquete CONNECT se envia solo cuando se quiere iniciar la conexiéon con el broker, y
el paquete CONNACK solo se envia cuando la conexion ha sido realizada de manera
correcta, ademés este es enviado por el broker, y asi con la mayoria de los paquetes.
El paquete PINGREQ es enviado més veces para corroborar que el cliente sigue
conectado, pero se envia cada intervalo de tiempo determinado y no es eficiente en
la velocidad de envio de la informacion. El paquete PUBLISH se envia cada que se
quiere compartir informaciéon y es normal tener un alto trafico de este paquete, por
lo que no es de extranar si muchos paquetes son enviados en poco tiempo [2].

El paquete PUBLISH, al igual que los demés paquetes estd conformado por un
encabezado fijo, un encabezado variable y la carga tutil. En la figura 4.1 se muestra
como esta conformado el encabezado fijo. Este encabezado tiene una longitud de 2
bytes. En el primer byte se encuentran los siguientes campos: en el primer bit se
encuentra el campo RETAIN que indica si el mensaje va a ser retenido para que
quede guardado o no en el broker, de los bits 1 al 2 esta el campo nivel de QoS qué
indica con que nivel de calidad sera enviado el mensaje, el campo indicador DUP que
establece si el paquete PUBLISH ya a sido enviado y de ser asi se intenta volver a

Capitulo 4 43

entregar dicho paquete en caso de un fallo en el envio, y en los bits 4 al 7 el campo
tipo de paquete de control, que toma un valor de 0011 en ntimero binario para indicar
que es un paquete de tipo PUBLISH. El segundo byte indica la longitud restante del
paquete [2].

Bit 7 6 5 4 3 2 1 0
Byte 1 Tipo de control de paquete MQTT(3) Indicador DUP Nivel de QoS RETAIN
0 0 1 1 X X X X
Byte 2 Longitud restante

Figura 4.1: Encabezado fijo del paquete PUBLISH

El siguiente elemento es el encabezado variable. Para cada paquete el encabezado
variable contiene diferentes campos. El encabezado variable del paquete PUBLISH se
muestra en la figura 4.2, en ella se pueden observar como primer elemento la longitud
del nombre del tema, el tipo de dato que maneja es un entero sin signo de 16 bits,
que se encuentra separado en dos bytes, el primero contiene el byte mas significativo
(MSB) y el segundo el byte menos significativo (LSB). Posteriormente se encuentra
el campo de nombre del tema, que almacena como su nombre lo indica el nombre del
tema y el tipo de dato que maneja es una cadena codificada en UTF-8 y puede tener
una longitud de 0 a 65 535 bytes. El siguiente campo es el identificador de paquete,
en este campo se deja un identificador que en caso de que se utilice una calidad de
servicio QoS 1 o QoS 2 este identificador sirve para formar un tnico conjunto por
separado entre el cliente y el broker, este paquete se conforma de dos bytes y al igual
que la longitud del nombre del tema utiliza un tipo entero de 16 bits sin signo y
se divide en MSB y LSB. Como tultimos dos campos se encuentran la longitud de
propiedades que es un entero de byte variable y las propiedades, estas pueden estar
o no presentes dependiendo de las propiedades que se utilicen en el paquete [2].

Los campos anteriormente descritos tienen una funcién que no puede ser cambiada,
por tal motivo no pueden ser utilizadas para ocultar informacién, ya que un cambio
en su valor altera por completo la funcionalidad del paquete. Es necesario evaluar los
campos presentes en las propiedades y seleccionar uno que pueda ser utilizado para
ocultar informacion.

En las propiedades del paquete PUBLISH, mostrado en la figura 4.3, se encuen-
tra los siguientes campos. Indicador de formato de la carga ttil, en este campo se
utiliza un byte para indicar si la carga ttil tiene bytes no especificados (0x00) o si
la carga tutil tiene datos en formato UTF-8. Intervalo de caducidad del mensaje, este
campo esta conformado por cuatro bytes y utiliza un tipo entero de 32 bits sin signo,
indica que si ha pasado el tiempo establecido y el servidor no ha logrado iniciar la
entrega del paquete a un suscriptor coincidente, se debe eliminar el mensaje para ese
suscriptor. Alias del tema, este campo tiene un tamano de dos bytes y utiliza el tipo
entero de 16 bits sin signo, se utiliza para aligerar el tamano del paquete utilizan-

44 Descripcion del sistema

Longitud de la cadena de nombre del tema (MSB) Byte 1
Longitud de la cadena de nombre del tema (LSB) Byte 2
Byte 3
Nombre del tema :
Byte 65538
Identificador de paquete PUBLISH (MSB) Byte 65539
Identificador de paquete PUBLISH (LSB) Byte 65540
Longitud de propiedades Byte 65541
Byte 65542
Propiedades :
Byte n

Figura 4.2: Encabezado variable del paquete PUBLISH

dolo en lugar del nombre del tema. Tema de respuesta, el tipo de dato que utiliza
es una cadena de caracteres codificada en UTF-8, este campo se utiliza para enviar
un mensaje de respuesta a todos los suscriptores que reciben el mensaje. Datos de
correlacion, el tamano utilizado es un byte y se usan los bits que lo componen, se
utiliza para identificar para que solicitud es el mensaje de respuesta cuando se recibe.
Propiedad del usuario, utiliza una cadena de caracteres codificados en UTF-8, puede
aparecer varias veces para representar varios pares de nombre y valor cuyo significado
e interpretacion solo conocen los programas de aplicacion responsables de enviarlos y
recibirlos. Identificador de suscripcion utiliza un formato de entero variable, utilizado
por MQT'T, este campo puede tener un valor de 1 a 268 435 55 y como su nombre lo
indica representa el identificador de la suscripcion. Tipo de contenido, usa una cadena
de caracteres codificada en UTF-8, en este campo se puede describir el contenido del
mensaje que se esta enviando [2].

Evaluando los campos descritos anteriormente, se puede hacer un analisis de cuél
es el mejor campo para ocultar informacién. La informaciéon que regularmente se
envia por MQTT es texto y por tanto los campos que utilizan caracteres pueden
ser muy predecibles en cuanto a ocultar la informacién, debido a que, si se hace
de forma directa la insercion, se puede observar el contenido del campo y no se
lograria el objetivo de ocultar informacion. Quedan los campos que utilizan un tamano
determinado de bits estos utilizan un tipo numérico y pueden ser ideales si se desarrolla
de forma correcta una funciéon estego que permita ocultar informacion, el inico campo
disponible que no tenga un uso especifico es el campo intervalo de caducidad del
mensaje, debido a que no afecta si se cambia el valor que contiene y no afecta el
funcionamiento del paquete.

45

Capitulo 4

Indicador de formato de la carga util

/ Intervalo de caducidad del mensaje
Alias del tema

Tema de respuesta

Datos de correlacion
Propiedad del usuario

Identificador de suscripcion

Tipo de contenido

Longitud de la cadena de nombre del tema (MSB)

Longitud de la cadena de nombre del tema (LSB)

Nombre del tema

Identificador de paquete PUBLISH (MSB)

Identificador de paquete PUBLISH (LSB)

Longitud de propiedades

Propiedades

Figura 4.3: Propiedades del paquete PUBLISH

4.3. Funciones estego
La funcién estego inserta la informacién a ocultar dentro del objeto portador, esta
funcién debe brindar indetectabilidad, robustez y capacidad para asegurar un correc-

to ocultamiento de la informacién. Con base a lo descrito anteriormente se propone

disenar e implementar una funciéon estego utilizando como objeto portador el data-

grama del protocolo MQTT v5.0 en el campo intervalo de caducidad del mensaje,

tomando en cuenta todas las caracteristicas del objeto portador y de la funcién es-
tego para una correcta implementacién. A continuacion, se muestran dos funciones

desarrolladas para este trabajo.
Funcién estego bit menos significativo
Para el desarrollo de esta funciéon estego se toma en cuenta que no debe ser complicada

4.3.1.

en términos de operaciones, debido al tipo de dispositivos con los que se quieren
trabajar. Por lo tanto, basdndose en una técnica utilizada para la esteganografia de

imagenes, en donde se oculta la informaciéon bit a bit en el bit menos significativo
de los pixeles que conforman la imagen, esto se hace para no deformar de manera
evidente la imagen original. En el campo intervalo de caducidad del mensaje del

paquete PUBLISH, se inserta la informacion en el bit menos significativo de los 32
bits de este campo. Asi se descompone la informacion en bits y cada bit se inserta en

un paquete PUBLISH para ser enviado.

En la figura 4.4 se observa de forma grafica el funcionamiento de esta funcion. La
cadena “Hola a todos, esta es una prueba”, se descompone en bits, para ejemplificar
esto se toma el caracter ‘H’ y se descompone en bits que equivale al niimero en binario
“01001000”, estos bits se insertan en el bit menos significativo del campo y en cada

46 Descripcion del sistema

paquete se envia un bit de la informacion.

[rlofrfal [af [tofafols[.] [els|t]al [efs[[ul[n[af [p[r[ufe]b]a]
cfor—{afafafafafafafafafafafafafafafafa]a]a]a]a]a]a]a]a]a]2]2]2]1]1]0]
g t—{afafafafafa oo oo fafa oo afaafa]aa]aa]aa]a]a]a]a]a]2]2]q]
:é o F—f{afefafafaafafaafafaa]afaa]afaa]afaa]aaa]aa]a]2]a]2]1]0]
glo—{afafafafafafafafafafafafafafafafafaaafafa]a]a]a]e]e]2]2]a]1]0]
g th—{afafafafafafafaafafafa oo oo afa]aafaa]aa]a e]a]a 2]]T]
é o F—{efafafafafaafaafaa]aafa afa]afa]aa]aa]a]a]a]a]a]2]2]2]1]0]
g o F——{efafafafafaafaafaa]a]alaafa]afa]aa]aa]a]a]a]a]a]a]a]2]1]0]
Lo b—{afala oo o afa]a]a]a]a]a]a]a]a]a]a]aa]aa]a]aa]a]a]1]1]1]1]0]

Campo intervalo de caducidad del mensaje

Figura 4.4: Diagrama de la funcién estego bit menos significativo

4.3.2. Funciéon estego bit menos significativo nibble

Esta funcion toma como base la funcién anterior. Para este caso se dividen los 32
bits en bloques de 4 bits (nibble) y en cada bit menos significativo de cada nibble se
inserta un bit de informacion a ocultar. Con esto se busca usar menos paquetes para
enviar la informaciéon y asi aumentar su capacidad. En la figura 4.5 se muestra como
se realiza esta funcion. Usando el texto “Hola a todos, esta es una prueba” se separa
la informacion en bits, para el ejemplo se toma el caracter ‘H’ y se descompone en
bits que corresponde al niimero “01001000”, y en cada bit menos significativo de los
nibbles se inserta un bit de informacion.

(ALe el Tel TeTolale[s|.T Tels T sl Tels] Telnls] Talr ulele]s]

Valor equivalente en bits del caracter ‘H’

1 0

0 0
[Tl T pol <]z 0]

111011111

Campo intervalo de caducidad del mensaje

Figura 4.5: Diagrama de la funcién estego bit menos significativo nibble

Capitulo 4 47

4.4. Esquemas del sistema

El sistema se disena para utilizar un cifrador, una funcién estego, el objeto porta-
dor, una funciéon estego inversa y un descifrador. Con estos elementos se disenaron
dos esquemas. El primero se enfoca en ocultar la informacion sensible que se quiere
compartir. El segundo en ocultar la llave que se usa para cifrar la informacion. La
llave de cifrado posee una dificultad al ser compartida, debido a que si algin terce-
ro no autorizado logra conocer la llave podré acceder a la informacién que se esta
compartiendo, por eso es necesario lograr compartir la llave por un medio seguro.

4.4.1. Esquema de ocultamiento de informacién

El esquema mostrado en la figura 4.6, se representa en bloques los elementos que
constituyen el sistema propuesto. Con este sistema se busca ingresar la informacion,
cifrarla y ocultarla. El primer paso es ingresar la informacién en el cifrador, para el
caso de este trabajo es el cifrador SIMON o SPECK dependiendo del dispositivo. Estos
cifradores requieren una llave para realizar el cifrado y por tanto se define una que
serd previamente compartida para que ambos clientes tengan el conocimiento de la
llave. Después mediante la funcion estego la informacion que fue previamente cifrada
se inserta en el objeto portador, es este caso el datagrama del protocolo MQTT, y asi
se podra enviar la informacién de forma oculta. El paquete PUBLISH de MQTT es
enviado al broker que a su vez lo envia al cliente-suscriptor que recibe el paquete. Una
vez que se ha recibido el paquete se procede a utilizar la funciéon estego inversa para
recuperar la informaciéon que fue ocultada en el datagrama del paquete PUBLISH
de MQTT. Esta informaciéon se va almacenando hasta que se termina de recibir la
informacion completa. Cuando la informacién se ha terminado de recibir se procede
a separarla en bloques y asi proceder con el descifrado de la informacién usando la
llave previamente compartida. Una vez que se termina con el descifrado se obtiene la
informacion original.

