
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Computación

Capa de seguridad para balizas
basada en criptografía ligera

Tesis que presenta

Karla Jocelyn Campos Cruz

para obtener el Grado de

Maestro en Ciencias en Computación

Codirectores de la Tesis

Dra. Brisbane Ovilla Martínez
Dr. Cuauhtemoc Mancillas López

Ciudad de México Agosto 2021

ii

Resumen

La creciente interconexión de dispositivos cotidianos en el llamado internet de las
cosas, plantea una serie de preocupaciones en relación con la seguridad y la privacidad
que se debe tener para proteger la información emitida por ellos y las aplicaciones
que los utilizan. Tecnologías de comunicación emergentes, como el Bluetooth de baja
energía (BBE), han sido diseñadas para la conexión de dispositivos con poca disponibi-
lidad energética. Muchos de estos dispositivos están equipados con microcontroladores
restringidos que carecen de sistemas de seguridad eficientes. Particularmente en este
trabajo se analizan las balizas, las cuales, son dispositivos que emiten identificadores
a través de señales BBE. Las aplicaciones que utilizan balizas son novedosas y en la
actualidad se consideran vulnerables a ataques de seguridad, debido a la especificación
de baja energía de Bluetooth y los recursos limitados de las balizas.

En este trabajo de tesis se analiza la tecnología de balizas, sus aplicaciones y
principales vulnerabilidades. En el inicio del desarrollo se eligieron las primitivas
criptográficas que se integran a la capa de seguridad, posteriormente, se configuró
un entorno de emulación de balizas empleando una Raspberry Pi y una computadora
para probar la implementación del protocolo de seguridad propuesto, este se diseñó
con base en algoritmos de criptografía ligera para el establecimiento de una llave co-
mún y la generación de identificadores efímeros como contramedidas ante las posibles
amenazas de seguridad en este tipo de tecnologías.

iii

iv RESUMEN

Abstract

The growing interconnection of everyday devices in the internet of things presents
a series of concerns concerning security and privacy that must be taken into account
to protect the information emitted and the applications that use them. Emerging
communication technologies, such as Bluetooth Low Energy (BLE), have been de-
signed to connect devices with little energy availability. Many of these devices are
equipped with restricted microcontrollers that lack efficient security systems. In par-
ticular, beacons are analyzed, which are devices that emit identifiers through BLE
signals. Applications which use beacons are novel and are now considered vulnerable
to security attacks due to the low energy specification of Bluetooth and the limited
resources of beacons. This thesis work analyzes the beacon technology, its applica-
tions, and its main vulnerabilities. At the beginning of development, the cryptographic
primitives that are integrated into the security layer were chosen; subsequently, a bea-
con emulation environment was configured using a Raspberry Pi and a computer to
test the implementation of the proposed security protocol; this was designed based
on lightweight cryptography algorithms for the establishment of a shared key and
the generation of ephemeral identifiers as countermeasures against possible security
threats in this type of technology.

v

vi ABSTRACT

Agradecimientos

En primer lugar agradezco a mis padres, abuelas y hermanas, por todo su cariño,
apoyo y motivación en cada decisión y proyecto de mi vida.

Agradezco enormemente a mis codirectores, el Dr. Cuauhtemoc Mancillas López y
la Dra. Brisbane Ovilla Martínez por todo su apoyo, tiempo y esfuerzo que dedicaron
durante el desarrollo de mi trabajo de tesis.

Agradezco al CINVESTAV (Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional), en particular al Departamento de Computación,
aceptarme en su programa de Maestría en Ciencias en Computación.

De igual manera, agradezco al CONACyT (Consejo Nacional de Ciencia y Tec-
nología) por el apoyo económico brindado durante mis estudios de maestría. Este
trabajo de tesis derivó del proyecto SRE-AMEXCID titulado “Generación y aplica-
ción de herramientas serológicas, moleculares y rastreo de contacto y movilidad, en
6 hospitales de 3 entidades de México, para estudio, mitigación y contención de la
epidemia de COVID-19”.

vii

viii AGRADECIMIENTOS

Índice general

Resumen iii

Abstract v

Agradecimientos vii

Índice de figuras x

Índice de tablas xii

1. Introducción 1
1.1. Objetivos . 2
1.2. Propuesta de solución . 2
1.3. Organización de la Tesis . 2

2. Contexto Tecnológico 5
2.1. Bluetooth de baja energía . 5

2.1.1. Datos técnicos de BBE . 6
2.1.2. Bluetooth clásico y BBE . 6
2.1.3. Topologías BBE . 8
2.1.4. Arquitectura BBE . 9
2.1.5. Vulnerabilidades en sistemas BBE 14

2.2. Tecnología de balizas BBE . 15
2.2.1. Aplicaciones de balizas BBE 16
2.2.2. Amenazas de seguridad en aplicaciones con balizas BBE . . . 18
2.2.3. Protocolos de balizas BBE . 20

3. Primitivas criptográficas 25
3.1. Preliminares . 26
3.2. Criptografía de curva elíptica . 26

3.2.1. Curva elíptica . 27
3.2.2. Operaciones sobre curvas elípticas 27
3.2.3. Forma de Montgomery . 30
3.2.4. Problema del Logaritmo Discreto 30

3.3. Protocolo Diffie-Hellman . 31

ix

x ÍNDICE GENERAL

3.3.1. DHKE con curvas elípticas . 31
3.3.2. Curva 25519 . 32

3.4. Identificadores efímeros . 35
3.5. Algoritmo Ascon . 35

3.5.1. Modo de operación Ascon . 35
3.5.2. Permutación Ascon . 37
3.5.3. Modo hash de Ascon . 39

4. Emulación de balizas BBE 41
4.1. Descripción de baliza BBE . 41
4.2. Preparación de Raspberry Pi . 43
4.3. Configuración de Raspberry Pi como periférico BBE 43

4.3.1. Nodejs . 44
4.3.2. Bleno . 46

4.4. Emulación de baliza BBE . 47
4.4.1. BlueZ . 47
4.4.2. Emulación de baliza iBeacon 48
4.4.3. Emulación de baliza Eddystone 50

5. Desarrollo del protocolo de seguridad 55
5.1. Diseño del protocolo de seguridad . 55
5.2. Configuración de conexión . 56
5.3. Protocolo ECDH con curva 25519 . 59

5.3.1. Protocolo ECDH en el cliente 60
5.3.2. Protocolo ECDH en el servidor 62

5.4. Generación de identificadores efímeros 63

6. Resultados 65
6.1. Programación en lenguaje Python . 66

6.1.1. PyBluez . 66
6.1.2. Cython . 67

6.2. Pruebas de funcionamiento del protocolo ECDH integrado 70
6.3. Transmisión y verificación de IDEs 71

7. Conclusiones 77
7.1. Contribuciones . 77
7.2. Trabajo futuro . 78

Bibliografía 79

A. Instalación de Raspberry Pi OS 81

B. Conexión a la Raspberry Pi 87

C. Instalación de BlueZ 89

Índice de figuras

2.1. Topología uno a muchos en BBE. 8
2.2. Otras topologías en BBE. 8
2.3. Arquitectura BBE. 9
2.4. Transacción GATT. 12
2.5. Estructura de objetos GATT. 12
2.6. Ataque de hombre intermedio. 15
2.7. Aplicaciones de balizas BBE. 17
2.8. Ataque de seguimiento no autorizado. 18
2.9. Ataque de suplantación. 19
2.10. Ataque de falsificación de información. 20
2.11. Paquete de anuncio BBE. 21
2.12. Paquete de anuncio iBeacon. 21
2.13. Paquete de anuncio AltBeacon. 22
2.14. Paquete de anuncio Eddystone. 22

3.1. Gráfica de suma de dos puntos en R. 28
3.2. Gráfica de doblado de dos puntos en R. 29
3.3. Gráfica de la curva 25519 en R. 33
3.4. Diagrama DHKE con curva elíptica 25519. 34
3.5. Diagrama de cifrado autenticado Ascon. 37
3.6. División del estado S. 38
3.7. S(x) (caja S de 5 bits) de Ascon. 38
3.8. Diagrama de modo hash de Ascon. 39

4.1. Baliza iBKS 105. 42
4.2. Capas de software. 44
4.3. Escaneo con iBKS Config Tool. 50
4.4. Escaneo con iBKS Config Tool. 52

5.1. Capas del protocolo de seguridad. 56
5.2. Diagrama de conexión. 58
5.3. Protocolo ECDH con la curva 25519. 60
5.4. Diagrama de generación de identificadores efímeros. 63

6.1. Tiempo de ejecución del protocolo ECDH en Python. 68

xi

xii ÍNDICE DE FIGURAS

6.2. Tiempo de ejecución del protocolo ECDH con Cython. 69
6.3. Tiempo de ejecución del protocolo ECDH en lenguaje C. 70
6.4. Ejecución del protocolo de seguridad. 71
6.5. Transmisión de identificadores efímeros. 72
6.6. Diagrama de interacción del protocolo de seguridad. 73
6.7. Generación y transmisión de IDEs . 74
6.8. Verificación de transmisión de IDEs. 75

A.1. Raspberry Pi Imager. 81
A.2. Herramienta de configuración de Raspberry Pi. 83
A.3. Configuración de opciones del sistema. 83
A.4. Configuración de hostname. 84
A.5. Configuración de localización . 84
A.6. Configuración de localización. 85
A.7. Habilitación de SSH. 85

Índice de tablas

2.1. Comparación de Bluetooth clásico y BBE. 7

3.1. Capa lineal de Ascon con funciones de 64 bits Σi(xi). 39
3.2. Caja S de 5 bits de Ascon como tabla de búsqueda. 39
3.3. Precálculo de instancias. 40

4.1. Descripción de los bytes de la trama de iBeacon. 49
4.2. Descripción de la trama de bytes de Eddystone-URL. 53

6.1. Características de dispositivos utilizados. 65
6.2. Comparación de tiempos de ejecución. 69

xiii

xiv ÍNDICE DE TABLAS

Capítulo 1

Introducción

Existe una gran diversidad de dispositivos interconectados en áreas de tecnolo-
gía emergentes, entre las que destacan, el Internet de las cosas (IdC) y el Bluetooth
de baja energía (BBE), por lo general estos dispositivos se comunican de forma in-
alámbrica entre sí, trabajan en conjunto para realizar alguna tarea de comunicación
usualmente de forma descuidada y sin ningún protocolo de seguridad de por medio.
Debido al creciente número de dispositivos restringidos del IdC, la estandarización de
la seguridad debe lograrse en un futuro cercano, porque una vez que muchos disposi-
tivos sean implementados, es posible que no tengan la capacidad de actualizarse, lo
que puede generar vulnerabilidades y amenazas futuras. Las limitaciones de recursos
en estos dispositivos hacen que sea poco práctico utilizar algoritmos de cifrado/des-
cifrado muy complejos y que consuman mucho tiempo para la comunicación segura.
Esto provoca que los sistemas del IdC sean altamente susceptibles a diversos tipos de
ataques como el seguimiento no autorizado, suplantación de identidad, falsificación
de información, entre otros. Una solución ahorradora (con respecto a la cantidad de
recursos utilizados) que proporcione seguridad a los dispositivos reducidos, necesita
de un sistema que pueda ser implementado en ellos a pesar de sus recursos limitados.
Dicha necesidad ha motivado el desarrollo de un área de investigación denominada
como criptografía ligera. Por este motivo el National Institute of Standards and Tech-
nology (NIST), ha iniciado un proceso para solicitar, evaluar y estandarizar algoritmos
criptográficos ligeros que sean adecuados para su uso en entornos restringidos donde
el rendimiento de los estándares criptográficos actuales del NIST son inaceptables [1].

Las tecnologías del IdC y BBE se han movido más rápidamente que los mecanis-
mos disponibles para protegerlas, particularmente a los dispositivos más pequeños.
Salvaguardar estos dispositivos, los datos y las redes a las que se conectan puede ser
un desafío debido a la variedad de artefactos y proveedores, así como a la dificultad
de agregar seguridad a los aparatos con capacidades limitadas. Así, en esta tesis pla-
neamos estudiar algoritmos criptográficos ligeros para balizas que usan BBE para sus
comunicaciones.

1

2 Introducción

1.1. Objetivos

General

Mejorar la seguridad en aplicaciones basadas en balizas BBE utilizando criptogra-
fía ligera.

Particulares

1. Comprender la tecnología de balizas BBE, sus características y las aplicaciones
que tiene en la actualidad.

2. Analizar las amenazas y vulnerabilidades de seguridad que implica la utilización
de balizas BBE en aplicaciones del IdC.

3. Implementar un protocolo de seguridad para las balizas BBE y proveer mayor
seguridad en sus aplicaciones utilizando algoritmos de criptografía ligera.

1.2. Propuesta de solución

En este trabajo se propone un análisis de la tecnología Bluetooth de baja energía
y la seguridad en los dispositivos que la utilizan, particularmente de las balizas BBE.
Se propone un protocolo de seguridad diseñado con base en algoritmos de criptografía
ligera para un acuerdo de llaves en común y la generación de identificadores efímeros,
ambos integrados como capas del protocolo a manera de contramedidas ante posibles
amenazas de seguridad como los ataques de suplantación y falsificación de informa-
ción. Este trabajo de tesis derivó del proyecto SRE-AMEXCID titulado “Generación y
aplicación de herramientas serológicas, moleculares y rastreo de contacto y movilidad,
en seis hospitales de tres entidades de México, para estudio, mitigación y contención
de la epidemia de COVID-19”. El protocolo de seguridad esta basado en el esquema
utilizado en la aplicación Applacovid [2], modificando las primitivas criptográficas
implementadas con algoritmos de criptografía ligera.

1.3. Organización de la Tesis

En el capítulo 2 se presenta el contexto necesario para comprender la tecnología
de los dispositivos BBE, se describen las capas de la arquitectura BBE, las topolo-
gías de conexión y las características más importantes en comparación al Bluetooth
clásico. De igual manera se aborda la tecnología de balizas BBE, los protocolos de
comunicación más usados, las áreas de aplicación actuales y las principales amenazas
de seguridad a las que se enfrenta durante su implementación.

En el capítulo 3 se exponen los preliminares matemáticos y las primitivas crip-
tográficas utilizadas en las capas del protocolo de seguridad que se propone en esta

Capítulo 1 3

tesis, las cuales, se basan en la implementación de un protocolo de acuerdo de lla-
ves con criptografía de curva elíptica, así como en la generación y transmisión de
identificadores efímeros creados con un algoritmo de cifrado ligero.

En el capítulo 4 se analizan las características físicas de un tipo de baliza BBE,
luego, se describe el proceso para la emulación de balizas BBE con distintos protocolos
de comunicación, con dichas emulaciones podrían realizarse ataques de suplantación
en aplicaciones con balizas BBE, en este caso se utilizan para comprobar el funciona-
miento del protocolo propuesto.

En el capítulo 5 se describe el diseño general del protocolo de seguridad, se plan-
tea una arquitectura en capas con la integración de algoritmos criptográficos de llave
pública para la comunicación segura de balizas BBE y la generación de identifica-
dores efímeros pseudoaleatorios como mecanismos de seguridad, además, se realizan
programas para las pruebas de implementación del protocolo de seguridad de balizas
BBE.

En el capítulo 6 se muestran los resultados obtenidos durante las pruebas de
implementación del protocolo de seguridad en un entorno emulado. Adicionalmente, se
expone el proceso de establecimiento de llaves en distintos lenguajes de programación,
se realiza una comparación de sus tiempos de ejecución con lo cual se eligió el entorno
y lenguaje de programación más eficiente.

Por último, en el capítulo 7 se presentan las conclusiones, contribuciones y algunas
ideas para el trabajo futuro.

4 Introducción

Capítulo 2

Contexto Tecnológico

Hace algunos años, cuando se hablaba del futuro hacia el que nos conducía el
avance de las tecnologías de la información y comunicaciones, se mencionaba al in-
ternet de las cosas (IdC) como una interconexión de artefactos cotidianos en una red
que contaría con un alto nivel de inteligencia. A finales de 2017 se conectaron apro-
ximadamente 8,400 millones de dispositivos del IdC y se estima que habrá alrededor
de 30 mil millones de dispositivos a finales de este año [3], la rápida transición de pla-
taformas, el aumento del uso de nuevas tecnologías y la adopción intensa de sensores
impulsa esa trayectoria. El IdC hace posible que se creen nuevos niveles de relación,
interacción y de dar mejor servicio a los usuarios, prácticamente de forma automática.
Una de las tecnologías de comunicación altamente utilizadas por IdC es el Bluetooth
de baja energía (BBE), fue diseñado especialmente para los dispositivos con recursos
limitados (como la disponibilidad de energía). Las balizas BBE son uno de los nuevos
tipos de dispositivos de interacción del IdC, estas emiten señales BBE con identifica-
dores que son captados por aplicaciones compatibles y que ejecutan acciones en un
dispositivo móvil.

En este capítulo se explica en detalle la tecnología BBE, las capas de su arqui-
tectura, casos de uso y las vulnerabilidades de seguridad en su implementación. De
igual manera se describe la tecnología de balizas BBE, sus principales aplicaciones,
protocolos de comunicación más importantes y amenazas de seguridad actuales.

2.1. Bluetooth de baja energía

BBE es la nueva especificación a partir de la versión 4.0 de la tecnología Bluetooth
desarrollado por el SIG (Bluetooth Special Interest Group). Se ha diseñado como una
tecnología complementaria al Bluetooth clásico para garantizar un consumo de energía
bajo y menor tiempo de establecimiento de conexión. A pesar del uso de la misma
banda de frecuencia y las similitudes compartidas, BBE debe considerarse un nuevo
estándar con objetivos y aplicaciones diferentes. BBE está hecho para la transmisión
de pequeñas cantidades de datos y por lo tanto de ultra-bajo consumo de energía.
Está pensado para mantener una conexión entre dispositivos por tiempos pequeños.

5

6 Contexto Tecnológico

Esto permite que los dispositivos estén activos sólo cuando se les pide la transmisión
de datos.

2.1.1. Datos técnicos de BBE

Algunos de las características técnicas más importantes del BBE son las siguientes:

El espectro de frecuencia que ocupa es de 2.400 - 2.4835 GHz. Está segmentado
en 40 canales de 2 MHz de ancho [4].

La velocidad máxima de datos soportada (introducida en la versión 5 de Blue-
tooth) es de 2 Mbps.

La distancia de comunicación varía significativamente según el entorno que ro-
dea a los dispositivos BBE que se comunican, una distancia común es de 10 a
30 metros.

El consumo de energía también varía mucho, depende de la implementación
de la aplicación, los diferentes parámetros BBE y el el hardware utilizado. El
consumo del BBE durante la transmisión suele ser inferior a 15 mA.

La seguridad es opcional en la comunicación BBE, depende del dispositivo y
de los desarrolladores de las aplicaciones implementarla. Sin embargo, también
hay diferentes niveles de seguridad que se pueden implementar.

BBE está diseñado para aplicaciones de transferencia de datos de bajo ancho
de banda, ya que la implementación de BBE para aplicaciones de gran ancho
de banda comprometería significativamente el bajo consumo de energía.

Las conexiones, anuncios primarios, descubrimiento de servicios y característi-
cas, así como la lectura y escritura de estas características es posible entre dos
dispositivos BBE independientemente de su versión de Bluetooth compatible.

2.1.2. Bluetooth clásico y BBE

Existe una gran diferencia entre el Bluetooth clásico y el BBE, en términos de es-
pecificaciones técnicas, implementación y tipos de aplicaciones para las que se adapta
cada uno. Algunas de las principales diferencias se resumen en la tabla 2.1.

Capítulo 2 7

Bluetooth clásico BBE
Se utiliza en aplicaciones de transmisión Se utiliza para datos de sensores y
de audio y transferencia de archivos. control de dispositivos.

Velocidad de 3 Mbps. Velocidad de 2 Mbps.
Opera sobre 79 canales de RF. Opera sobre 40 canales de RF.

La detección ocurre en 32 canales. La detección ocurre en 3 canales,
las conexiones son más rápidas que

con el Bluetooth clásico.

Tabla 2.1: Comparación de Bluetooth clásico y BBE.

BBE ha presentado algunas ventajas y beneficios significativos en tecnologías si-
milares del IdC. Algunas de estas ventajas incluyen el menor consumo de energía, el
menor costo de módulos y conjuntos de chips, el acceso gratuito a los documentos
oficiales y su existencia en la mayoría de teléfonos móviles del mercado, esta es pro-
bablemente la mayor ventaja que tiene BBE sobre sus competidores como ZigBee,
Z-Wave y Thread. Con los beneficios mencionados anteriormente, existe una serie de
casos de uso en los que tiene más sentido utilizar el BBE:

Datos de ancho de banda bajo: En los casos en que un dispositivo transfie-
re pequeñas cantidades de datos que representan lecturas de sensores o para
controlar actuadores.

Configuración del dispositivos: Se puede utilizar como interfaz secundaria para
configurar un dispositivo antes de que se establezca la conexión inalámbrica
principal.

Uso de teléfono inteligente como interfaz: Debido a que los dispositivos pequeños
de baja energía generalmente no tienen pantallas grandes y sólo pueden mostrar
cantidades limitadas de datos al usuario final. Otro beneficio de usar un teléfono
inteligente es que los datos se pueden transmitir a la nube.

Dispositivos personales y portátiles: Para casos en los que un dispositivo es
portátil y se puede ubicar en áreas donde ninguno otro puede.

Dispositivos de sólo transmisión: Estos dispositivos tienen la tarea simple de
transmitir datos para que otros dispositivos puedan leerlos.

Bluetooth 4.0 y BBE son soportados en la mayoría de plataformas a partir de las
versiones listadas a continuación:

iOS5+ (iOS7+ preferible)

Android 4.3+ (numerosas correcciones de errores en 4.4+)

Apple OS X 10.6+

8 Contexto Tecnológico

Windows 8 (XP, Vista y 7 sólo soportan Bluetooth 2.1)

GNU/Linux Vanilla BlueZ 4.93+

2.1.3. Topologías BBE

El diagrama de la figura 2.1 explica la forma en que funcionan los dispositivos
en una topología conectada uno a muchos. Un periférico sólo se puede conectar a un
dispositivo central (como un teléfono móvil) a la vez, pero el dispositivo central se
puede conectar a varios periféricos BBE (como balizas). Si es necesario intercambiar
datos entre dos periféricos, será necesario implementar un sistema de buzón de correo
personalizado donde todos los mensajes pasen por el dispositivo central. Sin embargo,
una vez que se establece una conexión entre un periférico y un dispositivo central, la
comunicación puede tener lugar en ambas direcciones, lo que es diferente al enfoque
de transmisión unidireccional que utiliza sólo datos de anuncio [4].

