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Resumen

La geometria combinatoria es una rama de las matematicas que estudia las propiedades
combinatorias de objetos discretos como lo son puntos en el plano y segmentos de recta.
La teoria de graficas trabaja con objetos mateméticos llamados gréaficas, una grafica G es
una pareja de conjuntos G = (V, E'), donde V' es un conjunto finito distinto del vacio y F
es un subconjunto de parejas de elementos de V. Una grafica geométrica es un dibujo de
una grafica en el plano, de tal forma que los vértices de la grafica son puntos en posicién
general y las aristas son segmentos de recta entre parejas de puntos. En esta tesis tenemos
como objetivo el dar un algoritmo que determine si una grafica geométrica particular,
llamada thrackle, se puede dibujar sobre un conjunto de puntos dado. Un thrackle es una
grafica geométrica en la que todos los segmentos de recta tienen un punto en comun,
cuando la grafica tiene tantos segmentos como puntos se dice que es maximo. Abordamos
el problema mediante la busqueda de thrackles méaximos en algunas familias de puntos,
primero realizamos pruebas computaciones mediante la técnica de backtracking, para
posteriormente proponer y demostrar la existencia de thrackles maximos en las siguientes
familias de puntos: doble circulo, doble cadena convexa, doble cadena zig-zag, doble cadena
zig-zag generalizada y conjunto de Horton, asi como seis conjuntos de puntos particulares,
ademas dimos la forma explicita de los thrackles para estas familias de puntos.



Abstract

Combinatorial geometry is a branch of mathematics that studies the combinatorial
properties of discrete objects such as points in the plane and line segments. Graph theory
works with mathematical objects called graphs, a graph G is a pair of sets G = (V| E),
where V' is a finite set other than empty set and E is a subset of pairs of elements of V.
A geometric graph is a drawing of a graph in the plane, in such a way that the vertices
of the graph are points in general position and the edges are line segments between pairs
of points. In this thesis we aim to give an algorithm that determines whether a particular
geometric graph, called thrackle, can be drawn on a given set of points. A thrackle is a
geometric graph in which all the line segments have a point in common, when the graph
has as many segments as there are points, it is said to be a maximum. We approach he
problem by searching for maximum thrackles in some families of points, first we perform
computational tests using the backtracking technique, to later propose and demonstrate
the existence of maximum thrackles in the following families of points: double circle,
convex double chain, double zig-zag chain, generalized double zig-zag chain and Horton
set, as well as six particular point sets, we also gave the explicit form of the thrackles for
these point families.
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Capitulo 1

Introduccion

Los conjuntos de puntos en el plano han sido ampliamente estudiados en distintas
areas de las matematicas, como son la combinatoria, la geometria y la teoria de gréficas.
El tipo de preguntas que se estudian respecto a estos conjuntos generalmente se centran
en encontrar propiedades de estructuras geométricas dibujadas sobre los mismos.

Considérese, por ejemplo, un conjunto de n puntos y dibijese sobre este un conjunto
de segmentos de recta de tal forma que los extremos de cada segmento sean los puntos del
conjunto. Si pedimos que cada par de segmentos tenga un extremo en comun o se crucen
entonces se pueden dibujar como maximo n segmentos. Esto fue demostrado en 1946 por
Paul Erdés [1]. A dicho conjunto se le conoce como thrackle.

Esta nocién de conjuntos de objetos geométricos que se cruzan dos a dos se sigue
estudiando. Se han estudiado distintas variantes del problema, cambiando los elementos
del conjunto por caminos, ciclos hamiltonianos, tridngulos disjuntos en vértices o curvas
[2, 3]. También se han estudiado més de un criterio de interseccion, las principales variantes
estudidas son las crossing families (3] y los thrackles [4].

En esta tesis estudiamos la interseccion de segmentos de recta en la variante original
propuesta por Paul Erdés. Nos interesa caracterizar computacionalmente aquellos conjuntos
de puntos que admiten el dibujo de un thrackle de tamano exactamente n. Es decir,
deseamos dar un algoritmo con complejidad polinomial que reciba como entrada un
conjunto de n puntos y devuelva como salida un thrackle de tamano n o, en su defecto,
nos diga que éste no existe.

Presentamos en este trabajo las demostraciones combinatorias y los algoritmos polinomiales
para algunas familias de puntos: doble circulo, doble cadena convexa generalizada y
conjunto de Horton, demostramos ques siempre existe un thrackle maximo y lo dimos de
manera explicita. Para el caso general no obtuvimos el algoritmo deseado, conjeturamos
que el problema es NP-completo.

La tesis esta organizada de la siguiente manera: en el Capitulo 2 se definen formalmente
los conceptos utilizados en este trabajo. En el Capitulo 3 exponemos los resultados
relacionados encontrados en la literatura. En el Capitulo 4 mostramos los resultados de
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este trabajo y explicamos como fueron obtenidos. Finalmente, en el Capitulo 5 mencionamos
nuestras conclusiones y posible trabajo a futuro.



Capitulo 2

Antecedentes

En esta seccién daremos las definiciones necesarias para entender el concepto de thrackle.
Comenzamos definiendo algunos conceptos basicos de teoria de gréaficas y, con base en ellos,
presentamos algunos conceptos basicos de la teoria de graficas geométricas. Posteriormente
damos una revisiéon historica de algunos resultados existentes en la literatura, comenzando
con el problema que dio origen al area de investigacién en la que se encuentra el problema
que estudiamos en esta tesis. Con todo lo anterior, presentamos las definciones de thrackle
y de thrackle geométrico, siendo este tltimo el tema principal de este trabajo de tesis.
Por tltimo presentamos una conjetura central en el area de teoria de graficas conocida
como la conjetura de Conway y presentamos también un teorema que caracteriza a los
thrackles de tamano maximo posible.

2.1. Graficas

Las definiciones son tomadas de [5]. La teorfa de graficas trabaja con objetos mateméticos
llamados grdficas, una grdfica G es una pareja de conjuntos G = (V, E), donde V' es un
conjunto finito distinto del vacio y E es un subconjunto de parejas de elementos de V.
Si G es una gréfica, a los elementos de V' se les llama vértices de G y a los elementos de
E se les llama aristas de G. Decimos que dos vértices u,v € V son adyacentes si existe
la arista {u,v} € E, ademds decimos que la arista {u,v} incide en los vértices u y v.
Definimos el grado de un vértice v € V' como el niimero de aristas que inciden en él. Si E
contiene todas las aristas formadas a partir de cada par de vértices de V' se dice que G es
una grdfica completa. Decimos que una grafica H es una subgrdfica de G si V(H) C V(G)
y E(H) C E(G).

Si G es una grafica, un camino W de G es una secuencia de vértices de G en la que
cada pareja de vértices consecutivos de W son adyacentes en GG. Una gréafica G es conexa
si existe un camino entre cada par de sus vértices. Sea C' = (vy,...,v,) un camino de G,
decimos que C' es un ciclo si para cada i,j € {1,...,n—1}, con i # j, sucede que v; # v;
y ademas v; = v, se define el tamano del ciclo como el nimero de aristas que conforman
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al ciclo.
Una definiciéon que sera muy utilizada a lo largo de este trabajo es la de particion de un
conjunto.

Definicién 1. Sea A un conjunto, una k-particion de A es una coleccion {Ay, ..., Ax}
de subconjuntos de A, que cumple las siguientes propiedades

1. AN A; =0 para toda i # j.

2. A4U...UA, = A

3. A; # 0 para toda i.

A los subconjuntos de la particion se les llama partes.

En la siguiente seccién daremos algunas definiciones para gréaficas dibujadas en el plano
y con ello definiremos las graficas geométricas.

2.1.1. Graficas geométricas

Decimos que un conjunto de puntos esta en posicion general si no hay tres de ellos
colineales. A la representacion de una grafica en el plano se le conoce como dibujo o
encaje. Una grdfica geométrica es un dibujo de una grafica en el plano, de tal forma que
los vértices de la grafica son puntos en posicién general y las aristas son segmentos de
recta entre parejas de puntos. Si las aristas de la grafica son curvas cerradas entonces
llamamos al dibujo grdfica topolégica.

Podemos pensar en una curva como una sucesion no finita de puntos, entonces las aristas
de una grafica topoldgica se pueden ver como una sucesién no finita de puntos delimitados
por sus vértices. Siguiendo esta idea llamamos a los vértices de una arista puntos extremos
y al resto de los puntos puntos interiores. Decimos que dos aristas tienen un cruce propio
cuando tienen un punto interior en comun, como se muestra en la Figura 2.1a. Decimos
que dos aristas son adyacentes cuando comparten un vértice, como se muestra en la Figura
2.1b.

Un dibujo de una grafica es plano si no contine aristas que se cruzan. Una grafica
(abstracta) es planar si existe un dibujo plano de la misma.
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Punto Interior

Adyacencia

(a) Cruce propio, cuando dos aristas (b) Adyacencia, cuando dos aristas
comparten un punto interior. comparten un punto extremo.

Figura 2.1: Tipos de interseccién entre aristas.

En la siguiente seccién hablaremos de un problema que dio origen a una familia particular
de graficas y a la definicién de thrackle.

2.2. El problema de Hopf y Pannwit

Heinz Hopf y su estudiante Erika Pannwit, de la Universidad de Berlin, publicaron en
el Reporte Anual de la Union Matemdtica Alemana de 1934 [6] el siguiente problema:

Problema 1. Sean pg, p1, ..., Pn_1, Pn = Po puntos distintos en el plano tal que la distancia
entre ellos satisface las siguientes condiciones:

= d(pi,p;) <1 (0<i<j<n).
m d(pi,pis) =1 (i=0,...,n—1).
Prueba que esto es posible si y solo n es impar o n = 2.

El problema consiste en demostrar que si queremos acomodar n > 2 puntos ordenados
en el plano de tal forma que cada par de puntos consecutivos estén a distancia uno y cada
par de puntos no consecutivos esten a una distancia menor a uno, donde el dltimo punto
es igual al primero, necesariamente el nimero n debe ser impar. Es decir, inicamente
podemos acomodar una cantidad impar de puntos que satisfagan estas condiciones.

Una respuesta a este problema fue dada por Fenchel [7] quien dio una descripcién de
donde colocar los puntos para que el conjunto satisfaga las condiciones. Un ejemplo de la
solucion de Fenchel para cinco puntos es la siguiente:
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1. Sea pg el primer punto colocado en el plano, entonces el siguiente punto, p;, debe
estar a distancia uno de py. En la siguientes ilustraciones marcamos las posibles
ubicaciones a distancia 1 con una circunferencia punteada de radio uno.

Po

2. Colocamos p; a distancia uno de py, esta distancia la denotamos en la siguiente
ilustracion por un segmento de recta que une a los puntos. Noétese que en el caso
en que n = 2 se cumplen las condiciones del problema. Para n > 2 se tiene que el
siguiente punto, po, debe estar a una distancia igual a uno de p; y a una distancia
menor a uno de pg. Es decir, py debe estar sobre la circunferencia punteada de radio
uno azul y dentro del area delimitada por la circunferencia de radio uno centrada
en pg, todo esto se muestra en la ilustraciéon de abajo. En la ilustracion marcamos
la zona donde puede estar p, por un segmento de circunferencia de color azul.

Podemos notar que el segmento pyp; divide el plano en dos semiplanos, por lo que
podemos decir que py estard a la izquierda o a la derecha del segmento pyp;.



2.2. EL PROBLEMA DE HOPF Y PANNWIT 9

3. Colocamos p, a distancia uno de p;, pero a distancia menor a uno de py. Notese que
en el caso en que n = 3 necesariamente los puntos forman un triangulo equilatero,
en la ilustracién de abajo esto equivale a dibujar los puntos sobre las intersecciones
de las circunferencias azul y negra. Para n > 3 el siguiente punto, ps, tiene que
estar a distancia uno de p, y a distancia menor a uno de pg y pi, en la ilustracién
marcamos esta zona por un segmento de circunferencia de color rojo.

Noétese que el segmento pop; divide al plano en dos semiplanos y el arco de circunferencia
rojo donde se puede colocar p3 esta totalmente contenido en el semiplano opuesto al
que contiene al segmento ppo, por lo que al trazar el segmento pops necesariamente
cruza al segmento pop; y comparte un punto con el segmento p;ps.

4. Colocamos p3 a distancia uno de po, pero a distancia menor a uno de py y p;. Notese
que en el caso en que n = 4 necesariamente p3 tendria que estar a distancia igual
a 1 de py por la segunda condicién, esto implica que p3 tendria que estar en la
interseccion de la circunferencia de radio uno centrada en py con la circunfencia de
radio uno con centro en p3, sin embargo en esta posicion se encuentra py, por lo que
no es posibible. Para el caso n > 4 el punto ps debe colocarse a una distancia igual
a uno de p3 y a una distancia menor a uno de pg, p1 v po, en la ilustracion esto se
denota por el segmento de circunferencia color verde.
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Notese que el segmento p;ps divide al plano en dos semiplanos y el arco de circunferencia
verde donde se puede colocar p, estd totalmente contenido en el semiplano opuesto

al que contiene a los segmentos pop1 y paps , por lo que al trazar el segmento pspy
necesariamente los cruza.

5. Como estamos en el caso n = 5, el punto ps debe estar a distancia uno de py. En la
ilustracion esto es la interseccién de la circunferencia de radio uno con centro en ps
con la circunferencia de radio uno con centro en py.

Notese que el caso en que n = 2 se cumple trivialmente. En el caso en que n > 2 para que
las condiciones del problema se cumplan en cada caso el siguiente punto se debe colocar
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de tal manera que el segmento de recta que se forma con el punto anterior cruce a los
segmentos anteriores, por lo que los puntos se van colocando de manera alternada en los
semiplanos definidos por el segmento anterior. Lo anterior implica que el problema no
tiene solucién cuando el ntimero de puntos es un ntmero par, ya que necesariamente el
ultimo punto quedarias a una distancia estrictamente menor a uno del primer punto, no
cumpliendo la segunda condicion del problema.

Sea P = {po, ..., pn_1} un conjunto de puntos que cumple las condiciones del Problema
1. La segunda condicion del problema nos indica que para cada par de puntos consecutivos
de P la distancia es uno, ademas notese que esta distancia es maxima para cualquiera dos
puntos de P, a esta distancia se le conoce como diametro.

Si unimos con un segmento a cada par de puntos cuya distancia es uno, es decir,
cuya distancia realiza el didmetro, entonces obtenemos la que se conoce como grafica de
diametros. Formalmente se define como sigue:

Definicién 2. Sea P un conjunto de puntos, asociamos a P la siguiente grdfica:
Los vértices de G=(V,E) son los puntos de P. Dos vértices p1,ps € P son adyacentes si
y solo si la distancia entre ellos es igual al didmetro de P.

La desigualdad del triangulo implica que cualesquiera dos aristas de la grafica de
didmetros o bien comparten un vértice o bien se cruzan. Un teorema publicado en 1946
por Paul Erdés [1] nos da una cota superior para el nimero de aristas que puede tener
una grafica de diametros, el teorema dice lo siguiente:

Teorema 1. (Erdds, 1946) El nimero de aristas de una grdfica de didmetros inducida
por un conjunto de n puntos en el plano es a lo mds n. Este limite puede ser alcanzado
para toda n > 2.

