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Resumen

En la actualidad, las supercomputadoras son una herramienta fundamental en la investi-
gacion cientifica. La simulacién de modelos computacionales complejos, asi como eventos
pasados y futuros, son una infima parte de las aplicaciones de estos equipos. Sin embargo,
la potenciacién de los mismos en términos de rendimiento va de la mano del consumo de
potencia. El caracter insostenible de esta situacion, debido a su impacto econémico y sobre
todo ambiental, asi como la carencia de un indicador adecuado para con el anélisis energético
de los servidores de computo de alto desempeno, inst6 el desarrollo del presente estudio. En
el que, luego de considerar varios indicadores de proporcionalidad y eficiencia energética,
asi como técnicas de mineria de datos y estadistica multivariada, se propone un indice com-
puesto capaz de describir este fenémeno. Esta investigacion, identificé y fundamenté varias
de las tendencias actuales del disefio de servidores. Ademas, evalud la influencia de confi-
guraciones disimiles de hardware, software y estrategias de administracion de energia, en la
proporcionalidad y eficiencia energética de los medios de computo. Asimismo, se analizaron
las principales limitantes en el disefio de sistemas exaescala, y en qué medida la eficiencia y
no la proporcionalidad energética sustenta este fin.

Palabras clave: supercomputadoras, indicadores, computo de alto desempeno, propor-
cionalidad energética, sistemas exaescala.
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Abstract

Nowadays, supercomputers are a fundamental tool in scientific research. The simulation of
complex computational models, as well as past and future events, are a tiny part of the
applications of these equipments. However, their enhancement in terms of performance goes
hand in hand with power consumption. The unsustainable nature of this situation, due to its
economic and especially environmental impact, as well as the lack of an adequate indicator
for the energy analysis of high-performance computing servers, prompted the development
of this study. In which, after considering several energy proportionality and efficiency in-
dicators, as well as data mining techniques and multivariate statistics, a composite index
capable of describing this phenomenon is proposed. This research, identified and suppor-
ted several of the current trends in server design. In addition, it evaluated the influence of
dissimilar configurations of hardware, software, and energy management strategies, on the
energy proportionality and efficiency of computing means. Likewise, the main limitations in
the design of exascale systems were analyzed, and to what extent energy efficiency and not
energy proportionality supports this end.

Key words: supercomputers, indicators, high-performance computing, energy propor-
tionality, exascale system.
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capriTuLO 1

INTRODUCCION

Durante varias décadas, la eficiencia de los medios de computo se cuantificé a partir del
rendimiento de los mismos. En consecuencia, los diseniadores de hardware enfocaban sus
esfuerzos en maximizar el rendimiento de sus productos sin importar qué, lo que propicié
un incremento desmedido del consumo de energia eléctrica. Ademas, dichos esfuerzos se
centraban principalmente en los niveles de alta utilizacion, ya que los niveles més discretos
se consideraban menos relevantes [Hsu and Poole, 2015]. Como resultado, en la actualidad,
estos ultimos son puntos criticos del diseno de servidores, pues en estos niveles, los sistemas
no suelen cumplir con el principio de energia, y la eficiencia energética decrece abruptamente.

FEl principio de energia plantea que el consumo de potencia debe estar en proporciéon con
el nivel de utilizacion [Barroso and Holzle, 2007]. Por lo tanto, un servidor proporcionalmente
energético es aquel que en estado ocioso o idle no consume potencia, y la misma se incrementa
gradualmente, a medida que aumenta la carga de trabajo. Sin embargo, la propiedad antes
mencionada Pz, = 0, no puede ser satisfecha en realidad por ningtun servidor, puesto que,
con sb6lo encenderse, introduce una penalizaciéon en materia de energia. No obstante, dicho
principio se utiliza en el disefio de servidores, pues define a grandes rasgos, las principales
caracteristicas en términos energéticos, de un sistema de computo ideal.

1.1. Motivacion

Los servidores de Cémputo de Alto Desempeno (HPC)E] son de los sistemas informaticos
que mas sobresalen por su rendimiento. Sin embargo, los mismos consumen una cantidad
excesiva de energia eléctrica. Estos servidores, habitualmente procesan grandes cantidades
de datos, sobre los cuales realizan un ntimero considerable de operaciones de punto flotante
por segundo (FLOPS), por lo que la faena de trabajo de los mismos suele estar comprendida
en niveles elevados de utilizacion. En dichos niveles, si bien la proporcionalidad y eficiencia
energética se incrementan, también el consumo de potencia. Motivo por el cual, [Barroso
and Holzle, 2007| resaltaron la relevancia del estudio de la proporcionalidad energética a fin
de reducir el consumo de energia, sobre todo, en los niveles de utilizaciéon mas bajos.

'El HPC es un campo de actividad que se relaciona con todas las facetas de la tecnologia, la metodologia
y la aplicacion, asociadas con el logro de la mayor capacidad informatica posible en cualquier momento y
tecnologia |Sterling et al., 2017].
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Més atn, existe una notable diferencia entre las tasas de crecimiento del rendimiento y la
eficiencia energética de estos sistemas. De acuerdo con |Feng and Cameron, 2007], en el afio
2007 los servidores de HPC posefan un rendimiento 10000 veces mayor que en 1992, mien-
tras que la relacion rendimiento por unidad de potencia (FLOPS/W) era apenas 300 veces
superiorﬂ Asimismo, con el transcurso de los anos se incrementé el consumo de potencia.
Muchos de los servidores que integran el Top500 requieren hasta 10 Megavatios (MW) de
potencia méxima, lo cual equivale al consumo promedio de energia eléctrica de una ciudad
de 40000 habitantes |Feng and Cameron, 2007].

|[Ryckbosch et al., 2011 plantearon que los costos de compra y mantenimiento repre-
sentan el 69 % del costo total de propiedad. Sin embargo, la construccion de sistemas de
refrigeracion apropiados, capaces de disipar el calor que generan estos servidores, puede lle-
gar a ser incluso tan costosa como los mismos |[Feng and Cameron, 2007]. De acuerdo con
[Barroso and Holzle, 2007|, los costos de refrigeracion y aprovisionamiento son proporcio-
nales al consumo energético promedio. Como consecuencia, muchos de los propietarios de
servidores de HPC, suelen pagar anualmente cientos de miles o incluso millones de dolares
en razon del consumo de energia eléctrica |Feng and Cameron, 2007]ﬂ

En la actualidad, el consumo de potencia es uno de los principales desafios de la co-
munidad de HPC, al ser la principal limitante de disefio de sistemas informaticos exaescala
[Subramaniam and Feng, 2013|. Por lo que, [Bergman et al., 2008| y |Geller, 2011| analizaron
el impacto de disimiles configuraciones de hardware y software en el disefio de un sistema
exaescala, asf como los principales retos en este sentido. Ademaés, |Jiang et al., 2017] desta-
caron la influencia de la adopcién de procesadores de microarquitectura en el estancamiento
de la proporcionalidad energética, e incremento de la eficiencia energética.

El creciente consumo energético de los servidores de HPC tiene un alto impacto me-
dioambiental. Pues, a medida que éste aumenta, también lo hacen la cantidad de energia
eléctrica que generan las termoeléctricas, y el nimero de toneladas de gases de efecto inver-
nadero (GEI) que se emiten a la atmosfera. Tal es el caso, que la Organizacion de Naciones
Unidas, reporté un incremento del 50 % de las emisiones de didxido de carbono (C'Osz) desde
1990. Asimismo, la Agencia de Protecciéon Ambiental informé que por cada MWh de consu-
mo de energia, se emiten a la atmosfera 0.72 toneladas de COs |[Uddin et al., 2015].

Las emisiones de C'Oy representan las dos terceras partes de los GEI (ver tabla ;
las cuales, principalmente se deben a la generacion de energia eléctrica. Segun el Instituto
Nacional de Cambio Climético de México, en el ano 2015, el sector de energia originé el
70 % de los 683 millones de toneladas de CO2 equivalentes (MtCOse) que se emitieron a la
atmosfera. También, la perspectiva del sector eléctrico mexicano para el periodo 2012-2026,
predice un crecimiento de la demanda de electricidad en un 72 % |Diaz et al., 2016|, donde
la energia eléctrica se generara principalmente a partir de gas natural (ver tabla .

?|Feng and Cameron, 2007| destacaron que la relacién rendimiento-espacio (FLOPS/m?) creci6 solamente
65 veces de 1992 al 2007.

3De acuerdo con |Petrini et al., 2004|, el Laboratorio Nacional Lawrence Livermore gasta anualmente
alrededor de seis millones de délares en la refrigeracién de sus equipos.

CINVESTAV-IPN Departamento de Computacién



Introduccion 3

Combustible | COy | CHy | N2O | HFC | SFg
Porcentaje | 71% | 21% | 6% | 1.8% | <1%

Tabla 1.1: Porcentaje de GEI que se generaron a partir de gas natural, México 2013.

Combustible | CO2(kgCO2/TJ) | CHy(kgCH4/TJ) | N2O(kgN2O/TJ)
Carbon 94600 1 1.5
Diesel 74100 3 0.6
Combustoéleo | 77400 3 0.6
Gas Natural | 56100 1 0.1

Tabla 1.2: Factor de emision eléctrico por tipo de combustible, México 2013.

1.2. Planteamiento del problema

En los dltimos anos, se han propuesto varios indicadores a fin de analizar la proporciona-
lidad energética de los medios de computo. Estos, en su mayoria son indices simples, por
lo que resultan incapaces de evaluar el impacto energético de multiples dimensiones. Ade-
més, no suelen tener en cuenta la influencia del contexto de trabajo de los sistemas en el
consumo de potencia. Asimismo, si bien algunos de esos indicadores son adecuados para
el anélisis energético de los servidores de centros de datos, no resultan asi para servidores
de HPC. En este sentido, existen estudios que destacan algunas desventajas del indicador
FLOPS/W [Hsu et al., 2005|, [Hsu et al., 2012|. En consecuencia, hasta la fecha, no existe un
consenso de como medir cuan proporcional es el consumo de potencia [Belady, 2007], por lo
que se carece de un indicador fehaciente para el analisis energético de los servidores de HPC.

Las principales preguntas de investigacién de este estudio son: ;jcuan eficaces son las
actuales estrategias de administracién de energia e indicadores de proporcionalidad y efi-
ciencia energética, para con el analisis y reduccién del consumo de energia eléctrica en los
servidores de HPC? jcuéles son las futuras directrices en el diseno de servidores de HPC,
a fin de reducir el consumo energético de los mismos? ;qué caracteristicas debe poseer un
indicador adecuado para con el analisis energético de los servidores de HPC?

1.3. Propuesta de soluciéon

En muchas ocasiones, un tnico indicador resulta insuficiente para capturar la variedad de
la informacién oculta en un conjunto de datos. En tales circunstancias, puede ser provecho-
so el empleo de un indicador multivariado. Estos, son capaces de simplificar un concepto
multidimensional en un indice simple, razén por la cual, en la actualidad, poseen una gran
popularidad en varias 4reas de investigacién. Tal es el caso, que en los tltimos afios se
definieron disimiles indicadores multivariados, con el objetivo de dar solucién al problema
expuesto en la seccidn anterior. Sin embargo, hasta el momento, tales indicadores resultan
incapaces de describir el consumo energético de los servidores de HPC. Motivo por el cual,
en la presente tesis se propone el diseio de un indicador multivariado ponderado, a partir
de la aplicaciéon de técnicas de mineria de datos y estadistica multivariada.

CINVESTAV-IPN Departamento de Computacion



4 Capitulo 1

Este estudio pone a prueba la hipotesis de que los actuales indicadores de proporcionali-
dad y eficiencia energética, son insuficientes para realizar un anélisis energético adecuado de
los servidores de HPC. Ademas, evalia la presuncion de que varias de las vigentes técnicas
de administraciéon de energia, son cada vez menos determinantes en la gestién energética de
dichos servidores. De ser confirmados estos supuestos, careceria de sentido el empleo de di-
versas estrategias de calendarizacion de tareas y gestion de energia. Asi pues, estas hipotesis
dan origen a los objetivos generales y especificos de la presente investigacion.

1.4. Objetivos

Objetivos Generales

Proponer un indicador multivariado ponderado, que contribuya al analisis energético de
los servidores de HPC.

Objetivos Especificos

1. Identificar varios de los indicadores de proporcionalidad y eficiencia energética, y las
relaciones existentes entre los mismos.

2. Examinar los puntos de referencia o benchmarks de rendimiento y consumo de potencia
de medios de computo.

3. Describir las principales caracteristicas de los conjuntos de datos Green500 y Top500,
as{ como sus ventajas y desventajas para el analisis energético de servidores de HPC.

4. Analizar el impacto de la técnica de Escalado Dindmico de Frecuencia y Voltaje
(DVFS)E] en la proporcionalidad energética de los servidores de HPC.

1.5. Justificacion

Ante el significativo consumo de potencia de los servidores de HPC, y su influencia en
términos econ6micos y ambientales, resulta de especial interés analizar, qué factores y en
qué medida condicionan dicho consumo. Esto, a fin de evaluar el impacto energético de
las actuales tendencias de disefio de servidores y técnicas de administraciéon de energia. La
presente investigacion, surge de la necesidad de estudiar la proporcionalidad y eficiencia
energética de los sistemas de HPC, asi como la incidencia de estas tltimas en materia de
consumo de energia. Este estudio busca proporcionar informacion util a los disenadores
de servidores y a la comunidad de HPC, acerca de las principales limitantes y desafios
energéticos del desarrollo de supercomputadoras méas potentes, asi como el aprovisionamiento
de servidores en base al consumo de potencia y la eficiencia energética.

4E] Escalado Dinamico de Frecuencia y Voltaje es una técnica de ahorro energético que consiste en variar
dindmicamente la frecuencia de reloj del procesador y el voltaje de los componentes del sistema con respecto
a las demandas computacionales |[Le Sueur and Heiser, 2010].
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1.6. Organizaciéon de la Tesis

El contenido de la presente tesis estd desglosado en seis capitulos. En éste, el capitulo
se exponen los motivos que alentaron el desarrollo de la misma, asi como la problemética a
resolver y la propuesta de solucion.