Figura 2.1: Topología uno a muchos en BBE.

Existen otras dos topologías soportadas por BBE mostradas en la figura 2.2. La
topología uno a uno es cuando dos dispositivos BBE están conectados directamente
entre sí, por otro lado, la topología muchos a muchos es cuando varios dispositivos se
encuentran en una malla y pueden conectarse con todos los que estén en ella.

Figura 2.2: Otras topologías en BBE.

Capítulo 2 9

Una característica que BBE carecía desde el principio es la capacidad de admitir
una topología de muchos a muchos (a menudo denominada red de malla), donde varios
dispositivos BBE pueden enviarse mensajes entre sí y retransmitir mensajes a otros
dispositivos dentro de una red. Todo esto cambió en julio de 2017 cuando SIG lanzó
el estándar Bluetooth malla. El objetivo de la malla Bluetooth es aumentar el alcance
de las redes BBE y agregar soporte para más aplicaciones industriales que utilizan la
tecnología BBE. Antes del lanzamiento de la malla Bluetooth, BBE sólo admitía dos
topologías (uno a uno y uno a muchos).

2.1.4. Arquitectura BBE

La figura 2.3 muestra las diferentes capas dentro de la arquitectura de BBE. Los
tres bloques principales en la arquitectura de un dispositivo BBE son: la aplicación,
el anfitrión y el controlador. La descripción de las capas de la arquitectura BBE
detalladas a continuación se obtuvo de [4].

Figura 2.3: Arquitectura BBE.

La capa de aplicación depende del caso de uso que se le dé, se refiere a la imple-
mentación en la parte superior del Perfil de acceso genérico y el Perfil de atributo
genérico. Es la forma en que una aplicación maneja los datos recibidos y enviados a
otros dispositivos y la lógica detrás de ellos.

El controlador es el componente más básico de la arquitectura, contiene la capa fí-
sica (PHY), la capa de enlace y el modo de prueba directa del BBE. El HCI (anfitrión
Controller Interface) es el protocolo estándar que permite la comunicación entre el
anfitrión y el controlador, se lleva a cabo a través de un interfaz serie. La capa de anfi-
trión es la parte que contiene a los protocolos fundamentales que permiten el acceso e
intercambio de información en BBE. En el nivel más alto de la capa se encuentran de

10 Contexto Tecnológico

forma paralela las capas GAP (Generic Access Profile) y GATT (Generic Attribute
Profile), después se encuentra el administrador de seguridad y el protocolo L2CAP,
este último es el encargado de dar acceso y soporte a los protocolos fundamentales,
los cuales se describen con más detalle a continuación.

Perfil de acceso genérico (GAP)

GAP es el acrónimo para el perfil de acceso genérico (Generic Access Profile), se
encarga de controlar las conexiones y los anuncios BBE. GAP es lo que permite que
su dispositivo sea público hacia el exterior y determina como dos dispositivos pueden
(o no) interactuar entre ellos. GAP define varios roles para los dispositivos, pero los
dos conceptos clave a tener en cuenta son los dispositivos centrales y los dispositivos
periféricos.

Los periféricos son dispositivos pequeños, de bajo consumo de energía y con
recursos limitados que pueden conectarse a un dispositivo central mucho más
potente. Los dispositivos BBE son artefactos como un monitor de frecuencia
cardíaca, sensor de proximidad habilitada para BBE, una baliza BBE, etc.

Los dispositivos centrales suelen ser teléfonos móviles o tabletas a los que se
conectan los dispositivos periféricos, estos tienen mucha más capacidad de pro-
cesamiento y memoria.

Hay dos maneras de transmitir información a través de GAP: Los datos de anun-
cio (Advertising data payload) y los datos de respuesta de escaneo (Scan response
payload). Ambos tipos de datos son idénticos y pueden contener hasta 31 bytes, pero
sólo los datos de anuncio son obligatorios, ya que se transmite continuamente desde el
periférico, para permitir que los nodos centrales en el alcance sepan de su presencia.
Los datos de respuesta del escaneo son opcionales y pueden ser pedidos desde un
dispositivo central. De este modo los periféricos BBE pueden transmitir información
extra como el nombre del dispositivo o alguna característica especial definida por el
fabricante.

Un periférico emite los datos de anuncio a intervalos regulares configurables. Cada
vez que el intervalo pasa, el periférico emite sus datos de anuncio. Intervalos altos,
permiten ahorrar batería, mientras que intervalos cortos, permiten ser más reactivos.
Si un dispositivo central necesita más datos y el periférico lo permite, puede solicitar
adicionalmente la carga de respuesta de escaneo, y este contestará con la información
adicional.

Si bien la mayoría de los periféricos se anuncian para que se pueda establecer una
conexión y se puedan utilizar los servicios y las características del GATT (lo que
permite intercambiar mucha más información y en ambos sentidos), hay situaciones
en las que solo se desea enviar datos de anuncio. El principal caso de uso, es cuando
se desea que un periférico transmita datos a más de un dispositivo a la vez. Esto sólo
es posible utilizando los datos de anuncio ya que los datos enviados y recibidos en
modo conectado solo pueden ser vistos por los dos dispositivos conectados.

Capítulo 2 11

Incluyendo una pequeña cantidad de datos personalizados en los 31 bytes de anun-
cio o de respuesta de escaneo, podemos usar un periférico BBE para enviar datos
unidireccionalmente a dispositivos centrales dentro de la distancia de alcance. Esto
es lo que se conoce como Broadcasting en BBE. Una vez que se establece la conexión
entre un periférico y un dispositivo central, el proceso de anuncio suele detenerse y
usará los servicios y características del GATT para comunicarse en ambas direcciones.

Perfil de atributos genéricos (GATT)

GATT es una especificación para enviar pequeños fragmentos de datos, denomi-
nados “atributos”, a través de un vínculo BBE, es decir, define la forma en que dos
dispositivos Bluetooth de baja energía transfieren datos de un lado a otro utilizando
conceptos llamados servicios y características. Todos los perfiles de aplicaciones de
bajo consumo actuales se basan en GATT. El SIG define muchos perfiles para dispo-
sitivos de bajo consumo. Un perfil es una especificación que describe cómo funciona
un dispositivo en una aplicación determinada. Cabe señalar que un dispositivo puede
implementar más de un perfil. Por ejemplo, un dispositivo puede incluir un monitor
de ritmo cardíaco y un detector de nivel de batería.

GATT entra en juego una vez que se establece una conexión dedicada entre dos
dispositivos, lo que significa que ya ha pasado por el proceso de anuncio regido por
GAP. Lo más importante a tener en cuenta con el perfil GATT es que las conexiones
son exclusivas. Lo que se significa que un periférico BBE sólo se puede conectar a
un dispositivo central (un teléfono móvil, tableta, etc.) a la vez, tan pronto como un
periférico se conecte a un dispositivo central, dejará de anunciarse y otros dispositivos
ya no podrán verlo o conectarse a él hasta que se interrumpa la conexión existente.
Establecer una conexión también es la única forma de permitir la comunicación bidi-
reccional, donde el dispositivo central puede enviar datos significativos al periférico y
viceversa.

GATT está basado en el protocolo de atributos (ATT). Por eso, también se deno-
mina GATT/ATT. ATT está optimizado para funcionar en dispositivos BBE. Por esa
razón, usa la menor cantidad de bytes posible. Cada atributo se identifica de forma
exclusiva mediante un identificador único universal (UUID), que es un formato es-
tandarizado de 128 bits para un ID empleado para identificar información de manera
exclusiva. Los atributos transportados por ATT tienen formato de características y
servicios. Un concepto importante que debe entenderse con el GATT es la relación
servidor/cliente. El periférico se conoce como el servidor GATT , que contiene los
datos de búsqueda de ATT y las definiciones de servicios y características, y el cliente
GATT (el teléfono / tableta), que envía solicitudes a este servidor. Todas las transac-
ciones son iniciadas por el dispositivo principal, el cliente GATT, que recibe respuesta
del dispositivo secundario, el servidor GATT.

Al establecer una conexión, el periférico sugerirá un “Intervalo de conexión” al
dispositivo central, y el dispositivo central intentará reconectar cada intervalo de
conexión para ver si hay nuevos datos disponibles, etc. Es importante tener en cuenta
que esta conexión, sin embargo, el intervalo es sólo una sugerencia, es posible que su

12 Contexto Tecnológico

dispositivo central no pueda cumplir con la solicitud porque está ocupado hablando
con otro periférico o porque los recursos del sistema requeridos simplemente no están
disponibles.

El diagrama de la figura 2.4 ilustra el proceso de intercambio de datos entre
un periférico (el servidor GATT) y un dispositivo central (el cliente GATT), con el
dispositivo principal iniciando cada transacción, se observa los datos publicitarios o
anuncios emitidos por la baliza BBE y la solicitud de respuesta de escaneo enviada
por el dispositivo central:

Figura 2.4: Transacción GATT.

Las transacciones GATT en el BBE se basan en objetos anidados de alto nivel
llamados Perfiles, Servicios y Características, la figura 2.5 muestra la la estructura
anidada de los objetos, donde los servicios engloban a las características y el perfil
contiene a los servicios, a continuación se describirán cada uno de estos objetos.

Figura 2.5: Estructura de objetos GATT.

Perfil: Es una colección predefinida de servicios que ha sido compilada por Blue-
tooth SIG o por los diseñadores de periféricos. El perfil de frecuencia cardía-
ca, por ejemplo, combina el servicio de frecuencia cardíaca y el servicio de

Capítulo 2 13

información del dispositivo. La lista completa de perfiles basados en el GATT
adoptados oficialmente se puede ver en el sitio: https://www.bluetooth.com/
specifications/specs/.

Característica: Una característica contiene un solo valor y 0-n descriptores que
describen el valor de la característica. Una característica puede interpretarse
como un tipo, que es similar a una clase.

Descriptor: Los descriptores son atributos definidos que describen el valor de
una característica. Por ejemplo, un descriptor puede especificar una descripción
en lenguaje natural, un rango aceptable para el valor de una característica o
una unidad de medida específica del valor de una característica.

Servicio: Un servicio es una colección de características. Por ejemplo, podría
tener un servicio denominado “Monitor de ritmo cardíaco” que incluya carac-
terísticas como “medición del ritmo cardíaco”. Puede consultar una lista de los
perfiles y servicios basados en GATT en el sitio: https://www.bluetooth.com/.

Interfaz de controlador del anfitrión (HCI)

La capa HCI es un protocolo estándar definido por la especificación de Bluetooth
que permite que la capa de anfitrión se comunique con la capa del controlador. En
el caso de que el anfitrión y el controlador estén en conjuntos de chips separados,
la capa HCI se implementará sobre una interfaz de comunicación física. Las tres
interfaces de hardware oficialmente admitidas por la especificación son: UART, USB
y SDIO (salida de entrada digital segura). En el caso de que las dos capas anfitrión
y controlador) vivan en el mismo microcontrolador, la capa HCI será una interfaz
lógica.

Protocolo de Adaptación y Control de Enlace Lógico (L2CAP)

La capa de Protocolo de Adaptación y Control de Enlace Lógico (L2CAP) ac-
túa como una capa de multiplexación de protocolo. Se toma prestado del estándar
Bluetooth clásico y realiza las siguientes tareas en el caso de BBE:

Toma múltiples protocolos de las capas superiores y los coloca en paquetes BBE
estándar que se pasan a las capas inferiores debajo de él.

Maneja la fragmentación y la recombinación.

Toma los paquetes más grandes de las capas superiores y los divide en trozos que
se ajustan al tamaño máximo de carga útil BBE admitido para la transmisión.

En el lado del receptor, toma varios paquetes y los combina en un paquete que
puede ser manejado por las capas superiores.

La capa L2CAP maneja dos protocolos principales: el protocolo de atributos
(ATT) y el protocolo de administrador de seguridad (SMP).

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/

14 Contexto Tecnológico

Administrador de seguridad

El administrador de seguridad define los protocolos y algoritmos para generar e
intercambiar llaves entre dos dispositivos. Incluye cinco características de seguridad:

1. Emparejamiento: el proceso de crear llaves secretas compartidas entre dos dis-
positivos.

2. Vinculación: el proceso de crear y almacenar llaves secretas compartidas en
cada lado (central y periférico) para su uso en conexiones posteriores entre los
dispositivos.

3. Autenticación: el proceso de verificar que los dos dispositivos comparten las
mismas llaves secretas.

4. Cifrado: el proceso de cifrar los datos intercambiados entre los dispositivos.El
cifrado en BBE utiliza el estándar de cifrado AES de 128 bits, que es un algo-
ritmo de llave simétrica (lo que significa que se utiliza la misma llave para cifrar
y descifrar los datos en ambos lados).

5. Integridad del mensaje: el proceso de firmar los datos y verificar la firma en
el otro extremo. Esto va más allá de la simple verificación de integridad de un
CRC calculado.

El administrador de seguridad fue contemplado a partir de la versión 4.2 de Blue-
tooth, sin embargo, su implementación depende de los dispositivos, las aplicaciones y
sus administradores, en la mayoría de los casos no se utilizan las características de se-
guridad debido a los recursos limitados de los dispositivos BBE y a que la criptografía
implementada por la especificación es clásica (poco ligera).

2.1.5. Vulnerabilidades en sistemas BBE

El protocolo BBE permite de manera ubicua la comunicación inalámbrica energéti-
camente eficiente entre dispositivos con recursos limitados. Para facilitar su adopción,
BBE requiere una interacción limitada o nula del usuario para establecer una conexión
entre dos dispositivos. Desafortunadamente, esta simplicidad es la causa principal de
varios problemas de seguridad. Los dispositivos BBE para conectarse, deben empare-
jarse primero, y aquí es donde reside la principal vulnerabilidad de los sistemas BBE.
Durante la primera etapa de emparejamiento, los dispositivos intercambian informa-
ción básica sobre sus capacidades para descubrir cómo proceder con la conexión. Es
decir, se identifican en la red y explican qué son (una baliza, un teclado, un auri-
cular, etc.) y qué pueden hacer. Este intercambio no está cifrado. La segunda fase
de emparejamiento está dedicada a generar e intercambiar llaves. Es en este punto
que las conexiones BBE pueden ser manipuladas: si la conexión no está asegurada
adecuadamente, los atacantes pueden tomar el control de los dispositivos y los datos

Capítulo 2 15

que transmiten. Por último, la vinculación es el proceso durante el cual los dispo-
sitivos almacenan los datos de autenticación que intercambiaron durante el primer
emparejamiento, lo que les permite recordarse mutuamente como seguros cuando se
vuelven a conectar en el futuro.

Existen métodos para asegurar la segunda fase, como el uso de llaves temporales
para autorizar la conexión o el uso de BBE seguro, en la versión 4.2 de Bluetooth
se implementa el algoritmo Diffie-Hellman para la generación de llaves, además de
introducir un proceso más complejo de autenticación. Pero lo cierto es que muchos de
los dispositivos IdC que se encuentran en el mercado no implementan estos métodos
y son fácilmente vulnerables. Hay dos tipos de ataques comúnmente asociados a los
módulos BBE: escuchas pasivas y el hombre intermedio.

En la escucha pasiva un atacante puede escuchar los datos que los periféricos
BBE envían a la unidad central y luego usarlos para descubrir otras vulnerabi-
lidades de seguridad en el sistema.

Un ataque de hombre intermedio involucra un dispositivo malicioso que pretende
ser central y periférico al mismo tiempo y engaña a otros dispositivos de la red
para que se conecten a él. En este caso, un dispositivo externo puede no sólo
ver el tráfico de los equipos conectados, sino también inyectar datos falsos en la
secuencia y provocar el mal funcionamiento de cadenas de producción completas.
La figura 2.6 ilustra de manera sencilla un ataque de hombre intermedio en un
sistema BBE, en el cual un adversario intercepta la información de un dispositivo
BBE.

Figura 2.6: Ataque de hombre intermedio.

2.2. Tecnología de balizas BBE

Se trata de una de las industrias tecnológicas de más rápido crecimiento en los
últimos años. En 2015 se detectaron cerca de cuatro millones de balizas BBE desple-

16 Contexto Tecnológico

gadas en todo el mundo, y se tiene un estimado de 60 millones de balizas BBE que
serán distribuidas para este año [5].

Las balizas (en inglés conocidas como beacons) son dispositivos que transmiten
un identificador a través de una señal Bluetooth de baja energía, estos permiten
transmitir mensajes o avisos directamente a un dispositivo móvil, es decir, actúan
como un pequeño faro digital que puede “despertar” a otros dispositivos que estén
escuchando. Para que los dispositivos se “despierten” se debe tener instalada una
aplicación que esté escuchando y que reconozca la señal de esa baliza, entonces se
realizará algún tipo de acción, por ejemplo, mostrar una notificación con un mensaje.
Las balizas BBE vienen en diferentes tamaños y formas, desde pequeñas monedas
planas hasta imitaciones de rocas de mayor tamaño, como tarjetas, pulseras y más.
El factor de forma depende de su caso de uso y de los requisitos específicos del entorno
en el que se utilizará la baliza. Básicamente el hardware de las balizas consiste en un
microcontrolador con un chip de radio BBE y una batería, generalmente de botón,
con la que pueden durar más de un año, aun así existen otro tipo de balizas que
funcionan externamente y se pueden instalar en un enchufe o en un puerto USB, con
la desventaja que no pueden ser ubicadas en cualquier sitio.

La trama de la señal transmitida por las balizas BBE se crea siguiendo las di-
rectrices marcadas por un protocolo de baliza, todos los protocolos de comunicación
cumplen con la especificación de Bluetooth de baja energía. Dentro de cada trama,
está la información que utiliza el dispositivo para filtrar las señales BBE de anuncios
que cumplan con el estándar buscado. Los dispositivos móviles con soporte BBE tie-
nen, en los principales sistemas operativos (iOS y Android), la posibilidad de detectar
los protocolos compatibles siempre que el Bluetooth esté encendido. Aun así, es ne-
cesario desarrollar siempre una aplicación que haga uso de las balizas detectadas por
el sistema, y en función de si es una baliza asociada a la aplicación o no, interactuar
con el usuario.

2.2.1. Aplicaciones de balizas BBE

En la figura 2.7 se muestra la interacción de los usuarios con diversas aplicaciones
que implementan la tecnología de balizas BBE, algunas de estas aplicaciones colocan
balizas en lugares estratégicos para enviar mensajes a los usuarios que pasen cerca,
ya sea que les den información del lugar o incluso activen notificaciones como técnica
de marketing.

Algunos de los principales sectores en donde la tecnología de balizas BBE se ha
hecho presente en los últimos años son los siguientes:

Museos: Las aplicaciones con balizas BBE en los museos realizan un rápido
análisis de grandes cantidades de datos, implementan la navegación interna en
espacios cerrados, por lo cual es posible saber la productividad casi exacta de
cada área del museo, permitiendo la mejor toma de decisiones, como la gestión
del tiempo en que mantendrán una obra de arte en exposición, evitando gastos
innecesarios.

Capítulo 2 17

Figura 2.7: Aplicaciones de balizas BBE.

Acuarios y zoológicos: En esta área las aplicaciones con balizas BBE proporcio-
nan a los usuarios información interactiva (como juegos y vídeos) de la especie
por donde se este pasando, audio guías y geolocalización precisa dentro del
lugar.

Mercadotecnia: La función de las aplicaciones con balizas BBE en este sector
es ofrecer una mejor experiencia de compra a los usuarios. La aplicación de
una tienda provee fácilmente la ubicación exacta del consumidor, mediante el
uso de las señales de balizas BBE. De esa forma, se le envían al teléfono del
usuario, alertas y notificaciones con promociones y descuentos de servicios y/o
productos.

Turismo: En muchas categorías de aplicaciones móviles turísticas, la persona-
lización y la ubicación exacta son claves para la experiencia excepcional del
usuario. Con este tipo de aplicaciones se pueden recomendar sitios de interés,
eventos próximos y dar infografías a los turistas, esto se puede realizar colocan-
do balizas BBE en lugares estratégicos de la zona, donde al pasar un usuario
(con la aplicación turística) por alguna de ellas se activen las recomendaciones.

Educación: Las aplicaciones con balizas BBE en el campo de la educación pue-
den enfocarse en el control de acceso a aplicaciones comoWhatsApp o Facebook,
o incluso bloquear inmediatamente el acceso a internet en los teléfonos inteli-
gentes. Además, La presencia de los alumnos en el aula se podría comprobar
mediante las balizas BBE.

Servicios de localización: En este sector se utilizan balizas móviles en servicios
de localización y seguimiento de mascotas o artículos. Por ejemplo, el rastreo
de equipaje en los aeropuertos, ya que el usuario no cuenta con información de
cuando llegará su equipaje a la cinta transportadora. Con una baliza BBE dentro
del equipaje, es posible realizar el seguimiento del mismo y recibir notificaciones
al respecto.

Control de acceso e identificación automática: Se pueden utilizar las balizas BBE
para ingresar a un hotel, omitir el proceso de registro de entrada, ir directamente

18 Contexto Tecnológico

a la habitación y abrir la puerta sin necesidad de llave o tarjeta, todo esto para
evitar el contacto con otras personas (importante en estos tiempos de pandemia)
y agilizar el proceso de check-in, gracias a las balizas BBE y una aplicación para
teléfonos inteligentes.

Rastreo de contactos: Actualmente en estos tiempos de pandemia, se han de-
sarrollado múltiples aplicaciones que apoyan a la lucha contra el COVID-19,
este tipo de aplicaciones emplean balizas BBE y teléfonos inteligentes para rea-
lizar un rastreo de contactos que se hayan registrado a través de identificadores
emitidos por señales BBE, y posteriormente dar una alerta en caso de que al-
guno de ellos haya dado positivo a una prueba de la enfermedad. Un ejemplo
de aplicación de este tipo es Applacovid [2].