4.4.2. Esquema de ocultamiento de llave de cifrado

Para el cifrado simétrico se necesita compartir la llave para utilizarla en el descifrado.
Es necesario que al compartir la llave se haga con sumo cuidado, y asi evitar que
terceros no autorizados logren tener conocimiento de la llave, ya que si se logra conocer
se puede acceder a la informacion y eso es algo no deseado. Por tal motivo se disend
un esquema que permita compartir la llave de forma oculta usando esteganografia.
En la figura 4.7 se observa el diagrama del esquema que realiza el ocultamiento de
la llave. Primero la informacién pasa por el cifrador y usando la llave se cifra la
informacion y se coloca en la carga ttil del paquete PUBLISH. La llave que se utiliza
se oculta dentro del paquete PUBLISH con la ayuda de la funciéon estego y se envian
los paquetes necesarios para compartir todo el tamano de la llave. Una vez que se ha
terminado de enviar toda la informacion de la llave de cifrado se procede a obtener

48 Descripcion del sistema

Llave

Llave

Objeto portador

Funcion estego

Inversa

Texto

Figura 4.6: Diagrama del esquema para ocultar la informaciéon a compartir

la llave que se oculté con el uso de la funcion estego inversa. Cuando se tiene la llave
y la informacién, se descifra la informacion para asi obtener el mensaje original.

Llave

Texto Cifrador Cgrga Gtil del Funcién estego
objeto portador
Objeto portador

Texto Descifrador Carga Util del Funcién estego
objeto portador inversa

Llave

Figura 4.7: Diagrama del esquema para ocultar la llave de cifrado

La gran diferencia entre ambos esquemas es la informacion que se oculta. Ambos
esquemas buscan compartir de forma segura un tipo de informacion y asi evitar una
posible fuga de informacion. Ambos esquemas comparten el objeto portador que es el
protocolo MQTT y la funcién estego que se utiliza es la misma. En el primer esquema
se busca obtener un sistema de seguridad que nos permita intercambiar informacion
de forma segura aplicando confidencialidad y ocultamiento a la informacién que se
quiere intercambiar. En el segundo esquema se busca aplica seguridad a dos elementos
de informacion, por un lado, aplicar confidencialidad a la informaciéon que se quiere
compartir y ocultacion a la llave de cifrado.

Capitulo 5

Implementacion

La implementacion del cliente-publicador en hardware se hace en una tarjeta PYNQ
Z2 que posee un procesador Cortex-A9 Dual Core ARM y una FPGA de 1.3 M de
puertas reconfigurables. En la implementacion en software, se utiliza inicamente el
procesador para la ejecucion del programa, este se encargara de realizar el cifrador
de la informacion, crear el paquete del protocolo MQTT, agregar la informaciéon en
el campo correspondiente y enviar el paquete al destinatario deseado.

El procesador necesita un sistema para operar. El sistema que Xilinx ofrece es
petalinux, esta herramienta brinda un sistema operativo basado en Yocto. Este sis-
tema operativo ofrece un entorno en Linux. Al ser una version simplificada hay que
seleccionar los elementos que se quieren tener instalados desde la configuracion del
sistema.

Para la implementacion completa en software se utiliza una Raspberry Pi 4 que
contedréa el cliente-publicador y se encargara de realizar el cifrado, la funcion estego,
la creacion del paquete MQTT y el envio de dicho paquete. El sistema instalado es
Raspberry Pi OS que esta basado en Linux y la conexién serd mediante el puerto
Ethernet.

El broker se utilizard de dos maneras. Primero sera alojado junto con el cliente-
suscriptor en una computadora de escritorio donde se recibiran todos los paquetes
que se enviaran de los dispositivos mencionados anteriormente. La segunda forma
seré utilizar un broker publico para asegurar que se puede enviar informaciéon a la
nube y recuperar sin problemas.

5.1. Petalinux

Petalinux es un kit de desarrollo de software (SDK) de Linux integrado dirigido a
disenos de sistema en un chip (System on Chip) basados en FPGA. Permite per-
sonalizar, construir e implementar soluciones de Linux embebido en los sistemas de
procesamiento de Xilinx. Disenada a medida para acelerar la productividad del dise-
no, la solucién funciona con las herramientas de diseno de hardware de Xilinx para
facilitar el desarrollo de sistemas Linux para Versal, Zynq UltraScale MPSoC, SoC

49

50 Implementacion

Zyng-7000 y MicroBlaze.

Para el desarrollo del sistema primero se debe desarrollar el esquema completo
que involucra el procesador y el FPGA para que se realicen las conexiones necesarias
que sirvan como puente de enlace entre el procesador y el FPGA. El enlace se realiza
por medio del software Vivado. Vivado se encarga de realizar las conexiones internas
necesarias para habilitar la comunicaciéon de informacién entre el procesador y el

FPGA.

En Vivado se crea un nuevo disefio y se agrega el bloque del procesador ZYNQ.
Posteriormente se crea un nuevo bloque IP que contendra la configuracion de hardware
para la implementacion de la funcién estego. También se crea un nuevo bloque IP que
tendra la configuracion de hardware del cifrador SIMON. Se agregan los dos bloques
creados al diseno y se selecciona la conexion automética de los bloques agregados.

Una vez que los bloques han sido creados y se han conectados, se procede a realizar
una sintesis del disefio para corroborar que no hay fallos en la configuraciéon y conexion
del diseno. Una vez que la sintesis se realiz6 sin fallos se procede a exportar el diseno
del hardware para poder crear la configuracion de petalinux necesaria.

Ahora que se tiene la configuracion de hardware se procede a configurar y construir
el proyecto de de petalinux que se utilizara para el sistema. Esto se puede observar
en el apéndice B.

5.2. Clientes MQTT

El sistema operativo del procesador se encuentra en funcionamiento, ahora se desa-
rrollarédn los clientes publicador y suscriptor para realizar la comunicacion. Para la
creacion de los clientes es necesaria una biblioteca que brinde los recursos necesarios
para crear la conexion, ademas se busca que pueda trabajar con la version 5.0 de
MQTT, dado que los campos seleccionados para ocultar informacién solo existen en
esta version. El software seleccionado es Mosquitto que nos brinda el broker, y las
bibliotecas para crear clientes que utilicen la version 5.0 de MQTT.

Mosquitto

Mosquitto proporciona implementaciones de servidor y cliente que cumplen con los
estandares del protocolo MQTT. Mosquitto esta disenado para usarse en todas las si-
tuaciones en las que se necesita una mensajeria ligera, particularmente en dispositivos
restringidos con recursos limitados. Mosquitto es un proyecto de Eclipse Foundation.
Mosquitto consta de tres partes; el servidor principal de Mosquitto o broker, los clien-
tes mosquitto pub y mosquitto sub que sirven para comunicarse con un servidor
MQTT y por ultimo una biblioteca para clientes MQTT escrita en C [75].

Capitulo 5 51

5.2.1. Cliente-publicador

Para desarrollar el cliente-publicador se siguen los siguientes pasos. Primero se debe
ingresar la informacién que se va a cifrar, luego se deben iniciar las variables que
almacenara el texto que se ira dividiendo en bloques. Posteriormente se inicializa la
biblioteca de Mosquitto y se configura para que los paquetes que se utilizan sean de la
version 5.0 de MQTT. Para realizar la conexion entre el cliente y el broker lo primero
es enviar un paquete CONNECT, donde se especifica la direccion IP del broker y el
puerto que se utiliza. Cuando el broker envia un paquete CONNACK para informar
que se ha establecido conexién, se ejecuta una funciéon que nos informa de dicho evento
en donde se programa un mensaje para informar de la conexién exitosa.

Ahora que la conexiéon se ha establecido, se procede a separar por bloques la
informacion, esto depende de la configuraciéon del cifrador, para esta implementacion
se utilizo la configuracion 32/64 para ambos cifradores SIMON y SPECK, esto debido
a que la informacion que se desea transmitir es pequena, se quieren compartir datos
muy especificos como nombres o edades. La informacién del tamano del bloque se
cifra y se utiliza el modo Cipher block chaining (CBC) para el cifrador por bloques.
En la figura 5.1, se muestra el cifrado mediante el modo de operacion CBC. Este
consiste en ingresar un bloque del texto que se quiere cifrar y realizar una operacion
XOR con un vector de inicializacion. El vector de inicializacion (IV) se conforma de
una parte generada de manera aleatoria y usando el modo contador para cada bloque
del texto. El resultado de la operaciéon XOR pasa al cifrador para finalmente obtener
el bloque cifrado. Para los siguientes bloques se utiliza el bloque cifrado anterior en
lugar del bloque IV para generar los nuevos bloques cifrados.

Texto Texto Texto

Vector de inicializacion (V)

[T D D
Cifrador por Cifrador por Cifrador por
LITTTITITITTT] LITTTITTTTIT] LITTTTTTTT]
Texto cifrado Texto cifrado Texto cifrado

Figura 5.1: Diagrama del modo de operacion CBC

Cada bloque de la informacion cifrada pasa a la funcién estego Bit menos signifi-
cativo nibble, en donde se calcula un valor aleatorio entero de 32 bits para el campo
intervalo de caducidad del mensaje y se utiliza la funcion estego Bit menos significati-
vo nibble que divide un dato de 32 bits en 8 nibbles y almacena un bit de informaciéon
en cada bit menos significativo de los nibbles.

52 Implementacion

Con la informacion cifrada se agrega el valor entero a una variable que tiene
el formato para las propiedades variables del protocolo MQTT. Posteriormente se
publica el mensaje, estableciendo el nombre del tema al que se va a publicar, el
mensaje que se quiere publicar y la lista que contiene las propiedades variables, se
ejecuta la funciéon que nos permite saber que se ha enviado y se ha recibido o si
hubo un error en el mensaje. Asi llega el mensaje al destinatario que se ha suscrito al
mismo tema y se procede a recibir y visualizar el mensaje que se cifr6 y ocultoé. En el
algoritmo 1 se observa el pseudocodigo del cliente-publicador.

Algoritmo 1 Pseudocodigo cliente-publicador

Entrada: Informaciéon a compartir, llave para cifrado, configuracion del cifrador
Salida: Informacion cifrada, paquetes PUBLISH
1: Ingresar informaciéon a ocultar
Iniciar biblioteca Mosquitto
Crear paquete MQTT
Enviar paquete CONNECT
Separar informaciéon en bloques de tamano n
Cifrar la informaciéon
Generar niimero aleatorio de 32 bits
Aplicar funcién stego
Enviar paquete PUBLISH con la informacién oculta
Enviar paquete que indique el termino del envio de la informacion

: Enviar paquete DISCONNECT

—_ =
— O

5.2.2. Cliente-suscriptor

El cliente-suscriptor debe seguir el siguiente orden. Primero se inicializa la biblioteca
de Mosquitto y posteriormente se indica que se trabaja con la version 5.0 de MQTT. Se
establece la conexion mediante el envio del paquete CONNECT con la direccion IP del
broker y el puerto que se utilizara para la comunicacion, y si se realizé correctamente se
ejecuta la funcién que muestra un mensaje. Una vez que la conexion se ha establecido
se manda el paquete SUBSCRIBE para establecer la suscripcion al tema que se desea.
El tema debe ser el mismo al que el cliente-publicador envia la informacion, asi todos
los clientes que estén conectados reciben el mensaje en la carga ttil, pero solo el
cliente que tenga el algoritmo para extraer la informacion oculta y el descifrador
puede visualizar el texto que es envié de forma oculta.

