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Resumen

La geometŕıa combinatoria es una rama de las matemáticas que estudia las propiedades
combinatorias de objetos discretos como lo son puntos en el plano y segmentos de recta.
La teoŕıa de gráficas trabaja con objetos matemáticos llamados gráficas, una gráfica G es
una pareja de conjuntos G = (V,E), donde V es un conjunto finito distinto del vaćıo y E
es un subconjunto de parejas de elementos de V . Una gráfica geométrica es un dibujo de
una gráfica en el plano, de tal forma que los vértices de la gráfica son puntos en posición
general y las aristas son segmentos de recta entre parejas de puntos. En esta tesis tenemos
como objetivo el dar un algoritmo que determine si una gráfica geométrica particular,
llamada thrackle, se puede dibujar sobre un conjunto de puntos dado. Un thrackle es una
gráfica geométrica en la que todos los segmentos de recta tienen un punto en común,
cuando la gráfica tiene tantos segmentos como puntos se dice que es máximo. Abordamos
el problema mediante la búsqueda de thrackles máximos en algunas familias de puntos,
primero realizamos pruebas computaciones mediante la técnica de backtracking, para
posteriormente proponer y demostrar la existencia de thrackles máximos en las siguientes
familias de puntos: doble ćırculo, doble cadena convexa, doble cadena zig-zag, doble cadena
zig-zag generalizada y conjunto de Horton, aśı como seis conjuntos de puntos particulares,
además dimos la forma expĺıcita de los thrackles para estas familias de puntos.



Abstract

Combinatorial geometry is a branch of mathematics that studies the combinatorial
properties of discrete objects such as points in the plane and line segments. Graph theory
works with mathematical objects called graphs, a graph G is a pair of sets G = (V,E),
where V is a finite set other than empty set and E is a subset of pairs of elements of V .
A geometric graph is a drawing of a graph in the plane, in such a way that the vertices
of the graph are points in general position and the edges are line segments between pairs
of points. In this thesis we aim to give an algorithm that determines whether a particular
geometric graph, called thrackle, can be drawn on a given set of points. A thrackle is a
geometric graph in which all the line segments have a point in common, when the graph
has as many segments as there are points, it is said to be a maximum. We approach he
problem by searching for maximum thrackles in some families of points, first we perform
computational tests using the backtracking technique, to later propose and demonstrate
the existence of maximum thrackles in the following families of points: double circle,
convex double chain, double zig-zag chain, generalized double zig-zag chain and Horton
set, as well as six particular point sets, we also gave the explicit form of the thrackles for
these point families.
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Caṕıtulo 1

Introducción

Los conjuntos de puntos en el plano han sido ampliamente estudiados en distintas
áreas de las matemáticas, como son la combinatoria, la geometŕıa y la teoŕıa de gráficas.
El tipo de preguntas que se estudian respecto a estos conjuntos generalmente se centran
en encontrar propiedades de estructuras geométricas dibujadas sobre los mismos.

Considérese, por ejemplo, un conjunto de n puntos y dibújese sobre este un conjunto
de segmentos de recta de tal forma que los extremos de cada segmento sean los puntos del
conjunto. Si pedimos que cada par de segmentos tenga un extremo en común o se crucen
entonces se pueden dibujar como máximo n segmentos. Esto fue demostrado en 1946 por
Paul Erdős [1]. A dicho conjunto se le conoce como thrackle.

Esta noción de conjuntos de objetos geométricos que se cruzan dos a dos se sigue
estudiando. Se han estudiado distintas variantes del problema, cambiando los elementos
del conjunto por caminos, ciclos hamiltonianos, triángulos disjuntos en vértices o curvas
[2, 3]. También se han estudiado más de un criterio de intersección, las principales variantes
estudidas son las crossing families [3] y los thrackles [4].

En esta tesis estudiamos la intersección de segmentos de recta en la variante original
propuesta por Paul Erdős. Nos interesa caracterizar computacionalmente aquellos conjuntos
de puntos que admiten el dibujo de un thrackle de tamaño exactamente n. Es decir,
deseamos dar un algoritmo con complejidad polinomial que reciba como entrada un
conjunto de n puntos y devuelva como salida un thrackle de tamaño n o, en su defecto,
nos diga que éste no existe.

Presentamos en este trabajo las demostraciones combinatorias y los algoritmos polinomiales
para algunas familias de puntos: doble ćırculo, doble cadena convexa generalizada y
conjunto de Horton, demostramos ques siempre existe un thrackle máximo y lo dimos de
manera expĺıcita. Para el caso general no obtuvimos el algoritmo deseado, conjeturamos
que el problema es NP-completo.

La tesis está organizada de la siguiente manera: en el Caṕıtulo 2 se definen formalmente
los conceptos utilizados en este trabajo. En el Caṕıtulo 3 exponemos los resultados
relacionados encontrados en la literatura. En el Caṕıtulo 4 mostramos los resultados de
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4 CAPÍTULO 1. INTRODUCCIÓN

este trabajo y explicamos como fueron obtenidos. Finalmente, en el Caṕıtulo 5 mencionamos
nuestras conclusiones y posible trabajo a futuro.



Caṕıtulo 2

Antecedentes

En esta sección daremos las definiciones necesarias para entender el concepto de thrackle.
Comenzamos definiendo algunos conceptos básicos de teoŕıa de gráficas y, con base en ellos,
presentamos algunos conceptos básicos de la teoŕıa de gráficas geométricas. Posteriormente
damos una revisión histórica de algunos resultados existentes en la literatura, comenzando
con el problema que dio origen al área de investigación en la que se encuentra el problema
que estudiamos en esta tesis. Con todo lo anterior, presentamos las definciones de thrackle
y de thrackle geométrico, siendo este último el tema principal de este trabajo de tesis.
Por último presentamos una conjetura central en el área de teoŕıa de gráficas conocida
como la conjetura de Conway y presentamos también un teorema que caracteriza a los
thrackles de tamaño máximo posible.

2.1. Gráficas

Las definiciones son tomadas de [5]. La teoŕıa de gráficas trabaja con objetos matemáticos
llamados gráficas, una gráfica G es una pareja de conjuntos G = (V,E), donde V es un
conjunto finito distinto del vaćıo y E es un subconjunto de parejas de elementos de V .
Si G es una gráfica, a los elementos de V se les llama vértices de G y a los elementos de
E se les llama aristas de G. Decimos que dos vértices u, v ∈ V son adyacentes si existe
la arista {u, v} ∈ E, además decimos que la arista {u, v} incide en los vértices u y v.
Definimos el grado de un vértice v ∈ V como el número de aristas que inciden en él. Si E
contiene todas las aristas formadas a partir de cada par de vértices de V se dice que G es
una gráfica completa. Decimos que una gráfica H es una subgráfica de G si V (H) ⊆ V (G)
y E(H) ⊆ E(G).

Si G es una gráfica, un camino W de G es una secuencia de vértices de G en la que
cada pareja de vértices consecutivos de W son adyacentes en G. Una gráfica G es conexa
si existe un camino entre cada par de sus vértices. Sea C = (v1, . . . , vn) un camino de G,
decimos que C es un ciclo si para cada i, j ∈ {1, . . . , n− 1}, con i 6= j, sucede que vi 6= vj
y además v1 = vn, se define el tamaño del ciclo como el número de aristas que conforman
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6 CAPÍTULO 2. ANTECEDENTES

al ciclo.
Una definición que será muy utilizada a lo largo de este trabajo es la de partición de un
conjunto.

Definición 1. Sea A un conjunto, una k-partición de A es una colección {A1, . . . , Ak}
de subconjuntos de A, que cumple las siguientes propiedades

1. Ai ∩ Aj = ∅ para toda i 6= j.

2. A1 ∪ . . . ∪ Ak = A.

3. Ai 6= ∅ para toda i.

A los subconjuntos de la partición se les llama partes.

En la siguiente sección daremos algunas definiciones para gráficas dibujadas en el plano
y con ello definiremos las gráficas geométricas.

2.1.1. Gráficas geométricas

Decimos que un conjunto de puntos está en posición general si no hay tres de ellos
colineales. A la representación de una gráfica en el plano se le conoce como dibujo o
encaje. Una gráfica geométrica es un dibujo de una gráfica en el plano, de tal forma que
los vértices de la gráfica son puntos en posición general y las aristas son segmentos de
recta entre parejas de puntos. Si las aristas de la gráfica son curvas cerradas entonces
llamamos al dibujo gráfica topológica.

Podemos pensar en una curva como una sucesión no finita de puntos, entonces las aristas
de una gráfica topológica se pueden ver como una sucesión no finita de puntos delimitados
por sus vértices. Siguiendo esta idea llamamos a los vértices de una arista puntos extremos
y al resto de los puntos puntos interiores. Decimos que dos aristas tienen un cruce propio
cuando tienen un punto interior en común, como se muestra en la Figura 2.1a. Decimos
que dos aristas son adyacentes cuando comparten un vértice, como se muestra en la Figura
2.1b.
Un dibujo de una gráfica es plano si no contine aristas que se cruzan. Una gráfica
(abstracta) es planar si existe un dibujo plano de la misma.
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(a) Cruce propio, cuando dos aristas
comparten un punto interior.

(b) Adyacencia, cuando dos aristas
comparten un punto extremo.

Figura 2.1: Tipos de intersección entre aristas.

En la siguiente sección hablaremos de un problema que dio origen a una familia particular
de gráficas y a la definición de thrackle.

2.2. El problema de Hopf y Pannwit

Heinz Hopf y su estudiante Erika Pannwit, de la Universidad de Berĺın, publicaron en
el Reporte Anual de la Unión Matemática Alemana de 1934 [6] el siguiente problema:

Problema 1. Sean p0, p1, . . . , pn−1, pn = p0 puntos distintos en el plano tal que la distancia
entre ellos satisface las siguientes condiciones:

d(pi, pj) ≤ 1 (0 ≤ i < j < n).

d(pi, pi+1) = 1 (i = 0, . . . , n− 1).

Prueba que esto es posible si y sólo n es impar o n = 2.

El problema consiste en demostrar que si queremos acomodar n > 2 puntos ordenados
en el plano de tal forma que cada par de puntos consecutivos estén a distancia uno y cada
par de puntos no consecutivos esten a una distancia menor a uno, donde el último punto
es igual al primero, necesariamente el número n debe ser impar. Es decir, únicamente
podemos acomodar una cantidad impar de puntos que satisfagan estas condiciones.

Una respuesta a este problema fue dada por Fenchel [7] quien dio una descripción de
dónde colocar los puntos para que el conjunto satisfaga las condiciones. Un ejemplo de la
solución de Fenchel para cinco puntos es la siguiente:
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1. Sea p0 el primer punto colocado en el plano, entonces el siguiente punto, p1, debe
estar a distancia uno de p0. En la siguientes ilustraciones marcamos las posibles
ubicaciones a distancia 1 con una circunferencia punteada de radio uno.

2. Colocamos p1 a distancia uno de p0, esta distancia la denotamos en la siguiente
ilustración por un segmento de recta que une a los puntos. Nótese que en el caso
en que n = 2 se cumplen las condiciones del problema. Para n > 2 se tiene que el
siguiente punto, p2, debe estar a una distancia igual a uno de p1 y a una distancia
menor a uno de p0. Es decir, p2 debe estar sobre la circunferencia punteada de radio
uno azul y dentro del área delimitada por la circunferencia de radio uno centrada
en p0, todo esto se muestra en la ilustración de abajo. En la ilustración marcamos
la zona donde puede estar p2 por un segmento de circunferencia de color azul.

Podemos notar que el segmento p0p1 divide el plano en dos semiplanos, por lo que
podemos decir que p2 estará a la izquierda o a la derecha del segmento p0p1.
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3. Colocamos p2 a distancia uno de p1, pero a distancia menor a uno de p0. Nótese que
en el caso en que n = 3 necesariamente los puntos forman un triángulo equilatero,
en la ilustración de abajo esto equivale a dibujar los puntos sobre las intersecciones
de las circunferencias azul y negra. Para n > 3 el siguiente punto, p3, tiene que
estar a distancia uno de p2 y a distancia menor a uno de p0 y p1, en la ilustración
marcamos esta zona por un segmento de circunferencia de color rojo.

Nótese que el segmento p0p1 divide al plano en dos semiplanos y el arco de circunferencia
rojo donde se puede colocar p3 está totalmente contenido en el semiplano opuesto al
que contiene al segmento p1p2, por lo que al trazar el segmento p2p3 necesariamente
cruza al segmento p0p1 y comparte un punto con el segmento p1p2.

4. Colocamos p3 a distancia uno de p2, pero a distancia menor a uno de p0 y p1. Nótese
que en el caso en que n = 4 necesariamente p3 tendŕıa que estar a distancia igual
a 1 de p0 por la segunda condición, esto implica que p3 tendŕıa que estar en la
intersección de la circunferencia de radio uno centrada en p0 con la circunfencia de
radio uno con centro en p3, sin embargo en esta posición se encuentra p1, por lo que
no es posibible. Para el caso n ≥ 4 el punto p4 debe colocarse a una distancia igual
a uno de p3 y a una distancia menor a uno de p0, p1 y p2, en la ilustración esto se
denota por el segmento de circunferencia color verde.
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Nótese que el segmento p1p2 divide al plano en dos semiplanos y el arco de circunferencia
verde donde se puede colocar p4 está totalmente contenido en el semiplano opuesto
al que contiene a los segmentos p0p1 y p2p3 , por lo que al trazar el segmento p3p4
necesariamente los cruza.

5. Como estamos en el caso n = 5, el punto p4 debe estar a distancia uno de p0. En la
ilustración esto es la intersección de la circunferencia de radio uno con centro en p3
con la circunferencia de radio uno con centro en p0.

Nótese que el caso en que n = 2 se cumple trivialmente. En el caso en que n > 2 para que
las condiciones del problema se cumplan en cada caso el siguiente punto se debe colocar



2.2. EL PROBLEMA DE HOPF Y PANNWIT 11

de tal manera que el segmento de recta que se forma con el punto anterior cruce a los
segmentos anteriores, por lo que los puntos se van colocando de manera alternada en los
semiplanos definidos por el segmento anterior. Lo anterior implica que el problema no
tiene solución cuando el número de puntos es un número par, ya que necesariamente el
último punto quedaŕıas a una distancia estrictamente menor a uno del primer punto, no
cumpliendo la segunda condición del problema.

Sea P = {p0, . . . , pn−1} un conjunto de puntos que cumple las condiciones del Problema
1. La segunda condición del problema nos indica que para cada par de puntos consecutivos
de P la distancia es uno, además nótese que esta distancia es máxima para cualquiera dos
puntos de P , a esta distancia se le conoce como diámetro.