2.2.2. Amenazas de seguridad en aplicaciones con balizas BBE

Existen diversas amenazas y ataques a la seguridad en las aplicaciones que utilizan
balizas BBE, entre las que destacan las siguientes:

Seguimiento no autorizado. En este caso los identificadores (ID) de la transmi-
sión de una baliza BBE están disponibles para que los lea cualquier receptor
cercano. Esto permite muchos abusos, incluido el seguimiento no autorizado.
La figura 2.8 ilustra un esquema básico del ataque de seguimiento no autori-
zado, el cual consiste en que un espía pueda usar una aplicación móvil para
recopilar identificadores y después usarlos para inferir la ubicación histórica de
las balizas. Esta amenaza es un problema en las aplicaciones donde las balizas
se encuentran estáticas y al alcance del público, como en los museos, estadios,
acuarios y zoológicos, debido a que podrían ser ubicadas para posteriormente
ser robadas o suplantadas.

Figura 2.8: Ataque de seguimiento no autorizado.

Capítulo 2 19

Para este tipo de amenaza la contramedida de seguridad sugerida es la gene-
ración y transmisión de identificadores temporales a través de algoritmos de
cifrado confiables, con ello la aplicación que recolecte estos identificadores no
sabrá a que dispositivo corresponde cada identificador, imposibilitando de esta
forma el rastreo sin autorización.

Suplantación o (Spoofing). Bajo el ataque de suplantación, un adversario pue-
de espiar o interceptar el mensaje de solicitud de inicio de sesión de sesiones
anteriores a través del canal público/abierto durante la ejecución del protocolo
de autenticación [5]. Por ejemplo, en las aplicaciones de control de acceso y
rastreo de contactos mencionadas anteriormente, esta amenaza es muy preocu-
pante debido a que la suplantación de identidad sería un problema grave para
la seguridad de las aplicaciones con balizas y sus usuarios. En la figura 2.9 se
ilustra un esquema sencillo del ataque de suplantación de balizas BBE, en el
cual se observa un atacante que intercepta los identificadores emitidos por una
baliza y posteriormente los utiliza para hacerse pasar por ella en la interacción
con la aplicación móvil.

Figura 2.9: Ataque de suplantación.

Una consecuencia del ataque de suplantación es el puede darse en las visitas
a tiendas, debido a que las balizas BBE se utilizan a menudo para identificar
la micro ubicación de los usuarios, un adversario puede usar la información de
las balizas para ofrecer servicios que compitan con los que se brindan en las
ubicaciones de los clientes registrados [6]. En donde podría darse la suplanta-
ción es en las aplicaciones de publicidad de los centros comerciales, ya que los
negocios se verían afectados al enviarse otras opciones de compra y ofertas a los
usuarios, ocasionando el robo de clientes a las empresas que emplean las apli-
caciones. En este tipo de ataque se sugiere implementar servicios de seguridad
como la autenticación a través de un protocolo de acuerdo de llaves, además la
generación de identificadores efímeros disminuye la probabilidad de ataques de
suplantación de balizas BBE.

Falsificación de información. Un adversario podría falsificar los mensajes de cual-
quier baliza que emita una identificación coherente. Esta amenaza está presente
en prácticamente todas las aplicaciones que utilizan balizas BBE, por ejemplo,

20 Contexto Tecnológico

la figura 2.10 ilustra un ejemplo de ataque de falsificación en una aplicación
del sector turístico, en donde los mensajes con información falsa podrían causar
que un usuario se pierda, no encuentre los lugares o eventos anunciados y por
lo tanto decida dejar de utilizar la aplicación.

Figura 2.10: Ataque de falsificación de información.

En este caso los mecanismos de seguridad que se proponen son el cifrado y autentica-
do de los mensajes emitidos por las aplicaciones con balizas BBE, así como también
la trasmisión de identificadores efímeros generados a partir de funciones pseudoalea-
torias.

2.2.3. Protocolos de balizas BBE

Así como el Wi-Fi y el Bluetooth son estándares de comunicación por radio, los
protocolos de balizas son estándares de comunicación BBE. Son perfiles que muestran
la forma en que una baliza está transmitiendo información, esta es manejada por un
dispositivo (generalmente un teléfono celular) con el mismo protocolo. Ambos extre-
mos deben conocer la definición de los datos de transmisión si desean una transmisión
exitosa, esta es la razón por la cual el tipo de datos de difusión está definido por el
tipo de protocolo que está usando la baliza. La figura 2.11 muestra la forma general
de un paquete de anuncio transmitido a través de una señal BBE.

En las secciones siguientes se describen los principales protocolos paran la comu-
nicación entre las aplicaciones y las balizas BBE.

iBeacon

iBeacon es un estándar de tecnología desarrollado por Apple [7] que permite a las
aplicaciones móviles escuchar las señales recibidas desde balizas que se encuentran
bien colocadas en el mundo físico. En función de las señales, las aplicaciones móviles
reaccionan de diversas maneras. La tecnología permite a las aplicaciones móviles

Capítulo 2 21

1 byte
preámbulo

4 bytes
dirección
de acceso

Unidad de protocolo de datos (UPD)
3 bytes
CRC2 bytes encabezado

UPD
0-37 bytes

carga de datos

Figura 2.11: Paquete de anuncio BBE.

iBeacon entender la posición del dispositivo, en una escala microlocal y entregar
contenido hipercontextual.

El protocolo iBeacon también incluye un campo que permite el cálculo de la dis-
tancia relativa desde la baliza. Las aplicaciones que coinciden con el identificador
universal de la baliza, registrado en su base de datos pueden realizar tareas especí-
ficas basándose en el conocimiento de que la baliza está cerca. En la mayoría de las
aplicaciones, esto se utiliza para proporcionar el concepto de monitoreo de región,
donde ciertas funciones dependen de la ubicación del usuario dentro de la “región”
creada por una baliza o una red de balizas. Al asignar un conjunto de balizas a un
conjunto predeterminado de regiones, las aplicaciones conocerán la ubicación real del
usuario sin el uso de Sistema de Posicionamiento Global. La figura 2.12 muestra la
configuración del paquete de datos transmitido por el protocolo iBeacon.

31 bytes
paquete de datos

9 bytes
prefijo iBeacon

16 bytes
UUID de proximidad

2 bytes
mayor

2 bytes
menor

1 byte
txpower

Figura 2.12: Paquete de anuncio iBeacon.

AltBeacon

AltBeacon es el protocolo desarrollado por la compañía Radius Networks [8]. Fue
creado como una alternativa al protocolo cerrado iBeacon, ofreciendo las mismas fun-
cionalidades pero siendo capaz de entregar más información en cada mensaje emitido.
La especificación AltBeacon define el formato del mensaje publicitario que emiten las
balizas de proximidad BBE, está destinada a crear un mercado abierto y competitivo
para las implementaciones de balizas de proximidad. La funcionalidad de la baliza de

22 Contexto Tecnológico

proximidad AltBeacon no se limita a los dispositivos de una sola función, sino que se
puede incorporar como una característica de cualquier dispositivo que sea compatible
con BBE y que cumpla con los requisitos definidos en la especificación de Bluetooth
versión 4.0. El anuncio de AltBeacon se compone de un campo de 1 byte de longitud,
un campo de 1 byte y un identificador de empresa de dos bytes, según lo prescrito
por el formato de estructura de datos publicitarios específicos del fabricante, seguido
de 24 bytes adicionales que contienen los datos del anuncio de la baliza BBE como se
observa en la figura 2.13.

1 byte
longitud AD

1 byte
tipo AD

2 bytes
MFG ID

2 bytes
código de baliza

20 bytes
ID de baliza

1 byte
ref RSSI

1 byte
MFG RSVD

1 byte
preámbulo

4 bytes
dirección de

acceso

2 bytes
 encabezado

UPD

6 bytes
AdvA

3 bytes
banderas AD

28 bytes
publicidad altbeacon

3 bytes
CRC

Figura 2.13: Paquete de anuncio AltBeacon.

Eddystone

Eddystone es un formato de baliza abierto desarrollado por Google [6] y diseñado
teniendo en cuenta la transparencia y la solidez. Eddystone puede ser detectado tanto
por dispositivos Android como iOS. La figura 2.14 muestra la configuración general del
paquete de datos transmitido por el protocolo de Eddystone. El formato Eddystone

31 bytes
paquete de datos

3 bytes
banderas ADV

4 bytes
servicios

1 byte
longitud

1 byte
tipo

2 bytes
UUID

20 bytes
marco eddystone

Figura 2.14: Paquete de anuncio Eddystone.

se basa en las lecciones aprendidas al trabajar con socios de la industria en imple-
mentaciones existentes, así como en la comunidad de balizas en general. Una baliza
configurada con este protocolo puede emitir uno de los siguientes tipos de paquetes:

Capítulo 2 23

1. Eddystone-UID: Un ID estático único con un componente de espacio de nombres
de 10 bytes y un componente de instancia de 6 bytes.

2. Eddystone-URL: Una URL comprimida que, una vez analizada y descomprimi-
da, el cliente puede utilizarla directamente.

3. Eddystone-TLM: Datos de estado de la baliza que son útiles para el manteni-
miento de la flota de balizas y potencia el punto final de diagnóstico de la API
de balizas de proximidad de Google. TLM debe estar intercalado con un marco
de identificación como Eddystone-UID o Eddystone-EID (para el cual la versión
cifrada de eTLM preserva la seguridad).

4. Eddystone-EID1: Es un componente de la especificación Eddystone para bali-
zas BBE. Las balizas Eddystone-EID emiten un identificador que cambia cada
pocos minutos. El identificador puede resolverse en información útil mediante
un servicio que comparte una llave (la llave de identidad efímera) con la baliza
individual. Los IDE se generan utilizando medios criptográficos y sólo se pueden
vincular a la baliza o información asociado a la baliza, por usuarios autorizados.
Por lo tanto, el propietario de la baliza puede identificar el IDE mientras para
otros dispositivos, se vería como una identificación aleatoria [6].

Eddystone-EID

El protocolo Eddystone-EID cuenta con las características siguientes:

1. Cada baliza BBE tiene una llave secreta con la que se identifica. La llave la
conoce el propietario de la baliza.

2. La información de identificación en los anuncios de baliza consiste en una fun-
ción pseudoaleatoria determinista de la hora actual (con la precisión correcta)
tecleada con la llave secreta de baliza. A este valor lo llamamos “ID efímero”.

3. Siempre que el propietario de una baliza observe un anuncio, puede calcular su
propia versión del ID efímero y compararlo con el ID recibido. De esta manera,
el propietario de la baliza puede identificar la baliza, un proceso que llamamos
“resolución local del ID efímero”.

4. El propietario de la baliza puede registrar la baliza con un resolvedor global
confiable de ID efímeros. Durante el proceso de registro, el propietario envía la
llave compartida con la baliza al resolvedor.

5. Cualquier dispositivo que observe un anuncio puede transferir los datos observa-
dos al resolvedor global. Luego, el resolvedor intenta identificar la baliza usando
todas las llaves registradas. A este proceso lo llamamos “resolución en la nube
global de la identificación efímera”.

1Eddystone Ephemeral Identifier

24 Contexto Tecnológico

6. El resolvedor global puede notificar al dispositivo que observó la baliza y/o al
propietario con información derivada de la identidad de la baliza, de acuer-
do con la política de permisos de uso compartido correspondiente. Cualquier
información de este tipo se transmite a través de canales seguros.

Los métodos de seguridad del protocolo utilizan un esquema criptográfico sim-
ple, construido principalmente alrededor del uso de AES-128 (Advanced Encryption
Standard) en varios modos de operación y combinaciones de los mismos. Se elige AES
debido a su alta ubicuidad en los dispositivos Bluetooth (dado que ya se usa en partes
de la especificación Bluetooth), así como por el alto nivel de confianza en su seguridad.
Para mayor eficiencia, AES se usa casi únicamente en una dirección (cifrado), ya sea
como una función pseudoaleatoria simple (PRF) o en un modo de cifrado autenticado
(EAX) [6]. Para dar una solución eficiente a las amenazas de seguridad y privacidad
en las balizas BBE, el protocolo Eddystone-EID propone que se deben proteger tres
tipos de datos:

1. Direcciones MAC de Bluetooth.

2. Identificadores de dispositivos a nivel de aplicación.

3. Estado mutable de transmisión específico del dispositivo, es decir, las caracte-
rísticas de conexión en la capa de enlace del Bluetooth de baja energía.

Este intento de solucionar la falta de mecanismos de seguridad en aplicaciones con
balizas BBE propuesto por los desarrolladores de Google, en el que las balizas emitían
un identificador que cambiaba cada pocos minutos; el proceso de generación de IDEs
se realizaba a través de un resolvedor global y un servicio de Google (Proximity
Beacon API) que lamentablemente ha quedado obsoleto el 7 de diciembre de 2020, y
se cerró definitivamente el 1 de abril de 2021.

Los datos generados a partir de la tecnología de baliza BBE que se producirán
a partir de miles de interacciones entre estos dispositivos y sus usuarios, no sólo
serán masivos, sino también complejos y sufrirán muchos problemas de seguridad
y privacidad, especialmente en lo que respecta a la autenticación entre dispositivos
debido a los ataques de falsificación y suplantación. Para resolver estos problemas
de seguridad, los investigadores en el campo de la seguridad informática proponen el
desarrollo de protocolos de seguridad aplicados en este contexto.

Capítulo 3

Primitivas criptográficas

El surgimiento de diversas redes de comunicación, desde las de alcance mundial co-
mo el internet, hasta las de área personal como el Bluetooth, así como las aplicaciones
que las utilizan, han abierto nuevas posibilidades para el intercambio de información
entre los dispositivos. Al mismo tiempo, son cada vez mayores las amenazas a la
seguridad de la información que se transmite. Por eso, es necesario crear diferentes
mecanismos de seguridad, dirigidos a garantizar la confidencialidad y autenticidad
de los dispositivos y sus datos, todos estos mecanismos o servicios de seguridad son
proporcionados por la criptografía. La criptografía se divide en algoritmos de llave
secreta o simétricos y de llave pública o asimétricos. Los algoritmos de llave secreta
necesitan acordar una llave previamente entre las partes que se van a comunicar, lo
cual se puede hacer mediante el uso de un algoritmo de llave pública. A continuación
se abordará específicamente la variante de llave pública.

La criptografía asimétrica, es el método criptográfico que usa un par de llaves para
el envío de mensajes. Las dos llaves pertenecen a la misma entidad que recibirá el
mensaje, una llave es pública y se puede entregar a cualquiera, la otra llave es privada
y el propietario debe guardarla de modo que nadie tenga acceso a ella, dichas llaves
mantienen una relación matemática que permite el funcionamiento del algoritmo.
Además, los métodos criptográficos garantizan que esa pareja de llaves sólo se puede
generar una vez, de modo que se puede asumir que no es posible que dos entidades
hayan obtenido casualmente la misma pareja de llaves. Este tipo de algoritmos crip-
tográficos garantizan el resto de propiedades que los algoritmos simétricos no pueden
garantizar: permiten establecer una llave a través de un canal inseguro, identificar a
cada entidad que interviene, cifrar mensajes y asegurar la integridad de los mismos.
Uno de los métodos de llave pública más utilizados en la actualidad son los criptosis-
temas de llave pública basados en curvas elípticas. A continuación se definen algunas
estructuras algebraicas utilizadas en este Capítulo.

25

26 Primitivas criptográficas

3.1. Preliminares
Definición 3.1.1 Un grupo consiste de un conjunto G y una operación binaria ∗,
para todo a, b ∈ G, a ∗ b ∈ G. Dicha operación cumple las siguientes propiedades:

Elemento neutro. Existe e tal que para todo a ∈ G, e ∗ a = a ∗ e = a.

Unicidad del inverso. Para cada a ∈ G existe un valor único a−1 ∈ G tal
que a ∗ a−1 = e.

Asociatividad. a ∗ (b ∗ c) = (a ∗ b) ∗ c para todos a, b, c ∈ G.

Si además a ∗ b = b ∗ a, es decir ∗ es conmutativa, el grupo es llamado abeliano.

Definición 3.1.2 Un grupo G se dice cíclico si existe x ∈ G tal que todos los valores
bi = xi para i ∈ N son diferentes y el valor i tal que xi = e coincide con el número
de elementos en G.

Definición 3.1.3 Un anillo es un conjunto A 6= ∅ dotado de dos operaciones binarias
internas “+” y “·” verificando: A es un grupo abeliano con la operación “+” y para
todo a, b, c ∈ A.

Definición 3.1.4 Un campo K es un anillo conmutativo con identidad en el que todo
elemento no nulo tiene inverso.

Definición 3.1.5 Sea p > 0 una característica esencial de los campos finitos, espe-
cíficamente cuando p = 2 son llamados campos binarios o de característica dos.

Definición 3.1.6 Sea p primo. Al anillo entero Zp se llama campo primo. Notar que
además de anillo es un campo finito.

Es fácil ver que (Zp,+, ·) donde “ + ” denota la suma ordinaria modulo p y “ · ”
denota el producto ordinario modulo p, es un anillo conmutativo con elemento neutro
0Zp y elemento identidad 1Zp. Además como p es primo, entonces (Zp,+, ·) es campo
primo.

Definición 3.1.7 Sea K un campo finito, entonces |K| = pn para algún primo p y
algún entero n. Recíprocamente para todo primo p y entero positivo n, existe un único
campo, salvo isomorfismos, de pn elementos. Al campo de pn elementos se le denota
GF (pn).

3.2. Criptografía de curva elíptica
La criptografía de curva elíptica (ECC) pertenece a la criptografía asimétrica,

debido a que se utilizan dos tipos de llaves distintas, una pública y una privada, en
la que el conocimiento de la llave pública no permite determinar la llave privada. La
criptografía de curvas elípticas fue propuesta en la década de los ochenta por Neal

Capítulo 3 27

Koblitz [9] y Víctor Miller [10]. Desde entonces una gran cantidad de investigaciones
se han realizado para tener implementaciones eficientes y seguras de estos esquemas
criptográficos. Uno de los principales beneficios al emplear ECC es que se pueden
usar llaves más pequeñas que las utilizadas en otros criptosistemas clásicos como
el RSA y ElGamal, manteniendo la misma seguridad. De igual manera ofrece un
abanico de grupos en el mismo campo base. La implementación de ECC puede llegar
a ser hasta 15 veces más rápida que los criptosistemas clásicos, dependiendo de la
plataforma sobre la que se aplique, estas ventajas son importantes en los dispositivos
inalámbricos restringidos, en los que la potencia de cálculo, la memoria y la duración
de la batería son limitados.

3.2.1. Curva elíptica

Se define de manera general a las curvas elípticas de la siguiente forma. Sea K un
campo, una curva elíptica sobre K, se define mediante la ecuación de Weierstrass 3.1:

y2 = x3 + ax+ b (3.1)

donde x, y, a, b ∈ K. En la práctica, por lo general K es un campo finito primo GF (p)
o un campo binario GF (2m). En este trabajo se utilizan las curvas elípticas sobre un
campo finito primo GF (p). El campo de GF (p) contiene los elementos 0, . . . , p− 1, si
se trabaja solamente con el grupo multiplicativo, los elementos son 1, . . . , p− 1. Las
operaciones de suma y multiplicación deben ser reducidas modulo p. La definición
formal de una curva elíptica es como sigue:

Definición 3.2.1 Una curva elíptica E sobre un campo K es el conjunto de puntos
(x, y) ∈ K×K que satisfacen la ecuación 3.1. Además de un punto especial llamado
punto en el infinito y denotado como P∞.

3.2.2. Operaciones sobre curvas elípticas

Se define una operación para los puntos de E que se denota por +. Para visualizarlo
mejor se considera primero que K = R, de manera que la curva elíptica es ahora
una curva ordinaria en el plano. Sea l una recta del plano, entonces la recta l y la
curva E tienen tres puntos de intersección P,Q,R [11]. A continuación, se definen
las operaciones de suma y doblado de puntos sobre una curva elíptica, así como el
producto de un punto por un escalar.

Suma de puntos

Dados P,Q ∈ E con P 6= Q, se define la suma de dos puntos P + Q como el
simétrico al punto de corte entre la recta que une a P y Q y a la curva E, como se
muestra en la figura 3.1. En el caso particular de que la recta que conecta P y Q

28 Primitivas criptográficas

sea tangente a la curva en P , se define P + Q como el simétrico a P . Se obtiene la
ecuación 3.2 para la suma de puntos:

P +Q = (x3, y3) =

((
y2 − y1
x2 − x1

)2

− x1 − x2,−y1 +

(
y2 − y1
x2 − x1

)
(x1 − x3)

)
(3.2)

Figura 3.1: Gráfica de suma de dos puntos en R.

Doblado de punto

Dado P , se define doblar un punto P + P como el simétrico al punto de corte
entre la recta tangente a P , que se denota por d, y la curva E, como se muestra en
la figura 3.2. En el caso concreto de que el punto P sea un punto de inflexión de la
curva, se define P + P como el simétrico a P . De igual manera que para la suma,
para el doblado de puntos se obtiene la ecuación 3.3.

P + P = (x2, y2) =

((
3x21 + a

2y1

)2

− 2x1,−y1 +

(
3x21 + a

2y1

)
(x1 − x3)

)
(3.3)

En el caso general, es decir, sea cual sea la curva elíptica E (ecuación generalizada,
ecuación reducida, etc.), se tiene que E con la operación + forma un grupo abeliano.

Multiplicación escalar

Una de las operaciones más utilizadas en criptografía es la multiplicación escalar,
la cual consiste en multiplicar un escalar por un punto. Por ejemplo: 2×P = P +P .
Por lo tanto, el escalar dice cuántas veces debe sumarse un mismo punto. Para hacerlo,
existe el siguiente método analítico:

Capítulo 3 29

Figura 3.2: Gráfica de doblado de dos puntos en R.

1. Trazar la recta tangente al punto, por este motivo no puede ser una recta sin-
gular.

2. Encontrar el segundo punto de intersección entre la tangente y la curva definida.

3. Hacer reflexión del punto respecto eje de las abscisas.

Dado n ∈ Z se tiene que, si n es positivo,

[n] : E −→ E

P 7−→ [n]P = P + P + . . .+ P︸ ︷︷ ︸
n veces

(3.4)

En criptografía, se necesita de grupos abelianos finitos. Sin embargo, las curvas
elípticas sobre los reales no forman un grupo abeliano finito, por lo que no se pueden
utilizar de esta manera. Es necesario entonces que el campo sobre el que se define la
curva sea finito, para que el grupo abeliano generado por la curva elíptica sobre dicho
campo sea también finito. Además, es muy común en criptografía el uso de curvas
sobre campos primos finitos (K = Zp con p primo). Por seguridad computacional el
primo p debe ser muy grande.