El cliente-suscriptor se queda en espera de recibir la informacion y cuando se
detecta el envio de un paquete PUBLISH se ejecuta una funcién para realizar una
accion. Para el sistema se envia informacion y el cliente-suscriptor recibe dicha in-
formacion, en cada paquete se extraen los bits correspondientes a la informacién que
se envia de forma oculta y se van almacenando, el cliente se detiene cuando en el
campo intervalo del mensaje recibe un valor especifico, en este caso el valor 169 que

Capitulo 5 53

corresponde al caracter ®en codigo ASCIIL. Cuando se recibe este valor el cliente da
por hecho que se ha compartido toda la informaciéon y procede a realizar el descifrado
de la informacién. Cuando la informaciéon ha terminado de ser descifrada se puede
visualizar la informacién original que se comparti6.

Algoritmo 2 Pseudocédigo cliente-suscriptor

Entrada: Paquetes PUBLISH, llave de cifrado, configuraciéon del cifrador
Salida: Informacion original

1: Iniciar biblioteca Mosquitto
Crear paquete MQTT
Enviar paquete CONNECT
Enviar paquete SUBSCRIBE
while No se recibe paquete PUBLISH do

Queda en espera

end while
if Se recibe un paquete PUBLISH que no indica el termino de la informacion
then

9: Se extrae el dato usando la funcién estego inversa
10: Se anade lo obtenido a la informacién previamente obtenida
11: else
12: Separar la informacion recibida en bloques de tamano n
13: Se descifra la informacion
14: Visualizacion de la informacién original
15: end if

5.3. Funcién estego software

La funcion estego que se utiliza para la implementaciéon es bit menos significativo
nibble. En software esta funcién se implementa primero calculando un valor numérico
aleatorio de 32 bits para el campo intervalo de caducidad del mensaje. Posteriormente
se aplica una operacion AND con el nimero en hexadecimal “EEEEEEEE” y dejar
con un valor de ‘0’ binario el bit menos significativo de cada nibble que componen
el campo de 32 bits. Finalmente se insertan los bits de la informaciéon en el valor
calculado para ocultar la informacién.

Algoritmo 3 Pseudocéddigo funcion bit menos significativo nibble

Entrada: Informaciéon de entrada

Salida: Intervalo aleatorio con informacién insertada
1: Generar aleatoriamente un valor de 32 bits
2: Operacion AND entre el valor aleatorio y el ntimero en hexadecimal “EEEEEEER”
3: Insertar la informacién bit por bit en el bit menos significativo de cada nibble

54 Implementacion
5.4. Funcién estego hardware

En hardware la funcién bit menos significativo nibble se implementa de la siguiente
forma. Primero se declaran cinco bloques de 32 bits para la entrada, uno para la
informacion que se va a ocultar y los otros cuatro bloques son cuatro valores aleatorios
diferentes en donde se insertaréa la informacion. En FPGA el manejo de bits es més
directo y se puede ocultar més informaciéon en 4 cuatro paquetes al mismo tiempo
dada la ejecucion concurrente de la FPGA. El valor aleatorio se calcula cuatro veces
en software y a continuacion la insercién en bits se hace en hardware. En la figura 5.2
se observa el diagrama de la funcion estego desarrollada en hardware.

Intervalo 3 Intervalo estego 3

Aé:m
\\15:8

Intervalo 2 Intervalo estego 2

Intervalo 1 Intervalo estego 1

/70

Entrada

\31:24

VARRVEVAY

VAVAVAVAY

Intervalo 4 Intervalo estego 4

Figura 5.2: Diagrama de la funcién bit menos significativo en hardware.

5.5. Cifrador SIMON software

En software la implementacion del cifrador SIMON se realiz6 en forma de biblioteca,
en este caso para la configuracion SIMONG64/32. La funcién recibe como pardametros
la configuracion como un valor entero, el apuntador del bloque de informacion del
tamano de la configuracion seleccionada y el apuntador al bloque que contiene la
llave para cifrar la informacion.

Siguiendo el diagrama de la red de Feistel el bloque de informacién de entrada se
separa en dos. Se inicializa los bloques que almacenaran las llaves de ronda con la
llave que se ingresa. Se calculan las operaciones que se observan en la red de Feistel
para obtener la informacion cifrada. La informacién se devuelve con un apuntador que
contiene la informacion cifrada. Ahora que la informaciéon ha sido cifrada se puede
enviar sin ningtin problema a través del protocolo MQTT.

Capitulo 5 55

5.6. Descifrador SIMON

Para el descifrar la informacion mediante el algoritmo SIMON se debe tener en cuenta
que al generar llaves de ronda se necesita la ultima generada para lograr obtener la
informacion original. Para descifrar la informacion se necesita generar la tltima llave
para ir en retroceso e ir obteniendo en orden inverso las llaves de ronda. Para ello el
diagrama para generar la llave de ronda se modifica para ir recuperando las llaves en
la ronda correspondiente.

El diagrama que se muestra en la figura 5.3, se observa el flujo del desplazamiento
de los registros va en direcciéon contraria y que se quiere calcular el valor de la llave
k;. Las ecuaciones que describen este diagrama es la siguiente.

P (2)i Dhipa® (I ® S 1)S?kipq, sim =2
k; = cd (Z])l D ki+3 D (I D 571)573]{32'_1_2, sim=3 (51)
cP (Z])z D ki+4 D (I D Sil)(sigk‘i_i_g D ki+1)7 sim=4

Para representar con mayor claridad el diagrama se agregan los bloques con etique-
ta k; para senalar la llave que serd la proxima a calcularse.En las ecuaciones anteriores
kiia, kiys y ki1o representan las tltimas llaves de ronda dependiendo del ntimero de
bloques es que se separan las llaves para el cifrado. La llave que se necesita calcular
es k; ya que es una llave anterior a k; 1 y no la siguiente a k;,,. El proceso es simular
el cifrado, pero cambiando el sentido del desplazamiento de los registros.

5.7. Cifrador SIMON hardware

El cifrador SIMON implementado en hardware se basa en el diagrama de estados
mostrado en la figura 5.4. El primer estado es el RESET, este estado se presenta cada
vez que el sistema es reiniciado. El siguiente estado es IDLE que es el estado inactivo
del sistema y cada que se acaba un estado se regresa a él. Si se esta en el estado
IDLE y la configuraciéon del cifrador es “11” se inicia el cifrado de la informacion
en el estado CIPHER START. CIPHER RUN es el estado siguiente y se encarga
de verificar que se cumpla el nimero de rondas necesarias para la configuracion,
una vez que se cumplen el nimero de rondas se procede a ir al siguiente estado.
CIPHER FINISH 1y CIPHER FINISH 2 son los estados siguientes y se utilizan
para realizar los tultimos movimientos del cifrado y asi obtener el valor cifrado de la
informacion. CIPHER _LATCH es el dltimo estado y se encarga de guardar el cifrado
de la informacién en los registros de salida del cifrador.

En la figura 5.5 se muestra el diagrama implementado en FPGA de la red de
Feistel en donde se utilizan compuertas AND y XOR asi como desplazamientos a la
derecha y los tamanos de datos manejados son de 16 bits y el bloque k; se calcula con
el generador de llaves de ronda.

La generacion de llaves de ronda se implementa en FPGA y la figura 5.6 se observa
el diagrama de su implementacion. Se implementa con operaciones XOR, desplaza-
mientos a la derecha de tres y un bit y con constantes para cada ronda.

56 Implementacion

]

c® (z) —D

-1

N

"

lahY
% \

(a) m = 2 palabras de llave

c® (z) —P

[an)
2

N
U

\
[an)

(b) m = 3 palabras de llave

s s ML e BTN s LR e s LU
) 3
v N
c® (z); —’Eg
@
D D

(c) m = 4 palabras de llave

Figura 5.3: Diagrama para la generacion de la llave de ronda en la funcién de ronda
para el descifrado SIMON

El cifrador funciona un determinado ntmero de rondas. El cifrador habilita la
generacion de llaves para cada ronda y este a su vez genera la llave de ronda para que
el cifrador utilice esta llave para realizar las operaciones pertinentes. El nimero de

Capitulo 5 57

’10° n < num rondas

O—L (D

n = numrondas

RESET

IDLE

CIPHER START
CIPHER RUN
CIPHER FINISH 1
CIPHER FINISH 2
CIPHER :LATCH

N o g~ w N Re

Figura 5.4: Diagrama de estados del cifrador SIMON en hardware

ki
A 16 bits
:w > Xit2

16 bits /\ /\
Xi > >
L SEARMSP
<<
16 bits << 8 | j_
Xit+1 >
<<?2

16 bits
> Xit+1

Figura 5.5: Red de Feistel implementado en FPGA.

rondas totales de operacion debe ser igual al niimero de rondas - 2, que se muestra en
la tabla 2.4 que depende de la configuracion del cifrador, y asi terminar con el proceso
de cifrado. En la figura 5.7 se muestra el diagrama de lo descrito anteriormente.

58 Implementacion

k 16 bits /\
gL N
16 bits T >>1 /"\
k; > P >
- N N
16 bits
kiyz
16 bits >> 3
ks >
1 16 bits m‘
c®(z),
Figura 5.6: Generacion de llaves de ronda en FPGA.
A 4
Contador
de ronda :@—
=0 Generador
» de llaves de
COMP ronda
oA . Si Estado = 16 bits
e 1bit KEY_SCHEDULE_RUN
, A=B
Numero de B
rondas - 2
Red de B
Feistel |

Si Estado = CIPHER_RUN

Figura 5.7: Funcionamiento del cifrador SIMON en FPGA.

5.8. Cifrador SPECK software

El cifrador SPECK se programo, al igual que el cifrador SIMON, como una biblioteca.
La funcién utiliza tres parametros, el primero es la configuraciéon con la que trabajara

Capitulo 5 59

el cifrador, el segundo un apuntador a la informaciéon que se desea cifrar y por tltimo
un apuntador a la llave que se necesita para el cifrado. A continuacion, la informacion
se separa en dos registros de entrada a la red de Feistel y la llave se agrega a los
registros para su separacion dependiendo de la configuracion utilizada. Posteriormente
se aplica la red de Feistel que se muestra en la figura 2.11 y aplicar el diagrama de
la figura 2.12 para calcular la llave de ronda de cada ronda. Finalmente se regresa
el valor cifrado para ese bloque de informacion y se procede a realizar el cifrado del
siguiente bloque de informacién o continuar con lo siguiente si no hay informacion.

5.9. Descifrador SPECK software

Para el descifrado SPECK se sigue el flujo contrario de la red de Feistel para el
cifrado. En la figura 5.8 se puede observar el diagrama que describe la red de Feistel
para el descifrado. Las rotaciones de bits se realizan de manera inversa, es decir si en
el cifrado se realiz6 una rotacion a la derecha, para el descifrado se debe realizar una
rotacion a la izquierda en la misma cantidad de bits. En lugar de la adicion modulo
2™ se realiza una sustraccion modulo 2" y las operaciones XOR se conservan solo
cambiando los datos con los que se realiza la operacion.

X2i+3 X2i+2

D
U

o &

X2i+1 X2i

Figura 5.8: Red de Feistel para el descifrado de SPECK.

En el caso de la generacion de llave de ronda, al utilizar la red de Feistel, diagrama
mostrado en la figura 2.12 se denota como R;, se utiliza también el diagrama de la
figura 2.11 para realizar la generacion de llaves de ronda de forma inversa. Una vez
que se han calculado las llaves de ronda se procede a seguir con el algoritmo para
descifrar y asi obtener la informaciéon original.

60 Implementacion

5.10. Sistema embebido

En la implementaciéon por hardware se utiliza un sistema embebido. Este sistema
utiliza un procesador que tiene conexiéon con una FPGA. Para el sistema propuesto
el algoritmo de cifrado SIMON y la funcién estego se implementan en la parte de la
FPGA, mientras la parte del cliente-publicador se implementa en el procesador. Los
datos son transferidos a través de bloques de 32 bits para el ingreso a la FPGA y su
salida. Este diagrama se muestra en la figura 5.9.

Funcion estego

ZYNQ™

Cifrador SIMON

Figura 5.9: Diagrama del sistema embebido para el sistema.

5.11. Broker ptublico

El broker se implementa en una computadora de escritorio para poder registrar a
los paquetes recibidos y realizar un anélisis. En la actualidad los servicios en la nube
son de gran importancia dado a la gran cantidad de informaciéon que se comparte, por
tal motivo es necesario lograr una conexién con un broker publico. Un broker publico
permite realizar una conexion de varios usuarios a través de un servidor en la nube,
de esta manera cualquiera puede tener acceso a este servidor.

