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Resumen

En la actualidad, las supercomputadoras son una herramienta fundamental en la investi-
gación científica. La simulación de modelos computacionales complejos, así como eventos
pasados y futuros, son una ínfima parte de las aplicaciones de estos equipos. Sin embargo,
la potenciación de los mismos en términos de rendimiento va de la mano del consumo de
potencia. El carácter insostenible de esta situación, debido a su impacto económico y sobre
todo ambiental, así como la carencia de un indicador adecuado para con el análisis energético
de los servidores de cómputo de alto desempeño, instó el desarrollo del presente estudio. En
el que, luego de considerar varios indicadores de proporcionalidad y eficiencia energética,
así como técnicas de minería de datos y estadística multivariada, se propone un índice com-
puesto capaz de describir este fenómeno. Esta investigación, identificó y fundamentó varias
de las tendencias actuales del diseño de servidores. Además, evaluó la influencia de confi-
guraciones disímiles de hardware, software y estrategias de administración de energía, en la
proporcionalidad y eficiencia energética de los medios de cómputo. Asimismo, se analizaron
las principales limitantes en el diseño de sistemas exaescala, y en qué medida la eficiencia y
no la proporcionalidad energética sustenta este fin.

Palabras clave: supercomputadoras, indicadores, cómputo de alto desempeño, propor-
cionalidad energética, sistemas exaescala.
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Abstract

Nowadays, supercomputers are a fundamental tool in scientific research. The simulation of
complex computational models, as well as past and future events, are a tiny part of the
applications of these equipments. However, their enhancement in terms of performance goes
hand in hand with power consumption. The unsustainable nature of this situation, due to its
economic and especially environmental impact, as well as the lack of an adequate indicator
for the energy analysis of high-performance computing servers, prompted the development
of this study. In which, after considering several energy proportionality and efficiency in-
dicators, as well as data mining techniques and multivariate statistics, a composite index
capable of describing this phenomenon is proposed. This research, identified and suppor-
ted several of the current trends in server design. In addition, it evaluated the influence of
dissimilar configurations of hardware, software, and energy management strategies, on the
energy proportionality and efficiency of computing means. Likewise, the main limitations in
the design of exascale systems were analyzed, and to what extent energy efficiency and not
energy proportionality supports this end.

Key words: supercomputers, indicators, high-performance computing, energy propor-
tionality, exascale system.
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Capítulo 1

Introducción

Durante varias décadas, la eficiencia de los medios de cómputo se cuantificó a partir del
rendimiento de los mismos. En consecuencia, los diseñadores de hardware enfocaban sus
esfuerzos en maximizar el rendimiento de sus productos sin importar qué, lo que propició
un incremento desmedido del consumo de energía eléctrica. Además, dichos esfuerzos se
centraban principalmente en los niveles de alta utilización, ya que los niveles más discretos
se consideraban menos relevantes [Hsu and Poole, 2015]. Como resultado, en la actualidad,
estos últimos son puntos críticos del diseño de servidores, pues en estos niveles, los sistemas
no suelen cumplir con el principio de energía, y la eficiencia energética decrece abruptamente.

El principio de energía plantea que el consumo de potencia debe estar en proporción con
el nivel de utilización [Barroso and Hölzle, 2007]. Por lo tanto, un servidor proporcionalmente
energético es aquel que en estado ocioso o idle no consume potencia, y la misma se incrementa
gradualmente, a medida que aumenta la carga de trabajo. Sin embargo, la propiedad antes
mencionada Pidle = 0, no puede ser satisfecha en realidad por ningún servidor, puesto que,
con sólo encenderse, introduce una penalización en materia de energía. No obstante, dicho
principio se utiliza en el diseño de servidores, pues define a grandes rasgos, las principales
características en términos energéticos, de un sistema de cómputo ideal.

1.1. Motivación

Los servidores de Cómputo de Alto Desempeño (HPC)1 son de los sistemas informáticos
que más sobresalen por su rendimiento. Sin embargo, los mismos consumen una cantidad
excesiva de energía eléctrica. Estos servidores, habitualmente procesan grandes cantidades
de datos, sobre los cuales realizan un número considerable de operaciones de punto flotante
por segundo (FLOPS), por lo que la faena de trabajo de los mismos suele estar comprendida
en niveles elevados de utilización. En dichos niveles, si bien la proporcionalidad y eficiencia
energética se incrementan, también el consumo de potencia. Motivo por el cual, [Barroso
and Hölzle, 2007] resaltaron la relevancia del estudio de la proporcionalidad energética a fin
de reducir el consumo de energía, sobre todo, en los niveles de utilización más bajos.

1El HPC es un campo de actividad que se relaciona con todas las facetas de la tecnología, la metodología
y la aplicación, asociadas con el logro de la mayor capacidad informática posible en cualquier momento y
tecnología [Sterling et al., 2017].

1



2 Capítulo 1

Más aún, existe una notable diferencia entre las tasas de crecimiento del rendimiento y la
eficiencia energética de estos sistemas. De acuerdo con [Feng and Cameron, 2007], en el año
2007 los servidores de HPC poseían un rendimiento 10000 veces mayor que en 1992, mien-
tras que la relación rendimiento por unidad de potencia (FLOPS/W) era apenas 300 veces
superior2. Asimismo, con el transcurso de los años se incrementó el consumo de potencia.
Muchos de los servidores que integran el Top500 requieren hasta 10 Megavatios (MW) de
potencia máxima, lo cual equivale al consumo promedio de energía eléctrica de una ciudad
de 40000 habitantes [Feng and Cameron, 2007].

[Ryckbosch et al., 2011] plantearon que los costos de compra y mantenimiento repre-
sentan el 69% del costo total de propiedad. Sin embargo, la construcción de sistemas de
refrigeración apropiados, capaces de disipar el calor que generan estos servidores, puede lle-
gar a ser incluso tan costosa como los mismos [Feng and Cameron, 2007]. De acuerdo con
[Barroso and Hölzle, 2007], los costos de refrigeración y aprovisionamiento son proporcio-
nales al consumo energético promedio. Como consecuencia, muchos de los propietarios de
servidores de HPC, suelen pagar anualmente cientos de miles o incluso millones de dólares
en razón del consumo de energía eléctrica [Feng and Cameron, 2007]3.

En la actualidad, el consumo de potencia es uno de los principales desafíos de la co-
munidad de HPC, al ser la principal limitante de diseño de sistemas informáticos exaescala
[Subramaniam and Feng, 2013]. Por lo que, [Bergman et al., 2008] y [Geller, 2011] analizaron
el impacto de disímiles configuraciones de hardware y software en el diseño de un sistema
exaescala, así como los principales retos en este sentido. Además, [Jiang et al., 2017] desta-
caron la influencia de la adopción de procesadores de microarquitectura en el estancamiento
de la proporcionalidad energética, e incremento de la eficiencia energética.

El creciente consumo energético de los servidores de HPC tiene un alto impacto me-
dioambiental. Pues, a medida que éste aumenta, también lo hacen la cantidad de energía
eléctrica que generan las termoeléctricas, y el número de toneladas de gases de efecto inver-
nadero (GEI) que se emiten a la atmósfera. Tal es el caso, que la Organización de Naciones
Unidas, reportó un incremento del 50% de las emisiones de dióxido de carbono (CO2) desde
1990. Asimismo, la Agencia de Protección Ambiental informó que por cada MWh de consu-
mo de energía, se emiten a la atmósfera 0.72 toneladas de CO2 [Uddin et al., 2015].

Las emisiones de CO2 representan las dos terceras partes de los GEI (ver tabla 1.1);
las cuales, principalmente se deben a la generación de energía eléctrica. Según el Instituto
Nacional de Cambio Climático de México, en el año 2015, el sector de energía originó el
70% de los 683 millones de toneladas de CO2 equivalentes (MtCO2e) que se emitieron a la
atmósfera. También, la perspectiva del sector eléctrico mexicano para el período 2012-2026,
predice un crecimiento de la demanda de electricidad en un 72% [Díaz et al., 2016], donde
la energía eléctrica se generará principalmente a partir de gas natural (ver tabla 1.2).

2[Feng and Cameron, 2007] destacaron que la relación rendimiento-espacio (FLOPS/m2) creció solamente
65 veces de 1992 al 2007.

3De acuerdo con [Petrini et al., 2004], el Laboratorio Nacional Lawrence Livermore gasta anualmente
alrededor de seis millones de dólares en la refrigeración de sus equipos.
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Combustible CO2 CH4 N2O HFC SF6

Porcentaje 71% 21% 6% 1.8% <1%

Tabla 1.1: Porcentaje de GEI que se generaron a partir de gas natural, México 2013.

Combustible CO2(kgCO2/TJ) CH4(kgCH4/TJ) N2O(kgN2O/TJ)

Carbón 94600 1 1.5
Diesel 74100 3 0.6
Combustóleo 77400 3 0.6
Gas Natural 56100 1 0.1

Tabla 1.2: Factor de emisión eléctrico por tipo de combustible, México 2013.

1.2. Planteamiento del problema

En los últimos años, se han propuesto varios indicadores a fin de analizar la proporciona-
lidad energética de los medios de cómputo. Éstos, en su mayoría son índices simples, por
lo que resultan incapaces de evaluar el impacto energético de múltiples dimensiones. Ade-
más, no suelen tener en cuenta la influencia del contexto de trabajo de los sistemas en el
consumo de potencia. Asimismo, si bien algunos de esos indicadores son adecuados para
el análisis energético de los servidores de centros de datos, no resultan así para servidores
de HPC. En este sentido, existen estudios que destacan algunas desventajas del indicador
FLOPS/W [Hsu et al., 2005], [Hsu et al., 2012]. En consecuencia, hasta la fecha, no existe un
consenso de cómo medir cuán proporcional es el consumo de potencia [Belady, 2007], por lo
que se carece de un indicador fehaciente para el análisis energético de los servidores de HPC.

Las principales preguntas de investigación de este estudio son: ¿cuán eficaces son las
actuales estrategias de administración de energía e indicadores de proporcionalidad y efi-
ciencia energética, para con el análisis y reducción del consumo de energía eléctrica en los
servidores de HPC? ¿cuáles son las futuras directrices en el diseño de servidores de HPC,
a fin de reducir el consumo energético de los mismos? ¿qué características debe poseer un
indicador adecuado para con el análisis energético de los servidores de HPC?

1.3. Propuesta de solución

En muchas ocasiones, un único indicador resulta insuficiente para capturar la variedad de
la información oculta en un conjunto de datos. En tales circunstancias, puede ser provecho-
so el empleo de un indicador multivariado. Éstos, son capaces de simplificar un concepto
multidimensional en un índice simple, razón por la cual, en la actualidad, poseen una gran
popularidad en varias áreas de investigación. Tal es el caso, que en los últimos años se
definieron disímiles indicadores multivariados, con el objetivo de dar solución al problema
expuesto en la sección anterior. Sin embargo, hasta el momento, tales indicadores resultan
incapaces de describir el consumo energético de los servidores de HPC. Motivo por el cual,
en la presente tesis se propone el diseño de un indicador multivariado ponderado, a partir
de la aplicación de técnicas de minería de datos y estadística multivariada.
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Este estudio pone a prueba la hipótesis de que los actuales indicadores de proporcionali-
dad y eficiencia energética, son insuficientes para realizar un análisis energético adecuado de
los servidores de HPC. Además, evalúa la presunción de que varias de las vigentes técnicas
de administración de energía, son cada vez menos determinantes en la gestión energética de
dichos servidores. De ser confirmados estos supuestos, carecería de sentido el empleo de di-
versas estrategias de calendarización de tareas y gestión de energía. Así pues, estas hipótesis
dan origen a los objetivos generales y específicos de la presente investigación.

1.4. Objetivos

Objetivos Generales

Proponer un indicador multivariado ponderado, que contribuya al análisis energético de
los servidores de HPC.

Objetivos Específicos

1. Identificar varios de los indicadores de proporcionalidad y eficiencia energética, y las
relaciones existentes entre los mismos.

2. Examinar los puntos de referencia o benchmarks de rendimiento y consumo de potencia
de medios de cómputo.

3. Describir las principales características de los conjuntos de datos Green500 y Top500,
así como sus ventajas y desventajas para el análisis energético de servidores de HPC.

4. Analizar el impacto de la técnica de Escalado Dinámico de Frecuencia y Voltaje
(DVFS)4 en la proporcionalidad energética de los servidores de HPC.

1.5. Justificación

Ante el significativo consumo de potencia de los servidores de HPC, y su influencia en
términos económicos y ambientales, resulta de especial interés analizar, qué factores y en
qué medida condicionan dicho consumo. Ésto, a fin de evaluar el impacto energético de
las actuales tendencias de diseño de servidores y técnicas de administración de energía. La
presente investigación, surge de la necesidad de estudiar la proporcionalidad y eficiencia
energética de los sistemas de HPC, así como la incidencia de estas últimas en materia de
consumo de energía. Este estudio busca proporcionar información útil a los diseñadores
de servidores y a la comunidad de HPC, acerca de las principales limitantes y desafíos
energéticos del desarrollo de supercomputadoras más potentes, así como el aprovisionamiento
de servidores en base al consumo de potencia y la eficiencia energética.

4El Escalado Dinámico de Frecuencia y Voltaje es una técnica de ahorro energético que consiste en variar
dinámicamente la frecuencia de reloj del procesador y el voltaje de los componentes del sistema con respecto
a las demandas computacionales [Le Sueur and Heiser, 2010].
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1.6. Organización de la Tesis

El contenido de la presente tesis está desglosado en seis capítulos. En éste, el capítulo 1,
se exponen los motivos que alentaron el desarrollo de la misma, así como la problemática a
resolver y la propuesta de solución.

En el capítulo 2 se definen los principales conceptos sobre los que se fundamenta el
desarrollo de esta investigación. En el mismo, se analizan varios de los indicadores de pro-
porcionalidad y eficiencia energética, sus ventajas y desventajas, y cuán acertados resultan
estos para el análisis energético de los servidores de HPC. Además, se describen los indica-
dores multivariados ponderados definidos por [Strohmaier, 2009] y [Hsu et al., 2012] con el
objetivo de solucionar el problema antes expuesto.

En el capítulo 3 se examinan las principales características, ventajas y desventajas de
diversos conjuntos de datos y benchmarks, a fin de identificar los que resulten más conve-
nientes para el posterior análisis.

En el capítulo 4 se estudia el comportamiento y la relación existente entre varios in-
dicadores energéticos. Asimismo, se considera el impacto de múltiples configuraciones de
hardware y software en la proporcionalidad energética de los sistemas. Además, se presen-
tan los resultados obtenidos del análisis de agrupamiento y la selección de las características
de mayor relevancia. También, se detalla el proceso de diseño del indicador multivariado
propuesto como solución al problema.

En el capítulo 5 se exponen los resultados alcanzados tras la aplicación del indicador
definido, y se reflexiona acerca de éstos. Se compara dicho indicador con otros indicadores,
y se destacan sus principales ventajas y desventajas para con el objetivo principal de la
investigación. Mientras que, en el capítulo 6 se presentan las conclusiones a las que se arribó
como resultado del estudio realizado, y se proponen futuros temas de investigación.
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Esta página se dejó en blanco intencionalmente.

CINVESTAV-IPN Departamento de Computación



Capítulo 2

Indicadores

En el presente capítulo se analizan varios indicadores de proporcionalidad y eficiencia energé-
tica, así como indicadores multivariados. Ésto, teniendo en cuenta la utilidad de los mismos
para con el análisis energético de los sistemas, y considerando que los indicadores multiva-
riados se suelen conformar a partir de variables individuales y otros índices compuestos.

2.1. Indicadores de proporcionalidad energética

De acuerdo con el principio de energía, para medir la proporcionalidad energética de un
sistema, es necesario analizar qué tan cerca del origen comienza la curva de potencia, y qué
tan lineal es la misma. Sin embargo, como se mencionó en la sección 1.2, hasta la fecha no
existe un indicador universal de proporcionalidad energética. Motivo por el cual, es necesario
el empleo de dos indicadores, uno que mida el rango y otro que mida la linealidad. En la
presente sección se describen varios de estos indicadores, sus principales características,
ventajas y desventajas.

Rango dinámico. El rango dinámico (DR) [Wong and Annavaram, 2013], solía ser el
indicador comúnmente usado para cuantificar la proporcionalidad energética de los medios
de cómputo. Éste, indica la porción de la potencia máxima que no se desperdicia al estar
el sistema en estado ocioso, es decir, la diferencia del consumo de potencia en los niveles de
trabajo peak e idle, normalizada sobre el consumo de potencia en el nivel peak.

DR =
Ppeak − Pidle

Ppeak
, (2.1)

tal que Pidle y Ppeak son las potencias que se utilizan en los niveles de 0% y 100% de carga
de trabajo respectivamente. DR toma valores comprendidos entre 0 y 1, siendo este último
en caso de tratarse de un sistema proporcionalmente energético.

En la actualidad, el empleo de este indicador no resulta totalmente adecuado, sobre todo
en el contexto de los centros de datos, pues el mismo no tiene en cuenta el consumo de po-
tencia en los niveles de carga intermedios. Además, si bien pudiese considerarse conveniente
para el análisis de la proporcionalidad energética de servidores de HPC, esto no es del todo
cierto, pues dichos sistemas no suelen desempeñarse al 100% de carga de trabajo.
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8 Capítulo 2

Proporcionalidad energética. El indicador proporcionalidad energética (EP ) [Ryck-
bosch et al., 2011], a diferencia del indicador DR, sí tiene en cuenta el consumo de potencia
en los distintos niveles de carga de trabajo, por lo que resulta más apropiado para el análisis
energético de los actuales servidores. El mismo, fue propuesto como un indicador ortogonal
al aprovisionamiento del conjunto de servidores activos. Además, EP se enfoca en el des-
perdicio de energía de los servidores parcialmente utilizados [Varsamopoulos et al., 2010].

EP = 2−
∫ l=1
l=0 P (l) · dl∫ l=1
l=0 PE(l) · dl

, (2.2)

PE(l) = P (1) · l, (2.3)

siendo P (l) el consumo de potencia para un nivel de carga l, tal que 0 ≤ l ≤ 1, P (0) =
Pidle, P (1) = Ppeak y PE un sistema hipotético de proporcionalidad energética. Además,∫ l=1
l=0 P (l) · dl y

∫ l=1
l=0 PE(l) · dl representan el área bajo la curva de potencia del sistema bajo

prueba (SUT) e hipotético respectivamente.

Las figuras 2.1 y 2.2 ilustran la EP de dos SUT. En el caso de la primera, el área bajo
la curva de potencia coincide con la de PE , por lo que describe un consumo proporcional de
potencia. Por el contrario, en la figura 2.2 el área bajo la curva de potencia del SUT duplica
a la de PE , de modo que EP = 0.
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Figura 2.1: Sistema con EP = 1.
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Figura 2.2: Sistema con EP = 0.

Por lo tanto, al igual que el indicador DR, la EP de un servidor proporcionalmente
energético es 1, es decir, DR(PE) = EP (PE) = 1. De ahí que, [Hsu and Poole, 2015]
enmarcaron ambos indicadores en el mismo rango de valores.

Proporción de potencia inactiva a pico. A diferencia de los anteriores, el indicador
proporción de potencia inactiva a pico (IPR) [Varsamopoulos et al., 2010], cuantifica la
desproporcionalidad energética de un sistema. Éste, de forma similar al DR, solo analiza el
consumo de potencia en los estados idle y peak, y desconoce el consumo energético en los
restantes niveles de carga.

IPR =
Pidle
Ppeak

. (2.4)
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La IPR se define como el consumo de potencia en el estado idle, normalizado con res-
pecto al consumo de potencia en el estado peak, por lo que toma valores comprendidos entre
0 y 1. De manera general, este indicador mide la porción de la potencia máxima que se
desperdicia al estar un sistema en estado ocioso.

Muchos sistemas consumen una cantidad significativa de potencia en niveles discretos de
carga de trabajo. La figura 2.3 muestra el consumo de potencia de un sistema Altos R380
F2, el cual, en estado ocioso, desperdicia aproximadamente la cuarta parte de su potencia
máxima. Además, ésta ilustra la relación complementaria existente entre los indicadores DR
e IPR, de tal modo que IPR+DR = 1, y por ende IPR(PE) = 0.
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Figura 2.3: SPECpower_ssj2008: IPR de sistema Altos R380 F2.

Brecha de proporcionalidad. La brecha de proporcionalidad energética (PG) [Wong
and Annavaram, 2013], cuantifica la desproporcionalidad energética de un sistema en los
diferentes niveles de utilización. En los mismos, esta brecha consiste en la diferencia entre
el consumo de potencia del SUT con respecto al descrito por PE , normalizada sobre Ppeak.

PGl =
P (l)− PE(l)

Ppeak
, (2.5)

siendo P (l) y PE(l) el consumo de potencia del SUT y PE para un nivel de carga l, tal
que 0 ≤ l ≤ 1. PG resulta de gran utilidad en el diseño y análisis energético de servido-
res de centros de datos y HPC, al identificar los niveles de mayor brecha de proporcionalidad.

Al analizar la proporcionalidad energética de un sistema, no solo es relevante cuánta
potencia consume el mismo, sino también el comportamiento de dicho consumo. Mientras
más lineal sea la curva de potencia de un sistema, menor será la penalización en términos
de energía, al distribuir la carga de trabajo entrante por varios nodos homogéneos. En este
sentido, el análisis de linealidad resulta de gran provecho, sobre todo en el contexto de
trabajo de centros de datos.

Desviación lineal. El indicador desviación lineal (LD) [Wong and Annavaram, 2013],
toma como referencia un sistema hipotético de consumo lineal de potencia PL, y cuantifica
la desviación con respecto al mismo.
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LD =

∫ l=1
l=0 P (l) · dl∫ l=1
l=0 PL(l) · dl

− 1, (2.6)

PL(l) = Pidle + [Ppeak − Pidle] · l, (2.7)

siendo
∫ l=1
l=0 P (l) ·dl y

∫ l=1
l=0 PL(l) ·dl el área bajo la curva de potencia del SUT y PL respecti-

vamente. Si bien PL describe un comportamiento lineal de consumo de potencia desde Pidle
hasta Ppeak, de modo tal que LD(PE) = LD(PL) = 0, no necesariamente coincide con PE .
Además, teniendo en cuenta el comportamiento de ambas curvas de potencia, los servidores
se clasifican como lineal proporcional a la energía si LD = 0, superlineal proporcional a la
energía si LD > 0 y es sublineal proporcional a la energía si LD < 0.

Las figuras 2.4 y 2.5 ilustran la relación existente entre el consumo de potencia de los
sistemas superlineales y sublineales proporcionales a la energía, con relación a su respectivo
sistema de referencia PL.
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Figura 2.4: LD sistema superlineal.
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Figura 2.5: LD sistema sublineal.

En la figura 2.4 la curva de potencia del SUT se encuentra por encima de la curva de
potencia de PL, por lo que el indicador LD toma valores positivos. Por el contrario, en la
figura 2.5 la curva de potencia del SUT se encuentra por debajo de la curva de potencia de
PL, lo cual significa que LD toma valores negativos. En definitiva, la linealidad del sistema
se incrementa a medida que LD tiende a cero, pues mayor es la similitud entre las curvas
de potencia del SUT y el hipotético sistema de referencia PL.

Proporción de desviación lineal. El indicador proporción de desviación lineal (LDR)
[Varsamopoulos et al., 2010], cuantifica la desviación lineal como la máxima brecha de se-
paración entre las curvas de potencia del SUT y su respectivo PL. Es decir, la LDR de un
sistema se define como la mayor de las porciones de desviación lineal por nivel de carga, con
respecto al sistema de referencia PL.

LDR =
|·|

máx
l

P (l)− ((Ppeak − Pidle) · l + Pidle)

(Ppeak − Pidle) · l + Pidle
. (2.8)
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Lo anterior, puede expresarse como

LDR =
|·|

máx
l

P (l)− PL(l)

PL(l)
, (2.9)

LDR =
|·|

máx
l

P (l)

PL(l)
− 1. (2.10)

Al igual que en el caso del indicador LD, la LDR distingue entre sublinealidad y su-
perlinealidad. Además, se cumple que LDR(PE) = LDR(PL) = 0. Las figuras 2.6 y 2.7
ilustran el comportamiento de las curvas de potencia de sistemas superlineal y sublineal
respectivamente, en relación con su correspondiente sistema de referencia PL.
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Figura 2.6: LDR sistema superlineal.
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Figura 2.7: LDR sistema sublineal.

Indicadores L1, L2, L∞. De forma similar, los indicadores L1, L2 y L∞ permiten medir
la desviación lineal. Sin embargo, los mismos no suelen utilizarse en el análisis de la propor-
cionalidad energética [Hsu and Poole, 2015].

L∞ = máx
j
|Ej |, (2.11)

L1 =
∑
j

|Ej |, (2.12)

L2 =

√∑
j

|Ej |2, (2.13)

siendo

Ej =
Pj − PE(lj)

P (1)
, (2.14)

la diferencia en el j -ésimo nivel de carga de trabajo, del consumo de potencia del SUT con
relación a su respectivo PE , normalizada sobre Ppeak. En caso de un sistema proporcional-
mente energético, ∀jEj = 0 y por consiguiente L∞(PE) = L1(PE) = L2(PE) = 0.

CINVESTAV-IPN Departamento de Computación



12 Capítulo 2

2.2. Indicadores de eficiencia energética

FLOPS/W. En la actualidad, el indicador FLOPS/W tiene una gran aceptación en la
comunidad de HPC. En este entorno, se suele considerar solamente el rendimiento y consumo
de potencia en el estado peak (ecuación 2.15). Sin embargo, si bien estos servidores no suelen
trabajar en niveles discretos de carga de trabajo, rara vez se desempeñan en tal porcentaje.
Por lo que, resulta más acertado cuantificar la eficiencia energética a partir del rendimiento
y consumo de potencia por nivel de carga de trabajo (ecuación 2.16).