Como mencionamos anteriormente, las aristas de la grafica de diametros o bien comparten
un vértice o bien se cruzan, dicho de otra forma no hay dos aristas disjuntas, ademaés las
aristas de la grafica de diametros son segmentos de recta, por lo que el Teorema 1 se puede
reescribir de la siguiente manera [§]:

Teorema 2. (Erdds, Avital-Hanani, Kupitz) Toda grifica geométrica de n vértices que no
contiene dos aristas disjuntas tiene a lo sumo n aristas. Fste limite puede ser alcanzado
para toda n > 2.

Una manera intuitiva de pensar el teorema 2 la dio Avital-Hanani [9] y consiste en el
siguiente razonamiento: imaginemos a la grafica geométrica como una telarana en donde
hay una arana sentada en cada uno de los vértices, si una arana tiene un hilo a su alcance
(un arista incidente) y, ademads, al voltear 180 grados en el sentido de las manecillas del
reloj no encuentra otro hilo, entonces la arana avanza hasta la mitad del hilo y deposita
un huevecillo; de otra manera no lo hace. Notemos que si no hay dos aristas disjuntas en
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la grafica entonces no habra arista que no haya sido marcada con un huevecillo, por lo
cual el nimero de aristas no puede exceder el nimero de aranas.

Como hemos visto hasta ahora los resultados de Erdos nos han llevado a graficas
geométricas que tienen la caracteristica de que sus aristas se intersectan por pares. De
manera independiente, John Conway trabajé con graficas topoldgicas que cumplen la
misma caracteristica, definiendo asi el concepto de thrackle, como se vera en la siguiente
seccion.

2.3. Thrackle

En 1960 John Conway definié un thrackle de la siguiente manera:

Definicién 3. Un thrackle es una grdfica topoldgica en la cual cada par de aristas tienen
un cruce propio o son adyacentes.

Si restringimos la definicién anterior al caso particular en el que la grafica es geométrica
entonces llamaremos al thrackle un thrackle geométrico. Un ejemplo de thrackle geométrico
se puede ver en la Figura 2.2a, un ejemplo de thrackle topoldgico se puede ver en la
Figura 2.2b. Cuando una grafica se puede dibujar como un thrackle se dice que la grafica

es thrackleable.

®
(b) Thrackle topolégico. Imagen creada por
(a) Thrackle geométrico. Stephan Wehner en C, 9/12/2000.

Figura 2.2: Tipos de thrackles.

Con la defincion de thrackle podemos reescribir el Teorema 2 en términos de thrackles
geométricos, el cual quedaria de la siguiente manera:

Teorema 3. Todo thrackle geométrico de n vértices tiene a lo mds n aristas. Fste limite
puede ser alcanzado para toda n > 2.
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De manera independiente a los trabajos realizado por Erdds, en 1971, Conway enunci6
la siguiente conjetura [10]:

Conjectura de Conway. Cada thrackle de n vértices tiene a lo sumo n aristas. Este
limite puede ser alcanzado para cada n > 2.

Cuando se alcanza el limite del Teorema de Conway, es decir cuando un thrackle de n
vértices tiene n aristas decimos que el thrackle es un thrackle mdzimo.

Al dia de hoy la conjetura de Conway no ha podido ser demostrada, aunque existen

varios intentos y soluciones para casos con restricciones, ver por ejemplo: [11], [12] [13],
[14]. El caso particular méas evidente es el Teorema 3.
Se sabe que no todas las graficas son thrackleables, por ejemplo las graficas completas,
excepto la completa con tres vértices, no son thrackleables ya que siempre habra aristas
en la grafica que no intersecten a otras [15]. En 1972 Woodall dio una caracterizacion de
las graficas finitas thrackleables de la siguiente manera:

Teorema 4. (Woodall, 1972 [10]) Una grifica finita es thrackleable si y sdlo si cumple
las siguientes condiciones

1. Tiene a lo sumo un ciclo impar.
2. No contiene ningun ciclo de tamano cuatro.

3. Cada una de sus componentes conexas es un drbol o tiene exactamente un ciclo.

Lo que nos dice el teorema de Woodall es que los thrackles estan formados por ciclos de
tamano impar, de tal forma que si el ciclo tiene m aristas, estas aristas forman una estrella
de m puntas cuyas aristas que la conforman se intersectan por pares, a esta distribucion
geométrica le llamamos un m-grama. Un ejemplo de esta caracterizacion para un thrackle
con ciclo de tamano cinco se puede ver en la Figura 2.3.

Figura 2.3: Caracterizacién dada por el teorema de Woodall para un thrackle con ciclo de
tamano cinco.
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El teorema de Woodall es utilizado en este trabajo para la busqueda de thrackles. En
particular en este trabajo nos interesa buscar thrackles maximos en un conjunto de puntos
en posicion general, para ello primero realizamos la buisqueda de thrackles méximos en
familias de puntos particulares cuya estructura geométrica facilita la busqueda.



Capitulo 3

Estado del arte

En este capitulo pondremos en contexto el trabajo realizado en esta tesis respecto a los
resultados existentes en la literatura.

Comenzamos el capitulo definiendo un parametro que permite codificar la informacién
respecto a la planaridad de una grafica, extendemos la definicién de este parametro al
caso de las gréaficas geométricas, mencionando para caso algunos resultados relevantes
relacionados a este pardametro. Posteriormente damos las definiciones de coloracién propia
de los vértices y de las aristas de una grafica, asi como los conceptos relacionados de clases
cromaticas, coloracién, niimero cromatico e indice cromatico.

El parametro conocido como thickness, asociado a las graficas, codifica informacion
respecto a la planaridad de una grafica. Es decir, este parametro cuenta cuantas graficas
planares son necesarias para descomponer las aristas de una grafica. En el mismo sentido si
pedimos que las gréaficas de la descomposicién tengan el mayor ntiimero de cruces posibles,
estarifamos codificando también informacién respecto a la planaridad de la grafica, el
tamano de esta descomposicién seria el antithickness.

El thickness fue definido por primera vez en 1963 por W. T. Tutte [16], sin embargo en
este trabajo utilizaremos la definicién dada por David Eppstein [17]:

Definicién 4. Sea G una grdfica. El thickness de G, denotado por 0(G), es el entero k
mas pequeno tal que eziste una particion de E(G), de tamano k, en la que cada parte
imduce una grdfica planar.

En la Figura 3.1 se muestra un ejemplo de thickness para un dibujo de Kj.

15
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80

(@)
m

‘®
B A B

(a) Particién de tamano 6. (b) Particién de tamafio 4. (c) Particién de tamarno 3.

Figura 3.1: Tres particiones de distinto tamano para el mismo dibujo de K, representadas
por distintos tipos de lineas. Cada particion genera graficas planas. En este caso 0(K5) = 3.

Un resultado inmediato a partir de la definicion de thickness es el siguiente:
Teorema 5. Sea G una grdfica. 6(G) =1 si y sélo si G es planar.

Uno de los primeros resultados obtenidos para el thickness fue dado Beineke y Harary
en 1965 [18], demostraron que el thickness de la grafica completa K, estd acotado por

abajo de la siguiente manera:
n+7

6

En el mismo articulo se da el valor exacto del thickness para las graficas completas Ky y
K19, que cumplen con la siguiente relacion:

< 0(K,).

0(Ky) = 0(K1o) = 3.

Posteriormente se encontré de manera exacta el thickness para todas las demas graficas
completas [19, 20, 21, 22] esto se resume en la siguiente relacién:

(1 si 1<n<4
2 si Hb<n<8
Q(Kn):
3 st 9<n<10
| [%2] si n>10.

Si K,,, es una grafica completa bipartita con m > n tales que cumplen que el producto
mn es un entero impar y existe un entero k tal que n = 2k(m — 2)/(m — 2k), entonces el
thickness de K, , estd dado por la siguiente relacién [23]:

mn

0(Kmn) = mtn_2)
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El thickness de una gréfica se ha estudiado extensamente ver, por ejemplo, [24]. En esta
tesis resaltamos tnicamente los resultados relacionados a las graficas completas ya que
estas son nuestro objeto de estudio.

La definicién de thickness ha sido adaptada al caso particular de las graficas geométricas
quedando de la siguiente manera [17]:

Definicién 5. Sea G una grdafica geométrica. El thickness de G, denotado por th(G), es el
entero k mds pequeno tal que existe una particion de E(G), de tamano k, en la que cada
parte es una grdafica geométrica plana.

Con base en las definiciones 4 y 5, podemos definir el thickness geométrico de la siguiente
manera:

Definicion 6. Sea G una grdfica. Sea G el conjunto de todas las grdficas geométricas de
G. El thickness geométrico de G, 6(G), es el minimo valor de th(G) tal que G € G.

En la Figura 3.2 presentamos un ejemplo de thickness geométrico para tres dibujos
geométricos de Ks.

D E C

A B A B A B

(a) Dibujo geométrico de Ks (b) Dibujo geométrico de Ks (c) Dibujo geométrico de Ks
con 0(Ks) = 3. con 0(Ks) = 2. con 0(Ks) = 2.

Figura 3.2: Tres dibujos geométricos de Ks con su respectivo valor de thickness. La
particién es presentada por distintos tipos de lineas. En este caso 6(Ks) = 2.

Nétese que si G es una grafica planar entonces en G existe una grafica geométrica plana
cuyo thickness es igual a uno, por lo tanto G tiene thickness geométrico igual a uno, es
decir tenemos el siguiente resultado andlogo al Teorema 5:

Teorema 6. Sea G una grdfica. (G) =1 si y sélo si G es planar.

Noétese que la definicién de thickness impone la restriccion de que los dibujos de las
graficas sean planos, por otra parte en el thickness geométrico ademas se impone la
restriccion de que las aristas sean segmentos de recta, dicho de otra forma todos los
dibujos geométricos son dibujos topoldgicos. De esto se sigue la siguiente relacion [17]:

0(G) < 6(G).



18 CAPITULO 3. ESTADO DEL ARTE

En el mismo articulo se demuestra que el valor del thickness geométrico no esta acotado
asintéticamente por el thickness, lo cual se expresa en el siguite teorema:

Teorema 7. Para cada t, existe una grdfica con thicknes igual a tres y thickness geométrico
> t.

El teorema anterior implica que el tener algoritmos y estrategias para calcular o aproximar
el thickness no significa que esas mismas técnicas sirvan para calcular el thickness geométrico.
Por lo tanto, es necesario desarrollar técnicas propias para calcular el thickness geométrico.

Dillencourt et al. [25] dan cotas para el thickness geométrico de una grafica completa,
la relacion es la siguiente:

[ﬁ + 0.342W < 4(K,) < E}

También calculan los valores exactos del thickness geométrico para la grafica completa
K, para algunos valores especificos de n, dado por la siguiente relacion [25]:

(1 si 1<n<4

4 st 15 <n <16.

\

Se tiene que para n = 13 y n = 14 no se ha encontrado un valor exacto, sino que hay cota
minima igual a 3 y cota maxima igual a 4.

Si K,,, es una gréafica completa bipartita, con m > n tales que cumplen que el producto
mn es un entero impar y existe un entero k tal que n = 2k(m — 2)/(m — 2k), entonces el
thickness geométrico cumple la siguiente relacion:

[%LW <O(Kpn) < 0(Kpp) < {

2

Consideremos un conjunto de n puntos en posicion convexa y sea K la grafica geométrica
completa dibujada sobre ese conjunto de puntos. De acuerdo con la Definicién 5, el
thickness K¢ esta dado por la siguiente relacién [26]:

n
th(KS) = H
El thickness, y por lo tanto el thickness geométrico, se pueden reescribir como coloraciones
de graficas, a continuacién presentamos una manera de hacerlo.
Sea G = (V, E) una grafica, decimos que una coloracion propia de los vértices de G
es el etiquetado de todos los vértices de G de tal forma que dos vértices adyacentes no
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tengan la misma etiqueta. Andlogamente definimos una coloracion propia de las aristas
de G como el etiquetado de todas las aristas de G de tal forma que dos aristas adyacentes
! no tengan la misma etiqueta. A estas etiquetas les llamamos colores ya que cuando el
numero de etiquetas es pequeno se utilizan colores como rojo, verde, azul, etc. En general,
para k colores estas etiquetas pueden ser los nimeros enteros del 1 a k. Si se utilizan k
colores decimos que la coloracion propia es una k-coloracion. Dada una k-coloracién de
los vértices de G, sea V; el conjunto de vértices de V' con color 7, llamamos a este conjunto
una clase cromdtica de G. Nétese que el conjunto de las clases cromaéticas, {V1,..., Vi},
de G es una particion del conjunto V' de los vértices de la grafica.

Una grafica G es k-coloreable si existe una k-coloracion de los vértices (aristas) de G.
Al niimero k mas pequeno para el cual G es k-coloreable lo llamamos nimero cromdtico
X(G) (indice cromdticox’(G)). En la Figura 3.3 se puede ver un ejemplo de las definiciones
anteriores.

Figura 3.3: Ejemplo de una 3 -coloraciéon de una gréafica. En este caso no existe una forma
de colorear la grafica con menos colores, por lo que su nimero cromatico es tres. Nétese
que los vértices de las distintas clases croméaticas no son adyacentes.

Si quisieramos extender la nocion de coloracion propia a las graficas geométricas, pensar
en la coloracién de vértices no seria distinto al caso de las graficas abstractas, asi que la
forma de extender la nocion seria coloreando las aristas. Notemos que para construir esta
definicion necesitamos el concepto de adyacencia de aristas. Existen diversas formas de
definir cuando dos aristas son adyacentes, la forma obvia es decir que dos aristas son
adyacentes si comparten el mismo vértice, sin embargo esta definicién no toma en cuenta
la geometria de la grafica. A continuacién presentamos cuatro formas, o criterios, de definir
la adyacencia de aristas que si consideran la geometria de la grafica. Ademas, para cada
criterio de adyacencia definiremos su correspondiente gréafica de interseccion.

Sea S un conjunto de n puntos en el plano colocados en posiciéon general. Si consideramos
los segmentos de recta entre cada pareja de puntos de S entonces se induce, de manera
natural, una grafica geométrica completa. Denotaremos esta grafica como Ks. A Kg
podemos asociarle una grafica de interseccién de cuatro formas distintas.

'Recordemos que dos aristas son adyacentes si tienen un vértice en comun.
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Sea V' el conjunto de vértices inducido por los (g) segmentos de recta de Ks. Todas las
graficas que se definen a continuacién tienen a V' como conjunto de vértices.

1. Lagréfica C'(Ks): Si dos segmentos de recta de Ks se cruzan entonces sus correspondientes
vértices en C'(Ks) comparten una arista.

b B (C.D)
———
(AB)
A D
Ks

C(Kg)

2. La grafica W(Ks): Si dos segmentos de recta de Ks comparten un punto o son
disjuntos entonces sus correspondientes vértices en W (Ks) comparten una arista.

9]

C B (B.C) B (B.D)
——— C——
(A.C) (AC)
A A D
Ks C(Kg) Ks C(Kg)

3. La grafica I(Ks): Si dos segmentos de recta de Ks se intersectan entonces sus
correspondientes vértices en I(Ks) comparten una arista.

(B.C)

L B (C.D) c B
——— i
(A.B) (AC)
A D
Ks

CKg) Ks C(Kg)

4. La grafica D(Ks): Si dos segmentos de recta de Ks son disjuntos entonces sus
correspondientes vértices en D(Ks) comparten una arista.

9]
m

(B.D)

Ks C(Kg)



21

En la figura 3.6 mostramos a Kg para un conjunto S con cinco puntos, también mostramos
sus respectivas graficas de cruce.