En el capitulo [ se definen los principales conceptos sobre los que se fundamenta el
desarrollo de esta investigaciéon. En el mismo, se analizan varios de los indicadores de pro-
porcionalidad y eficiencia energética, sus ventajas y desventajas, y cuan acertados resultan
estos para el analisis energético de los servidores de HPC. Ademas, se describen los indica-
dores multivariados ponderados definidos por [Strohmaier, 2009 y [Hsu et al., 2012] con el
objetivo de solucionar el problema antes expuesto.

En el capitulo |3 se examinan las principales caracteristicas, ventajas y desventajas de
diversos conjuntos de datos y benchmarks, a fin de identificar los que resulten més conve-
nientes para el posterior analisis.

En el capitulo [ se estudia el comportamiento y la relaciéon existente entre varios in-
dicadores energéticos. Asimismo, se considera el impacto de multiples configuraciones de
hardware y software en la proporcionalidad energética de los sistemas. Ademaés, se presen-
tan los resultados obtenidos del analisis de agrupamiento y la selecciéon de las caracteristicas
de mayor relevancia. También, se detalla el proceso de diseno del indicador multivariado
propuesto como solucién al problema.

En el capitulo [5| se exponen los resultados alcanzados tras la aplicacién del indicador
definido, y se reflexiona acerca de éstos. Se compara dicho indicador con otros indicadores,
y se destacan sus principales ventajas y desventajas para con el objetivo principal de la
investigacion. Mientras que, en el capitulo [6]se presentan las conclusiones a las que se arribo
como resultado del estudio realizado, y se proponen futuros temas de investigacion.
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ESTA PAGINA SE DEJO EN BLANCO INTENCIONALMENTE.
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CApriTULO 2

INDICADORES

En el presente capitulo se analizan varios indicadores de proporcionalidad y eficiencia energé-
tica, asi como indicadores multivariados. Esto, teniendo en cuenta la utilidad de los mismos
para con el andlisis energético de los sistemas, y considerando que los indicadores multiva-
riados se suelen conformar a partir de variables individuales y otros indices compuestos.

2.1. Indicadores de proporcionalidad energética

De acuerdo con el principio de energia, para medir la proporcionalidad energética de un
sistema, es necesario analizar qué tan cerca del origen comienza la curva de potencia, y qué
tan lineal es la misma. Sin embargo, como se menciond en la secciéon hasta la fecha no
existe un indicador universal de proporcionalidad energética. Motivo por el cual, es necesario
el empleo de dos indicadores, uno que mida el rango y otro que mida la linealidad. En la
presente seccién se describen varios de estos indicadores, sus principales caracteristicas,
ventajas y desventajas.

Rango dinadmico. El rango dindmico (DR) [Wong and Annavaram, 2013|, solia ser el
indicador comiinmente usado para cuantificar la proporcionalidad energética de los medios
de computo. Este, indica la porcién de la potencia maxima que no se desperdicia al estar
el sistema en estado ocioso, es decir, la diferencia del consumo de potencia en los niveles de
trabajo peak e idle, normalizada sobre el consumo de potencia en el nivel peak.

P, eak — Pidle

DR=-" : (2.1)
Ppeakz

tal que Pigie ¥ Ppeak son las potencias que se utilizan en los niveles de 0% y 100 % de carga

de trabajo respectivamente. DR toma valores comprendidos entre 0 y 1, siendo este taltimo

en caso de tratarse de un sistema proporcionalmente energético.

En la actualidad, el empleo de este indicador no resulta totalmente adecuado, sobre todo
en el contexto de los centros de datos, pues el mismo no tiene en cuenta el consumo de po-
tencia en los niveles de carga intermedios. Ademés, si bien pudiese considerarse conveniente
para el analisis de la proporcionalidad energética de servidores de HPC, esto no es del todo
cierto, pues dichos sistemas no suelen desempenarse al 100 % de carga de trabajo.

7



8 Capitulo 2

Proporcionalidad energética. El indicador proporcionalidad energética (EP) |[Ryck-
bosch et al., 2011, a diferencia del indicador DR, si tiene en cuenta el consumo de potencia
en los distintos niveles de carga de trabajo, por lo que resulta mas apropiado para el analisis
energético de los actuales servidores. El mismo, fue propuesto como un indicador ortogonal
al aprovisionamiento del conjunto de servidores activos. Ademéas, P se enfoca en el des-
perdicio de energia de los servidores parcialmente utilizados [Varsamopoulos et al., 2010].

=1 .
EP=2- f:?};m, (2.2)
=0
Pg(l) = P(1) -1, (2.3)

siendo P(l) el consumo de potencia para un nivel de carga [, tal que 0 < [ < 1, P(0) =
Pigie, P(1) = Ppear, y Pr un sistema hipotético de proporcionalidad energética. Ademas,
ll::()l P(l)-dl'y fll:()l Pg(1) - dl representan el area bajo la curva de potencia del sistema bajo

prueba (SUT) e hipotético respectivamente.

Las figuras 2.1 y 2.2 ilustran la EP de dos SUT. En el caso de la primera, el area bajo
la curva de potencia coincide con la de Pg, por lo que describe un consumo proporcional de
potencia. Por el contrario, en la figura[2.2) el area bajo la curva de potencia del SUT duplica
a la de Pg, de modo que EP = 0.

— SUT
£ 200{ = Pe £ 200
© @©
2 2
2 o
S 150 S 150
3 ]
o o
o o
L 100 g 100
o o
1S €
> =]
2 s0 2 s0
S S e SUT
— PE
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Nivel de carga de trabajo (porcentaje) Nivel de carga de trabajo (porcentaje)
Figura 2.1: Sistema con EP = 1. Figura 2.2: Sistema con EP = 0.

Por lo tanto, al igual que el indicador DR, la EP de un servidor proporcionalmente
energético es 1, es decir, DR(Pg) = EP(Pg) = 1. De ahi que, |[Hsu and Poole, 2015|
enmarcaron ambos indicadores en el mismo rango de valores.

Proporcién de potencia inactiva a pico. A diferencia de los anteriores, el indicador
proporcion de potencia inactiva a pico (IPR) |[Varsamopoulos et al., 2010], cuantifica la
desproporcionalidad energética de un sistema. Este, de forma similar al DR, solo analiza el
consumo de potencia en los estados idle y peak, y desconoce el consumo energético en los
restantes niveles de carga.

PR = L (2.4)

peak
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La IPR se define como el consumo de potencia en el estado idle, normalizado con res-
pecto al consumo de potencia en el estado peak, por lo que toma valores comprendidos entre
0 y 1. De manera general, este indicador mide la porcién de la potencia maxima que se
desperdicia al estar un sistema en estado ocioso.

Muchos sistemas consumen una cantidad significativa de potencia en niveles discretos de
carga de trabajo. La figura muestra el consumo de potencia de un sistema Altos R380
F2, el cual, en estado ocioso, desperdicia aproximadamente la cuarta parte de su potencia
méxima. Ademas, ésta ilustra la relaciéon complementaria existente entre los indicadores DR
e IPR, de tal modo que IPR+ DR =1, y por ende IPR(Pg) = 0.

= SUT

— Pp )

N
v
o

200

Consumo de potencia (watts)
= =
o w
o o

v
o

0

0 10 20 30 40 50 60 70 80 90 100
Nivel de carga de trabajo (porcentaje)

Figura 2.3: SPECpower ssj2008: I PR de sistema Altos R380 F2.

Brecha de proporcionalidad. La brecha de proporcionalidad energética (PG) |Wong
and Annavaram, 2013|, cuantifica la desproporcionalidad energética de un sistema en los
diferentes niveles de utilizacion. En los mismos, esta brecha consiste en la diferencia entre
el consumo de potencia del SUT con respecto al descrito por Pg, normalizada sobre Peqk-

P(l) — Pe(l)

PG, =
: Ppeak

5 (2.5)
siendo P(l) y Pg(l) el consumo de potencia del SUT y Pg para un nivel de carga [, tal
que 0 < I < 1. PG resulta de gran utilidad en el disenio y anélisis energético de servido-
res de centros de datos y HPC, al identificar los niveles de mayor brecha de proporcionalidad.

Al analizar la proporcionalidad energética de un sistema, no solo es relevante cuanta
potencia consume el mismo, sino también el comportamiento de dicho consumo. Mientras
mas lineal sea la curva de potencia de un sistema, menor serd la penalizacién en términos
de energia, al distribuir la carga de trabajo entrante por varios nodos homogéneos. En este
sentido, el analisis de linealidad resulta de gran provecho, sobre todo en el contexto de
trabajo de centros de datos.

Desviacion lineal. El indicador desviaciéon lineal (LD) [Wong and Annavaram, 2013,
toma como referencia un sistema hipotético de consumo lineal de potencia Py, y cuantifica
la desviacién con respecto al mismo.
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=1
P(l)-dl
LD = gjl)# —1, (2.6)
P - di
PL(l) = Pigie + [Ppeak - Pidle] -1, (27)

siendo fll::Ol P(l)-dly flljol Pr(1)-dl el area bajo la curva de potencia del SUT y Pr, respecti-
vamente. Si bien Pj, describe un comportamiento lineal de consumo de potencia desde P;gje
hasta Ppeqk, de modo tal que LD(Pg) = LD(Pr) = 0, no necesariamente coincide con Ppg.
Ademas, teniendo en cuenta el comportamiento de ambas curvas de potencia, los servidores
se clasifican como lineal proporcional a la energia si LD = 0, superlineal proporcional a la
energfa si LD > 0 y es sublineal proporcional a la energfa si LD < 0.

Las figuras 2.4 y 2.5] ilustran la relacion existente entre el consumo de potencia de los
sistemas superlineales y sublineales proporcionales a la energia, con relacién a su respectivo
sistema de referencia Pr,.
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Nivel de carga de trabajo (porcentaje) Nivel de carga de trabajo (porcentaje)

Figura 2.4: LD sistema superlineal. Figura 2.5: LD sistema sublineal.

En la figura la curva de potencia del SUT se encuentra por encima de la curva de
potencia de Py, por lo que el indicador LD toma valores positivos. Por el contrario, en la
figura la curva de potencia del SUT se encuentra por debajo de la curva de potencia de
Pr, lo cual significa que LD toma valores negativos. En definitiva, la linealidad del sistema
se incrementa a medida que LD tiende a cero, pues mayor es la similitud entre las curvas
de potencia del SUT y el hipotético sistema de referencia Pr,.

Proporcion de desviacion lineal. El indicador proporcion de desviacion lineal (LDR)
[Varsamopoulos et al., 2010|, cuantifica la desviacion lineal como la maxima brecha de se-
paracion entre las curvas de potencia del SUT y su respectivo Pr. Es decir, la LDR de un
sistema se define como la mayor de las porciones de desviacion lineal por nivel de carga, con
respecto al sistema de referencia Pr..

LDR — mlgx P(l) = ((Ppeak — Pidie) - 1 + Piaie)
! (Ppeak - Pidle) U+ Pige

(2.8)
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Lo anterior, puede expresarse como

_ P - P
_ 1P
LDR = méx Pl) 1. (2.10)

Al igual que en el caso del indicador LD, la LDR distingue entre sublinealidad y su-
perlinealidad. Ademés, se cumple que LDR(Pg) = LDR(Pr) = 0. Las figuras y
ilustran el comportamiento de las curvas de potencia de sistemas superlineal y sublineal
respectivamente, en relacién con su correspondiente sistema de referencia Pry,.

250
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O | @) ]
| i
1 1
0 T T T T | T T T T 0 T T r T u T T T T
0O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Nivel de carga de trabajo (porcentaje) Nivel de carga de trabajo (porcentaje)
Figura 2.6: LDR sistema superlineal. Figura 2.7: LDR sistema sublineal.

Indicadores L1, Ly, Lo. De forma similar, los indicadores L1, Ly y Lo permiten medir
la desviacion lineal. Sin embargo, los mismos no suelen utilizarse en el analisis de la propor-
cionalidad energética [Hsu and Poole, 2015|.

Lo = max|Ej|, (2.11)
J

Ly =) |Bj| (2.12)

J
Ly=_[> |E;l, (2.13)
j
siendo
P —Pp(ly)
B = =5 (2.14)

la diferencia en el j-ésimo nivel de carga de trabajo, del consumo de potencia del SUT con
relacion a su respectivo Pg, normalizada sobre Ppeq. En caso de un sistema proporcional-
mente energético, VjE; = 0 y por consiguiente Lo (Pg) = L1(Pg) = L2(Pg) = 0.
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2.2. Indicadores de eficiencia energética

FLOPS/W. En la actualidad, el indicador FLOPS/W tiene una gran aceptacion en la
comunidad de HPC. En este entorno, se suele considerar solamente el rendimiento y consumo
de potencia en el estado peak (ecuacion . Sin embargo, si bien estos servidores no suelen
trabajar en niveles discretos de carga de trabajo, rara vez se desempenan en tal porcentaje.
Por lo que, resulta mas acertado cuantificar la eficiencia energética a partir del rendimiento
y consumo de potencia por nivel de carga de trabajo (ecuaciéon .

Rendimiento
Eficiencia energética = — peak (2.15)
Potenciapeqr,
1 ..
_o Rendimiento;
Eficiencia energética = 2= ! (2.16)

1 .
> j—o Potencia

No obstante, varias investigaciones consideran inadecuado el empleo de este indicador
para el anélisis energético de los servidores de HPC [Hsu et al., 2012|. Estas, lo descri-
ben como un indicador volétil, cuyos resultados dependen de diferentes factores, tales como
el tipo de operacion, el nivel de carga de trabajo y el benchmark con que se evalie el sistema.

Ademas, el indicador FLOPS/W describe dos estrategias para maximizar la eficiencia
energética de los medios de computo, incrementar el rendimiento de los equipos o disminuir
el consumo de potencia de los mismos. Por lo que, al tratarse de una métrica intensiva,
no es conveniente su uso para clasificar sistemas de computadoras por tamano, pues los
servidores de supercomputo de menor tamano tendran mejores calificaciones |[Strohmaier,
2009]. Ya que, como expresaron |Feng and Cameron, 2007|, a medida que aumenta el nimero
de nodos, aumenta a su vez el consumo de potencia (al menos linealmente), mientras que el
rendimiento se incrementa, a lo sumo linealmente para problemas paralelos, y sublinealmente
para los restantes problemas.