Eficiencia energética =
Rendimientopeak
Potenciapeak

. (2.15)

Eficiencia energética =

∑1
j=0Rendimientoj∑1
j=0 Potenciaj

. (2.16)

No obstante, varias investigaciones consideran inadecuado el empleo de este indicador
para el análisis energético de los servidores de HPC [Hsu et al., 2012]. Éstas, lo descri-
ben como un indicador volátil, cuyos resultados dependen de diferentes factores, tales como
el tipo de operación, el nivel de carga de trabajo y el benchmark con que se evalúe el sistema.

Además, el indicador FLOPS/W describe dos estrategias para maximizar la eficiencia
energética de los medios de cómputo, incrementar el rendimiento de los equipos o disminuir
el consumo de potencia de los mismos. Por lo que, al tratarse de una métrica intensiva,
no es conveniente su uso para clasificar sistemas de computadoras por tamaño, pues los
servidores de supercómputo de menor tamaño tendrán mejores calificaciones [Strohmaier,
2009]. Ya que, como expresaron [Feng and Cameron, 2007], a medida que aumenta el número
de nodos, aumenta a su vez el consumo de potencia (al menos linealmente), mientras que el
rendimiento se incrementa, a lo sumo linealmente para problemas paralelos, y sublinealmente
para los restantes problemas.

PUE. El indicador efectividad en el uso de energía (PUE) [Belady et al., 2008], cuantifica
qué porción del consumo total de energía emplean los equipos de procesamiento, en contra-
posición a la energía que utilizan los sistemas de refrigeración y la infraestructura de energía.

PUE =
Energía total de instalación

Energía de los medios de cómputo
, (2.17)

siendo la Energía total de instalación la energía que se consume en la instalación o centro
de procesamiento en tareas afines con el mismo. Mientras que, la Energía de los medios de
cómputo hace referencia a la energía que consumen los equipos computacionales para admi-
nistrar, procesar o enrutar la información entrante.

PUE puede interpretarse como un indicador de proporcionalidad energética, pues tiene
una estrecha relación con el principio de energía. Sin embargo, varios estudios plantean que
PUE resulta insuficiente, pues sólo tiene en cuenta el uso relativo de energía. En consecuen-
cia, un sistema energéticamente ineficiente, puede tener un valor de PUE excelente, si su
infraestructura de soporte proporciona un enfriamiento efectivo [Hsu et al., 2012].
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2.2.1. Otros indicadores

El consumo promedio de potencia es otro indicador de eficiencia energética comúnmen-
te utilizado. Éste, se puede expresar a partir de las relaciones potencia-tiempo (W/s) y
potencia-espacio (W/m2). La primera, indica el consumo de potencia por unidad de tiempo,
y se utiliza en las tecnologías Intel Turbo Boost y AMD Turbo Core en la aplicación de
la técnica de DVFS. Mientras que la segunda, en conjunción con el indicador rendimiento-
espacio (FLOPS/m2), se emplea en el diseño de servidores y sistemas de refrigeración.

Los indicadores producto de retardo de energía (EDP ) y producto cuadrado de retardo
de energía (ED2P ), han sido utilizados históricamente para el análisis de la eficiencia ener-
gética de los medios de cómputo. El primero, se define como la energía total que se consume
al ejecutar una unidad de trabajo, multiplicada por el tiempo de ejecución. Mientras que el
segundo, consiste en la energía multiplicada por el cuadrado del tiempo de ejecución, por lo
que da mayor relevancia al rendimiento del sistema [Stijn and Eeckhout, 2011].

El Diagrama de retardo de energía (EDD) [Stijn and Eeckhout, 2011], si bien no es un
indicador de eficiencia energética, ilustra de forma intuitiva la relación rendimiento-consumo
energético de un servidor con respecto a un sistema de referencia.

y = log2

(
Energíaprueba

Energíareferencia

)
. (2.18)

x = log2

(
Tiempoprueba
Tiemporeferencia

)
. (2.19)

El primer cuadrante representa el caso en el que el sistema de referencia posee una mayor
eficiencia energética (menor consumo energético y menor tiempo de ejecución) que el SUT,
mientras que el tercer cuadrante ilustra el caso contrario. Por último, el segundo y cuarto
cuadrante representan las compensaciones, y el origen del EDD representa al sistema de
referencia (ver figura 2.8).
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Figura 2.8: Diagrama de retardo de energía.
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Entre las principales ventajas del EDD, destaca el hecho de que al hacer uso de los
logaritmos de las razones de rendimiento y energía, es sencillo representar los indicadores
EDP y ED2P , por medio de líneas rectas. Por ejemplo, la primera de estas líneas (EDP ),
denota los puntos donde el SUT y el sistema de referencia son igualmente eficientes en
términos energéticos, según este indicador. Lo mismo sucede con la línea que describe al
indicador ED2P .

2.3. Indicadores multivariados

Como señalan [Stijn and Eeckhout, 2011] y [Strohmaier, 2009], realizar el análisis energé-
tico de un sistema de cómputo a partir de una única métrica puede resultar engañoso. En
consecuencia, en los últimos años se han utilizado técnicas de estadística multivariante, con
el objetivo de definir un indicador compuesto que posibilite dicho análisis.

La métrica de utilidad (UM) [Strohmaier, 2009], fue propuesta como un indicador ge-
neralizado, a partir del cual realizar el análisis energético de las supercomputadoras (SC).

UM(SC) = Pα ·
(

P

Peak

)β
·
(

M

Peak

)γ
·
(
Peak

Power

)δ
·
(
Peak

Space

)ε
, (2.20)

siendo P el rendimiento sostenido alcanzado, M la cantidad de memoria utilizada, Power
la potencia consumida, Space el espacio físico consumido por el sistema y Peak el ren-
dimiento máximo alcanzado. Además, las ponderaciones se distribuyen de forma tal, que
α, β, γ, δ, ε ≥ 0 y β + γ = δ + ε.

Asimismo, [Hsu et al., 2012] definieron un indicador multivariado ponderado a partir del
rendimiento y el índice de eficiencia energética FLOPS/W.

(rendimiento)α · (eficiencia energética)β. (2.21)

En el diseño de este indicador, Hsu et al., dieron igual relevancia al rendimiento y la
eficiencia energética, es decir α = β. Además, definieron un conjunto de propiedades desea-
bles para una métrica de eficiencia energética, entre las cuales se requiere, que no exista un
límite superior, capture la proporcionalidad energética de un sistema y no sea sesgado. En
adelante, este indicador se referenciará en el documento a través de las siglas REE.

De manera general, ambos indicadores hacen uso del mismo principio de construcción.
Éste, consiste en la multiplicación de las características deseadas, tales como el rendimiento
y la eficiencia energética; y la división de estas últimas por las características indeseadas,
como son el consumo de potencia y el tamaño. Sin embargo, existen diferentes estrategias
de agregación y ponderación, cuya aplicación depende de factores, tales como el objetivo del
indicador y la escala de las variables.
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Benchmarks y datasets

La recolección de los datos a analizar es la primera etapa del proceso de Extracción de
Conocimiento de Bases de Datos (KDD)5. La misma, está sujeta a los objetivos de la in-
vestigación, y determina en gran medida la calidad de los resultados a obtener. Así pues,
en el presente capítulo se describen las características principales, ventajas y desventajas de
varios benchmarks y conjuntos de datos, a fin de identificar los que resulten más apropiados
para el análisis energético de los servidores de HPC.

SPECpower_ssj2008. SPECpower_ssj2008 es un benchmark desarrollado por la Cor-
poración de Evaluación de Desempeño Estándar (SPEC), con el objetivo de examinar el
rendimiento y consumo de potencia de uno o múltiples nodos, a través de un enfoque gra-
dual de carga de trabajo. El mismo, consiste en una aplicación Java, que en una primera
etapa genera y completa una combinación de transacciones, y posteriormente, mide el rendi-
miento del sistema, a partir del número de transacciones por segundo (TPS) que se realizan
durante un período fijo de tiempo. Además, cuantifica la eficiencia energética en los distintos
niveles de utilización en términos de transacciones por segundo por watt. También, utiliza
la eficiencia energética general como puntaje (SCR) del sistema:

SCR =

∑n
i=1 rendimientoi∑n
i=1 potenciai

, (3.1)

siendo n = 11 los niveles de carga de trabajo. A diferencia de otros benchmarks, SPECpo-
wer_ssj2008 gradúa la carga de trabajo desde el estado idle hasta el peak, de forma tal, que
en cada iteración, incrementa ésta en un 10%.

SPECpower_ssj2008 hace uso de las unidades centrales de procesamiento, cachés, jerar-
quía de memoria y escalabilidad de la memoria compartida. También, cuenta con una fase
de calibración, en la cual, se determina el rendimiento máximo y el número de transacciones
a realizar en cada uno de los niveles de carga de trabajo. Además, analiza las características
asociadas a la memoria de acceso aleatorio (RAM), el número de nodos, el chasis, el sistema
operativo, entre otros componentes de hardware y software.

5KDD se define como el proceso no trivial de identificar patrones válidos, novedosos, potencialmente
útiles y, en última instancia, comprensibles en los datos [Kudo and Sklansky, 2000].
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Por otra parte, SPECpower_ssj2008 no considera el número de FLOPS, por lo que carece
de un enfoque de HPC [Lange, 2009]. Razón por la cual, SPEC desarrolló los benchmarks
SPEC MPI 2007 y SPEC OMP 2012, los cuales sí contemplan la cantidad de FLOPS. Sin
embargo, a diferencia de SPECpower_ssj2008, ambos benchmarks carecen de un enfoque
gradual de carga de trabajo, puesto que el rendimiento y el consumo energético se evalúan
únicamente en el máximo nivel de utilización.

SPEC OMP 2012. El benchmark SPEC OMP 2012 mide el rendimiento de los sistemas
a partir de aplicaciones basadas en el estándar OpenMP. Éste, se enfoca en las característi-
cas asociadas al procesador, la memoria, el compilador y las bibliotecas de soporte paralelo.
Además, se compone de otros 14 benchmarks (ver tabla 3.1), para cada uno de los cuales eje-
cuta seis pruebas, distribuidas equitativamente, utilizando las optimizaciones conservadora
y agresiva de los mismos. De manera general, el proceder en cada uno de los 14 benchmarks
es el siguiente:

1. Agrupar las pruebas a partir del tipo de optimización del benchmark que utiliza.

2. Normalizar el rendimiento y consumo de potencia alcanzado en cada una de las prue-
bas, con respecto al descrito por el sistema de referencia6 en iguales condiciones, es
decir, bajo el mismo tipo de optimización.

SPECompG_base2012 =
Rendimiento_baseprueba

Rendimiento_basereferencia
, (3.2)

SPECompG_peak2012 =
Rendimiento_peakprueba

Rendimiento_peakreferencia
, (3.3)

SPECompG_energy_base2012 =
Energía_baseprueba

Energía_basereferencia
, (3.4)

SPECompG_energy_peak2012 =
Energía_peakprueba

Energía_peakreferencia
, (3.5)

siendo base y peak los tipos de optimizaciones conservadora y agresiva respectivamente.

3. Calcular la mediana de las proporciones obtenidas en cada grupo.

4. Por último, los resultados arrojados por SPEC OMP 2012 consisten en la media geo-
métrica de las 14 proporciones de cada tipo de optimización, tanto en términos de
rendimiento como de consumo de potencia.

6El benchmark SPEC OMP 2012 desde el año 2008 utiliza como sistema de referencia el Sun Fire X4140,
el cual consta de un procesador AMD Opteron 2384 con una frecuencia de reloj de 2.7 GHz, 2 quad-core y
32 GB de memoria RAM.
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Benchmark Lenguaje Dominio de aplicación
350.md Fortran Física: Dinámica Molecular
351.bwaves Fortran Física: Dinámica de Fluidos Computacional (CFD)
352.nab C Modelado Molecular
357.bt331 Fortran Física: Dinámica de Fluidos Computacional (CFD)
358.botsalgn C Alineación de Proteínas
359.botsspar C Factorización LU
360.ilbdc Fortran Lattice Boltzmann
362.fma3d Fortran Simulación de Respuesta Mecánica
363.swim Fortran Predicción del Clima
367.imagick C Procesamiento de Imágenes
370.mgrid331 Fortran Física: Dinámica de Fluidos Computacional (CFD)
371.applu331 Fortran Física: Dinámica de Fluidos Computacional (CFD)
372.smithwa C Coincidencia Óptima de Patrones
376.kdtree C++ Ordenamiento y Búsqueda

Tabla 3.1: Conjunto de puntos de referencias que integran el benchmark SPEC OMP 2012.

SPEC MPI 2007. El benchmark SPEC MPI 2007 cuantifica el rendimiento de los siste-
mas a partir de la interfaz de paso de mensajes (MPI). Éste, enfatiza en las características
asociadas al procesador, la biblioteca MPI, la arquitectura de memoria, los compiladores y
el sistema de archivos. Sin embargo, descarta características como el sistema operativo, los
aceleradores gráficos y el sistema de entrada/salida. De manera general, SPEC MPI 2007
hace uso de la misma estrategia de estimación de rendimiento y consumo energético que
SPEC OMP 2012; siendo el sistema de referencia7 y los benchmarks que integran la suite
(ver tabla 3.2) los principales elementos de diferenciación.

Benchmark Lenguaje Dominio de aplicación
104.milc C Física: Cromodinámica Cuántica (QCD)
107.leslie3d Fortran Dinámica de Fluidos Computacional (CFD)
113.GemsFDTD Fortran Electromagnetismo Computacional (CEM)
115.fds4 C/Fortran Dinámica de Fluidos Computacional (CFD)
121.pop2 C/Fortran Modelado de Océanos
122.tachyon C Gráficos: Trazado de Rayos Paralelos
125.RaxML C Coincidencia de ADN
126.lammps C++ Simulación de Dinámica Molecular
127.wrf2 C/Fortran Predicción del Clima
128.GAPgeofem C/Fortran Transferencia de Calor mediante Métodos de

Elementos Finitos (FEM)
129.tera_tf Fortran Hidrodinámica Euleriana 3D
130.socorro C/Fortran Dinámica Molecular utilizando la Teoría

Funcional de la Densidad (DFT)
132.zeusmp2 C/Fortran Física: Dinámica de Fluidos Computacional (CFD)
137.lu Fortran Dinámica de Fluidos Computacional (CFD)
142.dmilc C Física: Cromodinámica Cuántica (QCD)
143.dleslie Fortran Dinámica de Fluidos Computacional (CFD)
145.lGemsFDTD Fortran Electromagnetismo Computacional (CEM)
147.l2wrf2 C/Fortran Predicción del Clima

Tabla 3.2: Conjunto de puntos de referencias que integran el benchmark SPEC MPI 2007.

7SPEC MPI 2007 utiliza como sistema de referencia un clúster de 8 nodos de un sistema Celestica A2210,
con un procesador AMD Opteron 848 de un solo núcleo, con una frecuencia de reloj de 2200 MHz, 1 MB de
caché L2 y 4 GB de memoria RAM DDR3 por socket.
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Linpack. El benchmark Linpack, examina el rendimiento de los sistemas al resolver un
problema general de matriz densa Ax = b, así pues, se caracteriza fundamentalmente por
un uso intensivo de los FLOPS. A grandes rasgos, el mismo consiste en descomponer una
matriz en el producto de matrices simples y bien formadas [Dongarra et al., 2003], por lo
que requiere Θ(n3) operaciones de punto flotante, específicamente 2

3n
3 + 2n2, siendo n el

orden de la matriz. Además, éste, a su vez, se compone de otros tres benchmarks, asociados
a problemas de orden 100, 1000 y un tercero de computación altamente paralela, también
conocido como High Performance Linpack o HPLinpack.

A continuación, se describen los benchmarks antes mencionados:

Linpack 100 es similar al sistema de referencia original publicado en 1979. El mismo,
consiste en la eliminación gaussiana con pivote parcial.

Linpack 1000 brinda un rendimiento más cercano a los límites del sistema, al propor-
cionar un problema de mayor tamaño. Sin embargo, tiene como limitante que no es
posible reducir la precisión relativa.

HPLinpack, resulta adecuado para la evaluación de servidores de HPC, al permitir
el incremento del orden tanto como sea necesario. Sin embargo, no es acertado en el
mismo el uso del algoritmo Strassen, pues distorsiona la tasa de ejecución.

Gradiente conjugado de alto rendimiento. El benchmark de Gradiente Conjugado
de Alto Rendimiento (HPCG) es un punto de referencia de supercómputo, cuyo objetivo es
modelar los patrones de acceso a datos de los sistemas, y evaluar el efecto de las limitaciones
del subsistema de memoria. Éste, se caracteriza por una menor intensidad aritmética y una
mayor precisión de memoria, lo que lo hace apropiado para la evaluación de servidores de
centros de datos [Ruiz et al., 2018]. Además, complementa el análisis de benchmarks como
Linpack, que no enfatizan en la interconexión interna.

HPCG resuelve un sistema lineal disperso de ecuaciones mediante el método de gradiente
conjugado. También, utiliza un preacondicionador aditivo de Schwarz en la descomposición
del primer dominio, mientras que cada subdominio se preacondiciona a través de un barrido
simétrico de Gauss-Seidel [Dongarra et al., 2013]. HPCG es más “realista” que Linpack, ya
que tiene una menor intensidad aritmética que este último, por lo que, sistemas con un alto
rendimiento en Linpack, no necesariamente poseen un buen rendimiento en HPCG.

Top500 & Green500. El Top500 es el ranking de las 500 supercomputadoras disponibles
comercialmente de mayor rendimiento. En éste, los sistemas se ordenan de forma descen-
dente, a partir del número de FLOPS que son capaces de procesar. Dicho rendimiento, se
obtiene como resultado de la evaluación del benchmark Linpack en cada uno de los sistemas.
Además, este conjunto de datos brinda una perspectiva en términos de HPC, al proporcionar
los resultados obtenidos de la evaluación del benchmark HPCG. Sin embargo, el Consejo de
Asesores de Ciencia y Tecnología y Jack Dongarra, fundador del propio listado, destaca-
ron la necesidad de analizar el ranking desde un contexto más amplio, pues no solo debía
considerarse el número de FLOPS [Geller, 2011], lo que dio paso al surgimiento del Green500.
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El Green500, surgió con el objetivo de concientizar acerca del consumo energético que
llevan a cabo las supercomputadoras. Por lo cual, se creó un ranking a partir de la eficiencia
energética de los sistemas que conforman el Top500. Sin embargo, ambos conjuntos de datos
carecen de un enfoque gradual de carga de trabajo, pues solamente se analizan el rendi-
miento, consumo de potencia y eficiencia energética al máximo nivel de utilización, lo que
imposibilita un estudio profundo de la proporcionalidad y eficiencia energética.

Por lo tanto, de los benchmarks antes expuestos, sólo SPECpower_ssj2008 posee un
enfoque gradual de carga de trabajo. Éste, es un benchmark apropiado para el análisis
energético de los servidores de centros de datos. Sin embargo, al carecer de un enfoque de
HPC, resulta desacertado su empleo para el estudio de la proporcionalidad energética de
tales sistemas. Por otra parte, los restantes benchmarks estudiados, si bien tienen en cuenta
los FLOPS, y estresan en mayor o menor medida a los sistemas, no analizan el consumo
de potencia por nivel de utilización, por lo que son también insuficientes para el análisis
energético de los servidores de HPC (ver tabla 3.3).

Enfoque Tipo de operación
Benchmark Gradual de carga de trabajo Centro de datos HPC MIPS/TPS FLOPS
SPECpower_ssj2008 Sí Sí No Sí No
SPEC OMP 2012 No No Sí No Sí
SPEC MPI 2007 No No Sí No Sí
Linpack No No Sí No Sí
HPCG No No Sí No Sí

Tabla 3.3: Comparación de los benchmarks de rendimiento y consumo de potencia.

Como resultado del análisis anterior, se concluyó que se carece de un conjunto de datos
general, a partir del que realizar el análisis de proporcionalidad energética en servidores de
HPC. Por lo que, el estudio a desarrollar, debe sustentarse en la información existente en los
conjuntos de datos de SPECpower_ssj2008, Green500 y Top500, los que se describen con
detalle en el apéndice A.
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Esta página se dejó en blanco intencionalmente.
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Capítulo 4

Análisis de minería de datos

La minería de datos es una etapa intermedia del KDD. Ésta, consiste en la aplicación
de técnicas computacionales de diferentes disciplinas, tales como optimización, cómputo
evolutivo y teoría de la información, a fin de extraer conocimiento procesable de conjuntos
de datos. En el presente capítulo, se detalla el análisis descriptivo y exploratorio realizado
en función del rendimiento y consumo energético de los servidores de HPC.

4.1. Análisis descriptivo

El desarrollo de un indicador multivariado, requiere de la selección de los índices más ade-
cuados para explicar el fenómeno de interés, y el análisis de sus tendencias y relaciones.
Ésto, a fin de dotar de sencillez y robustez al modelo, al descartar variables redudantes o
resultantes de combinaciones de otras. Asimismo, posibilita la inferencia del futuro compor-
tamiento del indicador compuesto y los subíndices que lo integran. En la presente sección,
se analizan varias de las tendencias actuales del diseño de servidores de HPC.

4.1.1. Distribución

La distribución de las variables, es una de las características más importantes a considerar
durante el desarrollo de una investigación, ya que condiciona las tareas a realizar. La dis-
tribución es un resumen de la frecuencia de valores individuales o rangos de valores para
una variable. La forma en que se distribuyen las variables es de vital relevancia, tanto en el
aspecto cuantitativo como cualitativo.

Existen diversas estrategias para determinar la bondad de ajuste de dos distribuciones
de probabilidad entre sí, tales como la prueba de Kolmogorov-Smirnov [Smirnov, 1939], el
test de Shapiro–Wilk [Shapiro and Wilk, 1965] y la prueba de Anderson-Darling [Stephens,
1974]. De forma similar, el criterio de información bayesiano [Schwarz, 1978] y el criterio
de información de Akaike [Akaike, 1998] son de gran utilidad en este sentido. Si bien, mu-
chas de las técnicas anteriores persiguen diferentes objetivos, todas ellas pueden utilizarse
para la selección de la distribución que mejor se ajuste a los datos. Las tablas 4.1 y 4.2
resumen la distribución de las principales variables que componen los conjuntos de datos de
SPECpower_ssj2008 y Top500, identificadas a partir de la prueba de Kolmogorov-Smirnov.
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Variable Distribución
Nodes Generalizada de valores extremos
ssj_ops @ 100% of target load Gaussiana inversa
Average watts @ 100% of target load Generalizada de valores extremos
Performance/power @ 100% of target load Distribución de Pearson
# Cores Gaussiana inversa
# Chips Generalizada de valores extremos
# Threads Per Core Distribución de Pearson
Processor MHz Normal logarítmica
Memory (GB) Normal logarítmica
Power Supplies Installed Normal
Power Supply Rating (watts) Normal

Tabla 4.1: SPECpower_ssj2008: Distribución de las principales variables.

Variable Distribución
Total Cores Normal logarítmica
Accelerator/Co-Processor Cores Normal
Rmax [TFlop/s] Pareto
Rpeak [TFlop/s] Normal logarítmica
Power (kW) Weibull exponencial
Power Efficiency [GFlops/Watts] Generalizada de valores extremos
Processor Speed (MHz) Normal
Cores per Socket Generalizada de valores extremos

Tabla 4.2: Top500: Distribución de las principales variables.

4.1.2. Tendencias y Relaciones

Varios estudios señalan la existencia de una estrecha relación entre el consumo de potencia y
la proporcionalidad energética de los medios de cómputo. Barroso y Hölzle destacaron cómo
el incremento de la proporcionalidad energética requiere de futuras mejoras en términos del
consumo de potencia [Barroso and Hölzle, 2007]. Sin embargo, [Wong and Annavaram, 2013]
demostraron que no en todos los casos la proporcionalidad energética mejora la gestión de
energía de los servidores. Aún así, los diseñadores de sistemas computacionales exploran
múltiples estrategias de gestión de energía8, con el objetivo de minimizar el consumo de
potencia y maximizar la proporcionalidad energética de sus productos.

La figura 4.1 ilustra la tendencia creciente de los sistemas en términos de DR y EP .
Ésto, como consecuencia de un menor desperdicio de la potencia máxima en el estado ocioso,
y la disminución de la brecha energética con respecto a un sistema ideal PE . En la misma,
se observa un incremento abrupto de ambos indicadores a partir del año 2009, el cual varios
autores asocian con el empleo del DVFS en la gestión de energía [Hsu and Poole, 2013].

8Históricamente han habido tres direcciones para el ahorro de energía: suspender o apagar sistemas,
DVFS y la gestión de cargas de trabajo conscientes de la energía.
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Figura 4.1: SPECpower_ssj2008: Curvas de tendencia de los indicadores DR y EP .

Al analizar la curva de tendencia del indicador EP , destaca la presencia de servidores,
en los cuales, este indicador supera el límite definido en la bibliografía. Esta investigación no
es ajena a la existencia de servidores con EP > 1, en adelante, sistemas superproporcionales,
ya que [Jiang et al., 2017] así lo constataron. No obstante, Jiang et al., no exploraron las
causas de estos valores atípicos, lo cual, da paso a las siguientes interrogantes:

Interrogante 1. ¿Qué factores condicionan este carácter superproporcional?

Interrogante 2. ¿En qué medida dicho comportamiento se debe al empleo del DVFS?

Esta segunda interrogante posee gran relevancia, pues [Le Sueur and Heiser, 2010] plan-
tearon que el DVFS, si bien es apropiado para la gestión de potencia en arquitecturas anti-
guas, no resulta así en arquitecturas modernas, en las que incrementa el consumo energético.