(D,E) (A.B)

® ®
A D (C.E) (A.C)
)
(C.D) (AD)
=
B hee (8.6) (AE)

® o

(8.D) (B.C)

(a) Dibujo geométrico de la gréfica completa Ks.
(b) La grafica de cruce C(Ks) del dibujo Ks.

(D.E) (A.B)

(CE) (A.C)
(C.D) ~ (AD)
;i E 2
(BE) (AE)
(80) (B.C)

(B.D) (8.C)

(c) La gréafica de cruce W (Ks) del dibujo Ks. (d) La grafica de cruce I(Ks) del dibujo Ks.

(D.E) (A.B)

(CE) (AC)
(C.D) (AD)

(B.E) (A.E)

(B.D) (B.C)

(e) La gréfica de cruce D(Ks) del dibujo Ks.

Figura 3.6: Dibujo de una grafica geométrica completa y sus correspondientes graficas de
cruce CCW. 1y D.

Analicemos primero la grafica C'(Ks). Veamos que por la manera en que esta definida
se tiene que dos de sus vértices comparten una arista si las aristas correspondientes en Kg
se cruzan. Esto quiere decir que si damos una coloracién propia de los vértices de C'(Ks)
cualesquiera dos vértices adyacentes tendran distintos colores asignados. Es decir que es
un conjunto independiente en C'(Ks). De esto se sigue que las clases crométicas en C'(Ks)
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son planas en Kg. En la Figura 3.7 mostramos a Kg para un conjunto S con cinco puntos,
también mostramos su respectiva grafica C'(Ks).

° & D
K3
F N g
E .7 / \\ .. C
\ \ /
1 \ /
o Nol
(B L
oo

(a) Coloraciéon propia de los vértices de (b) Coloraciéon propia de las aristas Kjs
C(Ks), podemos ver que el infice cromdatico que induce una particién en graficas planas,
X' (C(Ks)) = 3. podemos ver que x(Ks) = 3.

Figura 3.7: Una coloracién propia de los vértices de C'(Ks) induce una coloracién propia
de las aristas de Ks. La particion de las aristas de Ks es representada por distintos tipos
de linea.

Por lo anterior podemos definir el thickness geométrico de la siguiente manera:

Definicién 7. Sea S un conjunto de puntos en el plano colocados en posicion general. El
thickness geométrico de la grdfica completa de n vértices inducida por S esta dado por la
siguiente relacion:

0(n) = min{ x(C(S)) | S C R? estd en posicion general, |S| =n}.

Analicemos ahora la grafica W (Ks). Veamos que por la manera en que estd definida
se tiene que dos de sus vértices comparten una arista si las aristas correspondientes en
Ks comparten un vértice o son disjuntas. Esto quiere decir que si damos una coloracién
propia de los vértices de W (Ks) cualesquiera dos vértices adyacentes tendran distintos
colores asignados. Es decir que es un conjunto independiente en W (Ks). De esto se sigue
que las clases crométicas en W (Ks) no comparten vértices ni son disjuntas en Ks, esto
significa que se cruzan por pares. A las gréaficas con esta propiead se les conoce como
crossing families [3]. En la Figura 3.8 mostramos a Ks para un conjunto S con cinco
puntos, también mostramos su respectiva grafica W (Ks).
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(B.D) B.C) A... RN, B

(a) Coloracién propia de los vértices de (b) Coloracién propia de las aristas Ks que
W(Ks), podemos ver que el infice cromdtico induce una particion en crossing families,
X' (W(Ks)) = 8. podemos ver que x(Ks) = 8.

Figura 3.8: Una coloracién propia de los vértices de W (Ks) induce una coloracién propia
de las aristas de Ks. La particion de las aristas de Kg es representada por distintos tipos
de linea.

Analicemos ahora la gréfica I(Ks). Veamos que por la manera en que estd definida se
tiene que dos de sus vértices comparten una arista si las aristas correspondientes en Kg se
intersectan. Esto quiere decir que si damos una coloracién propia de los vértices de (Ks)
cualesquiera dos vértices adyacentes tendran distintos colores asignados. Es decir que es
un conjunto independiente en I(Ks). De esto se sigue que las clases cromaticas en I(Ks)
no se intersectan en Kg, esto significa que las graficas inducidas son planas y ademés sus
aristas son aisladas. A las graficas con esta propiead se les conoce como emparejamientos
planos [27]. En la Figura 3.9 mostramos a Ks para un conjunto S con cinco puntos,
también mostramos su respectiva grafica I(Ks).

(D.E) (AB) D
\\‘ a
0 VR
¥ g X .
E .- ’ \ "oy
L )
(A,D) - ! ‘\.
= b
i \
§ - \
] . \
’ A\
~
A B

(a) Coloracién propia de los vértices de (b) Coloracién propia de las aristas Ks que
I(Ks), podemos ver que el infice cromdtico induce una particién en crossing families,
X' (I(Ks)) =T. podemos ver que x(Ks) = 7.

Figura 3.9: Una coloracién propia de los vértices de I(Ks) induce una coloracién propia
de las aristas de Ks. La particion de las aristas de Kg es representada por distintos tipos
de linea.



24 CAPITULO 3. ESTADO DEL ARTE

Para la gréafica D(Ks). Veamos que por la manera en que esta definida se tiene que dos
de sus vértices comparten una arista si las aristas correspondientes en Kg son disjuntas.
Esto quiere decir que si damos una coloracién propia de los vértices de D(Ks) cualesquiera,
dos vértices adyacentes tendran distintos colores asignados. Es decir que es un conjunto
independiente en D(Ks). De esto se sigue que las clases crométicas en D(Ks) no son
disjuntas en Kg, esto significa que las graficas inducidas son thrackles. En la Figura 3.10

mostramos a Ks para un conjunto S con cinco puntos, también mostramos su respectiva
grafica D(Ks).

D
.‘.
/

(B.0) (B.C)

A B
(a) Coloracién propia de los vértices de (b) Coloracién propia de las aristas Ks que

D(Ks), podemos ver que el infice cromdatico induce una particion en crossing families,
X'(D(Ks)) = 3. podemos ver que x(Ks) = 3.

Figura 3.10: Una coloracién propia de los vértices de D(Ks) induce una coloracién propia
de las aristas de Ks. La particion de las aristas de Ky es representada por distintos tipos
de linea.

La forma geométrica de los conjuntos independientes inducidos en Kg por las gréficas
C(Sk), W(Sk), I(Sk) v D(Sk) la resumimos en la Tabla 3.1.

Gréfica | Conjuntos independientes en Sk
C(Sk) | Grdficas planares

W (Sk) | Crossing families

I(Sk) | Emparejamientos planos

D(Sk) | Thrackles

Tabla 3.1: Particiones inducidas Sk al colorear prépiamente las graficas C'(Sk), W (Sk),

1(Sk) y D(Sk)-

Las graficas C(Sk), W(Sk), I(Sk) y D(Sk) fueron definidas por primera vez en el
trabajo de G. Araujo et. al. [28] y con base en ellas definieron y estudiaron los siguientes
parametros:

w(n) = max{ x(W(S)) | S C R? estd en posiciéon general, |S| = n}.
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i(n) = maz{ x(I(S)) | S C R? esté4 en posicién general, |S| = n}.

d(n) = max{ x(D(S)) | S C R? est4 en posicién general, |S| = n}.
G. Araujo et. al. obtuvieron los siguientes resultados:

,loglogn

cnlogn <w(n) < cn con ¢y, ¢y > 0.
g 7 )

logn

n <i(n) < cn?, con ¢ > 0.

5{%J <d(n) < min{n— 2,n+ % - Uog;—ognj}

También definieron los respectivos casos particulares cuando S es un conjunto de puntos
en posicion convexa, denotando estos pardmetros como we(n), i.(n) y d.(n). Obteniendo
los siguientes resultados:

we(n) = B(nlogn).

ic.(n) = n.

2{”;1 —1<d.(n) < min{n—Q,n— @}

El thickness nos habla de la planaridad de una grafica al descomponerla, sin embargo
también podemos preguntarnos qué sucede con el caso contrario cuando queremos descomponer
una grafica en partes que inducen graficas con la propiedad de que todas sus aristas se
intersecten, es decir descomponerla en thrackles, para ello definimos el parametro de
antithickness.

David Wood y Vida Dujmovié¢ [15] definen el pardmetro del antithickness buscando
obtener resultados andlogos a los obtenidos por Eppstein [26], con la particularidad de

que en esta ocasion se trata de graficas cuyas particiones forman thrackles. Formalmente
definimos el anthithickness de la siguiente manera:

Definicién 8. Sea G una grdfica. El antithickness de G, denotado por At(G), es el entero
k mds pequeno tal que eziste una particion de E(G), de tamano k, en la que cada parte
induce una grafica thrackleable.

En la Figura 3.11 se muestra un ejemplo de thickness para un dibujo de K.
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(a) Particién de tamano 6. (b) Particién de tamaiio 4. (c) Particién de tamafio 3.

Figura 3.11: Tres particiones de distinto tamano para el mismo dibujo de K, representadas
por distintos tipos de lineas. Cada particion genera graficas thrackleables. En este caso

Un resultado inmediato a partir de la definicién de antithickness es el siguiente:
Teorema 8. Sea G una grifica. At(G) =1 si y sélo si G es thrackleable.

De manera analoga a las Definiciones 5 y 6 de thickness para graficas geométricas y
thickness geométrico, se definen los parametros de antithickness para graficas geométricas
y antithickness geométrico como sigue [15]:

Definiciéon 9. Sea G una grdfica geométrica. El antithickness de G, o el antithickness de
una grifica geométrica G, denotado por Ath(G), es el entero k mds pequenio tal que existe
una particion de E(G), de tamano k, en la que cada parte es una thrackle geométrico.

Definicién 10. Sea G una grdfica. Sea G el conjunto de todas las grdficas geométricas de
G. El antithickness geométrico de G, At(Q), es el minimo valor de Ath(G) tal que G € G.

Nétese que si G es una gréfica thrackleable entonces en G existe un thrackle geométrico
cuyo antithickness es igual a uno, por lo tanto G tiene antithickness geométrico igual a
uno, es decir tenemos el siguiente resultado analogo al Teorema 8:

Teorema 9. Sea G una grdfica. At(G) =1 si y sélo si G es thrackleable.

Nétese que la definicién de antithickness impone la restriccion de que los dibujos de las
graficas sean thrackles, por otra parte en el antithickness geométrico ademas se impone
la restriccion de que las aristas sean segmentos de recta, dicho de otra forma todos los
dibujos geométricos son dibujos topoldgicos. De esto se sigue la siguiente relacion [13]:

At(G) < AtHG).

A diferencia del thickness, el antitickness no ha sido tan estudiado, sin embargo podemos
hacer uso de la grafica de cruce D(S), la cual como ya vimos induce particiones que
son thrackles, para recuperar los resultados de nimero cromatico de algunos ejemplos de
graficas.

Una manera equivalente de definir el antithickness es mediante el nimero cromatico de
la gréfica de adyacencia D(.S) de la siguiente manera:
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Definicién 11. Sea S un conjunto de n puntos en el plano colocados en posicion general.
El antithickness geométrico de la grdfica completa de n vértices inducida por S estd dado
por la siguiente relacion:

At(n) = min{ x(D(S)) | S CR? estd en posicion general, |S| = n}.
Anéalogamente definimos el pardmetro para el caso particular en que S es un conjunto

de puntos en posicién convexa, el cual es el antithickness convexo:

Definicién 12. Sea S un conjunto de n puntos en el plano colocados en posicion conveza.
El antithickness convezxo de la grdfica completa de n vértices inducida por S es

Ato(n) = min{ x(D(S)) | S C R? estd en posicién convera, |S| = n}.

David Wood y Vida Dujmovi¢ [15] llegan a la conclusiéon de que el antithickness
geométrico esta acotado por el antithickness convexo, esto quiere decir que se cumple
la siguiente relacién:

At(GQ) < At (G).

Ademas los autores dan una cota para el thickness en términos del antithickness, dicho de
otra forma, se tiene que para toda grafica G con thickness t y antithickness k los autores

presentan la siguiente cota:
kE<t<|—].
R

Para una grafica completa de tamano n con antithickness k se cumple la siguiente cota:

n n—1
— < k< .
ks [t

Mientras que para una grafica completa con antithickness convexo k se cumple la siguiente

()< 2)

Despejando k de la relaciéon anterior se obtiene la cota inferior para k, es decir una cota
inferior del antichickness la cual es la siguiente:

1 1
n— %/2n+1—§J < k. (3.1)

Noétese que x(D(5)) es equivlente al antithickness de Ks. Ruy Fabila et. al. [29] calcularon
un cota superior de x(D(S)) y con la cota inferior de la Ecuacién 3.1 dieron el valor exacto
del nimero cromatico de D(S), el cual esta dado por la siguiente expresion:

x(D(n)) =n— %/271—{—%1—%]
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A continuacién daremos el valor del antithickness para un conjunto de puntos particular
llamado la doble cadena convexa.

Definicién 13. Para k < [ se define una (k,l)-doble cadena convexa como la union
disjunta de dos conjuntos de puntos U y L tales que:

1. U es un conjunto de k puntos en posicion convexa, cuya cubierta convexa estd
delimitada por arriba por una arista y L es un conjunto de | puntos en posicion
convexa, cuya cubierta convexa estd delimitada por abajo por una arista.

2. Cada punto de L estd por debajo de cada linea recta determinada por dos puntos de

U.

3. Cada punto de U estd por encima de cada linea recta determinada por dos puntos

de L.

Decimos que U y L son la cadena superior y la cadena inferior respectivamente de una
(k,1)-doble cadena. Denotamos por Cj; a cualquier (k,[)-doble cadena, en la Figura 4.11
se muestra una (5, 7)-doble cadena.

® ]
U
® °
®
]
(] °
L
(] °
° (]

Figura 3.12: Ejemplo de doble cadena Cj 7.

Para la doble cadena convexa simétrica, es decir C,, ,, se encontré una cota inferior
dada por la siguiente relacién:
2n < x(Chn).

Para k + ¢ puntos sobre una (k, [)-doble cadena convexa, denotamos a la grafica completa
inducida por este conjunto de puntos como Ky x. En [30] se calculé el valor exacto del
antithickness geométrico de Ky, el cual estan dado la siguiente relacién:

1 1
At(Kpp) =k +1 — {,/2£+Z—§J.
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El estudio del antithickness iniciado por David Wood y Vida Dujmovié¢ en 2017 es
relativamente joven comparado con el estudio del thickness iniciado por Eppstein en
2004, por lo cual la bibliografia y los resultados asociados al antithickness no son tan
robustos como lo son para el thickness. Si bien tenemos que las Definiciones 8 y 9 nos
permiten utilizar resultados dados para numeros cromaticos, otra manera de estudiar
el antithickness es mediante el estudio de los thrackles de las particiones de la grafica.
Sin embargo tenemos que el espacio de busqueda para thrackles tiene las siguientes
caracteristicas:

= Para un conjunto de n puntos se tienen (2) aristas posibles.

<2)) combinaciones posibles.

= Para elegir un conjunto de n aristas se tienen (
n

= Verificar de manera exhaustiva que un conjunto de m aristas es thrackle toma tiempo

del orden de O(m?).