Si unimos con un segmento a cada par de puntos cuya distancia es uno, es decir,
cuya distancia realiza el diámetro, entonces obtenemos la que se conoce como gráfica de
diámetros. Formalmente se define como sigue:

Definición 2. Sea P un conjunto de puntos, asociamos a P la siguiente gráfica:
Los vértices de G=(V,E) son los puntos de P. Dos vértices p1, p2 ∈ P son adyacentes si
y sólo si la distancia entre ellos es igual al diámetro de P.

La desigualdad del triángulo implica que cualesquiera dos aristas de la gráfica de
diámetros o bien comparten un vértice o bien se cruzan. Un teorema publicado en 1946
por Paul Erdős [1] nos da una cota superior para el número de aristas que puede tener
una gráfica de diámetros, el teorema dice lo siguiente:

Teorema 1. (Erdős, 1946) El número de aristas de una gráfica de diámetros inducida
por un conjunto de n puntos en el plano es a lo más n. Este ĺımite puede ser alcanzado
para toda n > 2.

Como mencionamos anteriormente, las aristas de la gráfica de d́ıametros o bien comparten
un vértice o bien se cruzan, dicho de otra forma no hay dos aristas disjuntas, además las
aristas de la gráfica de d́ıametros son segmentos de recta, por lo que el Teorema 1 se puede
reescribir de la siguiente manera [8]:

Teorema 2. (Erdős, Avital-Hanani, Kupitz) Toda gráfica geométrica de n vértices que no
contiene dos aristas disjuntas tiene a lo sumo n aristas. Este ĺımite puede ser alcanzado
para toda n > 2.

Una manera intuitiva de pensar el teorema 2 la dio Avital-Hanani [9] y consiste en el
siguiente razonamiento: imaginemos a la gráfica geométrica como una telaraña en donde
hay una araña sentada en cada uno de los vértices, si una araña tiene un hilo a su alcance
(un arista incidente) y, además, al voltear 180 grados en el sentido de las manecillas del
reloj no encuentra otro hilo, entonces la araña avanza hasta la mitad del hilo y deposita
un huevecillo; de otra manera no lo hace. Notemos que si no hay dos aristas disjuntas en
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la gráfica entonces no habrá arista que no haya sido marcada con un huevecillo, por lo
cual el número de aristas no puede exceder el número de arañas.

Como hemos visto hasta ahora los resultados de Erdős nos han llevado a gráficas
geométricas que tienen la caracteŕıstica de que sus aristas se intersectan por pares. De
manera independiente, John Conway trabajó con gráficas topológicas que cumplen la
misma caracteŕıstica, definiendo aśı el concepto de thrackle, como se verá en la siguiente
sección.

2.3. Thrackle

En 1960 John Conway definió un thrackle de la siguiente manera:

Definición 3. Un thrackle es una gráfica topológica en la cual cada par de aristas tienen
un cruce propio o son adyacentes.

Si restringimos la definición anterior al caso part́ıcular en el que la gráfica es geométrica
entonces llamaremos al thrackle un thrackle geométrico. Un ejemplo de thrackle geométrico
se puede ver en la Figura 2.2a, un ejemplo de thrackle topológico se puede ver en la
Figura 2.2b. Cuando una gráfica se puede dibujar como un thrackle se dice que la gráfica
es thrackleable.

(a) Thrackle geométrico.
(b) Thrackle topológico. Imagen creada por
Stephan Wehner en C, 9/12/2000.

Figura 2.2: Tipos de thrackles.

Con la definción de thrackle podemos reescribir el Teorema 2 en términos de thrackles
geométricos, el cual quedaŕıa de la siguiente manera:

Teorema 3. Todo thrackle geométrico de n vértices tiene a lo más n aristas. Este ĺımite
puede ser alcanzado para toda n > 2.
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De manera independiente a los trabajos realizado por Erdős, en 1971, Conway enunció
la siguiente conjetura [10]:

Conjectura de Conway. Cada thrackle de n vértices tiene a lo sumo n aristas. Este
ĺımite puede ser alcanzado para cada n > 2.

Cuando se alcanza el ĺımite del Teorema de Conway, es decir cuando un thrackle de n
vértices tiene n aristas decimos que el thrackle es un thrackle máximo.

Al d́ıa de hoy la conjetura de Conway no ha podido ser demostrada, aunque existen
varios intentos y soluciones para casos con restricciones, ver por ejemplo: [11], [12] [13],
[14]. El caso particular más evidente es el Teorema 3.
Se sabe que no todas las gráficas son thrackleables, por ejemplo las gráficas completas,
excepto la completa con tres vértices, no son thrackleables ya que siempre habrá aristas
en la gráfica que no intersecten a otras [15]. En 1972 Woodall dio una caracterización de
las gráficas finitas thrackleables de la siguiente manera:

Teorema 4. (Woodall, 1972 [10]) Una gráfica finita es thrackleable si y sólo si cumple
las siguientes condiciones

1. Tiene a lo sumo un ciclo impar.

2. No contiene ningún ciclo de tamaño cuatro.

3. Cada una de sus componentes conexas es un árbol o tiene exactamente un ciclo.

Lo que nos dice el teorema de Woodall es que los thrackles están formados por ciclos de
tamaño impar, de tal forma que si el ciclo tiene m aristas, estas aristas forman una estrella
de m puntas cuyas aristas que la conforman se intersectan por pares, a esta distribución
geométrica le llamamos un m-grama. Un ejemplo de esta caracterización para un thrackle
con ciclo de tamaño cinco se puede ver en la Figura 2.3.

Figura 2.3: Caracterización dada por el teorema de Woodall para un thrackle con ciclo de
tamaño cinco.
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El teorema de Woodall es utilizado en este trabajo para la búsqueda de thrackles. En
particular en este trabajo nos interesa buscar thrackles máximos en un conjunto de puntos
en posición general, para ello primero realizamos la búsqueda de thrackles máximos en
familias de puntos part́ıculares cuya estructura geométrica facilita la búsqueda.



Caṕıtulo 3

Estado del arte

En este caṕıtulo pondremos en contexto el trabajo realizado en esta tesis respecto a los
resultados existentes en la literatura.

Comenzamos el caṕıtulo definiendo un parámetro que permite codificar la información
respecto a la planaridad de una gráfica, extendemos la definición de este parámetro al
caso de las gráficas geométricas, mencionando para caso algunos resultados relevantes
relacionados a este parámetro. Posteriormente damos las definiciones de coloración propia
de los vértices y de las aristas de una gráfica, aśı como los conceptos relacionados de clases
cromáticas, coloración, número cromático e ı́ndice cromático.

El parámetro conocido como thickness, asociado a las gráficas, codifica información
respecto a la planaridad de una gráfica. Es decir, este parámetro cuenta cuántas gráficas
planares son necesarias para descomponer las aristas de una gráfica. En el mismo sentido si
pedimos que las gráficas de la descomposición tengan el mayor número de cruces posibles,
estaŕıamos codificando también información respecto a la planaridad de la gráfica, el
tamaño de esta descomposición seŕıa el antithickness.

El thickness fue definido por primera vez en 1963 por W. T. Tutte [16], sin embargo en
este trabajo utilizaremos la definición dada por David Eppstein [17]:

Definición 4. Sea G una gráfica. El thickness de G, denotado por θ(G), es el entero k
más pequeño tal que existe una partición de E(G), de tamaño k, en la que cada parte
induce una gráfica planar.

En la Figura 3.1 se muestra un ejemplo de thickness para un dibujo de K5.

15
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(a) Partición de tamaño 6. (b) Partición de tamaño 4. (c) Partición de tamaño 3.

Figura 3.1: Tres particiones de distinto tamaño para el mismo dibujo de K5, representadas
por distintos tipos de ĺıneas. Cada particion genera gráficas planas. En este caso θ(K5) = 3.

Un resultado inmediato a partir de la definición de thickness es el siguiente:

Teorema 5. Sea G una gráfica. θ(G) = 1 si y sólo si G es planar.

Uno de los primeros resultados obtenidos para el thickness fue dado Beineke y Harary
en 1965 [18], demostraron que el thickness de la gráfica completa Kn está acotado por
abajo de la siguiente manera:

n+ 7

6
≤ θ(Kn).

En el mismo art́ıculo se da el valor exacto del thickness para las gráficas completas K9 y
K10, que cumplen con la siguiente relación:

θ(K9) = θ(K10) = 3.

Posteriormente se encontró de manera exacta el thickness para todas las demás gráficas
completas [19, 20, 21, 22] esto se resume en la siguiente relación:

θ(Kn) =



1 si 1 ≤ n ≤ 4

2 si 5 ≤ n ≤ 8

3 si 9 ≤ n ≤ 10

dn+2
6
e si n > 10.

Si Km,n es una gráfica completa bipartita con m > n tales que cumplen que el producto
mn es un entero impar y existe un entero k tal que n = 2k(m− 2)/(m− 2k), entonces el
thickness de Km,n está dado por la siguiente relación [23]:

θ(Km,n) =
mn

2(m+ n− 2)
.
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El thickness de una gráfica se ha estudiado extensamente ver, por ejemplo, [24]. En esta
tesis resaltamos únicamente los resultados relacionados a las gráficas completas ya que
estas son nuestro objeto de estudio.

La definición de thickness ha sido adaptada al caso particular de las gráficas geométricas
quedando de la siguiente manera [17]:

Definición 5. Sea G una gráfica geométrica. El thickness de G, denotado por th(G), es el
entero k más pequeño tal que existe una partición de E(G), de tamaño k, en la que cada
parte es una gráfica geométrica plana.

Con base en las definiciones 4 y 5, podemos definir el thickness geométrico de la siguiente
manera:

Definición 6. Sea G una gráfica. Sea Ḡ el conjunto de todas las gráficas geométricas de
G. El thickness geométrico de G, θ̄(G), es el mı́nimo valor de th(G) tal que G ∈ Ḡ.

En la Figura 3.2 presentamos un ejemplo de thickness geométrico para tres dibujos
geométricos de K5.

(a) Dibujo geométrico de K5

con θ(K5) = 3.
(b) Dibujo geométrico de K5

con θ(K5) = 2.
(c) Dibujo geométrico de K5

con θ(K5) = 2.

Figura 3.2: Tres dibujos geométricos de K5 con su respectivo valor de thickness. La
partición es presentada por distintos tipos de ĺıneas. En este caso θ̄(K5) = 2.

Nótese que si G es una gráfica planar entonces en Ḡ existe una gráfica geométrica plana
cuyo thickness es igual a uno, por lo tanto G tiene thickness geométrico igual a uno, es
decir tenemos el siguiente resultado análogo al Teorema 5:

Teorema 6. Sea G una gráfica. θ̄(G) = 1 si y sólo si G es planar.

Nótese que la definición de thickness impone la restricción de que los dibujos de las
gráficas sean planos, por otra parte en el thickness geométrico además se impone la
restricción de que las aristas sean segmentos de recta, dicho de otra forma todos los
dibujos geométricos son dibujos topológicos. De esto se sigue la siguiente relación [17]:

θ(G) ≤ θ̄(G).
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En el mismo art́ıculo se demuestra que el valor del thickness geométrico no está acotado
asintóticamente por el thickness, lo cual se expresa en el siguite teorema:

Teorema 7. Para cada t, existe una gráfica con thicknes igual a tres y thickness geométrico
≥ t.

El teorema anterior implica que el tener algoritmos y estrategias para calcular o aproximar
el thickness no significa que esas mismas técnicas sirvan para calcular el thickness geométrico.
Por lo tanto, es necesario desarrollar técnicas propias para calcular el thickness geométrico.

Dillencourt et al. [25] dan cotas para el thickness geométrico de una gráfica completa,
la relación es la siguiente: ⌈ n

5.646
+ 0.342

⌉
≤ θ̄(Kn) ≤

⌈n
4

⌉
.

También calculan los valores exactos del thickness geométrico para la gráfica completa
Kn para algunos valores espećıficos de n, dado por la siguiente relación [25]:

θ̄(Kn) =



1 si 1 ≤ n ≤ 4

2 si 5 ≤ n ≤ 8

3 si 9 ≤ n ≤ 12

4 si 15 ≤ n ≤ 16.

Se tiene que para n = 13 y n = 14 no se ha encontrado un valor exacto, sino que hay cota
mı́nima igual a 3 y cota máxima igual a 4.
Si Km,n es una gráfica completa bipartita, con m > n tales que cumplen que el producto
mn es un entero impar y existe un entero k tal que n = 2k(m− 2)/(m− 2k), entonces el
thickness geométrico cumple la siguiente relación:⌈

mn

2(m+ n− 2)

⌉
≤ θ(Km,n) ≤ θ̄(Km,n) ≤

⌈
min(m,n)

2

⌉
Consideremos un conjunto de n puntos en posición convexa y sea Kc

n la gráfica geométrica
completa dibujada sobre ese conjunto de puntos. De acuerdo con la Definición 5, el
thickness Kc

n está dado por la siguiente relación [26]:

th(Kc
n) =

⌈n
2

⌉
.

El thickness, y por lo tanto el thickness geométrico, se pueden reescribir como coloraciones
de gráficas, a continuación presentamos una manera de hacerlo.

Sea G = (V,E) una gráfica, decimos que una coloración propia de los vértices de G
es el etiquetado de todos los vértices de G de tal forma que dos vértices adyacentes no
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tengan la misma etiqueta. Análogamente definimos una coloración propia de las aristas
de G como el etiquetado de todas las aristas de G de tal forma que dos aristas adyacentes
1 no tengan la misma etiqueta. A estas etiquetas les llamamos colores ya que cuando el
número de etiquetas es pequeño se utilizan colores como rojo, verde, azul, etc. En general,
para k colores estas etiquetas pueden ser los números enteros del 1 a k. Si se utilizan k
colores decimos que la coloración propia es una k-coloración. Dada una k-coloración de
los vértices de G, sea Vi el conjunto de vértices de V con color i, llamamos a este conjunto
una clase cromática de G. Nótese que el conjunto de las clases cromáticas, {V1, . . . , Vk},
de G es una partición del conjunto V de los vértices de la gráfica.

Una gráfica G es k-coloreable si existe una k-coloración de los vértices (aristas) de G.
Al número k más pequeño para el cual G es k-coloreable lo llamamos número cromático
χ(G) (́ındice cromáticoχ′(G)). En la Figura 3.3 se puede ver un ejemplo de las definiciones
anteriores.

Figura 3.3: Ejemplo de una 3 -coloración de una gráfica. En este caso no existe una forma
de colorear la gráfica con menos colores, por lo que su número cromático es tres. Nótese
que los vértices de las distintas clases cromáticas no son adyacentes.

Si quisieramos extender la noción de coloración propia a las gráficas geométricas, pensar
en la coloración de vértices no seŕıa distinto al caso de las gráficas abstractas, aśı que la
forma de extender la noción seŕıa coloreando las aristas. Notemos que para construir esta
definición necesitamos el concepto de adyacencia de aristas. Existen diversas formas de
definir cuándo dos aristas son adyacentes, la forma obvia es decir que dos aristas son
adyacentes si comparten el mismo vértice, sin embargo esta definición no toma en cuenta
la geometŕıa de la gráfica. A continuación presentamos cuatro formas, o criterios, de definir
la adyacencia de aristas que śı consideran la geometŕıa de la gráfica. Además, para cada
criterio de adyacencia definiremos su correspondiente gráfica de intersección.