A partir de ahora se considera K = Zp con p > 3 y aunque gráficamente no se
puede expresar la operación de grupo como se ha hecho antes, sí se le tiene expresada
algebraicamente con las fórmulas obtenidas en 3.2 y 3.3, que para K = Zp pasarían a
ser:

30 Primitivas criptográficas

Suma de puntos

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 mod p y3 = −y1 +

(
y2 − y1
x2 − x1

)
(x1 − x3) mod p

(3.5)

Doblado de un punto

x2 =

(
3x21 + a

2y1

)2

− x1− x2 mod p y2 = −y1 +

(
3x21 + a

2y1

)
(x1 − x3) mod p

(3.6)

3.2.3. Forma de Montgomery

Una curva elíptica E puede expresarse en diferentes sistemas, por lo que resulta de
gran interés estudiar la rapidez de la operación de grupo (suma de puntos y doblar un
punto) en diferentes sistemas de coordenadas y ecuaciones. Esta rapidez se mide según
el número de operaciones elementales necesarias para calcular la suma de puntos y
doblar un punto. Dentro de todos los tipos de sistemas que se encuentran, cabe
destacar la mejora en cuanto a rapidez de cálculo que aporta la forma de Montgomery
. Una curva elíptica E está en forma de Montgomery si la ecuación de la curva es del
tipo:

By2 = x3 + Ax2 + x. (3.7)

3.2.4. Problema del Logaritmo Discreto

Definición 3.2.2 Sea (G, ·) grupo cíclico finito y sea |G| = n. Se toma un elemento
primitivo α ∈ G y otro elemento β ∈ G, el problema del logaritmo discreto (PLD)
consiste en encontrar el entero x, con 1 ≤ x ≤ n tal que

β = α · α · . . . · α = αx

Este entero x se llama logaritmo discreto de β en base α y se denota como x = logαβ.

Calcular β = αx, es muy sencillo, pero invertir la aplicación resulta casi imposible
debido a la aleatoriedad de la operación de grupo, ya que no se espera encontrar el x
tal que β = αx hasta haber comprobado todas las posibilidades. La dificultad varía
según el grupo G seleccionado.

PLD en Z∗p.

Sea p primo y sea el grupo cíclico finito Z∗p de orden p − 1. Dado un elemento
primitivo α ∈ Z∗p y otro elemento β ∈ Z∗p, el PLD consiste en determinar el entero
1 ≤ x ≤ p−1 tal que αx ≡ β mod p. Si el primo p es suficientemente grande, calcular
logaritmos discretos módulo p es muy complicado, mientras que la exponenciación
αx ≡ β mod p es muy sencilla.

Capítulo 3 31

3.3. Protocolo Diffie-Hellman

El Intercambio de llaves Diffie-Hellman (DHKE) fue propuesto por Whitfield Diffie
y Martin Hellman en 1976 con la publicación del artículo “New directions in Crypto-
graphy” [12], influenciados por el trabajo anterior de Ralph Merkle, siendo el primer
método asimétrico publicado en la literatura. Este método, sencillo pero muy eficaz,
permite establecer una llave común entre dos partes que se comunican a través de un
canal inseguro (de ahí que todos los parámetros que se envían sean públicos), aplican-
do el PLD. Con esa llave común establecida, las dos partes pueden cifrar y descifrar,
es decir, esta llave funciona como llave simétrica. Originalmente fue propuesto para
grupos multiplicativos de enteros módulo p, con p un número primo, el esquema se
adaptó más tarde a grupos de puntos aditivos en curvas elípticas por Koblitz y Miller.
Comúnmente es conocido como protocolo de curva elíptica Diffie-Hellman (ECDH),
esta variante se describe de manera concisa en el Algoritmo 1.

Algoritmo 1 Protocolo de curva elíptica Diffie-Hellman
Parámetros públicos: Primo p, Curva E, Punto Q(x, y) ∈ E

Fase 1: Generación del par de llaves

Alicia
1: Genera llave privada a = kpriv,A < q.
2: Genera lave pública kpub,A = [a]Q.

Beto
1: Genera llave privada b = kpriv,B < q.
2: Genera lave pública kpub,B = [b]Q.

Fase 2: Calculo del secreto compartido

Alicia
3: Envía su llave pública kpub,A.
4: Alicia tiene (G, Q, a, b[Q]) y calcula
kAB = [a]([b]Q).

Beto
3: Envía su llave pública kpub,B.
4: Beto tiene (G, Q, b, [a]Q) y calcula
kBA = [b]([a]Q).

3.3.1. DHKE con curvas elípticas

Definición 3.3.1 Sea E una curva elíptica sobre Zp, dados dos puntos Q,P ∈ E con
P ∈ 〈Q〉 y 〈Q〉 un subgrupo generado por Q, el PLD en E consiste en encontrar el
entero positivo x tal que [x]Q = P .

Para utilizar el grupo generado por una curva elíptica sobre Zp para algún primo
p como grupo para el criptosistema DHKE, es necesario que p sea extremadamente
grande para que se trate de un método de cifrado seguro, hasta tal punto que se
considera seguro si el grupo G generado contiene un subgrupo cíclico de orden al
menos 2160. Además, sólo es necesario encontrar un elemento de E que tenga orden

32 Primitivas criptográficas

suficientemente grande, y no es necesario en ningún caso hallar todos los elementos
de E.

El proceso general del protocolo DHKE con curva elíptica sería el siguiente:

1. Alicia escoge su llave privada a = kpriv,A < q, a partir de la cual genera su llave
pública kpub,A = [a]Q y envía kpub,A a Beto.

2. Simultáneamente Beto escoge su llave privada b = kpriv,B < q, genera su llave
pública kpub,B = [b]Q y envía kpub,B a Alicia.

3. Alicia dispone de (G, Q, a, b[Q]) y calcula kAB = [a]([b]Q). 4. Beto dispone de
(G, Q, b, [a]Q) y calcula kBA = [b]([a]Q).

Se prueba fácilmente que Alicia y Beto calculan el mismo secreto compartido.

kAB = [a]kpub,B = [a]([b]Q) = [a][b]Q
kBA = [b]kpub,A = [b]([a]Q) = [a][b]Q

3.3.2. Curva 25519

En criptografía, la curva 25519 es una curva elíptica que ofrece 256 bits de seguri-
dad y está diseñada para su uso con el esquema de intercambio de llaves Diffie-Hellman
de curva elíptica. Es una de las curvas elípticas más rápidas y no está cubierta por
ninguna patente conocida.

La implementación de referencia de la curva 25519 es software de dominio público,
además, es una de las curvas más utilizadas y eficientes, considerada muy segura y
por ello se ha convertido en un estándar. Fue propuesta por Daniel J. Bernstein
[13] en 2006 y se popularizó a partir del año 2013 por las sospechas sobre la National
Security Agency (NSA) en su familia de curvas utilizadas hasta el momento. La figura
3.3 muestra una gráfica de la curva elíptica 25519 definida sobre R. La curva 25519
pertenece a la familia llamada curvas de Montgomery, y esta definida por la ecuación
3.8 de tipo Weierstrass:

y2 = x3 + 486662x2 + x (3.8)

sobre el campo finito definido por el primo 2255 −19, y toma como punto base x = 9.

Función X25519

La función X25519 según el RFC 7748 [14] realiza multiplicaciones escalares en la
forma de Montgomery de la curva 25519, se usa siempre que se esté implementando
el algoritmo Diffie-Hellman. La función toma un escalar y una coordenada u como
entradas y produce una coordenada u como salida. Aunque la función trabaja interna-
mente con enteros, la entrada y la salida son cadenas de 32 bytes y esta especificación
define su codificación.

Capítulo 3 33

Figura 3.3: Gráfica de la curva 25519 en R.

El algoritmo 2 describe las operaciones de bajo nivel que realiza la multiplicación
escalar en forma de Montgomery en la curva 25519 para n = 255. La notación ⊕
representa el operador exclusivo o lógico, mientras que los símbolos +,−,×,2 y −1
representan el campo de operaciones aritméticas Fp de suma, resta, multiplicación,
elevación al cuadrado e inversión, respectivamente.

En cada iteración i del algoritmo 2, la función de intercambio condicional (cswap)
intercambia los valores de las coordenadas R0 y R1 cuando los bits ki −1 y ki son
diferentes. Esta función es una contramedida para posibles ataques basados en caché,
que podrían revelar los dígitos escalares (la llave privada en el algoritmo 1), deter-
minando el orden de acceso de los puntos R0 y R1. La función cswap consta solo de
operaciones lógicas simples, por lo que su costo es mínimo.

La coordenada u es un elemento del campo subyacente GF (2255 −19) y está codi-
ficado como una matriz de bytes, u, en orden little-endian tal que u[0] + 256 ∗ u[1] +
2562 ∗ u[2] + . . . + 256(n−1) ∗ u[n− 1] es congruente con el valor módulo p y u[n− 1]
es mínimo. Al recibir una matriz de este tipo, las implementaciones de X25519 de-
ben enmascarar el bit más significativo en el byte final. Esto se hace para preservar
la compatibilidad con formatos de puntos que reservan el bit de signo para su uso
en otros protocolos y para aumentar la resistencia a la implementación de huellas
digitales.

Las implementaciones deben aceptar valores no canónicos y procesarlos como si
se hubiera reducido el modulo del campo primo. Los valores no canónicos son 2255

−19 a 2255 −1. La función X25519 se utiliza en un protocolo ECDH como lo ilustra
la figura 3.4.

Alicia genera 32 bytes aleatorios de a[0] a a[31] y transmite su llave pública KA =
X25519(a, 9) a Beto, donde 9 es la coordenada u del punto base y se codifica como
un byte con el valor 9, seguido de 31 bytes de cero. De manera similar, Beto genera
32 bytes aleatorios de b[0] a b[31], calcula su llave pública KB = X25519(b, 9) y la

34 Primitivas criptográficas

Algoritmo 2 Descripción de la multiplicación escalar en forma Montgomery con la
curva 25519
Entrada: P (uP , vP) ∈ E, k = (kn−1 = 1, kn−2, . . . , k1, k0)2, a24 = (A+ 2)/4
Salida: uQ = kP
Inicialización: UR0 ← 1, ZR0 ← 0, UR1 ← uP1 ← uP , ZR1 ← 1, s← 0

1: for i← n− 1 . . . 0 do
2: s← s⊕ ki
3: UR0 , UR1 ← cswap(s, UR0 , UR1)
4: ZR0 , ZR1 ← cswap(s, ZR0 , ZR1)
5: s← k1
6: A← UR0 + ZR0 ;B ← UR0 − ZR0 . Operaciones comunes
7: C ← UR1 + ZR1 ;D ← UR1 − ZR1 . Suma
8: C ← C ×B;D ← D × A
9: UR1 ← D + C;UR1 ← U2

R1

10: ZR1 ← D − C;ZR1 ← Z2
R1;ZR1 ← uP × ZR1

11: A← A2;B ← B2 . Doblado
12: UR0 ← A×B
13: A← A−B
14: ZR0 ← a24 × A;ZR0 ← +B;ZR0 ← ZR0 × A
15: end for
16: UR0 , UR1 ← cswap(s, UR0 , UR1)
17: ZR0 , ZR1 ← cswap(s, ZR0 , ZR1)
18: ZR0 ← Z−1R0

19: uR0 ← UR0 × ZR0

20: return uQ ← uR0

 ALICIA BETO

Llave privada de Beto = bLlave privada de Alicia = a

Llave pública de Alicia
= X25519 (a, 9)

Llave pública de Beto
= X25519 (b, 9)

PARÁMETROS
PÚBLICOS:

P = Primo (2255 – 19)
Punto base = 9
Función pública = X25519

Secreto compartido de Alicia
 = X25519 (a, X25519 (b, 9))

Secreto compartido de Beto
= X25519 (b, X25519 (a, 9))

Figura 3.4: Diagrama DHKE con curva elíptica 25519.

Capítulo 3 35

transmite a Alicia. Al usar los valores generados y la entrada recibida, Alicia calcula
el secreto compartido X25519(a,KB) y por lo tanto Beto calcula X25519(b,KA).
Ahora ambos comparten el secreto K = X25519(a,X25519(b, 9)) que es igual a
X25519(b,X25519(a, 9)). Al finalizar ambos pueden verificar el secreto, sin filtrar
información adicional sobre el valor de K.

Diversos protocolos como el utilizado por la aplicación de mensajería instantánea
WhatsApp [15] utilizan la curva elíptica 25519 y la función X25519, debido a sus
características de seguridad y eficiencia.

3.4. Identificadores efímeros

La generación de identificadores efímeros es un mecanismo de seguridad propuesto
para la utilización de balizas BBE, para realizar este proceso de generación se optó
por usar el algoritmo de cifrado autenticado Ascon conocido por ser muy ligero y
sencillo, por lo cual se ha distinguido en competencias internacionales1 de cifrado
autenticados y hashing.

3.5. Algoritmo Ascon

Ascon es una familia de algoritmos de cifrado autenticado y generación de hash
que emplean la misma función de permutación, fueron diseñados para ser ligeros y
fáciles de implementar, incluso con contramedidas adicionales contra ataques de canal
lateral. Ascon utiliza una función esponja en configuración dúplex para el cifrado
autenticado2 Ascon ha sido seleccionada como la opción principal para el cifrado
autenticado ligero en la competencia CAESAR (2014–2019) y actualmente participa
en la competencia NIST Lightweight Cryptography que comenzó en el año 2019 para
mas detalles en [16].

Ascon fue diseñado en el año por un equipo de criptógrafos de la Universidad de
Tecnología de Graz, Infineon Technologies y la Universidad de Radboud, ellos son
Christoph Dobraunig, Maria Eichlseder, Florian Mendel y Martin Schläffer.

3.5.1. Modo de operación Ascon

Ascon utiliza un modo de operación basado en una función esponja en configura-
ción dúplex para el cifrado autenticado. La longitud recomendada de llave, etiqueta
y nonce es de 128 bits. La esponja opera en un estado de 320 bits, con bloques de
mensajes de 64 o 128 bits. Donde la tasa r y la capacidad c = 320 − r dependen de
la variante de Ascon. El proceso de cifrado se divide en cuatro fases:

1. Inicialización: Inicializa el estado con la llave K y nonce N .
1Ganador en la competencia CAESAR y es finalista en NIST
2El valor recomendado para las longitudes de llave, etiqueta y nonce es de 128 bits.

36 Primitivas criptográficas

2. Procesamiento de datos asociados : Actualiza el estado con los bloques de datos
asociados Ai.

3. Procesamiento de texto sin formato: Inyecta bloques de texto sin formato Pi en
el estado y extrae bloques de texto cifrado Ci.

4. Finalización: Vuelve a inyectar la llave K y extrae la etiqueta T para la auten-
ticación.

Inicialización

El estado inicial de 320 bits de Ascon está formado por la llave secreta K de k
bits y nonce N de 128 bits, así como un IV que especifica el algoritmo (incluido el
tamaño de la llave k, la tasa r, el número de rondas de inicialización y finalización a,
y el número de rondas intermedias b, cada uno escrito como un entero de 8 bits. En
la inicialización, se aplican a rondas de la transformación de ronda p al estado inicial,
seguido de un xor de la llave secreta K:

S ← pa(S)⊕ (0320−k||K)

Procesamiento de datos asociados

Ascon procesa los datos asociados A en bloques de r bits. Agrega un solo 1 y el
menor número de ceros a A para obtener un múltiplo de r bits y dividirlo en s bloques
de r bits, A1|| . . . ||As. En caso de que A esté vacío, no se aplica ningún relleno y s = 0.
A cada bloque Ai con i = 1, . . . , s se le aplica xor con los primeros r bits Sr del estado
S, seguido de una aplicación de la permutación b-round pb a S:

S ← pb((Sr ⊕ Ai)||Sc), 1 ≤ i ≤ s

Después de procesar As (también si s = 0), después a una constante de separación de
dominio de 1 bit se le aplica xor con S:

S ← S ⊕ (0319||1)

Procesamiento del mensaje

Ascon procesa el mensaje P en bloques de r bits. El proceso de relleno agrega
un solo 1 y el menor número de ceros al texto plano P , de modo que la longitud del
texto plano rellenado es un múltiplo de r bits. El texto sin formato relleno resultante
se divide en t bloques de r bits, P1|| . . . ||Pt:

P1, . . . , Pt ← r − bit bloques de P ||1||0r−1−(|P |modr)

En cada iteración, un bloque de texto plano relleno Pi con i = 1, . . . , t se aplica
a los primeros r bits Sr del estado interno S, seguido de la extracción de un bloque

Capítulo 3 37

de texto cifrado Ci. Para cada bloque, excepto el último, todo el estado interno S se
transforma mediante la permutación pb utilizando b rondas:

Ci← Sr ⊕ Pi

El último bloque de texto cifrado Ct se trunca a la longitud del último fragmento
de bloque del texto plano sin relleno para que su longitud esté entre 0 y r − 1 bits,
y la longitud total del texto cifrado C sea exactamente la misma que para el texto
plano original P :

C̃t ← bCtc|P |mod r

Finalización

En la finalización, se le aplica un xor a la llave secreta K con el estado interno,
el cual se transforma mediante la permutación pa utilizando a rondas. La etiqueta T
consta de los últimos 128 bits (menos significativos) del estado aplicando la xor con
los últimos 128 bits de la llave K:

S ← pa(S ⊕ (0r||K||0c−k))

T ← dSe128 ⊕ dKe128

El algoritmo de cifrado Ascon devuelve la etiqueta T junto con el texto cifrado C1

|| . . . ||C̃t. El algoritmo de descifrado devuelve el texto plano P1|| . . . ||P̃t solo si el valor
de etiqueta calculado coincide con el valor de etiqueta recibido. El modo de operación
dúplex del cifrado autenticado Ascon completo se ilustra en la figura 3.5.

Figura 3.5: Diagrama de cifrado autenticado Ascon.

3.5.2. Permutación Ascon

Todos los miembros de la familia Ascon operan en un estado de 320 bits y utilizan
la misma permutación ligera. La permutación aplica iterativamente una ronda de

38 Primitivas criptográficas

transformación basada en SPN3 donde a = 12 veces (para pa) y b ∈ {6, 8} veces (para
pb). La ronda de transformación consta de los siguientes tres pasos que operan en un
estado de 320 bits dividido en cinco palabras x0, x1, x2, x3, x4 de 64 bits cada una,
como lo muestra la figura 3.6:

x4
x3
x2
x1
x0

Figura 3.6: División del estado S.

Suma de constantes de ronda: El paso pC suma una constante de ronda cr para
registrar la palabra x2 del estado S en la ronda i (ver figura 3.7). Ambos índices
r e i parten de cero y se usa r = i para pa y r = i+ a− b para pb.

x2 ← x2 ⊕ cr.

x0

x1

x2

x3

x4

1
1
1
1
1

1

x0

x1

x2

x3

x4

Figura 3.7: S(x) (caja S de 5 bits) de Ascon.

Capa de sustitución no lineal: La capa de sustitución pS actualiza el estado S
con 64 aplicaciones paralelas de la caja S de 5 bits S(x) (definida en la figura
3.7) para cada segmento de bits de los cinco registros x0 . . . x4 (ver la Tabla
3.1).

Por lo general, se implementa en esta forma de división de bits, con operaciones
realizadas en las palabras completas de 64 bits. La Tabla de búsqueda de S se
muestra en la Tabla 3.2, donde x0 es el MSB y x4 el LSB.

3substitution–permutation network

Capítulo 3 39

x0 ← Σ0(x0) = x0 ⊕ (x0 � 19)⊕ (x0 � 28)
x1 ← Σ1(x1) = x1 ⊕ (x1 � 61)⊕ (x1 � 39)
x2 ← Σ2(x2) = x2 ⊕ (x2 � 1)⊕ (x2 � 6)
x3 ← Σ3(x3) = x3 ⊕ (x3 � 10)⊕ (x3 � 17)
x4 ← Σ4(x4) = x4 ⊕ (x4 � 7)⊕ (x4 � 41)

Tabla 3.1: Capa lineal de Ascon con funciones de 64 bits Σi(xi).

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Tabla 3.2: Caja S de 5 bits de Ascon como tabla de búsqueda.

Capa de difusión lineal: La capa de difusión lineal pL proporciona una difusión
dentro de cada palabra de registro de 64 bits xi. Aplica una función lineal Σi(xi)
(definida en la Tabla 3.1) a cada palabra xi.

3.5.3. Modo hash de Ascon

La familia Ascon incluye las funciones hash, Ascon-Hash y Ascon-Hasha , así como
las funciones de salida extensibles Ascon-Xof y Ascon-Xofa, con modos de operación
basados en funciones esponja. Ambos proporcionan seguridad de 128 bits con un
tamaño de hash de al menos 256 bits. Los modos hash utilizan la misma permutación
ligera de 320 bits que los modos de cifrado autenticado como se muestra en la figura
3.8.

Figura 3.8: Diagrama de modo hash de Ascon.

Los modos hash absorben el mensaje M en bloques Mi de 64 bits y finalmente
comprimen el valor hash H en bloques Hi de 64 bits. Después de que cada bloque es
absorbido o exprimido, a excepción del último, se aplica la permutación pb al estado.
La permutación completa pa se aplica en la inicialización y finalización, después del
último bloque del mensaje.

40 Primitivas criptográficas

Inicialización

El estado inicial de 320 bits de Ascon-Hash está definido por una constante IV que
especifica los parámetros del algoritmo en un formato similar al de cifrado autenticado
Ascon (incluyendo k = 0, la tasa r, y los números de rondas a y b = 0 , cada uno
escrito como un entero de 8 bits), seguido de la longitud máxima de salida de h bits
como un entero de 32 bits (con h = l = 256) y un valor cero de 256 bits. La ronda de
permutación pa se aplica para inicializar el estado S:

S ← pa(IVh,r,a||0256)

El estado inicial S de 320 bits se puede calcular previamente para cada instancia
obteniendo lo que se muestra en la Tabla 3.3.

ee9398aadb67f03d
8bb21831c60f1002

S ← b48a92db98d5da62
43189921b8f8e3e8
348fa5c9d525e140

Tabla 3.3: Precálculo de instancias.