PUE. El indicador efectividad en el uso de energia (PUE) |Belady et al., 2008, cuantifica
qué porciéon del consumo total de energia emplean los equipos de procesamiento, en contra-
posicién a la energia que utilizan los sistemas de refrigeracion y la infraestructura de energia.

Energia total de instalacion

PUE = (2.17)

Energia de los medios de computo’

siendo la Energia total de instalacion la energia que se consume en la instalacién o centro
de procesamiento en tareas afines con el mismo. Mientras que, la Energia de los medios de
computo hace referencia a la energia que consumen los equipos computacionales para admi-
nistrar, procesar o enrutar la informacién entrante.

PUE puede interpretarse como un indicador de proporcionalidad energética, pues tiene
una estrecha relacion con el principio de energia. Sin embargo, varios estudios plantean que
PUF resulta insuficiente, pues solo tiene en cuenta el uso relativo de energia. En consecuen-
cia, un sistema energéticamente ineficiente, puede tener un valor de PUFE excelente, si su
infraestructura de soporte proporciona un enfriamiento efectivo [Hsu et al., 2012].
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2.2.1. Otros indicadores

El consumo promedio de potencia es otro indicador de eficiencia energética comtnmen-
te utilizado. Este, se puede expresar a partir de las relaciones potencia-tiempo (W/s) y
potencia-espacio (W/m?). La primera, indica el consumo de potencia por unidad de tiempo,
y se utiliza en las tecnologias Intel Turbo Boost y AMD Turbo Core en la aplicacion de
la técnica de DVFS. Mientras que la segunda, en conjuncién con el indicador rendimiento-
espacio (FLOPS/m?), se emplea en el disefio de servidores y sistemas de refrigeracion.

Los indicadores producto de retardo de energia (EDP) y producto cuadrado de retardo
de energia (ED?P), han sido utilizados histéricamente para el anélisis de la eficiencia ener-
gética de los medios de computo. El primero, se define como la energia total que se consume
al ejecutar una unidad de trabajo, multiplicada por el tiempo de ejecucién. Mientras que el
segundo, consiste en la energia multiplicada por el cuadrado del tiempo de ejecucién, por lo
que da mayor relevancia al rendimiento del sistema [Stijn and Eeckhout, 2011].

El Diagrama de retardo de energia (EDD) [Stijn and Eeckhout, 2011], si bien no es un
indicador de eficiencia energética, ilustra de forma intuitiva la relaciéon rendimiento-consumo
energético de un servidor con respecto a un sistema de referencia.

Energia,,.,

y:]0g2<E Spructa ) (2.18)
nerglar@ferencia
Ti

a::log2< T Opructa > (2.19)
Tlemporeferencia

El primer cuadrante representa el caso en el que el sistema de referencia posee una mayor
eficiencia energética (menor consumo energético y menor tiempo de ejecucion) que el SUT,
mientras que el tercer cuadrante ilustra el caso contrario. Por tltimo, el segundo y cuarto
cuadrante representan las compensaciones, y el origen del EDD representa al sistema de

referencia (ver figura .

Consumo de energia Normalizado(/og;)

Tiempo Normalizado(/og,)

Figura 2.8: Diagrama de retardo de energfa.
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Entre las principales ventajas del EDD, destaca el hecho de que al hacer uso de los
logaritmos de las razones de rendimiento y energia, es sencillo representar los indicadores
EDP y ED?P, por medio de lineas rectas. Por ejemplo, la primera de estas lineas (EDP),
denota los puntos donde el SUT y el sistema de referencia son igualmente eficientes en
términos energéticos, segin este indicador. Lo mismo sucede con la linea que describe al
indicador ED?P.

2.3. Indicadores multivariados

Como senalan [Stijn and Eeckhout, 2011 y [Strohmaier, 2009|, realizar el anélisis energé-
tico de un sistema de computo a partir de una tnica métrica puede resultar enganoso. En
consecuencia, en los dltimos anos se han utilizado técnicas de estadistica multivariante, con
el objetivo de definir un indicador compuesto que posibilite dicho analisis.

La métrica de utilidad (UM) [Strohmaier, 2009|, fue propuesta como un indicador ge-
neralizado, a partir del cual realizar el anélisis energético de las supercomputadoras (SC).

o P\’ M\ Peak \° [ Peak \*
UM(5C) = F '<Peak:) '(Peak:> '<P0wer> ‘<Space) ’ (220)

siendo P el rendimiento sostenido alcanzado, M la cantidad de memoria utilizada, Power
la potencia consumida, Space el espacio fisico consumido por el sistema y Peak el ren-
dimiento méximo alcanzado. Ademas, las ponderaciones se distribuyen de forma tal, que
o, B,7,0,e>0y B+v=0+e.

Asimismo, |Hsu et al., 2012| definieron un indicador multivariado ponderado a partir del
rendimiento y el indice de eficiencia energética FLOPS/W.

(rendimiento)® - (eficiencia energética)®. (2.21)

En el disenio de este indicador, Hsu et al., dieron igual relevancia al rendimiento y la
eficiencia energética, es decir &« = 3. Ademas, definieron un conjunto de propiedades desea-
bles para una métrica de eficiencia energética, entre las cuales se requiere, que no exista un
limite superior, capture la proporcionalidad energética de un sistema y no sea sesgado. En
adelante, este indicador se referenciara en el documento a través de las siglas REE.

De manera general, ambos indicadores hacen uso del mismo principio de construccion.
Este, consiste en la multiplicacion de las caracteristicas deseadas, tales como el rendimiento
y la eficiencia energética; y la division de estas ultimas por las caracteristicas indeseadas,
como son el consumo de potencia y el tamafnio. Sin embargo, existen diferentes estrategias
de agregacion y ponderacion, cuya aplicaciéon depende de factores, tales como el objetivo del
indicador y la escala de las variables.
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BENCHMARKS Y DATASETS

La recoleccion de los datos a analizar es la primera etapa del proceso de Extraccion de
Conocimiento de Bases de Datos (KDD)E]. La misma, esta sujeta a los objetivos de la in-
vestigacion, y determina en gran medida la calidad de los resultados a obtener. Asi pues,
en el presente capitulo se describen las caracteristicas principales, ventajas y desventajas de
varios benchmarks y conjuntos de datos, a fin de identificar los que resulten méas apropiados
para el analisis energético de los servidores de HPC.

SPECpower ssj2008. SPECpower_ssj2008 es un benchmark desarrollado por la Cor-
poraciéon de Evaluacion de Desempeno Estandar (SPEC), con el objetivo de examinar el
rendimiento y consumo de potencia de uno o miltiples nodos, a través de un enfoque gra-
dual de carga de trabajo. El mismo, consiste en una aplicaciéon Java, que en una primera
etapa genera y completa una combinacién de transacciones, y posteriormente, mide el rendi-
miento del sistema, a partir del nimero de transacciones por segundo (TPS) que se realizan
durante un periodo fijo de tiempo. Ademas, cuantifica la eficiencia energética en los distintos
niveles de utilizacién en términos de transacciones por segundo por watt. También, utiliza
la eficiencia energética general como puntaje (SCR) del sistema:

Yo, rendimiento;
n .
> 4 potencia;

SCR = (3.1)
siendo n = 11 los niveles de carga de trabajo. A diferencia de otros benchmarks, SPECpo-
wer ssj2008 gradia la carga de trabajo desde el estado idle hasta el peak, de forma tal, que
en cada iteracién, incrementa ésta en un 10 %.

SPECpower _ssj2008 hace uso de las unidades centrales de procesamiento, cachés, jerar-
quia de memoria y escalabilidad de la memoria compartida. También, cuenta con una fase
de calibracién, en la cual, se determina el rendimiento méaximo y el niimero de transacciones
a realizar en cada uno de los niveles de carga de trabajo. Ademas, analiza las caracteristicas
asociadas a la memoria de acceso aleatorio (RAM), el namero de nodos, el chasis, el sistema
operativo, entre otros componentes de hardware y software.

SKDD se define como el proceso no trivial de identificar patrones validos, novedosos, potencialmente
atiles y, en ultima instancia, comprensibles en los datos [Kudo and Sklansky, 2000].
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Por otra parte, SPECpower ssj2008 no considera el niimero de FLOPS, por lo que carece
de un enfoque de HPC |Lange, 2009]. Razon por la cual, SPEC desarroll6 los benchmarks
SPEC MPI 2007 y SPEC OMP 2012, los cuales si contemplan la cantidad de FLOPS. Sin
embargo, a diferencia de SPECpower ssj2008, ambos benchmarks carecen de un enfoque
gradual de carga de trabajo, puesto que el rendimiento y el consumo energético se evalian
Gnicamente en el maximo nivel de utilizacion.

SPEC OMP 2012. El benchmark SPEC OMP 2012 mide el rendimiento de los sistemas
a partir de aplicaciones basadas en el estandar OpenMP. Este, se enfoca en las caracteristi-
cas asociadas al procesador, la memoria, el compilador y las bibliotecas de soporte paralelo.
Ademés, se compone de otros 14 benchmarks (ver tabla|3.1]), para cada uno de los cuales eje-
cuta seis pruebas, distribuidas equitativamente, utilizando las optimizaciones conservadora
y agresiva de los mismos. De manera general, el proceder en cada uno de los 14 benchmarks
es el siguiente:

1. Agrupar las pruebas a partir del tipo de optimizacion del benchmark que utiliza.
2. Normalizar el rendimiento y consumo de potencia alcanzado en cada una de las prue-

bas, con respecto al descrito por el sistema de referenciaﬁ en iguales condiciones, es
decir, bajo el mismo tipo de optimizacién.

Rendimiento_basep yepa

SPEC G base2012 = 3.2
omptr_base Rendimiento_baseye ferencia’ (3:2)
Rendimient k

SPECompG _peak2012 = en' zmzen 0_bCATpructa , (3.3)
- Rendimiento_peak,cferencia
Energia_baseprycpa

SPECompG _energy base2012 = == , (3.4)
Energia_basereferencia
Energia_peakpryepa

SPECompG _energy peak2012 = = , (3.5)

Energia_peakreferencia
siendo base y peak los tipos de optimizaciones conservadora y agresiva respectivamente.

3. Calcular la mediana de las proporciones obtenidas en cada grupo.

4. Por 1ultimo, los resultados arrojados por SPEC OMP 2012 consisten en la media geo-

métrica de las 14 proporciones de cada tipo de optimizacién, tanto en términos de
rendimiento como de consumo de potencia.

5El benchmark SPEC OMP 2012 desde el afio 2008 utiliza como sistema de referencia el Sun Fire X4140,
el cual consta de un procesador AMD Opteron 2384 con una frecuencia de reloj de 2.7 GHz, 2 quad-core y
32 GB de memoria RAM.
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Benchmark | Lenguaje | Dominio de aplicacion

350.md Fortran Fisica: Dinamica Molecular

351.bwaves Fortran Fisica: Dinamica de Fluidos Computacional (CFD)
352.nab C Modelado Molecular

357.bt331 Fortran Fisica: Dinamica de Fluidos Computacional (CFD)
358.botsalgn | C Alineacién de Proteinas

359.botsspar | C Factorizacion LU

360.ilbdc Fortran Lattice Boltzmann

362.fma3dd Fortran Simulacion de Respuesta Mecanica

363.swim Fortran Prediccion del Clima

367.imagick C Procesamiento de Imagenes

370.mgrid331 | Fortran Fisica: Dinamica de Fluidos Computacional (CFD)
371.applu3d3l | Fortran Fisica: Dinamica de Fluidos Computacional (CFD)
372.smithwa | C Coincidencia Optima de Patrones

376.kdtree C++ Ordenamiento y Busqueda

Tabla 3.1: Conjunto de puntos de referencias que integran el benchmark SPEC OMP 2012.

SPEC MPI 2007. El benchmark SPEC MPI 2007 cuantifica el rendimiento de los siste-
mas a partir de la interfaz de paso de mensajes (MPI). Este, enfatiza en las caracteristicas
asociadas al procesador, la biblioteca MPI, la arquitectura de memoria, los compiladores y
el sistema de archivos. Sin embargo, descarta caracteristicas como el sistema operativo, los
aceleradores graficos y el sistema de entrada/salida. De manera general, SPEC MPI 2007
hace uso de la misma estrategia de estimaciéon de rendimiento y consumo energético que
SPEC OMP 2012; siendo el sistema de referencia[] v los benchmarks que integran la suite
(ver tabla los principales elementos de diferenciacion.

Benchmark Lenguaje | Dominio de aplicacion

104.milc C Fisica: Cromodindmica Cuéantica (QCD)
107 leslie3d Fortran Dindmica de Fluidos Computacional (CFD)
113.GemsFDTD | Fortran Electromagnetismo Computacional (CEM)
115.fds4 C/Fortran | Dindmica de Fluidos Computacional (CFD)
121.pop2 C/Fortran | Modelado de Océanos

122.tachyon C Gréficos: Trazado de Rayos Paralelos
125.RaxML C Coincidencia de ADN

126.lammps C++ Simulacion de Dindamica Molecular

127.wrf2 C/Fortran | Prediccion del Clima

128.GAPgeofem | C/Fortran | Transferencia de Calor mediante Métodos de
Elementos Finitos (FEM)

129.tera_ tf Fortran Hidrodindmica Euleriana 3D
130.socorro C/Fortran | Dinamica Molecular utilizando la Teoria

Funcional de la Densidad (DFT)
132.zeusmp2 C/Fortran | Fisica: Dindmica de Fluidos Computacional (CFD)
137.1u Fortran Dinéamica de Fluidos Computacional (CFD)
142.dmilc C Fisica: Cromodinamica Cuantica (QCD)
143.dleslie Fortran Dinémica de Fluidos Computacional (CFD)
145.1GemsFDTD | Fortran Electromagnetismo Computacional (CEM)
147.12wrf2 C/Fortran | Prediccién del Clima

Tabla 3.2: Conjunto de puntos de referencias que integran el benchmark SPEC MPI 2007.