Sea S un conjunto de n puntos en el plano colocados en posición general. Si consideramos
los segmentos de recta entre cada pareja de puntos de S entonces se induce, de manera
natural, una gráfica geométrica completa. Denotaremos esta gráfica como KS. A KS

podemos asociarle una gráfica de intersección de cuatro formas distintas.

1Recordemos que dos aristas son adyacentes si tienen un vértice en común.
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Sea V el conjunto de vértices inducido por los
(
n
2

)
segmentos de recta de KS. Todas las

gráficas que se definen a continuación tienen a V como conjunto de vértices.

1. La gráfica C(KS): Si dos segmentos de recta de KS se cruzan entonces sus correspondientes
vértices en C(KS) comparten una arista.

2. La gráfica W (KS): Si dos segmentos de recta de KS comparten un punto o son
disjuntos entonces sus correspondientes vértices en W (KS) comparten una arista.

3. La gráfica I(KS): Si dos segmentos de recta de KS se intersectan entonces sus
correspondientes vértices en I(KS) comparten una arista.

4. La gráfica D(KS): Si dos segmentos de recta de KS son disjuntos entonces sus
correspondientes vértices en D(KS) comparten una arista.
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En la figura 3.6 mostramos a KS para un conjunto S con cinco puntos, también mostramos
sus respectivas gráficas de cruce.

(a) Dibujo geométrico de la gráfica completa K5.

(b) La gráfica de cruce C(K5) del dibujo K5.

(c) La gráfica de cruce W (K5) del dibujo K5. (d) La gráfica de cruce I(K5) del dibujo K5.

(e) La gráfica de cruce D(K5) del dibujo K5.

Figura 3.6: Dibujo de una gráfica geométrica completa y sus correspondientes gráficas de
cruce C,W,I y D.

Analicemos primero la gráfica C(KS). Veamos que por la manera en que está definida
se tiene que dos de sus vértices comparten una arista si las aristas correspondientes en KS

se cruzan. Esto quiere decir que si damos una coloración propia de los vértices de C(KS)
cualesquiera dos vértices adyacentes tendrán distintos colores asignados. Es decir que es
un conjunto independiente en C(KS). De esto se sigue que las clases cromáticas en C(KS)
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son planas en KS. En la Figura 3.7 mostramos a KS para un conjunto S con cinco puntos,
también mostramos su respectiva gráfica C(KS).

(a) Coloración propia de los vértices de
C(K5), podemos ver que el ı́nfice cromático
χ′(C(K5)) = 3.

(b) Coloración propia de las aristas K5

que induce una partición en gráficas planas,
podemos ver que χ(K5) = 3.

Figura 3.7: Una coloración propia de los vértices de C(K5) induce una coloración propia
de las aristas de K5. La partición de las aristas de K5 es representada por distintos tipos
de ĺınea.

Por lo anterior podemos definir el thickness geométrico de la siguiente manera:

Definición 7. Sea S un conjunto de puntos en el plano colocados en posición general. El
thickness geométrico de la gráfica completa de n vértices inducida por S está dado por la
siguiente relación:

θ̄(n) = min{ χ(C(S)) | S ⊆ R2 está en posición general, |S| = n}.

Analicemos ahora la gráfica W (KS). Veamos que por la manera en que está definida
se tiene que dos de sus vértices comparten una arista si las aristas correspondientes en
KS comparten un vértice o son disjuntas. Esto quiere decir que si damos una coloración
propia de los vértices de W (KS) cualesquiera dos vértices adyacentes tendrán distintos
colores asignados. Es decir que es un conjunto independiente en W (KS). De esto se sigue
que las clases cromáticas en W (KS) no comparten vértices ni son disjuntas en KS, esto
significa que se cruzan por pares. A las gráficas con esta propiead se les conoce como
crossing families [3]. En la Figura 3.8 mostramos a KS para un conjunto S con cinco
puntos, también mostramos su respectiva gráfica W (KS).
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(a) Coloración propia de los vértices de
W (K5), podemos ver que el ı́nfice cromático
χ′(W (K5)) = 8.

(b) Coloración propia de las aristas K5 que
induce una partición en crossing families,
podemos ver que χ(K5) = 8.

Figura 3.8: Una coloración propia de los vértices de W (K5) induce una coloración propia
de las aristas de K5. La partición de las aristas de K5 es representada por distintos tipos
de ĺınea.

Analicemos ahora la gráfica I(KS). Veamos que por la manera en que está definida se
tiene que dos de sus vértices comparten una arista si las aristas correspondientes en KS se
intersectan. Esto quiere decir que si damos una coloración propia de los vértices de I(KS)
cualesquiera dos vértices adyacentes tendrán distintos colores asignados. Es decir que es
un conjunto independiente en I(KS). De esto se sigue que las clases cromáticas en I(KS)
no se intersectan en KS, esto significa que las gráficas inducidas son planas y además sus
aristas son aisladas. A las gráficas con esta propiead se les conoce como emparejamientos
planos [27]. En la Figura 3.9 mostramos a KS para un conjunto S con cinco puntos,
también mostramos su respectiva gráfica I(KS).

(a) Coloración propia de los vértices de
I(K5), podemos ver que el ı́nfice cromático
χ′(I(K5)) = 7.

(b) Coloración propia de las aristas K5 que
induce una partición en crossing families,
podemos ver que χ(K5) = 7.

Figura 3.9: Una coloración propia de los vértices de I(K5) induce una coloración propia
de las aristas de K5. La partición de las aristas de K5 es representada por distintos tipos
de ĺınea.
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Para la gráfica D(KS). Veamos que por la manera en que está definida se tiene que dos
de sus vértices comparten una arista si las aristas correspondientes en KS son disjuntas.
Esto quiere decir que si damos una coloración propia de los vértices de D(KS) cualesquiera
dos vértices adyacentes tendrán distintos colores asignados. Es decir que es un conjunto
independiente en D(KS). De esto se sigue que las clases cromáticas en D(KS) no son
disjuntas en KS, esto significa que las gráficas inducidas son thrackles. En la Figura 3.10
mostramos a KS para un conjunto S con cinco puntos, también mostramos su respectiva
gráfica D(KS).

(a) Coloración propia de los vértices de
D(K5), podemos ver que el ı́nfice cromático
χ′(D(K5)) = 3.

(b) Coloración propia de las aristas K5 que
induce una partición en crossing families,
podemos ver que χ(K5) = 3.

Figura 3.10: Una coloración propia de los vértices de D(K5) induce una coloración propia
de las aristas de K5. La partición de las aristas de K5 es representada por distintos tipos
de ĺınea.

La forma geométrica de los conjuntos independientes inducidos en KS por las gráficas
C(SK), W (SK), I(SK) y D(SK) la resumimos en la Tabla 3.1.

Gráfica Conjuntos independientes en SK

C(SK) Gráficas planares
W (SK) Crossing families
I(SK) Emparejamientos planos
D(SK) Thrackles

Tabla 3.1: Particiones inducidas SK al colorear própiamente las gráficas C(SK), W (SK),
I(SK) y D(SK).

Las gráficas C(SK), W (SK), I(SK) y D(SK) fueron definidas por primera vez en el
trabajo de G. Araujo et. al. [28] y con base en ellas definieron y estudiaron los siguientes
parámetros:

w(n) = max{ χ(W (S)) | S ⊆ R2 está en posición general, |S| = n}.
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i(n) = max{ χ(I(S)) | S ⊆ R2 está en posición general, |S| = n}.

d(n) = max{ χ(D(S)) | S ⊆ R2 está en posición general, |S| = n}.

G. Araujo et. al. obtuvieron los siguientes resultados:

c1n log n ≤ w(n) ≤ c2n
2 log log n

log n
, con c1, c2 > 0.

n ≤ i(n) ≤ cn
3
2 , con c > 0.

5
⌊n

7

⌋
≤ d(n) ≤ min

{
n− 2, n+

1

2
− blog log nc

n

}
.

También definieron los respectivos casos particulares cuando S es un conjunto de puntos
en posición convexa, denotando estos parámetros como wc(n), ic(n) y dc(n). Obteniendo
los siguientes resultados:

wc(n) = Θ(n log n).

ic(n) = n.

2

⌊
n+ 1

3

⌋
− 1 ≤ dc(n) ≤ min

{
n− 2, n− blog nc

2

}
.

El thickness nos habla de la planaridad de una gráfica al descomponerla, sin embargo
también podemos preguntarnos qué sucede con el caso contrario cuando queremos descomponer
una gráfica en partes que inducen gráficas con la propiedad de que todas sus aristas se
intersecten, es decir descomponerla en thrackles, para ello definimos el parámetro de
antithickness.

David Wood y Vida Dujmović [15] definen el parámetro del antithickness buscando
obtener resultados análogos a los obtenidos por Eppstein [26], con la particularidad de
que en esta ocasión se trata de gráficas cuyas particiones forman thrackles. Formalmente
definimos el anthithickness de la siguiente manera:

Definición 8. Sea G una gráfica. El antithickness de G, denotado por At(G), es el entero
k más pequeño tal que existe una partición de E(G), de tamaño k, en la que cada parte
induce una gráfica thrackleable.

En la Figura 3.11 se muestra un ejemplo de thickness para un dibujo de K5.
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(a) Partición de tamaño 6. (b) Partición de tamaño 4. (c) Partición de tamaño 3.

Figura 3.11: Tres particiones de distinto tamaño para el mismo dibujo deK5, representadas
por distintos tipos de ĺıneas. Cada particion genera gráficas thrackleables. En este caso
At(K5) = 3.

Un resultado inmediato a partir de la definición de antithickness es el siguiente:

Teorema 8. Sea G una gráfica. At(G) = 1 si y sólo si G es thrackleable.

De manera análoga a las Definiciones 5 y 6 de thickness para gráficas geométricas y
thickness geométrico, se definen los parámetros de antithickness para gráficas geométricas
y antithickness geométrico como sigue [15]:

Definición 9. Sea G una gráfica geométrica. El antithickness de G, o el antithickness de
una gráfica geométrica G, denotado por Ath(G), es el entero k más pequeño tal que existe
una partición de E(G), de tamaño k, en la que cada parte es una thrackle geométrico.

Definición 10. Sea G una gráfica. Sea Ḡ el conjunto de todas las gráficas geométricas de
G. El antithickness geométrico de G, Āt(G), es el mı́nimo valor de Ath(G) tal que G ∈ Ḡ.

Nótese que si G es una gráfica thrackleable entonces en Ḡ existe un thrackle geométrico
cuyo antithickness es igual a uno, por lo tanto G tiene antithickness geométrico igual a
uno, es decir tenemos el siguiente resultado análogo al Teorema 8:

Teorema 9. Sea G una gráfica. Āt(G) = 1 si y sólo si G es thrackleable.

Nótese que la definición de antithickness impone la restricción de que los dibujos de las
gráficas sean thrackles, por otra parte en el antithickness geométrico además se impone
la restricción de que las aristas sean segmentos de recta, dicho de otra forma todos los
dibujos geométricos son dibujos topológicos. De esto se sigue la siguiente relación [13]:

At(G) ≤ Āt(G).

A diferencia del thickness, el antitickness no ha sido tan estudiado, sin embargo podemos
hacer uso de la gráfica de cruce D(S), la cual como ya vimos induce particiones que
son thrackles, para recuperar los resultados de número cromático de algunos ejemplos de
gráficas.

Una manera equivalente de definir el antithickness es mediante el número cromático de
la gráfica de adyacencia D(S) de la siguiente manera:
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Definición 11. Sea S un conjunto de n puntos en el plano colocados en posición general.
El antithickness geométrico de la gráfica completa de n vértices inducida por S está dado
por la siguiente relación:

Āt(n) = min{ χ(D(S)) | S ⊆ R2 está en posición general, |S| = n}.

Análogamente definimos el parámetro para el caso part́ıcular en que S es un conjunto
de puntos en posición convexa, el cual es el antithickness convexo:

Definición 12. Sea S un conjunto de n puntos en el plano colocados en posición convexa.
El antithickness convexo de la gráfica completa de n vértices inducida por S es

Atc(n) = min{ χ(D(S)) | S ⊆ R2 está en posición convexa, |S| = n}.

David Wood y Vida Dujmović [15] llegan a la conclusión de que el antithickness
geométrico está acotado por el antithickness convexo, esto quiere decir que se cumple
la siguiente relación:

Āt(G) ≤ Atc(G).

Además los autores dan una cota para el thickness en términos del antithickness, dicho de
otra forma, se tiene que para toda gráfica G con thickness t y antithickness k los autores
presentan la siguiente cota:

k ≤ t ≤
⌈

3k

2

⌉
.

Para una gráfica completa de tamaño n con antithickness k se cumple la siguiente cota:

n

3
≤ k ≤

⌈
n− 1

2

⌉
.

Mientras que para una gráfica completa con antithickness convexo k se cumple la siguiente
cota: (

n

2

)
≤ kn−

(
k

2

)
.

Despejando k de la relación anterior se obtiene la cota inferior para k, es decir una cota
inferior del antichickness la cual es la siguiente:

n−

⌊√
2n+

1

4
− 1

2

⌋
≤ k. (3.1)

Nótese que χ(D(S)) es equivlente al antithickness de KS. Ruy Fabila et. al. [29] calcularon
un cota superior de χ(D(S)) y con la cota inferior de la Ecuación 3.1 dieron el valor exacto
del número cromático de D(S), el cual está dado por la siguiente expresión:

χ(D(n)) = n−

⌊√
2n+

1

4
− 1

2

⌋
.
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A continuación daremos el valor del antithickness para un conjunto de puntos part́ıcular
llamado la doble cadena convexa.

Definición 13. Para k ≤ l se define una (k,l)-doble cadena convexa como la unión
disjunta de dos conjuntos de puntos U y L tales que:

1. U es un conjunto de k puntos en posición convexa, cuya cubierta convexa está
delimitada por arriba por una arista y L es un conjunto de l puntos en posición
convexa, cuya cubierta convexa está delimitada por abajo por una arista.

2. Cada punto de L está por debajo de cada ĺınea recta determinada por dos puntos de
U .

3. Cada punto de U está por encima de cada ĺınea recta determinada por dos puntos
de L.

Decimos que U y L son la cadena superior y la cadena inferior respectivamente de una
(k, l)-doble cadena. Denotamos por Ck,l a cualquier (k, l)-doble cadena, en la Figura 4.11
se muestra una (5, 7)-doble cadena.

Figura 3.12: Ejemplo de doble cadena C5.7.

Para la doble cadena convexa simétrica, es decir Cn,n, se encontró una cota inferior
dada por la siguiente relación:

2n ≤ χ(Cn,n).