Absorción de mensaje

Ascon-Hash procesa el mensaje M en bloques de r bits. El proceso de relleno es
el mismo que para el texto sin formato de Ascon: agrega un solo 1 y el menor número
de ceros aM , de modo que la longitud del mensaje rellenado es un múltiplo de r bits.
El mensaje resultante se divide en s bloques de r bits, M1|| . . . ||Ms:

M1, . . . ,Ms ← r-bit bloques de M ||1||0r−1−(|M |modr)

Los bloques del mensajeMi con i = 1, . . . , s se procesan de la siguiente manera. Cada
bloque Mi se asocia a los primeros r bits Sr del estado S, seguido de una aplicación
de la ronda de permutación pa a S:

S ← pa((Sr ⊕Mi)||Sc), 1 ≤ i ≤ s

Exprimido (Squeezing)

La salida del hash se extrae del estado en bloques de Hi hasta que la longitud de
salida solicitada l ≤ h se completa después de t = dl/re bloques. Después de cada
extracción, el estado interno S se transforma mediante la ronda de permutación pa:

Hi ← Sr
S ← pa(S), 1 ≤ i ≤ t = dl/re

El último bloque de salida Ht se trunca a l mod r bits y H = H1|| . . . ||H̃t devuelve:

H̃t ← bHtcl mod r

Capítulo 4

Emulación de balizas BBE

El término emulación se refiere a la capacidad de reproducir el comportamiento
de una determinada plataforma de hardware y software, es adecuada para usar en
objetos digitales dinámicos e interactivos.

En este capítulo se explica en detalle la forma de realizar emulaciones de balizas
tipo iBeacon y Eddystone, con las cuales se pueden realizar ataques de suplantación
de balizas BBE. Un ataque de suplantación es un término que describe el tipo de com-
portamiento mediante el cual un adversario se hace pasar por un usuario o dispositivo
de confianza, en este caso, se haría pasar por una baliza BBE de alguna aplicación,
generalmente para realizar algo que le sea de beneficio y en ocasiones perjudicial para
los propietarios de las balizas y usuarios de la aplicación.

4.1. Descripción de baliza BBE

Para el análisis de la estructura y comportamiento general de las balizas BBE, se
utilizaron las balizas iBKS 105 de la marca Accent. Oficialmente fue el primer modelo
de baliza compatible con los protocolos iBeacon y Eddystone al mismo tiempo. iBKS
105 es una baliza BBE basada en un chipset semiconductor modelo Nordic nrf51822,
utiliza el protocolo de radio BBE y una pila de botón tipo CR2477 con un tiempo
de vida de 30 a 46 meses(dependiendo de la potencia Tx a intervalo de 1 segundo).
El circuito impreso de la baliza está preparado para implementar diferentes sensores
que pueden ser ensamblados para pedidos grandes. La Figura 4.1 ilustra el exterior
de una baliza iBKS 105 de la marca Accent, la cual cuenta con un chasis de plástico
redondo que cubre el microcontrolador y su batería, además, puede abrirse fácilmente
sin necesidad de herramientas y anclarse sobre cualquier superficie gracias a su cinta
de doble cara.

Las especificaciones técnicas de la baliza iBKS 105 se listan a continuación:

Tamaño: ancho de 11.3 mm, diámetro de 52.6 mm

Peso: 24 gramos

41

42 Emulación de balizas BBE

Figura 4.1: Baliza iBKS 105.

Distancia de detección: 50 metros máximo

Batería: CR2477, 3 V - 1000 mAh

Consumo de corriente (inactiva): 2.4 µA

Temperatura de operación: -25 a +60°C

La empresa Accent Advanced Systems desarrolló la aplicación móvil (para iOS y
Android) iBKS Config Tool, herramienta con la que se configuran todas sus balizas
BBE, el manual de usuario de la aplicación se encuentra disponible en el sitio oficial
de Accent [17].

Generalmente la arquitectura de este tipo de dispositivos comerciales es restringida
por sus fabricantes, razón por la cual las modificaciones necesarias para implementar
los mecanismos de seguridad que se proponen en esta tesis, resultan irrealizables. Por
este motivo se decidió emplear un dispositivo como la Raspberry Pi; ya que al ser
una plataforma abierta para ser utilizada en diversas aplicaciones, es posible usarla
para emular una baliza BBE y configurarla libremente. Los recursos de hardware para
realizar la emulación de balizas BBE son los siguientes:

Raspberry Pi 4

Tarjeta micro SD de 16 GB o 32 GB

Fuente de alimentación

Balizas BBE

Computadora

Teléfono inteligente

A continuación se muestra el proceso de preparación para emular una baliza BBE
a través de una Raspberry Pi.

Capítulo 4 43

4.2. Preparación de Raspberry Pi
El primer paso para utilizar la Raspberry Pi es la instalación del sistema operativo

Raspberry Pi OS, esto se hace mediante una unidad externa de almacenamiento
disponible en la placa con una tarjeta micro SD, el principal beneficio que ofrece su
instalación es que tiene precargados los módulos necesarios para utilizar los periféricos
con los que cuenta la tarjeta, como el módulo de Bluetooth. Los detalles de instalación
y configuración del sistema Raspberry Pi OS están disponibles en el Apéndice A, en
la página 81.

Con el sistema Raspberry Pi OS funcionando correctamente, otro aspecto impor-
tante es el acceso a la Raspberry Pi, esto se puede realizar a través de diferentes
maneras, usando periféricos de E/S como monitor, teclado y ratón o utilizando la
conexión de red vía Ethernet o Wifi. Como parte del sistema operativo Raspberry Pi
OS se instalaron los módulos para hacer uso de distintas conexiones, en este caso se
elige por practicidad utilizar el Wifi, lo que permite asignar un dirección IP y utilizar
el servicio SSH para el acceso remoto a la Raspberry Pi por medio de un canal seguro.

La conexión con SSH requiere del nombre de usuario (el usuario por defecto es
pi) y de la dirección IP de la Raspberry Pi, con estos datos se puede conectar la
plataforma a una red, ya sea de manera alámbrica o inalámbrica (ver Apéndice B, en
la página 87, para más detalles). Un ejemplo de comando para realizar la conexión
SSH es el siguiente:

ssh pi@192.168.1.79

Se ingresa la contraseña predeterminada (la contraseña por defecto es raspberry),
en la primera solicitud de conexión, el protocolo preguntará si se desea continuar con
la conexión SSH. Por medio de este servicio se podrá trabajar directamente en la
terminal de la Raspberry Pi a través de la computadora portátil sin necesidad de
otros periféricos. En la sección siguiente se dan detalles sobre la configuración de la
Raspberry Pi como un periférico BBE.

4.3. Configuración de Raspberry Pi como periférico
BBE

La Raspberry Pi cuenta con un módulo Bluetooth integrado y controlado por
Raspberry Pi OS, este puede funcionar como Bluetooth de baja energía configurándolo
a través de comandos o programas especializados.

Existen diversas formas de realizar emulaciones de periféricos BBE, ingresando
comandos Bluetooth directamente en la terminal o con programas en lenguajes como
Python, C y JavaScript. En particular se explicará una configuración programada
en JavaScript usando el entorno Nodejs y su módulo de emulación Bleno. Debido al
amplio soporte de la plataforma, la facilidad de instalación y la menor curva de apren-
dizaje con JavaScript, el módulo Bleno presenta un caso sólido como la mejor opción

44 Emulación de balizas BBE

para imitar a los periféricos BBE. La Figura 4.2 ilustra la relación de contención del
software utilizado para la emulación de periféricos BBE.

BLENO

Figura 4.2: Capas de software.

El primer paso es instalar el entorno de ejecución Nodejs y su administrador de
archivos npm, después se utiliza npm para instalar el módulo Bleno, el cual es un
software especializado para emular periféricos BBE programado en JavaScript. A
continuación se dan más detalles acerca de la instalación y configuración de estos
programas.

4.3.1. Nodejs

Nodejs es un entorno de ejecución multiplataforma para la capa del servidor basado
en el lenguaje JavaScript. Recordando que JavaScript era un lenguaje exclusivo del
lado del cliente y solo se podía ejecutar con un navegador web, esto cambió en el
año 2009 con la creación de Nodejs y la implementación del motor V8 de código
abierto para JavaScript desarrollado por Google. Nodejs incorpora en su núcleo el
motor V8 para ejecutar código JavaScript sin necesidad de algún navegador. Otra de
las ventajas de Nodejs es que usa un modelo de operaciones asíncrono y orientado a
eventos, es decir, puede ejecutar tareas de manera más eficiente, además Nodejs es
un entorno especializado para aplicaciones en tiempo real.

Un sistema operativo basado en Linux contiene una versión de Nodejs en sus
repositorios predeterminados que puede utilizarse para proporcionar una experiencia
uniforme en varios sistemas. En el momento en que se redacta este trabajo, la versión
en los repositorios es la 10.19. En caso de no contar con Nodejs, las opciones de
descargas para distintos sistemas operativos se encuentran en el sitio oficial:

Capítulo 4 45

https://nodejs.org/es/download/current/

A continuación se describe la instalación de Nodejs en un sistema Linux a través
del administrador de archivos apt. Como primer paso se actualiza el índice de paquetes
locales mediante el comando:

sudo apt update

Al terminar la actualización se instala Nodejs con el comando siguiente:

sudo apt install nodejs

Para comprobar que la instalación se haya realizado de forma correcta, se consulta
el número de versión de Nodejs como se muestra a continuación.

nodejs -v
Output
v10.19.0

Si el paquete de los repositorios se ajusta a los requerimientos, es todo lo que se
necesita para la configuración de Nodejs. Nodejs cuenta con un gestor de paquetes
llamado npm (Node Package Manager), este permite gestionar las dependencias de
un proyecto, distribuir código e instalar diversos módulos y paquetes para utilizarlos
con el entorno Nodejs. Se procede a instalar npm, con ayuda del administrador de
archivos apt de la manera siguiente:

sudo apt install npm

Con los pasos anteriores se debe de tener instalado correctamente Nodejs y el
administrador npm, lo cual se hizo con ayuda de los repositorios de software predeter-
minados de Linux.

Para usar de manera más óptima los módulos Nodejs para la emulación de dispo-
sitivos BBE, se opta por utilizar una versión más estable de Nodejs, se puede cambiar
la versión actual a la versión anterior 8.9.0. Con este fin se instala el administrador
de versiones de Nodejs con el comando siguiente:

sudo npm install -g n

A continuación se cambia a la versión 8.9.0 de Nodejs mediante el comando que
sigue:

sudo n 8.9.0

Posteriormente se instala la herramienta bluetooth-hci-socket , utilizada para
la gestión de la conexión Bluetooth con Nodejs, se usa el comando de instalación de
npm como se muestra a continuación:

https://nodejs.org/es/download/current/

46 Emulación de balizas BBE

sudo npm install bluetooth-hci-socket --unsafe-perm

La preparación anterior es necesaria para la correcta instalación de Bleno, el mó-
dulo de emulación de periféricos BBE desarrollado en JavaScript.

4.3.2. Bleno

Bleno es un módulo de Nodejs, puede ejecutarse en sistemas MacOS, Windows o
Linux. Bleno permite escribir lógica adicional en el comportamiento de un periférico
virtual BBE, como computar datos para enviar a lectura y notificar o reaccionar a
eventos de escritura. Se puede agregar fácilmente el código JavaScript a un sistema
de control de versiones, como Git, para que todo un equipo pueda ejecutar fácilmente
su propia instancia del periférico virtual.

A continuación se procede a instalar el módulo Bleno, este emula un dispositivo
BBE y crea una interfaz con el controlador BBE de Raspberry Pi OS.

sudo npm install bleno

Finalmente se instala el paquete onoff, el cual permite la interfaz con el GPIO1

de la Raspberry Pi.

sudo npm install onoff

Para la configuración básica del “dispositivo BBE” se crea un archivo JavaScript
donde se establece el servicio principal, como se muestra a continuación:

const bleno = require(’bleno’);
bleno.on(’stateChange’, function(state) {

console.log(’on stateChange: ’ + state);
if (state === ’poweredOn’) {

bleno.startAdvertising(’RaspberryPi’, [’1803’]);
} else {

bleno.stopAdvertising();
}

});

El archivo se guarda con la extensión .js, por ejemplo, bbe.js, después se ejecuta
en el entorno Nodejs con el comando siguiente:

sudo node bbe.js

1General Purpose Input/Output

Capítulo 4 47

Posteriormente se realiza un escaneo de dispositivos BBE para comprobar la con-
figuración anterior, se debe visualizar el nombre dado al dispositivo (RasberryPi) y
su dirección MAC como se muestra en el ejemplo siguiente:

sudo hcitool lescan
LE Scan ...
DC:A6:32:A4:8B:E4 (unknown)
DC:A6:32:A4:8B:E4 RaspberryPi

4.4. Emulación de baliza BBE
Existe una serie de bibliotecas y herramientas de código abierto que se pueden

utilizar para enviar datos de tipo baliza BBE desde una Raspberry Pi. Se pueden
utilizar programas desarrollados en lenguaje C o Python utilizando sus respectivas
bibliotecas de bluetooth, otra forma es a través de comandos del sistema BlueZ in-
gresados directamente en la terminal de la Raspberry Pi. A continuación se describe
el proceso de emulación de balizas BBE con comandos de BlueZ.

Una de las herramientas principales para la configuración y programación Blue-
tooth y BBE es la pila de protocolos BlueZ. A continuación se muestra la forma de
instalación de las bibliotecas necesarias para el funcionamiento del sistema BlueZ.

sudo apt-get install libusb-dev
sudo apt-get install libdbus-1-dev
sudo apt-get install libglib2.0-dev --fix-missing
sudo apt-get install libudev-dev
sudo apt-get install libical-dev
sudo apt-get install libreadline-dev

Luego se puede realizar la instalación del sistema BlueZ, el cual proporciona el
soporte para las capas y protocolos centrales de Bluetooth y BBE.

4.4.1. BlueZ

BlueZ es el sistema Bluetooth programado en Linux, en este caso permite que una
Raspberry Pi se comunique con dispositivos Bluetooth clásicos y Bluetooth de baja
energía. Sus características principales son su flexibilidad, eficiencia e implementa-
ción modular. Para utilizar el BlueZ se debe de descargar, compilar y luego instalar
otras bibliotecas complementarias. El manual de instalación del sistema BlueZ está
disponible en el Apéndice C, en la página 89.

Después de tener instalado BlueZ, ya es posible transmitir una señal BBE, la
configuración depende del tipo de baliza que se quiera emular, recordando que exis-
ten balizas que son compatibles con distintos protocolos como iBeacon, Eddystone y
Altbeacon.

48 Emulación de balizas BBE

A continuación se explica como emular balizas BBE de distintos protocolos a
través de una Raspberry Pi. Se pretende que la baliza BBE emulada se comporte de
la siguiente manera:

Inicialize y transmita una señal BBE.

Emita paquetes de anuncios.

Emita un identificador único y permita tener más de una baliza identificable.

4.4.2. Emulación de baliza iBeacon

En particular con las balizas tipo iBeacon, se sabe que su transmisión tiene tres
identificadores importantes:

proximityUUID: un UUID único que distingue sus balizas iBeacons de otras
iBeacons.

major: se utiliza para agrupar conjuntos de iBeacons relacionadas.

minor: se utiliza para identificar una iBeacon dentro de un grupo.

La emisión del paquete de datos de la baliza iBeacon la conforman estos identifica-
dores, originando que la transmisión sea única y que permita tener más de una baliza
iBeacon identificable. Para lograr emular una baliza iBeacon, se realiza el proceso
de configuración siguiente. Primero se debe levantar el servicio BBE, para hacerlo se
ejecutan en la terminal de la Raspberry Pi los comandos en el orden que se muestra
a continuación:

sudo hciconfig hci0 up
sudo hciconfig hci0 leadv 3
sudo hciconfig hci0 noscan

Se ingresa el comando hciconfig para verificar que se ejecutan correctamente las
instrucciones anteriores, la terminal debe mostrar una configuración parecida a la que
se muestra en el ejemplo siguiente:

hci0: Type: Primary Bus: UART
BD Address: DC:A6:32:A4:8B:E4 ACL MTU: 1021:8 SCO MTU: 64:1
UP RUNNING
RX bytes:1590 acl:0 sco:0 events:100 errors:0
TX bytes:3071 acl:0 sco:0 commands:100 errors:0

En la configuración se observan las características del módulo Bluetooth hci0,
como la dirección (BD Address), MTU2, estado actual (UP RUNNING), entre otras.

2Unidad de transmisión máxima

Capítulo 4 49

Después se utiliza el comando hcitool para configurar la transmisión del UUID.
Para este ejemplo, se establecen los valores de major y minor como 0 adjuntándolos
como 00 00 00 00 al final del UUID. Finalmente, el último byte que se agrega es
el valor RSSI (Received Signal Strength Indicator), que es C8. El comando completo
tiene el formato siguiente:

sudo hcitool -i hci0 cmd 0x08 0x0008 1E 02 01 1A 1A FF 4C 00 02
15 63 6F 3F 8F 64 91 4B EE 95 F7 D8 CC 64 A8 63 B5 00 00 00 00 C8

Los bytes de la trama en este ejemplo de configuración de baliza iBeacon se des-
cribe en la Tabla 4.1.

Valor de byte Descripción
0x08 Define el OGF como el grupo de comandos de Bluetooth
0x0008 Define el OCF para la configuración de los datos de anuncio
1E Define la longitud de datos de todo el paquete (30 bytes)
02 Número de bytes en la primera estructura AD
01 Bandera tipo AD

1A

valor 0x1A = 1010
bit 0 (APAGADO) LE (Low Energy) Modo limitado
bit 1 (ON) LE Modo detectable general
bit 2 (OFF) BR / EDR No admitido
bit 3 (ON) LE y BR / EDR simultáneo (controlador)
bit 4 (ON) LE y BR / EDR simultáneo (host)

1A Número de bytes en la segunda estructura AD
FF Datos específicos del fabricante (Tipo de AD)
4C00 Código de identificación de la empresa (0x004C = Apple)
02 Byte 0 del indicador de anuncio iBeacon
15 Byte 1 del indicador de anuncio iBeacon
636F3F8F6491
4BEE95F7D8 UUID específico de iBeacon
CC64A863B5
0000 Major
0000 Minor
C800 Potencia Tx calibrada

Tabla 4.1: Descripción de los bytes de la trama de iBeacon.

Definiendo las siglas utilizadas en la Tabla 4.1, el OGF (OpCode Group Field) es
el campo del grupo de código abierto en este caso del Bluetooth, el OCF (Open
Connectivity Foundation) es la Fundación de conectividad abierta para configuración
de anuncios, AD son las estructuras de los protocolos de anuncio como iBeacon y

50 Emulación de balizas BBE

Eddystone, por último BR / EDR (Basic Rate/Enhanced Data Rate) hace referencia
a características del Bluetooth clásico.

Prueba de funcionamiento de baliza iBeacon

La manera más sencilla de comprobar la emulación de balizas BBE, es a través de
una aplicación móvil con escáner BBE, en este caso se optó por utilizar la aplicación
iBKS Config Tool, la cual es la aplicación de configuración de balizas de la marca
Accent, se encuentra disponible en la tienda de aplicaciones y es compatible con los
sistemas operativos Android y MacOS.

En la Figura 4.3 se observa el panel principal al ejecutar la aplicación iBKS Config
Tool, se muestra la lista de dispositivos BBE encontrados con el escaneo y dentro de
esta se visualiza a la Raspberry Pi configurada como una baliza con el protocolo
iBeacon, se observa el nombre, identificador único, dirección Bluetooth y potencia de
transmisión.

Figura 4.3: Escaneo con iBKS Config Tool.

4.4.3. Emulación de baliza Eddystone

De la misma forma que con el protocolo iBeacon, se puede configurar la Raspberry
Pi para que se comporte como una baliza que emita anuncios del protocolo Eddystone
desarrollado por Google. En este ejemplo de configuración se utilizará un mensaje con
la especificación Eddystone-URL, donde se permite al usuario abrir la URL que se
está transmitiendo. Los dispositivos que detecten la baliza emulada deben ejecutar
un escaneo que pueda comprender el protocolo Eddystone-URL. Además, la baliza
Eddystone emulada también debe mostrar su nombre y datos de potencia.

Capítulo 4 51

El primer paso es encender el servicio Bluetooth con el comando sudo hciconfig
hci0 up, con el Bluetooth de la Raspberry Pi encendido, se activa el modo de anuncio
de bajo consumo y se configura en el modo de anuncio no dirigido y no conectable.
Esto se hace ejecutando el comando siguiente:

sudo hciconfig hci0 leadv 3

El argumento leadv activa el modo de anuncio de baja energía y el número que
sigue especifica el modo que se quiere usar (como se mostró en la Tabla 4.1), en este
caso se activa el modo de baja energía y el modo clásico de Bluetooth. Después de tener
configurada la Raspberry Pi en el modo correcto, se utiliza el comando hcitool, esta
herramienta nos permitirá enviar un comando a nuestro dispositivo Bluetooth para
transmitir por ejemplo, una URL específica. Para el comando de ejemplo se utiliza
la URL de la página del departamento de computación del Cinvestav: https://www.
cs.cinvestav.mx/. Posteriormente se inicia el proceso para generar fácilmente el
comando que transmitirá la URL como una baliza de tipo Eddystone, para poder
ingresarla en el comando, la URL debe primero convertirse a su representación en
código hexadecimal ASCII. Después de tener configurado el paquete de datos de
Eddystone para que transmita la Raspberry Pi, se ingresa como un comando en la
terminal (el comando debe ingresarse en una sola línea) de la manera siguiente:

sudo hcitool -i hci0 cmd 0x08 0x0008 1e 02 01 06 03 03 aa fe 16 16
aa fe 10 00 01 63 73 2e 63 69 6e 76 65 73 74 61 76 2e 6d 78 2f 00

La mayoría de los valores del paquete de datos deben de mantenerse como están,
ya que el protocolo Eddystone lo requiere de esa manera. Una restricción a tener en
cuenta es que la URL que se configure puede tener una longitud máxima hasta de 17
bytes.

En la Tabla 4.2 se describe detalladamente un ejemplo de paquete de datos con
el protocolo Eddystone-URL.

https://www.cs.cinvestav.mx/
https://www.cs.cinvestav.mx/

52 Emulación de balizas BBE

Prueba de funcionamiento de baliza Eddystone-URL

Al ejecutar la aplicación iBKS Config Tool se realiza automáticamente el escaneo
de dispositivos BBE cercanos. En la Figura 4.4 se observan los datos de la baliza
emulada con la Raspberry Pi y configurada con el protocolo Eddystone-URL.

Figura 4.4: Escaneo con iBKS Config Tool.