Por otra parte, al analizar el comportamiento histórico de los sistemas en concepto de
linealidad, destaca el descenso de la misma, tanto en términos generales como específicos,
es decir, el incremento de la LD y LDR de los sistemas (ver figura 4.2). Ésto, corrobora el
pronóstico que realizaron [Varsamopoulos and Gupta, 2010], referente al futuro aumento de
la desviación lineal y la disminución de la IPR de los sistemas.
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Figura 4.2: SPECpower_ssj2008: Curvas de tendencia de los indicadores LD y LDR.
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La figura 4.3 ilustra la relación existente entre los indicadores LDR, IPR y EP . En la
misma, se observa cómo a medida que aumenta la EP , disminuye la IPR y se incrementa
la LDR. Es decir, los sistemas de menor desviación lineal son los que mayor porción de la
potencia máxima desperdician en estado idle. Además, muestra la alta desviación lineal que
caracteriza a los sistemas superproporcionales, y cuán ineficiente es el indicador EP para
capturar la linealidad de un sistema.
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Figura 4.3: SPECpower_ssj2008: Gráfica de dispersión de los indicadores LDR e IPR.

No obstante, EP es uno de los indicadores de mayor aceptación y empleo en el aná-
lisis energético de los sistemas de computadora. Razón por la cual, se han definido varias
aproximaciones en torno al mismo. Por ejemplo, [Wong and Annavaram, 2013] y [Hsu and
Poole, 2015] destacaron la estrecha relación existente entre los indicadores EP , DR y LD,
de forma tal, que:

EP ≈ 2− (2−DR)(LD + 1). (4.1)

Esta aproximación, propone dos estrategias para la maximización de la EP , el incremento
del DR o la disminución de la LD. Sin embargo, teniendo en cuenta las curvas de tendencia
de ambos indicadores, resulta más adecuado el empleo de la segunda estrategia, pues los
sistemas actuales suelen poseer un DR cada vez más cercano a su límite teórico. La figura
4.4 ilustra la validez de esta aproximación, y cómo en las últimas décadas, el margen de
error de dicha aproximación ha estado parcialmente estancado.
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Figura 4.4: SPECpower_ssj2008: Curva de tendencia del margen de error de la aproximación
del indicador EP en términos de los indicadores DR y LD.

CINVESTAV-IPN Departamento de Computación



Análisis de minería de datos 25

De igual forma, [Hsu and Poole, 2015] definieron una aproximación del indicador EP en
términos del indicador L1.

EP ≈ 1− 2L1

m− 1
. (4.2)

siendo m el número de niveles de carga de trabajo. Además, consideraron la alta correlación
existente entre los indicadores L1, L2 y L∞. Para los cuales, en la actualidad, la similitud
entre sus respectivas curvas de tendencia, en cuanto al coeficiente de correlación de Pearson9,
es al menos 0.97, y específicamente 0.99 para los indicadores L1 y L2.

Como resultado de la evaluación de esta aproximación, se obtuvo un margen de error
significativo, por lo que la misma carece de vigencia (ver figura 4.5). Además, destaca cómo
a partir del año 2012 se incrementa el margen de error de esta aproximación, año a partir
del cual también la EP de los sistemas no suele variar considerablemente.
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Figura 4.5: SPECpower_ssj2008: Curva de tendencia del margen de error de la aproximación
del indicador EP a partir del indicador L1.

Asimismo, con base a la tendencia creciente de la EP y la eficiencia energética de los
sistemas, [Hsu and Poole, 2015] definieron la siguiente relación:

SCR ≈ (
τ10
P10

)(
1.1

2.1− EP
), (4.3)

siendo τ10 y P10 el rendimiento y el consumo de potencia al 100% de carga de trabajo res-
pectivamente.

Esta aproximación define dos estrategias para el incremento de la eficiencia energética
promedio, ya sea a partir del aumento de la EP o la relación rendimiento-potencia en
el estado peak. Ya que, la EP de los sistemas desde el año 2012 ha estado parcialmente
estancada, gran parte de las mejoras en términos de SCR se debe al empleo de la segunda
estrategia, es decir, el incremento de la eficiencia energética en el 100% de utilización (ver
figura 4.6).

9El coeficiente de correlación de Pearson mide la fortaleza de la relación lineal entre dos variables.
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Figura 4.6: SPECpower_ssj2008: Gráfica de dispersión del SCR y τ10
P10

.

La figura 4.7 ilustra la relación existente entre el indicador EP y la eficiencia energética.
Como se observa, los sistemas superproporcionales poseen valores promedio de SCR y τ10

P10
.

Lo que reafirma el enunciado de [Varsamopoulos et al., 2010] referente a que no en todos los
casos la proporcionalidad energética mejora la gestión de energía.
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Figura 4.7: SPECpower_ssj2008: Gráficas de dispersión de los indicadores EP , SCR y τ10
P10

.

Al evaluar dicha relación se obtuvo un importante margen de error, por lo que no es
conveniente el empleo de la misma como aproximación al SCR (ver figura 4.8). También, al
igual que en la aproximación 4.2, el margen de error se incrementa a partir del año 2012. En
este caso, dicho incremento se debe al aumento de la eficiencia energética en el estado peak.
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Figura 4.8: SPECpower_ssj2008: Curva de tendencia del margen de error de la aproximación
del indicador SCR a partir de los indicadores EP y τ10
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Al analizar el consumo de potencia y la eficiencia energética por nivel de utilización,
destaca cómo en el caso del primero, los sistemas de mayor DR y EP se suelen intersectar
con su ideal en niveles discretos de carga de trabajo (ver figura 4.9). De forma tal, que
mientras más cercano al estado idle es la intersección, mayor tienden a ser los valores de
estos indicadores. No obstante, ésto no es del todo absoluto, ya que las curvas de potencia de
los SUT y sus respectivos sistemas de referencia pueden intersectarse en más de una ocasión.
Además, en este sentido, resulta más importante la brecha de potencia, que el número de
niveles de carga, en los cuales el consumo de potencia describió un comportamiento sublineal.
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Figura 4.9: SPECpower_ssj2008:
Consumo de potencia por nivel de carga.
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Figura 4.10: SPECpower_ssj2008: Eficiencia
energética por nivel de carga.

Asimismo, la figura 4.10 muestra cómo varios sistemas alcanzan su máxima eficiencia
energética en niveles de carga intermedios. Las cuales, incluso sobrepasan los límites definidos
en el estado peak. De acuerdo con [Jiang et al., 2017], la anchura de estas zonas de alta
eficiencia energética es superior en los sistemas de mayor EP . Sin embargo, la anterior
afirmación es discutible, ya que, durante el análisis descriptivo realizado, se identificó una
modesta relación entre estos indicadores. Además, la figura 4.11 refuta dicho planteamiento;
en ésta, el sistema de menor EP posee una mayor zona de eficiencia energética.
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Figura 4.11: SPECpower_ssj2008: Relación entre la EP y la amplitud de las zonas de alta
eficiencia energética.

CINVESTAV-IPN Departamento de Computación



28 Capítulo 4

Por lo tanto, se concluye que no existe un vínculo estrecho entre la proporcionalidad
y la eficiencia energética de los medios de cómputo. No obstante, el aprovisionamiento de
los servidores, debe enfocarse en las zonas de alta eficiencia energética. Entonces, a fin de
maximizar estas zonas, es importante analizar el impacto de diferentes configuraciones de
hardware y software, en función de la proporcionalidad y eficiencia energética de los sistemas.

4.1.3. Análisis de características

4.1.3.1. Procesador

El rendimiento de los servidores se suele asociar con el número y características de los
procesadores que lo componen. Motivo por el cual, a continuación se analizan varias de
estas características y su impacto en términos de proporcionalidad y eficiencia energética.

Frecuencia base. La frecuencia base es el número de ciclos de reloj por segundo, es decir,
el número de instrucciones por segundo que la unidad central de procesamiento (CPU) es
capaz de recuperar e interpretar. Los servidores actuales poseen una elevada frecuencia base;
sin embargo, cada vez se dificulta más el incremento de la misma (ver figura 4.12), como
resultado del incumplimiento de la ley de Moore10. En consecuencia, los diseñadores de
hardware adoptaron como alternativa el incremento del número de núcleos por procesador,
siendo ésta una tendencia en ascenso (ver figura 4.13).
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Figura 4.12: SPECpower_ssj2008: Curva de tendencia de la frecuencia base del procesador.
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Figura 4.13: SPECpower_ssj2008: Curva de tendencia del número de núcleos por procesador.
10La ley de Moore plantea que aproximadamente, cada dos años se duplica el número de transistores en

un microprocesador [Powell, 2008]. Sin embargo, ésta dejó de cumplirse desde la primera década del siglo
XXI, a causa del incremento del consumo de potencia de los procesadores.
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No obstante, cada núcleo suele consumir una cantidad de potencia nada despreciable.
Por lo que, el número de núcleos a integrar en un mismo procesador está en función del
consumo de potencia de este último, al estar el sistema en estado peak, es decir, todos los
núcleos activos [Woo and Lee, 2008]. De ahí que, maximizar la eficiencia energética de los
núcleos de forma individual, es uno de los principales desafíos de los arquitectos de hardware.

Al analizar el conjunto de datos de SPECpower_ssj2008, destaca el poco impacto que
tiene la frecuencia base del procesador en términos de rendimiento, consumo de potencia,
proporcionalidad y eficiencia energética. Además, en concordancia con lo expuesto por la
ley de Amdahl (ecuación 4.4)11, el número de procesadores y el total de núcleos existentes
en el sistema condicionan de forma significativa el rendimiento de éste. Asimismo, la eficien-
cia energética de los núcleos presentes por procesador es un elemento determinante en la
eficiencia del servidor.

Perf =
1

(1− f) + f
n

, (4.4)

donde n es el número de procesadores y 0 ≤ f ≤ 1 es la porción del programa que se puede
paralelizar.

DVFS. En el conjunto de datos de SPECpower_ssj2008 existen un total de 20 servidores
superproporcionales; todos los cuales, poseen procesadores que hacen uso del DVFS. Sin
embargo, si bien los sistemas con elevados valores de EP suelen contar con procesadores
que aplican esta estrategia de gestión de energía, ésto se debe principalmente a las actuales
tendencias de diseño de hardware, y no a la existencia de una relación entre el DVFS y
la proporcionalidad energética de los sistemas. Por lo que, en respuesta a la interrogante
número 2, el DVFS no garantiza la proporcionalidad energética de un sistema, ni el carácter
superproporcional del mismo (ver tabla 4.3).

Procesador Frecuencia (GHz) No. servidores EP
Base Aumentada Total Superproporcional Min Max

Intel Xeon Platinum 8280L 2.70 4.00 8 3 0.920 1.023
Intel Xeon E-2176G 3.70 4.70 6 5 0.985 1.093
Intel Xeon Platinum 8180 2.50 3.80 53 5 0.875 1.022
Intel Xeon Platinum 8176 2.10 3.80 20 2 0.769 1.025
Intel Xeon E5-2698 v4 2.20 3.60 2 1 0.956 1.015
Intel Xeon E5-2470 2.30 3.10 26 1 0.774 1.054
Intel Xeon Platinum 8280 2.70 4.00 57 3 0.705 1.023

Tabla 4.3: Listado de procesadores presentes en los servidores superproporcionales.

En la actualidad, la mayoría de los procesadores modernos hacen uso del DVFS. Los que,
en comparación con el resto, suelen alcanzar valores superiores de rendimiento, eficiencia
energética y consumo de potencia (ver figura 4.14). No obstante, la tendencia decreciente
del voltaje de operación de los núcleos reduce la posibilidad de escalar el voltaje, y por ende,
decrementar la frecuencia del CPU y el consumo de energía.

11La ley de Amdahl plantea que el cálculo secuencial de un programa limita en gran medida la máxima
aceleración alcanzable [Amdahl, 1967].
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Figura 4.14: SPECpower_ssj2008: Impacto del DVFS en la proporcionalidad energética.

4.1.3.2. Memorias

Las RAMs y cachés son memorias no volátiles, para las cuales, el tiempo de acceso a la
información almacenada es considerablemente inferior en comparación con otros dispositivos,
tales como discos duros (HDD) y discos de estado sólido (SSD) [Badam and Pai, 2011]. Por
lo que, el empleo de las mismas como parte del procesamiento de datos, tienen un impacto
significativo en términos de rendimiento.

RAM. Al analizar el conjunto de datos de SPECpower_ssj2008 destaca cómo en térmi-
nos de rendimiento y consumo de potencia, posee mayor relevancia la capacidad total de
almacenamiento, que el número y capacidades individuales de los módulos presentes en el
sistema, ya sean módulos de memoria de dos líneas o módulos de memoria de línea única. Sin
embargo, las características anteriores carecen de relevancia en cuanto a proporcionalidad y
eficiencia energética.

Históricamente, a medida que se incrementa el ancho de banda de las RAMs, también
lo hace la latencia de éstas. En consecuencia, los diseñadores de hardware optaron como
alternativa el desarrollo de memorias cachés de mayor capacidad de almacenamiento y com-
plejidad. Como se mencionó anteriormente, al igual que las RAMs, las memorias cachés
tienen un impacto directo en el rendimiento de los sistemas, incluso aún mayor. No obstan-
te, las capacidades de dichas memorias no condicionan sustancialmente la proporcionalidad,
ni la eficiencia energética de los sistemas. Además, actualmente existen límites bien definidos
de efectividad para las memorias cachés [Bergman et al., 2008].

4.1.3.3. Unidades de almacenamiento

Las unidades de almacenamiento son de los componentes de hardware que menos potencia
consumen [García-Berná et al., 2021]. Sin embargo, si bien se conoce su impacto en términos
de rendimiento, resulta de interés analizar su influencia en la proporcionalidad y eficiencia
energética de los servidores de HPC.
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Al analizar el conjunto de datos de SPECpower_ssj2008, destaca el predominio de los
SSD, tanto en los sistemas superproporcionales, como de manera general. Además, nor-
malmente los sistemas SSD gozan de una mayor eficiencia energética. Asimismo, estos se
caracterizan por valores elevados de EP , LD y LDR, por lo que, si bien suelen consumir
modestas cantidades de potencia, carecen de linealidad. También, es común que los siste-
mas SATA posean un alto rendimiento y consumo de potencia, a la vez que su eficiencia
energética y EP sobrepasa en su mayoría a los sistemas SAS (ver figura 4.15). Entonces, se
concluye que resulta más adecuado el empleo de las unidades SATA y SSD en sistemas de
centros de datos y supercómputo respectivamente.
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Figura 4.15: SPECpower_ssj2008: Impacto de las unidades de almacenamiento en la pro-
porcionalidad energética.

Por otra parte, al analizar el alcance del número y capacidad de las unidades de alma-
cenamiento, destaca la poca relevancia de los mismos en términos de rendimiento, consumo
de potencia, proporcionalidad y eficiencia energética. Ésto, exalta la influencia que tiene la
tecnología de almacenamiento en la eficiencia, tanto de la unidad, como de todo el sistema.

4.1.3.4. Entorno de operación

El entorno de operación, consiste en el contexto en el cual se ejecutan los programas. En
este sentido, algunos de los principales elementos son la interfaz gráfica, la interfaz de línea
de comandos, el administrador de memoria, el calendarizador de procesos y la interfaz de
programación de aplicaciones, a partir de la cual se interactúa con los recursos del hardware.
Por lo que, debe considerarse en qué medida softwares, tales como bibliotecas y sistemas
operativos, influyen en la proporcionalidad y eficiencia energética de los servidores de HPC.

Sistema operativo. El sistema operativo, en su función de gestor de los recursos de hard-
ware, tiene una influencia directa en el consumo de potencia de los sistemas. De acuerdo
con [Randhawa et al., 2018], es esencial la gestión de energía a nivel del sistema operativo,
para el empleo de modos de bajo consumo de energía en el diseño de los sistemas actuales.
Sin embargo, poco se conoce acerca de la incidencia del sistema operativo en términos de
rendimiento, proporcionalidad y eficiencia energética.
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Al analizar el conjunto de datos de SPECpower_ssj2008 y el listado de sistemas su-
perproporcionales, destaca el predominio de los sistemas Windows, en comparación con los
restantes sistemas Linux y Mac. No obstante, las familias de sistemas operativos no son con-
dicionantes absolutos en términos del rendimiento, consumo de potencia, proporcionalidad
y eficiencia energética de los sistemas (ver figura 4.16). Aún así, al analizar el impacto de las
mismas en servidores de similares características, destaca que los sistemas Windows suelen
tener una mayor EP , mientras que los sistemas Linux acostumbran a poseer mayor SCR.
En consecuencia, se considera conveniente el empleo de los sistemas operativos Windows y
Linux en servidores de centros de datos y HPC respectivamente.
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Figura 4.16: SPECpower_ssj2008: Impacto del sistema operativo en la proporcionalidad
energética.

Máquina Virtual de Java. Como se mencionó en el capítulo anterior, el benchmark
SPECpower_ssj2008 hace uso de una aplicación Java para la evaluación de los sistemas.
Motivo por el cual, se analizó en qué medida los resultados que éste arroja dependen de la
versión de la máquina virtual de Java que utilice el SUT. De este análisis, se concluyó que
la versión de la máquina virtual de Java y el número de instancias de la misma utilizadas,
no son condicionantes de gran peso en términos del rendimiento, consumo de potencia,
proporcionalidad y eficiencia energética.

4.1.3.5. Gabinete

El consumo de energía de los servidores de HPC se cuantifica a partir de la potencia que se
utiliza en el procesamiento de los datos y la disipación del calor generado. Sin embargo, los
benchmarks descritos en el capítulo 3 no tienen en cuenta las características del sistema de
refrigeración. Motivo por el cual, a continuación, se analiza el impacto que tiene el tipo de
gabinete en términos energéticos.

Al analizar el conjunto de datos de SPECpower_ssj2008, destaca el hecho que de los
varios tipos de gabinetes presentes en dicho conjunto, solamente los tipos 1U, 2U, 4U y tower
están presentes en los servidores superproporcionales. Asimismo, los tipos de gabinetes 1U
y 2U se utilizan en los primeros 10 sistemas de mayor eficiencia energética. También, los
sistemas de navaja o blade suelen tener un mayor rendimiento y consumo de potencia que
el resto (ver figura 4.17).
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Figura 4.17: SPECpower_ssj2008: Impacto del tipo de gabinete en la proporcionalidad ener-
gética.

Además, se analizó la influencia que tiene en este sentido, el número y potencia de las
fuentes de energía, obteniéndose que los mismos no son factores de gran relevancia en cuanto
al rendimiento, consumo de potencia, proporcionalidad y eficiencia energética de los sistemas.

Como resultado parcial de esta etapa, se concluye que las futuras mejoras a obtener en
términos de proporcionalidad y eficiencia energética, están sujetas al desarrollo de nuevas
técnicas de gestión de potencia. Si bien en los últimos años se ha incrementado la eficien-
cia energética de los sistemas, dicho incremento se debe a un aumento del rendimiento de
los servidores, y no a una disminución del consumo de potencia de los mismos. Además, el
DVFS es cada vez menos determinante en términos de ahorro de energía.

En base al estudio realizado, se deduce que el consumo de potencia, y por consiguiente, la
proporcionalidad y eficiencia energética de los sistemas, están condicionados por componen-
tes de diseño físicos y lógicos del servidor. Es decir, la rentabilidad energética de un medio
de cómputo se sustenta en la selección de la configuración óptima, que reduzca el consumo
de potencia, en base al contexto de trabajo. Por otra parte, las tendencias actuales de diseño
de hardware tienen un enfoque comercial, y hacen caso omiso a las principales limitantes de
diseño de sistemas exaescala. En esta sección, se analizaron las relaciones existentes entre
diferentes factores de hardware, software y proporcionalidad energética. Sin embargo, resul-
ta de interés aplicar técnicas de minería de datos, a fin de identificar la influencia de estos
factores en el comportamiento superproporcional antes descrito.

4.2. Preprocesamiento

El preprocesamiento, consiste en la preparación de los datos para su posterior análisis. Ésta,
es una etapa determinante del proceso de KDD, ya que condiciona la calidad de los resulta-
dos a obtener. Razón por la cual, los profesionales del área de ciencia de datos concuerdan en
que durante la construcción de un modelo, se emplea aproximadamente el 75% del tiempo
y esfuerzo en la etapa de preprocesado de datos.
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Entre las principales tareas a desarrollar durante el preprocesamiento, se encuentran la
limpieza, integración, transformación, reducción y discretización de los datos. La limpieza
de los datos, consiste en eliminar registros duplicados, aplicar estrategias de imputación,
identificar valores atípicos y corregir inconsistencias. La tarea de integración, es la unión de
múltiples conjuntos de datos en un único conjunto unificado. La transformación, consiste en
la modificación de los datos a través de estrategias de normalización y estandarización, con
el objetivo de que los resultados no dependan de las escalas de las variables. La reducción,
consiste en la aplicación de técnicas de reducción de la dimensionalidad. A continuación, se
describen y fundamentan las técnicas aplicadas en cada una de estas tareas.

4.2.1. Limpieza de los datos

Al analizar los conjuntos de datos, se obtuvo que en los mismos no existen instancias duplica-
das. Sin embargo, la representación de las variables que los componen a partir de diagramas
de caja y bigotes12, permitió identificar la presencia de valores atípicos (ver figura 4.18). No
obstante, dichos valores se deben a casos excepcionales, y no a incongruencias en los datos,
por lo que no se desecharon.
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Figura 4.18: Top500: Diagrama de caja y bigotes.

Además, los conjuntos de datos en cuestión, poseen un número significativo de dimensio-
nes, lo cual es una característica indeseada, ya que no garantiza la exactitud, ni la precisión
del modelo, pero sí disminuye el rendimiento, e incrementa la complejidad computacional
y el riesgo de sobreajuste13. Asimismo, en estos conjuntos de datos existen valores faltan-
tes o perdidos; lo que afecta la robustez del modelo, al incrementar la probabilidad de una
especificación errónea de este último y disminuir la efectividad de la estimación.

4.2.2. Integración de conjuntos de datos

La integración de conjuntos de datos, si bien suele incrementar el número de variables a con-
siderar, aumenta la exactitud, precisión y robustez del modelo, al reducir las probabilidades
de sobreajuste. Motivo por el cual, resulta de gran utilidad en el análisis de datos.

12El diagrama de caja y bigotes es una estrategia gráfica de identificación de valores atípicos a partir de
la mediana y la dispersión de los datos.

13El sobreajuste surge cuando el modelo es muy complejo o el tamaño del conjunto de entrenamiento no
es suficiente, lo cual causa una notable diferencia entre los errores de entrenamiento y prueba.
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Como se mencionó en el capítulo anterior, el conjunto de datos de SPECpower_ssj2008,
resulta insuficiente para el análisis energético de servidores de HPC, al no tener en cuenta el
rendimiento de los sistemas en términos de FLOPS. De ahí que, inicialmente, se consideró
la integración del mismo con los conjuntos de datos de SPEC OMP 2012 y SPEC MPI 2007.
Sin embargo, la información presente en estos últimos, imposibilita establecer con claridad
una conexión entre los sistemas presentes en los mismos y los existentes en el conjunto de
datos de SPECpower_ssj2008.

Además, sí existe una relación clara entre los conjuntos de datos Top500 y Green500,
puesto que el segundo se define a partir del primero. Motivo por el cual, hay una notable
coincidencia en la información presente en ambos conjuntos. Sin embargo, las dimensio-
nes existentes en los mismos difieren levemente. Mientras el Top500 describe también el
rendimiento de los sistemas en el benchmark HPCG, el Green500 lo hace con respecto al
benchmark HPL (ver apéndice A). Por lo que, se unificaron en el Top500, los datos presentes
en éste y en el Green500. En adelante, se continuará el análisis a partir de los conjuntos de
datos de SPECpower_ssj2008 y Top500.

4.2.3. Selección de características

La selección de características es una tarea computacionalmente costosa, que consiste en ele-
gir el menor subconjunto de características, capaz de explicar la mayor parte de la varianza
de los datos y minimizar el error de clasificación. Esta tarea, no solo reduce la dimensiona-
lidad de los datos al descartar características redundantes o irrelevantes, sino que también
disminuye la complejidad del modelo y lo dota de mayor exactitud.

Entre los métodos óptimos de selección de características se encuentran la Búsqueda
Exhaustiva (BE) y la Ramificación y Poda o Branch and Bound (BB). La principal diferen-
cia entre ambos, radica en que el primero evalúa siempre todos los posibles subconjuntos,
mientras que el segundo lo hace en el peor de los casos; sin embargo, para ello requiere que
la función de criterio sea monótona. Además, el número de posibilidades a considerar por el
algoritmo de BE crece exponencialmente, incluso para subconjuntos de tamaños discretos,
por lo que la búsqueda resulta impráctica [Kittler, 1980]. En consecuencia, la BE se suele
utilizar cuando se requiere de un algoritmo óptimo, y la función de criterio no satisface la
propiedad de monotonía.

Al analizar los conjuntos de datos en cuestión, destaca la ausencia en los mismos de
atributos de clase, lo que imposibilita la aplicación de los métodos antes expuestos, así como
estrategias robustas de selección de características, tales como regresión, Random Forest y
eliminación recursiva. En consecuencia, se utilizó como principio de selección la entropía de
Shannon y la información mutua de las variables.

La entropía de Shannon H(X) [Shannon, 1948], de una variable aleatoria discreta X, se
define como la esperanza matemática de la variable aleatoria asociada I(X), es decir, hace
referencia a la cantidad de incertidumbre que aporta una variable.

H(X) = E(I(X)) = −
n∑
i=1

p(xi) · log2 p(xi), (4.5)

CINVESTAV-IPN Departamento de Computación



36 Capítulo 4

I(xi) = − log2 p(xi), (4.6)

siendo xi, p(xi) e I(xi) el i-ésimo valor de la variable X y su respectiva probabilidad e
información aportada. Además, teniendo en cuenta su definición, la entropía toma valores
comprendidos entre 0 y log2 n.

Por otra parte, la información mutua I(X,Y ), entre dos variables X, Y, cuantifica la
reducción en la incertidumbre en X cuando se conoce el valor de Y.