Existe una gran variedad de brokers publicos, HiveMQ y Mosquitto por mencionar
algunos. Para esta implementacion se utiliza el servidor proporcionado por Mosquitto
que se utiliza como un entorno de prueba. El servidor utilizado es “test.mosquitto.org”
en el puerto 1883 que no necesita seguridad TLS. Al ser un broker publico no hay
necesidad de utilizar autenticaciéon ya que cualquier usuario puede conectarse. Los
clientes se modifican para que se puedan conectar al servidor en la nube en el puerto
seleccionado.

En la figura 5.10 se observa los elementos que conforman el sistema para un ser-
vidor publico. La informacion de entrada para el cliente-publicador son el mensaje
en texto que se quiere compartir y la llave que se usa para cifrar dicha informacion.
La informacién se cifra y se oculta mediante la funcién estego, esto da como resul-
tado un paquete PUBLISH que contiene de manera oculta informaciéon que se quiere
compartir. El paquete se envia a un broker publico, indicando la direccién host y el

Capitulo 5 61

puerto utilizado. El broker se encarga de direccionar el mensaje publicado al cliente
suscrito al tema en que se publica el mensaje, el tema debe ser tinico ya que cualquier
dispositivo conectado a dicho tema recibira el mensaje. El mensaje es recibido por el
cliente-suscriptor, se extrae la informacion con la ayuda de la funcién estego inversa,
se descifra la informacion con la llave de cifrado previamente compartida y se obtiene
el mensaje original.

Llave Llave

Funcién

Texto ——-[Cifrador H Funcion estego} esteqo inversa

Paquete L o Paquete
PUBLISH PUBLISH
__ Broker publico
Cliente-publicador (internet) Cliente-suscriptor

Figura 5.10: Diagrama del sistema usando un broker publico.

62

Implementacion

Capitulo 6

Resultados

La implementacion del sistema se realiza de dos maneras. El primer método se realiza
en software con la ayuda de una Raspberry Pi 4 con una memoria microSD de 32
GB para el almacenamiento del sistema operativo y archivos, y una computadora
de escritorio con sistema operativo Linux funcionando como broker. El dispositivo
Raspberry funciona como cliente-publicador y se encarga de realizar la recepcion de
la informacion, el cifrado de la informacion, realizar la funcién estego para insertar la
informacion y el envio del paquete PUBLISH. La computadora se encarga de alojar
el broker que redirecciona la informacion, y el cliente que recibe dicha informacion,
la descifra y muestra la informacion original.

Lo primero a analizar son las tres propiedades necesarias para la esteganografia,
robustez, indetectabilidad y capacidad. La robustez es la propiedad que dificulta eli-
minar la informacion del objeto portador. Hay que revisar cuanta robustez es brindada
por el protocolo MQTT, esta puede verse afectada si algin otro cliente-publicador
publica en el mismo tema, y se pueden perder el orden de los paquetes y afectar
la informacién que se recibe. Para evitar este tipo de problemas se puede utilizar
una funcionalidad que permita del lado del broker para especificar que cliente puede
publicar en un tema en especifico.

El protocolo MQTT permite la reconexion mediante el identificador de cliente
(ClientID), por tal motivo si ocurre una desconexion el dispositivo podréa conectarse
de nuevo y seguir enviando la informacién sin problemas. Con estos dos mecanismos
se asegura tener una robustez en la intermitencia de los datos o alguna perdida de
desconexion.

Para la capacidad se evalia para cada funcion estego. En la funciéon bit menos
significativo en cada paquete se puede ocultar un bit de informacion, es decir si
la informaciéon tiene un tamano de n bits, se necesitardn n paquetes para que la
informacion sea enviada. La funcién bit menos significativo nibble oculta un bit en
cada nibble que conforma el campo de 32 bits, se pueden formar ocho nibbles en el
campo por tal motivo se pueden ocultar ocho bits (un byte) de informacion en cada
paquete. En la ecuacion 6.1 se representa como calcular el niimero de paquetes que
se deben enviar para compartir la informacion.

63

64 Resultados

Tamano de la informacion(n)

8

La indetectabilidad es la propiedad que no permite detectar diferencia entre el
objeto portador y el objeto portador con informacién insertada, es decir es dificil
detectar la informacion que se ocultéd. El mensaje puede ser detectado con facilidad
si el mensaje se inserta de forma directa en el campo. Para realizar la prueba de
indetectabilidad de usa el software Wireshark. Con la ayuda del software se puede
observar la informaciéon que contiene el paquete PUBLISH que se ha enviado, la
cadena que se quiere ocultar es “Hola a todos, esta es una prueba’”, el nombre del
tema “prueba”’ y “Hola” como carga tutil.

En la figura 6.1 se muestra los paquetes capturados por Wireshark, se filtran los
paquetes para solo encontrar paquetes relacionados al paquete MQTT. En el cuadro
rojo se puede observar los paquetes que usa el cliente-publicador, ya que estos son
los mensajes que se quieren analizar, y se visualiza un paquete CONNECT como su
paquete de respuesta CONNACK para posteriormente tener los paquetes PUBLISH
que contienen la informacién. En el cuadro azul se muestra como se conforma la
informacion que se recopilo, nos da la informacion del protocolo, el sistema operativo
del sistema, el puerto de salida y, de entrada, la longitud, entre otra informaciéon. Y
en el cuadro verde se observa la informaciéon del paquete que se recopilo, se observa
dicha informacion en formato hexadecimal y ASCII.

Num. de paquetes = (6.1)

*any - o &

Archivo Edicion Visualizacion Ir Captura Analizar Estadisticas Telefonia Wireless Herramientas Ayuda

P P s BE 2 &=
Am @ mRRRB e EFsE|EQaal
(A][matt BT -] +
lo. Time Source Destination Protocol Lengtt Info
1638 1170.8184595.. 127.0.0.1 127.6.0.1 MQTT 99 Connect Command
1646 1170.8187341.. 127.0.0.1 127.6.0.1 MQTT 79 Connect Ack
1823 1227.6453256.. 127.0.0.1 127.6.0.1 MQTT 86 Connect Command
1825 1227.6455568.. 127.0.0.1 127.6.0.1 MQTT 123 Connect Ack
1826 1227.6455745.. 127.0.0.1 127.6.0.1 MQTT 88 Publish Message [prueba]
1828 1227.6485396... .0.0.1 9.8.1 718 Publish Message [prueba], Publish Message [prueba], P

1 C
yTes capture 1Ts) on intertace any, 1d © -

¥ Frame yLes on wire 1ts),
» Linux cooked capture vi

» Internet Protocol Version 4, Src: 127.8.0.1, Dst: 127.0.0.1

» Transmission Control Protocol, Src Port: 605684, Dst Port: 1883, Seq: 39, Ack: 56, Len: 642
» MQ Telemetry Transport Protocol, Publish Message

» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol,
» MQ Telemetry Transport Protocol,
»
b

Publish Message
Publish Message
Publish Message
Publish Message
Bublish Mascag -

MQ Telemetry Transport Protocol,
MQ Telemetry Transport Protocol,

MO Telemetry Trapsooct brotocol

[0 12 UD B6 [V /2 f5 bY)
48 67 6c 61JRCEIFVICTECT

L B 67 6C 6
62 61 85 02 Oc cf 82 3e

0o68
@760 78 72 75 65 62 61 05 02
30 12 @0 06 78 72 75 65
9 48 6f 6c 61 30 12 00 06

73 88 c8 35 48 6f 6c 61

Figura 6.1: Captura de paquetes del esquema ocultaciéon de informacion

31 f8 43 bf 48 6T 6c 61
62 61 05 82 Of 5e 27 d5
70 72 75 65 62 61 85 02
30 12 06 86 78 72 75 65

--prue

9 62 61 05 02 38 2a a6 31 48 6 6c 61 30 12 80 @6 ba- 8" -1 Holad
70 72 75 65 62 61 @5 82 Ob c5 08 cb 48 6f 6c 61 prueba- - -Hola

J 30 12 00 06 7@ 72 75 65 62 61 05 @2 72 3d 79 65 @ -prue ba- -r=ye
48 6F 6c 61 30 12 @0 86 70 72 75 65 62 61 05 62 Hola@ - prueba
06 B0 55 ad 48 6f 6c 61 30 12 00 @6 78 72 75 65 U-Hola @ - -prue
62 61 6f _6c 61 ba E 10126

O 7 MQ Telemetry Transport Protocol (mqtt), 20 byte(s)

Paquetes: 1831 - Mostrado: 6 (0.3%)

Perfil: Default

65

La figura 6.2a muestra el contenido que conforma el paquete PUBLISH. Se analiza
el campo intervalo de caducidad de mensaje, en donde se puede observar que tiene
un valor numérico de 86302684 y un valor hexadecimal 0524DFDC y caracteres -$--.
Para la figura 6.2b se muestra el paquete consecutivo al anterior cuyo valor numérico
es 214893118, 0CCF023E en hexadecimal y ---> como caracteres. Y en la figura 6.2c
se muestra otro paquete que sigue con los anteriores, el valor numérico es 838353855,
el hexadecimal 31F843BF y los caracteres 1-C-.

Observando los valores anteriores, se puede apreciar que entre ellos no hay relacion
alguna en ninguno de los valores, ademas no se guarda relaciéon alguna con la cadena
original. Por tal motivo si varios paquetes son interceptados y analizados es poco
probable que se encuentre una relaciéon entre ellos y la informacion oculta. Con lo
anterior se asegura que es dificil detectar la informaciéon que se oculta lo que brinda
una alta indetectabilidad a la funcién estego.

A continuacion, se realiza un anélisis en el tiempo de cifrado y estego junto con
el tiempo de ejecucion para el esquema de ocultacion de la informacion. El tiempo
del cifrado se une con el tiempo de la realizaciéon de la funcién estego dado que es
el tiempo del sistema. El tiempo del sistema se debe conocer y observar como se
desempena en ambas plataformas. Para ello se realizan 100 muestras y se grafican los
tiempos del sistema y de ejecucion. Se utiliza un mensaje con tamano de 128 bits.

En la figura 6.3a se observa el tiempo que tarda el sistema en realizar el cifrado
y la funcion estego en la tarjeta con el procesador Cortex-A9 y la FPGA y en la
figura 6.3b el tiempo realizado por la Raspberry pi 4. Como se puede observar en la
ejecucion en FPGA el tiempo no es estable y en ocasiones realiza tiempos abruptos,
van desde 20 ns hasta 0.07 s. En la Raspberry se observa un tiempo promedio de 0.8
ms. Los tiempos de la Raspberry no son menores que 0.5 ms. En términos de tiempo
el sistema desarrollado en la FPGA puede tener tiempos menores y lo hace mejor
computacionalmente frente al implementado en Raspberry pi 4.