En los datos de configuración de la baliza Eddystone emulada se puede observar
la URL: https://www.cs.cinvestav.mx/, además de otros datos importantes como
su nombre, dirección Bluetooth y potencia de transmisión.

El proceso de emulación de balizas BBE descrito en este capítulo se utilizará en
la sección de resultados para realizar las pruebas de funcionamiento del protocolo de
seguridad que se propone, específicamente en la etapa de generación y transmisión de
identificadores efímeros a través de las “balizas BBE”.

https://www.cs.cinvestav.mx/

Capítulo 4 53

Valor de byte Descripción
0x08 Define el OGF como el grupo de comandos de Bluetooth
0x0008 Define el OCF para configurar los datos de anuncio de Bluetooth
1e Define la longitud de datos de toda la carga útil, 30 bytes
02 Longitud de datos de la siguiente sección, 2 bytes
01 Define que esta sección son datos de bandera
06 Define la bandera necesaria para el modo de anuncio de baja energía
03 Longitud de datos de la siguiente sección, 3 bytes
03 Define la lista completa de UUID de servicio, 16 bytes
AA UUID de Eddystone
FE UUID de Eddystone
16 Define la longitud de los datos de servicio
16 Define que los siguientes datos son “datos de servicio” para Eddystone
AA UUID de Eddystone de 16 bits
FE Define el tipo de marco que en este caso es URL
10 TX Power, utilizado para calcular la distancia a la baliza Eddystone
00 Esquema de URL, se establece que es “https: //”
01 Inicio de encabezado
63 ‘c’ en hexadecimal (ASCII)
73 ‘s’ en hexadecimal (ASCII)
2E ‘.’ en hexadecimal (ASCII)
63 ‘c’ en hexadecimal (ASCII)
69 ‘i’ en hexadecimal (ASCII)
6E ‘n’ en hexadecimal (ASCII)
76 ‘v’ en hexadecimal (ASCII)
65 ’e’ en hexadecimal (ASCII)
73 ‘s’ en hexadecimal (ASCII)
74 ‘t’ en hexadecimal (ASCII)
61 ‘a’ en hexadecimal (ASCII)
76 ‘v’ en hexadecimal (ASCII)
2E ‘.’ en hexadecimal (ASCII)
6D ‘m’ en hexadecimal (ASCII)
78 ‘x’ en hexadecimal (ASCII)
2F ‘/’ en hexadecimal (ASCII)
00 ‘nulo’

Tabla 4.2: Descripción de la trama de bytes de Eddystone-URL.

54 Emulación de balizas BBE

Capítulo 5

Desarrollo del protocolo de seguridad

En este capítulo se explica de manera detallada el desarrollo del protocolo de se-
guridad propuesto para las balizas BBE. Primero se describe el diseño general del
protocolo, el cual está compuesto por tres capas principales, luego, se aborda la inte-
gración de las primitivas criptográficas elegidas en cada capa y su implementación en
diferentes versiones según las necesidades de los dispositivos cliente y servidor.

5.1. Diseño del protocolo de seguridad

Con el fin de proveer servicios de seguridad a las balizas BBE y las aplicaciones
que las utilizan; se diseñó un protocolo de seguridad basado en tres capas, en ellas
se realizan las configuraciones de conexión, compartir un secreto en común y la gene-
ración de identificadores efímeros (IDEs) a través de un algoritmo de cifrado ligero.
La figura 5.1 describe las tres capas que conforman el protocolo de seguridad que se
propone para las balizas BBE.

En la primera capa se establecen todas las configuraciones de los conectores y
puertos de enlace entre el cliente (dispositivo móvil) y el servidor (baliza BBE), ade-
más, se configura el servidor en modo de emisión de señales BBE y el cliente en modo
de escaneo de dispositivos BBE. La segunda capa incorpora el protocolo de acuerdo
de llaves Diffie-Hellman utilizando la curva elíptica 25519, durante este protocolo se
realiza la generación de llaves, el intercambio de llaves públicas y el cálculo del secreto
compartido, este proceso se realiza en la primera interacción de los dispositivos, es
decir, cuando se encienden y configuran por primera vez las balizas BBE, además, se
asume que no existen atacantes en el medio en el momento del intercambio de llaves.
La última capa realiza la generación de identificadores efímeros a través del algoritmo
ligero Ascon, se propone que los IDEs sean generados a partir de la derivación de lla-
ves usando una función hash en el secreto compartido (llave diaria) y posteriormente
sean transmitidos por las balizas BBE cada 15 minutos, estos IDEs se verifican por el
dispositivo cliente al recibirlos. En las secciones siguientes se describe detalladamente
la programación de cada capa del protocolo de seguridad de balizas BBE.

55

56 Desarrollo del protocolo de seguridad

1. Configuración de conexión

3. Generación y transmisión de Ids efímeros
 con algoritmo ligero Ascon

Generación de llaves

Intercambio de llaves públicas

2. Protocolo ECDH con curva 25519

Comprobación de secreto compartido

Generación de Ids efímeros

Transmisión de Ids efímeros

Verificación de Ids efímeros

Cálculo de hash del secreto compartido

Cálculo de secreto compartido

Figura 5.1: Capas del protocolo de seguridad.

5.2. Configuración de conexión

Cada módulo Bluetooth fabricado está impreso con una dirección de 48 bits única
a nivel mundial, a la que se conoce como la dirección de Bluetooth. Esto es de origen
idéntico a las direcciones MAC de Ethernet y Wifi, ya que ambos espacios de direc-
ciones son administrados por la misma organización, la autoridad de registro IEEE
[18]. Estas direcciones se asignan en el momento de la fabricación y están destinadas
a ser únicas y permanecer estáticas durante la vida útil del módulo, además sirve con-
venientemente como la unidad de direccionamiento básica en toda la programación
de Bluetooth y BBE.

Para lograr que un dispositivo Bluetooth se comunique con otro, se debe tener
alguna forma de determinar la dirección Bluetooth del otro dispositivo. Esta dirección
se utiliza en todas las capas del proceso de comunicación. Una vez que el cliente ha
determinado la dirección del servidor al que desea conectarse, debe determinar qué
protocolo de transporte utilizar. En este caso se utiliza el protocolo de transporte
RFCOMM (Radio Frequency Communication), debido a que proporciona un servicio
y garantías de confiabilidad muy similares al protocolo de red TCP (Transmission
Control Protocol). En general, las aplicaciones que utilizan RFCOMM se preocupan
por tener una conexión punto a punto a través de la cual puedan intercambiar flujos

Capítulo 5 57

de datos de manera confiable. Si una parte de esos datos no se puede entregar dentro
de un límite de tiempo fijo, la conexión se interrumpe y se envía un error. A diferencia
de TCP, RFCOMM sólo permite 30 puertos abiertos en un solo dispositivo. Esto tiene
un impacto significativo en cómo elegir los números de puerto para aplicaciones de
servidor. Una vez que se conoce una dirección numérica y un protocolo de transporte,
se elige el número de puerto. En RFCOMM, los canales o puertos del 1-30 están
disponibles para su uso, en la implementación del protocolo de seguridad que se
propone se utiliza el puerto número 5.

En el modelo de programación de conectores o en inglés sockets, un conector repre-
senta un punto final de un canal de comunicación. Los conectores no están enlazados
cuando se crean por primera vez y son inútiles hasta que una llamada para conectar
(en una aplicación cliente) o aceptar (en una aplicación del servidor) se complete co-
rrectamente. Una vez que se conecta, se puede usar para enviar y recibir datos hasta
que la conexión falle debido a un error de enlace o a la orden de terminación del
usuario.

La estructura básica de datos utilizada para especificar una dirección de dispositivo
Bluetooth es bdaddr_t, en la programación del protocolo de seguridad se utiliza
la estructura de direccionamiento sockaddr_rc. Todas las direcciones de Bluetooth
en el sistema BlueZ se almacenan y manipulan como estructuras de este tipo [18].
BlueZ proporciona dos funciones para convertir cadenas a estructuras tipo bdaddr_t
y viceversa, las cuales se muestran a continuación.

int str2ba (const char * str, bdaddr_t * ba);
int ba2str (const bdaddr_t * ba, char * str);

La función str2ba toma una cadena de la forma “XX:XX:XX:XX:XX:XX”, donde
cada XX es un número hexadecimal que especifica un octeto de la dirección de 48 bits,
y lo empaqueta en un bdaddr_t de 6 bytes. La función ba2str hace exactamente lo
contrario.

A los adaptadores Bluetooth locales se les asignan números de identificación que
comienzan con 0, el programa especifica el adaptador que se desea usar al asignar los
recursos del sistema. Por lo general, solo hay un adaptador o no importa cuál se use,
por lo que al pasar el parámetro NULL a la función hci_get_route, se recupera el
número del primer adaptador Bluetooth disponible.

int hci_get_route (bdaddr_t * bdaddr);
int hci_open_dev (int dev_id);

La mayoría de las operaciones de Bluetooth requieren el uso de un conector abierto.
En este sentido se utiliza la instrucción hci_open_dev, esta función abre un conector
Bluetooth con el número de recurso especificado, es decir, el conector abierto por
hci_open_dev representa una conexión al adaptador Bluetooth local, y no una cone-
xión a un dispositivo Bluetooth remoto. Realizar operaciones de Bluetooth de bajo
nivel implica enviar comandos directamente al microcontrolador con este conector.

58 Desarrollo del protocolo de seguridad

Después de elegir el adaptador Bluetooth local para usar y asignar los recursos
del sistema, el programa está listo para buscar dispositivos Bluetooth cercanos. La
función hci_inquiry realiza un descubrimiento de dispositivos Bluetooth y devuelve
una lista de dispositivos detectados e información básica sobre ellos en la variable
inquiry_info. La estructura básica de la función se muestra a continuación.

int hci_inquiry(int dev_id, int len, int max_rsp, const uint8_t
*lap, inquiry_info **ii, long flags);

La instrucción hci_inquiry es una de las pocas funciones que requiere el uso de
un número de recurso en lugar de un conector abierto, por lo que se usa el dev_id
devuelto por la función hci_get_route. Además, se sugiere utilizar un max_rsp (má-
ximo tiempo de respuesta) de 255 para una consulta estándar de 10.24 segundos.

Una vez que se tiene la lista de dispositivos cercanos y sus direcciones, el programa
determina los nombres “fáciles de usar” asociados con esas direcciones. La función
hci_read_remote_name es utilizada para este propósito.

int hci_read_remote_name (int sock, const bdaddr_t * ba, int len,
char * name, int timeout)

La figura 5.2 muestra el esquema general de las configuraciones de conexión entre
los dispositivos que actúan como cliente y servidor en el protocolo de seguridad.

Figura 5.2: Diagrama de conexión.

El comando hci_read_remote_name intenta durante un tiempo de espera máximo
(en milisegundos) utilizar el conector (sock) para consultar el nombre “fácil” del dis-
positivo con la dirección de Bluetooth (ba) . Si se tiene éxito, hci_read_remote_name

Capítulo 5 59

devuelve 0 y copia los primeros bytes del nombre del dispositivo en el name. En caso
de error, devuelve el valor -1.

Para aceptar conexiones entrantes con un conector, se usa la función bind, para
reservar el recurso del sistema operativo, después se usa el comando listen para
ponerlo en modo de escucha/emisión y la función accept para bloquear y aceptar
una conexión entrante. Crear una conexión saliente en el lado del cliente también
es algo simple, solamente implica una llamada para conectarse. Una vez que se ha
establecido una correcta conexión, el estándar de Bluetooth cuenta con las funciones
write, read, send y recv, las cuales son utilizadas para la transferencia de datos
entre los dispositivos.

5.3. Protocolo ECDH con curva 25519

La razón principal por la que se decidió desarrollar el protocolo de seguridad en
el lenguaje de programación C, es debido a que los entornos de lenguajes de más alto
nivel (como Python) no se ajustan del todo bien a los dispositivos de destino (las
balizas BBE) del protocolo; los estrictos requisitos sobre el tamaño del programa, la
velocidad y el uso de la memoria en dispositivos limitados, podrían llegar a impedir
el uso de un lenguaje interpretado, aunado a que el control del adaptador Bluetooth
local en lenguaje C es mejor que el que proporcionan otros módulos como PyBlueZ.

Antes de comenzar a integrar los algoritmos de seguridad, se deben de realizar las
configuraciones de conexión según lo indica la Sección 5.2. La solución que se propone
para el acuerdo de llaves en común en la primera interacción de los dispositivos clien-
tes y las balizas BBE (servidores), es un secreto compartido con el protocolo ECDH
utilizando la curva elíptica 25519, el cual usa métodos matemáticos para que las dos
partes puedan derivar simultáneamente una llave en común sin haber transmitido ni
un solo byte de información confidencial entre ellos. Se decidió utilizar la criptografía
de curva elíptica debido a que es más eficiente en este tipo de aplicaciones, en el capí-
tulo 3) se explican los principales beneficios de este tipo de criptografía a comparación
de sistemas más antiguos como el RSA, el cual puede resultar computacionalmente
costoso por sus longitudes de llaves mayores.

El proceso general del protocolo comienza con la generación de llaves privadas
y públicas en cada dispositivo, cada llave cuenta con 32 bytes de longitud. En el
desarrollo del protocolo de seguridad, primero, el cliente escoge su llave privada a =
kpriv,C , a partir de la cual genera su llave pública kpub,C = [a]Q y la envía al servidor,
simultáneamente el servidor escoge su llave privada b = kpriv,S, genera su llave pública
kpub,S = [b]Q y la envía al cliente. El cliente dispone de los parámetros (G, Q, a, b[Q]) y
calcula kCS = [a]([b]Q). El servidor dispone de los parámetros (G, Q, b, [a]Q) y calcula
kSC = [b]([a]Q). Al final se comprueba fácilmente que ambas entidades calculan el
mismo secreto compartido de 32 bytes como se observa en la ecuación 5.1.

KCS = [a]kpub,S = [a]([b]Q) = [a][b]Q

KSC = [b]kpub,C = [b]([a]Q) = [a][b]Q
=⇒ KSS (5.1)

60 Desarrollo del protocolo de seguridad

La figura 5.3 ilustra el proceso del protocolo ECDH que se describió en el Algoritmo
1, en el cual las entidades Alicia y Beto representan a los dispositivos que actúan como
cliente y servidor, estos generan su par de llaves, intercambian sus llaves públicas y
calculan su secreto compartido a través de la función X25519.

Figura 5.3: Protocolo ECDH con la curva 25519.

El protocolo ECDH con la curva 25519 se implementa con base en dos diferen-
tes versiones del protocolo, la primera (para la parte del cliente) fue tomada de un
programa que usa un procedimiento de escalera de Montgomery para curvas elípti-
cas primarias y que admite el uso extensivo de precálculo, obteniendo de esa forma
importantes aceleraciones para las implementaciones de software.

En la segunda versión (para el servidor) del protocolo ECDH, se utiliza un progra-
ma optimizado para dispositivos con microcontroladores ARM, esta implementación
integra la operación de multiplicación escalar con instrucciones en lenguaje ensam-
blador que son llamadas por una función en lenguaje C para la generación de llaves
públicas. A continuación se describen las funciones que integran ambas versiones del
protocolo ECDH con curva 25519 en los dispositivos cliente y servidor.

5.3.1. Protocolo ECDH en el cliente

La publicación de Oliveira et al. [19] propone una implementación optimizada del
protocolo ECDH, describe una variante de la escalera de Montgomery que permite
acelerar la función de multiplicación de punto fijo inherente en la fase de generación
del par de llaves Diffie-Hellman.

La propuesta combina una versión de derecha a izquierda de la escalera de Mont-
gomery junto con el cálculo previo de valores constantes derivados directamente del
punto base y sus múltiplos. Todo esto a cambio de recursos de memoria muy modestos
y un pequeño esfuerzo extra de programación, la escalera propuesta obtiene impor-
tantes aceleraciones para las implementaciones de software, de igual manera cumple

Capítulo 5 61

totalmente con la especificación RFC 7748 [14] de las funciones X25519 y X448. Para
ejecutar esta versión del protocolo ECDH optimizada se utilizan las funciones descri-
tas a continuación.

La función random_X25519_key (private_key_client) genera la llave privada
del protocolo ECDH en el lado del cliente. Luego de obtener la llave privada del cliente
(private_key_client) se genera la llave pública con la función siguiente:

X25519_KeyGen(public_key_client, private_key_client);

En esta función se implementa la multiplicación escalar acelerada, al “multiplicar”
la llave privada del cliente (private_key_client) por el punto base de la curva 25519,
generando la llave pública intercambiable (public_key_client).

Se realiza el intercambio de las llaves públicas a través de los conectores definidos
entre el cliente y el servidor, en el proceso de envío y recepción de las llaves públicas
se utilizan las funciones de transferencia de datos write y read respectivamente. A
continuación, se muestra la forma en que son utilizadas estas funciones definidas por
el estándar Bluetooth.

read(socket, public_key_server, sizeof(public_key_server));

write(socket, public_key_client, sizeof(public_key_client));

La variable socket es el conector configurado en la primera capa del protocolo,
ambas funciones de transferencia deben de contar con un conector, la variable con la
información que se envía o recibe y el tamaño de los datos en bytes. Una vez que se
recibe la llave pública enviada por el servidor, se puede calcular el secreto compartido
con la función siguiente:

X25519_Shared(shared_client,public_key_server,private_key_client);

El secreto compartido del lado del cliente se almacena en la variable shared_client
para su comprobación posterior. Para emplear de manera adecuada el secreto compar-
tido, en lugar de usarlo directamente, se debe de implementar siempre una función de
derivación de llaves en ambos dispositivos. Sería incorrecto utilizar como “llave raíz”
el secreto compartido resultante, es necesario pasarlo por un bloque KDF (key deriva-
tion function), el cual encadena una o más llaves secretas de un valor como el secreto
compartido, usando una función pseudoaleatoria. La derivación de llaves garantiza
que las llaves utilizadas cuenten con propiedades deseables de llave segura como la
extensión de longitud y variación de formato. Estas propiedades pueden evitar que
un atacante obtenga una llave derivada consiguiendo información útil sobre el secreto
compartido o las demás llaves derivadas. Las funciones hash son las funciones pseu-
doaleatorias más populares usadas para la derivación de llaves, proporcionan mayor
seguridad ya que el protocolo ECDH se aplicaría solo una vez y después se realizaría
la derivación a través del modo hash del algoritmo ligero Ascon.

62 Desarrollo del protocolo de seguridad

5.3.2. Protocolo ECDH en el servidor

La versión del protocolo ECDH con curva 25519 [20] que se utiliza en el lado del
servidor, implementa instrucciones en lenguaje ensamblador altamente optimizadas de
la función X25519 definida para un microcontrolador ARMv7. Dicha implementación
está optimizada para un grupo de microprocesadores sencillos como los Cortex-M4,
aunque también funciona en otros procesadores de arquitectura ARM (ARMv7 y
arquitecturas más nuevas de 64 bits) como la que utiliza una Raspberry Pi. En esta
versión del protocolo ECDH con curva 25519 se utiliza la función siguiente para
generar la llave privada.

random_X25519_key(private_key_server,32);

Esta función genera un valor aleatorio de 32 bytes de llave privada usando un
generador de números criptográficamente seguro. Luego, la llave privada obtenida
(private_key_server) se introduce en la función siguiente para generar la llave pú-
blica del servidor (public_key_server) que se envía al cliente.

X25519_calc_public_key(public_key_server, private_key_server);

Después de enviar la llave pública del servidor, se recibe la llave pública del cliente
(public_key_client), esta se introduce junto con la llave privada del servidor en
la función que calcula el secreto compartido (shared_server) como se muestra a
continuación.

X25519_calc_shared_secret(shared_server,public_key_client,
private_key_server);

El secreto compartido calculado por el servidor se almacena en la variable shared_
server, para finalmente compararlo con el secreto compartido calculado del lado del
cliente y autenticar la conexión de los dispositivos.

El programa utilizado para el protocolo ECDH del lado del servidor usa solo 1892
bytes de espacio de código en forma compilada, además utiliza 368 bytes de pila y
ejecuta una multiplicación escalar en 548,873 ciclos en un microcontrolador Cortex-
M4, el cual es un récord de velocidad para un procesador de 64 MHz, eso significa que
le toma menos de 9 milisegundos ejecutar una operación. También existe una versión
aún más optimizada que utiliza la unidad de punto flotante (FPU), esta se ejecuta
en 476,275 ciclos en un microntrolador ARM Cortex-M4F [20]. La versión básica
se ejecuta en tiempo constante y utiliza un patrón de acceso a memoria igualmente
constante, independientemente de la llave privada que protege contra ataques de canal
lateral. Sin embargo, la versión FPU lee datos de la RAM en un patrón no constante,
por lo tanto, esa versión solo es adecuada para dispositivos sin caché de datos, como
los microcontroladores Cortex-M4 y Cortex-M33.

La implementación que se utiliza para el protocolo de seguridad es la versión
básica, ya que esta puede ejecutarse en dispositivos sencillos con microcontroladores

Capítulo 5 63

ARM Cortex-M4, así como en otros más complejos como el microcontrolador ARMv7
de la Raspberry Pi.

5.4. Generación de identificadores efímeros

En la generación de los IDEs que serán asignados a las balizas BBE (servidores),
se optó por utilizar el algoritmo de cifrado ligero Ascon, así como su modo hash para
la generación de llaves diarias.

Como primer paso se debe generar una llave diaria de la forma Kd = H(Kd−1)
(usando el modo hash de Ascon) para d > 0, tomando d0 = KSS (secreto compartido),
cada llave diaria se analiza como di → (kd, nd). Kd tiene una longitud de 32 bytes,
mientras que kd y nd tienen una longitud de 16 bytes. Para generar los IDEs, se utiliza
el algoritmo ligero Ascon como un generador pseudoaleatorio con datos asociados que
actúan como sal 1. En la fase de inicialización, los parámetros de entrada nd y kd
provienen de la llave diaria Kd, y se usa una cadena de corrección adicional como
datos asociados para Ascon (similar a la sal del hashing).

En la figura 5.4 se ilustra la generación de IDEs; primero se observa como se ingresa
la llave diaria como las entradasK yN en la fase de inicialización, después se establece
la cadena de sal, esta se maneja como datos asociados A1, As, posteriormente se pasa
por un bloque de permutación adicional y se emite el primer IDE. Después del tiempo
establecido se genera el siguiente IDE, retroalimentando el resultado anterior al bloque
de rondas de permutación pb. Por lo tanto, las salidas de 128 bits del bloque pb son
los IDEs que que se asignarán a las balizas BBE cada 15 minutos aproximadamente.