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (4.7)

H(X,Y ) = −
n∑
i

m∑
j

p(xi, yj) · log2 p(xi, yj), (4.8)

donde p(xi, yj) es la probabilidad de que el i-ésimo valor de X y el j -ésimo valor de Y
sucedan al mismo tiempo.

La aplicación de estos principios de selección posibilitó la eliminación de características
intrascendentes, tales como identificadores y campos de tipo fecha. Asimismo, se desechó la
variable OS Family del conjunto de datos Top500, ya que la entropía de la misma es cero.

4.2.4. Imputación

Con el objetivo de solventar la existencia de valores faltantes en los conjuntos de datos,
se analizaron varias estrategias de imputación, que van desde el empleo de conjuntos de
datos completos, hasta estrategias de imputación simple. En este caso, no se consideraron
estrategias de imputación múltiple, debido a su alto costo computacional. Además, éstas
no son siempre la mejor opción estadística para la sustitución de datos, al depender de la
variable que se analice y su respectivo patrón de comportamiento.

Análisis de datos completos. El análisis de datos completos o listwise es una de las
estrategias más utilizadas [Medina and Galván, 2007b], a pesar de no considerarse la más
apropiada, puesto que genera sesgos en los coeficientes de asociación y de correlación [Kal-
ton and Kasprzyk, 1982]. Listwise asume que los datos faltantes siguen un patrón MC, es
decir, son una submuestra aleatoria del conjunto original. Por lo que, consiste en trabajar
únicamente con las instancias que poseen datos completos y desechar las restantes.

4.2.4.1. Imputación Simple

Media. La imputación a partir de la media es una de las estrategias de imputación más
utilizadas, debido a su simplicidad y bajo coste computacional. Sin embargo, el empleo de
la misma no resulta correcto, pues distorsiona la distribución de probabilidad de la variable
imputada [Little and Rubin, 2019]. Además, se debe tener en consideración que a diferencia
de la moda y la mediana, la media es susceptible a valores atípicos.
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Regresión. Esta estrategia suele emplearse en patrones de datos faltantes completamente
aleatorios [Medina and Galván, 2007a]. Consiste en reemplazar los valores perdidos por
los valores predichos por una regresión del elemento faltante. Para lo cual, inicialmente se
entrena y evalúa el modelo a partir de un subconjunto del conjunto de datos original, en el
que no existen valores perdidos.

Imputación a partir de los k-vecinos más cercanos. Esta estrategia toma como
base el algoritmo de clasificación k -vecinos más cercanos. Así pues, los valores faltantes se
imputan a partir del promedio de los valores que poseen los k vecinos más cercanos en la
variable en cuestión [Troyanskaya et al., 2001].

xij∗ =

∑k
n=1 vnj
k

, (4.9)

donde xij∗ es el valor imputado en la i-ésima instancia y la j -ésima variable, mientras que
vnj es el valor que posee el n-ésimo vecino más cercano en dicha variable.

Luego de estudiar diversas estrategias de imputación, muchas de las cuales generan
estimadores sesgados, se decidió realizar el análisis de datos completos. Ésto, debido a que
después de descartar las instancias con valores perdidos, las restantes continuaban siendo lo
suficientemente significativas. Por lo que, se considera que las instancias eliminadas son una
submuestra aleatoria de la muestra total.

4.2.5. Transformación

La transformación de los datos, consiste en la modificación de los valores de una o más
variables, con el objetivo de que los mismos satisfagan una determinada propiedad. Ésto, no
solo facilita la visualización e interpretación de los datos, sino que garantiza que las escalas de
las variables no influyan en el resultado final. Por ejemplo, en algoritmos de agrupamiento,
resulta conveniente transformar los datos previo a su procesamiento, con el objetivo de
que las variables de mayor escala no dominen los resultados del análisis. Sin embargo, la
estrategia de normalización a aplicar depende de las características del problema, ya que la
aplicación de una u otra producirá diferentes resultados.

Normalización min-max. La normalización min-max reescala los valores de una variable
a un nuevo rango previamente definido. Usualmente, este último está comprendido entre los
límites 0 y 1, es decir, ∀i, j x′ij ∈ [0, 1] (ecuación 4.10); sin embargo, dichos límites pueden
seleccionarse de forma empírica (ecuación 4.11). La principal desventaja de min-max radica
en el hecho de que incrementa el ruido existente en el conjunto de datos.

x′ij =
xij −min(xj)

max(xj)−min(xj)
, (4.10)

x′ij =
xij −min(xj)

max(xj)−min(xj)
(newmax − newmin) + newmin, (4.11)

donde min(xj) y max(xj) se refieren al mínimo y máximo valor de la variable xj ; mientras
que newmin y newmax son los límites inferior y superior de la nueva escala.
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Normalización z-score. Otra estrategia de normalización comúnmente utilizada es el
escalado estándar. Ésta, cuantifica la distancia de un valor respecto a su media. Además,
transforma los datos a una distribución con media 0 y desviación estándar 1 (ecuación 4.12),
permitiendo comparar datos expresados en magnitudes distintas.

x′ij =
xij − xj

std_desv(xj)
, (4.12)

siendo xj y std_desv(xj) la media y desviación estándar de la variable xj .

Normalización por escala decimal. La normalización por escala decimal transforma
los datos al rango (−1, 1) (ecuación 4.13).

x′ =
x

10j
, (4.13)

donde j es el número entero más pequeño tal que max(|x′|) < 1. Además, al igual que la
normalización min-max, las estrategias de normalización z-score y escala decimal son sus-
ceptibles a la presencia de valores atípicos.

Si bien existen algoritmos de minería de datos donde la información suele transformarse
previo a su procesamiento, en otros, tales como árboles de decisión y Random Forest no es
así. Por lo que, resulta apropiado aplicar estrategias de transformación, solo en los casos en
los que sea necesario. Razón por la cual, no se reescalaron ninguna de las variables presentes
en los conjuntos de datos de SPECpower_ssj2008 y Top500.

Por otra parte, en ambos conjuntos de datos existen variables categóricas, sobre las
cuales resulta imposible la aplicación de varios algoritmos de agrupamiento y reducción de la
dimensionalidad, tales como Análisis de Componentes Principales (PCA) y Descomposición
en Valores Singulares (SVD). Por lo que, se exploraron varias estrategias, a partir de las
cuales transformar datos categóricos en numéricos.

Medición ordinal. La medición ordinal se aplica sobre variables categóricas de tipo or-
dinal, ya que en las mismas existe una jerarquía u orden. Esta estrategia consiste en la
asignación de un valor numérico a cada uno de los elementos que compone la jerarquía,
de forma tal, que se satisfaga la condición de transitividad. La condición de transitividad
plantea que si A tiene una calificación superior a la de B y B posee una calificación superior
a la de C, entonces A tiene una calificación superior a la de C, es decir, si A > B, y B > C,
entonces A > C. Si bien las mediciones ordinales son de gran utilidad, éstas no permiten
comparar la magnitud de las diferencias entre las categorías.

Variables Ficticias. A diferencia de las variables ordinales, las variables nominales care-
cen de una disposición u ordenamiento de sus valores, lo cual dificulta establecer distancias
entre los mismos. En este sentido, resulta apropiado el empleo de variables ficticias o reasig-
nación uno de n. Esta estrategia consiste en la creación de una pseudovariable de valor
binario para cada valor de la variable nominal14 y calcular la distancia en cada una de

14Para una variable nominal de n valores distintos resulta suficiente con crear n − 1 variables ficticias,
pues el valor restante se representa al asignar cero a cada una de las anteriores n− 1 variables.
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las dimensiones. Entonces, para todo par de instancias xi, xj , su distancia en términos de
una variable nominal de cardinalidad n, es la suma de las distancias en cada una de las
n variables ficticias asociadas, es decir, ∀i, j distancia(xi, xj) =

∑n
k=1 distancia(xi,k, xj,k),

siendo

distancia(xi, xj) =

{
0 si xi = xj ,

1 si xi 6= xj .

distancia(xi,k, xj,k) =

{
0 si xi,k = xj,k,

1 si xi,k 6= xj,k.

En los conjuntos de datos en cuestión, todas las variables categóricas restantes, luego
del proceso de selección de características, son de tipo nominal. En consecuencia, se aplicó
la estrategia reasignación uno de n, la cual resulta de gran utilidad, a pesar del considerable
incremento que supone en términos de dimensionalidad.

4.2.6. Discretización

La discretización, consiste en la transformación de variables continuas a categóricas. Ésta,
usualmente se realiza en algoritmos de clasificación, con el objetivo de reducir la complejidad
del modelo y disminuir el costo computacional. Sin embargo, la definición de los interva-
los óptimos, tanto en número como longitud, no es un proceso trivial. En este sentido, si
bien puede resultar de utilidad el empleo de algoritmos de agrupamiento, suelen utilizarse
métricas de impuridad como el índice de Gini, la entropía y el error de clasificación.

Índice Gini = 1−
c−1∑
i=0

pi(t)
2, (4.14)

siendo c el número total de casos y pi(t) la frecuencia de la i-ésima clase en el nodo t.

Error de clasificación = 1−max(pi(t)). (4.15)

Específicamente, las variables continuas existentes en los conjuntos de datos de SPEC-
power_ssj2008 y Top500 hacen referencia a la eficiencia energética de los sistemas presentes
en dichos conjuntos. Por lo que, aun cuando la discretización de estas variables pudiese in-
crementar la robustez del modelo, se decidió realizar esta tarea solo en los casos donde fuese
necesario, ya que el empleo de la misma puede también sesgar este último.

4.2.7. Reducción de la dimensionalidad

A fin de reducir la alta dimensionalidad presente en los conjuntos de datos, sobre todo
luego de la creación de variables ficticias para la transformación de variables nominales en
discretas, se estudiaron varios algoritmos de reducción de dimensionalidad. Si bien estrategias
como el análisis factorial (FA), la incrustación localmente lineal (LLE) y el escalamiento
multidimensional (MDS) resultan de utilidad en este sentido, se consideraron más acertados
la SVD y el PCA.
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4.2.7.1. Descomposición en Valores Singulares

SVD consiste en la descomposición de una matriz de datos X, como la multiplicación de tres
matrices U, Σ y V T , de forma tal, que X = UΣV T , donde U y V son matrices unitarias15

ortogonales referentes a los vectores singulares izquierdos y derechos respectivamente, mien-
tras que Σ es una matriz diagonal asociada a los valores singulares.

X =


...

...
...

...
x1 x2 · · · xm
...

...
...

...


n×m

=


...

...
...

...
u1 u2 · · · un
...

...
...

...


n×n



σ1
σ2

. . .
σm


n×m


...

...
...

...
v1 v2 · · · vm
...

...
...

...


T

m×m

Para una matriz de datos Xn×m, los valores singulares son los primeros m elementos de
la diagonal principal de Σ. Éstos, al ser valores singulares, son no negativos y se ordenan
de forma jerárquica descendente, es decir ∀mi=1σi ≥ 0 y ∀m−1i=1 σi ≥ σi+1; mientras que, los
restantes valores de Σ son todos cero. Además, al asociarse el i-ésimo valor singular de Σ
con la i-ésima columna de U y V, la jerarquía existente entre los valores de Σ refleja la
relevancia de cada una de las columnas de U y V. Es decir, la i-ésima columna de U y V
es más relevante que su sucesora, en función de describir la información de X.

A grandes rasgos, la reducción de dimensionalidad, consiste en desechar los valores sin-
gulares significativamente pequeños y sus respectivos vectores en las matrices U y V. En
consecuencia, se aproximaría la matriz X en términos de los primeros vectores dominantes
de U y V, así como sus correspondientes valores singulares.

4.2.7.2. Análisis de Componententes Principales

El PCA consiste en la representación de la varianza de un conjunto de datos Xn×m, a partir
de variables ortogonales16 entre sí, nombradas componentes principales. Éstos, no son más
que la combinación lineal de los atributos originales, de forma tal, que cada componente
principal se asocia a un autovector y un autovalor, los cuales indican la dirección y magni-
tud en la que se explica la varianza [Brunton and Kutz, 2019]. En otras palabras, el i-ésimo
autovector hace referencia a las ponderaciones correspondientes a cada uno de los atributos
originales en el i-ésimo componente principal.

De manera general, la aplicación del PCA consta de los siguientes pasos [Brunton and
Kutz, 2019]:

1. PCA es equivalente SVD, una vez que los datos se centran. Por lo que se calcula la
media de las instancias x, la media de todo el conjunto de datos X y por último se
centran los valores de éste.

xj =

∑n
i=1Xij

n
, (4.16)

15Al ser U y V matrices unitarias significa que UUT = UTU = In×n y V V T = V TV = Im×m.
16La correlación entre dos variables ortogonales es cero.
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X =

1
...
1

x, (4.17)

B = X −X. (4.18)

2. Calcular la matriz de covarianza de los puntos (C ).

C =
BTB

n
. (4.19)

3. Obtener los vectores y valores propios de C.

CV = V D, (4.20)

donde V son los autovectores o ponderaciones de cada componente y D son los auto-
valores o varianza explicada por dichos componentes.

4. Finalmente, a partir de los autovectores se obtienen los componentes principales (T ).

T = BV. (4.21)

Si se descompone B a través de SVD, de forma tal, que B = UΣV T , entonces T = UΣ,
pues V TV = I. Asimismo, existe una estrecha relación entre los autovalores y los
valores singulares, de forma tal, que λ = σ2. De ahí que, el porcentaje de varianza
explicada por los primeros k de n componentes principales se cuantifica como:

∑k
i=1 λi∑n
i=1 λi

. (4.22)

SVD, PCA y muchos otros algoritmos de reducción de dimensionalidad, son sensibles a
ruidos y valores atípicos. Por lo que, la presencia de estos últimos en los conjuntos de datos
en cuestión, promueve el análisis del impacto de los valores atípicos en dichos algoritmos,
y en qué medida se conserva el carácter atípico de las instancias, luego de la reducción
de la dimensionalidad. PCA es un problema de optimización, que consiste en maximizar
la varianza explicada por cada uno de los componentes principales. Motivo por el cual, la
distorsión de la media a causa, de la presencia de valores atípicos, influye directamente en
la varianza y covarianza, y por consiguiente en el PCA. La figura 4.19 ilustra la sensibilidad
del PCA ante la presencia de valores atípicos.
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Original Original+Ruido

Compresión Original Compresión Original+Ruido

Figura 4.19: PCA: Análisis de sensibilidad a valores atípicos.

En este sentido, existen estudios que destacan la relevancia de la estandarización de los
datos previo a la reducción de la dimensionalidad. Ésta, no solo elimina cualquier influencia
de la escala de las variables en los resultados finales, sino que además, reduce el impacto de
los valores atípicos en los algoritmos de reducción de dimensionalidad [Onderwater, 2015].
La figura 4.20 ilustra los resultados obtenidos luego de la aplicación de esta estrategia, donde
cabe destacar cómo, para igual número de componentes principales, el porcentaje de varianza
explicada en esta figura es significativamente superior con respecto a la figura 4.19.

Original Original+Ruido

Compresión Original Compresión Original+Ruido

Figura 4.20: PCA: Análisis de sensibilidad a valores atípicos posterior a la estandarización.

4.2.7.3. Análisis de Componententes Principales Robusto

El Análisis de Componententes Principales Robusto (RPCA), es una estrategia de reducción
de dimensionalidad basada en el PCA, pero a diferencia del mismo, posee una gran robustez
en presencia de valores atípicos. Éste, consiste en la descomposición de la matriz de datos,
como la superposición de un componente de bajo rango L y un componente disperso S.

X = L+ S. (4.23)
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De manera general, L y S son los patrones claramente definidos en el conjunto de datos y
los valores atípicos respectivamente, de forma tal, que L no es sensible a los valores atípicos
y datos corruptos presentes en S (ver figura 4.21).

Original+Ruido L S

Figura 4.21: RPCA: Análisis de sensibilidad.

Por otra parte, para toda matriz X ∈ Rm×n, su rango es menor o igual que el mínimo
número de filas y columnas, es decir, Rango(X) ≤ min(m,n). Sin embargo, en las matrices
de bajo rango, su rango es siempre inferior al mínimo número de filas y columnas, es decir,
Rango(X) < min(m,n). Por lo que, en el caso de estas últimas, siempre se anulará al menos
una fila o columna. Entonces, al ser L una matriz de bajo rango, ésta puede ser descompuesta
en valores singulares como:

L = UΣV T =

Rango(L)∑
i=1

σiuiv
T
i . (4.24)

Aún así, existen un número infinito de posibles pares L, S ; sobre todo teniendo en cuenta
que la cantidad de incógnitas a inferir duplica a las existentes en la matriz de datos X. Por lo
que, se define una función objetivo que promueva una solución única y responda al objetivo
que se persigue. En el caso de RPCA, la función objetivo consiste en minimizar el rango de
L y el número de valores atípicos o datos corruptos presentes en S :

min Rango(L) + ‖S‖0 tal que X = L+ S, (4.25)

donde ‖ · ‖0 es el número de elementos distintos de cero.

Como conclusión del análisis realizado, si bien algoritmos como RPCA son más eficientes
para la gestión de valores atípicos que el PCA clásico, éstos no se consideraron, puesto que
descartar los valores atípicos, no resulta conveniente para con el estudio que se plantea. En
consecuencia, se adoptó como estrategia de reducción de dimensionalidad la aplicación del
PCA, precedido de la estandarización de los datos.

La aplicación del PCA sobre el conjunto de datos de SPECpower_ssj2008 indicó que se
requieren diez componentes principales para explicar el 80.4% de la varianza de los datos
(ver figura 4.22). Mientras que, en el conjunto de datos Top500 resultan suficientes cuatro
componentes principales para expresar el 83.8% de la varianza de los datos (ver figura
4.23). No obstante, en este último, resulta innecesario y contraproducente, considerando
que luego de las etapas anteriores de preprocesamiento, este conjunto de datos cuenta con
nueve dimensiones, por lo que no es un conjunto de alta dimensionalidad17.

17Los conjuntos de datos de 11 o más dimensiones suelen considerarse de alta dimensionalidad.

CINVESTAV-IPN Departamento de Computación



44 Capítulo 4

PC
1

PC
2

PC
3

PC
4

PC
5

PC
6

PC
7

PC
8

PC
9

PC
10

PC
11

PC
12

PC
13

PC
14

PC
15

PC
16

PC
17

PC
18

PC
19

PC
20

PC
21

Componente principal

0

5

10

15

20

25

30

35

40

Po
rc

en
ta

je
 d

e 
va

ria
nz

a 
ex

pl
ica

da

38.5

17.7

4.9 4.2 3.7
2.6 2.4 2.2 2.2 2.0 1.8 1.7 1.7 1.6 1.5 1.5 1.4 1.2 1.0 1.0 1.0

Figura 4.22: SPECpower_ssj2008: PCA.
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Figura 4.23: Top500: PCA.

Por otra parte, la aplicación de técnicas de reducción de dimensionalidad puede sesgar
el comportamiento atípico de los datos [Onderwater, 2015]. Por lo que, se decidió proseguir
el análisis sin previa reducción de la dimensionalidad, y hacer uso de las nuevas dimensiones
solo en algoritmos de alto coste computacional. Luego del preprocesamiento del conjunto de
datos de SPECpower_ssj2008, éste quedó conformado por 644 instancias, cada una de las
cuales constaba de 65 atributos. Asimismo, el conjunto de datos Top500 se compuso de 189
muestras, las que a su vez poseían 10 atributos. Además, los sistemas superproporcionales
identificados durante el análisis descriptivo persistieron el preprocesamiento de los datos.

4.3. Análisis exploratorio

El análisis exploratorio, consiste en estudiar los conjuntos de datos, identificar los patrones
presentes en éstos y las características principales. De acuerdo con [Williams and Simoff,
2006], el análisis exploratorio comprende la construcción de gráficos, la exploración visual e
interactiva; y la aplicación de algoritmos analíticos.
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4.3.1. Factores condicionantes de superproporcionalidad

El PCA realizado, permitió identificar las variables de mayor relevancia en términos de
varianza. Sin embargo, no resulta suficiente para determinar las condicionantes del carácter
superproporcional de varios sistemas. En consecuencia, a continuación se analizan varias
estrategias de selección de características.

Análisis del umbral de varianza. La selección de características a partir de un umbral
de varianza es una técnica no supervisada, que consiste en la eliminación de aquellas carac-
terísticas cuya varianza es inferior a un umbral previamente definido. Asimismo, el umbral
de decisión suele definirse teniendo en cuenta el equilibrio de clases en el conjunto de datos
y los costos asociados a una clasificación errónea [Gao et al., 2009].

Árboles de decisión. Los árboles de decisión son una estrategia de aprendizaje supervi-
sado, donde los nodos hojas representan las etiquetas o atributos de clase, mientras que los
restantes nodos y sus respectivas aristas, representan a las características y sus correspon-
dientes valores. Si bien éstos son fáciles de construir e interpretar, y se caracterizan por su
robustez en presencia de ruido y valores atípicos, el espacio de búsqueda suele ser exponen-
cialmente grande18 y no se consideran las interacciones entre las variables. No obstante, su
propio principio de construcción posibilita el empleo de éstos como estrategia de selección de
características, pues las características se asignan a cada uno de los nodos en base al radio
de ganancia de información (Gainratio).

Gainratio ajusta la ganancia de información19 o grado de pureza asociado a la variable
(Gainsplit) en base a la entropía del particionado, de forma tal, que se penalizan los casos
donde existe un gran número de particiones pequeñas.

Gainratio =
Gainsplit
Splitinfo

, (4.26)

Gainsplit = H(p)−
k∑
i=1

ni
n
H(i), (4.27)

Splitinfo = −
k∑
i=1

ni
n

log
ni
n
2 , (4.28)

siendo p el nodo padre, k el número de intervalos en que se discretiza la variable y ni el
número de instancias o registros pertenecientes al i-ésimo intervalo. Además, con el objetivo
de seleccionar un subconjunto de características que maximice la exactitud y precisión del
modelo, dicha estrategia suele extenderse a través de la aplicación del algoritmo Random
Forest, donde la importancia general de cada característica se cuantifica como el promedio
de la importancia individual de la misma en todos los árboles del bosque.

18Las variables continuas presentes en los árboles de decisión, se discretizan con el objetivo de disminuir
el espacio de búsqueda e incrementar la robustez del modelo.

19La ganancia de información cuantifica la calidad de una variable en términos de reducción de entropía.
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Filtro basado en correlación rápida. El algoritmo filtro basado en correlación rápida
(FCBF) [Yu and Liu, 2003], consiste en seleccionar las características que presentan una
alta correlación con la variable objetivo y poca correlación con las restantes variables. Para
ello, utiliza como métrica de correlación la incertidumbre simétrica (SU )20, la cual se basa
en los conceptos de entropía de Shannon y ganancia de información.

SU(X,Y ) = 2

[
H(X)−H(X,Y )

H(X) +H(Y )

]
. (4.29)

FCBF, al igual que otros métodos de selección de características a partir de filtros,
se desempeña de forma independiente al algoritmo de aprendizaje. Además, es escalable,
computacionalmente eficiente y no requiere de un entrenamiento previo. La complejidad
temporal de FCBF es O(n log2 n). De acuerdo con [Yu and Liu, 2003], FCBF es altamente
eficiente y efectivo al tratar datos de alta dimensionalidad.

Varias estrategias de selección de características son sensibles a la presencia de valores
atípicos en los datos, condición anteriormente detectada en los conjuntos de datos de SPEC-
power_ssj2008 y Top500. En consecuencia, estrategias tales como el análisis del umbral de
varianza y máquinas de soporte vectorial (SVM) se descartaron automáticamente. Por lo
que, se prosiguió con el análisis a partir de estrategias basadas en árboles de decisión, espe-
cíficamente los algoritmos CART y Random Forest, así como FCBF.

El estudio de superproporcionalidad se desarrolló a partir del conjunto de datos de SPEC-
power_ssj2008, ya que, a diferencia del Top500, éste posee un enfoque gradual de carga de
trabajo, característica indispensable para el análisis de la proporcionalidad energética. Tam-
bién, fue en el conjunto de datos de SPECpower_ssj2008 en el que se identificó la presencia
de 20 sistemas superproporcionales. Entonces, se definió en dicho conjunto un atributo de
clase ficticio, binario, y luego se etiquetaron los servidores presentes en SPECpower_ssj2008
en base a su carácter superproporcional.

Por otra parte, el desbalance de clases afecta a los árboles de decisión. Motivo por el
cual, la generación de los subconjuntos de entrenamiento y validación se realizó a partir de
la técnica Stratified K-Folds cross-validation. Ésta, es una variación de la técnica K-Folds
cross-validation, donde las k particiones disjuntas, se generan preservando el porcentaje de
muestras de cada clase. Así pues, garantiza que en todo momento, cada una de las clases,
forman parte tanto del entrenamiento, como de la validación del modelo.

La figura 4.24 ilustra las 10 variables de mayor relevancia en términos de superpropor-
cionalidad energética, identificadas a partir de la ejecución del algoritmo Random Forest.
En este sentido, sobresale la eficiencia energética como factor determinante. Igualmente,
destaca la influencia del consumo de potencia en los niveles discretos de carga de trabajo,
específicamente en los niveles de 0% y 10% de utilización.

20Un valor SU de 1 indica que a partir de una variable se puede predecir con toda certeza el valor de la
otra, mientras que el valor 0 indica que dos características son totalmente independientes.
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Figura 4.24: Random Forest : Ranking de las 10 características más determinantes en materia
de superproporcionalidad energética.

Como resultado de la aplicación del algoritmo FCBF, se obtuvo que si bien la eficiencia
energética es un factor relevante, también lo son las características asociadas a las unida-
des de almacenamiento y el tipo de gabinete. Ésto, se corroboró a partir del análisis de
dependencia entre cada una de las variables y el atributo de clase, para lo cual se empleó el
estadístico chi-cuadrado (χ2)21 (ver figura 4.25). Para más información ver tabla B.1.
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Figura 4.25: χ2: Ranking de las 10 características más determinantes en términos de super-
proporcionalidad energética.