66

Resultados

Internet Protocol Version 4, Src: 127.8.0.1, Dst: 127.08.0.1
Transmission Control Protocol, Src Port: 60564, Dst Port: 1883, Seq: 39, Ack: 56, Len: 642
~ MQ Telemetry Transport Protocol, Publish Message
~ Header Flags: @x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
ee11 . Message Type: Publish Message (3}
DUP Flag: Hot set
QoS Level: At most once delivery (Fire and Forget) (@)
Retain: Not set

P
Msg Len: 18
Topic Length: &
Topic: prueba

~ Properties

3 M
: Publication
V-alup‘ 8630'-‘58-‘1
1

xpiry Interva

» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message

» MQ Telemetry Transport Protocol, Publish Message
ocso (RN 8 67 6c 61 30 12 00 06 70 72 75 68 “ola 0 prue
a Oc cf 02 3¢ 48 B 6c 61 30 12 0O 66 > Holab- -

78 72 TS 65 62 61 05 82 31 fB 43 bf 48 6f 6c 61 prueba . 1:C Hola
30 12 88 @6 7@ 72 75 65 62 61 05 @2 OF Ge 27 d5 @ - -prue ba - A'-
48 6 6c 61 30 12 @@ 06 70 72 75 65 62 61 05 @2 Hola@ - prueba -
73 88 c8 35 48 6f 6c 61 30 12 0O @6 70 72 75 65 s -5Hola @ - prue
62 61 85 B2 38 Za a6 31 48 6f 6c 61 30 12 00 @6 ba--8" 1 Hola®

78 72 75 B5 62 61 ©5 02 Bb c5 08 cb 48 Gf 6c 61 prueba - - - Hola
30 12 00 06 7O 72 75 65 62 61 05 92 72 3d 79 65 @ - -prue ba r=ye
48 6 6c 61 30 12 @0 06 70 72 75 65 62 61 05 @2 Hola@. . prueba- -
06 06 55 ad 48 6F 6c 61 30 12 00 @6 70 72 75 65 - :U-Hola @ - prue
62 61 85 B2 45 e6 b6 Ga 48 6f 6c 61 30 12 00 @6 ba- ‘E- -~ Hola® - -

(a) Primer paquete

Internet Protocol Version 4, Src: 127.0.9.1, Dst: 127.8.0.1

Transmission Control Protecel, Src Port: 60564, Dst Port: 1883, Seq: 39, Ack: 56, Len: 642

MQ Telemetry Transport Prntocul Publish Message

MQ Telemetry Transport Prntocnl, Publish Message

Header Flags: @x3@, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
Msg Len: 18

Topic Length: &

Topic: prueba

Properties

4

ID: Publication Expiry Interval (@x82
2z

Message: bch
MQ Telemetry Transport Protocol, Publish Message
MQ Telemetry Transport Protocol, Publish Message
MQ Telemetry Transport Protocol, Publish Message
MQ Telemetry Transport Protocol, Publish Message
MQ Telemetry Transport Protocel, Publish Message
M) Telemetry Transport Protocol, Publish Message

0BED 62 61 B5 6F 6c 61 30 12 00 B6 ba Hola®
70 72 75 T8 43 bf 48 6T 6c 61 prue 7 1-C-Hola
30 12 ee 61 05 ©2 Of 5e 27 d5 O -prue ba- -
48 6f 6C 72 75 65 62 61 05 ©2 Hola®- - prueba- -
73 88 cB 12 0@ @6 78 72 75 65 s -5Hola @ -prue
62 61 05 6F 6c 61 30 12 @0 @6 ba--8* 1 Hola@
70 72 75 c5 08 cb 48 6T 6c 61 prueba - - -Hola
30 12 6@ 61 05 @2 72 3d 79 65 O - -prue ba -r=ye
48 6f 6C 72 75 65 62 61 85 ©2 Hola@- - prueba- -
BE6 00 55 12 0@ @6 7@ 72 75 65 -+U-Hola @- - -prue
62 61 5 6F 6c 61 30 12 80 @6 ba E- - Hola® -
70 72 75 d2 2e a2 48 6f 6c 61 prueba: - --,-Hola

(b) Segundo paquete

Internet Protocol Version 4, Src: 127.0.8.1, Dst: 127.0.0.1

Transmission Control Protocol, Src Port: 60564, Dst Port: 1883, Seq: 39, Ack: 56, Len: 642

MQ Telemetry Transport Protocol, Publish Message

MQ Telemetry Transport Protocol, Publish Message

MQ Telemetry Transport Protocol, Publish Message

Header Flags: ©x3@, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
Msg Len: 18

Topic Length: &

Topic: prueba

(vvw~

~ Properties
Total Length: 5
I n Expiry Interval (0x02)
3855

Message: 4B6TGCE1

MQ Telemetry Transport Protocol, Publish Message

MQ Telemetry Transpert Protocol, Publish Message

MQ Telemetry Transport Protocol, Publish Message

MQ Telemetry Transport Protocol, Publish Message

M0 Telemetry Transport Protocol, Publish Message

8070 70 72 75 65 62 61 05 02 48 6f 6c 61 prueba - @om
e 30 12 00 B6 70 72 75 65 @f S5e 27 d5 @ --prue .
48 6f 6c 61 30 12 @0 06 70 72 75 65 62 61 85 @2 HolaB- .. prueba- -
73 88 cB 35 48 6f 6c 61 30 12 0@ @6 7@ 72 75 65 s--5Hola @ -prue
62 61 85 B2 38 2a a6 31 48 6f 6c 61 3@ 12 @0 @6 ba- 8" 1 Hola@®

70 72 75 65 62 61 85 B2 @b c5 @8 cb 48 6f 6c 61 prueba-- - -Hola
30 12 00 B6 70 72 75 65 62 61 B5 @2 72 3d 79 65 @ -prue ba -r=ye
48 6f 6c 61 30 12 @9 @6 7O 72 75 65 62 61 5 02 Hola®@- - prueba- -

06 00 55 ad 48 6f 6c 61 30 12 00 @6 78 72 75 65 - U-Hola @ - -prue
62 61 85 02 45 e6 b6 Ga 48 6T Gc 61 38 12 80 06 ba - ‘E--- Hola®@
70 72 75 65 62 61 05 02 0Oa d2 2e a2 43 6f 6¢c 61 prueba-- - -.-Hola

30 12 B0 @6 70 72 75 65 62 61 05 €2 79 c7 82 34 0. .prue ba -y -4

(c) Tercer paquete

Figura 6.2: Informacion de paquetes PUBLISH

Tiempo (s)

o
5
8

0.02

0

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0

A

A

[}

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Numero de muestra

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

(b) Raspberry pi 4

67

Figura 6.3: Tiempo en realizarse el cifrado y funcién estego del esquema ocultacion

de informaciéon

En el esquema de ocultacion de la llave de cifrado se analizan los paquetes que
se capturan en Wireshark. En la figura 6.4 se muestra el contenido de dos paquetes
PUBLISH. El contenido marcado en azul muestra el pentltimo paquete que se envio

68 Resultados

en donde se puede observar como el campo intervalo del mensaje contiene el ntimero
42C59843 en hexadecimal, que contiene los ocho tltimos bits de la informacion que se
oculto es decir la llave de cifrado, y la carga ttil se tiene el mensaje “hola”. El siguiente
paquete marcado en color rojo marca el fin del envio de informacién mediante el valor
A9, en hexadecimal, en el campo, en este paquete se envia la informacion cifrada en
la carga ttil. Los paquetes no tienen relaciéon entre si y en el paquete final se observa
la informacion cifrada, pero la llave de cifrado no se observa dado que se oculté por
la funcién estego.

+ Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1 -
» Transmission Control Protocol, Src Port: 33602, Dst Port: 1883, Seq: 39, Ack: 56, Len: 218
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MQ Telemetry Transport Protocol, Publish Message
» MO Telemetry Transport Protocol, Publish Message
-
» Header Flags: ©x30, Message Type: Message, QoS Level: At most once delivery (Fire and Forget)

Msg Len: 18

Topic Length: 6

Topic: prueba
« Properties

ota enoth; o
ID: Publication Expiry Interval (@x82

Msg Len: 46

Topic Length: 6

Topic: prueba
~ Properties

Total Length: §

ID: Publication Expiry Interval (@x82)|
Walue: 169
|Message: 41?dd9fchBd3anbb?06d0097debbcfbb?23866?cblef5908d92d923396fcecI
~ MQ Telemetry Transport Protocol, Disconnect Req
+ Header Flags: 8xe®, Message Type: Disconnect Req
Msg Len: @

60 @0 03 04 00 06 0O 0@ 0O OO 06 90 G0 OO0 @8 00
45 @0 01 Ge cf ca 40 00 40 06 6c 1d 7f @0 60 @1 E (iR nt
37

7T @0 00 @1 B3 42 07 5b 33 7T 37 d5 S5e 24 dd 67 B [Ag-g
80 19 92 @0 Tf 02 00 0@ 01 @1 08 @a 20 ad 85 ba
20 ad 85 ba 30 12 00 @6 7O 72 75 65 62 61 05 02] prueba

2c c6 62 65 68 6f 6c 61 30 12 0O 06 70 72 75 65 , -behola O -prue
62 61 05 02 6a 04 f4 ce 68 6f 6c 61 30 2e 60 @6 ba -j hola@.
70 72 75 65 62 61 85 62 24 a4 d2 43 41 7d d9 f® prueba - §--CA}
fc ed 30 ae bb 78 6d G@ 97 de bb cf bb 72 38 66 8- -pm ref
7c bl ef 59 c8 d9 2d e2 33 06 fc ec 30 12 6O @6 |- Y- --- 3---0
70 72 75 65 62 61 85 B2 6c ©1 ec B4 68 6F 6c 61 prueba - 1---hola
30 12 00 06 70 72 75 65 62 61 05 82 68 61 20 25 @ --prue ba --a %
68 6F 6c 61 30 12 @A B6 70 72 75 65 62 61 85 62 hola@ - prueba
6e 85 16 Oa 68 6f 6c 61 30 12 B0 86 76 72 75 65
62 61 85 B2 30 _2e 00 06
70 72 75 65 62 61 05 02 |00 60 60 ad 41 7d d9 1)
fc ed 30 ae bb 70 60 6@ 97 de bb cf bb 72 38 66
7c bl ef 59 c8 d9 2d e2 33 06 fc_ecled 60

Figura 6.4: Captura de paquetes del esquema ocultacion de llave

En la figura 6.5a se observa una grafica con el tiempo en segundos que tarda el
cifrado y la funcion estego usando la FPGA, y la figura 6.5b se muestra la gréafica
de tiempo igual en segundos usando una Raspberry Pi 4. El tiempo que emplea la
FPGA es mayor a la Raspberry por tal motivo, en este esquema es preferible usar el
software en lugar de hardware para ocultar la llave de cifrado. La forma de ocultar
la llave es correcta, la informacion cifrada se puede conocer dado que la carga ttil es
visible, pero la llave se puede compartir y es dificil poder encontrar la relacion que
hay entre los paquetes involucrados.

69

| J

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

(a) FPGA

0.0005

0.00045

0.0004

0.00035

0.0003
0.00025
0.0002

0.00015

0.0001
0.00005

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

(b) Raspberry pi 4

Figura 6.5: Tiempo en realizarse el cifrado y funcién estego del esquema ocultacion
de llave de cifrado

El sistema utiliza, ademas del cifrador SIMON;, el cifrador SPECK. Este cifrador
es disenado para su implementacion en software. Este sistema solo fue implementado
en una Raspberry Pi 4. En las figuras 6.6a y 6.6b se muestra el tiempo de ejecucion

70 Resultados

del cifrado y de la funciéon estego, y el tiempo de ejecucion del programa completo.
El tiempo del cifrado y de la funcién estego se encuentra en un rango entre 0.0006 y
0.001 s, el tiempo es muy intermitente y no presenta un tiempo constante, esto puede
deberse a la forma es que se cifra la informacion y el manejo de bits en software
para la funcion estego. El tiempo de ejecucion del sistema presenta un tiempo més
constante entre 0.008 y 0.009, presenta tiempos menores en algunas pruebas, pero en
general el tiempo es consistente.

0.0014
0.0012
0.001

0.0008

0.0006

0.0004

0.0002

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

(a) Cifrado y funcioén estego

0.01
0.009
0.008 /\/\/\/\N
0.007
0.006

0.005

0.004

0.003
0.002
0.001

0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

(b) Sistema completo

Figura 6.6: Tiempo de ejecucion del sistema con el cifrador Speck

71

La implementacion usando un broker publico se logroé con éxito. Ambos clientes,
publicador como suscriptor, se conectaron y el intercambio de informacion se logro
satisfactoriamente. El cliente-publicador realiza las operaciones de cifrado y la ocul-
tacion de la informacion, los paquetes generados son enviados al broker publico y este
a su vez envia los paquetes al cliente-suscriptor. La informacion oculta se recupera
de forma correcta cuando se reciben los paquetes del lado del suscriptor, se extrae la
informacion oculta y se descifra.

72

Resultados

Capitulo 7

Conclusiones y trabajo a futuro

Este trabajo presenta un sistema que oculta y brinda confidencialidad a la in-
formacion usando el protocolo de comunicacion MQTT en dispositivos de IdC. El
protocolo MQTT v5.0 mostré ser un buen objeto portador. Este protocolo es poco
complejo y liviano lo que lo hace ideal para trabajar con dispositivos con recursos
limitados. La versién 5.0 contiene mas campos que sirven para ocultar informacion
a diferencia de la version 3.1.1, lo que lo vuelve un excelente candidato para usar
como objeto portador. El paquete PUBLISH es el mas idéneo para utilizar debido
a que es usado para intercambiar informaciéon entre los clientes y el broker y no es
extrano que una gran cantidad de estos paquetes sean intercambiados a comparaciéon
de otros paquetes como CONNECT o SUBSCRIBE que solo se envia un par de ve-
ces. Los paquetes se conforman de un encabezado fijo, un encabezado variable y la
carga util, el encabezado fijo no puede ser modificado o el paquete no funcionara de
manera correcta, la carga ttil contiene la informaciéon que se quiere compartir y no
es preferible modificarla porque es facil de visualizar, el encabezado variable contiene
varios campos que se pueden utilizar para ocultar informacién unos més viables que
otros que dependen de la funcién estego que se desarrolle para la ocultacion.