Para k+ ` puntos sobre una (k, l)-doble cadena convexa, denotamos a la gráfica completa
inducida por este conjunto de puntos como K`,k. En [30] se calculó el valor exacto del
antithickness geométrico de K`,k, el cual están dado la siguiente relación:

At(K`,k) = k + l −

⌊√
2`+

1

4
− 1

3

⌋
.
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El estudio del antithickness iniciado por David Wood y Vida Dujmović en 2017 es
relativamente joven comparado con el estudio del thickness iniciado por Eppstein en
2004, por lo cual la bibliograf́ıa y los resultados asociados al antithickness no son tan
robustos como lo son para el thickness. Si bien tenemos que las Definiciones 8 y 9 nos
permiten utilizar resultados dados para números cromáticos, otra manera de estudiar
el antithickness es mediante el estudio de los thrackles de las particiones de la gráfica.
Sin embargo tenemos que el espacio de búsqueda para thrackles tiene las siguientes
caracteŕısticas:

Para un conjunto de n puntos se tienen

(
n

2

)
aristas posibles.

Para elegir un conjunto de n aristas se tienen

((n
2

)
n

)
combinaciones posibles.

Verificar de manera exhaustiva que un conjunto de m aristas es thrackle toma tiempo
del orden de O(m2).

Por lo que un algoritmo de búsqueda exahustivo toma conjuntos de n aristas de las

((n
2

)
n

)
posibles y busca thrackles máximos, por lo que cada que encuentra un thrackle de tamaño
m < n lo desecha y busca de nuevo, esto quiere decir que realiza mn busquedas, es decir
se tiene que el espacio de busqueda es exponencial. De modo que encontrar un algoritmo
que se ejecute en tiempo polinomial cuya entrada sea un conjunto de n puntos en posición
general y cuya salida sea un thrackle geométrico de tamaño n nos permitiŕıa tener una
forma eficiente de analizar las particiones del conjunto de aristas y con ello calcular el
antithickness para cualquier distribución de puntos que se nos de.

En la siguiente sección daremos resultados teóricos que nos permiten caracterizar los
thrackles máximos sobre algunos conjunto de puntos en espećıfico.
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Caṕıtulo 4

Resultados

En este caṕıtulo presentamos resultados obtenidos para algunos conjuntos particulares.
Para obtener un algoritmo de busqueda de thrackles que se ejecute en tiempo polinomial
utilizamos conjunto de puntos generados por programas propios [31], aśı como puntos
obtenidos a partir de la base de datos ComPoSe1[32]. Los conjuntos de puntos son
presentados en subsecciones independientes, cada sección inicia con la definición formal,
en caso de tenerla, aśı como mencionando sus propiedades particulares; continúa con
resultados computacionales obtenidos a partir de los siguientes programas:

El primer programa, al que llamaremos programa pseudoaleatorio, recibe un conjunto
de n puntos y etiqueta arbitrariamente las

(
n
2

)
aristas posibles. Posteriormente elije

de manera pseudoaleatoria una arista y la guarda, elije de manera pseudoaleatoria
otra arista y revisa que sea thrackleable con la arista guardada, es decir verifica si
comparten un vértice o se cruzan verificando si los segmentos de recta que pasan
por los puntos se cruzan. En caso de no ser thrackleable la desecha y prueba con
otra, en caso de ser thrackleable la guarda y prueba con otra. Continúa el proceso
anterior hasta guardar n aristas thrackleables o revisar las

(
n
2

)
aristas posibles, en

caso de llegar al ĺımite de aristas desecha todas las aristas guardadas y elije otra
como arista inicial.

El segundo programa, al que llamaremos programa secuencial, recibe un conjunto
de n puntos y etiqueta arbitrariamente las

(
n
2

)
aristas posibles, osteriormente elige

conjuntos de n aristas de manera ordenada para evitar repeticiones, es decir, busca
thrackles de manera exhaustiva.

Por último mencionaremos los resultados obtenidos en cada conjunto de puntos.
En las demostraciones presentadas en este caṕıtulo utilizamos el Teorema 4 de manera

recurrente, por lo que de aqúı en adelante nos referiremos a éste únicamente como el
teorema de Woodall. Recordemos lo que dice el teorema:

1Combinatorics of Point Sets and Arrangements of Objects.

31
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Teorema de Woodall. Una gráfica finita es thrackleable si y sólo si cumple las siguientes
condiciones

1. Tiene a lo sumo un ciclo impar.

2. No contiene ningún ciclo de tamaño cuatro.

3. Cada una de sus componentes conexas es un árbol o tiene exactamente un ciclo.

Comenzamos dando la definición y resultados para el conjunto de puntos conocido como
el doble ćırculo.

4.1. Doble ćırculo

El conjunto de puntos conocido en la literatura como doble ćırculo se define de la
siguiente manera [33]:

Definición 14. Para n ≥ 3, un doble ćırculo es un conjunto P = {p0, ..., pn−1, p′0, ..., p′n−1}
de 2n puntos en el plano colocados en posición general tales que:

1. p0, ..., pn−1 son los puntos de la capa convexa de P etiquetados en orden angular en
el sentido antihorario

2. El punto p′i se encuentra entre los puntos pi y pi+1 segun el orden angular.

3. La recta que pasa por pi y p′i separa a pi+1 de P .

4. La recta que pasa por p′i y pi+1 separa a pi de P .

En la Figura 4.1 podemos ver un dibujo del doble ćırculo para n = 5.

Figura 4.1: Dibujo del doble ćırculo pra n = 5. Se pueden ver esquematizadas las
propiedades de la definición.
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Para este conjunto usamos puntos que generamos aśı como conjuntos de puntos de
la base de datos [32]. Con el fin de conocer para cuales valores de n existen thrackles
máximos, aśı como el tamaño de su ciclo y cuales aristas lo conforman, para cada caso
se hicieron mil pruebas para cada n entre 1 y 1000. En la Figura 4.2 se pueden ver los
resultados para n = 3, 5, 6, 7.
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Figura 4.2: Resultados obtenidos para el doble ćırculo con n = 3, 5, 6, 7.

Para cada prueba y cada n se encontró un thrackle máximo, mientras que de la
información sobre los ciclos no obtuvimos algún patrón entre cada thrackle, por lo que
realizamos la siguiente proposición.

Proposición 1. Sea P = {p1, ..., pn, p′1, ..., p′n} un doble ćırculo. Para 3 ≤ n, P admite un
thrackle máximo.
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Vamos a demostrar que el conjunto del doble ćırculo siempre admite un thrackle
máximo.

Demostración. Sean CE = {p1, ..., pn} el conjunto de puntos sobre la capa convexa, es
decir el ćırculo exterior. Sea CI = P\CE el conjunto de puntos del ćırculo interior.
La idea es construir un n-grama con los puntos de CI y unir los puntos restantes de tal
forma que construyamos un thrackle máximo, para ello vamos a considerar primero el
caso cuando n es un número impar y posteriormente el caso cuando n es un número par.

Caso n impar.
Como n es un número impar y CI es un conjunto de puntos en posición convexa
podemos generar un n-grama si tomamos las aristas de manera correcta. Para ello
vamos definir la función de reetiquetado f impar

n : [1, n] 7→ [1, n] como sigue:

f impar
n (i) =


1 si i = 1

n+ 3− 2i si i = 2, . . . , n+1
2

2n+ 3− 2i si i = n+1
2

+ 1, . . . , n

La función de reetiquetado, como su nombre lo indica, reetiqueta los puntos de CI

y de CE, asignándole nuevs etiquetas. Este nuevo etiquetado nos permitirá contruir
el thrackle fácilmente. Un ejemplo del uso de la función de reetiquetado para n = 7
se puede ver en la Tabla 4.1.

i f impar
7 (i)

1 1
2 6
3 4
4 2
5 7
6 5
7 3

Tabla 4.1: Función de reetiquetado para n = 7.

Usando la función de reetiquetado en cada punto de CE y de CI , obtenemos dos
nuevos conjuntos f(CE) y f(CI) de puntos reetiquetados, definidos de la siguiente
manera:

f(CE) =
{
qi

∣∣∣ ∀pi ∈ CE

(
qi = pf(i)

) }
f(CI) =

{
qi

∣∣∣ ∀p′i ∈ CI

(
qi = p′f(i)

) }
.
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Un ejemplo del reetiquetado de puntos para n = 5 se puede ver en la Figura 4.7

(a) Conjuntos de puntos del ćırculo exterior
CE = {p1, p2, p3, p4, p5, p6, p7} y del ćırculo
interior CI = {q1, q2, q3, q4, q5, q6, q7}.

(b) Conjuntos de puntos reetiquetados del
ćırculo exterior f(CE) = {p1, p2, p3, p4, p5,
p6, p7} y del ćırculo interior f(CI) = {q1, q2,
q3, q4, q5, q6, q7}.

Figura 4.3: Reetiquetado de puntos de CE y CI para el caso en que n = 7.

Una vez que tenemos reetiquetados los puntos, para formar el ciclo de tamaño impar
tomamos los puntos de f(CI) en el orden dado por sus etiquetas es decir, el conjunto
de aristas del ciclo, EC , es el siguiente:

EC =
{

(qi, qj) | ∀i, j ∈ [1, n] ( qi ∈ f(CI) ∧ j = i+ 1 mod n )
}
.

Siguiendo el ejemplo para el caso en que n = 7, el conjunto de aristas EC se puede
ver en la Figura 4.4a.
Para construir el thrackle máximo formamos las n aristas restantes uniendo los
puntos de CE a puntos espećıficos de CI , formando un conjunto de aristas unidas al
ciclo, EU , de la siguiente manera:

EU =
{

(pi, qj) | ∀i, j ∈ [1, n] ( pi ∈ f(CE) ∧ qj ∈ f(CI) ∧ j = i+ 1 mod n )
}
.

Para el ejemplo en que n = 7, el conjunto de aristas EU se puede ver en la Figura
4.4b.
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(a) Conjuntos de aristas del ciclo EC =
{(q1, q2), (q2, q3), (q3, q4), (q4, q5), (q5, q6),
(q6, q7), (q7, q1)}.

(b) Conjuntos de aristas unidas al ciclo EU =
{(p1, q2), (p2, q3), (p3, q4), (p4, q5), (p5, q6),
(p6, q7), (p7, q1)}.

Figura 4.4: Conjuntos de aristas EC y EU para el caso en que n = 7.

Dados los conjuntos de aristas EC y EU , el thrackle máximo estará dado por la
unión de estos conjuntos. Primero demostraremos que las aristas del conjunto EC

forman un thrackle y luego demostraremos que cada arista de EU es parte de ese
mismo thrackle.
Para demostrar que las aristas de EC forman un thrackle, basta con notar que
cumple las condiciones del Problema 1, es decir el problema de Hopf y Pannwit,
esto sucede ya que tenemos una cantidad impar de puntos en posición convexa:

• d(qi, qj) ≤ 1 (0 < j < j ≤ n).

• d(qi, qi+1) = 1 ∀i ∈ [1, n].

Recordemos que en la discusión del Teorema 1 llegamos a la conclusión de que las
aristas de la gráfica con estas condiciones de distancia o bien comparten un vértice
o bien se cruzan, dicho de otra forma no hay dos aristas disjuntas, además las
aristas de la gráfica de d́ıametros son segmentos de recta, por lo tanto se trata de
un thrackle geométrico, por lo que utilizando el Teorema 2 concluimos que es un
thrackle máximo.

Para la segunda parte vamos a analizar primero una arista de EU . Sea (p, q) una
arista de EU , tenemos que (p, q) es también una arista de EC ∪ EU , sea i el ı́ndice
que le corresponde a la arista de tal forma que p = pi y q = qi+1. Sabemos que (p, q)
es un arista adyacente a las aristas (qi−1, qi+1) y (qi+1, qi+2) de EC como se ve en la
Figura 4.5a.
Como las aristas (qi−1, qi+1) y (qi+1, qi+2) de EC pertenecen a un thrackle, cualquier
otra arista de EC o es adyacente a una de ellas y cruza a la otra, o cruza a ambas,



4.1. DOBLE CÍRCULO 37

como se ve en la Figura 4.5b. Como la arista (pi, qi+1) se encuentra en la zona
delimitada por sus aristas adyacentes cualquier otra arista de EC cruzará a (pi, qi+1).

(a) Arista (pi, qi+1) ∈ EU la cual es adyacente
a las aristas (qi−1, qi+1) y (qi+1, qi+2) de EC .

(b) Posibles aristas que intersectan a
(qi−1, qi+1) y (qi+1, qi+2) en ĺınea punteda
necesariamente intersectan a (pi, qi+1).

Figura 4.5: Análisis de intersección de EU con EC .

Por lo tanto, la arista (pi, qi+1) ∈ EU pertenece al thrackle formado por las aristas
de EC . Por lo que las aristas del conjunto EC ∪ EU forman un thrackle máximo de
tamaño 2n, un ejemplo para el caso en que n = 7 se puede ver en la Figura 4.6.

Figura 4.6: Thrackle máximo formado por los puntos del doble ćırculo para en caso en
que n = 7.

Caso n par.
Para este caso, como n es un número par la idea es separar un punto para regresar
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al caso impar el cual ya sabemos que forma un thrackle máximo. Para este caso
definimos la función de reetiquetado fpar

n : [1, n] 7→ [1, n] como sigue:

fpar
n (i) =



1 si i = 1

n+ 2− 2i si i = 2, . . . , n
2

0 si i = n
2

+ 1

2n+ 3− 2i si i = n+1
2

+ 1, . . . , n

Un ejemplo del reetiquetado de puntos para n = 5 se puede ver en la Figura 4.7

(a) Conjuntos de puntos del ćırculo exterior
CE = {p1, p2, p3, p4, p5, p6, p7, p8} y del
ćırculo interior CI = {q0, q2, q3, q4, q5, q6, q7,
q8}.

(b) Conjuntos de puntos reetiquetados del
ćırculo exterior f(CE) = {p1, p2, p3, p4, p5,
p6, p7, p8} y del ćırculo interior f(CI) =
{q0, q2, q3, q4, q5, q6, q7, q8}.

Figura 4.7: Reetiquetado de puntos de CE y CI para el caso en que n = 8.

Podemos observar que si reestringimos ambas funciones de reetiquetado al mismo
dominio, estas coinciden, salvo por un punto. En particular como queremos quitar
un punto para regresar al caso impar tenemos que analizar las funciones f impar

n y
fpar
n+1, en la Figura 4.8 están comparadas.
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f impar
n (i) =


1 i = 1

n+ 3− 2i i ∈
[
2, n+1

2

]
2n+ 3− 2i i ∈

[
n+1
2

+ 1, n
] fpar

n+1(i) =



1 i = 1

n+ 3− 2i i ∈
[
2, n+1

2

]
0 i = n+1

2
+ 1

2n+ 4− 2i i ∈
[
n+2
2

+ 1, n+ 1
]

Figura 4.8: Funciones de reetiquetado consecutivas correspondientes a n impar y a n+ 1
par.