Por lo que un algoritmo de bisqueda exahustivo toma conjuntos de n aristas de las
n

posibles y busca thrackles maximos, por lo que cada que encuentra un thrackle de tamano
m < n lo desecha y busca de nuevo, esto quiere decir que realiza m™ busquedas, es decir
se tiene que el espacio de busqueda es exponencial. De modo que encontrar un algoritmo
que se ejecute en tiempo polinomial cuya entrada sea un conjunto de n puntos en posicion
general y cuya salida sea un thrackle geométrico de tamano n nos permitiria tener una
forma eficiente de analizar las particiones del conjunto de aristas y con ello calcular el
antithickness para cualquier distribucién de puntos que se nos de.

(’5))

En la siguiente seccion daremos resultados tedricos que nos permiten caracterizar los
thrackles méaximos sobre algunos conjunto de puntos en especifico.
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Capitulo 4

Resultados

En este capitulo presentamos resultados obtenidos para algunos conjuntos particulares.
Para obtener un algoritmo de busqueda de thrackles que se ejecute en tiempo polinomial
utilizamos conjunto de puntos generados por programas propios [31], asi como puntos
obtenidos a partir de la base de datos ComPoSe![32]. Los conjuntos de puntos son
presentados en subsecciones independientes, cada seccién inicia con la definicién formal,
en caso de tenerla, asi como mencionando sus propiedades particulares; continia con
resultados computacionales obtenidos a partir de los siguientes programas:

= El primer programa, al que llamaremos programa pseudoaleatorio, recibe un conjunto
de n puntos y etiqueta arbitrariamente las (g) aristas posibles. Posteriormente elije
de manera pseudoaleatoria una arista y la guarda, elije de manera pseudoaleatoria
otra arista y revisa que sea thrackleable con la arista guardada, es decir verifica si
comparten un vértice o se cruzan verificando si los segmentos de recta que pasan
por los puntos se cruzan. En caso de no ser thrackleable la desecha y prueba con
otra, en caso de ser thrackleable la guarda y prueba con otra. Continta el proceso
anterior hasta guardar n aristas thrackleables o revisar las (g) aristas posibles, en
caso de llegar al limite de aristas desecha todas las aristas guardadas y elije otra
como arista inicial.

= El segundo programa, al que llamaremos programa secuencial, recibe un conjunto
de n puntos y etiqueta arbitrariamente las (Z) aristas posibles, osteriormente elige
conjuntos de n aristas de manera ordenada para evitar repeticiones, es decir, busca

thrackles de manera exhaustiva.

Por ultimo mencionaremos los resultados obtenidos en cada conjunto de puntos.

En las demostraciones presentadas en este capitulo utilizamos el Teorema 4 de manera
recurrente, por lo que de aqui en adelante nos referiremos a éste tinicamente como el
teorema de Woodall. Recordemos lo que dice el teorema:

!Combinatorics of Point Sets and Arrangements of Objects.
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Teorema de Woodall. Una grdfica finita es thrackleable si y sélo si cumple las siguientes
condiciones

1. Tiene a lo sumo un ciclo impar.
2. No contiene ningun ciclo de tamano cuatro.
3. Cada una de sus componentes conexas es un drbol o tiene exactamente un ciclo.

Comenzamos dando la definicién y resultados para el conjunto de puntos conocido como
el doble circulo.

4.1. Doble circulo

El conjunto de puntos conocido en la literatura como doble circulo se define de la
siguiente manera [33]:

Definicién 14. Paran > 3, un doble circulo es un conjunto P = {pg, ..., Pn—1,D0, s Ph1}
de 2n puntos en el plano colocados en posicion general tales que:

1. po,...,Pn_1 Son los puntos de la capa convexa de P etiquetados en orden angular en
el sentido antihorario

2. El punto p} se encuentra entre los puntos p; y pi+1 segun el orden angular.
3. La recta que pasa por p; y p; separa a p;y1 de P.
4. La recta que pasa por p) y pi+1 separa a p; de P.

En la Figura 4.1 podemos ver un dibujo del doble circulo para n = 5.

P P
T~ -@=z------- - -8~
. T A
AT T A
’/., ' . rO\‘\ h
R [N
pg.: ‘s P5
p Py
‘e ph °
\\ ant f,
\\ [)3 ,"
SN 1’
P3 P4
Figura 4.1: Dibujo del doble circulo pra n = 5. Se pueden ver esquematizadas las

propiedades de la definicion.
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Para este conjunto usamos puntos que generamos asi como conjuntos de puntos de
la base de datos [32]. Con el fin de conocer para cuales valores de n existen thrackles
maximos, asi como el tamano de su ciclo y cuales aristas lo conforman, para cada caso
se hicieron mil pruebas para cada n entre 1 y 1000. En la Figura 4.2 se pueden ver los
resultados para n = 3,5,6,7.

S0 -
L

L L
-10 -5 0 5 10 0 5 10 15 20

Figura 4.2: Resultados obtenidos para el doble circulo con n = 3,5,6, 7.

Para cada prueba y cada n se encontré un thrackle maximo, mientras que de la
informacion sobre los ciclos no obtuvimos algin patrén entre cada thrackle, por lo que
realizamos la siguiente proposicion.

Proposicién 1. Sea P = {p1, ..., pn, P}, ..., P, } un doble circulo. Para 3 < n, P admite un
thrackle maximo.
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Vamos a demostrar que el conjunto del doble circulo siempre admite un thrackle
maximo.

Demostracion. Sean Cg = {p1,...,pn} €l conjunto de puntos sobre la capa convexa, es
decir el circulo exterior. Sea C; = P\CF el conjunto de puntos del circulo interior.

La idea es construir un n-grama con los puntos de C y unir los puntos restantes de tal
forma que construyamos un thrackle méaximo, para ello vamos a considerar primero el
caso cuando n es un numero impar y posteriormente el caso cuando n es un nimero par.

= Caso n impar.
Como n es un numero impar y C es un conjunto de puntos en posicién convexa
podemos generar un n-grama si tomamos las aristas de manera correcta. Para ello
vamos definir la funcidn de reetiquetado ™" : [1,n] +— [1,n] como sigue:

1 st 1=1

fTilmparO-): n+3—2 St '5:2,,717—’_1

2n+3—2 si i="H+1,....n

La funcién de reetiquetado, como su nombre lo indica, reetiqueta los puntos de Cf
y de Cg, asignandole nuevs etiquetas. Este nuevo etiquetado nos permitira contruir
el thrackle facilmente. Un ejemplo del uso de la funciéon de reetiquetado para n =7
se puede ver en la Tabla 4.1.

impar (Z)

7
1

|| O = | W[ N | =,
WO DN =~ D

Tabla 4.1: Funcién de reetiquetado para n = 7.

Usando la funcion de reetiquetado en cada punto de Cg y de C}, obtenemos dos
nuevos conjuntos f(Cg) y f(Cr) de puntos reetiquetados, definidos de la siguiente
manera;

f(Co)={
fen={a

Vp; € Ce (¢ =pra) ) }

Vpi € Cr (¢ =1y ) }
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Un ejemplo del reetiquetado de puntos para n = 5 se puede ver en la Figura 4.7

(a) Conjuntos de puntos del circulo exterior

Cg = {p1, P2, 3, P4, D5, D6, P7} y del circulo
interior CI = {q17 q2, 43, 44, g5, g6, Q7}

4 Pg
e G 6
a, ®
] q
@ Py
q;_v.
®q,
e
P7 qF e
/ Us Py
®

Ps

(b) Conjuntos de puntos reetiquetados del
circulo exterior f(Cg) = {p1, p2, p3, P4, ps,
pe, p7} y del circulo interior f(Cr) = {q1, g2,
a3, G4, 45, 96, q7}-

Figura 4.3: Reetiquetado de puntos de C'r y C} para el caso en que n = 7.

Una vez que tenemos reetiquetados los puntos, para formar el ciclo de tamano impar
tomamos los puntos de f(C7) en el orden dado por sus etiquetas es decir, el conjunto

de aristas del ciclo, E¢, es el siguiente:

Fe={(a05) | ¥i.j € [Ln] (g € (Cr) A j=i+1modn)}.

Siguiendo el ejemplo para el caso en que n = 7, el conjunto de aristas E¢ se puede

ver en la Figura 4.4a.

Para construir el thrackle maximo formamos las n aristas restantes uniendo los
puntos de C'g a puntos especificos de C7, formando un conjunto de aristas unidas al

ciclo, Fy, de la siguiente manera:

EU:{(pi,Qj)|Vi7j€[1,n](pi€f(OE) A g; € f(Cr) A j:@'—l—lmodn)}.

Para el ejemplo en que n = 7, el conjunto de aristas Fy se puede ver en la Figura

4.4b.
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(a) Conjuntos de aristas del ciclo Ecx =  (b) Conjuntos de aristas unidas al ciclo Ey =
{(Q1)q2)7 (QQ)Q?))? (QS,QM), (614,(]5), (Q5’q(5)) {(pth)? (p27Q3)7 (p3)Q4)7 (p47Q5)7 (p57q(5)7
(96, q7), (a7, 01)}- (P6: q7), (p7,q1)}-

Figura 4.4: Conjuntos de aristas E¢ y Ey para el caso en que n = 7.

Dados los conjuntos de aristas Ec v Fy, el thrackle maximo estara dado por la
unién de estos conjuntos. Primero demostraremos que las aristas del conjunto E¢o
forman un thrackle y luego demostraremos que cada arista de Ey es parte de ese
mismo thrackle.

Para demostrar que las aristas de E¢o forman un thrackle, basta con notar que
cumple las condiciones del Problema 1, es decir el problema de Hopf y Pannwit,
esto sucede ya que tenemos una cantidad impar de puntos en posicién convexa:

o d(gi,q;) <1(0<j<j<n).
e d(qi,qir1) =1Viell,n].

Recordemos que en la discusion del Teorema 1 llegamos a la conclusion de que las
aristas de la gréafica con estas condiciones de distancia o bien comparten un vértice
o bien se cruzan, dicho de otra forma no hay dos aristas disjuntas, ademas las
aristas de la grafica de diametros son segmentos de recta, por lo tanto se trata de
un thrackle geométrico, por lo que utilizando el Teorema 2 concluimos que es un
thrackle maximo.

Para la segunda parte vamos a analizar primero una arista de Ey. Sea (p,q) una
arista de Ey, tenemos que (p,q) es también una arista de Ec U Ey, sea i el indice
que le corresponde a la arista de tal forma que p = p; y ¢ = ¢;11. Sabemos que (p, q)
es un arista adyacente a las aristas (¢;i—1,¢i+1) ¥ (¢i+1, ¢is2) de Ec como se ve en la
Figura 4.5a.

Como las aristas (gi—1, ¢i+1) ¥ (¢i+1, ¢i+2) de E¢ pertenecen a un thrackle, cualquier
otra arista de F¢ o es adyacente a una de ellas y cruza a la otra, o cruza a ambas,
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como se ve en la Figura 4.5b. Como la arista (p;,¢;11) se encuentra en la zona
delimitada por sus aristas adyacentes cualquier otra arista de E¢ cruzard a (p;, gi+1)-

(b) Posibles aristas que intersectan a
(a) Arista (p;, ¢i+1) € Ey la cual es adyacente  (¢i—1,¢i+1) vV (¢i+1,¢i+2) en linea punteda
a las aristas (¢j—1,¢i+1) ¥ (¢i+1,i+2) de Ec. necesariamente intersectan a (p;, gi+1).

Figura 4.5: Anélisis de interseccion de Ey con Ec.

Por lo tanto, la arista (p;, ¢i+1) € Ey pertenece al thrackle formado por las aristas
de E¢. Por lo que las aristas del conjunto F¢ U Ey forman un thrackle maximo de
tamano 2n, un ejemplo para el caso en que n = 7 se puede ver en la Figura 4.6.

Pa

Figura 4.6: Thrackle maximo formado por los puntos del doble circulo para en caso en
que n =17.

= Caso n par.
Para este caso, como n es un nimero par la idea es separar un punto para regresar
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al caso impar el cual ya sabemos que forma un thrackle maximo. Para este caso
definimos la funcién de reetiquetado fF% : [1,n| — [1,n] como sigue:

(1

n+2—2
TR (1) = 4

@
q, ®
A3 * q
P, ® 1
40 @ P
@® 1
qd . .(IH
P ® ®
)
qfs. % ; Pg
®
‘ qﬁ .

(a) Conjuntos de puntos del circulo exterior
Ce = {p1, p2, 3, P4, P5, 6, P7, Ps} y del
circulo interior Cr = {qo, g2, 43, 44, 45, 96, 97,
qs}

st 1=1
St 1=2,...,5
st 1=2+41

| 2n4+3—-2i si i="2+1,...,n

@ [€)
e
p 9a ? !
'@ ® 6] p
@ ]
4, ® 0,
Po ® ®
q @ ® P3
o s :
®
q,
@

(b) Conjuntos de puntos reetiquetados del
circulo exterior f(CE) = {p17p27p37p47p57
pe, p7, pst y del circulo interior f(Cjp) =

{90, 92,43, a4, 45, g6, a7, @8}

Figura 4.7: Reetiquetado de puntos de C'r y C} para el caso en que n = 8.

Podemos observar que si reestringimos ambas funciones de reetiquetado al mismo
dominio, estas coinciden, salvo por un punto. En particular como queremos quitar
un punto para regresar al caso impar tenemos que analizar las funciones f.™*" y

par
n+1>

en la Figura 4.8 estan comparadas.
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1 i=1
n+3-2i i€ [2,%*

f:‘lmpar@') — n+3—2 1 € [2, nT—H] fszi(z) =

2n+3—2 i€ [ +1,n]

| 2n4+4—-2i i€ [ +1,n+1]

Figura 4.8: Funciones de reetiquetado consecutivas correspondientes a n impar y a n + 1
par.

Un ejemplo del uso de la funcion de reetiquetado para n =7 y n = 8 se puede ver
en la Tabla 4.1.

S ey
. mpar / - 1 8 (Z)
¢ 7 ¥ <Z> 1 1
1 1
2 6
2 6
3 4
3 4
4 2
4 2
5) 0
5 7
6 7
6 )
- 3 7 5
8 3
Tabla 4.2: Comparaciones de las funciones de reetiquetado f;""*" y f*

Notemos que mientras ¢ se encuentra en el rango de [1, ”T“} las funciones comparten
dominio y regla de correspondencia, esto es:

; . ar /- , n+1
Fimeer (i) = fPUG) Vi {1 . } (4.1)
Dejando de lado el punto a descartar de la funciéon par, vemos que el dominio esta
desplazado en una unidad ya que ¢ € [”TJ“Q +1,n+ 1], por lo que tomando una
transformacién lineal de i = i + 1 podemos desplazar el dominio a ["T’Ll + 1,n],

teniendo asi la siguiente expresion :
) = NG+ 1) =2(n+1)+3—-2(i+ 1) =2n+ 3 — 2i.

Por lo tanto, descartando ese punto y con la funcién de reetiquetado par, se tiene
que mapea los puntos y etiquetas de manera similar a la funcién de reetiquetado
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impar, esto es:

n+1

fimer ) = a1y vie {f= 41, n} (4.2)
De las Ecuaciones 4.1 y 4.2 tenemos que si dejamos de lado un punto en C; y uno
en Cg, recuperamos la informacion que ya demostramos de la funcién impar, por lo
que los conjuntos de puntos reetiquetados f(C7)\{q} v f(Cr)\{po} en los que se
omite un punto, inducen el conjunto de aristas del ciclo F¢ y el conjunto de aristas
unidas al ciclo Ey de la siguiente manera:

Ee = {(a5) | ¥i.j € [Ln] (g5 € F(C)\{ao} A j=i+1modn)}.