Como conclusión del análisis realizado, y en respuesta a la interrogante 1, se determi-
nó que si bien la eficiencia energética, el tipo de gabinete y las características asociadas
al procesador y sistema de almacenamiento resultan relevantes en términos de superpro-
porcionalidad energética, existen varios otros factores a considerar al respecto. Lo anterior,
reafirma lo expuesto por [Bergman et al., 2008] referente a que el consumo energético de un
sistema depende de diversos factores. Por lo que, resulta de interés identificar las variables
de distinción en términos de rendimiento y consumo de potencia en servidores de HPC.

21Según [Thaseen and Kumar, 2017], el estadístico χ2 es una prueba numérica que mide la desviación de
la distribución esperada considerando que el evento de la característica es independiente del valor de la clase.
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4.3.2. Análisis de agrupamiento

El análisis de agrupamiento es una tarea descriptiva de minería de datos, que consiste en
segmentar en grupos (clústeres) los elementos que componen el conjunto de datos, de forma
tal, que se minimice la varianza intra-clúster22 y se maximice la varianza inter-clúster23.
Con este objetivo, los elementos se agrupan en base a la similitud de sus atributos, así
pues, la métrica de disimilaridad (distancia) y el algoritmo de agrupamiento a emplear
están condicionados por el contexto del problema. Además, dicho análisis puede utilizarse
tanto para agrupar instancias, como para agrupar variables, por lo que permite confirmar o
descartar teorías, y a la vez, descubrir relaciones, que de otra forma permanecerían ocultas.

4.3.2.1. Métricas de distancia

En varias técnicas de minería de datos, tales como el análisis de agrupamiento y el algoritmo
k -vecinos más cercanos, la calidad de los resultados depende de la métrica de distancia que
se emplee. De manera general, las métricas de distancia satisfacen las siguientes condiciones
necesarias y suficientes:

1. Semipositiva: ∀x, y d(x, y) ≥ 0 y d(x, y) = 0 ⇐⇒ x = y.

2. Simetría: ∀x, y d(x, y) = d(y, x).

3. Desigualdad triangular: ∀x, y, z d(x, z) ≤ d(x, y) + d(y, z).

Distancia entre atributos. Como se definió anteriormente, la similitud entre dos objetos
es un valor numérico que cuantifica el grado de similaridad existente entre dichos objetos
para cada uno de los atributos. En este sentido, la métrica a partir de la cual se calcula la
distancia existente entre dos objetos para un mismo atributo, está sujeta al tipo de variable
que se analice (ver tabla 4.4).

Tipo de atributo Métrica de disimilitud Métrica de similitud

Nominal d =

{
0 si xi = xj ,

1 si xi 6= xj .
s =

{
1 si xi = xj ,

0 si xi 6= xj .

Ordinal d = |x−y|
n−1 s = 1− d

Intervalo d = |x− y| s = −d
s = 1

1+d

Tabla 4.4: Métricas de similitud entre atributos.

Distancia Manhattan. La distancia Manhattan o distancia L1, define que la distancia
entre dos puntos, es igual a la sumatoria de las distancias entre cada uno de los valores de
los mismos.

dman(x, y) =

n∑
i=1

|(xi − yi)|, (4.30)

siendo n el número de dimensiones, mientras que xi y yi son el valor del i-ésimo atributo en
las instancias x y y.

22La varianza intra-clúster es la distancia entre los elementos de un mismo clúster.
23La varianza inter-clúster es la distancia entre los clústeres.
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Distancia euclideana. La distancia euclideana (L2) se utiliza en algoritmos de agrupa-
miento, con el objetivo de definir los centroides como la media de las instancias, y minimizar
la suma del cuadrado de la distancia euclideana.

deuc(x, y) =

√√√√ n∑
i=1

(xi − yi)2. (4.31)

Distancia Minkowski. La distancia Minkowski es una generalización de las distancias
euclideana y Manhattan, donde r ∈ [1,∞] de forma tal, que su valor está en correspondencia
con el tipo de métrica de distancia a aplicar.

d(x, y) =

(
n∑
i=1

|xi − yi|r
) 1

r

. (4.32)

Coeficiente de coincidencia simple. El coeficiente de coincidencia simple (SMC),
cuantifica la similaridad entre dos vectores binarios24 x y y a partir de la proporción del
número de coincidencias, con respecto al número total de atributos.

SMC =
f00 + f11

f00 + f10 + f01 + f11
, (4.33)

siendo fjk el número de atributos donde x y y toman valor j y k respectivamente.

Coeficiente de Jaccard. El coeficiente de Jaccard (J), consiste en la proporción del
número de coincidencias con respecto al número de atributos, para los cuales, al menos uno
de los valores existentes en los vectores es distinto de cero.

J =
f11

f10 + f01 + f11
. (4.34)

Coeficiente de Jaccard Extendido. El coeficiente de Jaccard Extendido (EJ), es una
variación del coeficiente de Jaccard para variables continuas.

EJ(x, y) =
x · y

‖x‖2 + ‖y‖2 − x · y
. (4.35)

Coseno de similitud. El coseno de similitud (scosine), se utiliza como métrica de simila-
ridad en vectores, donde cada atributo hace referencia a la frecuencia de ocurrencia de un
determinado elemento. Además, scosine se extrapola para identificar el coseno de distancia
(dcosine) entre dos vectores, por lo que ambas métricas suelen utilizarse en algoritmos de
agrupamiento, ya sea para maximizar scosine o disminuir dcosine.

scosine(x, y) =
〈x, y〉
‖x‖ · ‖y‖

, (4.36)

dcosine(x, y) = 1− scosine(x, y). (4.37)
24Un vector binario es aquel cuyos atributos son todos binarios.
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Distancia de Mahalanobis. La distancia de Mahalanobis considera la correlación exis-
tente entre las variables, al calcularse a partir de la inversa de la matriz de covarianza (Σ).
Además, es de gran utilidad cuando los atributos tienen diferentes escalas, y la distribución
de los datos es aproximadamente gaussiana [Tan et al., 2016].

mahalanobis(x, y) = (x− y)TΣ−1(x− y). (4.38)

Correlación. La correlación analiza en qué medida dos variables se relacionan entre sí, por
lo que suele utilizarse como métrica de similitud. En este sentido, el coeficiente de Pearson
resulta de gran utilidad, al cuantificar la relación lineal existente entre dos variables, sin
importar la escala de las mismas.

rxy =
σxy
σxσy

, (4.39)

donde σxy es la covarianza de las variables x y y, mientras que σx y σy representan la
desviación estándar de las variables x y y respectivamente.

4.3.2.2. Algoritmos de agrupamiento

K-Means. K-Means es un algoritmo de agrupamiento particional, que consiste en definir
k clústeres disjuntos, de forma tal, que se optimice un criterio de agrupamiento [Likas et al.,
2003]. Este criterio, usualmente radica en la minimización de la suma del error cuadrado
(SSE ), es decir, minimizar la suma del cuadrado de la distancia de cada elemento a su
respectivo centroide25.

SSE =

k∑
i=1

∑
x∈Ci

distancia(ci, x)2, (4.40)

donde k y ci hacen referencia al número de clústeres y el centroide del i-ésimo clúster (Ci)
respectivamente. La minimización de la SSE es un problema de optimización continua cón-
cava, cuya solución mínima local debe ser un número entero [Peng and Xia, 2005]. Motivo
por el cual, se han estudiado varias estrategias de reducción de la SSE. Una estrategia para
reducir la SSE es incrementar el número de clústeres; sin embargo, dicho incremento reduce
la robustez del modelo. Por lo que, un agrupamiento óptimo de K-Means bajo este criterio,
es aquel que minimiza la SSE, y hace uso del menor número de clústeres.

K-Means usualmente se asocia con la distancia euclideana y la SSE. Sin embargo, el
criterio de agrupamiento y la métrica de distancia a emplear se seleccionan en base a los
objetivos del agrupamiento y las características del conjunto de datos. Por ejemplo, otro
criterio de agrupamiento válido, es maximizar la similitud entre las instancias que componen
cada uno de los clústeres y sus respectivos centroides, lo cual suele conocerse como cohesión
del clúster.

Total cohesion =
k∑
i=1

∑
x∈Ci

scosine(ci, x). (4.41)

25De acuerdo con [Tan et al., 2016], el mejor centroide para minimizar la SSE de un clúster es la media
de los puntos en el clúster.
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K-Means se fundamenta en tres pasos principales: 1) la inicialización aleatoria de los
centroides26, 2) la asignación de cada una de las instancias al clúster cuyo centroide esté
más próximo y 3) la redefinición de los centroides a partir de la media de las instancias per-
tenecientes a su respectivo clúster. Luego, el algoritmo itera sobre los pasos dos y tres, hasta
que los centroides no varíen o dicha variación sea insignificante. En consecuencia, K-Means
converge en pocas iteraciones, de forma tal, que tiene una complejidad computacional de
O(n ·k · l ·d), donde n es el número de instancias, k es el número de clústeres, l es el número
de iteraciones y d es el número de atributos.

Entre sus desventajas destaca que el número de clústeres debe definirse previamente, lo
cual resulta un inconveniente, teniendo en cuenta que la selección del número de clústeres
óptimo es un problema NP-duro27. Motivo por el cual, han sido ideadas disímiles estrategias
de selección del número de clústeres, tales como el método del codo y el coeficiente de silueta
(S ) [Kaufman and Rousseeuw, 2009]. El método del codo, utiliza la SSE como métrica de
desempeño, y consiste en identificar el valor de k que satisfaga que un incremento del mismo
no mejore sustancialmente la distancia media intra-clúster. Mientras que, el análisis de la
silueta mide la calidad del agrupamiento a partir de la distancia entre los clústeres, tomando
como resultado el valor de k que maximiza la media de los coeficientes de silueta.

S =
b− a

max(a, b)
, (4.42)

donde a y b son la distancia media intra-clúster y la distancia media a las instancias del
clúster más cercano respectivamente. El cálculo de las matrices de distancia hace que este
algoritmo tenga una complejidad temporal y espacial de Θ(N2), siendo desaconsejado su
empleo en conjuntos de datos de gran tamaño [Yuan and Yang, 2019].

Por otra parte, K-Means es susceptible a la presencia de valores atípicos en el conjunto
de datos, los cuales distorsionan los centroides redefinidos. Asimismo, el carácter aleatorio de
los centroides iniciales posibilita la existencia de clústeres vacíos. Motivo por el cual, se han
propuesto varias soluciones, tales como el acercamiento incremental, el empleo de algoritmos
de agrupamiento jerárquico y K-Means++.

El acercamiento incremental, consiste en la actualización de los centroides luego de cada
asignación. Por otra parte, la selección de los centroides iniciales a partir de agrupamiento
jerárquico radica en extraer k clústeres del agrupamiento jerárquico realizado y utilizar los
centroides de éstos como centroides iniciales. En cambio, K-Means++ supone inicializar el
primer centroide aleatoriamente, y elegir cada uno de los centroides restantes como el punto
lo más lejos posible de los centroides ya existentes. No obstante, a pesar de las disímiles
estrategias propuestas con el objetivo de reducir las sensibilidades de K-Means, éste resulta
desacertado ante clústeres de diferentes tamaños, densidades o forma no globular, ya que
K-Means tiende a hacer globos y agrupar las zonas más densas.

26En el algoritmo K-Means los centroides iniciales no necesariamente coinciden con instancias ya existentes.
27NP-duro es el conjunto de los problemas de decisión que contiene los problemas H tales que todo

problema L en NP puede ser transformado polinomialmente en H.
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Agrupamiento jerárquico. El agrupamiento jerárquico, consiste en la generación de
conjuntos de clústeres anidados en forma de un árbol jerárquico, usualmente representado
a través de un dendograma.

De manera general, existen dos tipos de agrupamiento jerárquico, el aglomerativo y el
divisivo. En el primero, se parte de tantos clústeres como instancias, y en cada iteración se
unen los dos clústeres más cercanos, hasta que se obtiene un único clúster, o los k clústeres
deseados. Mientras que el segundo consiste en el proceso inverso, es decir, se parte de un
único clúster compuesto por todas las instancias, y en cada iteración se divide un clúster,
hasta que cada clúster contenga una única instancia o existan los k clústeres deseados. Am-
bas estrategias hacen uso de una matriz de distancia Dn×n, la cual es una matriz simétrica,
donde cada entrada Dij representa la distancia existente entre el i -ésimo y j -ésimo clúster.

Sin importar el tipo de agrupamiento jerárquico a realizar, como resultado de la selección
del par de clústeres más próximos, en cada iteración surge o se elimina un clúster, y por
consiguiente, la matriz de distancia se modifica. Para ello, la distancia entre dos clústeres
cualesquiera se cuantifica a través del empleo de una de las siguientes estrategias:

MIN: se mide a partir de la mínima distancia existente entre dos instancias de distintos
clústeres A ∈ C1 y B ∈ C2. La aplicación de esta estrategia tiene una complejidad
temporal de Θ(n ·m), siendo n y m el número de instancias existentes en los clústeres.

MAX: esta estrategia consiste en la máxima distancia existente entre dos instancias
de distintos clústeres.

Group Average: consiste en el promedio de las distancias de cada par de instancias
pertenecientes a diferentes clústeres.

Distancia entre centroides: esta estrategia consiste en la distancia entre los cen-
troides de cada clúster.

Método de Ward: consiste en el incremento de la SSE cuando se combinan dos
clústeres.

Si bien el agrupamiento jerárquico no es susceptible a problemas de inicialización, ni
requiere la definición previa del número de clústeres, las estrategias anteriores poseen varias
ventajas y desventajas. MIN permite la agrupación de clústeres con forma no elíptica; no
obstante, al solo considerar el par de instancias más cercanas de diferente clúster, es sensible
a ruido y valores atípicos. Asimismo, MAX, Group Average y el método de Ward son menos
susceptibles a ruido y valores atípicos, pero suelen generar grupos de forma globular.

DBSCAN. El agrupamiento espacial basado en densidad de aplicaciones con ruido (DBS-
CAN), como su nombre lo indica, es un algoritmo de agrupamiento basado en densidad,
donde las regiones de alta densidad están separadas por regiones de baja densidad. Éste,
hace uso de un enfoque de clústeres en torno a su centro, por lo que el análisis se fundamenta
en la relación existente entre tres tipos de puntos: núcleo, frontera y ruido.
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En este enfoque, la densidad para un punto cualquiera, se estima a partir del número
de puntos dentro de su radio (Eps). Es decir, un punto de tipo núcleo es aquel que está en
el interior de una región densa, y tiene al menos un número específico de puntos (MinPts)
dentro de su radio. Asimismo, un punto de tipo frontera no es más que la arista o frontera de
una región densa, es decir, es aquel que si bien no es un punto de tipo núcleo, se encuentra
en el “vecindario” de éste. Mientras que, un punto se clasifica como ruido cuando está en
una región escasamente poblada, es decir, es aquel que no es núcleo ni frontera. DBSCAN
agrupa en un mismo clúster a cualesquiera dos puntos que estén lo suficientemente cerca
dentro de una distancia Eps, asimismo con los puntos de tipo frontera. Por el contrario, omi-
te los puntos que se clasifiquen como ruido; por lo que no produce agrupamientos completos.

DBSCAN es robusto ante ruido, valores atípicos y la existencia de clústeres de diferentes
formas y tamaños. No obstante, es sensible ante la presencia de clústeres de diferentes
densidades y conjuntos de datos de alta dimensionalidad. Esto último, a causa de lamaldición
de la dimensión28, ya que, a medida que aumenta el número de dimensiones, también lo hace
la distancia entre los puntos, lo cual dificulta la determinación del Eps.

4.3.2.3. Resultados del análisis exploratorio

Inicialmente, se estandarizó la información existente en los conjuntos de datos Top500 y
SPECpower_ssj2008, y se redujo la dimensionalidad de este último a partir del PCA. Sin
embargo, no se disminuyó la dimensionalidad del conjunto de datos Top500, en vista del
número discreto de dimensiones presentes en éste y la sensibilidad de los algoritmos de re-
ducción de dimensionalidad a los valores atípicos, aspectos analizados en la sección 4.2.7.
Asimismo, se utilizó el coseno de similitud como métrica de similaridad, ya que la semejanza
entre documentos suele ser cuantificada a partir de esta métrica. En consecuencia, se empleó
la maximización de la cohesión total como criterio de agrupamiento.

Por otra parte, si bien se contempló la aplicación del método del codo para la selección
del número de clústeres, diversos estudios lo clasifican como inadecuado [Yuan and Yang,
2019]. Éstos, destacan la influencia que tiene la relación existente entre los valores de k y
SSE, en la identificación del punto de inflexión. Motivo por el cual, si el punto de inflexión
no es obvio, puede dificultarse la identificación de k.

También, se consideró elegir el número de clústeres a partir del empleo de técnicas de
agrupamiento espectral, tales como el Agrupamiento Espectral del Núcleo (KSC) [Langone
et al., 2016] y la Silueta Global Espectral (GS) [Mur et al., 2016]. Sin embargo, dichas estra-
tegias, al basarse en el algoritmo de Agrupamiento Espectral, poseen una alta complejidad
computacional29 y no garantizan valores elevados en los índices de validación interna para
cada uno de los algoritmos de agrupamiento. En cambio, el coeficiente de silueta es consi-
derada la métrica de validación interna más efectiva y generalizada [Moulavi et al., 2014],
[Tomasini et al., 2016]. Así pues, la elección del número de clústeres y la evaluación de los
agrupamientos se llevó a cabo a través del análisis de esta métrica.

28El efecto Hughes o maldición de la dimensionalidad hace referencia a cómo la exactitud de un modelo
tiende a decrecer a medida que el número de características se incrementa [Hughes, 1968].

29El algoritmo Agrupamiento Espectral tiene una complejidad temporal de O(n3).
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Determinar a priori los valores de los factores de entrada Eps y MinPts del algoritmo
DBSCAN, no es una tarea sencilla. Razón por la cual, se utilizó el algoritmo Método Diná-
mico DBSCAN (DMDBSCAN) [Rahmah and Sitanggang, 2016], para determinar el valor
óptimo de Eps. DMDBSCAN consiste en calcular para cada punto, la distancia a los n pun-
tos más cercanos, y ordenarlas de forma ascendente. Luego, similar al método del codo, se
toma como Eps la distancia dónde el cambio en la gráfica es más pronunciado. Las figuras
4.26 y 4.27 ilustran las distancias entre los sistemas presentes en los conjuntos de datos de
SPECpower_ssj2008 y Top500, y sus correspondientes quintos vecinos más cercanos.
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Figura 4.26: SPECpower_ssj2008: DMDBS-
CAN.
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Figura 4.27: Top500: DMDBSCAN.

Las tablas 4.5 y 4.6 resumen los resultados obtenidos de la aplicación de diversos algorit-
mos de agrupamiento, en los conjuntos de datos de SPECpower_ssj2008 y Top500. Además,
destaca el variado número de clústeres utilizados en cada uno de los agrupamientos, a fin de
maximizar el coeficiente de silueta, y la disimilitud de dichos coeficientes.

Algoritmo No. clústeres No. Ruido Coeficiente de silueta Descripción
Fuzzy C-Means 3 0.35643
K-Medoides 2 0.33237
DBSCAN 2 4 0.42475 Eps=0.3 MinPts=5
Agrupamiento Espectral 3 0.61612
Esperanza máxima 10 0.15874
K-means 2 0.34844

Tabla 4.5: SPECpower_ssj2008: Análisis de agrupamiento

Algoritmo No. clústeres No. Ruido Coeficiente de silueta Descripción
Fuzzy C-Means 3 0.41515
K-Medoides 4 0.21035
DBSCAN 2 8 0.54149 Eps=0.16 MinPts=5
Agrupamiento Espectral 3 0.58699
Esperanza máxima 4 0.57038
K-means 3 0.50167

Tabla 4.6: Top500: Análisis de agrupamiento
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No obstante, el número de dimensiones existentes en ambos conjuntos dificultó la visua-
lización de la distribución de los datos, y por consiguiente los clústeres resultantes. Además,
una única métrica de validación interna puede resultar insuficiente para evaluar la calidad
del agrupamiento, y más aún realizar comparaciones. Sin embargo, el principal objetivo de
este análisis, no consistió en el agrupamiento de los datos, sino en la identificación de las
variables de mayor relevancia para todos y cada uno de dichos agrupamientos.

Se estudiaron varias estrategias de selección de características, con el objetivo de identi-
ficar cuáles variables y en qué cuantía las mismas condicionaban la pertenencia a uno u otro
clúster. Entonces, en base al impacto que tienen los valores atípicos en dichas estrategias,
el análisis se realizó a partir de Random Forest y FCBF. Con este fin, se aplicaron ambas
estrategias de selección de características en las particiones de los conjuntos de datos Top500
y SPECpower_ssj2008 generadas por los algoritmos de agrupamiento. Donde, como muestra
la figura 4.28, destaca la influencia de las arquitecturas de Procesamiento Paralelo Masivo
(MPP)30 y clúster31 en la distinción de los sistemas. Para más información ver apéndice B.
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Figura 4.28: Top500: Selección de las características a partir de Random Forest.

Si bien la arquitectura es de las variables de mayor relevancia, también lo son el rendi-
miento, consumo de potencia y eficiencia energética. Sin embargo, resulta curioso la varia-
bilidad de las características de mayor influencia en los distintos agrupamientos. De manera
general, varios factores condicionan los resultados de un agrupamiento, tales como el tipo
y criterio de agrupamiento, la métrica de distancia y las fortalezas de los diversos algorit-
mos ante ruido, valores atípicos y clústeres de diferentes formas, tamaños y densidades. Así
pues, los resultados obtenidos son razonables, ya que solo la métrica de distancia y el criterio
de agrupamiento son los parámetros comunes para los distintos algoritmos de agrupamiento.

30MPP es un diseño de procesamiento paralelo, donde los nodos están herméticamente integrados, e
interconectados mediante un enlace de alta velocidad. Además, cada nodo tiene su propio sistema operativo
y memoria, por lo que el intercambio de información se realiza a través de la red de interconexión de nodos.

31El clúster es un tipo de arquitectura paralela distribuida, conformada por varios servidores independien-
tes e interconectados.
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Como resultado del análisis realizado, se concluyó que en los servidores de HPC, la dife-
renciación entre los sistemas está dada principalmente en función del rendimiento, consumo
de potencia y eficiencia energética, sobre todo en niveles de carga discretos. Además, las
restantes variables de mayor relevancia están directamente relacionadas con las anteriores,
por lo que es innecesario su análisis. Por lo tanto, se procedió con la definición de un indica-
dor multivariado, capaz de cuantificar la idoneidad de los servidores de HPC, en base a las
características de su contexto de trabajo, y la influencia de estas últimas en el consumo de
potencia. Para ello, se decidió hacer uso del conjunto de datos Top500, pues a diferencia de
SPECpower_ssj2008, éste analiza el desempeño de los sistemas desde un entorno de HPC.

4.4. Indicador multivariado

A grandes rasgos, un indicador multivariado o compuesto, consiste en una métrica definida
a partir de variables individuales, con el objetivo de describir un fenómeno complejo en ge-
neral. [Freudenberg, 2003] definió a los indicadores multivariados como índices sintéticos de
múltiples indicadores individuales. Asimismo, [Saisana and Tarantola, 2002] los definieron
como indicadores basados en subindicadores, que no tienen una unidad de medida significa-
tiva común, y no hay una forma obvia de ponderar estos subindicadores.

El diseño de un indicador multivariado es un proceso que consta de diferentes etapas,
las que van desde la definición del objetivo, hasta la validación de la propuesta. Sin em-
bargo, diferentes autores destacan la falta de transparencia existente en ocasiones, durante
la construcción de un indicador compuesto, fundamentalmente en las etapas de agregación,
ponderación y análisis de robustez. Por lo que, a continuación se describen cada una de estas
etapas y el análisis realizado en las mismas.

Marco conceptual. La definición del marco conceptual es la primera etapa del proceso
de construcción de un indicador multivariado. Ésta, no solo sustenta de manera conceptual
el desarrollo del indicador, sino que condiciona el análisis a realizar en las posteriores etapas.
En consecuencia, el marco conceptual del presente trabajo, consiste en el planteamiento del
problema descrito en la sección 1.2, el cual propició la propuesta del indicador compuesto.

Selección de los indicadores. Una vez definido el marco conceptual, se procede con la
selección de las variables e indicadores a sintetizar. Con este fin, es crucial la selección de
los índices de mayor relevancia, para con el fenómeno a describir e independencia estadísti-
ca entre sí. No obstante, este último criterio no es del todo indispensable, pues durante el
proceso de ponderación se suele dar menor peso a las variables altamente correlacionadas, a
fin de evitar una doble contabilización32.

El estudio realizado en la sección 4.3.2.3 arrojó que el rendimiento, consumo de potencia
y eficiencia energética son las variables de mayor relevancia en términos de distinción entre
servidores de HPC. No obstante, el análisis multivariado previo destacó la existencia de una
alta correlación entre los dos primeros. Por lo que, no tiene sentido el empleo de ambos, ni

32La doble contabilización se refiere a ponderar implícitamente un indicador por encima del nivel deseado.
Esto sucede cuando se incluyen dos indicadores colineales en el proceso de agregación, sin moderar su
ponderación para este efecto.
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reducir sus respectivos pesos con el objetivo de prevenir una doble contabilización. Asimismo,
la eficiencia energética tiene una mayor correlación con el rendimiento que con el consumo
de potencia. Motivo por el cual, resulta más adecuado definir el indicador compuesto en
términos de potencia y eficiencia enérgética.