La informacion se cifra mediante dos algoritmos criptograficos ligeros, SIMON y
SPECK. El primero se enfoca en hardware y el segundo en software. SIMON se imple-
ment6 en hardware y software para realizar un anélisis sobre el tiempo de ejecucion.
En las figuras 6.3a y 6.3b se muestran los tiempos del cifrado y la funcién estego
de la ejecucion en FPGA y Raspberry respectivamente, en la FPGA los tiempos son
algo variables pero logra tener tiempos menores en comparacion con el tiempo en
la Raspberry. El cifrado que se realiza no afecta la funcién estego por tal motivo si
se logra proveer confidencialidad con un algoritmo que se adecua a dispositivos de
recursos limitados.

Se desarrollaron cinco funciones esteganogréficas (las primeras tres funciones se
detallan en el Apéndice C) que estan enfocadas para cuatro campos, tema de res-
puesta, tipo de contenido, nombre del tema e intervalo de caducidad del mensaje. Los
tres primeros campos utilizan el tipo de dato UTF-8 y el tltimo utiliza un entero sin
signo de 32 bits. La primera funcion estego llama uno a uno se utilizan dos campos,
tema de respuesta y tipo de contenido. Se inserta la informacion de tal manera que los

73

74 Conclusiones y trabajo a futuro

caracteres en las posiciones pares se insertan en las posiciones pares del campo tema
de respuesta y los caracteres en las posiciones impares se insertan en las posiciones
impares del campo tipo de contenido y las posiciones vacias se llenan con caracteres
obtenidos de forma aleatoria. La segunda funciéon estego llamada intercalado parte la
cadena de caracteres original en dos y la primera mitad los inserta en las posiciones
pares del campo tema de respuesta y la segunda mitad en las posiciones impares.
Ambas funciones trabajan con caracteres y al no transformar la informacién se lo-
gra apreciar una relacion entre el mensaje original y la cadena obtenida al aplicar la
funcion estego, otro problema que se encuentra es que solo se pueden usar caracteres
alfanumeéricos y si se aplica un cifrado no es seguro que la informaciéon solo contenga
estos caracteres lo cual hace inviable estas dos funciones.

La tercera funciéon estego llamada fin de cadena, utiliza el principio de delimitar
una cadena. Cuando se quiere expresar el fin de una cadena se utiliza el caracter
“\0” y asi el sistema detecta el tamano de una cadena. Para esta funcion se agrega
este caracter y seguido se anade la informacion que se quiere ocultar, asi usando
la forma en que el broker detecta el nombre del tema se averigua si es factible el
uso de esta funcion. Al realizar los experimentos y al usar el software Wireshark se
observo una alerta. Dicha alerta mostraba que se detectaba un error en la creacién
del paquete, esto no es deseado ya que indica a alguien que analiza el paquete que
hay una modificacion. Esta alerta se dejo pasar y se observo el comportamiento del
broker, la informacion no llegaba al cliente suscrito al tema por lo que esta funcién es
inviable.

Las tltimas dos funciones se describen en este trabajo de tesis y se pudo observar
que logran ocultar informacion. Al analizarse con Wireshark no se encontro6 relacion
alguna entre los paquetes que se envian y con la informacién original que se oculto.
Logrando asi dos funciones que permiten ocultar informacién que cumplen con la
robustez, capacidad e indetectabilidad propiedades necesarias en una funcién estego.

La implementacion en FPGA requeria un sistema operativo para el procesador
Cortex-A9, con la que la placa trabaja. La primera opciéon FreeRTOS posee una
biblioteca para el uso del protocolo MQTT, sin embargo, solo funciona para la versién
3.1.1y al trabajar con la version 5.0 no es compatible con el sistema. Se trato de anadir
la version nueva a FreeRTOS para asi utilizar el sistema operativo, no obstante, no
se logré el objetivo y por falta de tiempo se tuvo que dejar el desarrollo de esta
implementacion.

El siguiente sistema operativo es Petalinux, un sistema basado en Yocto que nos
permite recrear un entorno de Linux enfocado en sistemas embebidos de Xilinx. Los
paquetes necesarios estan disponibles desde la creacion del proyecto petalinux, la ver-
sion disponible 1.6.12 cuenta con soporte para la versiéon 5.0 que permite el desarrollo
del sistema planteado en el presente documento. Por lo que es posible el desarrollo
del sistema usando una FPGA para el proceso de cifrado y de la funcién estego.

Se desarrollo el sistema en una Raspberry Pi 4 para asi comparar el comporta-
miento del sistema en ambos dispositivos. En el primer esquema la FPGA en el cifrado
y la funcién estego en ocasiones el tiempo es mucho menor comparado con el tiempo

75

en la Raspberry y en otras el tiempo es diez veces mayor, esto puede ser producido
por el tiempo que se tarda en enviar la informacién o por la misma naturaleza de la
FPGA. Para el segundo esquema se puede apreciar que el desarrollo en software es
mas eficiente en términos de tiempo.

Dado que se logré implementar ambos esquemas en los dispositivos seleccionados,
se puede concluir que este sistema es capaz de ser utilizado en dispositivos con recursos
limitados, ya que no se necesita un sistema tan complejo para realizar las funciones
esteganogréaficas desarrolladas y los cifradores SIMON y SPECK estan disenados para
trabajar en un entorno con recursos limitados.

Un broker publico permite una conexién a cualquier usuario. No es necesario
usar credenciales de autenticacion. Se usa el broker de Mosquitto con direccién host
“test.mosquitto.org” y en el puerto 1883. En este puerto no hay seguridad, y no es
necesaria debido a que ya se otorga seguridad con el sistema implementado. Aunque
los paquetes sean interceptados si no se logra saber que dentro del campo intervalo
de caducidad se oculté informacion, y ademés se debe conocer la funcién estego, el
algoritmo de cifrado y la llave de cifrado para conocer la informaciéon que se compartio.

En las pruebas usando un broker publico se logré enviar y recibir de manera
correcta. Se puede concluir que no se necesita un broker en especifico, ya que las
modificaciones se realizan en los clientes. El broker queda sin modificar y solo se
necesitan los clientes para lograr anadir seguridad a la informacion. No se modifica el
broker y esto permite que cualquier broker pueda ser utilizado para este sistema.

Hay tres trabajos relacionados con el trabajo realizado. El primer trabajo reali-
zado por Kosiak, et al. [73] plantea utilizar un sistema de deteccion de intrusos para
detectar ciertos tipos de esteganografia mediante el software Zeek. En este trabajo
se analiza el protocolo MQTT v3.1.1 y lograron detectar la mayoria de los casos. En
comparacion con el trabajo presentado, se utiliza la version 5.0 que es la mas actual
en el momento de realizar el trabajo, ademéas no presenta una funcién estego que
inserte la informacion en el paquete del protocolo.

En el trabajo realizado por Velinov, et al. [16] utiliza el protocolo MQTT v3.1.1
para encontrar canales encubiertos en dicho protocolo. Desarrollaron dos tipos de
canales, siete directos y seis indirectos. Los primeros solo necesitan que el emisor y
el receptor permanezcan activos para la transmision de informacion y los segundos
no necesariamente necesitan que ambos dispositivos estén activos, pero necesitan
un intermediario para la comunicacion. Los canales directos utilizan un campo del
protocolo para ocultar informacion, sin embargo, no utilizan una funciéon estego para
insertar la informacion, en su lugar insertan directamente la informacion. Las pruebas
que realizaron solo fueron enfocadas en los canales indirectos que se basan en indicar
un ‘1’ binario si un campo en especifico es utilizado y un ‘0’ si el campo no es utilizado.

Mileva, et al. [71] sigue el trabajo realizado por Velinov, et al. [16], en este trabajo
se analiza el protocolo MQTT v5.0 para encontrar nuevos canales directos e indi-
rectos, dado que la nueva version anade campos nuevos. Encontraron nuevos canales
ademas de los encontrados en el trabajo anterior, sin embargo, su implementacion
sigue enfocada en canales indirectos que presentan un valor ‘1’ binario si un campo

76 Conclusiones y trabajo a futuro

estd presente y un ‘0’ si no lo esté.

Estos trabajos se asemejan a el trabajo realizado, no obstante, hay técnicas que
no se aplican en los trabajos anteriores mencionados. Estos son utilizar una funciéon
estego para la insercion de la informaciéon al objeto portador ademas de agregar un
cifrador y utilizar la version mas actual de este protocolo.

Como trabajo a futuro se propone sustituir el sistema operativo Petalinux, por
uno més liviano como FreeRTOS ya que en este momento no hay biblioteca para el
protocolo MQTT v5.0. Implementar mas funciones esteganograficas para tener més
variedad en la forma de ocultar la informacion. Este trabajo se enfoca en el protocolo
MQTT, pero se puede ampliar méas el panorama al utilizar més protocolos tales como
CoAP o XMPP como medios para ocultar la informacion. Desarrollar a futuro la
implementacion del cifrador y la funcién estego como un circuito integrado de un
Ginico proposito.

Bibliografia

[1]

2l
3]

4]

[5]

[6]

7]

18]

19]

Maria Guadalupe Parra. Sistema computacional para la deteccion de informacion
oculta en archivos de audio digital utilizando la transformada rapida de fourier:
Detesteg audio 1.0, Aug 2016.

OASIS Standard. MQTT version 5.0. Retrieved June, 22:2020, 2019.

Syaiful Andy, Budi Rahardjo, and Bagus Hanindhito. Attack scenarios and secu-
rity analysis of mqtt communication protocol in iot system. In 2017 4th Interna-
tional Conference on Electrical Engineering, Computer Science and Informatics
(EECSI), pages 1-6. IEEE, 2017.

Abdullah AlWatyan, Wesam Mater, Omar Almutairi, Mohammed Almutairi,
Aisha Al-Noori, et al. Security approach for LSB steganography based FPGA

implementation. In 2017 7th International Conference on Modeling, Simulation,
and Applied Optimization (ICMSAO), pages 1-5. IEEE, 2017.

National Institute of Standars and Technology. Lightweight cryptography.
https://csrc.nist.gov/Projects/Lightweight-Cryptography, 2017. [Acce-
dido el 22 de Noviembre de 2021].

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. cryptology eprint archive, 2013.

Manju Khari, Aditya Kumar Garg, Amir H Gandomi, Rashmi Gupta, Rizwan
Patan, and Balamurugan Balusamy. Securing data in internet of things (IoT)
using cryptography and steganography techniques. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, 50(1):73-80, 2019.

Anshuman Kalla, Pawani Prombage, and Madhusanka Liyanage. Introduction
to iot. loT Security: Advances in Authentication, pages 1-25, 2020.

Omkar Badve, BB Gupta, and Shashank Gupta. Reviewing the security features
in contemporary security policies and models for multiple platforms. In Hand-
book of Research on Modern Cryptographic Solutions for Computer and Cyber
Security, pages 479-504. IGI Global, 2016.

7

https://csrc.nist.gov/Projects/Lightweight-Cryptography

78

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

BIBLIOGRAFIA

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
Ddos in the iot: Mirai and other botnets. Computer, 50(7):80-84, 2017.

Brij B Gupta. Computer and cyber security: principles, algorithm, applications,
and perspectives. CRC Press, 2018.

Omnia Abu Waraga, Meriem Bettayeb, Qassim Nasir, and Manar Abu Talib.
Design and implementation of automated iot security testbed. Computers €
Security, 88:101648, 2020.

James A Jerkins. Motivating a market or regulatory solution to iot insecurity
with the mirai botnet code. In 2017 IEEE 7th annual computing and communi-
cation workshop and conference (CCWC), pages 1-5. IEEE, 2017.

Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. Understanding the mirai botnet. In 26th USENIX security
symposium (USENIX Security 17), pages 1093-1110, 2017.

Zhen Ling, Kaizheng Liu, Yiling Xu, Yier Jin, and Xinwen Fu. An end-to-
end view of iot security and privacy. In GLOBECOM 2017-2017 IEEE Global
Communications Conference, pages 1-7. IEEE, 2017.

Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and security
in internet of things and wearable devices. IEEE Transactions on Multi-Scale
Computing Systems, 1(2):99-109, 2015.

Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin. Smart nest
thermostat: A smart spy in your home. Black Hat USA, (2015), 2014.