By = {(pq;) | Yirj € [Ln) (p € F(Co\po} A ;€ F(CO\{ao} A j=i+1modn)}.

Estos conjuntos son idénticos a los obtenidos en el caso de n impar, por lo que
podemos afirmar que la union de estos dos conjuntos forman un thrackle de tamano
2(n —1) en el doble circulo con 2n puntos y n par. Un ejemplo para n = 8 se puede
ver en la Figura 4.9.

Figura 4.9: Thrackle formado por la unién de los conjuntos f(Cr)\{q} v f(Ce)\{po}-

Para demostrar que existe un thrackle maximo en el conjunto de 2n+1 puntos basta
con unir los puntos py y qo omitidos de tal forma que las aristas formadas intersecten
a todas las aristas del thrackle. El punto elegido sera el punto ¢;, formando asi las
aristas (qo,q1) v (Po, q1)-

El razonamiento es el mismo que en el caso impar. Sabemos que (qo,q1) vy (o, ¢1)
son aristas adyacentes a las aristas (¢n,q1) v (¢1,¢2) de Ec como se ve en la Figura
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4.10a.

Como las aristas (¢,,q1) ¥ (q1,¢q2) de E¢ pertenecen a un thrackle, cualquier otra
arista de E¢ o es adyacente a una de ellas y cruza a la otra o cruza a ambas como
se ve en la Figura 4.10b. Como las aristas (qo, q1) y (po, ¢1) se encuentran en la zona
delimitada por (¢,,q1) v (q1, ¢2) cualquier otra arista de E¢ cruzard necesariamente
(g0, q1) v (po, q1)- Por lo tanto, las aristas (qo, ¢1) ¥ (po, ¢1) de Ey pertenece al thrackle
formado por las aristas de E¢.

(b) Posibles aristas que intersectan a (g, q1)
(a) Aristas (go,q1) y (po,q1) de Ey la cual es  y (q1,q2) en linea punteda necesariamente
adyacente a las aristas (¢, q1) v (q1,q2) de Ec.  intersectan a las aristas (go,q1) v (po,q1)-

Figura 4.10: Analisis de interseccién de Ey con Fe.

Por lo tanto no importa si n es par o impar siempre va a extir un thrackle maximo para
el doble circulo de tamano 2n. O]

En la siguiente seccién daremos los resultados obtenidos para la doble cadena convexa.

4.2. Doble cadena convexa

En el capitulo anterior dimos la definiciéon de doble cadena convexa, para facilitar la
lectura del texto recordemos esta definicion.

Definicién 15. Para k < [ se define una (k,l)-doble cadena convexa como la union
disjunta de dos conjuntos de puntos U y L tales que:

1. U es un conjunto de k puntos en posicion convexa, cuya cubierta convexa estd
delimitada por arriba por una arista y L es un conjunto de | puntos en posicion
convexa, cuya cubierta convexa estd delimitada por abajo por una arista.
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2. Cada punto de L estd por debajo de cada linea recta determinada por dos puntos de

U.

3. Cada punto de U estd por encima de cada linea recta determinada por dos puntos
de L.

Decimos que U y L son la cadena superior y la cadena inferior respectivamente de una
(k,1)-doble cadena. Denotamos por Cj; a cualquier (k,[)-doble cadena, en la Figura 4.11
se muestra una (5, 7)-doble cadena.

° e
U
® °
°
@
° °
L
° °
° °

Figura 4.11: Ejemplo de doble cadena Cj 7.

De la definicion de doble cadena se siguen las siguientes observaciones.

Observacion 1. Cualquier segmento de recta que una a dos puntos de U (repectivamente
para L) no intersecta a ningin otro segmento de recta que una a dos puntos de L
(repectivamente para U ).

Observaciéon 2. Sea g un segmento de recta delimitado por un punto en cada cadena y
sea f un segmento de recta que une a dos puntos de la misma cadena. f 1y g se intersectan
sty solo si fy g inciden en el mismo punto.

Observacién 3. Toda recta que pasa por cualesquiera dos puntos consecutivos de una
misma cadena deja del mismo lado del semiplano al resto de puntos de la cadena.

Para este conjunto utilizamos puntos que generamos asi como conjuntos de puntos de
la base de datos [32]. Para cada caso se hicieron mil pruebas para cada valor de n entre
1 y 1000. En la Figura 4.12 se pueden ver los resultados para n = 3,4, 5.
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(a) n=3. (b) n = 4.

Figura 4.12: Doble cadena convexa paran = 3,4, 5 para las cuales se encontraron thrackles
maximos.

Para n > 3 encontramos que no existen thrackles maximos, sin embargo tanto en
los puntos que generamos como en los conjuntos de puntos de la base de datos, puesto
que cada cadena tiene la misma cantidad de puntos o estas difieren a lo més por un
punto, optamos por modificar la cantidad de puntos en cada cadena. Observamos que si
borramos puntos de la cadena superior hasta sélamente dejar dos puntos, siempre hay
thrackles méaximos, un ejemplo de esto se puede ver en la Figura 4.13 paran = 10 y
n = 32.

. 300 r T
3130
® 9 8 200 | vf“ﬂ‘\
D
10 \\
ol
-0 \
0 2 (4 s[a/1]ol204) 6 %\ \
=T 6 \X N
26
30 &
-500 Y
4 3 2 1 0 1 2 3 -15 10 5 0 5 10
(a) n = 10. (b) n = 32.

Figura 4.13: Thrackles maximos en la doble cadena al borrar puntos de la cadena superior.

Ademas en todos los casos se observa que el ciclo del thrackle es de tamano tres. Por
lo que podemos darnos una idea de la forma que tienen en general los thrackles maximos,
para conocer su forma exacta a continuacion vamos a buscarla tedricamente.

Dada una (k,[)-doble cadena, deseamos estudiar bajo qué condiciones existen thrackles
maximos, es decir thrackles de tamano k& + [. Sabemos por el teorema de Woodall que
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para encontrar el thrackle maximo se debe tener a lo mas un ciclo de tamano impar, por
lo que analizaremos la disposicion y el tamano de los ciclos que pueden existir dentro del
conjunto.

Existen dos formas de construir ciclos sobre la doble cadena, la primera es que el ciclo
quede completamente contenido en una cadena y la segunda es que el ciclo contenga
puntos tanto de la cadena U como de la cadena L. A continuaciéon damos una proposicién
para analizar estos casos.

Proposicién 2. Para toda (k,1)-doble cadena, con 3 < k <, se tiene que ningin thrackle
mdzximo puede tener su ciclo completamente contenido en una sola cadena.

Demostracion. Sea Cy,; una (k,[)-doble cadena con un thrackle maximo 7', llamemos C}
al ciclo de T' y denotemos por m a su longitud. Supongamos que C7' C U y vamos a
demostrar que esto conduce a una contradiccién.

Como T es un thrackle debe cumplir las condiciones del Teorema de Woodall, es decir
CT debe ser un m-grama. Por la Observacién 2, sabemos que ninguna arista que esté
formada unicamente por vértices de L puede pertenecer al thrackle. Por la Observacion
3, cualquier arista formada por un punto en U y otro punto en L, puede tener un vértice
en comun con el ciclo, por lo que estas aristas no pueden formar parte de T.

De lo anterior se tiene que T puede estar formado tinicamente por aristas de U, por lo
que T es maximo de tamano k, pero como T es un Thrackle méaximo es de tamano k + [,
por lo que se tiene una contradiccién. De manera analoga cuando C7* C L. O

De esta proposicion de siguen los siguientes dos corolarios.

Corolario 1. Para toda (k,l)-doble cadena, con 3 < k <, se tiene que ningun thrackle
mdzrimo cuyo ciclo sea de tamano tres puede tener su ciclo completamente contenido en
una sola cadena.

Demostracion. Este es un caso particular de la Proposicién 1. O

Proposicién 3. Para toda (k,1)-doble cadena, con 3 < k <, se tiene que ningun thrackle
mazrimo puede tener dos aristas adyacentes de su ciclo en la misma cadena.

Demostracion. Sea Cy; una (k,[)-doble cadena con un thrackle maximo 7', llamemos C}*
al ciclo de T y denotemos por m a su longitud. Supongamos que existen ¢y y ¢; dos
aristas adyacentes en C7' en la misma cadena y vamos a demostrar que esto conduce a
una contradiccion.

Sea ¢; una arista en C7' diferente a ¢y y a ¢;. Como T' es thrackle se tiene que c¢; debe
intersectar tanto a ¢y como a ¢y, por lo que basta con analizar los siguientes tres casos:

1. ¢; esta contenido en la cadena opuesta que contiene a ¢y v ¢;. En este caso por la
Observacién 2 se tiene que ¢; no intersecta a ¢o ni a ¢;. Por lo tanto este caso lleva
a una contradiccion.



4.2. DOBLE CADENA CONVEXA 45

2. ¢; tiene un vértice en U y otro en L. En este caso por la observacién 3 se tiene que
¢; es adyacente tanto a ¢y como a ¢y, por lo que hay un vértice en el ciclo que es
de grado tres, lo cual no es posible por la definicién de ciclo. Por lo tanto este caso
lleva a una contradiccion.

3. ¢; esta contenida en la cadena que contiene a ¢y y ¢;. En este caso para que c¢;
intersecte tanto a ¢y como a ¢; una opcién es que formen un ciclo de tamano tres
como se ve en la ilustracion de la izquierda, sin embargo esto no es posible por el
Corolario 1. Otra opcidn es que ¢; cruce a las aristas como se ve en la ilustracion de
la derecha, en este caso deben de existir caminos entre los vértices de ¢; y los de ¢y y
c1, estos caminos deben de intersectar a todas las aristas del ciclo, por lo que el ciclo
completo debe de estar contenido en la misma cadena lo cual es una contradiccion
con la Proposicién 2.
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Por lo tanto cualquier otra arista del ciclo distinta a ¢y y a ¢; no puede intersectar a ambas
aristas, por lo que no puede formar un thrackle. O

Por las proposiciones anteriores, sabemos que si una (k, [)-doble cadena tiene un thrackle
maximo entonces el ciclo del thrackle desde estar compuesto por aristas que alternan entre
vértices de U y de L. Ahora deseamos caracterizar a estos ciclos.

Proposicién 4. Para toda (k,l)-doble cadena, con k < I, se tiene que ningin thrackle
maximo puede tener un ciclo de tamano mayor a 3.

Demostracion. Sea Cj; una (k,[)-doble cadena con un thrackle maximo 7', llamemos C7'
al ciclo de T' y denotemos como m a su longitud. Supongamos que m > 3 y vamos a
demostrar que esto conduce a una contradiccién.

Como C7' pertenece a un thrackle, sabemos por el Teorema de Woodall que m debe
ser un numero impar y que C7' debe formar un m-grama, ademas por la Proposicién 3
se tiene que C7' debe estar formado por aristas que tienen un vértice en U y otro en L.
Llamemos {u; }1<i<k a los vértices de U y llamemos {v;}1<j<; a los vértices de L.

Como C7' es un ciclo se tiene que al recorrer sus aristas se comienza y termina en el
mismo vértice, es decir en la misma cadena. Supongamos, sin pérdida de generalidad, que
7' comienza en la cadena L, sea vy el vértice de L donde comienza el ciclo y sea u; el

vértice de U para formar la primer arista como se ve en la Figura 4.15.

Figura 4.15

Para formar la segunda arista se toma vy € L el cual puede estar a la izquierda o a la
derecha del segmento orientado vyuy, supongamos sin pérdida de generalidad que esta a
la derecha como se ve en la Figura 4.16.
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Figura 4.16

Para que la tercer arista intersecte a la arista (vq, uy), el vértice us necesariamente debe
encontrarse a la izquierda de u; como se ve en la Figura 4.17.

Figura 4.17

Anélogamente el siguiente vértice vz debe estar a la derecha de v, como se ve en la
Figura 4.18.

Figura 4.18

De lo anterior podemos notar que cualquier cantidad impar de aristas terminan en la
cadena U. Esto quiere decir que al recorrer las aristas del ciclo se empieza y termina en
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distintas cadenas, lo cual es una contradiccién, en la Figura 4.19 se puede ver un ejemplo
con m = 5.

Figura 4.19

Para el caso del ciclo de tamano tres, basta con unir el vértice vy con vy, los cuales se
encuentran en la misma cadena L. Con lo cual concluye la demostracién [

La Proposicion 4, nos indica que el ciclo de cualquier thrackle maximo de cualquier
(k,1)-doble cadena debe ser de tamanio 3. Ahora que conocemos el tamano del ciclo y
por cudles aristas debe estar conformado deseamos conocer una forma de construir los
thrackles que contienen a estos ciclos, para ello vamos a demostrar que estos thrackles
deben tener ciclos que deben de estar vacios.

Observacion 4. Para un conjunto de cuatro vértices con un thrackle mdximo que tiene
un ciclo de tamano tres, se tiene que el ciclo no puede encerrar a un vértice.

De esta observacion se sigue la siguiente:

Observacion 5. Para un conjunto de n vértices con un thrackle mdximo que tiene un
ciclo de tamano tres, se tiene que el ciclo del thrackle no puede encerrar a ningiun vértice.

Por la Observacién 3 tenemos que para construir triangulos vacios, es necesario que los
dos puntos situados en la misma cadena sean adyacentes.
Con la teoria construida hemos caracterizados a los thrackles maximos que pueden existir
sobre la doble cadena, se tiene que su ciclo debe ser de tamano tres: compuesto por dos
vértices adyacentes en una cadena y otro vértice en la otra cadena. Sin embargo aun falta
revisar las condiciones que debe cumplir la doble cadena para que existan los thrackles
maximos.

Para facilitar la argumentacion dividiremos las posibles aristas de cualquier thrackle
maximo en tres conjuntos:

= Ay es el conjunto de aristas formadas tnicamente por vértices de U que no pueden
estar en ningun thrackle maximo de tamano k + [.
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= A; es el conjunto de aristas formadas inicamente por vértices de L que no pueden
estar en ningun thrackle maximo de tamano k + (.

» Ay es el conjunto de aristas formadas por un vértice de U y otro de L que no
pueden estar en ningin thrackle méaximo de tamano k + [.

Analizamos el primer caso. Sea C},; una doble cadena convexa. Denotemos por X a
alguna cadena de Cj; y por Y a la otra cadena. Tomemos z1,2o € X y y € Y como los
tres vértices del ciclo.

Para la cadena X, sea z € X una arista diferente de 1 y 5. Se cumple lo siguiente:

» La arista (z1,y) no intersecta a la arista (xq, ).
» La arista (x9,y) no intersecta a la arista (z1, x).

De lo anterior se tiene que sélamente la arista (z1,z5) € X que pertenece al ciclo, puede
estar en el thrackle, por lo que |Ax| = (';ﬂ) - 1.

Para la cadena Y se tiene que ninguna arista formada por dos vértices en Y intersecta a
la arista (z1,z3), por lo que |Ay| = (‘g‘).

Para las aristas que cruzan entre cadenas se cumple lo siguiente:

» Las aristas que salen de z; deben cruzar a la arista (zq,y).
» Las aristas que salen de x5 deben cruzar a la arista (z1,y).

Lo anterior se puede observar en la Figura 4.20. De las observaciones anteriores se sigue que
en cualquier thrackle méximo habrd tantas aristas que cruzan como vértices en Y\{y}
mas las dos aristas que pertenecen al ciclo, esto es |Y| —1+ 2. Por lo tanto |Axy| =
Y] > [ X] = ([Y]+1).