Figura 5.4: Diagrama de generación de identificadores efímeros.

En la ecuación 5.2 se observa que el primer IDE se obtiene directamente del proceso
del algoritmo Ascon, pasando por las fases de inicialización (I) y Sal (S) con los datos
asociados, mientras que los siguientes IDEs serán las salidas de la retroalimentación
de identificadores anteriores dadas al último bloque de pb, el cual implementa ocho
rondas de permutaciones con operaciones ligeras y es por ello que se utiliza como un

1Bits aleatorios que se usan como entrada en una función de derivación de llaves

64 Desarrollo del protocolo de seguridad

generador pseudoaleatorio de IDEs.

IDE1 ← pb ← S ← A1, AS ← I ← kd, nd

IDES ← pb ← IDE1

IDES ← pb ← IDES−1

(5.2)

Se pretende que los IDEs sean generados y transmitidos por el servidor, con un
intervalo de tiempo de 15 minutos, hasta que un cliente que ha sido autenticado por
el protocolo ECDH recoja un IDE y lo verifique. El algoritmo 3 describe el proceso
de generación de IDEs a través del generador pseudoaleatorio basado en los bloques
de permutación del algoritmo ligero Ascon.

Algoritmo 3 Descripción de la generación de IDEs
Entrada: DA (datos asociados), kd (llave Ascon), nd (nonce Ascon), num_IDEs
(número de IDEs generados en un día), min (minutos de espera).
Salida: IDEs (identificadores efímeros)
Inicialización: DA = 0 . . . 0, num_IDEs = 96, min = 15 ∗ 60, i = 0

1: Generar_IDE (IDE,DA, kd, nd)
2: for i ≤ num_IDEs do
3: PRG (IDE)
4: Emitir (IDE)
5: Sleep (min)
6: i+ +
7: end for

Los datos de entrada del algoritmo anterior se basan en el hash del secreto com-
partido (Kd) generado por el modo hash del algoritmo Ascon, esta llave diaria tiene
una longitud de 32 bytes que son repartidos de forma equitativa en las variables kd
y nd (con 16 bytes de longitud cada una), además, los datos asociados (A1, AS) que
actúan como sal en el algoritmo propuesto, se inicializan con una cadena de bytes con
valores 0. La cantidad de IDEs que se generan en un día es el resultado de multiplicar
los IDEs generados en un hora (son 4) por las 24 horas, dando como resultado un total
de 96 IDEs diarios que se transmitirán a través de una señal BBE y posteriormente
captados por un cliente que los verifique. Las pruebas de funcionamiento de la trans-
misión de IDEs a través de señales BBE se exponen en el capítulo 6 de resultados, en
la página 71.

Capítulo 6

Resultados

En las pruebas de implementación del protocolo de seguridad se utilizaron prin-
cipalmente dos dispositivos con adaptadores BBE: una computadora portátil y una
Raspberry Pi 4, a las cuales llamamos cliente y servidor respectivamente. En la tabla
6.1 se muestran las características principales de los dispositivos utilizados durante
las pruebas de implementación.

Característica Computadora portátil Raspberry Pi 4
Procesador AMD A10-8700p ARM Cortex-A72
Frecuencia 4 núcleos a 1.8 GHz 4 núcleos a 1.5 GHz

GPU AMD Radeon R6 VideoCore VI
RAM 12 GB 4 GB
Caché 2 MB 32 KB de datos,

48 KB de caché L1
y 1 MB de caché L2

Capacidad de 1 TB 16 GB
almacenamiento
Conectividad Bluetooth 4.0, Wi-Fi Bluetooth 5.0, Wi-Fi

y Gigabit Ethernet y Gigabit Ethernet
Puertos Alimentación, USB 2.0, GPIO, micro HDMI,

HDMI, Lector SD y USB 2.0 y 3.0
Ethernet Micro SD, USB-C y Ethernet

Sistema Ubuntu 20.04.2 LTS Raspberry OS
operativo

Tabla 6.1: Características de dispositivos utilizados.

La computadora portátil actuó como un cliente ya que realiza escaneos en busca
de dispositivos BBE disponibles, en este caso se conectó a la Raspberry Pi 4. La placa
se comportó como un servidor esperando la solicitud de conexión de algún cliente, se
configuró a la Raspberry Pi en modo de escucha debido a que el estado general de las
balizas BBE que se desea emular es su modo de emisión BBE permanente.

65

66 Resultados

Lo primero que se integró al programa del protocolo de seguridad fue la biblioteca
Bluetooth y sus componentes necesarios para la conexión BBE, después, se realizó la
configuración de los puertos y conectores para el enlace BBE entre la computadora
portátil y la Raspberry Pi.

Con el fin de integrar las primitivas criptográficas elegidas para el protocolo de
seguridad de las balizas, se desarrollaron un par de programas, en un principio se
hicieron pruebas de conexión BBE y la generación de llaves del protocolo ECDH en el
lenguaje de programación Python, aunque posteriormente se optó por implementar
el protocolo completamente en lenguaje C debido a su velocidad de cálculo y su efi-
ciencia en aplicaciones de este tipo. En la sección siguiente se describe el proceso y los
resultados obtenidos del programa desarrollado en lenguaje Python con el protocolo
ECDH del lado del servidor.

6.1. Programación en lenguaje Python

En primera instancia se decidió utilizar el lenguaje de programación Python por
sus características de flexibilidad y portabilidad, además de las diversas bibliotecas
especializadas que se pueden incorporar, como el módulo PyBluez para las conexiones
Bluetooth.

6.1.1. PyBluez

PyBluez es una biblioteca escrita en Python, utiliza los recursos Bluetooth y BBE
con el objetivo de permitir a los desarrolladores poder crear aplicaciones que hagan
uso de Bluetooth de una forma mucho más sencilla y rápida. Se puede hacer uso de
esta biblioteca en los sistemas operativos Windows, Linux y MacOS, además está
disponible de forma gratuita bajo la Licencia pública general de GNU en su sitio
oficial1.

Antes de ejecutar el comando de instalación se deben tener las dependencias ne-
cesarias para cada sistema operativo, en el caso de Linux, se requiere de Python 2.7
o una versión más reciente, de igual forma se debe tener instalado el sistema BlueZ
para el manejo de conexiones BBE (el manual de instalación esta disponible en el
Apéndice C, en la página 89). Para instalar PyBluez se utilizó el comando siguiente:

pip install pybluez

Después de tener instalado el módulo PyBluez se creó un programa en lenguaje
Python, en este programa se importó el módulo PyBluez y se establecieron los co-
nectores y puertos que se utilizan para el enlace Bluetooth entre los dispositivos que
actúan como cliente y servidor.

1https://pypi.org/project/PyBluez/

Capítulo 6 67

6.1.2. Cython

Para optimizar la generación de llaves públicas del protocolo ECDH con curva
25519, se empleó la extensión Cython para usar funciones más eficientes hechas en
lenguaje C en el programa codificado en Python, debido a que este realiza la conexión
principal entre los dispositivos. En el desarrollo de este programa se probó el uso
del compilador Cython para mandar a llamar funciones en lenguaje C, diseñadas
específicamente para los dispositivos con arquitectura tipo ARM, dichas funciones
implementan una multiplicación escalar en lenguaje ensamblador para acelerar el
proceso de generación de llaves públicas.

Cython es un compilador estático de optimización para el lenguaje de programa-
ción Python, permite que escribir extensiones C para Python sea tan fácil como el
propio Python. Cython brinda el poder combinado de Python y C para permitir di-
versas acciones. El objetivo de Cython es convertirse en un superconjunto del lenguaje
Python que le proporcione una programación dinámica, funcional, orientada a objetos
y de alto nivel. Su característica principal es el soporte para declaraciones de tipos
estáticos opcionales como parte del lenguaje. El código fuente se traduce en código
C/C++ optimizado y se compila como módulos de extensión de Python. Esto permite
una ejecución muy rápida del programa y una estrecha integración con las bibliotecas
de C externas, al tiempo que mantiene la alta productividad del programador por
la que el lenguaje Python es bien conocido [21]. A diferencia de la mayoría de los
programas de Python, Cython requiere que haya un compilador de C en el sistema.
Los detalles para obtener un compilador de C varían según el sistema utilizado:

Linux: El compilador GNU (gcc) suele estar presente o fácilmente disponible a
través del sistema de paquetes. En Ubuntu o Debian, por ejemplo, el comando
buscará todo lo que necesita con el comando siguiente:

sudo apt-get install build-essential

Mac OS: Para utilizar gcc, una opción es instalar el programa XCode de Apple,
que se puede obtener de los DVD de instalación de Mac OS X o de su sitio
oficial2.

Windows: Una opción popular es utilizar MinGW de código abierto (una dis-
tribución de Windows de gcc). Otra alternativa es usar Visual C de Microsoft.
Luego, se debe utilizar la misma versión con la que se compiló el Python insta-
lado.

La forma más sencilla de instalar Cython en un sistema Linux es mediante el sistema
de paquetes pip mediante el comando:

pip install Cython

2https://developer.apple.com/

68 Resultados

La versión más reciente de Cython se puede descargar desde la página oficial3. Se
desempaqueta el archivo tarball o zip, se ingresa al directorio y luego se ejecuta con
el comando siguiente:

python setup.py install

Existen varias formas de crear una biblioteca con Cython, la más recomendada, es
aquella que necesita de un setuptools llamado setup.py y de un archivo pyx donde se
declaran las funciones en C que se compilarán con Cython. Para construir el archivo
Cython, se utilizó el comando siguiente:

python setup.py build_ext --inplace

El comando anterior generó un archivo de extensión .so en Linux o un .pyd
en Windows, después, para utilizar la biblioteca simplemente se importó como un
módulo de Python normal en un programa en lenguaje Python.

La primera versión del protocolo de seguridad desarrollado en Python con una
biblioteca Cython realizó la generación de llaves del protocolo ECDH y el cálculo
del secreto compartido, igualmente se comprobó que al utilizar la biblioteca Cython
el tiempo de ejecución durante el protocolo ECDH es menor que al usar solamente
Python. La figura 6.1 muestra el tiempo de ejecución del programa con el protocolo
ECDH en el lenguaje Python sin el módulo de optimización Cython.

Figura 6.1: Tiempo de ejecución del protocolo ECDH en Python.

En la figura 6.2 se observa el tiempo de ejecución del programa con el protocolo
ECDH en lenguaje Python utilizando el módulo Cython para la optimización de la
generación de llaves públicas con funciones programadas en C. Al hacer una com-
paración de los tiempos de ejecución de ambos programas se puede apreciar que el

3https://cython.org/

Capítulo 6 69

Figura 6.2: Tiempo de ejecución del protocolo ECDH con Cython.

tiempo del programa que incluye el módulo Cython es cuatro veces más rápido que el
programa hecho en solo Python. Sin embargo, a pesar del aporte en velocidad de pro-
cesamiento y ejecución que brindan los módulos Cython a los programas en Python,
este no deja de ser un lenguaje interpretado y por ello no se compara a la eficiencia
que puede tener un programa implementado totalmente en lenguaje C.

En la figura 6.3 se muestra el tiempo de ejecución de un programa codificado en
lenguaje C donde se implementa el protocolo ECDH con la curva 25519, se puede
ver que el tiempo de ejecución es nueve veces más rápido que tiempo del programa
desarrollado en Python con el módulo Cython.

La tabla 6.2 ilustra la comparación de los tiempos de ejecución de los tres pro-
gramas que implementan el protocolo ECDH con la curva 25519, desarrollados en
distintos lenguajes de programación.

Lenguaje Programa Tiempo (seg)
Python ECDH 0.424

Python/Cython ECDH 0.119
C ECDH 0.012

Tabla 6.2: Comparación de tiempos de ejecución.

En la tabla 6.2 se observó que el tiempo de ejecución más eficiente de las implemen-
taciones del protocolo ECDH, es el desarrollado en lenguaje C, con un tiempo 9 veces
más rápido que el programa en Python con el módulo Cython y aproximadamente 40
veces más rápido que el programa codificado solamente en Python.

70 Resultados

Figura 6.3: Tiempo de ejecución del protocolo ECDH en lenguaje C.

6.2. Pruebas de funcionamiento del protocolo ECDH
integrado

Se decidió utilizar una Raspberry Pi 4 en las pruebas de implementación del pro-
tocolo debido a que puede emularse fácilmente una baliza BBE, además, se tiene el
control absoluto para modificar sus protocolos y controladores. De igual manera al
trabajar en una Raspberry Pi no se tienen las restricciones de las balizas comerciales
donde no se pueden acceder a sus microcontroladores internos para su programación.
Luego de que se realiza la configuración de la conexión Bluetooth en ambos disposi-
tivos, según lo indica la primera capa del protocolo de seguridad; se implementó el
protocolo de acuerdo de llaves con curva elíptica (ECDH) en cada lado de la conexión,
de esta manera se llevó a cabo el cálculo del secreto compartido que proporcionó un
servicio de autenticación durante la primera interacción de los dispositivos.

El protocolo de establecimiento de llaves en común se realizó con base en dos dife-
rentes versiones del protocolo ECDH que utilizan la curva elíptica 25519, la primera
(para el lado del cliente) es una variante que realiza precómputo [20] en la operación
de multiplicación escalar en forma de Montgomery, la cual es utilizada durante la
generación de llaves públicas. La segunda versión del protocolo ECDH con la curva
25519 (para el lado del servidor) es un programa optimizado para dispositivos con
microcontroladores ARM [19], ya que esta implementación realiza la multiplicación
escalar en lenguaje ensamblador para obtener una mayor eficiencia durante el proce-
so de generación de llaves públicas. Después de comprobar que el secreto compartido

Capítulo 6 71

(a) Terminal del cliente. (b) Terminal del servidor.

Figura 6.4: Ejecución del protocolo de seguridad.

calculado por ambos dispositivos haya sido el mismo, se obtuvo una llave diaria (Kd)
utilizando el modo hash de Ascon sobre el secreto compartido, este hash debe ser cal-
culado cada 24 horas debido a los ataques que podrían ocurrir durante el intercambio
de llaves del protocolo ECDH, por tal razón es implementado una sola vez aminoran-
do esta amenaza de seguridad. Posteriormente se tomó la llave diaria y se repartió en
las entradas (llave y nonce) del algoritmo de Ascon diseñado para la generación de
identificadores efímeros (IDEs).

En la figura 6.4 se observa la ejecución de los programas con la implementación
del protocolo de seguridad en ambos dispositivos, en la figura 6.4a se puede apreciar
la ejecución del protocolo ECDH del lado del cliente, así como la derivación de lla-
ves aplicando la función hash al secreto compartido para la generación de los IDEs
esperados. La figura 6.7b muestra la terminal del servidor durante la ejecución del
protocolo ECDH, el cálculo del mismo secreto compartido y el respectivo hash para
la generación de los IDEs que serán transmitidos.

6.3. Transmisión y verificación de IDEs

Después de realizar la generación de IDEs en el lado del servidor, se comprobó su
funcionamiento transmitiéndolos a través de una baliza BBE emulada con la Rasp-
berry Pi (proceso descrito en el capítulo 4). Los IDEs se generaron cada 15 minutos y
se transmitieron por el servidor hasta que el cliente los recogió y verificó con los IDEs
calculados por él, esto provoca que cualquier usuario malicioso que espíe la red en
busca de identificadores validos para utilizar, esté imposibilitado de calcular el IDE

72 Resultados

siguiente ni el anterior, ni tampoco emparejarse con una baliza de confianza, disminu-
yendo de esta forma algunas amenazas de seguridad como el ataque de suplantación
de balizas BBE.

El identificador único (UUID) de una baliza con el protocolo iBeacon es general-
mente estático y por lo tanto más vulnerable a ataques de suplantación; en la figura
6.5 se observa el cambio del UUID de la baliza iBeacon emulada (actúa como un IDE),
de esta manera se comprueba el funcionamiento de la tercera capa del protocolo de
seguridad propuesto, la cual se basa en la generación, transmisión y verificación de
IDEs.

Figura 6.5: Transmisión de identificadores efímeros.

La figura 6.6 ilustra el proceso completo de interacción del protocolo de seguridad
entre el cliente y el servidor. El diagrama presenta la integración de las principales
funciones de las capas del protocolo de seguridad que se propuso para las balizas
BBE, se comenzó con las configuraciones de conexión BBE, siguiendo con el proceso
del protocolo ECDH y posteriormente el cálculo del hash del secreto compartido para
la generación de IDEs a través del algoritmo ligero Ascon, finalmente se transmitieron
los IDEs y se verificaron del lado del cliente.

La figura 6.7 presenta de forma más detallada el proceso de generación, transmi-
sión y verificación de cuatro IDEs, resultantes de la implementación de la tercera capa
del protocolo de seguridad; se resalta en color rojo el último IDE transmitido por el
servidor y verificado por el cliente. En la figura 6.7b se observa la terminal del servi-
dor configurado con las características de una baliza iBeacon donde el identificador
(UUID) es modificado después de un intervalo de tiempo establecido previamente. La
figura 6.7a muestra la terminal del lado del cliente donde son recibidos, comparados
y verificados los cuatro IDEs con los que se esperan obtener (generados del lado del
cliente), realizando de esta manera una autenticación por conocimientos basada en el
secreto compartido que sólo conoce el cliente.

En la figura 6.8 se muestra el panel principal de la aplicación iBKS Config Tool,
donde se realizó un escaneo de dispositivos BBE y se observó a la baliza iBeacon
emulada (como se describe en el capítulo 4), con el identificador efímero resaltado en
la figura 6.7, generado por el protocolo de seguridad.

Capítulo 6 73

Figura 6.6: Diagrama de interacción del protocolo de seguridad.

74 Resultados

(a) Terminal del cliente. (b) Terminal del servidor.

Figura 6.7: Generación y transmisión de IDEs

El código completo de la implementación del protocolo de seguridad de balizas
BBE se encuentra disponible en el enlace siguiente:

https://gitlab.com/jocycampos1996/proyecto-ecdh-y-eid.git.

https://gitlab.com/jocycampos1996/proyecto-ecdh-y-eid.git

Capítulo 6 75

Figura 6.8: Verificación de transmisión de IDEs.

76 Resultados

Capítulo 7

Conclusiones

En el presente trabajo se realizó un análisis de la tecnología Bluetooth de baja
energía y los dispositivos restringidos que utilizan este tipo de señales, particularmen-
te se abordaron las balizas BBE como casos de estudio. De igual forma se analizaron
las principales amenazas de seguridad en las aplicaciones que utilizan balizas BBE y
las posibles contramedidas ante los diversos ataques. Si bien la mayoría de los micro-
controladores actuales tienen integrado el estándar de cifrado AES, este requiere de
recursos suficientes para implementarlo. En la integración de algoritmos ligeros que
se proponen usar en el protocolo de seguridad, se probó que funciona en un micro-
controlador ARM Cortex-A7, aunque se puede implementar a partir de dispositivos
con microcontroladores más sencillos como los Cortex-M4.

En este capítulo se presentan las principales contribuciones y el trabajo futuro
relacionado con la propuesta del protocolo de seguridad de balizas BBE.

7.1. Contribuciones

El presente trabajo de tesis tiene como contribución principal la propuesta de
un protocolo de seguridad implementado en un entorno de emulación de dispositivos
BBE restringidos, en el cual se aplicaron algoritmos de criptografía ligera como los de
la familia Ascon (para la generación de identificadores efímeros), así como versiones
optimizadas del protocolo ECDH usando la curva 25519, todo esto para brindar servi-
cios de seguridad en aplicaciones que implementan la tecnología de balizas BBE y que
actualmente carecen de mecanismos de seguridad eficientes debido a la especificación
BBE y a los recursos limitados de las balizas. Además, el proceso de configuración del
protocolo podría aplicarse a otros dispositivos que tengan integrado un módulo Blue-
tooth con la especificación de baja energía, como los sensores deportivos, periféricos
de computadora, etc.

77

78 Conclusiones

7.2. Trabajo futuro
El protocolo de seguridad propuesto se implementó en un dispositivo que emulaba

a una baliza BBE, esto se hizo debido a las restricciones de acceso y programación
en las balizas comerciales. Como trabajo futuro se podría implementar el protocolo
de seguridad como un módulo en la programación de los microcontroladores de las
balizas BBE. Además, como sucede en la mayoría de los protocolos de seguridad emer-
gentes, la propuesta realizada en este trabajo ofrece varias oportunidades de mejora
como la integración de algoritmos criptográficos más optimizados para dispositivos
restringidos.

La implementación del protocolo podría aplicarse también a la comunicación se-
gura, ya que la base de derivación podría tener diferentes usos, como al envío de
mensajes cifrados con el algoritmo de cifrado autenticado Ascon.

Otra mejora sería agregar un servicio de autenticación antes del intercambio de las
llaves públicas del protocolo ECDH, esta se podría realizar a través de una entidad
certificadora, de esta manera se erradicaría una de las principales vulnerabilidades en
los sistemas de conexión BBE como es la suplantación de identidad.

Bibliografía

[1] Centro de recursos de seguridad informática(CSRC). Criptografía ligera. https:
//csrc.nist.gov/projects/lightweight-cryptography, 2017. [accedido el
25 de Octubre de 2020].

[2] F. Rodríguez-Henríquez, C. Mancillas López, and B. Ovilla Martínez. Applaco-
vid. https://pakal.cs.cinvestav.mx/, 2020. [accedido 15 Diciembre 2020].

[3] Anca Jurcut, Pasika Ranaweera, and Lina Xu. Introduction to IoT Security,
chapter 2. John Wiley Sons, 12 2019.

[4] Mohammad Afaneh. Intro to bluetooth low energy. NovelBits, Estados Unidos,
2018.

[5] Mohamed Amine Ferrag, Leandros Maglaras, Helge Janicke, Jianmin Jiang, and
Lei Shu. Authentication protocols for internet of things: A comprehensive survey.
Security and Communication Networks, 2017, 09 2017.

[6] Avinatan Hassidim, Moti Yung Yossi Matias, and Alon Ziv. Ephemeral iden-
tifiers:mitigating tracking & spoofing threats to ble beacons. Google, Inc, 04
2016.

[7] Hui Jun Tay Jiaqi Tan and Priya Narasimhan. A survey of security vulnerabilities
in bluetooth low energy beacons. Technical report, Laboratorio de datos paralelos
de la Universidad Carnegie Mellon, 2016.