Imputación & Normalización. El preprocesamiento de los datos a emplear en el diseño
del indicador compuesto, y específicamente la selección de las estrategias de imputación y
normalización, condicionan significativamente las restantes etapas del proceso de construc-
ción, y por consiguiente los resultados finales. Tomando como base el análisis realizado en
las secciones 4.2.4 y 4.2.5, se decidió proseguir el estudio a partir de datos íntegros y sin
previa transformación.

4.4.1. Ponderación

La ponderación es de las etapas de mayor incertidumbre en el diseño de un indicador com-
puesto, al no existir una metodología genérica para este fin, y dado que la propia ponderación
posee múltiples interpretaciones. Por una parte, se refiere a la importancia explícita que se le
atribuye a cada índice del indicador compuesto con respecto al resto; mientras que por otra,
se relaciona con la importancia implícita de los atributos [Greco et al., 2019]. De ahí que, es
deber del diseñador del índice la selección del enfoque que mejor se ajuste a sus objetivos.

No pesos o pesos iguales. Esta estrategia radica en no distribuir ponderaciones a los
atributos, es decir, dar la misma importancia a todos los índices que componen el indicador.
La misma, es de las técnicas más utilizadas debido a su simplicidad, y en ocasiones a causa de
la falta de una estructura teórica, capaz de justificar un esquema de ponderación diferencial.

Pluralidad del sistema de ponderación. El que toma las decisiones elige entre una
variedad de esquemas de ponderación, en base a la estructura y calidad de los datos o sus
creencias.

Proceso de asignación de presupuesto. Consiste en asignar n puntos a un conjunto
de tomadores de decisiones, los que distribuyen dichos puntos en los indicadores o grupos
de indicadores, y luego utilizan un promedio de las elecciones de los expertos.

Proceso de jerarquía analítica. Se fundamenta en la traducción de un problema com-
plejo a una jerarquía de tres niveles: el objetivo final, los criterios y las alternativas. Luego,
los expertos asignan importancia a cada criterio con respecto al resto; lo cual no solo intro-
duce una medida de coherencia, sino que además, reduce la predisposición de los pesos a
errores de juicio.

Pesos basados en datos. Esta estrategia es más objetiva que las anteriores, al considerar
enfoques, tales como el análisis de correlación, regresión y componentes principales.
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El análisis de correlación tiene en cuenta la estructura y dinámica de los indicadores en
el conjunto de datos. Consiste en seleccionar una variable distintiva x y extraer de las res-
tantes variables la de mayor correlación con x, siendo el peso de cada variable el coeficiente
de correlación al cuadrado.

Asimismo, el análisis de regresión lineal múltiple define las ponderaciones a partir del
vínculo causal entre los subindicadores y el indicador de producto elegido. Por otra parte,
el empleo del PCA como una técnica de obtención de peso, radica en utilizar como ponde-
raciones para los indicadores las cargas factoriales del primer componente. No obstante, en
ocasiones, el primer componente resulta insuficiente para explicar una gran porción de la
varianza de los datos, y son necesarios más componentes.

4.4.2. Agregación

La agregación, es la última etapa en la formación de un índice compuesto. En ésta, se define
la estrategia de integración de los subindicadores en base a las características del problema
y de los propios índices.

Agregación lineal. La agregación lineal (LIN) se utiliza cuando todos los indicadores
poseen la misma escala. Éste, es un enfoque de agregación compensatoria, donde las pon-
deraciones deben percibirse como compensaciones entre los pares de indicadores, y no la
importancia de las variables.

CIs =

Q∑
i=1

wqIqs, (4.43)

siendo CIs el puntaje de un sistema s compuesto de Q variables, para cada una de las cuales
wq e Iqs se refieren al peso y valor respectivamente.

Agregación geométrica. La agregación geométrica (GME) es apropiada cuando los in-
dicadores son estrictamente positivos, y se expresan en diferentes escalas de razón, redu-
ciéndose así la compensabilidad cuando el indicador multivariado contiene indicadores con
valores discretos.

CIs = ΠQ
i=1I

wq
qs . (4.44)

La definición del indicador compuesto se hizo en base al sistema hipotético aspirado por
Geller, con un rendimiento de un exaflop y un consumo de potencia de 20 MW [Geller, 2011].
Además, se empleó la estrategia de agregación geométrica, pues el consumo de potencia y
la eficiencia energética son variables de diferente escala, a la vez que no es objetivo dotar al
indicador de un carácter compensatorio.

CIs =
potencia−αs · eficiencia energéticaβs
potencia−αref · eficiencia energéticaβref

. (4.45)

Por otra parte, las ponderaciones se definieron de forma tal, que se maximizase la dis-
tancia en términos de puntaje, entre el sistema de referencia antes mencionado, y todos los
servidores presentes en el conjunto de datos Top500. Para ello, se evaluaron los sistemas que
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integran el Top500 a partir de 100 simulaciones, las que consistieron en variar los valores de
α y β. Específicamente, ambas ponderaciones, tomaron valores comprendidos entre 0.1 y 1,
es decir, α, β ∈ [0.1, 1], siendo 0.1 el grado de relevancia más discreto con que se evaluó
cada indicador. Además, se decidió no incrementar el rango de ponderación, a fin de no su-
bestimar, ni sobreestimar ninguno de los índices. Entonces, por cada valor de α, se variaron
los valores de β, de manera tal, que en cada iteración se incrementaba β en 0.1, y luego de
considerar todos los posibles valores de β en su correspondiente intervalo, se reiniciaba el
valor de este último y se incrementaba el valor de α en 0.1.

En este sentido, si bien valores elevados de α y β arrojaban valores superiores de CI, a
la vez reducían la distancia entre los SUT y el sistema de referencia (ver figura 4.29). En
consecuencia, esta distancia se maximizó solo en los casos donde β tomaba valores conside-
rablemente superiores a los de α, exactamente α = 0.1 y β = 0.9 o β = 1 (ver figura 4.30).
Sin embargo, llamó la atención la modesta relevancia que tiene el consumo de potencia en el
indicador propuesto. Así pues, resultó de interés considerar, si esto se debió a que la eficien-
cia energética, es la característica de mayor distanciamiento con respecto al sistema exaflop
propuesto por Geller, o a la necesidad de transformar los datos, a fin de que las escalas de
las variables no condicionen los resultados finales.
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Figura 4.29: Análisis de calificaciones
por niveles de ponderación.
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Figura 4.30: Análisis de ponderaciones
en base a la función objetivo.

También, la selección de β entre los posibles valores 0.9 y 1, se realizó en términos del
desplazamiento promedio (AvS). Éste, indica cuánto varía en promedio las calificaciones de
los sistemas bajo diferentes circunstancias.

AvS =

∑|S|
i=1|CIsi,f − CIsi,f∗ |

|S|
, (4.46)

donde si es la i-ésima instancia del conjunto de datos S, mientras que f y f∗ se refieren
a diferentes configuraciones de los factores de entrada. En este caso, con la variación úni-
camente de β, se obtuvo un desplazamiento promedio de 0.03001. Por lo que, el indicador
compuesto se definió de la siguiente forma

CIs =
potencia−.1s · eficiencia energéticas
potencia−.1ref · eficiencia energéticaref

. (4.47)
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Si bien el proceso de construcción de un indicador compuesto puede ser transparente
y bien fundamentado, etapas tales como la imputación, normalización y ponderación están
condicionadas por criterios del desarrollador. En consecuencia, es imprescindible la vali-
dación del indicador, a fin de identificar cuán sensible es éste a variaciones, tanto de sus
parámetros, como de las propias estrategias de diseño.

4.4.3. Análisis de robustez

Dado que la calidad de un modelo depende de la solidez de sus supuestos, es imprescindible
la evaluación de las incertidumbres asociadas con el proceso de modelado y las elecciones
subjetivas tomadas. Usualmente, la robustez de los indicadores compuestos se evalúa a partir
de los análisis de incertidumbre y sensibilidad.

El análisis de incertidumbre se refiere a los cambios que se observan en el resultado final,
al variar los factores de composición del índice. Es decir, se basa en simulaciones que se
realizan en varias ecuaciones que constituyen el modelo subyacente. Entre los métodos de
evaluación destaca la aproximación de Monte Carlo, la cual consiste en múltiples evaluacio-
nes del modelo con k factores de entrada.

Para la simulación de los distintos escenarios de composición, se utilizaron como factores
de incertidumbre, la estrategia de imputación (X1), la estrategia de normalización (X2), la
estrategia de agregación (X3) y las ponderaciones α y β (X4 y X5 respectivamente).

X1 =



0 Listwise,
1 Media,
2 Moda,
3 Mediana,
4 KNN.

X2 =


0 No normalizar,
1 Min-Max,
2 Estandarización.

X3 =

{
0 LIN,
1 GME.

Asimismo, las ponderaciones α y β se variaron a partir de la asignación de diez valores,
que van desde 0.1 a 1 con incremento de 0.1. Entonces, las configuraciones se definieron a
través de la combinación de los valores de los factores de entrada. Luego, se evaluó en cuáles
de estas configuraciones, el sistema de referencia tenía calificaciones superiores a las de
todos los SUT. Como resultado, de las 3000 simulaciones realizadas, solo en seis se satisfizo
el criterio de selección. En éstas, si bien varió la estrategia de imputación, los valores de
los restantes factores permanecieron estáticos (ver tabla 4.7). Además, el desplazamiento
promedio de las calificaciones, en base a las distintas configuraciones de los factores de
entrada, resultó despreciable.

Estrategia de Imputación Estrategia de Normalización Estrategia de Agregación α β

Listwise No normalizar GME 0.1 0.9
Listwise No normalizar GME 0.1 1.0
Media No normalizar GME 0.1 0.9
Media No normalizar GME 0.1 1.0
Mediana No normalizar GME 0.1 0.9
Mediana No normalizar GME 0.1 1.0

Tabla 4.7: Análisis de incertidumbre.

CINVESTAV-IPN Departamento de Computación



Análisis de minería de datos 61

Por otra parte, el análisis de sensibilidad evalúa la contribución individual de los factores
de entrada a la varianza de los datos, así como la varianza condicional correspondiente a dos
o más factores. De manera general, la varianza aportada Vi por el i-ésimo factor de entrada
Xi, se cuantifica como la cantidad de varianza esperada que se removería si se determinase
el valor de Xi.

Vi = VXi(EX∼i(Y |Xi)). (4.48)

Por lo que, la varianza total de un sistema V (Y ) puede ser descompuesta en dos términos,
el efecto principal (Vi) y el efecto residual. Este último, representa la cantidad esperada de la
varianza de salida que permanecería sin explicación, si el factor Xi fuese dejado en libertad
sobre su rango de incertidumbre.

VXi(EX∼i(Y |Xi)) + EXi(VX∼i(Y |Xi)) = V (Y ). (4.49)

Asimismo, el índice de sensibilidad de primer orden Si, se cuantifica como la contribución
individual de Xi a V (Y ).

Si =
Vi

V (Y )
. (4.50)

Mientras que el índice de sensibilidad total ST i, considera la contribución de Xi a V (Y ),
tanto en el primer orden, como en órdenes superiores, producto de la interacción con los
restantes factores de entrada.

ST i =
V (Y )− VX∼i(EXi(Y |X∼i))

V (Y )
=
EX∼i(VXi(Y |X∼i))

V (Y )
. (4.51)

Como resultado de la aplicación del análisis factorial fraccional [Saltelli et al., 2008], se
obtuvo que la eficiencia energética y el consumo de potencia son, en todos los órdenes, de los
factores de mayor impacto en la varianza del modelo. Mientras que, la ponderación asignada
al consumo de potencia, y las estrategias de normalización y agregación poseen una menor
relevancia (ver table 4.8).

Estrategia de Imputación β Potencia Eficiencia energética
Estrategia de Imputación 0.00325 -0.10879 -0.01097 0.00384
β -0.10879 -0.01293 0.00384 -0.01097
Potencia -0.01097 0.003841 -0.11094 -0.10879
Eficiencia energética 0.00384 -0.01097 -0.10879 0.36628

Tabla 4.8: Índices de sensibilidad de primer y segundo orden de los factores de entrada.

El análisis de robustez realizado corroboró no solo el impacto de los factores de entrada
en las calificaciones finales de los sistemas, sino también, la relevancia de los mismos para
con la varianza del modelo. Además, destacó que las escalas de las variables no condicionan
la discreta relevancia del consumo de potencia en el indicador propuesto, sino que es la
eficiencia energética, el principal elemento de distinción con respecto al sistema exaescala
propuesto por Geller. De ahí que, luego de la validación del proceso de construcción del
indicador compuesto, resta únicamente analizar las bondades y desventajas de éste, para
con el análisis energético de servidores de HPC.
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Capítulo 5

Resultados y discusión

El presente trabajo, se sustentó en el análisis de las tendencias y relaciones de varios in-
dicadores de proporcionalidad y eficiencia energética, así como los factores más influyentes
en el contexto de trabajo de los servidores de HPC. En lo que se refiere a indicadores de
proporcionalidad energética, se concluyó que los sistemas cada vez desperdician menos po-
tencia en estado inactivo, y de manera general, menor es la brecha de consumo de potencia
con respecto a un comportamiento proporcionalmente energético. Sin embargo, la creciente
carencia de linealidad en los sistemas, constituye el principal desafío en términos de propor-
cionalidad energética.

Por otra parte, la eficiencia energética, tanto promedio, como por nivel de utilización, es
otro de los índices de mayor crecimiento en los servidores de HPC. No obstante, es errónea la
relación que diversos estudios establecen entre la proporcionalidad y la eficiencia energética
de los sistemas [Jiang et al., 2017]. Pues, mejoras en un indicador no necesariamente tiene un
impacto directo en el otro. De ahí que, la amplitud de las zonas de alta eficiencia energética,
no esté condicionada por la proporcionalidad energética de los medios de cómputo.

En términos de proporcionalidad energética, específicamente, con relación a la existen-
cia de sistemas superproporcionales, destacó la influencia de diversos factores, tales como
la eficiencia energética y el consumo de potencia en niveles discretos de carga de trabajo.
Además, llamó aún más la atención, cuán determinante es en este sentido, la tecnología de
los dispositivos de almacenamiento y el tipo de gabinete. Sobre todo, el tipo de gabinete
es un elemento interesante a analizar, ya que tiene una estrecha relación con el sistema de
disipación de calor, elemento que no suele ser considerado por los benchmarks de HPC, ni
de consumo de energía.

En otro orden de ideas, durante la definición del indicador REE, [Hsu et al., 2012] con-
sideraron la similitud de los rankings Top500 y Green500, ya que los sistemas de mayor
rendimiento, eran también los de mayor eficiencia energética. Ésto, a causa de la alta corre-
lación existente entre dichos indicadores. Asimismo, analizaron la influencia de la eficiencia
energética en el DR, concluyendo que los sistemas de mayor proporcionalidad energética,
poseían también mayor eficiencia energética. Sin embargo, con el paso de los años, este com-
portamiento ha variado significativamente. A continuación, se desarrolla el presente análisis
a partir de 189 servidores que integran los conjuntos de datos Top500 y Green500.
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En el Top500, como resultado del empleo del rendimiento como criterio de calificación, la
curva de tendencia de este indicador, describe un comportamiento decreciente, a medida que
aumenta la posición en el ranking. Además, el consumo de potencia y la eficiencia energética
presentan variaciones abruptas, pues los sistemas de mayor rendimiento, no necesariamente
son los de mayor eficiencia energética, ni consumo de potencia (ver figura 5.1).
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Figura 5.1: Top500: Tendencia de los índices a través del ranking.

Asimismo en el Green500, donde, si bien como se indicó en el capítulo 3, la eficiencia
energética es el indicador que condiciona la calificación de los sistemas, son las curvas de
tendencia del rendimiento y consumo de potencia las que carecen de un comportamiento
monótono (ver figura 5.2). También, del empleo de la eficiencia energética como criterio
de distinción, se obtuvieron más variaciones en los restantes indicadores, que al utilizar el
rendimiento como criterio de calificación.
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Figura 5.2: Green500: Tendencia de los índices a través del ranking.

Además, se estudiaron las bondades del indicador REE en relación con el análisis ener-
gético de los servidores de HPC. Este estudio, arrojó que dicho indicador resulta insuficiente
para explicar los resultados obtenidos del análisis de agrupamiento realizado en la sección
4.3.2.3. Lo cual es lógico, si se considera el número de dimensiones que el PCA indicó son
necesarias para explicar aproximadamente el 80% de la varianza de los datos (ver sección
4.2.7, página 43).
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REE tiene estrecha relación con el rendimiento de los sistemas y el total de núcleos
existentes en los mismos. Sin embargo, tiene una baja correlación con los núcleos presentes
en los aceleradores gráficos, procesadores y co-procesadores, así como con la arquitectura y
la frecuencia base. Además, posee una correlación media y baja con el consumo de potencia
y la eficiencia energética respectivamente (ver tabla 5.1). Por lo que, las calificaciones que
éste asigna están principalmente en función del rendimiento de los equipos. Es decir, los
sistemas de mayor calificación, sobresalen por su alto rendimiento y consumo de potencia,
mientras que la eficiencia energética no es determinante, a pesar de ser uno de los índices
utilizados para la definición de REE.

Total Cores Accelerator/Co-Processor
Cores

Rmax
[TFlop/s]

Power
(kW)

Power Efficiency
[GFlops/Watts]

Processor Speed
(MHz)

Cores
per Socket

0.6120 0.2128 0.9818 0.6971 0.3534 0.0471 0.1658

Tabla 5.1: REE : Coeficientes de correlación de Pearson.

La figura 5.3 muestra el comportamiento de los índices de rendimiento, consumo de
potencia y eficiencia energética, luego de ordenar descendentemente los servidores a partir
de su valor de REE. En esta figura, se observa la tendencia principalmente decreciente de
los sistemas en términos de eficiencia energética. No obstante, dicho patrón es resultado de
la correlación existente entre la eficiencia energética y el rendimiento, ya que la curva de
tendencia de este último describe igual evolución y es menos accidentada.
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Figura 5.3: REE : Tendencia de los índices a través del ranking.

Con respecto al indicador propuesto en el presente trabajo, CI está altamente correla-
cionado con la eficiencia energética del medio de cómputo. Mientras que, posee una baja
correlación con el rendimiento, consumo de potencia y características asociadas al procesa-
dor y la arquitectura del sistema (ver tabla 5.2). También, al igual que REE, el indicador
CI resulta insuficiente para describir los agrupamientos realizados en la sección 4.3.2.3.

Total Cores Accelerator/Co-Processor
Cores

Rmax
[TFlop/s]

Power
(kW)

Power Efficiency
[GFlops/Watts]

Processor Speed
(MHz)

Cores
per Socket

0.0523 0.1196 0.1704 -0.0816 0.9802 0.1549 0.1494

Tabla 5.2: CI : Coeficientes de correlación de Pearson.
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Al calificar y ordenar descendentemente los sistemas en función del indicador CI, destaca
que la curva de tendencia de la eficiencia energética no es del todo decreciente (ver figura
5.4). No obstante, se evidencia el predominio de la eficiencia energética, en comparación con
el resto de los índices, en términos de la calificación asignada a cada uno de los sistemas.
Además, a diferencia de REE, en CI la curva de tendencia asociada al rendimiento no descri-
be un patrón decreciente. Asimismo, el consumo de potencia no describe un comportamiento
monótono, debido a la discreta ponderación asignada a este índice en el indicador CI. En
consecuencia, al ser la eficiencia energética el factor preponderante, los sistemas de menor
escala se verán beneficiados, puesto que suelen ser éstos los de mayor eficiencia energética.
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Figura 5.4: CI : Tendencia de los índices a través del ranking.

La figura 5.6 ilustra los sistemas cuyos CI se consideran atípicos según la estrategia
de caja y bigotes (ver figura 5.5). Estos últimos, son en su mayoría sistemas de elevada
eficiencia energética y discreto consumo de potencia. Sin embargo, destaca la existencia
entre los sistemas atípicos de un equipo de elevado consumo de potencia. El mismo, es la
supercomputadora Fugaku, actual ocupante de la primera y décima posición del Top500
y Green500 respectivamente. Lo que, ilustra cuán dominante es la eficiencia energética en
el indicador propuesto. De forma tal, que un sistema de gran consumo de potencia puede
alcanzar valores elevados de CI, si su eficiencia energética es lo suficientemente significativa.
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Figura 5.5: Top500: CI atípicos.
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Figura 5.6: Top500: Sistemas con CI atípicos.
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Por otra parte, se calificaron los sistemas presentes en el Top500 y Green500 a partir de
los indicadores REE y CI, y se mantuvo la disposición original de ambos conjuntos de datos.
Este análisis arrojó una mayor coincidencia entre el orden de los servidores en el Top500 y
el ranking conformado en función del indicador REE (ver figura 5.7). Mientras, el ranking
definido en base al indicador CI se asemeja más a la jerarquía de los sistemas en el Green500
(ver figura 5.8). Ésto, a causa de los índices preponderantes en ambos indicadores. Este
estudio además, corroboró que la eficiencia energética es uno de los principales elementos
de distinción de los servidores de HPC, siendo el criterio que mayor número de oscilaciones
provocó en los restantes índices de análisis (ver tabla 5.3).
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Figura 5.7: Top500: Tendencia de los
indicadores CI y REE.
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Figura 5.8: Green500: Tendencia de los indi-
cadores CI y REE.

Variaciones
Rmax [TFlop/s] Power (kW) Power Efficiency [GFlops/Watts] Total

Top500 0 48 42 90
Green500 180 86 0 276
REE 88 93 69 250
CI 83 87 86 256

Tabla 5.3: Número de variaciones por criterio de ordenamiento.

Si bien CI a diferencia de REE no es susceptible a doble contabilización, las calificaciones
que CI asigna están parcializadas a favor de la eficiencia energética. Por lo que, se cree aún
más acertado el análisis conjunto a partir de los indicadores compuestos CI y REE. Puesto
que, el primero cuantifica en qué medida el incremento de la eficiencia energética se debió
a la reducción del consumo de potencia. Mientras que el segundo, si bien tiene en cuenta
la eficiencia energética, al considerar el rendimiento de los equipos, centra el análisis en los
servidores de HPC. Por lo que se redefiniría REE de la siguiente forma:

REE =
(rendimientos)

α · (eficiencia energéticas)β

(rendimientoref )α · (eficiencia energéticaref )β
, (5.1)

donde las ponderaciones α y β no variarían su valor original, es decir α = β = 1, puesto que
estos valores maximizan la distancia entre el sistema de referencia y los SUT.
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Similar al EDD, la construcción de un diagrama a partir de los indicadores CI y REE,
permite el análisis de la distancia entre los SUT y el sistema de referencia, en términos de los
principales índices. Donde, el sistema de referencia se representa a partir de la coordenada
(1,1), y cada uno de los cuadrantes en torno a la misma, agrupa sistemas cuyo rendimiento
y eficiencia energética poseen un comportamiento específico, en comparación con el sistema
de referencia. De forma tal, que el primer cuadrante aglomera a aquellos SUT que poseen
mayor rendimiento y eficiencia energética que el sistema de referencia, el tercer cuadrante
ilustra el caso opuesto, y el segundo y cuarto cuadrante representan las compensaciones.

Los sistemas presentes en el Top500 tienen valores inferiores de REE y CI, en compara-
ción con el sistema exaescala propuesto por Geller. Lo cual, es evidente, ya que fue uno de
los criterios de construcción del indicador CI, y puesto que el sistema de referencia tiene un
mayor rendimiento y eficiencia energética que todos los servidores presentes en el Top500.
La figura 5.9 ilustra un mayor distanciamiento de los sistemas exaescala, en términos de
rendimiento y eficiencia energética, así como una cada vez mayor influencia de la reducción
del consumo de potencia en la eficiencia energética de los sistemas.
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Figura 5.9: Top500: Diagrama CI-REE.

Entonces, al ser la eficiencia energética y el consumo de potencia elementos de distinción
entre los servidores de HPC, y ya que, la maximización de la eficiencia energética y la
reducción del consumo de potencia son dos de los principales desafíos del desarrollo de
sistemas exaescala, el indicador CI resulta un índice de utilidad para el estudio de las
tendencias de las actuales y futuras estrategias de administración de energía. Además, como
se destacó anteriormente, los indicadores REE y CI dan mayor relevancia a un determinado
índice con respecto al resto, no obstante, CI es más equilibrado, por lo que es de utilidad
para considerar varias características de los servidores de HPC.
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Conclusiones y trabajo futuro

El estudio realizado, destacó la relevancia que tienen factores, tales como el tipo de gabi-
nete y el sistema de refrigeración, para con la proporcionalidad energética de los servidores
de HPC. A la vez que, rebatió, en función del indicador EP , la afirmación que realizaron
[Hsu and Poole, 2015] referente a que, las mejoras en la proporcionalidad energética de los
sistemas, tienen un impacto directo en la eficiencia energética de los mismos. De ahí que,
se rechazara el planteamiento realizado por [Jiang et al., 2017], acerca de que la EP de los
sistemas condiciona la amplitud de las zonas de alta eficiencia energética.

Si bien el análisis energético desarrollado se centró en el indicador EP , los resultados
del estudio no habrían variado significativamente, de haberse enfocado la investigación en
el indicador DR. Ésto, a causa de la alta correlación existente entre dichos indicadores, y
el discreto margen de error que se obtuvo de la aproximación de la EP , a partir del DR y
la LD. Aproximación mediante la cual, se concluyó que las futuras mejoras en la EP , y de
manera general en materia de proporcionalidad energética, deben enfocarse principalmente
en maximizar la linealidad de los sistemas. Pues, si bien cada vez es menor el consumo
de potencia en estado idle, en los restantes niveles de utilización dicho consumo es progre-
sivamente menos proporcional. Además, los resultados de esta investigación, muestran la
insuficiente contribución de los indicadores de proporcionalidad y eficiencia energética con-
siderados, para con el análisis energético de los servidores de HPC.