Sea nt el nimero total de aristas que no estan en el thrackle, tenemos que

nt = (”;’) 14 <‘§‘) Y] % X] = (Y] + 1), (4.3)
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Figura 4.20: Ejemplo de aristas que cruzan.

Claramente el valor exacto de este nimero dependerd de la eleccion de xy, x5 y ¥.
Analicemos primero el caso en el que los dos puntos, x; y x2, estan en la cadena més
grande, esto es X = L, entonces |X| =1y |Y| = k. La Ecuacién 4.3 en este caso queda

de la siguiente manera:
l k
t= kl —k—2

=1) k-1
_ -k —2
2 + 2 *

= 1) + k(k — 1) + 2K
SELIES (R R

2 2
i z+a2k+2m_k_2

2 _ 2 _
R4 H k;m+z Lo
:k%+l—mguk+b—n_k_2
D=1

2

:(k;g—k—z (4.4)

Por otro lado, el nimero total de aristas que se pueden formar con k + [ puntos es (k;l),

por lo que si se quiere tener un thrackle de tamano k + [, las aristas que no estan en
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k+1

79 = (k +1). Lo anterior sucede cuando se cumple la

el thrackle no deben ser més de (
siguiente relacion:

NT < (k;l) —(k+1)

(Z”) k-2< (k;l) (k4 1)

2< ]
1<2. (4.5)

Por lo que el tamano de la cadena L esta acotado, a lo mas puede ser de tamano dos.
Ademés como k < [, se tiene que sélo hay thrackles méximos para C 2 y Cso cuando
se eligen los dos puntos sobre la cadena méas grande, estos thrackles se pueden ver en la
Figura 4.21.

U U
L L
(a) CLQ (b) 0272

Figura 4.21: Thrackles maximos en doble cadena.

En el caso de elegir los dos puntos sobre la cadena més pequena, es decir para X = U
y Y = L la ecuacién 4.4 cambia para el término lineal, por lo que queda de la siguiente

manera.
nt:(k;—l)—l—z (4.6)

Por lo que la relacién para la existencia de un thrackle maximo dada por la ecuacion 4.5
queda de la siguiente manera:

k<2 (4.7)

Como estamos determinando esta condicién a partir de elegir dos puntos en la cadena
mas pequena, se tiene que k = 2 sin limitar el valor de [, un ejemplo de este thrackle
maximo se puede ver en la Figura 4.22.
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Figura 4.22: Ejemplo de doble cadena Cs;, con 2 < .

Los resultados obtenidos para la doble cadena convexa se pueden resumir en el siguiente
teorema:

Teorema 10. Sea Ci; una doble cadena convexa. Cy; admite un thrackle mdximo de
tamano k +1 sty solo si cumple una de las siguientes condiciones:

» 1 <k <I1<2yel ciclo del thrackle esta formado por dos puntos de L y uno de U.

» k=2,1<1y el ciclo del thrackle estd formado por los dos puntos de U y uno de
L.

En la siguiente seccién analizamos un conjunto de puntos que combina las caracteristicas
de la doble cadena convexa y del doble circulo, a este conjunto se le conoce como doble
cadena zig-zag.

4.3. Doble cadena zig-zag

La doble cadena zig-zag (DCZZ) fue introducida en [34] como una variacién de la doble
cadena convexa, con la propiedad de que en cada cadena los puntos se intercalan a manera
de zig-zag similar al doble circulo, una figura esquematica se puede ver en la Figura 4.23.

&0 - 5

Figura 4.23: Figura esquematica de una doble cadena zig-zag.
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Con el fin de conocer para cuales valores de n existen thrackles maximos y caracterizarlos,
realizamos pruebas computacionales en conjuntos de puntos obtenidos de la base de datos
[32], primero con el programa pseudoaletario para n desde 1 hasta 10, posteriormente se
corrobord con el programa secuencial. En la Figura 4.24 se pueden ver algunos de los
thrackles maximos encontrados para n = 3,4, 5, 6.

2 2 4
3F 3
25F 25
2 2
151 15

3

1 1
0.5 0.5
0 0

2 1 0 1 2 3 ; 2 0 2 4 6

(a) n=3 (b)yn=4
10 T T T T T T T T 10 F T
3 6

8t sl
6 6l
WL A 2 5
2+ 2k
[ or 4

) 2 4 6 8 10 1‘2 14 ) 2 4 6 8 10

(c)n=>5 (d)n==6

Figura 4.24: DCZZ paran = 3,4,5,6. Las cadenas se encuentran a la izquierda y derecha
para cada figura.

Podemos observar que para formar thrackles méximos en el caso en quen =3y n =4
se tienen las mismas elecciones de aristas que en el caso de la doble cadena convexa.
Para el caso en que n = 5 ya aparece la propiedad de zig-zag en la cadena de la izquierda
mientras que en la derecha hay dos puntos, por lo que en total hay cinco puntos en posicion
convexa, el cual ya sabemos que siempre tendra thrackle maximo. Para el caso en que
n = 6 se tiene un caso similar al anterior, un conjunto de seis puntos en posicion convexa.
En la Figura 4.25 tenemos el caso en que n = 7 para el cual se rompe la convexidad en
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la cadena izquierda, siendo este valor de n el mayor para el cual se encontraron thrackles
MAXIimos.

2k L L L L | 2k i
0 5 10 15 20 0 5 10 15 20

(a) Thrackle méximo para n = 7 con ciclo de (b) Thrackle maximo para n = 7 con ciclo de
tamano tres. tamano cinco.

Figura 4.25: Thrackles maximos en DCZZ para el caso en que n = 7.

En la Figura 4.26 podemos ver los conjuntos de puntos paran = 8 y n = 9, en los
cuales no se encontré ningtin thrackle maximo. Se realizaron pruebas con el programa
de backtracking de manera exhaustiva hasta n = 15 y no encontrmos ningin thrackle
maximo.

(a) n = 8. (b) n =09.

Figura 4.26: Conjuntos de puntos de la DCZZ para los cuales no se encontraron thrackles
maximos.

Analizando los conjuntos mostrados en la Figura 4.26 podemos notar que en ambos
casos la cadena derecha tiene un punto que rompe la convexidad de la cadena. En la
Figura 4.26a es el punto 8 el que evita que los puntos 5, 6 y 7 estén en posicion convexa,
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si borramos este punto podemos usar esta cadena para formar un thrackle maximo como
se ve en la Figura 4.27a. En la Figura 4.26b es el punto 9 el que evita que los puntos 6,
7 v 8 estén en posicién convexa, si borramos este punto podemos usar esta cadena para
formar un thrackle maximo como se ve en la Figura 4.27b.

14

20 -
12 -

10

(a) Conjunto de n = 8 al cual borramos el (b) Conjunto de n = 9 al cual borramos el
punto 8 resultando en una DDZZ con n = 7. punto 9 resultando en una DDZZ con n = 8.

Figura 4.27: Conjuntos de puntos de la DCZZ en los cuales borramos un punto para
mantener la convexidad en la cadena derecha y asi encontrar thrackles maximos.

Si borramos puntos en una cadena, la DCZZ queda desbalanceada, por lo que de
aqui en adelante utilizaremos una notacion analoga a la doble cadena, denotando como
DCZZ(k,l) ala doble cadena zig-zag con k puntos en la cadena derecha y [ puntos en la
cadena izquierda, notemos que n = k + [, con k < [.

Antes de hacer una generalizacion analicemos otro caso. En la figura 4.29 podemos ver
la DCZZ(5,5). Podemos notar que existen dos maneras distintas de formar un conjunto
convexo. La primer manera es borrando los puntos 9 y 10, de esta manera el conjunto
compuesto por los puntos 6, 7 y 8 forma un conjunto convexo con un thrackle maximo en
DCZZ(5,3) como se ve en la Figura 4.29a. La segunda manera es borrando los puntos
6 y 7, de esta manera el conjunto compuesto por los puntos 8, 9 y 10 forma un conjunto
convexo con un thrackle maximo en DCZZ(5,3) como se ve en la Figura 4.29b.
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25 10

20

0 5 10 15 20 25

Figura 4.28: DCZZ(5,5), no encontramos algin thrackle maximo.

0 5 10 15 20 25 0 5 10 15 20 25

(a) DCZZ(5,5) a la cual borramos los puntos (b) DCZZ(5,5) a la cual borramos los puntos
9 y 10 resultando en una DDZZ(5,3). 6 y 7 resultando en una DDZZ(5,3).

Figura 4.29: DCZZ(5,5) llevada a DDZZ(5,3) mediante el borrado de puntos para
mantener la convexidad en la cadena derecha y asi encontrar thrackles maximos.

Sabemos que para el caso cuando n = 11, es decir DDZZ(6,5), la cadena derecha es
la misma que para DDZZ(5,5), mientras que la izquierda tendra un punto mas que en
DDZZ(5,5), por lo que el mismo borrado de puntos funciona.

Con base en los resultados anteriores podemos intuir que mientras tengamos tres puntos
en posicion convexa en la cadena derecha podemos formar thrackles maximos, por lo que
dada una DCZZ podemos borrar tantos puntos como sean necesarios de la cadena derecha
para formar thrackles maximos. En la Figura 4.30 podemos ver DDZZ(10, 10).
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60 [ .8 18 60 [
7 17
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20f .3 13 20|
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(a) DDZZ(10,10). (b) DDZZ(10,3).

Figura 4.30: DDZZ(10,10) llevada a DDZZ(10, 3) mediante el borrado de puntos para
encontrar thrackles maximos.

Dada DDZZ(3,1), con 3 < [, existe un nimero finito de elecciones de aristas para
formar thrackles maximos, sin embargo también existen elecciones de aristas que no
forman un thrackle méaximo, por lo que en esta seccién nos limitaremos a demostrar
que existe un thrackle maximo y lo daremos explicitamente.

Proposicién 5. Sea DDZ Z(3,1) una doble cadena zig-zag. DDZ Z(3,1) admite un thrackle

mdaximo.

Demostracion. Sea DDZZ(3,1) una doble cadena zig-zag. Tomemos un etiquetado por
cada cadena de tal forma que ambas cadenas inicien del mismo lado ademéas de que al
tomar tres puntos consectuvos de tal manera que haya dos etiquetas impares se forme un
conjunto de puntos convexo hacia la otra cadena. Llamémos U a la cadena de tres puntos
y L a la cadena de [ puntos. Una figura esquematica se puede ver en la Figura 4.31.

u

u
3 u
U oot
) ?/i e
L e © Vii2 3 o -
v Vi1 V2. vy

Figura 4.31: Figura esquematica de DDZZ(3,1).
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Separemos los puntos con etiqueta par e impar como sigue:

Lp:{vj|jmod220 A UjGL}

Li:{'l]j’ijdl:O/\UjeL}

Por la forma en que estd construida la doble cadena zig-zag podemos asegurar que
si descartamos los puntos que estan en posicion zig-zag, recuperamos la doble cadena
convexa, es decir que el conjunto L,U{uy, us} corresponde a la (2, r)-doble cadena convexa,
con r = [éw Por lo visto en el Teorema 10 de la Seccién 4.2 podemos afirmar que existe
un thrackle de tamano [éw + 2 con ciclo de tamano tres sobre los puntos {uy, us, v;} para

algin punto v; € L;. Esto se puede observar en la Figura 4.32.

Q ?
vl -1 2 Vl

r Vi

(a) Trackle sobre los puntos con etiqueta impar (b) Trackle méximo sobre los puntos de C'(2,r)

de DDZZ(3,1). conr = [L].

Figura 4.32: Comparacién entre DDZZ(3,1) y C(2,r),donde 1 <ly 1<,

Ya que los puntos de U forman un conjunto convexo hacia la cadena L, el segmento de
recta que pasa por u; y uz separa en distintos semiplanos al punto us y al resto de puntos,
por lo que para toda i € [1,1], la arista v;us necesariamente cruza a la arista ujus.

Utilizando la Figura 4.33 podemos observar que, tomando una ¢ € [1,1], el segmento de
recta que pasa por v; y u; deja en semiplanos distintos al conjunto de puntos {v;};«; y a
los puntos us y u3, ademas las aristas usu; estan siempre por debajo de la arista ujus la
cual es cruzada por la arista v;us, de lo anterior se sigue que la arista v;us necesariamente
cruza a las aristas ugu;, con j > 1.
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Figura 4.33: Analisis de interseccién de la arista v;us.

Anélogamente sucede para las aristas formadas por el punto u; y los puntos {v;}i<;.
Por lo tanto podemos afirmar que la arista v;us cruza o comparte vértice con el resto de
aristas. Por lo tanto hemos contruido un thrackle maximo en L;.

Ahora analicemos el conjunto de puntos L,. Sea v; € L, con j < 7, como la arista uszv;
no puede ser colineal a la arista uzv;_; ni a la arista usv;,; necesariamente se encuentra en
el area comprendida por estas dos. Por lo que la arista uzv; cruzard y compartird vértice
con todas aquellas aristas que lo hagan con ugv;_; y usv;11, y como estas dos ultimas son
thrackleables se tiene que la arista usv; es thrackleable, lo anterior se ejemplifica en la
Figura 4.34. Andlogamente para las aristas w,v; con ¢ < j.

Figura 4.34: Anélisis de interseccién de la arista vjus, con j < i.

Podemos resumir la informacién anterior en el siguiente teorema:

Teorema 11. Sea DCZZ(3,1) una doble cadena zig-zag. DCZZ(3,1) tiene un thrackle
mdzximo de tamano | + 3 con ciclo de tamano tres como se ve en la figura 4.35.
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o’

Figura 4.35: Thrackle maximo en DCZZ(3,1).

Clemens Huemer et. al. definieron la doble cadena zig-zag generalizada [35] como una
doble cadena parametrizada por dos valores n y k, siendo n el nimero total de puntos y k&
el nimero de puntos entre cada par de puntos de la cadena formando un arco en posiciéon
convexa. Denotamos a la doble cadena zig-zag con k puntos en los arcos interiores como
Zy.

Con base en esta definicion tenemos que Z, corresponde a una doble cadena convexa,
mientras que Z; corresponde a la doble cadena zig-zag analizada anteriormente. Un
ejemplo de Z5 se puede ver en la figura 4.36.

oo o

_® 9 o O o e |
o:-9° , , O~z
Figura 4.36: Doble cadena zig-zag generalizada con dos puntos en cada arco, es decir Zs.

Para buscar thrackles maximos en Z; procedemos de manera similar a como lo hicimos
en 7, la idea es borrar tantos puntos como sea necesario para que en una cadena quede
un conjunto de puntos en posicion convexa, es evidente que para este caso habra cuatro
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puntos que cumplan esta condicion.

Introducimos la notaciéon generalizada para una doble cadena desbalanceada como sigue:
Si Z; es una doble cadena zig-zag balanceada con n puntos totales y k& puntos en cada
arco interior, denotamos por Zx(m,[) a la doble cadena zig-zag que tiene m puntos totales
en la cadena superior y [ puntos totales en la cadena inferior tal que n = m + [, con k
puntos en cada arco interior. Con base en la definicién anterior podemos ver en la Figura
4.37 a Zy(4,1).

Figura 4.37: Z5(4,1).
Teorema 12. Sea Zy(4,1) una doble cadena zig-zag cuya cadena de cuatro puntos forma
un conjunto convexo hacia la otra cadena. Zy(4,1) admite un thrackle mdzimo.