"SPEC MPI 2007 utiliza como sistema de referencia un clister de 8 nodos de un sistema Celestica A2210,
con un procesador AMD Opteron 848 de un solo ntucleo, con una frecuencia de reloj de 2200 MHz, 1 MB de
caché Lo y 4 GB de memoria RAM DDR3 por socket.
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Linpack. El benchmark Linpack, examina el rendimiento de los sistemas al resolver un
problema general de matriz densa Ax = b, asi pues, se caracteriza fundamentalmente por
un uso intensivo de los FLOPS. A grandes rasgos, el mismo consiste en descomponer una
matriz en el producto de matrices simples y bien formadas |Dongarra et al., 2003|, por lo
que requiere 9(n3) operaciones de punto flotante, especificamente %n?’ + 2n?, siendo n el
orden de la matriz. Ademas, éste, a su vez, se compone de otros tres benchmarks, asociados
a problemas de orden 100, 1000 y un tercero de computacién altamente paralela, también
conocido como High Performance Linpack o HPLinpack.

A continuacion, se describen los benchmarks antes mencionados:

= Linpack 100 es similar al sistema de referencia original publicado en 1979. El mismo,
consiste en la eliminacién gaussiana con pivote parcial.

= Linpack 1000 brinda un rendimiento mas cercano a los limites del sistema, al propor-
cionar un problema de mayor tamano. Sin embargo, tiene como limitante que no es
posible reducir la precision relativa.

= HPLinpack, resulta adecuado para la evaluaciéon de servidores de HPC, al permitir
el incremento del orden tanto como sea necesario. Sin embargo, no es acertado en el
mismo el uso del algoritmo Strassen, pues distorsiona la tasa de ejecucion.

Gradiente conjugado de alto rendimiento. El benchmark de Gradiente Conjugado
de Alto Rendimiento (HPCG) es un punto de referencia de supercomputo, cuyo objetivo es
modelar los patrones de acceso a datos de los sistemas, y evaluar el efecto de las limitaciones
del subsistema de memoria. Este, se caracteriza por una menor intensidad aritmética y una
mayor precision de memoria, lo que lo hace apropiado para la evaluacién de servidores de
centros de datos [Ruiz et al., 2018|. Ademéas, complementa el analisis de benchmarks como
Linpack, que no enfatizan en la interconexién interna.

HPCG resuelve un sistema lineal disperso de ecuaciones mediante el método de gradiente
conjugado. También, utiliza un preacondicionador aditivo de Schwarz en la descomposicion
del primer dominio, mientras que cada subdominio se preacondiciona a través de un barrido
simétrico de Gauss-Seidel [Dongarra et al., 2013|. HPCG es mas “realista” que Linpack, ya
que tiene una menor intensidad aritmética que este dltimo, por lo que, sistemas con un alto
rendimiento en Linpack, no necesariamente poseen un buen rendimiento en HPCG.

Top500 & Green500. El Topb00 es el ranking de las 500 supercomputadoras disponibles
comercialmente de mayor rendimiento. En éste, los sistemas se ordenan de forma descen-
dente, a partir del namero de FLOPS que son capaces de procesar. Dicho rendimiento, se
obtiene como resultado de la evaluacién del benchmark Linpack en cada uno de los sistemas.
Ademas, este conjunto de datos brinda una perspectiva en términos de HPC, al proporcionar
los resultados obtenidos de la evaluacion del benchmark HPCG. Sin embargo, el Consejo de
Asesores de Ciencia y Tecnologia y Jack Dongarra, fundador del propio listado, destaca-
ron la necesidad de analizar el ranking desde un contexto méas amplio, pues no solo debia
considerarse el nimero de FLOPS [Geller, 2011], lo que dio paso al surgimiento del Green500.
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El Green500, surgié con el objetivo de concientizar acerca del consumo energético que
llevan a cabo las supercomputadoras. Por lo cual, se cre6 un ranking a partir de la eficiencia
energética de los sistemas que conforman el Top500. Sin embargo, ambos conjuntos de datos
carecen de un enfoque gradual de carga de trabajo, pues solamente se analizan el rendi-
miento, consumo de potencia y eficiencia energética al méximo nivel de utilizacién, lo que
imposibilita un estudio profundo de la proporcionalidad y eficiencia energética.

Por lo tanto, de los benchmarks antes expuestos, s6lo SPECpower ssj2008 posee un
enfoque gradual de carga de trabajo. Este, es un benchmark apropiado para el analisis
energético de los servidores de centros de datos. Sin embargo, al carecer de un enfoque de
HPC, resulta desacertado su empleo para el estudio de la proporcionalidad energética de
tales sistemas. Por otra parte, los restantes benchmarks estudiados, si bien tienen en cuenta
los FLOPS, y estresan en mayor o menor medida a los sistemas, no analizan el consumo
de potencia por nivel de utilizacién, por lo que son también insuficientes para el anélisis
energético de los servidores de HPC (ver tabla [3.3)).

Enfoque Tipo de operaciéon
Benchmark Gradual de carga de trabajo | Centro de datos | HPC | MIPS/TPS | FLOPS
SPECpower_ssj2008 | Si Si No Si No
SPEC OMP 2012 No No Si No Si
SPEC MPI 2007 No No Si No Si
Linpack No No Si No Si
HPCG No No Si No Si

Tabla 3.3: Comparacion de los benchmarks de rendimiento y consumo de potencia.

Como resultado del analisis anterior, se concluy6 que se carece de un conjunto de datos
general, a partir del que realizar el analisis de proporcionalidad energética en servidores de
HPC. Por lo que, el estudio a desarrollar, debe sustentarse en la informacion existente en los
conjuntos de datos de SPECpower ssj2008, Green500 y Top500, los que se describen con
detalle en el apéndice [A]
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ESTA PAGINA SE DEJO EN BLANCO INTENCIONALMENTE.
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CcapriTULO 4

ANALISIS DE MINERIA DE DATOS

La minerfa de datos es una etapa intermedia del KDD. Esta, consiste en la aplicacion
de técnicas computacionales de diferentes disciplinas, tales como optimizacién, computo
evolutivo y teoria de la informacién, a fin de extraer conocimiento procesable de conjuntos
de datos. En el presente capitulo, se detalla el analisis descriptivo y exploratorio realizado
en funciéon del rendimiento y consumo energético de los servidores de HPC.

4.1. AnaAlisis descriptivo

El desarrollo de un indicador multivariado, requiere de la seleccién de los indices més ade-
cuados para explicar el fenémeno de interés, y el analisis de sus tendencias y relaciones.
Esto, a fin de dotar de sencillez y robustez al modelo, al descartar variables redudantes o
resultantes de combinaciones de otras. Asimismo, posibilita la inferencia del futuro compor-
tamiento del indicador compuesto y los subindices que lo integran. En la presente seccién,
se analizan varias de las tendencias actuales del disefio de servidores de HPC.

4.1.1. Distribucion

La distribucién de las variables, es una de las caracteristicas més importantes a considerar
durante el desarrollo de una investigacién, ya que condiciona las tareas a realizar. La dis-
tribucién es un resumen de la frecuencia de valores individuales o rangos de valores para
una variable. La forma en que se distribuyen las variables es de vital relevancia, tanto en el
aspecto cuantitativo como cualitativo.

Existen diversas estrategias para determinar la bondad de ajuste de dos distribuciones
de probabilidad entre si, tales como la prueba de Kolmogorov-Smirnov [Smirnov, 1939], el
test de Shapiro-Wilk [Shapiro and Wilk, 1965] y la prueba de Anderson-Darling [Stephens,
1974]. De forma similar, el criterio de informacion bayesiano [Schwarz, 1978| y el criterio
de informacion de Akaike [Akaike, 1998| son de gran utilidad en este sentido. Si bien, mu-
chas de las técnicas anteriores persiguen diferentes objetivos, todas ellas pueden utilizarse
para la seleccion de la distribucién que mejor se ajuste a los datos. Las tablas y
resumen la distribucién de las principales variables que componen los conjuntos de datos de
SPECpower _ssj2008 y Top500, identificadas a partir de la prueba de Kolmogorov-Smirnov.
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Variable

Distribucion

Nodes

Generalizada de valores extremos

ssj_ops @ 100 % of target load

Gaussiana inversa

Average watts @ 100 % of target load

Generalizada de valores extremos

Performance /power @ 100 % of target load

Distribucion de Pearson

# Cores

Gaussiana inversa

# Chips

Generalizada de valores extremos

# Threads Per Core

Distribucién de Pearson

Processor MHz

Normal logaritmica

Memory (GB)

Normal logaritmica

Power Supplies Installed

Normal

Power Supply Rating (watts)

Normal

Tabla 4.1: SPECpower ssj2008: Distribucion de las principales variables.

Variable Distribucion
Total Cores Normal logaritmica
Accelerator/Co-Processor Cores | Normal
Rmax [TFlop/s| Pareto

Rpeak [TFlop/s|

Power (kW)

Power Efficiency [GFlops/Watts|
Processor Speed (MHz)

Cores per Socket

Normal logaritmica
Weibull exponencial

Generalizada de valores extremos

Normal

Generalizada de valores extremos

Tabla 4.2: Top500: Distribucién de las principales variables.

4.1.2. Tendencias y Relaciones

Varios estudios senalan la existencia de una estrecha relacion entre el consumo de potencia y
la proporcionalidad energética de los medios de coémputo. Barroso y Holzle destacaron como
el incremento de la proporcionalidad energética requiere de futuras mejoras en términos del
consumo de potencia |[Barroso and Holzle, 2007]. Sin embargo, [Wong and Annavaram, 2013|
demostraron que no en todos los casos la proporcionalidad energética mejora la gestion de
energia de los servidores. Aun asi, los disenadores de sistemas computacionales exploran
miultiples estrategias de gestion de energiaﬂ con el objetivo de minimizar el consumo de
potencia y maximizar la proporcionalidad energética de sus productos.

La figura ilustra la tendencia creciente de los sistemas en términos de DR y EP.
Esto, como consecuencia de un menor desperdicio de la potencia maxima en el estado ocioso,
y la disminucién de la brecha energética con respecto a un sistema ideal Pg. En la misma,
se observa un incremento abrupto de ambos indicadores a partir del afio 2009, el cual varios
autores asocian con el empleo del DVFS en la gestion de energia [Hsu and Poole, 2013|.

8Historicamente han habido tres direcciones para el ahorro de energia: suspender o apagar sistemas,
DVFS y la gestion de cargas de trabajo conscientes de la energia.
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Figura 4.1: SPECpower _ssj2008: Curvas de tendencia de los indicadores DR y EP.

Al analizar la curva de tendencia del indicador EP, destaca la presencia de servidores,
en los cuales, este indicador supera el limite definido en la bibliografia. Esta investigaciéon no
es ajena a la existencia de servidores con EP > 1, en adelante, sistemas superproporcionales,
va que |Jiang et al., 2017| asi lo constataron. No obstante, Jiang et al., no exploraron las
causas de estos valores atipicos, lo cual, da paso a las siguientes interrogantes:

Interrogante 1. ;Qué factores condicionan este cardcter superproporcional?

Interrogante 2. ;En qué medida dicho comportamiento se debe al empleo del DVFS?

Esta segunda interrogante posee gran relevancia, pues |Le Sueur and Heiser, 2010] plan-
tearon que el DVFS, si bien es apropiado para la gestion de potencia en arquitecturas anti-
guas, no resulta asf en arquitecturas modernas, en las que incrementa el consumo energético.

Por otra parte, al analizar el comportamiento histérico de los sistemas en concepto de
linealidad, destaca el descenso de la misma, tanto en términos generales como especificos,
es decir, el incremento de la LD y LDR de los sistemas (ver ﬁgura. Esto, corrobora el
prondstico que realizaron |[Varsamopoulos and Gupta, 2010|, referente al futuro aumento de
la desviacién lineal y la disminuciéon de la IPR de los sistemas.
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Figura 4.2: SPECpower ssj2008: Curvas de tendencia de los indicadores LD y LDR.

CINVESTAV-IPN Departamento de Computacion



24 Capitulo 4

La figura [£.3] ilustra la relacion existente entre los indicadores LDR, IPR y EP. En la
misma, se observa cémo a medida que aumenta la EP, disminuye la /PR y se incrementa
la LDR. Es decir, los sistemas de menor desviaciéon lineal son los que mayor porcién de la
potencia maxima desperdician en estado idle. Ademés, muestra la alta desviacion lineal que
caracteriza a los sistemas superproporcionales, y cuan ineficiente es el indicador EP para
capturar la linealidad de un sistema.
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Figura 4.3: SPECpower ssj2008: Grafica de dispersion de los indicadores LDR e I PR.

No obstante, FP es uno de los indicadores de mayor aceptaciéon y empleo en el ana-
lisis energético de los sistemas de computadora. Razén por la cual, se han definido varias
aproximaciones en torno al mismo. Por ejemplo, [Wong and Annavaram, 2013| y [Hsu and|
destacaron la estrecha relacion existente entre los indicadores P, DRy LD,

de forma tal, que:

EP~2—(2—-DR)(LD +1). (4.1)

Esta aproximacion, propone dos estrategias para la maximizacion de la £ P, el incremento

del DR o la disminucién de la LD. Sin embargo, teniendo en cuenta las curvas de tendencia

de ambos indicadores, resulta méas adecuado el empleo de la segunda estrategia, pues los

sistemas actuales suelen poseer un DR cada vez més cercano a su limite tedrico. La figura

[4.4) ilustra la validez de esta aproximacion, y como en las ultimas décadas, el margen de
error de dicha aproximacién ha estado parcialmente estancado.
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Figura 4.4: SPECpower ssj2008: Curva de tendencia del margen de error de la aproximacion
del indicador EP en términos de los indicadores DR y LD.
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De igual forma, [Hsu and Poole, 2015] definieron una aproximacion del indicador E'P en
términos del indicador L.

214
m—1"

EP~1-— (4.2)

siendo m el nimero de niveles de carga de trabajo. Ademés, consideraron la alta correlacién
existente entre los indicadores Ly, Lo y L. Para los cuales, en la actualidad, la similitud
entre sus respectivas curvas de tendencia, en cuanto al coeficiente de correlacion de Pearson’)
es al menos 0.97, y especificamente 0.99 para los indicadores Lj y Lo.

Como resultado de la evaluaciéon de esta aproximacion, se obtuvo un margen de error
significativo, por lo que la misma carece de vigencia (ver ﬁgura. Ademas, destaca como
a partir del ano 2012 se incrementa el margen de error de esta aproximacién, ano a partir
del cual también la EP de los sistemas no suele variar considerablemente.
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Figura 4.5: SPECpower _ssj2008: Curva de tendencia del margen de error de la aproximacion
del indicador E'P a partir del indicador L1.