Esta investigación dio respuesta a muchas de las interrogantes planteadas por [Varsa-
mopoulos and Gupta, 2010]. Demostró que la técnica DVFS, no solo no garantiza la pro-
porcionalidad energética de los sistemas, sino que en un futuro cercano tendrá una menor
incidencia en el ahorro de energía, hasta quedar obsoleta, a causa de un cada vez menor
voltaje de operación de los núcleos presentes en los procesadores. También, se considera
que la proporcionalidad energética continuará siendo relevante en los modos de suspensión
e hibernación de los servidores, pues muchos servidores de HPC consumen una cantidad de
potencia considerable en estado inactivo.

Por otra parte, del análisis de las tendencias actuales de diseño de servidores, se vaticina
el estancamiento de la frecuencia base de los procesadores, fenómeno con discretas varia-
ciones en la última década. Pues, el incremento de la frecuencia base de los procesadores
aumenta el rendimiento de los equipos de cómputo, pero también el consumo de potencia
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dinámica, y por consiguiente energía. Además, si bien el número de núcleos presentes en los
procesadores continuará en aumento, el incremento de los mismos se verá truncado, a menos
que se ideen nuevas estrategias de administración de energía, o se incremente la eficiencia
energética de estos últimos. Ya que, seguir aumentando el número de núcleos por chip, man-
teniendo la potencia y la temperatura a un nivel manejable, es en la actualidad, la principal
interrogante de muchos trabajos de investigación.

La arquitectura, el rendimiento, el consumo de potencia y la eficiencia energética son
varios de los elementos de distinción de los servidores de HPC. Pero, es la eficiencia ener-
gética, y no la proporcionalidad energética uno de los principales desafíos en el diseño de
sistemas exaescala. Sin embargo, las actuales carencias en ambos conceptos, son resultado
de las deficientes estrategias de administración de energía existentes. De ahí que, es vital el
desarrollo y empleo de nuevas estrategias de administración de energía, que posibiliten el
incremento de la eficiencia energética, en base a la disminución del consumo de potencia, y
no el incremento del rendimiento.

El indicador propuesto es insuficiente por si solo para realizar el análisis energético de los
servidores de HPC. No obstante, es de gran utilidad en este sentido, pues tiene en cuenta dos
de los aspectos más determinantes en el desarrollo de sistemas exaescala. Entonces, se consi-
dera que el empleo de CI puede resultar beneficioso para el aprovisionamiento de servidores
y el desarrollo de estrategias de administración de energía. Por lo que, se recomienda que
estudios futuros aborden la tendencia del indicador CI, tanto en el estado peak, como en los
restantes niveles de utilización, y la relación existente entre este indicador y los indicadores
de proporcionalidad energética estudiados.

A fin de incrementar la proporcionalidad y eficiencia energética, reducir el consumo de
potencia, y finalmente desarrollar sistemas exaescala, se han realizado gran variedad de in-
vestigaciones. Sin embargo, la profundidad de las mismas se ha visto limitada a causa de un
déficit de información. Además, los benchmarks actuales resultan necesarios, pero no sufi-
cientes. Por lo que, se carece de un benchmark de HPC con un enfoque gradual de carga de
trabajo, que considere el impacto energético, tanto de los nodos de forma individual, como
de los diferentes componentes de hardware y software. Asimismo, un benchmark idóneo de
HPC, debe ser también capaz de simular el usual contexto de trabajo y tareas que suelen
procesar estos servidores.

En vista del modesto cúmulo de información de que se dispuso para la realización de
este estudio, y la carencia de un benchmark adecuado para con el análisis energético de
servidores de HPC, se considera provechoso el desarrollo de futuros trabajos investigativos
sobre el presente tema, que profundicen en la influencia del DVFS en el ahorro energético
en arquitecturas modernas. Además, entre las preguntas que se derivan de los resultados
obtenidos en esta investigación se encuentra ¿qué impacto tiene el tipo de gabinete, las ar-
quitecturas heterogéneas y el sistema operativo, en especial el calendarizador de procesos,
en materia de proporcionalidad energética? Dado que estas interrogantes requieren investi-
gación adicional, se considera imprescindible desarrollar en el corto plazo, un estudio que
examine cuán adecuadas son varias de las vigentes políticas de calendarización, en función
del ahorro energético de los servidores de HPC.
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Apéndice A

Esquemas lógicos

En el presente apéndice, se describen los esquemas lógicos de los conjuntos de datos de
SPECpower_ssj2008, Top500 y Green500, con el objetivo de detallar los factores que consi-
deran cada uno de dichos conjuntos, y facilitar la comprensión del análisis realizado durante
la etapa de preprocesamiento de datos.

El conjunto de datos de SPECpower_ssj2008, se compone de un total de 734 instancias.
Las cuales, a su vez, constan de 87 atributos, distribuidos en 29 variables discretas, 23
variables continuas, 30 variables nominales y 5 variables ordinales, siendo además, todas
ellas, variables de entrada (ver tabla A.1).

Característica Tipo de variable Descripción
Benchmark Nominal Nombre del benchmark
Benchmark Version Continua Versión del benchmark
Hardware Vendor Nominal Proveedor del hardware
System Nominal Nombre del sistema bajo prueba
Nodes Discreta Número de nodos
Form Factor Nominal Tipo de gabinete
Test Method Nominal Método de prueba utilizado
Result Continua Eficiencia energética promedio
ssj_ops @ 100% of target load Discreta Rendimiento al 100% de trabajo
ssj_ops @ 90% of target load Discreta Rendimiento al 90% de trabajo
ssj_ops @ 80% of target load Discreta Rendimiento al 80% de trabajo
ssj_ops @ 70% of target load Discreta Rendimiento al 70% de trabajo
ssj_ops @ 60% of target load Discreta Rendimiento al 60% de trabajo
ssj_ops @ 50% of target load Discreta Rendimiento al 50% de trabajo
ssj_ops @ 40% of target load Discreta Rendimiento al 40% de trabajo
ssj_ops @ 30% of target load Discreta Rendimiento al 30% de trabajo
ssj_ops @ 20% of target load Discreta Rendimiento al 20% de trabajo
ssj_ops @ 10% of target load Discreta Rendimiento al 10% de trabajo
Average watts @ 100% of target load Continua Potencia al 100% de trabajo
Average watts @ 90% of target load Continua Potencia al 90% de trabajo
Average watts @ 80% of target load Continua Potencia al 80% de trabajo
Average watts @ 70% of target load Continua Potencia al 70% de trabajo
Average watts @ 60% of target load Continua Potencia al 60% de trabajo
Average watts @ 50% of target load Continua Potencia al 50% de trabajo
Average watts @ 40% of target load Continua Potencia al 40% de trabajo
Average watts @ 30% of target load Continua Potencia al 30% de trabajo
Average watts @ 20% of target load Continua Potencia al 20% de trabajo
Average watts @ 10% of target load Continua Potencia al 10% de trabajo
Average watts @ active idle Continua Potencia al 0% de trabajo
Performance/power @ 100% of target load Continua Eficiencia al 100% de trabajo
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Característica Tipo de variable Descripción
Performance/power @ 90% of target load Continua Eficiencia al 90% de trabajo
Performance/power @ 80% of target load Continua Eficiencia al 80% de trabajo
Performance/power @ 70% of target load Continua Eficiencia al 70% de trabajo
Performance/power @ 60% of target load Continua Eficiencia al 60% de trabajo
Performance/power @ 50% of target load Continua Eficiencia al 50% de trabajo
Performance/power @ 40% of target load Continua Eficiencia al 40% de trabajo
Performance/power @ 30% of target load Continua Eficiencia al 30% de trabajo
Performance/power @ 20% of target load Continua Eficiencia al 20% de trabajo
Performance/power @ 10% of target load Continua Eficiencia al 10% de trabajo
# Cores Discreta Número total de núcleos
# Chips Discreta Número de procesadores
# Cores Per Chip Discreta Número de núcleos por procesador
# Threads Per Core Discreta Número de hilos por núcleo
Processor Nominal Nombre del procesador
Processor MHz Discreta Frecuencia base del procesador
Processor Characteristics Nominal Descripción del procesador
CPU(s) Orderable Nominal Número de CPUs
1st Level Cache Nominal Descripción de la caché de 1er nivel
2nd Level Cache Nominal Descripción de la caché de 2do nivel
3rd Level Cache Nominal Descripción de la caché de 3er nivel
Other Cache Nominal Descripción de otras memorias cachés
Memory (GB) Discreta Almacenamiento en la RAM
Operating System Nominal Nombre del sistema operativo
Operating System Version Nominal Versión del sistema operativo
File System Nominal Tipo de sistema de archivos
DIMMS Nominal Módulos de RAM
Memory Description Nominal Descripción de la RAM
Network Controller Discreta Número de controladores de red
NICs Connected Discreta Tarjetas de red conectadas
NICs enabled (firmware) Discreta Tarjetas de red activas en el firmware

NICs enabled (OS) Discreta Tarjetas de red activas
en el sistema operativo

Network speed Discreta Velocidad de red
JVM Vendor Nominal Proveedor de la JVM
JVM Version Nominal Versión de la JVM
JVM Instances Discreta No. de instancias de la JVM

JVM Affinity Nominal Comandos utilizados para configurar
la afinidad para cada JVM

JVM Bitness Discreta Tamaño del puntero

JVM Options Nominal Opciones de la línea de comandos
de JVM utilizadas

Initial Heap Discreta Tamaño inicial de la pila de la JVM
Max Heap Discreta Tamaño máximo de la pila de la JVM
System Source Nominal Estrategia de ensamblado del sistema
System Designation Nominal Clasificación del sistema
Power Provisioning Nominal Tipo de fuente de alimentación
Disk Drive Nominal Descripción de las unidades de disco
Disk Controller Nominal Proveedor del controlador de discos

Power Management Nominal Habilitación de las funciones de
administración de energía

Power Supply Details Nominal Descripción de las fuentes de energía
Power Supplies Installed Discreta No. de fuentes de energía instaladas
Power Supply Rating (watts) Discreta Potencia total disponible

HW Avail Ordinal Fecha en que los requerimientos
de hardware estuvieron disponibles

SW Avail Ordinal Fecha en que los requerimientos
de software estuvieron disponibles

License Discreta No. de licencia del probador
Tested By Nominal Probador
Test Sponsor Nominal Patrocinador de la prueba
Test Date Ordinal Fecha de evaluación
Published Ordinal Fecha de publicación
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Característica Tipo de variable Descripción
Updated Ordinal Fecha de actualización

Tabla A.1: SPECpower_ssj2008: Esquema lógico.

Asimismo, el conjunto de datos Top500 se compone de 35 atributos, distribuidos en 19
variables nominales, 4 variables continuas y 12 variables discretas, todas ellas variables de
entrada (ver tabla A.2).

Característica Tipo de variable Descripción
Rank Discreta Posición en el ranking
Previous Rank Discreta Posición anterior inmediata en el ranking
Name Nominal Nombre asignado a la supercomputadora
Computer Nominal Descripción general de la supercomputadora
Site Nominal Instalación que opera la supercomputadora
Manufacturer Nominal Fabricante
Country Nominal País
Year Discreta Año de instalación o de mayor actualización
Segment Nominal Sector de desempeño
Total Cores Discreta No. total de núcleos
Accelerator/Co-Processor Cores Discreta No. de núcleos en el acelerador o coprocesador
Rmax [TFlop/s] Continua Rendimiento máximo en el benchmark LINPACK
Rpeak [TFlop/s] Continua Rendimiento máximo teórico
Nmax Discreta Tamaño del problema para el cual se obtuvo Rmax
Nhalf Discreta Tamaño del problema para lograr la mitad de Rmax
HPCG [TFlop/s] Continua Rendimiento alcanzado en el benchmark HPCG
Power (kW) Discreta Potencia consumida
Power Source Nominal Fuente de alimentación
Power Efficiency [GFlops/Watts] Continua Eficiencia energética del sistema
Architecture Nominal Arquitectura de diseño
Processor Nominal Procesador
Processor Technology Nominal Nombre de la tecnología utilizada por el procesador
Processor Speed (MHz) Discreta Frecuencia base del procesador
Operating System Nominal Sistema operativo
OS Family Nominal Familia del sistema operativo
Accelerator/Co-Processor Nominal Descripción del acelerador/coprocesador
Cores per Socket Discreta No. de núcleos por procesador
Processor Generation Nominal Generación del procesador
System Model Nominal Modelo del servidor
System Family Nominal Familia del servidor
Interconnect Family Nominal Familia de red de interconexión
Interconnect Nominal Red de interconexión
Continent Nominal Continente
Site ID Discreta Identificador de la instalación
System ID Discreta Identificador del sistema

Tabla A.2: Top500: Esquema lógico.

Por otra parte, el conjunto de datos Green500 se compone de 35 variables, desglozadas
en 19 variables nominales, 4 variables continuas y 12 variables discretas (ver tabla A.3).
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Característica Tipo de variable Descripción
Rank Discreta Posición en el ranking
TOP500 Rank Discreta Posición en el ranking del Top500
Name Nominal Nombre asignado a la supercomputadora
Computer Nominal Descripción general de la supercomputadora
Site Nominal Instalación que opera la supercomputadora
Manufacturer Nominal Fabricante
Country Nominal País
Year Discreta Año de instalación o de mayor actualización
Segment Nominal Sector de desempeño
Total Cores Discreta No. total de núcleos
Accelerator/Co-Processor Cores Discreta No. de núcleos en el acelerador o coprocesador
Rmax [TFlop/s] Discreta Rendimiento máximo en el benchmark LINPACK
Rpeak [TFlop/s] Discreta Rendimiento máximo teórico
Power (kW) Continua Potencia consumida
Power Source Nominal Fuente de alimentación
Power Efficiency [GFlops/Watts] Continua Eficiencia energética del sistema
Power Quality Level Discreta Nivel de calidad de la energía
Optimized Run (HPL) Continua Rendimiento alcanzado en el benchmark HPL
Optimized Run (Peak Power) Continua Potencia consumida en el benchmark HPL
Architecture Nominal Arquitectura de diseño
Processor Nominal Procesador
Processor Technology Nominal Nombre de la tecnología utilizada por el procesador
Processor Speed (MHz) Discreta Frecuencia base del procesador
Operating System Nominal Sistema operativo
OS Family Nominal Familia del sistema operativo
Accelerator/Co-Processor Nominal Descripción del acelerador/coprocesador
Cores per Socket Discreta Número de núcleos por procesador
Processor Generation Nominal Generación del procesador
System Model Nominal Modelo del servidor
System Family Nominal Familia del servidor
Interconnect Family Nominal Familia de red de interconexión
Interconnect Nominal Red de interconexión
Continent Nominal Continente
Site ID Discreta Identificador de la instalación
System ID Discreta Identificador del sistema

Tabla A.3: Green500: Esquema lógico.

CINVESTAV-IPN Departamento de Computación



Apéndice B

Selección de características

La tabla B.1 describe la influencia de las características que integran el conjunto de datos
de SPECpower_ssj2008, en términos de superproporcionalidad energética. Ésto, en base a
las estrategias de selección de características Random Forest y el estadístico χ2.

Random Forest χ2

Característica Score Característica Score
Performance/power @ 100% of target load 0.05570 Performance/power @ 10% of target load 5.40604
Processor Turbo Boost 0.05058 Performance/power @ 20% of target load 5.11908
Performance/power @ 70% of target load 0.04604 Performance/power @ 30% of target load 4.66256
Performance/power @ 60% of target load 0.04579 Performance/power @ 40% of target load 4.47246
Average watts @ 10% of target load 0.04048 Performance/power @ 50% of target load 3.98179
Performance/power @ 80% of target load 0.03955 Performance/power @ 60% of target load 3.46414
Processor MHz 0.03872 Performance/power @ 70% of target load 2.99726
Performance/power @ 90% of target load 0.03582 Form Factor_2U 2.66364
Average watts @ active idle 0.03517 Disk Drive Technology_SATA 2.53922
Performance/power @ 40% of target load 0.03335 Performance/power @ 80% of target load 2.50960
Average watts @ 20% of target load 0.03079 Form Factor_blade 2.21153
Performance/power @ 10% of target load 0.03070 Performance/power @ 90% of target load 1.70514
Performance/power @ 30% of target load 0.02938 Disk Drive Technology_SSD 1.22097
ssj_ops @ 30% of target load 0.02829 Average watts @ active idle 0.99795
Performance/power @ 50% of target load 0.02788 Disk Drive Technology_SAS 0.99358
Average watts @ 60% of target load 0.02645 Processor Turbo Boost 0.95420
Performance/power @ 20% of target load 0.02638 Processor MHz 0.94021
Average watts @ 100% of target load 0.02637 Performance/power @ 100% of target load 0.89872
Average watts @ 90% of target load 0.02334 Average watts @ 10% of target load 0.82468
ssj_ops @ 40% of target load 0.02196 Average watts @ 50% of target load 0.81903
Average watts @ 30% of target load 0.02145 Average watts @ 60% of target load 0.81245
Average watts @ 40% of target load 0.02111 Average watts @ 40% of target load 0.81169
ssj_ops @ 20% of target load 0.01933 Average watts @ 70% of target load 0.80784
ssj_ops @ 50% of target load 0.01913 Average watts @ 20% of target load 0.78960
Average watts @ 70% of target load 0.01902 Average watts @ 30% of target load 0.78536
# Cores Per Chip 0.01745 Average watts @ 80% of target load 0.76514
ssj_ops @ 60% of target load 0.01737 Form Factor_other 0.73717
Average watts @ 50% of target load 0.01717 File System_btrfs 0.70512
ssj_ops @ 90% of target load 0.01690 Nodes 0.67560
Power Supply Rating (watts) 0.01440 Average watts @ 90% of target load 0.65831
Average watts @ 80% of target load 0.01437 File System_XFS 0.65034
ssj_ops @ 80% of target load 0.01419 Form Factor_7U 0.51282
ssj_ops @ 100% of target load 0.01368 Average watts @ 100% of target load 0.51164
Power Supplies Installed 0.01303 # Cores Per Chip 0.50199
ssj_ops @ 10% of target load 0.01279 # Chips 0.44168
ssj_ops @ 70% of target load 0.01265 Disk Drive Amount 0.35256
# Cores 0.01015 # Cores 0.35214
GB per Disk Drive 0.00790 # Threads Per Core 0.26538
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Random Forest χ2

Memory (GB) 0.00686 ssj_ops @ 90% of target load 0.19001
Operating System Family_Microsoft Windows 0.00506 ssj_ops @ 80% of target load 0.18984
# Chips 0.00307 Power Supplies Installed 0.18963
Form Factor_1U 0.00246 ssj_ops @ 40% of target load 0.18963
Form Factor_2U 0.00208 ssj_ops @ 70% of target load 0.18942
File System_NTFS 0.00136 ssj_ops @ 20% of target load 0.18936
Disk Drive Technology_SATA 0.00116 ssj_ops @ 50% of target load 0.18926
File System_XFS 0.00110 ssj_ops @ 10% of target load 0.18920
Operating System Family_Linux 0.00085 ssj_ops @ 60% of target load 0.18896
Disk Drive Technology_SSD 0.00046 ssj_ops @ 30% of target load 0.18889
Form Factor_4U 0.00040 ssj_ops @ 100% of target load 0.18751
Nodes 8.59E-05 Form Factor_3U 0.16025
Form Factor_7U 0 Form Factor_10U 0.16025
Form Factor_Tower 0 Form Factor_1U 0.15200
Form Factor_blade 0 Form Factor_5U 0.12820
Form Factor_other 0 Memory (GB) 0.11406
Form Factor_3U 0 GB per Disk Drive 0.11079
Form Factor_12U 0 Form Factor_12U 0.06410
Form Factor_5U 0 File System_EXT4 0.03205
File System_NFS 0 File System_NFS 0.03205
Form Factor_10U 0 File System_ext3 0.03205
Disk Drive Amount 0 Form Factor_4U 0.01131
File System_btrfs 0 Form Factor_Tower 0.01104
File System_ext3 0 Operating System Family_Linux 0.00982
Disk Drive Technology_SAS 0 Power Supply Rating (watts) 0.00147
# Threads Per Core 0 Operating System Family_Microsoft Windows 0.00117
File System_EXT4 0 File System_NTFS 0.00031

Tabla B.1: SPECpower_ssj2008: Influencia de los atributos en materia de superproporcio-
nalidad energética.

Asimismo, las tablas a continuación detallan la importancia que tienen los atributos que
integran el conjunto de datos de SPECpower_ssj2008, en función de la distinción de los
agrupamientos realizados en la sección 4.3.2.3.

Random Forest χ2

Característica Score Característica Score
Form Factor_3U 0.21533 Form Factor_3U 351.419
Form Factor_12U 0.06303 Form Factor_12U 318.509
Power Supply Rating (watts) 0.05381 File System_EXT4 79.5029
# Chips 0.04386 Power Supplies Installed 66.6213
Power Supplies Installed 0.03657 Disk Drive Amount 42.6714
File System_EXT4 0.03374 Memory (GB) 35.3203
Performance/power @ 60% of target load 0.02939 Power Supply Rating (watts) 27.8022
Memory (GB) 0.02928 Disk Drive Technology_SAS 23.2076
Form Factor_5U 0.02483 Form Factor_5U 20.5322
Average watts @ 60% of target load 0.02400 Average watts @ active idle 6.2721
ssj_ops @ 80% of target load 0.02318 Average watts @ 10% of target load 4.51902
Performance/power @ 100% of target load 0.02257 Average watts @ 20% of target load 3.93714
Disk Drive Amount 0.02046 Average watts @ 30% of target load 3.56929
Performance/power @ 50% of target load 0.01809 Average watts @ 40% of target load 3.30306
Average watts @ 30% of target load 0.01642 File System_NTFS 3.25275
Average watts @ 20% of target load 0.01620 Average watts @ 50% of target load 3.05742
Performance/power @ 10% of target load 0.01609 Average watts @ 60% of target load 2.82501
Average watts @ 100% of target load 0.01555 Average watts @ 80% of target load 2.79996
ssj_ops @ 30% of target load 0.01420 Average watts @ 70% of target load 2.71332
ssj_ops @ 40% of target load 0.01387 Operating System Family_Microsoft Windows 2.71228
Processor Turbo Boost 0.01369 Operating System Family_Linux 2.71228
Average watts @ 50% of target load 0.01320 Average watts @ 90% of target load 2.65085
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Performance/power @ 20% of target load 0.01306 Disk Drive Technology_SSD 2.57280
Average watts @ 70% of target load 0.01239 Average watts @ 100% of target load 2.51229
Average watts @ 10% of target load 0.01194 File System_btrfs 2.17056
Processor MHz 0.01180 Form Factor_2U 1.68657
Average watts @ 90% of target load 0.01171 File System_XFS 1.52514
ssj_ops @ 90% of target load 0.01123 Form Factor_1U 1.45872
ssj_ops @ 20% of target load 0.01091 # Chips 0.89148
Performance/power @ 70% of target load 0.01087 Nodes 0.76609
ssj_ops @ 100% of target load 0.01080 Form Factor_Tower 0.74925
Performance/power @ 80% of target load 0.01059 ssj_ops @ 20% of target load 0.62626
ssj_ops @ 10% of target load 0.01006 ssj_ops @ 100% of target load 0.62554
Average watts @ 40% of target load 0.00954 ssj_ops @ 10% of target load 0.62466
Average watts @ active idle 0.00950 ssj_ops @ 90% of target load 0.62380
Average watts @ 80% of target load 0.00936 ssj_ops @ 70% of target load 0.62362
Performance/power @ 90% of target load 0.00865 ssj_ops @ 30% of target load 0.62347
Performance/power @ 30% of target load 0.00859 ssj_ops @ 60% of target load 0.62315
GB per Disk Drive 0.00809 ssj_ops @ 50% of target load 0.62308
Performance/power @ 40% of target load 0.00763 ssj_ops @ 40% of target load 0.62252
ssj_ops @ 70% of target load 0.00753 ssj_ops @ 80% of target load 0.62192
Disk Drive Technology_SATA 0.00715 # Cores 0.59468
# Cores 0.00673 Form Factor_blade 0.54603
ssj_ops @ 50% of target load 0.00668 Disk Drive Technology_SATA 0.53952
# Cores Per Chip 0.00617 # Threads Per Core 0.46384
ssj_ops @ 60% of target load 0.00588 Performance/power @ 10% of target load 0.38226
Disk Drive Technology_SAS 0.00542 Performance/power @ 20% of target load 0.33102
Disk Drive Technology_SSD 0.00364 Performance/power @ 30% of target load 0.30453
Operating System Family_Linux 0.00208 # Cores Per Chip 0.29971
File System_XFS 0.00187 GB per Disk Drive 0.29921
# Threads Per Core 0.00085 Performance/power @ 40% of target load 0.27416
Form Factor_1U 0.00068 Performance/power @ 50% of target load 0.24323
File System_NTFS 0.00054 Processor Turbo Boost 0.22644
Operating System Family_Microsoft Windows 0.00034 Form Factor_4U 0.21434
Nodes 7.83E-05 Performance/power @ 60% of target load 0.21099
Form Factor_other 0 Performance/power @ 80% of target load 0.19634
Form Factor_2U 0 Performance/power @ 90% of target load 0.19423
File System_NFS 0 Performance/power @ 70% of target load 0.19046
Form Factor_blade 0 Form Factor_other 0.16832
Form Factor_Tower 0 Performance/power @ 100% of target load 0.16665
File System_btrfs 0 Form Factor_7U 0.11577
File System_ext3 0 Form Factor_10U 0.03554
Form Factor_10U 0 Processor MHz 0.01640
Form Factor_7U 0 File System_NFS 0.00706
Form Factor_4U 0 File System_ext3 0.00706

Tabla B.2: SPECpower_ssj2008: Influencia de los atributos en los agrupamientos de DBS-
CAN