Un ejemplo del uso de la función de reetiquetado para n = 7 y n = 8 se puede ver
en la Tabla 4.1.

i f impar
7 (i)

1 1
2 6
3 4
4 2
5 7
6 5
7 3

i fpar
8 (i)

1 1
2 6
3 4
4 2
5 0
6 7
7 5
8 3

Tabla 4.2: Comparaciones de las funciones de reetiquetado f impar
7 y fpar

8

Notemos que mientras i se encuentra en el rango de
[
1, n+1

2

]
las funciones comparten

dominio y regla de correspondencia, esto es:

f impar
n (i) = fpar

n+1(i) ∀i ∈
{

1, . . . ,
n+ 1

2

}
. (4.1)

Dejando de lado el punto a descartar de la función par, vemos que el dominio está
desplazado en una unidad ya que i ∈

[
n+2
2

+ 1, n+ 1
]
, por lo que tomando una

transformación lineal de i′ = i + 1 podemos desplazar el dominio a
[
n+1
2

+ 1, n
]
,

teniendo aśı la siguiente expresión :

fpar
n+1(i

′) = fpar
n+1(i+ 1) = 2(n+ 1) + 3− 2(i+ 1) = 2n+ 3− 2i.

Por lo tanto, descartando ese punto y con la función de reetiquetado par, se tiene
que mapea los puntos y etiquetas de manera similar a la función de reetiquetado
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impar, esto es:

f impar
n (i) = fpar

n+1(i+ 1) ∀i ∈
{n+ 1

2
+ 1, . . . , n

}
. (4.2)

De las Ecuaciones 4.1 y 4.2 tenemos que si dejamos de lado un punto en CI y uno
en CE, recuperamos la información que ya demostramos de la función impar, por lo
que los conjuntos de puntos reetiquetados f(CI)\{q0} y f(CE)\{p0} en los que se
omite un punto, inducen el conjunto de aristas del ciclo EC y el conjunto de aristas
unidas al ciclo EU de la siguiente manera:

EC =
{

(qi, qj) | ∀i, j ∈ [1, n] ( qi ∈ f(CI)\{q0} ∧ j = i+ 1 mod n )
}
.

EU =
{

(pi, qj) | ∀i, j ∈ [1, n] ( pi ∈ f(CE)\{p0} ∧ qj ∈ f(CI)\{q0} ∧ j = i+ 1 mod n )
}
.

Estos conjuntos son idénticos a los obtenidos en el caso de n impar, por lo que
podemos afirmar que la unión de estos dos conjuntos forman un thrackle de tamaño
2(n− 1) en el doble ćırculo con 2n puntos y n par. Un ejemplo para n = 8 se puede
ver en la Figura 4.9.

Figura 4.9: Thrackle formado por la unión de los conjuntos f(CI)\{q0} y f(CE)\{p0}.

Para demostrar que existe un thrackle máximo en el conjunto de 2n+1 puntos basta
con unir los puntos p0 y q0 omitidos de tal forma que las aristas formadas intersecten
a todas las aristas del thrackle. El punto elegido será el punto q1, formando aśı las
aristas (q0, q1) y (p0, q1).
El razonamiento es el mismo que en el caso impar. Sabemos que (q0, q1) y (p0, q1)
son aristas adyacentes a las aristas (qn, q1) y (q1, q2) de EC como se ve en la Figura
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4.10a.
Como las aristas (qn, q1) y (q1, q2) de EC pertenecen a un thrackle, cualquier otra
arista de EC o es adyacente a una de ellas y cruza a la otra o cruza a ambas como
se ve en la Figura 4.10b. Como las aristas (q0, q1) y (p0, q1) se encuentran en la zona
delimitada por (qn, q1) y (q1, q2) cualquier otra arista de EC cruzará necesariamente
(q0, q1) y (p0, q1). Por lo tanto, las aristas (q0, q1) y (p0, q1) de EU pertenece al thrackle
formado por las aristas de EC .

(a) Aristas (q0, q1) y (p0, q1) de EU la cual es
adyacente a las aristas (qn, q1) y (q1, q2) de EC .

(b) Posibles aristas que intersectan a (qn, q1)
y (q1, q2) en ĺınea punteda necesariamente
intersectan a las aristas (q0, q1) y (p0, q1).

Figura 4.10: Análisis de intersección de EU con EC .

Por lo tanto no importa si n es par o impar siempre va a extir un thrackle máximo para
el doble ćırculo de tamaño 2n.

En la siguiente sección daremos los resultados obtenidos para la doble cadena convexa.

4.2. Doble cadena convexa

En el caṕıtulo anterior dimos la definición de doble cadena convexa, para facilitar la
lectura del texto recordemos esta definición.

Definición 15. Para k ≤ l se define una (k,l)-doble cadena convexa como la unión
disjunta de dos conjuntos de puntos U y L tales que:

1. U es un conjunto de k puntos en posición convexa, cuya cubierta convexa está
delimitada por arriba por una arista y L es un conjunto de l puntos en posición
convexa, cuya cubierta convexa está delimitada por abajo por una arista.
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2. Cada punto de L está por debajo de cada ĺınea recta determinada por dos puntos de
U .

3. Cada punto de U está por encima de cada ĺınea recta determinada por dos puntos
de L.

Decimos que U y L son la cadena superior y la cadena inferior respectivamente de una
(k, l)-doble cadena. Denotamos por Ck,l a cualquier (k, l)-doble cadena, en la Figura 4.11
se muestra una (5, 7)-doble cadena.

Figura 4.11: Ejemplo de doble cadena C5.7.

De la definición de doble cadena se siguen las siguientes observaciones.

Observación 1. Cualquier segmento de recta que una a dos puntos de U (repectivamente
para L) no intersecta a ningún otro segmento de recta que una a dos puntos de L
(repectivamente para U).

Observación 2. Sea g un segmento de recta delimitado por un punto en cada cadena y
sea f un segmento de recta que une a dos puntos de la misma cadena. f y g se intersectan
si y sólo si f y g inciden en el mismo punto.

Observación 3. Toda recta que pasa por cualesquiera dos puntos consecutivos de una
misma cadena deja del mismo lado del semiplano al resto de puntos de la cadena.

Para este conjunto utilizamos puntos que generamos aśı como conjuntos de puntos de
la base de datos [32]. Para cada caso se hicieron mil pruebas para cada valor de n entre
1 y 1000. En la Figura 4.12 se pueden ver los resultados para n = 3, 4, 5.
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(c) n = 5.

Figura 4.12: Doble cadena convexa para n = 3, 4, 5 para las cuales se encontraron thrackles
máximos.

Para n > 3 encontramos que no existen thrackles máximos, sin embargo tanto en
los puntos que generamos como en los conjuntos de puntos de la base de datos, puesto
que cada cadena tiene la misma cantidad de puntos o estas difieren a lo más por un
punto, optamos por modificar la cantidad de puntos en cada cadena. Observamos que si
borramos puntos de la cadena superior hasta sólamente dejar dos puntos, siempre hay
thrackles máximos, un ejemplo de esto se puede ver en la Figura 4.13 para n = 10 y
n = 32.
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Figura 4.13: Thrackles máximos en la doble cadena al borrar puntos de la cadena superior.

Además en todos los casos se observa que el ciclo del thrackle es de tamaño tres. Por
lo que podemos darnos una idea de la forma que tienen en general los thrackles máximos,
para conocer su forma exacta a continuación vamos a buscarla teóricamente.

Dada una (k, l)-doble cadena, deseamos estudiar bajo qué condiciones existen thrackles
máximos, es decir thrackles de tamaño k + l. Sabemos por el teorema de Woodall que
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para encontrar el thrackle máximo se debe tener a lo más un ciclo de tamaño impar, por
lo que analizaremos la disposición y el tamaño de los ciclos que pueden existir dentro del
conjunto.

Existen dos formas de construir ciclos sobre la doble cadena, la primera es que el ciclo
quede completamente contenido en una cadena y la segunda es que el ciclo contenga
puntos tanto de la cadena U como de la cadena L. A continuación damos una proposición
para analizar estos casos.

Proposición 2. Para toda (k, l)-doble cadena, con 3 ≤ k ≤ l, se tiene que ningún thrackle
máximo puede tener su ciclo completamente contenido en una sola cadena.

Demostración. Sea Ck,l una (k, l)-doble cadena con un thrackle máximo T , llamemos Cm
T

al ciclo de T y denotemos por m a su longitud. Supongamos que Cm
T ⊆ U y vamos a

demostrar que esto conduce a una contradicción.
Como T es un thrackle debe cumplir las condiciones del Teorema de Woodall, es decir

Cm
T debe ser un m-grama. Por la Observación 2, sabemos que ninguna arista que esté

formada únicamente por vértices de L puede pertenecer al thrackle. Por la Observación
3, cualquier arista formada por un punto en U y otro punto en L, puede tener un vértice
en común con el ciclo, por lo que estas aristas no pueden formar parte de T.

De lo anterior se tiene que T puede estar formado únicamente por aristas de U, por lo
que T es máximo de tamaño k, pero como T es un Thrackle máximo es de tamaño k + l,
por lo que se tiene una contradicción. De manera análoga cuando Cm

T ⊆ L.

De esta proposición de siguen los siguientes dos corolarios.

Corolario 1. Para toda (k, l)-doble cadena, con 3 ≤ k ≤ l, se tiene que ningún thrackle
máximo cuyo ciclo sea de tamaño tres puede tener su ciclo completamente contenido en
una sola cadena.

Demostración. Este es un caso part́ıcular de la Proposición 1.

Proposición 3. Para toda (k, l)-doble cadena, con 3 ≤ k ≤ l, se tiene que ningún thrackle
máximo puede tener dos aristas adyacentes de su ciclo en la misma cadena.

Demostración. Sea Ck,l una (k, l)-doble cadena con un thrackle máximo T , llamemos Cm
T

al ciclo de T y denotemos por m a su longitud. Supongamos que existen c0 y c1 dos
aristas adyacentes en Cm

T en la misma cadena y vamos a demostrar que esto conduce a
una contradicción.

Sea ci una arista en Cm
T diferente a c0 y a c1. Como T es thrackle se tiene que ci debe

intersectar tanto a c0 como a c1, por lo que basta con analizar los siguientes tres casos:

1. ci está contenido en la cadena opuesta que contiene a c0 y c1. En este caso por la
Observación 2 se tiene que ci no intersecta a c0 ni a c1. Por lo tanto este caso lleva
a una contradicción.
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2. ci tiene un vértice en U y otro en L. En este caso por la observación 3 se tiene que
ci es adyacente tanto a c0 como a c1, por lo que hay un vértice en el ciclo que es
de grado tres, lo cual no es posible por la definición de ciclo. Por lo tanto este caso
lleva a una contradicción.

3. ci está contenida en la cadena que contiene a c0 y c1. En este caso para que ci
intersecte tanto a c0 como a c1 una opción es que formen un ciclo de tamaño tres
como se ve en la ilustración de la izquierda, sin embargo esto no es posible por el
Corolario 1. Otra opción es que ci cruce a las aristas como se ve en la ilustración de
la derecha, en este caso deben de existir caminos entre los vértices de ci y los de c0 y
c1, estos caminos deben de intersectar a todas las aristas del ciclo, por lo que el ciclo
completo debe de estar contenido en la misma cadena lo cual es una contradicción
con la Proposición 2.
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Por lo tanto cualquier otra arista del ciclo distinta a c0 y a c1 no puede intersectar a ambas
aristas, por lo que no puede formar un thrackle.

Por las proposiciones anteriores, sabemos que si una (k, l)-doble cadena tiene un thrackle
máximo entonces el ciclo del thrackle desde estar compuesto por aristas que alternan entre
vértices de U y de L. Ahora deseamos caracterizar a estos ciclos.

Proposición 4. Para toda (k, l)-doble cadena, con k ≤ l, se tiene que ningún thrackle
máximo puede tener un ciclo de tamaño mayor a 3.

Demostración. Sea Ck,l una (k, l)-doble cadena con un thrackle máximo T , llamemos Cm
T

al ciclo de T y denotemos como m a su longitud. Supongamos que m > 3 y vamos a
demostrar que esto conduce a una contradicción.

Como Cm
T pertenece a un thrackle, sabemos por el Teorema de Woodall que m debe

ser un número impar y que Cm
T debe formar un m-grama, además por la Proposición 3

se tiene que Cm
T debe estar formado por aristas que tienen un vértice en U y otro en L.

Llamemos {ui}1≤i≤k a los vértices de U y llamemos {vj}1≤j≤l a los vértices de L.

Como Cm
T es un ciclo se tiene que al recorrer sus aristas se comienza y termina en el

mismo vértice, es decir en la misma cadena. Supongamos, sin pérdida de generalidad, que
Cm

T comienza en la cadena L, sea v1 el vértice de L donde comienza el ciclo y sea u1 el
vértice de U para formar la primer arista como se ve en la Figura 4.15.

Figura 4.15

Para formar la segunda arista se toma v2 ∈ L el cual puede estar a la izquierda o a la
derecha del segmento orientado v1u1, supongamos sin pérdida de generalidad que está a
la derecha como se ve en la Figura 4.16.
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Figura 4.16

Para que la tercer arista intersecte a la arista (v1, u1), el vértice u2 necesariamente debe
encontrarse a la izquierda de u1 como se ve en la Figura 4.17.

Figura 4.17

Análogamente el siguiente vértice v3 debe estar a la derecha de v2 como se ve en la
Figura 4.18.

Figura 4.18

De lo anterior podemos notar que cualquier cantidad impar de aristas terminan en la
cadena U . Esto quiere decir que al recorrer las aristas del ciclo se empieza y termina en
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distintas cadenas, lo cual es una contradicción, en la Figura 4.19 se puede ver un ejemplo
con m = 5.

Figura 4.19

Para el caso del ciclo de tamaño tres, basta con unir el vértice v2 con v1, los cuales se
encuentran en la misma cadena L. Con lo cual concluye la demostración

La Proposición 4, nos indica que el ciclo de cualquier thrackle máximo de cualquier
(k, l)-doble cadena debe ser de tamaño 3. Ahora que conocemos el tamaño del ciclo y
por cuáles aristas debe estar conformado deseamos conocer una forma de construir los
thrackles que contienen a estos ciclos, para ello vamos a demostrar que estos thrackles
deben tener ciclos que deben de estar vaćıos.

Observación 4. Para un conjunto de cuatro vértices con un thrackle máximo que tiene
un ciclo de tamaño tres, se tiene que el ciclo no puede encerrar a un vértice.

De esta observación se sigue la siguiente:

Observación 5. Para un conjunto de n vértices con un thrackle máximo que tiene un
ciclo de tamaño tres, se tiene que el ciclo del thrackle no puede encerrar a ningún vértice.