Asimismo, con base a la tendencia creciente de la EP y la eficiencia energética de los
sistemas, [Hsu and Poole, 2015| definieron la siguiente relacion:

T10 1.1

SCR~ (5 )G Ep

)s (4.3)

siendo 719 y Pig el rendimiento y el consumo de potencia al 100 % de carga de trabajo res-
pectivamente.

Esta aproximacion define dos estrategias para el incremento de la eficiencia energética
promedio, ya sea a partir del aumento de la EP o la relacién rendimiento-potencia en
el estado peak. Ya que, la EP de los sistemas desde el ano 2012 ha estado parcialmente
estancada, gran parte de las mejoras en términos de SC'R se debe al empleo de la segunda
estrategia, es decir, el incremento de la eficiencia energética en el 100 % de utilizacion (ver

figura .

9El coeficiente de correlacion de Pearson mide la fortaleza de la relacion lineal entre dos variables.
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Figura 4.6: SPECpower _ssj2008: Grafica de dispersion del SCR y %.

La figura[4.7)ilustra la relacion existente entre el indicador EP y la eficiencia energética.
Como se observa, los sistemas superproporcionales poseen valores promedio de SCR y %01.
Lo que reafirma el enunciado de [Varsamopoulos et al., 2010] referente a que no en todos los
casos la proporcionalidad energética mejora la gestion de energia.
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Figura 4.7: SPECpower _ssj2008: Graficas de dispersién de los indicadores EP, SCR y %01.

Al evaluar dicha relaciéon se obtuvo un importante margen de error, por lo que no es
conveniente el empleo de la misma como aproximacion al SCR (ver ﬁgura. También, al
igual que en la aproximacion el margen de error se incrementa a partir del afio 2012. En
este caso, dicho incremento se debe al aumento de la eficiencia energética en el estado peak.
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Figura 4.8: SPECpower ssj2008: Curva de tendencia del margen de error de la aproximacion

del indicador SC'R a partir de los indicadores EP y %.
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Al analizar el consumo de potencia y la eficiencia energética por nivel de utilizacion,
destaca cémo en el caso del primero, los sistemas de mayor DR y E P se suelen intersectar
con su ideal en niveles discretos de carga de trabajo (ver figura . De forma tal, que
mientras mas cercano al estado idle es la intersecciéon, mayor tienden a ser los valores de
estos indicadores. No obstante, ésto no es del todo absoluto, ya que las curvas de potencia de
los SUT y sus respectivos sistemas de referencia pueden intersectarse en mas de una ocasion.
Ademas, en este sentido, resulta mas importante la brecha de potencia, que el nimero de
niveles de carga, en los cuales el consumo de potencia describié un comportamiento sublineal.
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Figura 4.9: SPECpower _ssj2008: Figura 4.10: SPECpower ssj2008: Eficiencia
Consumo de potencia por nivel de carga. energética por nivel de carga.

Asimismo, la figura [£.10] muestra como varios sistemas alcanzan su méxima eficiencia
energética en niveles de carga intermedios. Las cuales, incluso sobrepasan los limites definidos
en el estado peak. De acuerdo con |Jiang et al., 2017], la anchura de estas zonas de alta
eficiencia energética es superior en los sistemas de mayor EP. Sin embargo, la anterior
afirmacion es discutible, ya que, durante el analisis descriptivo realizado, se identific6 una
modesta relacion entre estos indicadores. Ademas, la figura [£.11] refuta dicho planteamiento;
en ésta, el sistema de menor £ P posee una mayor zona de eficiencia energética.
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Figura 4.11: SPECpower_ssj2008: Relacion entre la EP y la amplitud de las zonas de alta
eficiencia energética.
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Por lo tanto, se concluye que no existe un vinculo estrecho entre la proporcionalidad
y la eficiencia energética de los medios de computo. No obstante, el aprovisionamiento de
los servidores, debe enfocarse en las zonas de alta eficiencia energética. Entonces, a fin de
maximizar estas zonas, es importante analizar el impacto de diferentes configuraciones de
hardware y software, en funcién de la proporcionalidad y eficiencia energética de los sistemas.

4.1.3. Analisis de caracteristicas
4.1.3.1. Procesador

El rendimiento de los servidores se suele asociar con el ntimero y caracteristicas de los
procesadores que lo componen. Motivo por el cual, a continuacién se analizan varias de
estas caracteristicas y su impacto en términos de proporcionalidad y eficiencia energética.

Frecuencia base. La frecuencia base es el nimero de ciclos de reloj por segundo, es decir,
el namero de instrucciones por segundo que la unidad central de procesamiento (CPU) es
capaz de recuperar e interpretar. Los servidores actuales poseen una elevada frecuencia base;
sin embargo, cada vez se dificulta mas el incremento de la misma (ver figura , como
resultado del incumplimiento de la ley de Moorﬂ En consecuencia, los diseniadores de
hardware adoptaron como alternativa el incremento del niimero de ntcleos por procesador,
siendo ésta una tendencia en ascenso (ver figura .
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Figura 4.12: SPECpower ssj2008: Curva de tendencia de la frecuencia base del procesador.
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Figura 4.13: SPECpower _ssj2008: Curva de tendencia del nimero de ntcleos por procesador.

1073 ley de Moore plantea que aproximadamente, cada dos afios se duplica el nimero de transistores en
un microprocesador |Powell, 2008|. Sin embargo, ésta dejé de cumplirse desde la primera década del siglo
XXI, a causa del incremento del consumo de potencia de los procesadores.
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No obstante, cada ntucleo suele consumir una cantidad de potencia nada despreciable.
Por lo que, el nimero de ntucleos a integrar en un mismo procesador estd en funciéon del
consumo de potencia de este ultimo, al estar el sistema en estado peak, es decir, todos los
nucleos activos [Woo and Lee, 2008|. De ahi que, maximizar la eficiencia energética de los
niicleos de forma individual, es uno de los principales desafios de los arquitectos de hardware.

Al analizar el conjunto de datos de SPECpower ssj2008, destaca el poco impacto que
tiene la frecuencia base del procesador en términos de rendimiento, consumo de potencia,
proporcionalidad y eficiencia energética. Ademés, en concordancia con lo expuesto por la
ley de Amdahl (ecuacion B el nimero de procesadores y el total de niicleos existentes
en el sistema condicionan de forma significativa el rendimiento de éste. Asimismo, la eficien-
cia energética de los nucleos presentes por procesador es un elemento determinante en la
eficiencia del servidor.

1
=N+
donde n es el ntmero de procesadores y 0 < f <1 es la porciéon del programa que se puede
paralelizar.

Perf = (4.4)

DVFS. En el conjunto de datos de SPECpower ssj2008 existen un total de 20 servidores
superproporcionales; todos los cuales, poseen procesadores que hacen uso del DVFS. Sin
embargo, si bien los sistemas con elevados valores de EP suelen contar con procesadores
que aplican esta estrategia de gestion de energia, ésto se debe principalmente a las actuales
tendencias de disefio de hardware, y no a la existencia de una relacion entre el DVFS y
la proporcionalidad energética de los sistemas. Por lo que, en respuesta a la interrogante
namero [2, el DVFS no garantiza la proporcionalidad energética de un sistema, ni el caracter
superproporcional del mismo (ver tabla .

Procesador Frecuencia (GHz) No. servidores EP

Base | Aumentada | Total | Superproporcional | Min | Max
Intel Xeon Platinum 8280L | 2.70 4.00 8 3 0.920 | 1.023
Intel Xeon E-2176G 3.70 | 4.70 6 5 0.985 | 1.093
Intel Xeon Platinum 8180 | 2.50 | 3.80 53 5 0.875 | 1.022
Intel Xeon Platinum 8176 2.10 3.80 20 2 0.769 | 1.025
Intel Xeon E5-2698 v4 2.20 | 3.60 2 1 0.956 | 1.015
Intel Xeon E5-2470 2.30 | 3.10 26 1 0.774 | 1.054
Intel Xeon Platinum 8280 | 2.70 | 4.00 57 3 0.705 | 1.023

Tabla 4.3: Listado de procesadores presentes en los servidores superproporcionales.

En la actualidad, la mayoria de los procesadores modernos hacen uso del DVFS. Los que,
en comparacién con el resto, suelen alcanzar valores superiores de rendimiento, eficiencia
energética y consumo de potencia (ver figura . No obstante, la tendencia decreciente
del voltaje de operacién de los niicleos reduce la posibilidad de escalar el voltaje, y por ende,
decrementar la frecuencia del CPU y el consumo de energia.

1a ley de Amdahl plantea que el célculo secuencial de un programa limita en gran medida la maxima
aceleracion alcanzable [Amdahl, 1967].
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Figura 4.14: SPECpower_ssj2008: Impacto del DVFS en la proporcionalidad energética.

4.1.3.2. Memorias

Las RAMs y cachés son memorias no volatiles, para las cuales, el tiempo de acceso a la
informacién almacenada es considerablemente inferior en comparacion con otros dispositivos,
tales como discos duros (HDD) y discos de estado sélido (SSD) [Badam and Pai, 2011]. Por
lo que, el empleo de las mismas como parte del procesamiento de datos, tienen un impacto
significativo en términos de rendimiento.

RAM. Al analizar el conjunto de datos de SPECpower ssj2008 destaca cémo en térmi-
nos de rendimiento y consumo de potencia, posee mayor relevancia la capacidad total de
almacenamiento, que el niimero y capacidades individuales de los médulos presentes en el
sistema, ya sean modulos de memoria de dos lineas o médulos de memoria de linea tnica. Sin
embargo, las caracteristicas anteriores carecen de relevancia en cuanto a proporcionalidad y
eficiencia energética.

Historicamente, a medida que se incrementa el ancho de banda de las RAMs, también
lo hace la latencia de éstas. En consecuencia, los diseniadores de hardware optaron como
alternativa el desarrollo de memorias cachés de mayor capacidad de almacenamiento y com-
plejidad. Como se mencion6 anteriormente, al igual que las RAMs, las memorias cachés
tienen un impacto directo en el rendimiento de los sistemas, incluso atin mayor. No obstan-
te, las capacidades de dichas memorias no condicionan sustancialmente la proporcionalidad,
ni la eficiencia energética de los sistemas. Ademas, actualmente existen limites bien definidos
de efectividad para las memorias cachés [Bergman et al., 2008|.

4.1.3.3. Unidades de almacenamiento

Las unidades de almacenamiento son de los componentes de hardware que menos potencia
consumen |Garcia-Berna et al., 2021|. Sin embargo, si bien se conoce su impacto en términos
de rendimiento, resulta de interés analizar su influencia en la proporcionalidad y eficiencia
energética de los servidores de HPC.
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Al analizar el conjunto de datos de SPECpower ssj2008, destaca el predominio de los
SSD, tanto en los sistemas superproporcionales, como de manera general. Ademaés, nor-
malmente los sistemas SSD gozan de una mayor eficiencia energética. Asimismo, estos se
caracterizan por valores elevados de EP, LD y LDR, por lo que, si bien suelen consumir
modestas cantidades de potencia, carecen de linealidad. También, es comtn que los siste-
mas SATA posean un alto rendimiento y consumo de potencia, a la vez que su eficiencia
energética y E'P sobrepasa en su mayoria a los sistemas SAS (ver figura . Entonces, se
concluye que resulta mas adecuado el empleo de las unidades SATA y SSD en sistemas de
centros de datos y supercomputo respectivamente.
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Figura 4.15: SPECpower ssj2008: Impacto de las unidades de almacenamiento en la pro-
porcionalidad energética.

Por otra parte, al analizar el alcance del niimero y capacidad de las unidades de alma-
cenamiento, destaca la poca relevancia de los mismos en términos de rendimiento, consumo
de potencia, proporcionalidad y eficiencia energética. Esto, exalta la influencia que tiene la
tecnologia de almacenamiento en la eficiencia, tanto de la unidad, como de todo el sistema.

4.1.3.4. Entorno de operaciéon

El entorno de operacion, consiste en el contexto en el cual se ejecutan los programas. En
este sentido, algunos de los principales elementos son la interfaz grafica, la interfaz de linea
de comandos, el administrador de memoria, el calendarizador de procesos y la interfaz de
programacion de aplicaciones, a partir de la cual se interactiia con los recursos del hardware.
Por lo que, debe considerarse en qué medida softwares, tales como bibliotecas y sistemas
operativos, influyen en la proporcionalidad y eficiencia energética de los servidores de HPC.

Sistema operativo. El sistema operativo, en su funcién de gestor de los recursos de hard-
ware, tiene una influencia directa en el consumo de potencia de los sistemas. De acuerdo
con [Randhawa et al., 2018], es esencial la gestion de energia a nivel del sistema operativo,
para el empleo de modos de bajo consumo de energia en el disefio de los sistemas actuales.
Sin embargo, poco se conoce acerca de la incidencia del sistema operativo en términos de
rendimiento, proporcionalidad y eficiencia energética.

CINVESTAV-IPN Departamento de Computacion



32 Capitulo 4

Al analizar el conjunto de datos de SPECpower ssj2008 y el listado de sistemas su-
perproporcionales, destaca el predominio de los sistemas Windows, en comparaciéon con los
restantes sistemas Linux y Mac. No obstante, las familias de sistemas operativos no son con-
dicionantes absolutos en términos del rendimiento, consumo de potencia, proporcionalidad
y eficiencia energética de los sistemas (ver ﬁgura. Atn asi, al analizar el impacto de las
mismas en servidores de similares caracteristicas, destaca que los sistemas Windows suelen
tener una mayor K P, mientras que los sistemas Linux acostumbran a poseer mayor SCR.
En consecuencia, se considera conveniente el empleo de los sistemas operativos Windows y
Linux en servidores de centros de datos y HPC respectivamente.
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Figura 4.16: SPECpower ssj2008: Impacto del sistema operativo en la proporcionalidad
energética.

MaAquina Virtual de Java. Como se menciond en el capitulo anterior, el benchmark
SPECpower _ssj2008 hace uso de una aplicaciéon Java para la evaluacion de los sistemas.
Motivo por el cual, se analizé en qué medida los resultados que éste arroja dependen de la
version de la méquina virtual de Java que utilice el SUT. De este analisis, se concluy6 que
la version de la maquina virtual de Java y el nimero de instancias de la misma utilizadas,
no son condicionantes de gran peso en términos del rendimiento, consumo de potencia,
proporcionalidad y eficiencia energética.