Random Forest χ2

Característica Score Característica Score
Operating System Family_Linux 0.03696 Form Factor_12U 505.40
Operating System Family_Microsoft Windows 0.03491 Memory (GB) 501.35
GB per Disk Drive 0.03408 ssj_ops @ 90% of target load 443.94
Average watts @ 80% of target load 0.03027 ssj_ops @ 100% of target load 443.84
Average watts @ 40% of target load 0.02831 ssj_ops @ 20% of target load 443.50
Performance/power @ 100% of target load 0.02627 ssj_ops @ 80% of target load 443.48
Average watts @ active idle 0.02562 ssj_ops @ 60% of target load 443.43
ssj_ops @ 40% of target load 0.02484 ssj_ops @ 40% of target load 443.38
Average watts @ 90% of target load 0.02468 ssj_ops @ 30% of target load 443.32
ssj_ops @ 30% of target load 0.02452 ssj_ops @ 50% of target load 443.18
Average watts @ 70% of target load 0.02430 ssj_ops @ 70% of target load 443.11
Average watts @ 50% of target load 0.02406 ssj_ops @ 10% of target load 443.02
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Random Forest χ2

Performance/power @ 70% of target load 0.02336 Operating System Family_Linux 393.11
ssj_ops @ 100% of target load 0.02326 Operating System Family_Microsoft Windows 393.11
ssj_ops @ 10% of target load 0.02319 # Cores 328.38
ssj_ops @ 70% of target load 0.02292 Average watts @ 100% of target load 301.74
ssj_ops @ 60% of target load 0.02290 Average watts @ 90% of target load 298.94
File System_NTFS 0.02189 Average watts @ 80% of target load 285.14
Performance/power @ 80% of target load 0.02183 Average watts @ 70% of target load 274.96
ssj_ops @ 80% of target load 0.02134 Average watts @ 60% of target load 264.73
Memory (GB) 0.02106 Average watts @ 50% of target load 250.90
Average watts @ 20% of target load 0.02042 Average watts @ 40% of target load 239.76
Average watts @ 60% of target load 0.02019 Average watts @ 30% of target load 230.08
# Cores Per Chip 0.02019 Average watts @ 20% of target load 220.08
Performance/power @ 50% of target load 0.02003 Average watts @ 10% of target load 213.05
Performance/power @ 60% of target load 0.01979 Form Factor_blade 210.66
Performance/power @ 20% of target load 0.01904 File System_NTFS 209.26
Performance/power @ 90% of target load 0.01888 Performance/power @ 10% of target load 177.61
Performance/power @ 40% of target load 0.01861 Performance/power @ 20% of target load 176.49
ssj_ops @ 50% of target load 0.01820 Performance/power @ 30% of target load 173.99
Performance/power @ 10% of target load 0.01805 Performance/power @ 40% of target load 172.95
ssj_ops @ 90% of target load 0.01790 Performance/power @ 50% of target load 170.44
# Threads Per Core 0.01781 Performance/power @ 60% of target load 163.64
# Cores 0.01754 # Chips 158.18
Average watts @ 100% of target load 0.01734 Average watts @ active idle 155.62
Average watts @ 30% of target load 0.01675 Performance/power @ 70% of target load 153.96
Performance/power @ 30% of target load 0.01623 Performance/power @ 80% of target load 140.54
ssj_ops @ 20% of target load 0.01462 Performance/power @ 90% of target load 125.69
Processor Turbo Boost 0.01318 Disk Drive Technology_SAS 124.11
Disk Drive Technology_SAS 0.01299 Performance/power @ 100% of target load 115.71
Average watts @ 10% of target load 0.01164 # Cores Per Chip 115.70
File System_XFS 0.01127 Power Supplies Installed 113.29
Power Supply Rating (watts) 0.01079 Nodes 106.06
Form Factor_blade 0.00966 Form Factor_other 82.156
Form Factor_4U 0.00917 Power Supply Rating (watts) 61.261
# Chips 0.00859 Disk Drive Amount 60.745
Disk Drive Amount 0.00741 File System_XFS 55.359
Nodes 0.00735 Processor Turbo Boost 37.903
Disk Drive Technology_SSD 0.00709 # Threads Per Core 37.431
Power Supplies Installed 0.00679 File System_btrfs 37.253
File System_btrfs 0.00641 Disk Drive Technology_SSD 23.736
Processor MHz 0.00620 GB per Disk Drive 14.578
Form Factor_Tower 0.00488 Form Factor_7U 14.489
Disk Drive Technology_SATA 0.00401 Form Factor_2U 14.465
Form Factor_2U 0.002638 Disk Drive Technology_SATA 12.995
Form Factor_3U 0.00211 Form Factor_Tower 7.3432
Form Factor_7U 0.00128 Form Factor_1U 6.4049
Form Factor_1U 0.00128 Processor MHz 5.0095
Form Factor_other 0.00108 Form Factor_4U 4.6330
Form Factor_12U 0.00096 Form Factor_3U 4.1671
Form Factor_5U 0.00066 Form Factor_10U 3.7584
Form Factor_10U 9.143E-05 Form Factor_5U 3.0273
File System_NFS 3.877E-05 File System_NFS 1.6940
File System_ext3 0 File System_ext3 1.6940
File System_EXT4 0 File System_EXT4 1.1931

Tabla B.3: SPECpower_ssj2008: Influencia de los atributos en los agrupamientos de Espe-
ranza Máxima.

Random Forest χ2

Característica Score Característica Score
Performance/power @ 10% of target load 0.06916 Average watts @ 60% of target load 964.74
Performance/power @ 70% of target load 0.05405 Average watts @ 70% of target load 964.48
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Random Forest χ2

ssj_ops @ 70% of target load 0.05355 Average watts @ 80% of target load 957.79
Performance/power @ 50% of target load 0.05006 Average watts @ 50% of target load 954.11
ssj_ops @ 80% of target load 0.04555 Average watts @ 90% of target load 944.24
Performance/power @ 60% of target load 0.04345 Average watts @ 100% of target load 943.06
ssj_ops @ 90% of target load 0.04143 Average watts @ 40% of target load 941.09
Performance/power @ 20% of target load 0.03483 Average watts @ 30% of target load 919.03
Nodes 0.03273 Average watts @ 20% of target load 892.22
ssj_ops @ 10% of target load 0.03247 Performance/power @ 10% of target load 889.53
Average watts @ 100% of target load 0.03233 Average watts @ 10% of target load 873.93
Performance/power @ 90% of target load 0.03031 Performance/power @ 20% of target load 865.75
Average watts @ 90% of target load 0.02965 Performance/power @ 30% of target load 836.46
ssj_ops @ 100% of target load 0.02942 Performance/power @ 40% of target load 813.66
Average watts @ 10% of target load 0.02864 Performance/power @ 50% of target load 794.76
Performance/power @ 30% of target load 0.02862 Performance/power @ 60% of target load 768.62
Performance/power @ 80% of target load 0.02585 Performance/power @ 70% of target load 717.93
ssj_ops @ 30% of target load 0.02537 # Cores 680.70
Average watts @ 40% of target load 0.02473 Performance/power @ 80% of target load 635.38
Average watts @ 70% of target load 0.02451 Average watts @ active idle 630.06
Power Supply Rating (watts) 0.02179 ssj_ops @ 90% of target load 572.08
Average watts @ 20% of target load 0.02093 ssj_ops @ 80% of target load 571.58
# Cores Per Chip 0.01949 ssj_ops @ 30% of target load 571.44
# Chips 0.01825 ssj_ops @ 10% of target load 571.39
Average watts @ 30% of target load 0.01816 ssj_ops @ 70% of target load 571.37
ssj_ops @ 50% of target load 0.01753 ssj_ops @ 40% of target load 571.34
ssj_ops @ 20% of target load 0.01682 ssj_ops @ 20% of target load 571.17
Performance/power @ 40% of target load 0.01680 ssj_ops @ 60% of target load 571.15
ssj_ops @ 60% of target load 0.01677 ssj_ops @ 50% of target load 570.96
Average watts @ 60% of target load 0.01585 ssj_ops @ 100% of target load 570.82
Average watts @ 80% of target load 0.01453 Performance/power @ 90% of target load 554.37
Average watts @ 50% of target load 0.01367 # Chips 535.81
Performance/power @ 100% of target load 0.01328 Performance/power @ 100% of target load 496.60
Average watts @ active idle 0.01224 # Cores Per Chip 362.77
Memory (GB) 0.00993 Memory (GB) 355.20
ssj_ops @ 40% of target load 0.00529 Nodes 337.23
Power Supplies Installed 0.00371 Form Factor_blade 195.13
# Cores 0.00273 Power Supply Rating (watts) 124.45
Processor MHz 0.00177 Power Supplies Installed 99.155
Processor Turbo Boost 0.00062 Processor Turbo Boost 77.831
GB per Disk Drive 0.00045 Form Factor_other 73.175
Form Factor_blade 0.00035 Operating System Family_Microsoft Windows 54.374
Form Factor_1U 0.00034 Operating System Family_Linux 54.374
Form Factor_Tower 0.00028 File System_NTFS 47.741
Form Factor_4U 0.00022 Form Factor_2U 37.385
File System_btrfs 0.00021 Disk Drive Technology_SSD 28.873
# Threads Per Core 0.00021 File System_btrfs 28.502
Form Factor_other 0.00021 # Threads Per Core 27.233
Form Factor_5U 0.00020 File System_XFS 24.310
File System_EXT4 0.00011 Disk Drive Technology_SATA 20.800
File System_XFS 0.00011 Form Factor_1U 18.619
Form Factor_7U 7.840E-05 Form Factor_Tower 18.425
Disk Drive Technology_SATA 5.430E-05 GB per Disk Drive 17.393
Form Factor_3U 4.819E-05 Form Factor_10U 13.100
Form Factor_2U 2.956E-05 Form Factor_7U 13.091
Form Factor_12U 0 Disk Drive Technology_SAS 6.9287
Disk Drive Technology_SAS 0 Disk Drive Amount 5.9591
File System_ext3 0 Form Factor_12U 5.0904
Operating System Family_Linux 0 Processor MHz 4.8136
File System_NTFS 0 File System_EXT4 2.5212
File System_NFS 0 Form Factor_4U 2.1933
Operating System Family_Microsoft Windows 0 Form Factor_3U 1.5497
Form Factor_10U 0 Form Factor_5U 0.7085
Disk Drive Amount 0 File System_NFS 0.3961
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Random Forest χ2

Disk Drive Technology_SSD 0 File System_ext3 0.3961

Tabla B.4: SPECpower_ssj2008: Influencia de los atributos en los agrupamientos de Fuzzy
C-Means.

Random Forest χ2

Característica Score Característica Score
# Cores Per Chip 0.10303 Performance/power @ 10% of target load 1588.7
Performance/power @ 70% of target load 0.08590 Performance/power @ 20% of target load 1527.1
ssj_ops @ 50% of target load 0.05790 Performance/power @ 30% of target load 1460.5
ssj_ops @ 60% of target load 0.05701 Performance/power @ 40% of target load 1408.9
Performance/power @ 10% of target load 0.05325 Performance/power @ 50% of target load 1364.4
ssj_ops @ 80% of target load 0.05192 Performance/power @ 60% of target load 1299.4
ssj_ops @ 100% of target load 0.05140 Performance/power @ 70% of target load 1200.8
ssj_ops @ 70% of target load 0.04681 Performance/power @ 80% of target load 1054.7
ssj_ops @ 30% of target load 0.04550 Performance/power @ 90% of target load 904.01
Performance/power @ 50% of target load 0.04039 Performance/power @ 100% of target load 822.54
Performance/power @ 40% of target load 0.03879 # Cores Per Chip 779.68
ssj_ops @ 90% of target load 0.03839 # Cores 285.06
Performance/power @ 60% of target load 0.03784 ssj_ops @ 90% of target load 284.01
ssj_ops @ 10% of target load 0.03772 ssj_ops @ 40% of target load 283.92
Performance/power @ 90% of target load 0.03749 ssj_ops @ 10% of target load 283.90
Performance/power @ 20% of target load 0.03495 ssj_ops @ 30% of target load 283.89
ssj_ops @ 20% of target load 0.03210 ssj_ops @ 20% of target load 283.88
Performance/power @ 30% of target load 0.03164 ssj_ops @ 80% of target load 283.83
Performance/power @ 80% of target load 0.03109 ssj_ops @ 70% of target load 283.83
ssj_ops @ 40% of target load 0.02116 ssj_ops @ 50% of target load 283.82
Performance/power @ 100% of target load 0.01527 ssj_ops @ 100% of target load 283.78
Memory (GB) 0.01005 ssj_ops @ 60% of target load 283.71
Average watts @ 90% of target load 0.00487 Memory (GB) 201.44
Average watts @ 100% of target load 0.00475 Average watts @ 100% of target load 165.80
Average watts @ 60% of target load 0.00386 Average watts @ 90% of target load 160.42
Average watts @ 80% of target load 0.00329 Average watts @ 80% of target load 155.34
Average watts @ 70% of target load 0.00275 Average watts @ 70% of target load 149.80
Average watts @ 50% of target load 0.00262 Average watts @ 60% of target load 145.16
# Cores 0.00252 Average watts @ 50% of target load 141.11
# Chips 0.00217 Average watts @ 40% of target load 137.65
Average watts @ active idle 0.00214 Processor Turbo Boost 134.82
Average watts @ 30% of target load 0.00204 Average watts @ 30% of target load 132.92
Average watts @ 10% of target load 0.00172 Average watts @ 20% of target load 126.20
Processor Turbo Boost 0.00143 Average watts @ 10% of target load 119.04
Processor MHz 0.00091 Operating System Family_Linux 114.43
Form Factor_3U 0.00089 Operating System Family_Microsoft Windows 114.43
Nodes 0.00067 File System_NTFS 91.083
Average watts @ 20% of target load 0.00065 # Chips 86.851
GB per Disk Drive 0.00049 Average watts @ active idle 70.854
Operating System Family_Microsoft Windows 0.00049 File System_XFS 56.967
Average watts @ 40% of target load 0.00045 Nodes 54.592
File System_NTFS 0.00044 # Threads Per Core 44.756
Disk Drive Technology_SAS 0.00031 GB per Disk Drive 39.450
Operating System Family_Linux 0.00029 File System_btrfs 35.145
Power Supply Rating (watts) 0.00027 Form Factor_Tower 34.527
File System_btrfs 7.091E-05 Form Factor_other 31.445
File System_EXT4 7.075E-05 Form Factor_blade 28.130
Power Supplies Installed 3.501E-05 Processor MHz 21.306
Form Factor_1U 1.358E-06 Disk Drive Technology_SAS 16.031
File System_XFS 0 Power Supplies Installed 14.962
File System_NFS 0 Disk Drive Technology_SSD 11.885
File System_ext3 0 Form Factor_1U 11.833
Disk Drive Technology_SATA 0 Disk Drive Amount 11.038
# Threads Per Core 0 Form Factor_10U 7.4572
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Random Forest χ2

Form Factor_Tower 0 Form Factor_7U 5.4510
Form Factor_other 0 Form Factor_12U 2.9483
Form Factor_blade 0 Disk Drive Technology_SATA 2.5508
Form Factor_7U 0 File System_EXT4 0.6811
Form Factor_5U 0 File System_NFS 0.6811
Form Factor_4U 0 File System_ext3 0.6811
Form Factor_2U 0 Form Factor_5U 0.1493
Form Factor_12U 0 Form Factor_2U 0.0337
Form Factor_10U 0 Form Factor_4U 0.0091
Disk Drive Amount 0 Power Supply Rating (watts) 0.0051
Disk Drive Technology_SSD 0 Form Factor_3U 0.0005

Tabla B.5: SPECpower_ssj2008: Influencia de los atributos en los agrupamientos de K-
Medoides.

Random Forest χ2

Característica Score Característica Score
File System_EXT4 0.12776 File System_ext3 90.345
File System_ext3 0.12460 File System_EXT4 86.870
Form Factor_3U 0.05658 Form Factor_3U 79.506
Performance/power @ 80% of target load 0.04521 Form Factor_7U 20.848
Performance/power @ 30% of target load 0.03718 Disk Drive Technology_SAS 10.194
Average watts @ 30% of target load 0.03347 File System_NTFS 9.6548
Average watts @ active idle 0.02887 Operating System Family_Microsoft Windows 8.5421
Performance/power @ 90% of target load 0.02878 Operating System Family_Linux 8.5421
Performance/power @ 60% of target load 0.02807 Power Supplies Installed 7.4035
# Chips 0.02559 Processor Turbo Boost 5.7805
ssj_ops @ 70% of target load 0.02455 # Threads Per Core 4.2680
GB per Disk Drive 0.02402 Power Supply Rating (watts) 1.8723
Power Supplies Installed 0.02376 Disk Drive Technology_SSD 1.6046
ssj_ops @ 80% of target load 0.02301 GB per Disk Drive 1.1309
ssj_ops @ 50% of target load 0.02221 Performance/power @ 30% of target load 0.8411
Performance/power @ 40% of target load 0.02005 Performance/power @ 20% of target load 0.8332
Average watts @ 60% of target load 0.01959 Performance/power @ 40% of target load 0.8273
Performance/power @ 70% of target load 0.01792 Performance/power @ 10% of target load 0.8222
Average watts @ 90% of target load 0.01769 Performance/power @ 50% of target load 0.8088
Form Factor_7U 0.01748 Performance/power @ 60% of target load 0.7728
ssj_ops @ 40% of target load 0.01669 Performance/power @ 70% of target load 0.7290
ssj_ops @ 30% of target load 0.01608 Performance/power @ 80% of target load 0.6853
Performance/power @ 10% of target load 0.01546 Performance/power @ 90% of target load 0.6367
Performance/power @ 50% of target load 0.01511 Performance/power @ 100% of target load 0.6152
Memory (GB) 0.01475 Form Factor_2U 0.6102
ssj_ops @ 10% of target load 0.01426 Average watts @ active idle 0.3754
Operating System Family_Microsoft Windows 0.01320 # Cores Per Chip 0.3640
Performance/power @ 20% of target load 0.01302 Form Factor_1U 0.3194
ssj_ops @ 90% of target load 0.01176 Disk Drive Technology_SATA 0.2675
ssj_ops @ 100% of target load 0.01071 Nodes 0.2398
Nodes 0.01069 Form Factor_Tower 0.1643
Average watts @ 70% of target load 0.01047 Form Factor_blade 0.1198
Average watts @ 40% of target load 0.01028 ssj_ops @ 10% of target load 0.1185
Power Supply Rating (watts) 0.01002 ssj_ops @ 90% of target load 0.1183
Average watts @ 50% of target load 0.00987 ssj_ops @ 40% of target load 0.1183
File System_NTFS 0.00981 ssj_ops @ 50% of target load 0.1181
Average watts @ 10% of target load 0.00952 ssj_ops @ 30% of target load 0.1181
ssj_ops @ 20% of target load 0.00942 ssj_ops @ 80% of target load 0.1181
Average watts @ 20% of target load 0.00782 ssj_ops @ 20% of target load 0.1181
Processor Turbo Boost 0.00545 ssj_ops @ 60% of target load 0.1180
Processor MHz 0.00541 ssj_ops @ 100% of target load 0.1179
Disk Drive Amount 0.00492 ssj_ops @ 70% of target load 0.1178
Performance/power @ 100% of target load 0.00267 Memory (GB) 0.0909
File System_NFS 0.00196 # Cores 0.0787
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Operating System Family_Linux 0.00137 Average watts @ 10% of target load 0.0675
# Threads Per Core 0.00113 File System_XFS 0.0608
# Cores 0.00071 Average watts @ 20% of target load 0.0597
# Cores Per Chip 0.00052 Average watts @ 30% of target load 0.0539
Disk Drive Technology_SAS 0.00030 Form Factor_4U 0.0470
Form Factor_4U 0 # Chips 0.0428
Disk Drive Technology_SATA 0 Average watts @ 40% of target load 0.0406
ssj_ops @ 60% of target load 0 Form Factor_other 0.0369
File System_btrfs 0 File System_btrfs 0.0353
File System_XFS 0 Disk Drive Amount 0.0342
Average watts @ 100% of target load 0 Average watts @ 50% of target load 0.0282
Average watts @ 80% of target load 0 Average watts @ 60% of target load 0.0154
Form Factor_2U 0 Form Factor_10U 0.0078
Form Factor_10U 0 Form Factor_5U 0.0062
Form Factor_12U 0 Average watts @ 70% of target load 0.0059
Form Factor_other 0 Average watts @ 100% of target load 0.0035
Form Factor_blade 0 Form Factor_12U 0.0031
Form Factor_Tower 0 File System_NFS 0.0015
Form Factor_1U 0 Average watts @ 90% of target load 0.0009
Form Factor_5U 0 Average watts @ 80% of target load 0.0006
Disk Drive Technology_SSD 0 Processor MHz 1.357E-05

Tabla B.6: SPECpower_ssj2008: Influencia de los atributos en los agrupamientos de Spectral
Clustering.

Random Forest χ2

Característica Score Característica Score
ssj_ops @ 40% of target load 0.09253 Performance/power @ 10% of target load 1076.9
ssj_ops @ 70% of target load 0.08336 Performance/power @ 20% of target load 1054.0
ssj_ops @ 100% of target load 0.07819 Performance/power @ 30% of target load 1023.0
ssj_ops @ 20% of target load 0.07512 Performance/power @ 40% of target load 999.07
ssj_ops @ 90% of target load 0.06088 Performance/power @ 50% of target load 974.50
ssj_ops @ 80% of target load 0.05775 Performance/power @ 60% of target load 936.49
ssj_ops @ 60% of target load 0.05286 Performance/power @ 70% of target load 887.65
Performance/power @ 70% of target load 0.05118 Performance/power @ 80% of target load 806.91
ssj_ops @ 10% of target load 0.04886 Performance/power @ 90% of target load 707.54
ssj_ops @ 50% of target load 0.04477 # Cores Per Chip 701.37
# Cores Per Chip 0.04000 Performance/power @ 100% of target load 651.82
Performance/power @ 80% of target load 0.03843 # Cores 329.77
ssj_ops @ 30% of target load 0.03711 ssj_ops @ 90% of target load 319.34
Memory (GB) 0.03306 ssj_ops @ 10% of target load 319.31
Performance/power @ 50% of target load 0.02963 ssj_ops @ 40% of target load 319.28
Performance/power @ 90% of target load 0.02522 ssj_ops @ 30% of target load 319.26
# Cores 0.01689 ssj_ops @ 20% of target load 319.20
Performance/power @ 60% of target load 0.01629 ssj_ops @ 80% of target load 319.18
Performance/power @ 40% of target load 0.01513 ssj_ops @ 50% of target load 319.18
Performance/power @ 100% of target load 0.01397 ssj_ops @ 70% of target load 319.18
Performance/power @ 20% of target load 0.01212 ssj_ops @ 100% of target load 319.10
Performance/power @ 30% of target load 0.01140 ssj_ops @ 60% of target load 319.05
Performance/power @ 10% of target load 0.01068 Average watts @ 100% of target load 227.89
Average watts @ 90% of target load 0.00849 Memory (GB) 223.48
Average watts @ 70% of target load 0.00733 Average watts @ 90% of target load 222.83
Average watts @ 50% of target load 0.00659 Average watts @ 80% of target load 220.53
Average watts @ 10% of target load 0.00431 Average watts @ 70% of target load 217.25
Average watts @ 20% of target load 0.00408 Average watts @ 60% of target load 214.76
Average watts @ 100% of target load 0.00350 Average watts @ 50% of target load 212.31
Average watts @ 80% of target load 0.00333 Average watts @ 40% of target load 209.82
Average watts @ 30% of target load 0.00238 Average watts @ 30% of target load 206.40
Average watts @ active idle 0.00229 Average watts @ 20% of target load 200.61
# Chips 0.00174 Average watts @ 10% of target load 194.44
Operating System Family_Microsoft Windows 0.00130 # Chips 140.65
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Random Forest χ2

Average watts @ 40% of target load 0.00122 Average watts @ active idle 135.32
Nodes 0.00108 Processor Turbo Boost 131.20
GB per Disk Drive 0.00093 Operating System Family_Microsoft Windows 130.85
Processor Turbo Boost 0.00091 Operating System Family_Linux 130.85
Processor MHz 0.00083 Nodes 106.35
Average watts @ 60% of target load 0.00075 File System_NTFS 104.87
Power Supply Rating (watts) 0.00070 File System_XFS 60.857
File System_XFS 0.00053 Form Factor_blade 58.080
File System_NTFS 0.00050 GB per Disk Drive 43.290
Disk Drive Technology_SATA 0.00037 # Threads Per Core 41.671
Disk Drive Technology_SSD 0.00032 File System_btrfs 37.379
File System_btrfs 0.00020 Form Factor_Tower 37.159
Form Factor_other 0.00018 Form Factor_other 33.559
Power Supplies Installed 0.00012 Power Supplies Installed 27.135
Form Factor_blade 0.00012 Form Factor_1U 14.546
Operating System Family_Linux 7.832E-05 Processor MHz 12.790
Form Factor_2U 4.840E-05 Disk Drive Technology_SSD 10.347
File System_EXT4 4.810E-05 Disk Drive Technology_SAS 9.5151
Form Factor_4U 2.439E-05 Disk Drive Amount 8.4508
# Threads Per Core 2.402E-05 Form Factor_10U 7.9105
Form Factor_1U 0 Form Factor_7U 6.0818
Disk Drive Technology_SAS 0 Disk Drive Technology_SATA 3.3318
File System_ext3 0 Form Factor_12U 3.1262
Disk Drive Amount 0 Power Supply Rating (watts) 2.1593
Form Factor_10U 0 File System_EXT4 1.5569
File System_NFS 0 Form Factor_3U 0.9198
Form Factor_Tower 0 Form Factor_2U 0.8298
Form Factor_12U 0 File System_NFS 0.6424
Form Factor_5U 0 File System_ext3 0.6424
Form Factor_3U 0 Form Factor_5U 0.1990
Form Factor_7U 0 Form Factor_4U 0.0182

Tabla B.7: SPECpower_ssj2008: Influencia de los atributos en los agrupamientos de K-
Means.
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