Por la Observación 3 tenemos que para construir triangulos vaćıos, es necesario que los
dos puntos situados en la misma cadena sean adyacentes.
Con la teoŕıa construida hemos caracterizados a los thrackles máximos que pueden existir
sobre la doble cadena, se tiene que su ciclo debe ser de tamaño tres: compuesto por dos
vértices adyacentes en una cadena y otro vértice en la otra cadena. Sin embargo aún falta
revisar las condiciones que debe cumplir la doble cadena para que existan los thrackles
máximos.

Para facilitar la argumentación dividiremos las posibles aristas de cualquier thrackle
máximo en tres conjuntos:

AU es el conjunto de aristas formadas únicamente por vértices de U que no pueden
estar en ningún thrackle máximo de tamaño k + l.
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AL es el conjunto de aristas formadas únicamente por vértices de L que no pueden
estar en ningún thrackle máximo de tamaño k + l.

AU,L es el conjunto de aristas formadas por un vértice de U y otro de L que no
pueden estar en ningún thrackle máximo de tamaño k + l.

Analizamos el primer caso. Sea Ck,l una doble cadena convexa. Denotemos por X a
alguna cadena de Ck,l y por Y a la otra cadena. Tomemos x1, x2 ∈ X y y ∈ Y como los
tres vértices del ciclo.
Para la cadena X, sea x ∈ X una arista diferente de x1 y x2. Se cumple lo siguiente:

La arista (x1, y) no intersecta a la arista (x2, x).

La arista (x2, y) no intersecta a la arista (x1, x).

De lo anterior se tiene que sólamente la arista (x1, x2) ∈ X que pertenece al ciclo, puede
estar en el thrackle, por lo que |AX | =

(|X|
2

)
− 1.

Para la cadena Y se tiene que ninguna arista formada por dos vértices en Y intersecta a
la arista (x1, x2), por lo que |AY | =

(|Y |
2

)
.

Para las aristas que cruzan entre cadenas se cumple lo siguiente:

Las aristas que salen de x1 deben cruzar a la arista (x2, y).

Las aristas que salen de x2 deben cruzar a la arista (x1, y).

Lo anterior se puede observar en la Figura 4.20. De las observaciones anteriores se sigue que
en cualquier thrackle máximo habrá tantas aristas que cruzan como vértices en Y \{y}
más las dos aristas que pertenecen al ciclo, esto es |Y | − 1 + 2. Por lo tanto |AX,Y | =
|Y | × |X| − (|Y |+ 1).
Sea nt el número total de aristas que no están en el thrackle, tenemos que

nt =

(
|X|
2

)
− 1 +

(
|Y |
2

)
+ |Y | × |X| − (|Y |+ 1). (4.3)
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x1
x2

y

Figura 4.20: Ejemplo de aristas que cruzan.

Claramente el valor exacto de este número dependerá de la elección de x1, x2 y y.
Analicemos primero el caso en el que los dos puntos, x1 y x2, están en la cadena más
grande, esto es X = L, entonces |X| = l y |Y | = k. La Ecuación 4.3 en este caso queda
de la siguiente manera:

nt =

(
l

2

)
+

(
k

2

)
+ kl − k − 2

=
l(l − 1)

2
+
k(k − 1)

2
+ kl − k − 2

=
l(l − 1) + k(k − 1) + 2kl

2
− k − 2

=
l2 − l + k2 − k + 2kl

2
− k − 2

=
k2 + kl − k + lk + l2 − l

2
− k − 2

=
k(k + l − 1) + l(k + l − 1)

2
− k − 2

=
(k + 1)(k + l − 1)

2
− k − 2

=

(
k + l

2

)
− k − 2. (4.4)

Por otro lado, el número total de aristas que se pueden formar con k + l puntos es
(
k+l
2

)
,

por lo que si se quiere tener un thrackle de tamaño k + l, las aristas que no están en
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el thrackle no deben ser más de
(
k+l
2

)
− (k + l). Lo anterior sucede cuando se cumple la

siguiente relación:

NT ≤
(
k + l

2

)
− (k + l)(

k + l

2

)
− k − 2 ≤

(
k + l

2

)
− (k + l)

−2 ≤ −l
l ≤ 2. (4.5)

Por lo que el tamaño de la cadena L está acotado, a lo más puede ser de tamaño dos.
Además como k ≤ l, se tiene que sólo hay thrackles máximos para C1,2 y C2,2 cuando
se eligen los dos puntos sobre la cadena más grande, estos thrackles se pueden ver en la
Figura 4.21.

U

L

(a) C1,2

U

L

(b) C2,2

Figura 4.21: Thrackles máximos en doble cadena.

En el caso de elegir los dos puntos sobre la cadena más pequeña, es decir para X = U
y Y = L la ecuación 4.4 cambia para el término lineal, por lo que queda de la siguiente
manera:

nt =

(
k + l

2

)
− l − 2. (4.6)

Por lo que la relación para la existencia de un thrackle máximo dada por la ecuación 4.5
queda de la siguiente manera:

k ≤ 2. (4.7)

Como estamos determinando esta condición a partir de elegir dos puntos en la cadena
más pequeña, se tiene que k = 2 sin limitar el valor de l, un ejemplo de este thrackle
máximo se puede ver en la Figura 4.22.
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... ...

U

L

Figura 4.22: Ejemplo de doble cadena C2,l, con 2 ≤ l.

Los resultados obtenidos para la doble cadena convexa se pueden resumir en el siguiente
teorema:

Teorema 10. Sea Ck,l una doble cadena convexa. Ck,l admite un thrackle máximo de
tamaño k + l śı y sólo śı cumple una de las siguientes condiciones:

1 < k ≤ l ≤ 2 y el ciclo del thrackle está formado por dos puntos de L y uno de U .

k = 2, 1 ≤ l y el ciclo del thrackle está formado por los dos puntos de U y uno de
L.

En la siguiente sección analizamos un conjunto de puntos que combina las caracteŕısticas
de la doble cadena convexa y del doble ćırculo, a este conjunto se le conoce como doble
cadena zig-zag.

4.3. Doble cadena zig-zag

La doble cadena zig-zag (DCZZ) fue introducida en [34] como una variación de la doble
cadena convexa, con la propiedad de que en cada cadena los puntos se intercalan a manera
de zig-zag similar al doble ćırculo, una figura esquemática se puede ver en la Figura 4.23.

Figura 4.23: Figura esquemática de una doble cadena zig-zag.
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Con el fin de conocer para cuales valores de n existen thrackles máximos y caracterizarlos,
realizamos pruebas computacionales en conjuntos de puntos obtenidos de la base de datos
[32], primero con el programa pseudoaletario para n desde 1 hasta 10, posteriormente se
corroboró con el programa secuencial. En la Figura 4.24 se pueden ver algunos de los
thrackles máximos encontrados para n = 3, 4, 5, 6.

	0

	0.5

	1

	1.5

	2

	2.5

	3

-2 -1 	0 	1 	2 	3 	4

1

2

3

(a) n = 3.

	0

	0.5

	1

	1.5

	2

	2.5

	3

-2 	0 	2 	4 	6

1

2

3

4

(b) n = 4.

	0

	2

	4

	6

	8

	10

	0 	2 	4 	6 	8 	10 	12 	14

1

2

3

4

5

(c) n = 5.
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Figura 4.24: DCZZ para n = 3, 4, 5, 6. Las cadenas se encuentran a la izquierda y derecha
para cada figura.

Podemos observar que para formar thrackles máximos en el caso en que n = 3 y n = 4
se tienen las mismas elecciones de aristas que en el caso de la doble cadena convexa.
Para el caso en que n = 5 ya aparece la propiedad de zig-zag en la cadena de la izquierda
mientras que en la derecha hay dos puntos, por lo que en total hay cinco puntos en posición
convexa, el cual ya sabemos que siempre tendrá thrackle máximo. Para el caso en que
n = 6 se tiene un caso similar al anterior, un conjunto de seis puntos en posición convexa.
En la Figura 4.25 tenemos el caso en que n = 7 para el cual se rompe la convexidad en
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la cadena izquierda, siendo este valor de n el mayor para el cual se encontraron thrackles
máximos.
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(a) Thrackle máximo para n = 7 con ciclo de
tamaño tres.
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(b) Thrackle máximo para n = 7 con ciclo de
tamaño cinco.

Figura 4.25: Thrackles máximos en DCZZ para el caso en que n = 7.

En la Figura 4.26 podemos ver los conjuntos de puntos para n = 8 y n = 9, en los
cuales no se encontró ningún thrackle máximo. Se realizaron pruebas con el programa
de backtracking de manera exhaustiva hasta n = 15 y no encontrmos ningún thrackle
máximo.
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Figura 4.26: Conjuntos de puntos de la DCZZ para los cuales no se encontraron thrackles
máximos.

Analizando los conjuntos mostrados en la Figura 4.26 podemos notar que en ambos
casos la cadena derecha tiene un punto que rompe la convexidad de la cadena. En la
Figura 4.26a es el punto 8 el que evita que los puntos 5, 6 y 7 estén en posición convexa,
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si borramos este punto podemos usar esta cadena para formar un thrackle máximo como
se ve en la Figura 4.27a. En la Figura 4.26b es el punto 9 el que evita que los puntos 6,
7 y 8 estén en posición convexa, si borramos este punto podemos usar esta cadena para
formar un thrackle máximo como se ve en la Figura 4.27b.
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(a) Conjunto de n = 8 al cual borramos el
punto 8 resultando en una DDZZ con n = 7.
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(b) Conjunto de n = 9 al cual borramos el
punto 9 resultando en una DDZZ con n = 8.

Figura 4.27: Conjuntos de puntos de la DCZZ en los cuales borramos un punto para
mantener la convexidad en la cadena derecha y aśı encontrar thrackles máximos.

Si borramos puntos en una cadena, la DCZZ queda desbalanceada, por lo que de
aqúı en adelante utilizaremos una notación análoga a la doble cadena, denotando como
DCZZ(k, l) a la doble cadena zig-zag con k puntos en la cadena derecha y l puntos en la
cadena izquierda, notemos que n = k + l, con k ≤ l.

Antes de hacer una generalización analicemos otro caso. En la figura 4.29 podemos ver
la DCZZ(5, 5). Podemos notar que existen dos maneras distintas de formar un conjunto
convexo. La primer manera es borrando los puntos 9 y 10, de esta manera el conjunto
compuesto por los puntos 6, 7 y 8 forma un conjunto convexo con un thrackle máximo en
DCZZ(5, 3) como se ve en la Figura 4.29a. La segunda manera es borrando los puntos
6 y 7, de esta manera el conjunto compuesto por los puntos 8, 9 y 10 forma un conjunto
convexo con un thrackle máximo en DCZZ(5, 3) como se ve en la Figura 4.29b.



56 CAPÍTULO 4. RESULTADOS

-5

	0

	5

	10

	15

	20

	25

	0 	5 	10 	15 	20 	25

1

2
3

4

5

6

7

8

9

10

Figura 4.28: DCZZ(5, 5), no encontramos algún thrackle máximo.
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(a) DCZZ(5, 5) a la cual borramos los puntos
9 y 10 resultando en una DDZZ(5, 3).
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(b) DCZZ(5, 5) a la cual borramos los puntos
6 y 7 resultando en una DDZZ(5, 3).

Figura 4.29: DCZZ(5, 5) llevada a DDZZ(5, 3) mediante el borrado de puntos para
mantener la convexidad en la cadena derecha y aśı encontrar thrackles máximos.

Sabemos que para el caso cuando n = 11, es decir DDZZ(6, 5), la cadena derecha es
la misma que para DDZZ(5, 5), mientras que la izquierda tendrá un punto más que en
DDZZ(5, 5), por lo que el mismo borrado de puntos funciona.

Con base en los resultados anteriores podemos intuir que mientras tengamos tres puntos
en posición convexa en la cadena derecha podemos formar thrackles máximos, por lo que
dada una DCZZ podemos borrar tantos puntos como sean necesarios de la cadena derecha
para formar thrackles máximos. En la Figura 4.30 podemos ver DDZZ(10, 10).
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(a) DDZZ(10, 10).
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(b) DDZZ(10, 3).

Figura 4.30: DDZZ(10, 10) llevada a DDZZ(10, 3) mediante el borrado de puntos para
encontrar thrackles máximos.

Dada DDZZ(3, l), con 3 ≤ l, existe un número finito de elecciones de aristas para
formar thrackles máximos, sin embargo también existen elecciones de aristas que no
forman un thrackle máximo, por lo que en esta sección nos limitaremos a demostrar
que existe un thrackle máximo y lo daremos expĺıcitamente.

Proposición 5. Sea DDZZ(3, l) una doble cadena zig-zag. DDZZ(3, l) admite un thrackle
máximo.

Demostración. Sea DDZZ(3, l) una doble cadena zig-zag. Tomemos un etiquetado por
cada cadena de tal forma que ambas cadenas inicien del mismo lado además de que al
tomar tres puntos consectuvos de tal manera que haya dos etiquetas impares se forme un
conjunto de puntos convexo hacia la otra cadena. Llamémos U a la cadena de tres puntos
y L a la cadena de l puntos. Una figura esquemática se puede ver en la Figura 4.31.

Figura 4.31: Figura esquemática de DDZZ(3, l).
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Separemos los puntos con etiqueta par e impar como sigue:

Lp =
{
vj | j mod 2 = 0 ∧ vj ∈ L

}

Li =
{
vj | j mod 1 = 0 ∧ vj ∈ L

}
Por la forma en que está construida la doble cadena zig-zag podemos asegurar que
si descartamos los puntos que están en posición zig-zag, recuperamos la doble cadena
convexa, es decir que el conjunto Lp∪{u1, u2} corresponde a la (2, r)-doble cadena convexa,
con r =

⌈
l
2

⌉
. Por lo visto en el Teorema 10 de la Sección 4.2 podemos afirmar que existe

un thrackle de tamaño
⌈
l
2

⌉
+ 2 con ciclo de tamaño tres sobre los puntos {u1, u2, vi} para

algún punto vi ∈ Li. Esto se puede observar en la Figura 4.32.

(a) Trackle sobre los puntos con etiqueta impar
de DDZZ(3, l).

(b) Trackle máximo sobre los puntos de C(2, r)
con r =

⌈
l
2

⌉
.

Figura 4.32: Comparación entre DDZZ(3, l) y C(2, r), donde 1 ≤ l y 1 ≤ r.

Ya que los puntos de U forman un conjunto convexo hacia la cadena L, el segmento de
recta que pasa por u1 y u3 separa en distintos semiplanos al punto u2 y al resto de puntos,
por lo que para toda i ∈ [1, l], la arista viu2 necesariamente cruza a la arista u1u2.