4.1.3.5. Gabinete

El consumo de energia de los servidores de HPC se cuantifica a partir de la potencia que se
utiliza en el procesamiento de los datos y la disipacién del calor generado. Sin embargo, los
benchmarks descritos en el capitulo [3] no tienen en cuenta las caracteristicas del sistema de
refrigeracién. Motivo por el cual, a continuacion, se analiza el impacto que tiene el tipo de
gabinete en términos energéticos.

Al analizar el conjunto de datos de SPECpower ssj2008, destaca el hecho que de los
varios tipos de gabinetes presentes en dicho conjunto, solamente los tipos 1U, 2U, 4U y tower
estan presentes en los servidores superproporcionales. Asimismo, los tipos de gabinetes 1U
y 2U se utilizan en los primeros 10 sistemas de mayor eficiencia energética. También, los
sistemas de navaja o blade suelen tener un mayor rendimiento y consumo de potencia que

el resto (ver figura [4.17)).
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Figura 4.17: SPECpower _ssj2008: Impacto del tipo de gabinete en la proporcionalidad ener-
gética.

Ademas, se analiz6 la influencia que tiene en este sentido, el ntiimero y potencia de las
fuentes de energia, obteniéndose que los mismos no son factores de gran relevancia en cuanto
al rendimiento, consumo de potencia, proporcionalidad y eficiencia energética de los sistemas.

Como resultado parcial de esta etapa, se concluye que las futuras mejoras a obtener en
términos de proporcionalidad y eficiencia energética, estan sujetas al desarrollo de nuevas
técnicas de gestion de potencia. Si bien en los tltimos anos se ha incrementado la eficien-
cia energética de los sistemas, dicho incremento se debe a un aumento del rendimiento de
los servidores, y no a una disminucién del consumo de potencia de los mismos. Ademas, el
DVES es cada vez menos determinante en términos de ahorro de energia.

En base al estudio realizado, se deduce que el consumo de potencia, y por consiguiente, la
proporcionalidad y eficiencia energética de los sistemas, estan condicionados por componen-
tes de diseno fisicos y logicos del servidor. Es decir, la rentabilidad energética de un medio
de computo se sustenta en la seleccion de la configuracion 6ptima, que reduzca el consumo
de potencia, en base al contexto de trabajo. Por otra parte, las tendencias actuales de diseno
de hardware tienen un enfoque comercial, y hacen caso omiso a las principales limitantes de
disenio de sistemas exaescala. En esta seccién, se analizaron las relaciones existentes entre
diferentes factores de hardware, software y proporcionalidad energética. Sin embargo, resul-
ta de interés aplicar técnicas de mineria de datos, a fin de identificar la influencia de estos
factores en el comportamiento superproporcional antes descrito.

4.2. Preprocesamiento

El preprocesamiento, consiste en la preparacion de los datos para su posterior analisis. Esta,
es una etapa determinante del proceso de KDD, ya que condiciona la calidad de los resulta-
dos a obtener. Razon por la cual, los profesionales del area de ciencia de datos concuerdan en
que durante la construccion de un modelo, se emplea aproximadamente el 75 % del tiempo
y esfuerzo en la etapa de preprocesado de datos.
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Entre las principales tareas a desarrollar durante el preprocesamiento, se encuentran la
limpieza, integracion, transformacion, reducciéon y discretizacion de los datos. La limpieza
de los datos, consiste en eliminar registros duplicados, aplicar estrategias de imputacion,
identificar valores atipicos y corregir inconsistencias. La tarea de integracion, es la unién de
multiples conjuntos de datos en un tinico conjunto unificado. La transformacién, consiste en
la modificacion de los datos a través de estrategias de normalizacién y estandarizacion, con
el objetivo de que los resultados no dependan de las escalas de las variables. La reduccion,
consiste en la aplicacion de técnicas de reducciéon de la dimensionalidad. A continuacion, se
describen y fundamentan las técnicas aplicadas en cada una de estas tareas.

4.2.1. Limpieza de los datos

Al analizar los conjuntos de datos, se obtuvo que en los mismos no existen instancias duplica-
das. Sin embargo, la representacion de las variables que los componen a partir de diagramas
de caja y bigoteﬁ, permiti6 identificar la presencia de valores atipicos (ver figura . No
obstante, dichos valores se deben a casos excepcionales, y no a incongruencias en los datos,
por lo que no se desecharon.
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Figura 4.18: Top500: Diagrama de caja y bigotes.

Ademas, los conjuntos de datos en cuestion, poseen un nimero significativo de dimensio-
nes, lo cual es una caracteristica indeseada, ya que no garantiza la exactitud, ni la precision
del modelo, pero si disminuye el rendimiento, e incrementa la complejidad computacional
y el riesgo de sobreajustelﬂ Asimismo, en estos conjuntos de datos existen valores faltan-
tes o perdidos; lo que afecta la robustez del modelo, al incrementar la probabilidad de una
especificaciéon errénea de este dltimo y disminuir la efectividad de la estimacion.

4.2.2. Integracion de conjuntos de datos

La integracion de conjuntos de datos, si bien suele incrementar el ntimero de variables a con-
siderar, aumenta la exactitud, precision y robustez del modelo, al reducir las probabilidades
de sobreajuste. Motivo por el cual, resulta de gran utilidad en el analisis de datos.

12F] diagrama de caja y bigotes es una estrategia grafica de identificacion de valores atipicos a partir de
la mediana y la dispersion de los datos.

13E] sobreajuste surge cuando el modelo es muy complejo o el tamaifio del conjunto de entrenamiento no
es suficiente, lo cual causa una notable diferencia entre los errores de entrenamiento y prueba.
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Como se menciond en el capitulo anterior, el conjunto de datos de SPECpower ssj2008,
resulta insuficiente para el analisis energético de servidores de HPC, al no tener en cuenta el
rendimiento de los sistemas en términos de FLOPS. De ahi que, inicialmente, se considerd
la integraciéon del mismo con los conjuntos de datos de SPEC OMP 2012 y SPEC MPI 2007.
Sin embargo, la informacién presente en estos tultimos, imposibilita establecer con claridad
una conexion entre los sistemas presentes en los mismos y los existentes en el conjunto de
datos de SPECpower _ssj2008.

Ademas, si existe una relacion clara entre los conjuntos de datos Topb500 y Green500,
puesto que el segundo se define a partir del primero. Motivo por el cual, hay una notable
coincidencia en la informacién presente en ambos conjuntos. Sin embargo, las dimensio-
nes existentes en los mismos difieren levemente. Mientras el Top500 describe también el
rendimiento de los sistemas en el benchmark HPCG, el Greenb00 lo hace con respecto al
benchmark HPL (ver apéndice . Por lo que, se unificaron en el Top500, los datos presentes
en éste y en el Green500. En adelante, se continuaré el anélisis a partir de los conjuntos de
datos de SPECpower ssj2008 y Top500.

4.2.3. Seleccidén de caracteristicas

La seleccién de caracteristicas es una tarea computacionalmente costosa, que consiste en ele-
gir el menor subconjunto de caracteristicas, capaz de explicar la mayor parte de la varianza
de los datos y minimizar el error de clasificaciéon. Esta tarea, no solo reduce la dimensiona-
lidad de los datos al descartar caracteristicas redundantes o irrelevantes, sino que también
disminuye la complejidad del modelo y lo dota de mayor exactitud.

Entre los métodos 6ptimos de seleccién de caracteristicas se encuentran la Busqueda
Exhaustiva (BE) y la Ramificacion y Poda o Branch and Bound (BB). La principal diferen-
cia entre ambos, radica en que el primero evaltia siempre todos los posibles subconjuntos,
mientras que el segundo lo hace en el peor de los casos; sin embargo, para ello requiere que
la funcion de criterio sea mondtona. Ademaés, el nimero de posibilidades a considerar por el
algoritmo de BE crece exponencialmente, incluso para subconjuntos de tamanos discretos,
por lo que la busqueda resulta impréctica |Kittler, 1980]. En consecuencia, la BE se suele
utilizar cuando se requiere de un algoritmo 6ptimo, y la funcién de criterio no satisface la
propiedad de monotonia.

Al analizar los conjuntos de datos en cuestion, destaca la ausencia en los mismos de
atributos de clase, lo que imposibilita la aplicaciéon de los métodos antes expuestos, asi como
estrategias robustas de selecciéon de caracteristicas, tales como regresion, Random Forest y
eliminacién recursiva. En consecuencia, se utilizd6 como principio de seleccion la entropia de
Shannon y la informaciéon mutua de las variables.

La entropia de Shannon H(X) [Shannon, 1948, de una variable aleatoria discreta X, se
define como la esperanza matematica de la variable aleatoria asociada I(X), es decir, hace
referencia a la cantidad de incertidumbre que aporta una variable.

H(X) = E(I(X)) = =Y _ p(x;) - logy plai), (4.5)
i=1
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I(2;) = —logy p(i), (4.6)

siendo z;, p(z;) e I(z;) el i-ésimo valor de la variable X y su respectiva probabilidad e
informacién aportada. Ademas, teniendo en cuenta su definicién, la entropia toma valores
comprendidos entre 0 y logy n.

Por otra parte, la informacion mutua I(X,Y’), entre dos variables X, Y, cuantifica la
reduccion en la incertidumbre en X cuando se conoce el valor de Y.

I(X,Y)=H(X)+H(Y) - H(X,Y), (4.7)

H(X,Y)= —Zzp(xi,yj)~10gzp(:ci,yj)7 (4.8)

donde p(z;,y;) es la probabilidad de que el i-ésimo valor de X y el j-ésimo valor de Y
sucedan al mismo tiempo.

La aplicacién de estos principios de seleccién posibilito la eliminacion de caracteristicas
intrascendentes, tales como identificadores y campos de tipo fecha. Asimismo, se desecho la
variable OS Family del conjunto de datos Topb00, ya que la entropia de la misma es cero.

4.2.4. Imputacién

Con el objetivo de solventar la existencia de valores faltantes en los conjuntos de datos,
se analizaron varias estrategias de imputacién, que van desde el empleo de conjuntos de
datos completos, hasta estrategias de imputacion simple. En este caso, no se consideraron
estrategias de imputacion miltiple, debido a su alto costo computacional. Ademas, éstas
no son siempre la mejor opcién estadistica para la sustitucién de datos, al depender de la
variable que se analice y su respectivo patréon de comportamiento.

Anailisis de datos completos. FEl analisis de datos completos o listwise es una de las
estrategias mas utilizadas [Medina and Galvan, 2007b|, a pesar de no considerarse la mas
apropiada, puesto que genera sesgos en los coeficientes de asociacion y de correlacion [Kal-
ton and Kasprzyk, 1982|. Listwise asume que los datos faltantes siguen un patron MC, es
decir, son una submuestra aleatoria del conjunto original. Por lo que, consiste en trabajar
inicamente con las instancias que poseen datos completos y desechar las restantes.

4.2.4.1. Imputacién Simple

Media. La imputacion a partir de la media es una de las estrategias de imputacion mas
utilizadas, debido a su simplicidad y bajo coste computacional. Sin embargo, el empleo de
la misma no resulta correcto, pues distorsiona la distribucién de probabilidad de la variable
imputada |Little and Rubin, 2019|. Ademés, se debe tener en consideracion que a diferencia
de la moda y la mediana, la media es susceptible a valores atipicos.
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Regresion. Esta estrategia suele emplearse en patrones de datos faltantes completamente
aleatorios |Medina and Galvan, 2007a|. Consiste en reemplazar los valores perdidos por
los valores predichos por una regresion del elemento faltante. Para lo cual, inicialmente se
entrena y evalia el modelo a partir de un subconjunto del conjunto de datos original, en el
que no existen valores perdidos.

Imputacién a partir de los k-vecinos mas cercanos. Esta estrategia toma como
base el algoritmo de clasificaciéon k-vecinos més cercanos. Asi pues, los valores faltantes se
imputan a partir del promedio de los valores que poseen los k vecinos més cercanos en la
variable en cuestion |ITroyanskaya et al., 2001].

k .
Tijk = Zn_kl iy (4.9)

donde z;;* es el valor imputado en la i-ésima instancia y la j-ésima variable, mientras que
vp; es el valor que posee el n-ésimo vecino més cercano en dicha variable.

Luego de estudiar diversas estrategias de imputaciéon, muchas de las cuales generan
estimadores sesgados, se decidi6 realizar el analisis de datos completos. Esto, debido a que
después de descartar las instancias con valores perdidos, las restantes continuaban siendo lo
suficientemente significativas. Por lo que, se considera que las instancias eliminadas son una
submuestra aleatoria de la muestra total.

4.2.5. Transformacion

La transformacion de los datos, consiste en la modificacién de los valores de una o mas
variables, con el objetivo de que los mismos satisfagan una determinada propiedad. Esto, no
solo facilita la visualizacién e interpretacion de los datos, sino que garantiza que las escalas de
las variables no influyan en el resultado final. Por ejemplo, en algoritmos de agrupamiento,
resulta conveniente transformar los datos previo a su procesamiento, con el objetivo de
que las variables de mayor escala no dominen los resultados del analisis. Sin embargo, la
estrategia de normalizacién a aplicar depende de las caracteristicas del problema, ya que la
aplicacién de una u otra producira diferentes resultados.

Normalizacién min-max. La normalizacién min-max reescala los valores de una variable
a un nuevo rango previamente definido. Usualmente, este tltimo esta comprendido entre los
limites 0 y 1, es decir, Vi, j x; € [0,1] (ecuacion ; sin embargo, dichos limites pueden
seleccionarse de forma empirica (ecuaciéon . La principal desventaja de min-max radica
en el hecho de que incrementa el ruido existente en el conjunto de datos.

/ zij — min(z;)
- : 4.10
i maz(x;j) — min(z;) (4.10)
Ty — man(x;
$;j - 2 (25) (newmar — N€Wmin) + N€Wnin, (4.11)

~ mazx(x;) — min(z;)

donde min(z;) vy max(x;) se refieren al minimo y maximo valor de la variable x;; mientras
J J ik
que NeWmin ¥ NeWmae son los limites inferior y superior de la nueva escala.
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Normalizaciéon z-score. Otra estrategia de normalizaciéon comunmente utilizada es el
escalado estandar. Esta, cuantifica la distancia de un valor respecto a su media. Ademas,
transforma los datos a una distribucion con media 0 y desviacion estandar 1 (ecuacion 4.12]),
permitiendo comparar datos expresados en magnitudes distintas.