Bryan Parno, Jonathan M McCune, and Adrian Perrig. Bootstrapping trust in
modern computers. Springer Science & Business Media, 2011.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. A
{Large-Scale} analysis of the security of embedded firmwares. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 95-110, 2014.

Mathieu Stephan. Hacking the d-link dsp-w215 smart plug, May 2014.

Critical security flaw: Glibc stack-based buffer overflow in getaddrinfo() (cve-
2015-7547), Feb 2016.

Ms Smith. Security holes in the 3 most popular smart home hubs and honeywell
tuxedo touch. Network World, 2015.

Ishtiaq Rouf, Hossen Mustafa, Miao Xu, Wenyuan Xu, Rob Miller, and Marco
Gruteser. Neighborhood watch: Security and privacy analysis of automatic meter
reading systems. In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 462-473, 2012.

BIBLIOGRAFIA 79

[24] Chaoshun Zuo, Wubing Wang, Zhigiang Lin, and Rui Wang. Automatic forgery
of cryptographically consistent messages to identify security vulnerabilities in
mobile services. In NDSS, 2016.

[25] Xuanxia Yao, Xiaoguang Han, Xiaojiang Du, and Xianwei Zhou. A lightweight
multicast authentication mechanism for small scale iot applications. IEEE Sen-
sors Journal, 13(10):3693-3701, 2013.

[26] Xiaojiang Du and Hsiao-Hwa Chen. Security in wireless sensor networks. [EEFE
Wireless Communications, 15(4):60-66, 2008.

[27] Jesus Molina. Learn how to control every room at a luxury hotel remotely: The
dangers of insecure home automation deployment. Black Hat USA, 2014, 2014.

[28] Mahmudur Rahman, Bogdan Carbunar, and Madhusudan Banik. Fit and vul-
nerable: Attacks and defenses for a health monitoring device. arXiv preprint
arXiw:1304.5672, 2013.

[29] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. Security analysis of internet-
of-things: A case study of august smart lock. In 2017 IEEE conference on com-
puter communications workshops (INFOCOM WKSHPS), pages 499-504. IEEE,
2017.

[30] Kelvin Ly and Yier Jin. Security studies on wearable fitness trackers. In 38th An-
nual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, 2016.

[31] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse

Walker. Challenges in access right assignment for secure home networks. In 5th
USENIX Workshop on Hot Topics in Security (HotSec 10), 2010.

[32] Sergei Chistiakov et al. Secure storage and transfer of data in a smart lock
system. 2017.

[33] Yossef Oren and Angelos D Keromytis. From the aether to the
{Ethernet—Attacking} the internet using broadcast digital television. In 23rd
USENIX Security Symposium (USENIX Security 14), pages 353-368, 2014.

[34] Tamara Denning and Tadayoshi Kohno. Empowering consumer electronic secu-
rity and privacy choices: Navigating the modern home. In Symposium on Usable

Privacy and Security (SOUPS). Citeseer, 2013.

[35] Tamara Denning, Tadayoshi Kohno, and Henry M Levy. Computer security and
the modern home. Communications of the ACM, 56(1):94-103, 2013.

[36] Blase Ur, Jaeyeon Jung, and Stuart Schechter. Intruders versus intrusiveness:
teens’ and parents’ perspectives on home-entryway surveillance. In Proceedings

80

[37]

138

[39]

[40]

[41]

[42]

43
|44]
[45]

|46]

147]

48]

[49]

BIBLIOGRAFIA

of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pages 129-139, 2014.

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis of emer-
ging smart home applications. In 2016 IEEE symposium on security and privacy
(SP), pages 636-654. IEEE, 2016.

Nathaniel Gyory and M Chuah. Iotone: Integrated platform for heterogeneous
iot devices. In 2017 International Conference on Computing, Networking and
Communications (ICNC), pages 783-787. IEEE, 2017.

Eduardo Fernandez, Juan Pelaez, and Maria Larrondo-Petrie. Attack patterns:
A new forensic and design tool. In IFIP International Conference on Digital
Forensics, pages 345-357. Springer, 2007.

Thamer A Alghamdi, Aboubaker Lasebae, and Mahdi Aiash. Security analysis
of the constrained application protocol in the internet of things. In Second in-

ternational conference on future generation communication technologies (FGCT
2013), pages 163-168. IEEE, 2013.

Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. Security analysis of
wearable fitness devices (fitbit). Massachusetts Institute of Technology, 1, 2014.

Cheena Sharma and Naveen Kumar Gondhi. Communication protocol stack for
constrained iot systems. In 2018 3rd International Conference On Internet of
Things: Smart Innovation and Usages (IoT-SIU), pages 1-6. IEEE, 2018.

Eclipse Foundation. IoT Developer Survey Results, Apr 2018.
Eclipse Foundation. 2020 IoT Developer Survey Key Findings, Oct 2020.

OASIS Standard. Mqtt version 3.1. 1. URL hitp://docs. oasis-open. org/mqt-
t/mqtt/v3, 1:29, 2014.

Aleksandar Velinov, Aleksandra Mileva, Steffen Wendzel, and Wojciech Mazur-
czyk. Covert channels in the MQTT-Based internet of things. IEEE Access,
7:161899-161915, 2019.

Biswajeeban Mishra and Attila Kertesz. The use of mqtt in m2m and iot systems:
A survey. IEEE Access, 8:201071-201086, 2020.

C Vanmathi and S Prabu. A survey of state of the art techniques of stega-
nography. International Journal of Engineering and Technology, 5(1):376-379,
2013.

Soumyendu Das, Subhendu Das, Bijoy Bandyopadhyay, and Sugata Sanyal.
Steganography and steganalysis: different approaches. arXiv preprint ar-
Xw:1111.3758, 2011.

BIBLIOGRAFIA 81

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Sanghamitra Debnath, Manashee Kalita, and Swanirbhar Majumder. A review

on hardware implementation of steganography. In 2017 Dewvices for Integrated
Circuit (DevIC), pages 149-152. IEEE, 2017.

Ken Kabeen and Peter Gent. Image compression and discrete cosine transform.

College of Redwoods.
Mark Noto. MP3Stego: Hiding text in MP3 files. Sans Institute, page 5, 2001.

Udit Budhia and Deepa Kundur. Digital video steganalysis exploiting collusion
sensitivity. In Sensors, and Command, Control, Communications, and Intelligen-
ce (C31) Technologies for Homeland Security and Homeland Defense 111, volume
5403, pages 210-221. International Society for Optics and Photonics, 2004.

Sandip Bobade and Rajeshawari Goudar. Secure data communication using
protocol steganography in IPv6. In 2015 International Conference on Computing
Communication Control and Automation, pages 275-279, 2015.

Sattar B Sadkhan and Akbal O Salman. A survey on lightweight-cryptography
status and future challenges. In 2018 International Conference on Advance of
Sustainable Engineering and its Application (ICASEA), pages 105-108. IEEE,
2018.

Hamidreza Damghani, Heliasadat Hosseinian, and Leila Damghani. Crypto-
graphy review in [oT. In 2019 4th Conference on Technology In Electrical and
Computer Engineering (ETECH2019), 2019.

Deena Nath Gupta and Rajendra Kumar. Lightweight cryptography: an IoT
perspective. Trivium, 80(1):2580, 2019.

Isha Bhardwaj, Ajay Kumar, and Manu Bansal. A review on lightweight cry-
ptography algorithms for data security and authentication in IoTs. In 2017 4th
International Conference on Signal Processing, Computing and Control (ISPCC),
pages 504-509. IEEE, 2017.

Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. Lsb: A
lightweight scalable blockchain for iot security and anonymity. Journal of Parallel
and Distributed Computing, 134:180-197, 2019.

Igbal H Sarker, Asif Irshad Khan, Yoosef B Abushark, and Fawaz Alsolami.
Internet of things (IoT) security intelligence: a comprehensive overview, machine
learning solutions and research directions. Mobile Networks and Applications,
pages 1-17, 2022.

Thirumalesu Kudithi and R Sakthivel. High-performance ECC processor archi-
tecture design for IoT security applications. The Journal of Supercomputing,
75(1):447-474, 2019.

82

[62]

[63]

[64]

[65]

[66]

67]

68

[69]

[70]

[71]

[72]

BIBLIOGRAFIA

Ammar Mohammad, Hasan Al-Refai, and Ali Ahmad Alawneh. User authenti-
cation and authorization framework in iot protocols. Computers, 11(10), 2022.

Vikas S Kait and Bina Chauhan. BPCS steganography for data security using
FPGA implementation. In 2015 International Conference on Communications
and Signal Processing (ICCSP), pages 1887-1891. IEEE, 2015.

Alejandro Martinez, Alberto Ramos, Isaac Compean, and Raquel Avila. Message
concealment system of voice signals implemented on FPGA. IEEFE Latin America
Transactions, 14(8):3554-3559, 2016.

Krzysztof Szczypiorski. Steganography in TCP /IP networks. In State of the Art
and a Proposal of a New System—HICCUPS, Institute of Telecommunications’
seminar, Warsaw University of Technology, Poland. Citeseer, 2003.

Deepa Kundur and Kamran Ahsan. Practical internet steganography: data hi-
ding in IP. Proc. Texas wksp. security of information systems, 2003.

Princess Marie B Melo, Ariel M Sison, and Ruji P Medina. Enhanced TCP
sequence number steganography using dynamic identifier. In 2019 IEEE Eurasia
Conference on 10T, Communication and Engineering (ECICE), pages 482-485.
IEEE, 2019.

Pengfei Xue, Jingsong Hu, Ronggui Hu, and Yourui Wang. The solution of key
transmission in multi-level network steganography. In 2017 International Con-
ference on Computer Technology, Electronics and Communication (ICCTEC),
pages 1391-1394, 2017.

Artur M. Brodzki and Jedrzej Bieniasz. Yet another network steganography
technique basedon TCP retransmissions. In 2019 5th International Conference
on Frontiers of Signal Processing (ICFSP), pages 35-39, 2019.

Geethanjali G, C Ashwin, Bharath V P, Avinash A, and Anurag Hiremath. En-
hanced data encryption in IoT using ECC cryptography and LSB steganography.

In 2021 International Conference on Design Innovations for 3Cs Compute Com-
municate Control (ICDISC), pages 173-177, 2021.

DA Trujillo-Toledo, OR Lépez-Bonilla, EE Garcia-Guerrero, E Tlelo-Cuautle,
D Loépez-Mancilla, O Guillén-Ferndndez, and E Inzunza-Gonzalez. Real-time
RGB image encryption for IoT applications using enhanced sequences from chao-
tic maps. Chaos, Solitons € Fractals, 153:111506, 2021.

Akram A. Almohammedi and Vladimir Shepelev. Saturation throughput analy-
sis of steganography in the IEEE 802.11p protocol in the presence of non-ideal
transmission channel. IEEE Access, 9:14459-14469, 2021.

BIBLIOGRAFIA 83

[73] Tomasz Koziak, Katarzyna Wasielewska, and Artur Janicki. How to make an
intrusion detection system aware of steganographic transmission. In Furopean
interdisciplinary cybersecurity conference, pages 77-82, 2021.

[74] Aleksandra Mileva, Aleksandar Velinov, Laura Hartmann, Steffen Wendzel, and
Wojciech Mazurczyk. Comprehensive analysis of MQTT 5.0 susceptibility to
network covert channels. computers € security, 104:102207, 2021.

[75] Roger A. Light. Mosquitto: server and client implementation of the mqtt proto-
col. Journal of Open Source Software, 2(13):265, 2017.

84

BIBLIOGRAFIA

Apéndice A
Instalacion Petalinux

Petalinux es el sistema operativo que se instala en la tarjeta PYNQZ-Z2 para el proce-

sador Cortex-A9. La version que se utiliza para la implementacion de este trabajo es la

version 2021.2 que se puede descargar del siguiente enlace https://www.xilinx.com/
support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/
2021-2.html.

Para la instalacion de Petalinux v2021.2 es necesario instalar los siguientes pa-
quetes para el sistema operativo Ubuntu, que es donde se realiz6 la instalacion de
Petalinux, para su correcto funcionamiento. El archivo xlsx que contiene la lista de pa-
quetes que se deben instalar, dependiendo del sistema operativo Linux que se utiliza,
se puede descargar del siguiente enlace https://support.xilinx.com/s/article/
00003252171anguage=en_US. La linea de comandos para instalar los paquetes nece-
sarios es la siguiente.