Utilizando la Figura 4.33 podemos observar que, tomando una i ∈ [1, l], el segmento de
recta que pasa por vi y u1 deja en semiplanos distintos al conjunto de puntos {vj}j<i y a
los puntos u2 y u3, además las aristas u3uj están siempre por debajo de la arista u1u3 la
cual es cruzada por la arista viu2, de lo anterior se sigue que la arista viu2 necesariamente
cruza a las aristas u3uj, con j > i.
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Figura 4.33: Análisis de intersección de la arista viu2.

Análogamente sucede para las aristas formadas por el punto u1 y los puntos {vj}i<j.
Por lo tanto podemos afirmar que la arista viu2 cruza o comparte vértice con el resto de
aristas. Por lo tanto hemos contruido un thrackle máximo en Li.

Ahora analicemos el conjunto de puntos Lp. Sea vj ∈ Lp con j < i, como la arista u3vj
no puede ser colineal a la arista u3vj−1 ni a la arista u3vj+1 necesariamente se encuentra en
el área comprendida por estas dos. Por lo que la arista u3vj cruzará y compartirá vértice
con todas aquellas aristas que lo hagan con u3vj−1 y u3vj+1, y como estas dos últimas son
thrackleables se tiene que la arista u3vj es thrackleable, lo anterior se ejemplifica en la
Figura 4.34. Análogamente para las aristas u1vj con i < j.

Figura 4.34: Análisis de intersección de la arista vju3, con j < i.

Podemos resumir la información anterior en el siguiente teorema:

Teorema 11. Sea DCZZ(3, l) una doble cadena zig-zag. DCZZ(3, l) tiene un thrackle
máximo de tamaño l + 3 con ciclo de tamaño tres como se ve en la figura 4.35.
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Figura 4.35: Thrackle máximo en DCZZ(3, l).

Clemens Huemer et. al. definieron la doble cadena zig-zag generalizada [35] como una
doble cadena parametrizada por dos valores n y k, siendo n el número total de puntos y k
el número de puntos entre cada par de puntos de la cadena formando un arco en posición
convexa. Denotamos a la doble cadena zig-zag con k puntos en los arcos interiores como
Zk.

Con base en esta definición tenemos que Z0 corresponde a una doble cadena convexa,
mientras que Z1 corresponde a la doble cadena zig-zag analizada anteriormente. Un
ejemplo de Z2 se puede ver en la figura 4.36.

Figura 4.36: Doble cadena zig-zag generalizada con dos puntos en cada arco, es decir Z2.

Para buscar thrackles máximos en Z2 procedemos de manera similar a como lo hicimos
en Z1, la idea es borrar tantos puntos como sea necesario para que en una cadena quede
un conjunto de puntos en posición convexa, es evidente que para este caso habrá cuatro



4.3. DOBLE CADENA ZIG-ZAG 61

puntos que cumplan esta condición.

Introducimos la notación generalizada para una doble cadena desbalanceada como sigue:
Si Zk es una doble cadena zig-zag balanceada con n puntos totales y k puntos en cada
arco interior, denotamos por Zk(m, l) a la doble cadena zig-zag que tiene m puntos totales
en la cadena superior y l puntos totales en la cadena inferior tal que n = m + l, con k
puntos en cada arco interior. Con base en la definición anterior podemos ver en la Figura
4.37 a Z2(4, l).

Figura 4.37: Z2(4, l).

Teorema 12. Sea Z2(4, l) una doble cadena zig-zag cuya cadena de cuatro puntos forma
un conjunto convexo hacia la otra cadena. Z2(4, l) admite un thrackle máximo.

La demostración es análoga a la escrita para Z1, el thrackle que admite este conjunto
se muestra en la Figura 4.38.

Figura 4.38: Thrackle máximo admitido por Z2(4, l).

Este resultado acerca de la existencia de un thrackle máximo se puede generalizar para
Zk, cuyo arco de k puntos podemos ver en la Figura 4.39.
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Figura 4.39: Arco interno de Zk.

Por lo que dejando únicamente un arco en posición convexa en un cadena el resultado
general es el siguiente:

Teorema 13. Sea Zk(k+2, l) una doble cadena zig-zag generalizada cuya cadena de k+2
puntos forma un conjunto convexo hacia la otra cadena. Zk(k + 2, l) admite un thrackle
máximo.

Una vez más la demostración es análoga a Z1 y Z2.
En la siguiente sección daremos los resultados obtenidos para el conjunto de Horton.

4.4. Conjunto de Horton

Erdős definió el parámetro g(n) como el número entero más pequeño tal que cualquier
conjunto de g(n) puntos en el plano en posición general contiene un subconjunto de n
puntos en posición convexa cuya capa convexa no encierra algún punto, a este subconjunto
de n puntos en posición convexa que no encierra puntos se le conoce como n-hoyo. El
conjunto de Hortón tiene la propiedad de no tener 7-hoyos, con base en esta propiedad
existen distintas definiciones del conjunto de Hortón que mantiene la propiedad. Aqúı
utilizaremos la definición recursiva dada por Hortón de la siguiente manera: [36]:

Definición 16. Conjunto de Horton. Para cualquier k ≥ 0, se construye un conjunto de
2k puntos. Sea i ∈ [0, 2k) un entero cuya expansión binaria es ak . . . a2a1. Sea c = 2k + 1,
se define d(i) = Σajc

j−1, sumando desde j = 1 hasta j = k. Sea pi el punto (i, d(i)),
entonces el conjunto de Horton, Hk, queda definido como Hk = {pi|i = 0, 1, . . . , 2k − 1}.

Para este conjunto utilizaron puntos de la base de datos. Para cada caso se hicieron 100
pruebas para cada n entre 1 y 100, recordemos que la cantidad de puntos es una función
exponencial de 2n. En la Figura 4.40 se pueden ver los resultados para n = 2, 3, 4, 5.
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Figura 4.40: Resultados obtenidos para el conjunto de horton con 2n puntos, para n =
3, 5, 6, 7.

En las pruebas realizadas se encontró que existen thrackles máximos para cada n
analizada, nuestra propuesta es que existe al menos un thrackle máximo para toda n
y daremos expĺıcitamente ese thrackle máximo. Para ello daremos expĺıcitamente una
elección de aristas y demostraremos que forman un thrackle máximo para toda n. Primero
vamos a demostrar dos proposiciones que nos serán de utilidad.

Proposición 6. Para toda k ≥ 0, sea i ∈ [0, 2k−1] cuya expansión binaria es ak . . . a2a1,
tomando c = 2k + 1, se tiene que la función d(i) =

∑k
j=1 ajc

j−1 es creciente para toda i.

Demostración. Sean i ∈ [0, 2k − 1], c = 2k + 1, i ∈ [0, 2k − 1]. Para demostrar que
d(i) =

∑k
j=1 ajc

j−1 es creciente se verificará que si i′ ≤ i entonces d(i′) ≤ d(i).
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Sean ak . . . a2a1 y a′k . . . a
′
2a
′
1 las expansiones binarias de i y i′ respect́ıvamente. Para

decir que la función es creciente basta con verificar que la recta que pasa por los puntos
(i − 1, d(i − 1)) y (i, d(i)) tiene pendiente positiva para toda i, como se muestra en la
Figura 4.41, es decir se debe cumplir lo siguiente:

d(i)− d(i− 1)

i− (i− 1)
> 0.

Figura 4.41: Pendiente de la recta que pasa por dos puntos.

Por lo tanto, basta con verificar que

d(i)− d(i− 1) > 0

k∑
j=1

ajc
j−1 −

k∑
j=1

a′jc
j−1 > 0

k∑
j=1

(aj − a′j)cj−1 > 0. (4.8)

Como c = 2k + 1, entonces para toda k se cumple que c > 0, por lo que la Ecuación 4.8
será válida dependiendo de aj y a′j.
Como i y i+1 son números consecutivos se tiene que necesariamente a1 y a′1 son distintas,
es decir se tienen uno de los siguientes dos casos:

a) a1 = 1 y a′1 = 0

b) a1 = 0 y a′1 = 1

Analicemos primero el caso a) En este caso el número i−1 tiene su bit menos significativo
igual a 0, por lo que para obtener a i se le suma 1, lo que significa que se cambia únicamente
el bit menos significativo por un 1. Por lo tanto en este caso se tiene que a′j = aj para
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toda j > 1, por lo que aj − a′j = 0, para toda j > 1, además a1 − a′1 = 1. Entonces la
suma queda de la siguiente manera:

k∑
j=1

(aj − a′j)cj−1 =
k∑

j=2

(aj − a′j)cj−1 + (a1 − a′1)c1−1

= 0 + 1

> 0. (4.9)

La Ecuación 4.9 indica que para el caso a) se cumple que la pendiente de la recta que
pasa por los puntos i− 1 y i es positiva y por lo tanto d(i) es creciente.

b) En este caso el número i− 1 tiene bit menos significativo igual a a′1 = 1, por lo que
relizar la suma i − 1 + 1 es equivalente a realizar a′1 + 1 = 0, teniendo un acarreo de 1
para el siguiente bit a′2, llevaremos el acarreo hasta que lleguemos a algún bit a′` = 0 que
al sumarle el acarreo cambie a 1. Lo anterior significa que existe ` ∈ [2, k] tal que a′` = 0
y a′j = aj para toda j > `. Es decir que a`− a′` = 1 y aj − a′j = 0 para toda j > `, además
necesariamente para j < ` se tiene que a′j > aj, esto quiere decir que aj − a′j = −1. Por



66 CAPÍTULO 4. RESULTADOS

lo que la suma queda de la siguiente manera:

k∑
j=1

(aj − a′j)cj−1 =
k∑

j=`+1

(aj − a′j)cj−1 + (a` − a′`)c`−1 +
`−1∑
j=1

(aj − a′j)cj−1

= 0 + c`−1 −
`−1∑
j=1

cj−1

= c`−1 −
`−1∑
j=1

cj−1

= c`−1 −
∑̀
j=2

cj−2

= c`−1 − 1

c2

∑̀
j=2

cj

= c`−1 − 1

c2

[
−c0 − c1 +

∑̀
j=0

cj

]

= c`−1 − 1

c2

[
−1− c+

1− c`+1

1− c

]
= c`−1 − 1

c2

[
c2 − c`+1

1− c

]
= c`−1 −

[
1− c`−1

1− c

]
= c`−1 − c`−1

[ 1
c`−1 − 1

1− c

]
= c`−1

[
1−

1− 1
c`−1

c− 1

]
. (4.10)

Para verificar que la Ecuación 4.10 es mayor a 0, basta con verificar que el término entre
corchetes es positivo, para ello verificamos que c = 2k + 1 por lo que para k > 0 se tiene
que c > 2, por lo que c − 1 > 1; además se tiene que 1 > 1 − 1

c`−1 , por lo que se tiene la
siguiente desigualdad:

c− 1 > 1− 1

c`−1

1 >
1− 1

c`−1

c− 1

1−
1− 1

c`−1

c− 1
> 0. (4.11)
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De la Ecuación 4.11 se sigue que la Ecuación 4.10 es positiva, por lo tanto d(i) es creciente
para el caso b). Esto concluye la demostración.

Proposición 7. Para toda k > 0, sea i ∈ [0, 2k−1] cuya expansión binaria es ak . . . a2a1,
la función d(i) =

∑k
j=1 aj(2

k + 1)j−1 cumple la propiedad i < d(i)para toda i.

Demostración. Sea k > 0, se tiene que 2 < 2k + 1, por lo que para toda j > 1 se cumple
que 2j−1 < (2k + 1)j−1.
Sea i ∈ [0, 2k − 1] y sea ak . . . a2a1 la expansión binaria de i. para toda j ∈ [2, k] si aj 6= 0
se satisface aj2

j−1 < aj(2
k +1)j−1, por lo que relizando la suma para estos valores se sigue

la siguiente relación: ∑
j∈[2,k]
aj 6=0

aj2
j−1 <

∑
j∈[2,k]
aj 6=0

aj(2
k + 1)j−1.

Para j ∈ [2, k] tal que aj = 0 se tiene que aj2
j−1 = aj(2

k + 1)j−1 = 0, por lo que sumar
estos términos no afecta la desigualdad, por lo tanto:

k∑
j=2

aj2
j−1 <

k∑
j=2

aj(2
k + 1)j−1.

Para el caso j = 1 se tendrá que aj2
j−1 = aj(2

k + 1)j−1 = a1, por lo que sumar este
término no afecta la desigualdad, por lo tanto:

k∑
j=1

aj2
j−1 <

k∑
j=1

aj(2
k + 1)j−1.

Como ak . . . a2a1 es la expansión binaria de i, se tiene que i =
∑k

j=1 aj2
j−1, por lo tanto

se concluye la relación:
i < d(i).

A continuación demostramos que siempre existe un thrackle máximo con ciclo de
tamaño 3 en el conjunto de Horton, para demostrarlo damos el thrackle expĺıcitamente.
Recordemos la definción recursiva del conjunto de Hortón:

Definición 17. Conjunto de Horton. Para cualquier k ≥ 0, se construye un conjunto de
2k puntos. Sea i ∈ [0, 2k) un entero cuya expansión binaria es ak . . . a2a1. Sea c = 2k + 1,
se define d(i) = Σajc

j−1, sumando desde j = 1 hasta j = k. Sea pi el punto (i, d(i)),
entonces el conjunto de Horton, Hk, queda definido como Hk = {pi|i = 0, 1, . . . , 2k − 1}.

Para 2k puntos el thrackle consiste de las siguientes aristas:
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a) Un ciclo de tamaño 3 que consiste de los puntos (0, d(0)), (1, d(1)) y (2k−1, d(2k−1)),
los cuales tienen las etiquetas p0, p1 y p2k−1 .

b) 2k − 3 aristas que se forman al unir los 2k − 3 puntos restantes, con el punto p0.

Un ejemplo de este thrackle propuesto se ve en la Figura 4.42 para el caso en que k = 3
y k = 4.

(a) Thrackle máximo de tamaño 8 para k = 3. (b) Thrackle máximo de tamaño 16 para k = 4.

Figura 4.42: Ejemplos de thrackles máximos en el conjunto de Horton con la elección de
aristas propuestas.

Para asegurar que se forma un thrackle es necesario que las 2k − 3 aristas restantes
deben encontrarse dentro de la región delimitada por las aristas del ciclo que inciden en
p0 ya que las 2k−3 aristas inciden en ese punto, además deben encontrarse fuera del ciclo,
por lo que deben quedar a la derecha del segmento dirigido p0p2k−1 , esto se resume en las
siguientes condiciones:

a) Los puntos deben estar a la izquierda del segmento orientado p0p1.

b) Los puntos deben estar a la derecha del segmento orientado p1p2k−1 .

c) Los puntos deben estar a la derecha del segmento orientado p0p2k−1 .

Para demostrar a) basta con demostrar que la pendiente de la recta que pasa por el
punto p0 y los puntos pi para toda i ∈ [2, 2k − 1]− {2k−1} es mayor a la pendiente de la
recta que pasa por los puntos p0 y p1, es decir, se debe cumplir la siguiente relación:

d(1)− d(0)

1− 0
<
d(i)− d(0)

i− 0
.
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Esto quiere decir que deseamos que se cumpla la siguiente relación:

1 <
d(i)

i
.