/ Tij — T

=) 4.12
i std_desv(z;)’ (4.12)

siendo Z; y std_desv(x;) la media y desviacion estandar de la variable ;.

Normalizacién por escala decimal. La normalizacién por escala decimal transforma
los datos al rango (—1,1) (ecuacion [4.13)).
, T
1047 (4.13)
donde j es el ntimero entero méas pequeno tal que maz(|z'|) < 1. Ademaés, al igual que la
normalizacién min-max, las estrategias de normalizacién z-score y escala decimal son sus-
ceptibles a la presencia de valores atipicos.

Si bien existen algoritmos de mineria de datos donde la informacién suele transformarse
previo a su procesamiento, en otros, tales como arboles de decision y Random Forest no es
asi. Por lo que, resulta apropiado aplicar estrategias de transformacion, solo en los casos en
los que sea necesario. Razén por la cual, no se reescalaron ninguna de las variables presentes
en los conjuntos de datos de SPECpower ssj2008 y Top500.

Por otra parte, en ambos conjuntos de datos existen variables categoricas, sobre las
cuales resulta imposible la aplicacién de varios algoritmos de agrupamiento y reduccién de la
dimensionalidad, tales como Analisis de Componentes Principales (PCA) y Descomposicion
en Valores Singulares (SVD). Por lo que, se exploraron varias estrategias, a partir de las
cuales transformar datos categoéricos en numéricos.

Medicién ordinal. La medicién ordinal se aplica sobre variables categoéricas de tipo or-
dinal, ya que en las mismas existe una jerarquia u orden. Esta estrategia consiste en la
asignaciéon de un valor numérico a cada uno de los elementos que compone la jerarquia,
de forma tal, que se satisfaga la condicién de transitividad. La condicién de transitividad
plantea que si A tiene una calificacién superior a la de B y B posee una calificaciéon superior
a la de C, entonces A tiene una calificaciéon superior a la de C, es decir,si A > B,y B > C,
entonces A > (. Si bien las mediciones ordinales son de gran utilidad, éstas no permiten
comparar la magnitud de las diferencias entre las categorias.

Variables Ficticias. A diferencia de las variables ordinales, las variables nominales care-
cen de una disposicién u ordenamiento de sus valores, lo cual dificulta establecer distancias
entre los mismos. En este sentido, resulta apropiado el empleo de variables ficticias o reasig-
nacion uno de n. Esta estrategia consiste en la creaciéon de una pseudovariable de valor
binario para cada valor de la variable nomina]E y calcular la distancia en cada una de

14Para una variable nominal de n valores distintos resulta suficiente con crear m — 1 variables ficticias,
pues el valor restante se representa al asignar cero a cada una de las anteriores n — 1 variables.
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las dimensiones. Entonces, para todo par de instancias x;, x;, su distancia en términos de
una variable nominal de cardinalidad n, es la suma de las distancias en cada una de las
n variables ficticias asociadas, es decir, Vi, j distancia(z;, x;) = > ) _ distancia(x; i, T k),
siendo

) ) 0 six;=ux;
distancia(z;, xj) = _ 7
1 six; #xj.

distancia(z, ;) =

0 sz =Tk,
1 si Tk 75 Tjk-

En los conjuntos de datos en cuestion, todas las variables categoéricas restantes, luego
del proceso de seleccion de caracteristicas, son de tipo nominal. En consecuencia, se aplico
la estrategia reasignacion uno de n, la cual resulta de gran utilidad, a pesar del considerable
incremento que supone en términos de dimensionalidad.

4.2.6. Discretizacion

La discretizacion, consiste en la transformacion de variables continuas a categéricas. Esta,
usualmente se realiza en algoritmos de clasificacion, con el objetivo de reducir la complejidad
del modelo y disminuir el costo computacional. Sin embargo, la definiciéon de los interva-
los 6ptimos, tanto en ntimero como longitud, no es un proceso trivial. En este sentido, si
bien puede resultar de utilidad el empleo de algoritmos de agrupamiento, suelen utilizarse
métricas de impuridad como el indice de Gini, la entropia y el error de clasificacion.

c—1
Indice Gini =1 - p;(t)?, (4.14)
=0

siendo ¢ el namero total de casos y p;(t) la frecuencia de la i-ésima clase en el nodo t.

Error de clasificacion = 1 — max(p;(t)). (4.15)

Especificamente, las variables continuas existentes en los conjuntos de datos de SPEC-
power _ssj2008 y Top500 hacen referencia a la eficiencia energética de los sistemas presentes
en dichos conjuntos. Por lo que, aun cuando la discretizacién de estas variables pudiese in-
crementar la robustez del modelo, se decidi6 realizar esta tarea solo en los casos donde fuese
necesario, ya que el empleo de la misma puede también sesgar este dltimo.

4.2.7. Reducciéon de la dimensionalidad

A fin de reducir la alta dimensionalidad presente en los conjuntos de datos, sobre todo
luego de la creacion de variables ficticias para la transformacioén de variables nominales en
discretas, se estudiaron varios algoritmos de reduccion de dimensionalidad. Si bien estrategias
como el analisis factorial (FA), la incrustacion localmente lineal (LLE) y el escalamiento
multidimensional (MDS) resultan de utilidad en este sentido, se consideraron més acertados
la SVD y el PCA.
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4.2.7.1. Descomposicién en Valores Singulares

SVD consiste en la descomposicién de una matriz de datos X, como la multiplicacion de tres
matrices U, ¥ y VT, de forma tal, que X = ULVT donde U y V son matrices unitaria
ortogonales referentes a los vectores singulares izquierdos y derechos respectivamente, mien-
tras que X es una matriz diagonal asociada a los valores singulares.

o2 .

X = xr1 T - Ty = Uy uz -+ Up : V1 V2 ot Um
Om

nxm : ' : " dnxn : : : T dmxm

nxm

Para una matriz de datos X,,x.m,, los valores singulares son los primeros m elementos de
la diagonal principal de . Estos, al ser valores singulares, son no negativos y se ordenan
de forma jerarquica descendente, es decir Vi 0; > 0y V;r;lloi > 0;+1; mientras que, los
restantes valores de X son todos cero. Ademas, al asociarse el i-ésimo valor singular de X
con la i-ésima columna de U y V, la jerarquia existente entre los valores de X refleja la
relevancia de cada una de las columnas de U y V. Es decir, la ¢-ésima columna de U y V
es més relevante que su sucesora, en funcién de describir la informacién de X.

A grandes rasgos, la reduccién de dimensionalidad, consiste en desechar los valores sin-
gulares significativamente pequefios y sus respectivos vectores en las matrices U y V. En
consecuencia, se aproximaria la matriz X en términos de los primeros vectores dominantes
de U y V, asi como sus correspondientes valores singulares.

4.2.7.2. Analisis de Componententes Principales

El PCA consiste en la representacion de la varianza de un conjunto de datos Xy, xn,, a partir
de variables ortogonaleﬂ entre si, nombradas componentes principales. Estos, no son méas
que la combinacién lineal de los atributos originales, de forma tal, que cada componente
principal se asocia a un autovector y un autovalor, los cuales indican la direccién y magni-
tud en la que se explica la varianza |[Brunton and Kutz, 2019]. En otras palabras, el i-ésimo
autovector hace referencia a las ponderaciones correspondientes a cada uno de los atributos
originales en el i-ésimo componente principal.

De manera general, la aplicacion del PCA consta de los siguientes pasos [Brunton and
Kutz, 2019]:

1. PCA es equivalente SVD, una vez que los datos se centran. Por lo que se calcula la
media de las instancias T, la media de todo el conjunto de datos X y por dltimo se
centran los valores de éste.

”jL Xi >
T = Lz Xy (4.16)

n

Al ser Uy V matrices unitarias significa que UUT = UTU = Inxn y VVT = VIV = Lxm.
1613 correlacion entre dos variables ortogonales es cero.
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>
I
5|

B=X-X.

2. Calcular la matriz de covarianza de los puntos (C').

BTB
C= .

n

3. Obtener los vectores y valores propios de C.

CV = VD,

(4.17)

(4.18)

(4.19)

(4.20)

donde V son los autovectores o ponderaciones de cada componente y D son los auto-

valores o varianza explicada por dichos componentes.

4. Finalmente, a partir de los autovectores se obtienen los componentes principales (7).

T = BV.

(4.21)

Si se descompone B a través de SVD, de forma tal, que B = UXVT, entonces T = U,
pues VIV = I. Asimismo, existe una estrecha relacién entre los autovalores y los
valores singulares, de forma tal, que A = ¢2. De ahi que, el porcentaje de varianza

explicada por los primeros k& de n componentes principales se cuantifica como:

Zf:l Ai
Z?:l )‘i'

(4.22)

SVD, PCA y muchos otros algoritmos de reduccién de dimensionalidad, son sensibles a
ruidos y valores atipicos. Por lo que, la presencia de estos tltimos en los conjuntos de datos
en cuestiéon, promueve el anélisis del impacto de los valores atipicos en dichos algoritmos,
y en qué medida se conserva el caricter atipico de las instancias, luego de la reduccién
de la dimensionalidad. PCA es un problema de optimizacién, que consiste en maximizar
la varianza explicada por cada uno de los componentes principales. Motivo por el cual, la
distorsion de la media a causa, de la presencia de valores atipicos, influye directamente en
la varianza y covarianza, y por consiguiente en el PCA. La figura [{.19]ilustra la sensibilidad

del PCA ante la presencia de valores atipicos.
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Original Original+Ruido

Figura 4.19: PCA: Analisis de sensibilidad a valores atipicos.

En este sentido, existen estudios que destacan la relevancia de la estandarizacién de los
datos previo a la reduccion de la dimensionalidad. Esta, no solo elimina cualquier influencia
de la escala de las variables en los resultados finales, sino que ademas, reduce el impacto de
los valores atipicos en los algoritmos de reduccion de dimensionalidad |[Onderwater, 2015).
La figura[4.20] ilustra los resultados obtenidos luego de la aplicacion de esta estrategia, donde
cabe destacar como, para igual nimero de componentes principales, el porcentaje de varianza
explicada en esta figura es significativamente superior con respecto a la figura [£.19]

Original Original+Ruido

Compresion Original Compresién Original+Ruido

Figura 4.20: PCA: Analisis de sensibilidad a valores atipicos posterior a la estandarizacion.

4.2.7.3. Analisis de Componententes Principales Robusto

El Analisis de Componententes Principales Robusto (RPCA), es una estrategia de reduccion
de dimensionalidad basada en el PCA, pero a diferencia del mismo, posee una gran robustez
en presencia de valores atipicos. Este, consiste en la descomposicion de la matriz de datos,
como la superposicién de un componente de bajo rango L y un componente disperso S.

X=L+S5. (4.23)

CINVESTAV-IPN Departamento de Computacion



Andlisis de mineria de datos 43

De manera general, L y S son los patrones claramente definidos en el conjunto de datos y
los valores atipicos respectivamente, de forma tal, que L no es sensible a los valores atipicos
y datos corruptos presentes en S (ver figura |4.21)).

Original+Ruido

Figura 4.21: RPCA: AnAlisis de sensibilidad.

Por otra parte, para toda matriz X € R™*™ su rango es menor o igual que el minimo
namero de filas y columnas, es decir, Rango(X) < min(m,n). Sin embargo, en las matrices
de bajo rango, su rango es siempre inferior al minimo ntmero de filas y columnas, es decir,
Rango(X) < min(m,n). Por lo que, en el caso de estas tltimas, siempre se anulara al menos
una fila o columna. Entonces, al ser L una matriz de bajo rango, ésta puede ser descompuesta
en valores singulares como:

Rango(L)
L=Uxv'= > oup]. (4.24)
i=1

Atn asi, existen un namero infinito de posibles pares L, S; sobre todo teniendo en cuenta
que la cantidad de incognitas a inferir duplica a las existentes en la matriz de datos X. Por lo
que, se define una funcién objetivo que promueva una solucién tnica y responda al objetivo
que se persigue. En el caso de RPCA, la funcién objetivo consiste en minimizar el rango de

L y el nimero de valores atipicos o datos corruptos presentes en S:

min Rango(L) + ||S]|o tal que X = L + S, (4.25)

donde || - || es el nimero de elementos distintos de cero.

Como conclusién del anélisis realizado, si bien algoritmos como RPCA son mas eficientes
para la gestion de valores atipicos que el PCA clasico, éstos no se consideraron, puesto que
descartar los valores atipicos, no resulta conveniente para con el estudio que se plantea. En
consecuencia, se adopté como estrategia de reducciéon de dimensionalidad la aplicaciéon del
PCA, precedido de la estandarizaciéon de los datos.

La aplicacion del PCA sobre el conjunto de datos de SPECpower ssj2008 indico que se
requieren diez componentes principales para explicar el 80.4% de la varianza de los datos
(ver figura . Mientras que, en el conjunto de datos Topb00 resultan suficientes cuatro
componentes principales para expresar el 83.8% de la varianza de los datos (ver figura
. No obstante, en este ultimo, resulta innecesario y contraproducente, considerando
que luego de las etapas anteriores de preprocesamiento, este conjunto de datos cuenta con
nueve dimensiones, por lo que no es un conjunto de alta dimensionalidaﬂ

Los conjuntos de datos de 11 o mas dimensiones suelen considerarse de alta dimensionalidad.
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Figura 4.22: SPECpower_ssj2008: PCA.
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Figura 4.23: Top500: PCA.

Por otra parte, la aplicaciéon de técnicas de reducciéon de dimensionalidad puede sesgar
el comportamiento atipico de los datos [Onderwater, 2015]. Por lo que, se decidié proseguir
el anélisis sin previa reduccién de la dimensionalidad, y hacer uso de las nuevas dimensiones
solo en algoritmos de alto coste computacional. Luego del preprocesamiento del conjunto de
datos de SPECpower_ssj2008, éste qued6 conformado por 644 instancias, cada una de las
cuales constaba de 65 atributos. Asimismo, el conjunto de datos Top500 se compuso de 189
muestras, las que a su vez poseian 10 atributos. Ademas, los sistemas superproporcionales
identificados durante el anélisis descriptivo persistieron el preprocesamiento de los datos.