[8] Radius Network. Altbeacon especifications. https://altbeacon.org/, 2015.
[accedido 13 Enero 2021].

[9] N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48:203–209, 1987.

[10] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams,
editor, Advances in Cryptology — CRYPTO ’85 Proceedings, pages 417–426,
Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

[11] Ayerra Balduz I., Vázquez Lapuente M., and Jiménez Seral P. Criptografía y
curvas elípticas. la curva de whatsapp. Master’s thesis, Universidad de Zaragoza,
España, 2018.

79

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://pakal.cs.cinvestav.mx/
https://altbeacon.org/

80 BIBLIOGRAFÍA

[12] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[13] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography - PKC, 2006.

[14] Adam Langley, Mike Hamburg, and Sean Turner. Curvas elípticas para la segu-
ridad. https://rfc-editor.org/rfc/rfc7748.txt, 2016. [accedido 25 Enero
2021].

[15] Whatsapp encryption overview. technical security whitepaper. https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf, 2016. [acce-
dido 02 Febrero 2021].

[16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schl
.a ffer. Ascon v1.2, ronda 1 del proyecto nist lightweight cryptography. https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/ascon-spec.pdf, 2019. [accedido 15 Marzo
2021].

[17] Manual de usuario de la aplicación ibks config tool. https://accent-systems.
com/es/support/knowledge/ibks-config-tool-user-manual/, 2020. [acce-
dido 18 Febrero 2021].

[18] Albert S. Huang and Larry Rudolph. Bluetooth Essentials for Programmers.
Cambridge University Press, 2007.

[19] Thomaz Oliveira, J. C. López-Hernández, H. Hisil, Armando Faz-Hernández,
and F. Rodríguez-Henríquez. How to (pre-)compute a ladder - improving the
performance of x25519 and x448. In SAC, 2017.

[20] Emil Lenngren. Optimized x25519 for arm cortex-m4 microcontrollers. https:
//github.com/Emill/X25519-Cortex-M4.4, 2018. [accedido 20 Abril 2021].

[21] G. Ewing, RW Bradshaw, and DS Seljebotn et al. S. Behnel. Cython c-extensions
for python. https://cython.readthedocs.io/en/latest/src/quickstart/
overview.html, 2020. [accedido 01 Abril 2021].

https://rfc-editor.org/rfc/rfc7748.txt
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://accent-systems.com/es/support/knowledge/ibks-config-tool-user-manual/
https://accent-systems.com/es/support/knowledge/ibks-config-tool-user-manual/
https://github.com/Emill/X25519-Cortex-M4. 4
https://github.com/Emill/X25519-Cortex-M4. 4
https://cython.readthedocs.io/en/latest/src/quickstart/overview.html
https://cython.readthedocs.io/en/latest/src/quickstart/overview.html

Apéndice A

Instalación de Raspberry Pi OS

Existen numerosas imágenes del sistema operativo Raspberry Pi OS (anteriormen-
te llamado Raspbian) que se pueden utilizar con la Raspberry Pi 4. La imagen elegida
se puede descargar de la página oficial de Raspberry Pi (se recomienda descargar la
versión más reciente):

http://www.raspberrypi.org/downloads/

La computadora que se este usando debe contar con un lector de tarjetas SD para
formatear y escribir el SO (Sistema Operativo). Para grabar el SO en una tarjeta micro
SD de preferencia de 16 GB o 32 GB (de mayor capacidad podría causar problemas
de instalación), se debe formatear la tarjeta en un formato Fat32.

Después de tener formateada la tarjeta se podrá instalar el sistema operativo
Raspberry Pi OS, en este caso se utiliza el software de asistencia Raspberry Pi Imager,
siendo este una las formas más rápidas y fáciles de instalar el Raspberry Pi OS y
otros sistemas operativos en una micro SD, debido a que deja la tarjeta lista para ser
utilizada.

Figura A.1: Raspberry Pi Imager.

Para descargar e instalar Raspberry Pi Imager, se coloca la tarjeta micro SD en

81

http://www.raspberrypi.org/downloads/

82 Instalación de Raspberry Pi OS

su respectivo adaptador y después en el lector SD de la computadora, se ejecuta el
Raspberry Pi Imager como se muestra en la figura A.1.

Posteriormente se elige la versión de Raspberry Pi OS recomendada por Raspberry
Pi Imager y la tarjeta SD en donde se instalará, con esto se habilita el botónWRITE y
se procede a escribir el sistema operativo. Una vez instalado el sistema operativo en la
tarjeta, se coloca en la ranura correspondiente del Raspberry Pi antes de encenderla.

Configuración inicial de la Raspberry Pi
Para encender el dispositivo basta con conectarlo a una fuente de alimentación.

La configuración inicial se puede realizar de manera gráfica o a través de la terminal
usando el comando raspi-config, aunque se pueden configurar muchos aspectos del
sistema, a continuación solo se muestran los pasos para configurar el lenguaje, el
teclado y la habilitación del protocolo SSH.

1. El primer paso es actualizar el sistema con los cambios más recientes. Al lanzar
los siguientes comandos con el prefijo sudo pedirá la contraseña, se introduce
la contraseña por defecto raspberry. Se espera a que finalice el primer proceso
para proceder con el segundo.

sudo apt-get update
sudo apt-get upgrade

Este proceso puede durar varios minutos. Se recomienda ejecutar estos comando
de vez en cuando para mantener el sistema actualizado.

2. Una vez finalizado el proceso anterior, se lanza la utilidad de configuración de
Raspberry Pi con el comando siguiente:

sudo raspi-config

83

Al ejecutar el comando aparece la pantalla de configuración mostrada en la
figura A.2.

Figura A.2: Herramienta de configuración de Raspberry Pi.

3. En las opciones del sistema que se muestran en la figura A.3 se puede cambiar
el nombre del host y la contraseña si se desea, por defecto aparece “raspberry”,
como se observa en la figura A.4.

Figura A.3: Configuración de opciones del sistema.

84 Instalación de Raspberry Pi OS

Figura A.4: Configuración de hostname.

4. Para configurar el idioma, localización, zona horaria y teclado, se ingresa a
opciones de localización como se muestra en la figura A.5.

Figura A.5: Configuración de localización

Localización: Cuando aparezca el menú como se ve en la figura A.6, se
desplaza con las flechas del teclado y se selecciona es_ES.UTF-8 UTF-8
(español de España) y es_ES como el idioma por defecto del sistema.

Zona horaria: Se selecciona el área geográfica (Continente) y capital de
estado para ajustar la zona horaria.

Teclado: Se elige el modelo de teclado en la lista. Para la mayoría de los
casos se selecciona Generic 105-key (Intl) PC y Spanish.

En la sección de opciones de interfaces se puede habilitar el protocolo SSH como
se muestra en la figura A.7.

85

Figura A.6: Configuración de localización.

Figura A.7: Habilitación de SSH.

5. En caso de que no se haya habilitado el SSH en el paso anterior, se puede hacer
después mediante los comandos siguientes:

sudo systemctl enable ssh
sudo systemctl start ssh

Una vez que se han hecho los cambios pertinentes, se da finalizar a la configu-
ración y se reinicia la Raspberry Pi.

86 Instalación de Raspberry Pi OS

Apéndice B

Conexión a la Raspberry Pi

Para trabajar con la Raspberry Pi se optó por usar la conexión remota SSH a
través de Wifi ó Ethernet, aunque existen otras opciones más directas de utilizar la
tarjeta, como conectar periféricos de E/S como un monitor, teclado y ratón. El acceso
con SSH utiliza la dirección IP de la Raspberry Pi, para ello se debe tener la tarjeta
conectada a la red, en este caso se conectará de manera inalámbrica. Para conectar la
Raspberry Pi a la red local se puede hacer de manera gráfica o a través de la terminal
con los pasos siguientes:

1. Primero se listan las redes disponibles con el comando:

sudo iwlist wlan0 scan

El resultado es una larga lista con todos los datos e información de las redes
Wifi disponibles.

2. Una vez que se reconozca la red deseada y su contraseña, se edita el fichero:
/etc/wpa_supplicant/wpa_supplicant.conf. Para ello, se utiliza el comando:

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

3. En este fichero, se añade lo siguiente al final del archivo, según los datos de la
red a la que se conectará.

network={
ssid="nombre-de-tu-wifi"
psk="password-de-tu-wifi"
key_mgmt=WPA-PSK

}

Por lo que el fichero quedaría al final de la siguiente manera:

87

88 Conexión a la Raspberry Pi

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=ES

network={
ssid="nombre-de-wifi"
psk="password-de-wifi"
key_mgmt=WPA-PSK

}

4. Se reinicia la Raspberry Pi con el siguiente comando:

sudo reboot

5. Para comprobar la conexión y obtener la IP que facilita el router se usa el
siguiente comando:

ifconfig wlan0

Si todo ha salido correctamente se verá la IP asignada. A continuación se po-
drá establecer una conexión remota a través del comando ssh con la siguiente
estructura.

ssh pi@[Dirección IP]

6. La primera vez que se establece la conexión SSH entre el Raspberry Pi y el
dispositivo externo se obtiene una sugerencia de seguridad/autenticación. Una
vez que se haya tomado nota de ello, se introduce “si” en la terminal para
continuar. Por último, se ingresa la contraseña para conectarse a la línea de
comandos de la Raspberry Pi.

Apéndice C

Instalación de BlueZ

En este Apéndice se describen los pasos necesarios para descargar, compilar, ins-
talar y configurar el sistema Bluez en la Raspberry Pi. Antes de comenzar, se debe
de comprobar que la Raspberry Pi tenga acceso a internet, ya sea a través de una
conexión por cable o inalámbrica. En caso de que no se cuente con los periféricos
necesarios para el acceso a la placa, se puede ingresar a una terminal de comandos
en la Rapberry Pi con la herramienta SSH (ver Apéndice B).

Prerequisitos

Esta guía funciona en los modelos de tarjetas siguientes:

Raspberry Pi 3B+

Raspberry Pi 4B

Se deben ejecutar previamente los comandos a continuación:

sudo apt-get update
sudo apt-get upgrade

Los dos comandos garantizarán que la tarjeta tenga las últimas actualizaciones.
Las nuevas versiones de Raspberry Pi OS vienen con BlueZ instalado, para compro-
barlo se ingresa el comando siguiente:

dpkg --status bluez | grep ‘^Version:’

En caso de no obtener respuesta, se requerirá instalar el sistema Bluez, como se
explica a continuación.

Como primer paso se deben instalar las dependencias necesarias para la ejecución
de BlueZ.

sudo apt-get install -y libusb-dev libdbus-1-dev libglib2.0-dev
libudev-dev libical-dev libreadline-dev

89

90 Instalación de BlueZ

Después de que se ejecuten los comandos anteriores, se debe observar la instalación
de las dependencias sin ningún mensaje de error. Para instalar BlueZ, se descarga y
compila la última versión de su código fuente. Se puede instalar desde un paquete
precompilado en el repositorio de Raspberry Pi OS, sin embargo, es casi seguro que
la versión en el repositorio esté desactualizada. Si se desean utilizar funciones de
Bluetooth de baja energía, se debe ejecutar la versión de BlueZ más reciente para
obtener las últimas correcciones de errores y funciones BBE. La compilación de BlueZ
desde la fuente asegurará que se tenga el último lanzamiento. Se accede a la página
oficial de descarga de BlueZ (http://www.bluez.org/download/) y se copia el enlace
a la última versión de la fuente. Por ejemplo, en el momento de redactar esta guía, la
última versión de BlueZ es la 5.54 y se puede descargar desde el enlace:

http://www.kernel.org/pub/linux/bluetooth/bluez-5.54.tar.xz

Después de conectarse a una terminal en la Raspberry Pi, se ejecuta el siguiente
comando para descargar y abrir el archivo fuente de BlueZ, se verifica la versión BlueZ
descargada y se hacen los cambios pertinentes en la instalación.

cd ~
wget http://www.kernel.org/pub/linux/bluetooth/bluez-5.54.tar.xz
tar xvf bluez-5.54.tar.xz
cd bluez-5.54/

El comando anterior descomprime la fuente BlueZ en una nueva carpeta, como
bluez-5.54.

Compilar e instalar BlueZ

Para compilar BlueZ, se usan los comandos estándar configure, make y sudo
make install. Desde dentro del directorio de origen de BlueZ, se ejecuta el script de
configuración de la manera siguiente:

./configure --enable-library
make
sudo make install

Configurar servicio BlueZ

Después de instalar BlueZ desde la fuente, se debe habilitar el servicio bluetoothd.
Este servicio se comunica con una parte de BlueZ en el kernel y expone los dispositivos
bluetooth a los programas del usuario. El servicio BlueZ debe estar ejecutándose.
Con Raspberry Pi OS Jessie, el servicio BlueZ se ejecuta con systemd. Systemd es
un servicio que controla otros procesos en la Raspberry Pi, como el sistema BlueZ.

http://www.bluez.org/download/
http://www.kernel.org/pub/linux/bluetooth/bluez-5.54.tar.xz

91

Primero se verifica que el servicio BlueZ esté instalado y en buen estado ejecutando
el comando:

systemctl status bluetooth

Probablemente se observe que el servicio está cargado pero no activo como se
muestra en el ejemplo siguiente.

bluetooth.service - Bluetooth service
Loaded: loaded (/lib/systemd/system/bluetooth.service; disabled)
Active: inactive (dead)
Docs: man:bluetoothd(8)

Se puede activar manualmente el servicio con el comando:

sudo systemctl start bluetooth

Después de ejecutar el comando anterior, el statusdel servicio debería verse en
modo activo (“Running”) como se observa a continuación.

bluetooth.service - Bluetooth service
Loaded: loaded (/lib/systemd/system/bluetooth.service;
enabled; vendor preset
Active: active (running) since
Fri 2021-02-19 18:11:42 CST; 11min ago
Docs: man:bluetoothd(8)
Main PID: 1391 (bluetoothd)
Status: "Running"
Tasks: 1 (limit: 4915)
CGroup: /system.slice/bluetooth.service

1391 /usr/lib/bluetooth/bluetooth --experimental

Para habilitar las funciones de Bluetooth de baja energía en el sistema BlueZ
se debe modificar la configuración agregando la bandera --experimental. Estas son
APIs especiales que permiten que BlueZ interactúe con dispositivos Bluetooth de baja
energía, sin embargo, todavía están en desarrollo y tienen una bandera experimental
que debe habilitarse primero. Para habilitar las funciones experimentales de BlueZ,
se edita la configuración del servicio BlueZ ejecutando el comando:

sudo nano /lib/systemd/system/bluetooth.service

Después de agregar la bandera --experimental al archivo de configuración, se
guardan los cambios y se reinicia el servicio.

Una vez realizadas la configuraciones necesarias, se está listo para comenzar a usar
las herramientas de BlueZ como bluetoothctl y hcitool .

92 Instalación de BlueZ

La herramienta bluetoothctl es el comando principal para configurar disposi-
tivos Bluetooth en Linux, bluetoothctl no es parte de systemd, más bien es un
simple conjunto de opciones para configurar dispositivos Bluetooth. Mientras que la
mayoría de otros comandos modifican el comando básico con opciones, la ejecución
de bluetoothctl inicia su propio entorno para ingresar opciones.

Hcitool hace uso de la interfaz del controlador de host (en una computadora) para
comunicarse y leer/escribir cambios en los dispositivos BBE. Por lo tanto, hcitool
es útil para encontrar el dispositivo BBE que se anuncia y luego cambiar los valores
después de la conexión. Los datos solo se pueden cambiar si se conoce el servicio y la
característica de la que provienen los datos. Para conocer los servicios y características
relevantes, se puede utilizar la herramienta gatttool. Si no se le da algún comando,
o si se usa la opción -h, hcitool imprime todas sus opciones de uso.

Comprobación de instalación

El adaptador Bluetooth integrado del Raspberry Pi se llama hci0. Se puede com-
probar que funciona correctamente ingresando el comando hciconfig, se obtendrá
una respuesta como el ejemplo siguiente:

hci0: Type: BR/EDR Bus: UART
BD Address: DC:A6:32:A4:8B:E4 ACL MTU: 1021:8 SCO
MTU: 64:1
UP RUNNING
RX bytes:1987 acl:0 sco:0 events:91 errors:0
TX bytes:1647 acl:0 sco:0 commands:57 errors:0

Si por alguna razón se muestra como DOWN, se puede habilitar con el comando que
sigue:

sudo hciconfig hci0 up

Con el comando hciconfig, se verifica de nuevo el estado del adaptador, en caso
de que se muestre que el servicio esta corriendo pero con las banderas PSCAN e ISCAN
se ingresan los comandos siguientes para configurar el modo BBE.

sudo hciconfig hci0 leadv 3
sudo hciconfig hci0 noscan

El comando leadv activa el modo de anuncio de baja energía y noscan configura
el modo de anuncio no dirigido. Para iniciar la búsqueda de los dispositivos BBE se
utiliza el comando siguiente:

sudo hcitool lescan

93

Se ingresa Ctrl-C para detener la búsqueda de dispositivos. Los doce dígitos
hexadecimales (B0:B4:48:ED:44:C3 por ejemplo) son la dirección Bluetooth del dis-
positivo. Se necesita conocer esta dirección cuando se realicen conexiones Bluetooth
de baja energía.

Conexión con Gatttool

Gatttool es una herramienta del sistema BlueZ. Puede conectar, leer, escribir y
escuchar fácilmente las notificaciones de los dispositivos Bluetooth de baja energía.
Para conectar un dispositivo con BBE, como una computadora o una Raspberry Pi,
se ingresa el comando siguiente:

gatttool -I -b [dirección Bluetooth]

La dirección Bluetooth es el valor informado por hcitool. La bandera -I indica
que se usa un modo interactivo. Posteriormente Gatttool habilitará la terminal para
poder escribir el comando connect, después de un momento de espera se mostrará el
mensaje de “conexión exitosa” como se ve en el ejemplo siguiente.

pi@raspberrypi: ~ $ gatttool -I -b
B0:B4:48:ED:44:C3
[B0:B4:48:ED:44:C3] [LE]> connect
Intentando conectarse a B0:B4:48:ED:44:C3
Conexión exitosa
[B0:B4:48:ED:44:C3] [LE]>

A continuación, se pueden utilizar los comandos de la herramienta Gatttool. El
comando siguiente es uno de los principales.

Primary

Este comando numera los “servicios” disponibles, que son grupos que contienen
“características”, según la arquitectura BBE explicada en el capítulo 2, estos son
elementos de datos que se pueden leer o escribir en el dispositivo. El comando siguiente
sirve para visualizar las características de los servicios del dispositivo BBE.

characteristics

Después de averiguar los servicios y las características del dispositivo BBE, se
necesita conocer los identificadores mediante los cuales se pueden leer o escribir datos
usando el comando siguiente:

char-desc

94 Instalación de BlueZ

Después de encontrar el identificador deseado, se leen los datos usando el comando:

char-read-hnd <handle>

Para escribir en un identificador específico, se necesita saber cuál es un identifi-
cador de escritura. Para esto, se opta por un método hit and try, es decir, se intenta
leer todos los identificadores uno por uno hasta que se encuentre un error de lectura.
Un error de lectura significa que el identificador específico no es un identificador de
escritura (los identificadores de escritura no se pueden leer). Alternativamente, apli-
caciones como nrf connect1 pueden descubrir automáticamente los identificadores de
escritura. Entonces, por ejemplo, para leer el nombre del dispositivo, se puede usar el
comando char-read-uuid, dándole el ID de la característica “Nombre” del dispositivo
BBE como se muestra a continuación:

[B0:B4:48:ED:44:C3] [LE]> char-read-uuid
00002a00-0000-1000-8000-00805f9b34fb
identificador: 0x0003
valor: 53 65 6e 73 6f 72 54 61 67 20 32 2e 30

Después de conectarse, se escribe un valor aleatorio para las diferentes caracte-
rísticas. En la mayoría de los casos, la escritura de valores aleatorios no funcionará
como se esperaba. Para escribir los valores correctos en el identificador, se descifra
el protocolo de datos, que se puede encontrar usando herramientas de rastreo como
Wireshark2 y Ubertooth3. Después de descifrar el protocolo de datos, se escriben los
valores en el identificador usando el comando:

char-write-req <handle> <value>

Si el comando char-write-req informa un error, se puede usar de igual manera
el comando siguiente:

char-write-cmd

1https://www.nordicsemi.com/
2https://www.wireshark.org
3http://ubertooth.sourceforge.net/

	Resumen
	Abstract
	Agradecimientos
	Índice de figuras
	Índice de tablas
	Introducción
	Objetivos
	Propuesta de solución
	Organización de la Tesis

	Contexto Tecnológico
	Bluetooth de baja energía
	Datos técnicos de BBE
	Bluetooth clásico y BBE
	Topologías BBE
	Arquitectura BBE
	Vulnerabilidades en sistemas BBE

	Tecnología de balizas BBE
	Aplicaciones de balizas BBE
	Amenazas de seguridad en aplicaciones con balizas BBE
	Protocolos de balizas BBE

	Primitivas criptográficas
	Preliminares
	Criptografía de curva elíptica
	Curva elíptica
	Operaciones sobre curvas elípticas
	Forma de Montgomery
	Problema del Logaritmo Discreto

	Protocolo Diffie-Hellman
	DHKE con curvas elípticas
	Curva 25519

	Identificadores efímeros
	Algoritmo Ascon
	Modo de operación Ascon
	Permutación Ascon
	Modo hash de Ascon

	Emulación de balizas BBE
	Descripción de baliza BBE
	Preparación de Raspberry Pi
	Configuración de Raspberry Pi como periférico BBE
	Nodejs
	Bleno

	Emulación de baliza BBE
	BlueZ
	Emulación de baliza iBeacon
	Emulación de baliza Eddystone

	Desarrollo del protocolo de seguridad
	Diseño del protocolo de seguridad
	Configuración de conexión
	Protocolo ECDH con curva 25519
	Protocolo ECDH en el cliente
	Protocolo ECDH en el servidor

	Generación de identificadores efímeros

	Resultados
	Programación en lenguaje Python
	PyBluez
	Cython

	Pruebas de funcionamiento del protocolo ECDH integrado
	Transmisión y verificación de IDEs

	Conclusiones
	Contribuciones
	Trabajo futuro

	Bibliografía
	Instalación de Raspberry Pi OS
	Conexión a la Raspberry Pi
	Instalación de BlueZ