La demostraciéon es analoga a la escrita para 7, el thrackle que admite este conjunto
se muestra en la Figura 4.38.

Figura 4.38: Thrackle maximo admitido por Z5(4,1).

Este resultado acerca de la existencia de un thrackle maximo se puede generalizar para
Z, cuyo arco de k puntos podemos ver en la Figura 4.39.
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Figura 4.39: Arco interno de Z.

Por lo que dejando tnicamente un arco en posicion convexa en un cadena el resultado
general es el siguiente:

Teorema 13. Sea Zy(k+2,1) una doble cadena zig-zag generalizada cuya cadena de k+2
puntos forma un conjunto convexo hacia la otra cadena. Zy(k + 2,1) admite un thrackle
mdzimo.

Una vez mas la demostracion es analoga a Z; y Zs.
En la siguiente seccién daremos los resultados obtenidos para el conjunto de Horton.

4.4. Conjunto de Horton

Erdés definié el pardmetro g(n) como el niimero entero mas pequeno tal que cualquier
conjunto de g(n) puntos en el plano en posicién general contiene un subconjunto de n
puntos en posicion convexa cuya capa convexa no encierra algin punto, a este subconjunto
de n puntos en posicién convexa que no encierra puntos se le conoce como n-hoyo. El
conjunto de Hortén tiene la propiedad de no tener 7-hoyos, con base en esta propiedad
existen distintas definiciones del conjunto de Hortén que mantiene la propiedad. Aqui
utilizaremos la definicién recursiva dada por Hortén de la siguiente manera: [36]:

Definicién 16. Conjunto de Horton. Para cualquier k > 0, se construye un conjunto de
2% puntos. Sea i € [0,2%) un entero cuya expansion binaria es ay, .. .aza;. Sea c =28 4+ 1,
se define d(i) = Xa;d?~t, sumando desde j = 1 hasta j = k. Sea p; el punto (i,d(1)),
entonces el conjunto de Horton, Hy, queda definido como Hy, = {p;|i = 0,1,...,2F —1}.

Para este conjunto utilizaron puntos de la base de datos. Para cada caso se hicieron 100
pruebas para cada n entre 1 y 100, recordemos que la cantidad de puntos es una funcién
exponencial de 2". En la Figura 4.40 se pueden ver los resultados para n = 2, 3,4, 5.
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Figura 4.40: Resultados obtenidos para el conjunto de horton con 2" puntos, para n =

3,5,6,7.

En las pruebas realizadas se encontré que existen thrackles maximos para cada n
analizada, nuestra propuesta es que existe al menos un thrackle maximo para toda n
y daremos explicitamente ese thrackle maximo. Para ello daremos explicitamente una
eleccion de aristas y demostraremos que forman un thrackle maximo para toda n. Primero
vamos a demostrar dos proposiciones que nos seran de utilidad.

Proposicién 6. Para toda k > 0, sea i € (0,2 — 1] cuya expansién binaria es ay . . . azay,
tomando ¢ = 2% + 1, se tiene que la funcion d(i) = Z?:l a;cd~1 es creciente para toda i.

Demostracion. Sean i € [0,28 — 1], ¢ = 2¥ + 1, i € [0,2% — 1]. Para demostrar que
d(i) = Z?Zl a;c?1 es creciente se verificard que si ¢ < i entonces d(i') < d(7).
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Sean ay...asa; y a) ...aba} las expansiones binarias de ¢ y i’ respectivamente. Para
decir que la funcién es creciente basta con verificar que la recta que pasa por los puntos
(¢ —1,d(i — 1)) y (¢,d(i)) tiene pendiente positiva para toda i, como se muestra en la
Figura 4.41, es decir se debe cumplir lo siguiente:

d(i) — d(i — 1)
i—(i—1)

> 0.

(i,d())

(i-1,d(i-1))

Figura 4.41: Pendiente de la recta que pasa por dos puntos.

Por lo tanto, basta con verificar que

d(i) — d(i —1) > 0

k k
Zajci’I - Za;cj’l >0
Jj=1 Jj=1
k

(a; —as)d™! > 0. (4.8)

1

J

Como ¢ = 2% 4 1, entonces para toda k se cumple que ¢ > 0, por lo que la Ecuacién 4.8
serd vélida dependiendo de a; y a.

Como i y i+ 1 son nimeros consecutivos se tiene que necesariamente a; y a} son distintas,
es decir se tienen uno de los siguientes dos casos:

a) ay=1ya; =0
b) a=0yad, =1

Analicemos primero el caso a) En este caso el nimero i—1 tiene su bit menos significativo
igual a 0, por lo que para obtener a i se le suma 1, lo que significa que se cambia inicamente
el bit menos significativo por un 1. Por lo tanto en este caso se tiene que a;- = a; para
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toda j > 1, por lo que a; — a); = 0, para toda j > 1, ademds a; — a} = 1. Entonces la
suma queda de la siguiente manera:

k k
Z(aj —al)d ! = Z(aj — )+ (ay — ay)e' !

> 0. (4.9)

La Ecuacién 4.9 indica que para el caso a) se cumple que la pendiente de la recta que
pasa por los puntos ¢ — 1 y i es positiva y por lo tanto d(i) es creciente.

b) En este caso el niimero i — 1 tiene bit menos significativo igual a a} = 1, por lo que
relizar la suma ¢ — 1 4+ 1 es equivalente a realizar o} + 1 = 0, teniendo un acarreo de 1
para el siguiente bit a5, llevaremos el acarreo hasta que lleguemos a algin bit a;, = 0 que
al sumarle el acarreo cambie a 1. Lo anterior significa que existe ¢ € [2, k] tal que a; =0
y @ = a; para toda j > . Es decir que ay — a; = 1y a; — a; = 0 para toda j > /, ademds
necesariamente para j < £ se tiene que a; > a;, esto quiere decir que a; — a; = —1. Por
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lo que la suma queda de la siguiente manera:

k k -1
Z(aj —ay)d Tt = Z (a; — a)" + (ag — a))c ! + Z(aj —ai)d!
j=1 J=t+1 J=1

-1
= 0 + =) !
j=1
-1
_ A1 chq
j=1
¢
_ A1 chq
j=2
1
_ CE 1 g ZC]
j=2
LT ¢
= ! 2 & cl—i-ch
L Jj=0
1T 1 Cf—i—l
L ﬂ}
2| 1-c
_ {1—_0“]
1—c
_ -l {&L—l _ 1]
1—-c¢
1— L
=1 {1 - — Cfll} : (4.10)

Para verificar que la Ecuacién 4.10 es mayor a 0, basta con verificar que el término entre
corchetes es positivo, para ello verificamos que ¢ = 2F + 1 por lo que para k > 0 se tiene
que ¢ > 2, por lo que ¢ — 1 > 1; ademas se tiene que 1 > 1 — ce%l, por lo que se tiene la
siguiente desigualdad:

c—1>1-—

o1
1- 2
1> £
c—1
1— o
1— £ > 0. (4.11)
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De la Ecuacién 4.11 se sigue que la Ecuacién 4.10 es positiva, por lo tanto d(i) es creciente
para el caso b). Esto concluye la demostracién. O

Proposicién 7. Para toda k > 0, sea i € [0,2% — 1] cuya expansion binaria es ay, . .. asay,
la funcion d(i) = Z?Zl a;(2¥ + 1)771 cumple la propiedad i < d(i)para toda i.

Demostracion. Sea k > 0, se tiene que 2 < 2% + 1, por lo que para toda j > 1 se cumple
que 2771 < (28 4 1)77L,

Sea i € [0,2F — 1] y sea ay, . .. asa; la expansién binaria de 4. para toda j € [2,k] si a; # 0
se satisface ;2771 < aj(2k +1)7~1, por lo que relizando la suma para estos valores se sigue

la siguiente relacién:

> a2 < > a2 1y

FE[2,k] JE[2,K]

a;70 a; 70
Para j € [2, k] tal que a; = 0 se tiene que a;2/7! = a;(2% + 1)~ = 0, por lo que sumar
estos términos no afecta la desigualdad, por lo tanto:

k k
D a2t <y a2 1y
j=2 j=2

Para el caso j = 1 se tendrd que a;29~! = a;(2¥ + 1)7~! = a;, por lo que sumar este
término no afecta la desigualdad, por lo tanto:

k

k
0J—1 (9F Jj—1
E a;27" < E a;(2"+ 1) 7.
j=1 j=1
., . . . . . k -
Como ay, . ..asa; es la expansion binaria de i, se tiene que ¢ = ijl a;2~1, por lo tanto
se concluye la relacién:

i < d(7).
[l

A continuacion demostramos que siempre existe un thrackle maximo con ciclo de
tamano 3 en el conjunto de Horton, para demostrarlo damos el thrackle explicitamente.
Recordemos la defincion recursiva del conjunto de Hortoén:

Definicién 17. Conjunto de Horton. Para cualquier k > 0, se construye un conjunto de
28 puntos. Sea i € [0,2%) un entero cuya expansion binaria es ay, . ..asa;. Sea ¢ = 2% +1,
se define d(i) = Sa;d~', sumando desde j = 1 hasta j = k. Sea p; el punto (i,d(7)),
entonces el conjunto de Horton, Hy, queda definido como Hy, = {p;|i = 0,1,...,2% —1}.

Para 2* puntos el thrackle consiste de las siguientes aristas:
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a) Un ciclo de tamafio 3 que consiste de los puntos (0,d(0)), (1,d(1)) y (2¥=1, d(2F1)),
los cuales tienen las etiquetas pg, p1 y pok—1.

b) 2% — 3 aristas que se forman al unir los 2¥ — 3 puntos restantes, con el punto py.

Un ejemplo de este thrackle propuesto se ve en la Figura 4.42 para el caso en que k = 3
y k=4.

g

Po § )

(a) Thrackle méximo de tamafio 8 para k = 3. (b) Thrackle méximo de tamano 16 para k = 4.

Figura 4.42: Ejemplos de thrackles maximos en el conjunto de Horton con la eleccion de
aristas propuestas.

Para asegurar que se forma un thrackle es necesario que las 2¥ — 3 aristas restantes
deben encontrarse dentro de la region delimitada por las aristas del ciclo que inciden en
Po ya que las 2F — 3 aristas inciden en ese punto, ademds deben encontrarse fuera del ciclo,
por lo que deben quedar a la derecha del segmento dirigido pgpqx—1, esto se resume en las
siguientes condiciones:

a) Los puntos deben estar a la izquierda del segmento orientado pop;.
b) Los puntos deben estar a la derecha del segmento orientado p;pyr-1.
c¢) Los puntos deben estar a la derecha del segmento orientado popor-1.

Para demostrar a) basta con demostrar que la pendiente de la recta que pasa por el
punto poy y los puntos p; para toda i € [2,2F — 1] — {2¥71} es mayor a la pendiente de la
recta que pasa por los puntos py y p1, es decir, se debe cumplir la siguiente relacion:

d(1) = d(0) _ d(i) — d(0)
1-0 1—0
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Esto quiere decir que deseamos que se cumpla la siguiente relacion:

Lo cual se satisface por la Proposiciéon 7.

Para demostrar b) vamos a utilizar un argumento similar al caso a) respecto a las
pendientes, basta con demostrar que la pendiente de la recta que pasa por los puntos p;
y por_1 €s mayor a la pendiente de la recta que pasa por p; y p;, es decir queremos que se
satisfaga la siguiente relacién:

d(i) —d(1) _d(2"") —d(1)

<~ (4.12)

Para verificar esta relacién vamos a dividir el andlisis en dos casos:
s bl)l<i< ok—1
= b.2) k=1

En el caso b.1), basta con analizar los casos extremos ya que la funcién d(i) es creciente,
por lo que si i =2y i = 2¥"1 — 1 cumplen la relacién, los demas puntos la cumpliran.

Hagamos notar que para analizar ¢ = 2 debe cumplirse que k£ > 2 de lo contrario no hay
suficientes puntos para analizar este caso, por lo tanto se cumplen las siguientes relaciones:

k< (k—1)
2k —1<k®—k
92—l < k" —h (4.13)

Por otro lado se tiene que ok*—k - ok*—k | ok , que al combinarlo con la Ecuacién 4.13 se
siguen las siguientes relaciones:
22k—1 < 2k‘2—k‘ +2k
22k‘—1 . 2/4: < 2k‘2—k‘

921 ok 4] <Rk 4 (4.14)
Por otro lado se tiene la siguiente relacion:

2k2—k +1= Qk(k‘—l) +1
— (Qk’)k:—l + 1
< (2F+ )M (4.15)
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De las Ecuaciones 4.14 y 4.15, combinadas con la definicién de ¢ = 2% + 1 se tienen las
siguientes relaciones:

22k71 o 2k + 1 < Ckfl
92k—1 _ gk _ k-1 _q
oF(2F 1 1) < Mt -1
=1 —1
2k—1 1
d(2k1y — 1
2k—1 1
d(2k_1) —1
2k—1 1
c—1 d2¥YH) -1
<
2—1 2k=1 1

ok <
ki1 -1<

c—1<

(4.16)

Como estamos analizando el caso i = 2 se tiene que su expansién binaria es a; = 1 para
j =2y a; =0 para toda j # 2, por lo que Z?Zl a;cd~1 = ¢!, esto quiere decir que
d(2) = ¢, por lo que la Ecuacién 4.16 nos indica que se cumple la Ecuacién 4.12 para el
caso b.1) cuando i = 2.

El caso b.1) cuando i = 2¥~! — 1 se verifica directamente con la Proposicién 6 que analiza
dos puntos continuos.

Para analizar caso b.2), tomaremos nuevamente los extremos cuando i = 2¥1 + 1 y
i=2"—1.

Cuando ¢ = 2871 + 1 se tiene que la expansion binaria s a; = 1 para j € {1,k} y a; =0
para toda j € {1, k}, esto quiere decir que d(2*~! + 1) = =1 + 1, por lo que la relacién

(i) —d(1) _ d(2") —d(1)
i—1 k-1 _1

queda de la siguiente manera:

2 +1) —d(1) _ (@) — d(1)
2k-1 41 -1 2k=1 — 1
Ck—l Ck;—l —1
2k—1 < k-1 _ 1‘

(4.17)
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De la definicién de ¢ = 2% + 1 se tienen las siguientes relaciones:

2<c
2/€—1 < Ck—l
1 1
Ckfl < 2]{:71

1
L+ Ck—l <1+ 2k—1

< . (4.18)

Por lo que se cumple la Ecuacién 4.12 para la parte i = 2871 + 1 del caso b.2).

En el caso i = 2¥ — 1 de b.2) se quiere que se cumpla la siguiente relacion:

d2F—1)—1 d@2YH -1
@11 =~ 211
d2F—1)—1 d@2YH -1
2k — 2 2k—1 _ 1
d2F—1)—1 d@2hH -1
2(2k-1 — 1) 2k-1 _ 1
d(2" —1) —1 < 2(d(2"1) = 1)
d(2F — 1) < 2d(2"1) — 1. (4.19)

Para verificar que se cumple la relacién dada por la Ecuacion 4.19, veamos cuél es el valor
explicito de d(2* — 1). La expasién binaria para i = 2¥ — 1 es a; = 1 para toda j, por lo
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que la forma explicita queda de la siguiente manera:

k

- . (4.20)

Ademas como ya sabemos d(2F71) = c#~1

manera:

por lo que la Ecuacién 4.19 queda de la siguiente

-1

c—1

F—1<2F—c—2F"141
c<c =20 12

<21 -1

2
1< t—ock24 2
c
2
1<cd2le—2]+ = (4.21)
c

Para que la Ecuacién 4.23 sea valida es necesario que ¢* — 2 y ¢ — 2 > 1, lo cual se sigue
de la siguiente relacion:

k>1
2k > 2
2k 41> 3
c>3
c—2>1. (4.22)
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Por lo tanto la Ecuacién 4.19 es valida, por lo que la Ecuacién 4.12 se cumple para
i =2F —1 del caso b.2).