Lo cual se satisface por la Proposición 7.

Para demostrar b) vamos a utilizar un argumento similar al caso a) respecto a las
pendientes, basta con demostrar que la pendiente de la recta que pasa por los puntos p1
y p2k−1 es mayor a la pendiente de la recta que pasa por p1 y pi, es decir queremos que se
satisfaga la siguiente relación:

d(i)− d(1)

i− 1
<
d(2k−1)− d(1)

2k−1 − 1
. (4.12)

Para verificar esta relación vamos a dividir el análisis en dos casos:

b.1) 1 < i < 2k−1

b.2) 2k−1 < i

En el caso b.1), basta con analizar los casos extremos ya que la función d(i) es creciente,
por lo que si i = 2 y i = 2k−1 − 1 cumplen la relación, los demas puntos la cumplirán.
Hagamos notar que para analizar i = 2 debe cumplirse que k > 2 de lo contrario no hay
suficientes puntos para analizar este caso, por lo tanto se cumplen las siguientes relaciones:

k < (k − 1)2

2k − 1 < k2 − k
22k−1 < 2k2−k. (4.13)

Por otro lado se tiene que 2k2−k < 2k2−k + 2k, que al combinarlo con la Ecuación 4.13 se
siguen las siguientes relaciones:

22k−1 < 2k2−k + 2k

22k−1 − 2k < 2k2−k

22k−1 − 2k + 1 < 2k2−k + 1. (4.14)

Por otro lado se tiene la siguiente relación:

2k2−k + 1 = 2k(k−1) + 1

= (2k)k−1 + 1

< (2k + 1)k−1. (4.15)
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De las Ecuaciones 4.14 y 4.15, combinadas con la definición de c = 2k + 1 se tienen las
siguientes relaciones:

22k−1 − 2k + 1 < ck−1

22k−1 − 2k < ck−1 − 1

2k(2k−1 − 1) < ck−1 − 1

2k <
ck−1 − 1

2k−1 − 1

2k + 1− 1 <
d(2k−1)− 1

2k−1 − 1

c− 1 <
d(2k−1)− 1

2k−1 − 1
c− 1

2− 1
<
d(2k−1)− 1

2k−1 − 1
. (4.16)

Como estamos analizando el caso i = 2 se tiene que su expansión binaria es aj = 1 para

j = 2 y aj = 0 para toda j 6= 2, por lo que
∑k

j=1 ajc
j−1 = c1, esto quiere decir que

d(2) = c, por lo que la Ecuación 4.16 nos indica que se cumple la Ecuación 4.12 para el
caso b.1) cuando i = 2.
El caso b.1) cuando i = 2k−1− 1 se verifica directamente con la Proposición 6 que analiza
dos puntos continuos.
Para analizar caso b.2), tomaremos nuevamente los extremos cuando i = 2k−1 + 1 y
i = 2k − 1.
Cuando i = 2k−1 + 1 se tiene que la expansión binaria s aj = 1 para j ∈ {1, k} y aj = 0
para toda j /∈ {1, k}, esto quiere decir que d(2k−1 + 1) = ck−1 + 1, por lo que la relación

d(i)− d(1)

i− 1
<
d(2k−1)− d(1)

2k−1 − 1
.

queda de la siguiente manera:

d(2k−1 + 1)− d(1)

2k−1 + 1− 1
<
d(2k−1)− d(1)

2k−1 − 1
ck−1

2k−1 <
ck−1 − 1

2k−1 − 1
. (4.17)



4.4. CONJUNTO DE HORTON 71

De la definición de c = 2k + 1 se tienen las siguientes relaciones:

2 < c

2k−1 < ck−1

1

ck−1
<

1

2k−1

1 +
1

ck−1
< 1 +

1

2k−1

1− 1

2k−1 < 1− 1

ck−1

2k−1 − 1

2k−1 <
ck−1 − 1

ck−1

ck−1

2k−1 <
ck−1 − 1

2k−1 − 1
. (4.18)

Por lo que se cumple la Ecuación 4.12 para la parte i = 2k−1 + 1 del caso b.2).

En el caso i = 2k − 1 de b.2) se quiere que se cumpla la siguiente relación:

d(2k − 1)− 1

(2k − 1)− 1
<
d(2k−1)− 1

2k−1 − 1

d(2k − 1)− 1

2k − 2
<
d(2k−1)− 1

2k−1 − 1
d(2k − 1)− 1

2(2k−1 − 1)
<
d(2k−1)− 1

2k−1 − 1

d(2k − 1)− 1 < 2(d(2k−1)− 1)

d(2k − 1) < 2d(2k−1)− 1. (4.19)

Para verificar que se cumple la relación dada por la Ecuación 4.19, veamos cuál es el valor
expĺıcito de d(2k − 1). La expasión binaria para i = 2k − 1 es aj = 1 para toda j, por lo
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que la forma expĺıcita queda de la siguiente manera:

d(2k − 1) =
k∑

j=1

ajc
j−1

=
k∑

j=1

cj−1

=
1

c

k∑
j=1

cj

=
1

c

[
−1 +

1− ck+1

1− c

]
=

1

c

[
c− ck+1

1− c

]
=

1− ck

1− c

=
ck − 1

c− 1
. (4.20)

Además como ya sabemos d(2k−1) = ck−1 por lo que la Ecuación 4.19 queda de la siguiente
manera:

ck − 1

c− 1
< 2ck−1 − 1

ck − 1 < 2ck − c− 2ck−1 + 1

c < ck − 2ck−1 + 2

1 < ck−1 − 2ck−2 +
2

c

1 < ck−2 [c− 2] +
2

c
. (4.21)

Para que la Ecuación 4.23 sea válida es necesario que ck − 2 y c− 2 > 1, lo cual se sigue
de la siguiente relación:

k > 1

2k > 2

2k + 1 > 3

c > 3

c− 2 > 1. (4.22)
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Por lo tanto la Ecuación 4.19 es válida, por lo que la Ecuación 4.12 se cumple para
i = 2k − 1 del caso b.2).
Por lo tanto los puntos cumplen con estar a la derecha del segmento orientado p1p2k−1 .
Para el caso c) se tiene que los puntos deben estar a la derecha del segmento orientado
p0p2k−1 , es decir la pendiente de la recta que pasa por los puntos p0 y pi para toda i debe
ser menor a la pendiente de la recta que pasa por los puntos p0 y p2k−1 , por lo que se debe
de cumplir la siguiente desigualdad:

d(i)− d(0)

i− 0
<
d(2k−1)− d(0)

2k−1 − 0
d(i)

i
<
d(2k−1)

2k−1

2k−1d(i) < d(2k−1)i

0 < d(2k−1)i− 2k−1d(i). (4.23)

Como d(2k−1) = ck−1, utilizando la expasion binaria de i, la Ecuación 4.23 queda de la
siguiente forma:

0 < ck−1
k∑

j=1

aj2
j−1 − 2k−1

k∑
j=1

ajc
j−1

0 <
k∑

j=1

ajc
k−12j−1 −

k∑
j=1

aj2
k−1cj−1

0 <
1

2c

k∑
j=1

ajc
k2j − 1

2c

k∑
j=1

aj2
kcj

0 <
1

2c

k∑
j=1

aj
[
ck2j − 2kcj

]
. (4.24)

Como aj ≥ 0 para toda j, una manera en que la Ecuación 4.24 sea válida es que ck2j −
2kcj ≥ 0 para toda j. Cuando j = k se tiene que ck2j − 2kcj = 0, por lo que el caso de
interés es para j < k. Esto se sigue de la siguiente relación:

c > 2

ck > 2k. (4.25)

Por lo que para j < k se tiene:

ck−j > 2k−j

ckc−j > 2k2−j

ck2j > 2kcj

ck2j − 2kcj > 0. (4.26)
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Por lo que de la Ecuación 4.26 se sigue que la Ecuación 4.24 es válida y por lo tanto la
relación de la Ecuación 4.23 lo es.
Esto demuestra el caso c), por lo que queda concluida la demostración.
De lo anterior obtenemos el siguiente teorema:

Teorema 14. Sea H un conjunto de Horton de cardinlidad 2k, con 0 < k. H siempre
admite un thrackle máximo con ciclo de tamaño tres.

4.5. Conjuntos de puntos particulares

En esta sección daremos resultados obtenidos a partir del análisis computacional de
conjuntos obtenidos de la base de datos [32]. Se realizaron pruebas computacionales en
los siguientes conjuntos:

Conjunto de 10 puntos con la propiedad de tener un único 5-hoyo convexo:{
( 0 , 64677), (65280, 65280), (32144, 56115), (38443, 42292), (29486, 47302),

(28031, 47507), (28497, 46248), (26495, 45981), (26324, 45249), (19359, 44531),

( 489 , 537 ), (3957, 0 ), (22031, 40206), (5222, 32611), (48433, 51953)
}

Para el cual se encontraron varios thrackles máximos. En la Figura 4.43 se muestra
uno de ellos.
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Figura 4.43: Un thrackle máximo encontrado en el conjunto de puntos.
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Conjunto de 14 puntos con seis 5-hoyos convexos.{
( 0 , 64677), (65280, 65280), (32144, 56115), (38443, 42292), (29486, 47302),

(28031, 47507), (28497, 46248), (26495, 45981), (26324, 45249), (19359, 44531),

(3957, 0 ), (22031, 40206), (5222, 32611), (48433, 51953)
}

Para el cual no se encontró ningún thrackle máximo.

Conjunto de 15 puntos con nueve 5-hoyos convexos.{
( 0 , 62035), (65280, 65280), (29017, 42686), (28073, 43222), (27580, 43180),

(27723, 42707), (26856, 42289), (26977, 42113), (24450, 40872), (24201, 38628),

(18887, 0 ), (29771, 62134), (52452, 63860), (12179, 28100), (42831, 62949)
}

Para el cual no se encontró ningún thrackle máximo.

Conjunto de 16 puntos con once 5-hoyos convexos.{
( 0 , 0 ), (359, 597), (392, 306), (402, 287), (381, 272), (389, 276), (382, 271),

(392, 263), (383, 253), (390, 254), (397, 262), (365, 222), (393, 239), (386, 198),

(441, 178), (554, 0)
}

Para el cual no se encontró ningún thrackle máximo.

Conjunto de 26 puntos sin 6-hoyos convexos [37]:{
(1181, 727), (1327, 921), (1138, 1011), (1870, 946), (1339, 1359), (1365, 482),

(1420, 707), (2025, 410), ( 771 , 1066), (1090, 457), (731, 1594), (1054, 2285),

(1534,−1320), (2413, 793 ), (2284,−117), (2102, 1640), ( 573 , 560 ),

(−1347,−4021), (1767,−4587), (7148, 195), (1701,−603), (3216, 3448),

(139, 1853), (3521,−2068), (−3176, 5105), (207, 7135)
}

Para el cual se encontraron al menos dos thrackles máximos, uno de ellos se muestra
en la Figura 4.44.
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Figura 4.44: Un thrackle máximo encontrado en el conjunto de puntos.

Conjunto de 29 puntos sin 6-hoyos convexos [38]:{
( 1, 1260), ( 16, 743), ( 22 , 531), ( 37 , 0 ), (306, 592), (310, 531), (366, 552),

(371, 487), (374, 525), (392, 575), (396, 613), (410, 539), (416, 550), (426, 526),

(434, 552), (436, 535), (446, 565), (449, 518), (450, 498), (453, 542), (458, 526),

(489, 537), (492, 502), (496, 579), (516, 467), (552, 502), (754, 697), (777, 194),

(1259, 320)
}

Para el cual no se encontró ningún thrackle máximo.
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Conclusiones

Esta tesis tiene como objetivo proponer un algoritmo que en tiempo polinomial decida
si un conjunto de puntos tiene un thrackle máximo. Encontramos que este problema es
más complicado de lo que pensamos por lo que únicamente logramos dar dicho algoritmo
para algunas familias de puntos. Obtuvimos resultados interesantes tanto teóricos como
computacionales. Para abordar el problema optamos por caracterizar los conjuntos de
puntos tienen que thrackles máximos.

La primer familia de puntos que analizamos es el doble ćırculo. Concluimos que todo
doble ćırculo siempre admite un thrackle máximo.

Otra familia de puntos que analizamos es la doble cadena convexa. Concluimos que
admite thrackles máximos siempre y cuando el conjunto de puntos cumpla las condiciones
del Teorema 10, concluimos que los conjuntos de puntos en donde existen thrackles
máximos necesariamente tiene dos puntos en una cadena mientras que puede tener cualquier
número de puntos en la otra cadena.

Para la familia de puntos de la doble cadena zig-zag, concluimos que admite un thrackle
máximo si y sólo śı se cumplen las condiciones del Teorema 11, el cual es una generalización
del Teorema 10. Análogamente definimos la doble cadena zig-zag generalizada y concluimos
que siempre admite thrackles máximos si y sólo si el conjunto de puntos cumple las
condiciones del Teorema 13.

La siguiente familia de puntos analizada fue el conjunto de Horton, el cual al ser definido
de manera recursiva permite concluir que siempre admite un thrackle máximo, además
dimos las tres aristas que forman el ciclo de dicho thrackle máximo y la manera de elegir
las aristas restantes.

En el caso de las familias de puntos con la particularidad de tener o no k-hoyos convexos,
para algunas k particulares: el conjunto de puntos con un único 5-hoyo śı tiene thrackles
máximos, mientras que los conjuntos de puntos con seis 5-hoyos, nueve 5-hoyos y once
5-hoyos no tienen thrackles máximos. Con base en la información anterior proponemos la
siguiente conjetura:

Conjetura 1. Sea S un conjunto de puntos con m hoyos de tamaño 5, S no admite
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thrackles máximos para 1 < m.

Para los dos conjuntos de puntos sin 6-hoyos convexos obtuvimos distintos resultados,
para el conjunto de 26 puntos śı se contraron thrackles máximos, mientras que para el
conjunto de 29 puntos no. Aqúı vale la pena recordar que una propiedad del conjunto de
Horton es la de no tener 7-hoyos y como ya vimos siempre contiene un thrackle máximo.
Por lo que concluir que el no tener k-hoyos no nos brinda información acerca de si habrá
o no thrackles máximos.

Con base en la experiencia y resultados obtenidos durante la realización de esta tesis
concluimos que para determinar de manera eficiente si un conjunto de puntos en posición
general tiene o no thrackles máximos una manera es creando particiones con propiedades
de convexidad como las estudiadas aqúı. El problema de encontrar thrackles máximos en
conjuntos de puntos en posición general parece ser un problema NP-completo, esto es una
pregunta abierta y un interesante trabajo a futuro.
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chromatic number of the disjointness graph of the double chain. 11 2017.

[31] Fernandez Laura. Programas de tesis, 2021. Código, https://github.com/
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