$ sudo apt-get install iproute2 gawk python3 python build-essential gcc git make
net-tools libncursesb-dev tftpd zliblg-dev libssl-dev flex bison libselinuxl
gnupg wget git-core diffstat chrpath socat xterm autoconf libtool tar unzip
texinfo zliblg-dev gcc-multilib automake zliblg:i386 screen pax gzip cpio
python3-pip python3-pexpect xz-utils debianutils iputils-ping python3-git
python3-jinja2 libegll-mesa libsdll.2-dev pylint3

Petalinux necesita que el sistema host /bin/sh sea “bash”. Si el sistema operativo
es Ubuntu el sistema host determinado es “dash”, por lo tanto es necesario cambiar
el sistema host mediante el siguiente comando.

$ sudo dpkg-reconfigure dash

Cuando el archivo de instalacion se ha descargado se procede a otorgarle permisos
de escritura para instalar los archivos necesarios para el uso de Petalinux. El comando
necesario es el siguiente.

$ chmod 755 ./petalinux-v2021.2-final-installer.run
Se puede instalar Petalinux en la carpeta donde se descargo, el manual de instala-

85

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-2.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools/2021-2.html
https://support.xilinx.com/s/article/000032521?language=en_US
https://support.xilinx.com/s/article/000032521?language=en_US

86 Instalacion Petalinux

cion recomienda que no se instale Petalinux como usuario root, esto debido a que los
archivos se pueden sobrescribir archivos y corromper el sistema. En caso que se quiera
especificar la direccion del archivo de registros, la direcciéon en donde se quiere instalar
Petalinux o més opciones. El comando completo queda de la siguiente manera.

$./petalinux-v2021.2-final-installer.run [--log <LOGFILE>] [-d|--dir
<INSTALL_DIR>] [options]

Para este trabajo se creo una carpeta en la ubicacién home y posteriormente se
instalo Petalinux en la ubicaciéon que se acaba de crear. Esto se realiza mediante los
siguientes comandos.

$ mkdir -p /home/<usuario>/petalinux/2021.2
$ $./petalinux-v2021.2-final-installer.run --dir /home/<usuario>/petalinux/2021.2

Para habilitar el entorno del trabajo de Petalinux se utiliza el siguiente comando.

$ source <directorio-instalacion-Petalinux>/settings.sh

Se puede verificar que se habilita correctamente el entorno con el siguiente coman-
do

$ echo $PETALINUX
Se obtiene la direcciéon en donde se instald Petalinux y asi se puede verificar que

Petalinux se ha instalado de manera correcta y poder empezar a configurar el proyecto
de Petalinux.

Apéndice B
Creacion de proyecto Petalinux

Para crear el proyecto de Petalinux lo primero que se debe hacer es habilitar el entorno
de trabajo para poder utilizar los comandos propios de Petalinux, esto se muestra en
el Apéndice A. Una vez que se ha habilitado el entorno de trabajo se procede a
desarrollar el proyecto.

Lo primero es crear un proyecto a partir de una configuracion de hardware cons-
truida previamente mediante un archivo creado en el software Vivado que permite
realizar la configuraciéon de hardware para un uso deseado, con los componentes y
programacion de hardware deseados. Para la creacion del proyecto se utiliza el si-
guiente comando.

$ petalinux-create --type project --template <plataforma> --name
<nombre_del_proyecto>

El comando para crear el proyecto es petalinux-create y se especifica que serd un
proyecto mediante el argumento --type, con el argumento --template se especifica
la plataforma en que se desarrolla el proyecto, estas pueden ser versal, para los
dispositivos Versal ACAP, zyngMP para los dispositivos Zynq UltraScale + MPSoC,
zynq para dispositivos Zyng-7000 y microblaze para dispositivos con procesadores
MicroBlaze. Esto crea el proyecto en la direccion en la que se ejecutéd este comando.

Cuando se crea el proyecto se crea una carpeta con el nombre que se asigné que
contendra todos los archivos que se utilizaran para la creacion del sistema Petalinux.
Els necesario ingresar a la carpeta con el siguiente comando.

$ cd <nombre-del-proyecto>

Se debe configurar el proyecto con la configuracion de hardware exportada en
el archivo XSA que se ha creado previamente, por lo tanto se utiliza el siguiente
comando.

$ petalinux-config --get-hw-description <directorio-archivo-XSA>

Cuando se ejecuta este comando se abre el menti de configuracion del sistema, se
pueden cambiar cosas como el nombre de la méquina, configuraciones ethernet, entre

87

88 Creacion de proyecto Petalinux

otros, para una mayor profundidad se puede consultar la guia de referencia.

Si se desea configurar el U-boot que es el gestor de arranque de la segunda etapa de
carga del sistema operativo Linux. Si se desea realizar una configuracion en especifico
del u-boot se ejecuta el siguiente comando que despliega el ment de configuracion.

$ petalinux-config -c u-boot

Si se quiere configurar el kernel del sistema se utiliza el siguiente comando para
abrir el menta de configuracion.

$ petalinux-config -c kernel

Para la creacion del proyecto en este trabajo de tesis se modificd la configuracion
en la opcién Library routines — Default contiguous memory area size, de manera
predeterminada el valor es de 16, y se cambio el valor a 6144.

El siguiente paso es configurar los paquetes que se quieren tener en el sistema
Petalinux, se debe abrir el mentu para seleccionar los paquetes que se quieren anadir.
En esta tesis se necesitan instalados los paquetes de mosquitto-dev, que contiene
las bibliotecas para crear los clientes de mosquitto, mosquitto-clients, que instala los
clientes de prueba para mosquitto, mosquitto, que instala el broker MQTT y por
ultimo se necesita el paquete esencial que contiene el compilador gee para compilar
el cliente que se crea.

El paquete esencial se encuentra en el ment de configuracion en la ruta Package
— misc, los paquetes de mosquitto no se encuentran habilitados en el menta. Por
tanto es necesario verificar si el paquete se encuentra en el sistema Yocto, que el
sistema en el que esta basado Petalinux, esto se puede realizar buscado mosquitto en
la siguiente pagina web https://layers.openembedded.org/layerindex/branch/
master/recipes/. Mosquitto se encuentra en el sistema y se debe habilitar para
que se pueda anadir el paquete al sistema Petalinux. Esto se realiza de la siguiente
manera. Primero se deben anadir las siguientes lineas en <carpeta-proyecto> /project-
spec/meta-user/conf/user-rootfsconfig.

$ CONFIG_mosquitto
$ CONFIG_mosquitto-clients
$ CONFIG_mosquitto-dev

Con los comandos anteriores se habilitan los paquete en user-package, donde se
muestra una lista de todos los paquetes que se ha agregado, en este caso se seleccionan
los paquetes de mosquitto para que se puedan utilizar en el sistema.

Para finalizar se construira el proyecto con base en las caracteristicas y paquetes
seleccionados, esto se realiza utilizando el siguiente comando.

$ petalinux-build

Esto compila y construye el proyecto Petalinux, si hay algtin error se muestra en la
consola o en un archivo log que describe el error por el cual no se construyo el sistema,

https://layers.openembedded.org/layerindex/branch/master/recipes/
https://layers.openembedded.org/layerindex/branch/master/recipes/

89

en ocasiones se genera error en la construccion pero basta con volver a ejecutar el
comando para generar de forma correcta la construccion. Una vez el proyecto haya
sido construido, se procede a generar la imagen que inicia el sistema. La imagen se
genera con el siguiente comando.

$ petalinux-package --boot --force --fsbl images/linux/zynq_fsbl.elf --fpga
images/linux/system.bit --u-boot

En la carpeta <carpeta-proyecto>/images/linux se crearan los archivos necesarios
para la imagen del sistema. Para almacenar estos archivos se necesita una memoria
microSD. La memoria debe tener dos particiones, una en formato FAT32 y otra en
formato EXT4. La particion FAT32 debe tener un tamano minimo de 500 MB. En
la carpeta donde se generaron los archivos para la imagen, se seleccionan y copian
los archivos BOOT.bin, boot.scr, image.ub en la particion FAT32. Los archivos del
sistema, operativo se debe colocar en la particion EXT4. Con el archivo rootfs.tar.gz
se utiliza el siguiente comando para que se extraigan los archivos en dicha particion.
Es necesario que este comando se ejecute como usuario root.

$ sudo tar -xzvf rootfs.tar.gz -C /media/<nombre-memoriaSD>

Una vez copiado los archivos, se procede a colocar la memoria microSD en la
placa y cambiar el arranque a SD. Se enciende la placa y de manera serial se obtiene
la informacién de arranque del sistema, la conexion serial se realizé con la ayuda
del software Vitis de Xilinx. Si todo esta correcto aparecera en la ventana serial lo
siguiente.

$ root@<nombre-del-pryecto>:

Esto nos indica que el sistema ha arrancado de manera correcta y se puede trabajar
en él.

90

Creacion de proyecto Petalinux

Apéndice C
Funciones esteganograficas

En este Apéndice se muestran las funciones esteganograficas que se desarrollaron y
se descartaron por no cumplir con los criterios necesarios para ocultar la informacion
de manera correcta.

C.1. Funcion Uno a uno

Esta funciéon separa la informacion en caracteres de 8 bits, y utiliza los campos
Tema de respuesta y Tipo de contenido. El algoritmo por seguir es colocar los carac-
teres con indices pares en el campo Tema de respuesta y los caracteres con indices
impares en el campo Tipo de contenido. Se rellenan los espacios vacios con caracte-
res generados de manera aleatoria. En la figura C.1 se muestra de manera gréfica la
insercion de los caracteres en los campos mencionados.

C.2. Funcion Intercalado

Se separa la informaciéon en caracteres de 8 bits y se utiliza el campo Tema de
respuesta para ocultar la informaciéon.Esta funcién se aplica de manera que el caracter
en la posicion cero de la informacion a ocultar se inserta en la posicion cero de campo,
posteriormente el cardcter en la posiciéon n se coloca en la posiciéon uno del campo,
el caracter en la posicion uno de la cadena se coloca en la posicion dos del campo,
el caracter en la posicion n — 1 dela cadena se coloca en la posicion tres del campo
y asi sucesivamente. En la figura C.2 se puede apreciar el diagrama que muestra
graficamente la funcién.

C.3. Funcion Fin de cadena

Los datos se separan en caracteres de 8 bits y se utiliza el campo Nombre del
tema. El funcionamiento es el siguiente, se agrega primero el nombre del tema, se

91

92 Funciones esteganogrdficas

Caracteres aleatorios
adicionales

Tema de respuesta

|

Caracteres aleatorios
adicionales

‘ Tipo de contenido

Figura C.1: Diagrama de la funcién estego Uno a uno

Tema de respuesta

e —

Cadena original

Figura C.2: Diagrama de la funcion estego Intercalado

agrega el caracter fin de cadena ‘\0’ y se inserta el mensaje a ocultar. En la figura
(.3, se muestra de manera grafica el método que se utiliza para esta funcion.

1\01

Figura C.3: Diagrama de la funcién estego Fin de cadena

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Motivación
	Planteamiento del problema
	Propuesta de solución
	Objetivos
	Organización de la tesis

	Preliminares
	Internet de las Cosas
	Vulnerabilidad en IdC
	Protocolos de comunicación para dispositivos con recursos limitados
	Protocolo MQTT
	MQTT v5.0

	Esteganografía
	Criptografía ligera
	Cifrador SIMON
	Cifrador SPECK

	Estado del arte
	Seguridad en IdC con un enfoque general
	Esteganografía con un enfoque general
	Esteganografía usando un protocolo de comunicación
	Seguridad en IdC que usa esteganografía en general
	Seguridad IdC usando criptografía o esteganografía con un protocolo de comunicación como objeto portador

	Descripción del sistema
	Red del sistema
	Esquema del sistema
	Paquete de control PUBLISH

	Funciones estego
	Función estego bit menos significativo
	Función estego bit menos significativo nibble

	Esquemas del sistema
	Esquema de ocultamiento de información
	Esquema de ocultamiento de llave de cifrado

	Implementación
	Petalinux
	Clientes MQTT
	Cliente-publicador
	Cliente-suscriptor

	Función estego software
	Función estego hardware
	Cifrador SIMON software
	Descifrador SIMON
	Cifrador SIMON hardware
	Cifrador SPECK software
	Descifrador SPECK software
	Sistema embebido
	Broker público

	Resultados
	Conclusiones y trabajo a futuro
	Bibliografía
	Instalación Petalinux
	Creación de proyecto Petalinux
	Funciones esteganográficas
	Función Uno a uno
	Función Intercalado
	Función Fin de cadena