Por lo tanto los puntos cumplen con estar a la derecha del segmento orientado pipor-1.
Para el caso ¢) se tiene que los puntos deben estar a la derecha del segmento orientado
Popar-1, €s decir la pendiente de la recta que pasa por los puntos py y p; para toda ¢ debe
ser menor a la pendiente de la recta que pasa por los puntos pg y par—1, por lo que se debe
de cumplir la siguiente desigualdad:

d(i) — d(0)  d(251) — d(0)

i—0 2k—1 — ()
d(i) _d(2"")
i 2k—1
2Ftd(i) < d(2F )i
0 < d(281)i — 25 1d(4). (4.23)

Como d(2F!) = ¢*!, utilizando la expasion binaria de i, la Ecuacién 4.23 queda de la
siguiente forma:

k k
0< 13 a2t - 9b 1Y gyt
j=1 j=1

k k
0«3 ot =3 gkt
i=1 j=1

k k
0< %ZCLJC QJ—Z—CZCLJQ c
7=1 7j=1
1 k
koj k_Jj
0<%Zaj k2l — 28] (4.24)

j=1
Como a; > 0 para toda j, una manera en que la Ecuacién 4.24 sea valida es que ck2i —
2Fcl > 0 para toda j. Cuando j = k se tiene que c¢¥2/ — 28¢/ = 0, por lo que el caso de
interés es para j < k. Esto se sigue de la siguiente relaciéon:
c>2
> 2", (4.25)
Por lo que para j < k se tiene:
I > ok
eI > ko=
cF2i > okl
2l — ok > 0. (4.26)
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Por lo que de la Ecuacion 4.26 se sigue que la Ecuacién 4.24 es véalida y por lo tanto la
relacion de la Ecuacion 4.23 lo es.

Esto demuestra el caso c), por lo que queda concluida la demostracién.

De lo anterior obtenemos el siguiente teorema:

Teorema 14. Sea H un conjunto de Horton de cardinlidad 2%, con 0 < k. H siempre
admite un thrackle mdximo con ciclo de tamano tres.

4.5. Conjuntos de puntos particulares

En esta seccién daremos resultados obtenidos a partir del andlisis computacional de
conjuntos obtenidos de la base de datos [32]. Se realizaron pruebas computacionales en
los siguientes conjuntos:

= Conjunto de 10 puntos con la propiedad de tener un tnico 5-hoyo convexo:

{( 0 ,64677), (65280, 65280), (32144, 56115), (38443, 42292), (29486, 47302),
(28031,47507), (28497, 46248), (26495, 45981), (26324, 45249), (19359, 44531),
(489 , 537 ), (3957, 0 ),(22031,40206),(5222,32611),(48433,51953)}

Para el cual se encontraron varios thrackles méaximos. En la Figura 4.43 se muestra
uno de ellos.

70000

60000 -

50000 -

40000

30000 -

20000 -

10000 [

! ! ! ! ! ! !
0 10000 20000 30000 40000 50000 60000 70000

Figura 4.43: Un thrackle maximo encontrado en el conjunto de puntos.
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= Conjunto de 14 puntos con seis 5-hoyos convexos.

{( 0 ,64677), (65280, 65280), (32144, 56115), (38443, 42292), (29486, 47302),
(28031, 47507), (28497, 46248), (26495, 45981), (26324, 45249), (19359, 44531),
(3957, 0 ),(22031,40206), (5222, 32611), (48433, 51953)}

Para el cual no se encontré ningun thrackle maximo.

= Conjunto de 15 puntos con nueve 5-hoyos convexos.

{( 0 ,62035), (65280, 65280), (29017, 42686), (28073, 43222), (27580, 43180),
(27723, 42707), (26856, 42289), (26977, 42113), (24450, 40872), (24201, 38628),
(18887, 0 ),(29771,62134), (52452, 63860), (12179, 28100), (42831, 62949)}

Para el cual no se encontré ningun thrackle maximo.

= Conjunto de 16 puntos con once 5-hoyos convexos.

{( 0. 0),(359,597), (392, 306), (402, 287), (381, 272), (389, 276), (382, 271),
(392, 263), (383, 253), (390, 254), (397, 262), (365, 222), (393, 239), (386, 198),
(441, 178), (554, 0)}

Para el cual no se encontré ningtin thrackle maximo.

» Conjunto de 26 puntos sin 6-hoyos convexos [37]:

{ 1181, 727), (1327,921), (1138, 1011), (1870, 946), (1339, 1359), (1365, 482),

(

(1420, 707), (2025, 410), ( 771 , 1066), (1090, 457), (731, 1594), (1054, 2285),
(1534, —1320), (2413, 793 ), (2284, —117), (2102, 1640), ( 573 , 560 ),
(—1347, —4021), (1767, —4587), (7148, 195), (1701, —603), (3216, 3448),

(

139, 1853), (3521, —2068), (—3176, 5105), (207, 7135)}

Para el cual se encontraron al menos dos thrackles maximos, uno de ellos se muestra
en la Figura 4.44.
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Figura 4.44: Un thrackle maximo encontrado en el conjunto de puntos.

» Conjunto de 29 puntos sin 6-hoyos convexos [38]:

{ 1,1260), ( 16,743), ( 22 ,531), (37, 0 ), (306,592), (310, 531), (366, 552),

(

(371, 487), (374, 525), (392, 575), (396, 613), (410, 539), (416, 550), (426, 526),
(434, 552), (436, 535), (446, 565), (449, 518), (450, 498), (453, 542), (458, 526),
(489, 537), (492, 502), (496, 579), (516, 467), (552, 502), (754, 697), (777, 194),
(

1259 320)}

Para el cual no se encontré ningun thrackle maximo.



Capitulo 5

Conclusiones

Esta tesis tiene como objetivo proponer un algoritmo que en tiempo polinomial decida
si un conjunto de puntos tiene un thrackle maximo. Encontramos que este problema es
mas complicado de lo que pensamos por lo que Unicamente logramos dar dicho algoritmo
para algunas familias de puntos. Obtuvimos resultados interesantes tanto tedricos como
computacionales. Para abordar el problema optamos por caracterizar los conjuntos de
puntos tienen que thrackles maximos.

La primer familia de puntos que analizamos es el doble circulo. Concluimos que todo
doble circulo siempre admite un thrackle maximo.

Otra familia de puntos que analizamos es la doble cadena convexa. Concluimos que
admite thrackles méaximos siempre y cuando el conjunto de puntos cumpla las condiciones
del Teorema 10, concluimos que los conjuntos de puntos en donde existen thrackles
maximos necesariamente tiene dos puntos en una cadena mientras que puede tener cualquier
nimero de puntos en la otra cadena.

Para la familia de puntos de la doble cadena zig-zag, concluimos que admite un thrackle
maximo si y sélo si se cumplen las condiciones del Teorema 11, el cual es una generalizacion
del Teorema 10. Analogamente definimos la doble cadena zig-zag generalizada y concluimos
que siempre admite thrackles maximos si y sélo si el conjunto de puntos cumple las
condiciones del Teorema 13.

La siguiente familia de puntos analizada fue el conjunto de Horton, el cual al ser definido
de manera recursiva permite concluir que siempre admite un thrackle maximo, ademas
dimos las tres aristas que forman el ciclo de dicho thrackle maximo y la manera de elegir
las aristas restantes.

En el caso de las familias de puntos con la particularidad de tener o no k-hoyos convexos,
para algunas k particulares: el conjunto de puntos con un tnico 5-hoyo si tiene thrackles
maximos, mientras que los conjuntos de puntos con seis 5-hoyos, nueve 5-hoyos y once
5-hoyos no tienen thrackles maximos. Con base en la informacién anterior proponemos la
siguiente conjetura:

Conjetura 1. Sea S un conjunto de puntos con m hoyos de tamano 5, S no admite

7
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thrackles mdzimos para 1 < m.

Para los dos conjuntos de puntos sin 6-hoyos convexos obtuvimos distintos resultados,
para el conjunto de 26 puntos si se contraron thrackles méaximos, mientras que para el
conjunto de 29 puntos no. Aqui vale la pena recordar que una propiedad del conjunto de
Horton es la de no tener 7-hoyos y como ya vimos siempre contiene un thrackle maximo.
Por lo que concluir que el no tener k-hoyos no nos brinda informacion acerca de si habré
o no thrackles maximos.

Con base en la experiencia y resultados obtenidos durante la realizacién de esta tesis
concluimos que para determinar de manera eficiente si un conjunto de puntos en posiciéon
general tiene o no thrackles maximos una manera es creando particiones con propiedades
de convexidad como las estudiadas aqui. El problema de encontrar thrackles maximos en
conjuntos de puntos en posiciéon general parece ser un problema NP-completo, esto es una
pregunta abierta y un interesante trabajo a futuro.



79



80

CAPITULO 5. CONCLUSIONES



Bibliografia

1]

2]

8]

[9]
[10]

[11]

Paul Erdés. On sets of distances of n points. The American Mathematical Monthly,
53(5):248-250, 1946.

José Luis Alvarez Rebollar, Jorge Cravioto Lagos, and Jorge Urrutia. Crossing
families and self crossing hamiltonian cycles. XVI Encuentros de Geometria
Computacional, page 13, 2015.

Boris Aronov, Paul Erdés, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman,
Janos Pach, and Leonard J. Schulman. Crossing families. In Proceedings of the
Seventh Annual Symposium on Computational Geometry, SCG ’91, page 351-356,
New York, NY, USA, 1991. Association for Computing Machinery.

Laszlo Lovasz, Janos Pach, and Mario Szegedy. On conway’s thrackle conjecture.
Discrete € Computational Geometry, 18(4):369-376, 1997.

Gary Chartrand and Ping Zhang. Chromatic Graph Theory. Chapman & Hall/CRC,
1st edition, 2008.

Heinz Hopf and Erika Pannwitz.  Aufgabe nr. 167.  Jahresbericht Deutsch.
Math.-Verein, 43:114, 1934.

JW Sutherland. Losung der aufgabe 167. Jahresbericht Deutsch. Math.-Verein,
45:33-35, 1935.

Yakov Shimeon Kupitz. Ezxtremal problems in combinatorial geometry. Number 53.
Matematisk institut, Aarhus universitet, 1979.

S Avital and Haim Hanani. Graphs. Gilyonot Lematematika, 3(2):2-8, 1966.

Douglas R Woodall. Thrackles and deadlock. Combinatorial Mathematics and Its
Applications, 348:335-348, 1971.

Janos Pach and Ethan Sterling. Conway’s conjecture for monotone thrackles. The
American Mathematical Monthly, 118(6):544-548, 2011.

81



82

[12]

[13]

[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAFIA

Wei Li, Karen Daniels, and Konstantin Rybnikov. A reduction of conway’s thrackle
conjecture.

Grant Cairns, Margaret Mcintyre, and Yury Nikolayevsky. The thrackle conjecture
for kb and k3,3.

Radoslav Fulek and Janos Pach. A computational approach to conway’s thrackle
conjecture.

Vida Dujmovi¢ and David Wood. Thickness and antithickness of graphs. 08 2017.

WT Tutte. The thickness of a graph. In Indagationes Mathematicae (Proceedings),
volume 66, pages 567-577. Elsevier, 1963.

D. Eppstein. Separating thickness from geometric thickness. In Graph Drawing, 2002.

Lowell W. Beineke and Frank Harary. The thickness of the complete graph. Canadian
Journal of Mathematics, 17:850-859, 1965.

Valeri B Alekseev and VS Goncakov. The thickness of an arbitrary complete graph.
Mathematics of the USSR-Sbornik, 30(2):187, 1976.

Lowell W Beineke. The decomposition of complete graphs into planar subgraphs.
Graph theory and theoretical physics, pages 139-153, 1967.

Jean Mayer et al. Decomposition de k16 en trois graphes planaires. 1972.

J Vasak. The thickness of the complete graph having 6m+ 4 points. Manuscript.
Cited in [12, 14], 1990.

Lowell W Beineke, Frank Harary, and John W Moon. On the thickness of
the complete bipartite graph. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 60, pages 01-05. Cambridge University Press, 1964.

P. Mutzel, T. Odenthal, and M. Scharbrodt. The Thickness of Graphs: A Survey.
Forschungsbericht. Max-Planck-Institut fiir Informatik, 1996.

Michael B. Dillencourt, David Eppstein, and Daniel S. Hirschberg. Geometric
Thickness of Complete Graphs, pages 39-51.

Michael B. Dillencourt, David Eppstein, and DanielS. Hirschberg. Geometric
thickness of complete graphs. In Sue H. Whitesides, editor, Graph Drawing, pages
102-110, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

Fran Berman, David Johnson, Tom Leighton, Peter W Shor, and Larry Snyder.
Generalized planar matching. Journal of Algorithms, 11(2):153-184, 1990.



BIBLIOGRAFIA 83

28]

[29]

[30]

[31]

[32]

[33]

[36]

[37]

[38]

G. Araujo, A. Dumitrescu, F. Hurtado, M. Noy, and J. Urrutia. On the chromatic
number of some geometric type kneser graphs. Computational Geometry, 32(1):59-69,
2005.

Ruy Fabila-Monroy, Jakob Jonsson, Pavel Valtr, and David R. Wood. The exact
chromatic number of the convex segment disjointness graph, 2018.

Ruy Fabila-Monroy, Carlos Hidalgo-Toscano, Jesus Leanos, and Mario Lomeli. The
chromatic number of the disjointness graph of the double chain. 11 2017.

Fernandez Laura. Programas de tesis, 2021. (Cdédigo, https://github.com/
monifdzn/tesis.

A. Oswin and P. Ginter R. Jan, K. Tomaz. Combinatorics of point sets and
arrangements of objects. Datos obtenidos de PoSeZo - The Point Set Zoo, http:
//www . eurogiga-compose.eu/posezo.php.

Sergey Bereg, R Fabila-Monroy, David Flores-Penaloza, Mario Alberto Loépez, and
Pablo Pérez-Lantero. Embedding the double circle in a square grid of minimum size.
International Journal of Computational Geometry & Applications, 24(03):247-258,
2014.

Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, Hannes
Krasser, and Birgit Vogtenhuber. On the number of plane geometric graphs. Graphs
and Combinatorics, 23:67-84, 06 2007.

Clemens Huemer, Alexander Pilz, and Rodrigo I. Silveira. A new lower bound on
the maximum number of plane graphs using production matrices. Computational
Geometry, 84:36-49, 2019. Special Issue on the 34th European Workshop on
Computational Geometry.

Joseph D Horton. Sets with no empty convex 7-gons. Canadian Mathematical
Bulletin, 26(4):482—-484, 1983.

Mark H. Overmars. Sets without empty convex 6-gons, volume 88. Unknown
Publisher, 1988.

Mark Overmars. Finding sets of points without empty convex 6-gons. Discrete €
Computational Geometry, 29(1):153-158, 2002.