4.3. Anailisis exploratorio

El analisis exploratorio, consiste en estudiar los conjuntos de datos, identificar los patrones
presentes en éstos y las caracteristicas principales. De acuerdo con |[Williams and Simoff,
2006|, el analisis exploratorio comprende la construccion de graficos, la exploracion visual e
interactiva; y la aplicaciéon de algoritmos analiticos.
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4.3.1. Factores condicionantes de superproporcionalidad

El PCA realizado, permitié identificar las variables de mayor relevancia en términos de
varianza. Sin embargo, no resulta suficiente para determinar las condicionantes del caracter
superproporcional de varios sistemas. En consecuencia, a continuaciéon se analizan varias
estrategias de seleccion de caracteristicas.

Analisis del umbral de varianza. La seleccién de caracteristicas a partir de un umbral
de varianza es una técnica no supervisada, que consiste en la eliminacién de aquellas carac-
teristicas cuya varianza es inferior a un umbral previamente definido. Asimismo, el umbral
de decisién suele definirse teniendo en cuenta el equilibrio de clases en el conjunto de datos
y los costos asociados a una clasificacion errénea |Gao et al., 2009].

Arboles de decisién. Los arboles de decision son una estrategia de aprendizaje supervi-
sado, donde los nodos hojas representan las etiquetas o atributos de clase, mientras que los
restantes nodos y sus respectivas aristas, representan a las caracteristicas y sus correspon-
dientes valores. Si bien éstos son faciles de construir e interpretar, y se caracterizan por su
robustez en presencia de ruido y valores atipicos, el espacio de busqueda suele ser exponen-
cialmente grandﬁ y no se consideran las interacciones entre las variables. No obstante, su
propio principio de construccién posibilita el empleo de éstos como estrategia de seleccion de
caracteristicas, pues las caracteristicas se asignan a cada uno de los nodos en base al radio
de ganancia de informacion (Gaing,atio)-

Gain,qtio ajusta la ganancia de mformacio’w@ o grado de pureza asociado a la variable
(Gaingp;t) en base a la entropfa del particionado, de forma tal, que se penalizan los casos
donde existe un gran ntimero de particiones pequenas.

. Gains lit
G o = ———F= 4.26
AMyatio Spli tinfo > ( )
k N
Gaingy = H(p) — > ZZ H(i), (4.27)
=1
Splitinfo = — Z i logy*, (4.28)
=1

siendo p el nodo padre, k el ntmero de intervalos en que se discretiza la variable y n; el
niimero de instancias o registros pertenecientes al i-ésimo intervalo. Ademas, con el objetivo
de seleccionar un subconjunto de caracteristicas que maximice la exactitud y precisiéon del
modelo, dicha estrategia suele extenderse a través de la aplicacién del algoritmo Random
Forest, donde la importancia general de cada caracteristica se cuantifica como el promedio
de la importancia individual de la misma en todos los 4rboles del bosque.

187 as variables continuas presentes en los arboles de decisién, se discretizan con el objetivo de disminuir
el espacio de busqueda e incrementar la robustez del modelo.
19,3 ganancia de informacion cuantifica la calidad de una variable en términos de reducciéon de entropia.
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Filtro basado en correlacion rapida. El algoritmo filtro basado en correlaciéon rapida
(FCBF) |Yu and Liu, 2003|, consiste en seleccionar las caracteristicas que presentan una
alta correlacién con la variable objetivo y poca correlacién con las restantes variables. Para
ello, utiliza como métrica de correlacion la incertidumbre simétrica (SU )@ la cual se basa
en los conceptos de entropia de Shannon y ganancia de informacioén.

(4.29)

FCBF, al igual que otros métodos de seleccion de caracteristicas a partir de filtros,
se desempena de forma independiente al algoritmo de aprendizaje. Ademas, es escalable,
computacionalmente eficiente y no requiere de un entrenamiento previo. La complejidad
temporal de FCBF es O(nlogyn). De acuerdo con |Yu and Liu, 2003|, FCBF es altamente
eficiente y efectivo al tratar datos de alta dimensionalidad.

Varias estrategias de seleccion de caracteristicas son sensibles a la presencia de valores
atipicos en los datos, condiciéon anteriormente detectada en los conjuntos de datos de SPEC-
power ssj2008 y Top500. En consecuencia, estrategias tales como el analisis del umbral de
varianza y maquinas de soporte vectorial (SVM) se descartaron automéaticamente. Por lo
que, se prosiguid con el analisis a partir de estrategias basadas en arboles de decision, espe-
cificamente los algoritmos CART y Random Forest, asi como FCBF.

El estudio de superproporcionalidad se desarrollé a partir del conjunto de datos de SPEC-
power ssj2008, ya que, a diferencia del Top500, éste posee un enfoque gradual de carga de
trabajo, caracteristica indispensable para el analisis de la proporcionalidad energética. Tam-
bién, fue en el conjunto de datos de SPECpower ssj2008 en el que se identifico la presencia
de 20 sistemas superproporcionales. Entonces, se definié en dicho conjunto un atributo de
clase ficticio, binario, y luego se etiquetaron los servidores presentes en SPECpower ssj2008
en base a su caracter superproporcional.

Por otra parte, el desbalance de clases afecta a los arboles de decision. Motivo por el
cual, la generacién de los subconjuntos de entrenamiento y validacién se realizé a partir de
la técnica Stratified K-Folds cross-validation. Esta, es una variacion de la técnica K-Folds
cross-validation, donde las k particiones disjuntas, se generan preservando el porcentaje de
muestras de cada clase. Asi pues, garantiza que en todo momento, cada una de las clases,
forman parte tanto del entrenamiento, como de la validaciéon del modelo.

La figura [£.24] ilustra las 10 variables de mayor relevancia en términos de superpropor-
cionalidad energética, identificadas a partir de la ejecuciéon del algoritmo Random Forest.
En este sentido, sobresale la eficiencia energética como factor determinante. Igualmente,
destaca la influencia del consumo de potencia en los niveles discretos de carga de trabajo,
especificamente en los niveles de 0% y 10 % de utilizacion.

20Un valor SU de 1 indica que a partir de una variable se puede predecir con toda certeza el valor de la
otra, mientras que el valor 0 indica que dos caracteristicas son totalmente independientes.
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Figura 4.24: Random Forest: Ranking de las 10 caracteristicas més determinantes en materia
de superproporcionalidad energética.

Como resultado de la aplicacion del algoritmo FCBF, se obtuvo que si bien la eficiencia
energética es un factor relevante, también lo son las caracteristicas asociadas a las unida-
des de almacenamiento y el tipo de gabinete. Esto, se corrobor6 a partir del analisis de
dependencia entre cada una de las variables y el atributo de clase, para lo cual se empleé el
estadistico chi-cuadrado (X2>E| (ver figura . Para mas informacion ver tabla

Performance/power @ 10% of target load
Performance/power @ 20% of target load

© Performance/power @ 30% of target load
-}_,—’ Performance/power @ 40% of target load
‘g Performance/power @ 50% of target load
% Performance/power @ 60% of target load
S Performance/power @ 70% of target load
Form Factor_2U

Disk Drive Technology_SATA [
Performance/power @ 80% of target load _
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Importancia

o

Figura 4.25: x%: Ranking de las 10 caracteristicas més determinantes en términos de super-
proporcionalidad energética.

Como conclusion del analisis realizado, y en respuesta a la interrogante [I se determi-
né que si bien la eficiencia energética, el tipo de gabinete y las caracteristicas asociadas
al procesador y sistema de almacenamiento resultan relevantes en términos de superpro-
porcionalidad energética, existen varios otros factores a considerar al respecto. Lo anterior,
reafirma lo expuesto por [Bergman et al., 2008| referente a que el consumo energético de un
sistema depende de diversos factores. Por lo que, resulta de interés identificar las variables
de distincion en términos de rendimiento y consumo de potencia en servidores de HPC.

21Segitin |Thaseen and Kumar, 2017], el estadistico x? es una prueba numérica que mide la desviacion de
la distribucién esperada considerando que el evento de la caracteristica es independiente del valor de la clase.
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4.3.2. Analisis de agrupamiento

El analisis de agrupamiento es una tarea descriptiva de mineria de datos, que consiste en
segmentar en grupos (clusteres) los elementos que componen el conjunto de datos, de forma
tal, que se minimice la varianza intra—clﬁstet{gz] y se maximice la varianza inter—clﬁster@
Con este objetivo, los elementos se agrupan en base a la similitud de sus atributos, asf
pues, la métrica de disimilaridad (distancia) y el algoritmo de agrupamiento a emplear
estan condicionados por el contexto del problema. Ademaés, dicho anéalisis puede utilizarse
tanto para agrupar instancias, como para agrupar variables, por lo que permite confirmar o
descartar teorias, y a la vez, descubrir relaciones, que de otra forma permanecerian ocultas.

4.3.2.1. Meétricas de distancia

En varias técnicas de mineria de datos, tales como el analisis de agrupamiento y el algoritmo
k-vecinos méas cercanos, la calidad de los resultados depende de la métrica de distancia que
se emplee. De manera general, las métricas de distancia satisfacen las siguientes condiciones
necesarias y suficientes:

1. Semipositiva: Vo, y d(z,y) > 0y d(z,y) =0 <= x =y.
2. Simetria: Vz,y d(z,y) = d(y, z).

3. Desigualdad triangular: Vz,y, z d(z, z) < d(z,y) + d(y, 2).
Distancia entre atributos. Como se defini6 anteriormente, la similitud entre dos objetos
es un valor numérico que cuantifica el grado de similaridad existente entre dichos objetos
para cada uno de los atributos. En este sentido, la métrica a partir de la cual se calcula la

distancia existente entre dos objetos para un mismo atributo, esta sujeta al tipo de variable
que se analice (ver tabla [4.4)).

Tipo de atributo | Métrica de disimilitud | Métrica de similitud
Nominal d= {O siai = aj, s = {1 s = 2,
1 sixz # 2. 0 six;#xj.
Ordinal d= % s=1-d
Intervalo d= |z —y| s=—d
o=t

Tabla 4.4: Métricas de similitud entre atributos.

Distancia Manhattan. La distancia Manhattan o distancia L, define que la distancia
entre dos puntos, es igual a la sumatoria de las distancias entre cada uno de los valores de

los mismos.

dman(xvy) = Z|(xl - y2)|7 (430)
=1

siendo n el namero de dimensiones, mientras que x; y ¥; son el valor del i-ésimo atributo en
las instancias z y .

221,a varianza intra-claster es la distancia entre los elementos de un mismo claster.
231,a varianza inter-cltster es la distancia entre los clisteres.
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Distancia euclideana. La distancia euclideana (L2) se utiliza en algoritmos de agrupa-
miento, con el objetivo de definir los centroides como la media de las instancias, y minimizar
la suma del cuadrado de la distancia euclideana.

(4.31)

Distancia Minkowski. La distancia Minkowsk: es una generalizacién de las distancias
euclideana y Manhattan, donde r € [1,00] de forma tal, que su valor esta en correspondencia
con el tipo de métrica de distancia a aplicar.

T

d(z,y) = (ZI%%I’") : (4.32)
=1

Coeficiente de coincidencia simple. El coeficiente de coincidencia simple (SMC),
cuantifica la similaridad entre dos vectores binarioaPE] z y y a partir de la proporciéon del
nimero de coincidencias, con respecto al ntamero total de atributos.

_ Joo + f11
foo + fio + for + fi1’
siendo fj; el nimero de atributos donde z y y toman valor j y k respectivamente.

SMC (4.33)

Coeficiente de Jaccard. El coeficiente de Jaccard (J), consiste en la proporcion del
nimero de coincidencias con respecto al nimero de atributos, para los cuales, al menos uno
de los valores existentes en los vectores es distinto de cero.

i

=
fio+ for + fun

(4.34)

Coeficiente de Jaccard Extendido. El coeficiente de Jaccard Extendido (EJ), es una
variacion del coeficiente de Jaccard para variables continuas.
x-y

EJ(z,y) = . 435
@9 = GE T =2y (4.35)

Coseno de similitud. El coseno de similitud (Scosine), se utiliza como métrica de simila-
ridad en vectores, donde cada atributo hace referencia a la frecuencia de ocurrencia de un
determinado elemento. Ademas, Sqosine S€ extrapola para identificar el coseno de distancia
(deosine) entre dos vectores, por lo que ambas meétricas suelen utilizarse en algoritmos de
agrupamiento, ya sea para maximizar Scpsine 0 disminuir deosine-

(z,y)
Scosine(x,y) RTIRTEETTE (436)
2|l - [y
dcosine(xa y) =1- SCosine(l'a y) (4'37)

24Un vector binario es aquel cuyos atributos son todos binarios.
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Distancia de Mahalanobis. La distancia de Mahalanobis considera la correlacion exis-
tente entre las variables, al calcularse a partir de la inversa de la matriz de covarianza (X).
Ademas, es de gran utilidad cuando los atributos tienen diferentes escalas, y la distribucién
de los datos es aproximadamente gaussiana |Tan et al., 2016].

mahalanobis(z,y) = (z — y) T2 (z —y). (4.38)

Correlacion. La correlacion analiza en qué medida dos variables se relacionan entre si, por
lo que suele utilizarse como métrica de similitud. En este sentido, el coeficiente de Pearson
resulta de gran utilidad, al cuantificar la relaciéon lineal existente entre dos variables, sin
importar la escala de las mismas.

Oy
— 4.39
Tay p— (4.39)

donde o0, es la covarianza de las variables z mientras que o oy representan la
Yy y T Y
desviacion estandar de las variables z y y respectivamente.

4.3.2.2. Algoritmos de agrupamiento

K-Means. K-Means es un algoritmo de agrupamiento particional, que consiste en definir
k clusteres disjuntos, de forma tal, que se optimice un criterio de agrupamiento [Likas et al.,
2003|. Este criterio, usualmente radica en la minimizaciéon de la suma del error cuadrado
(SSE), es decir, minimizar la suma del cuadrado de la distancia de cada elemento a su
respectivo centroidd®’]

k
SSE = Z Z distancia(c;, )2, (4.40)
i=1 zeC};

donde k y ¢; hacen referencia al nimero de clusteres y el centroide del i-ésimo cluster (C;)
respectivamente. La minimizacion de la SSE es un problema de optimizacién continua con-
cava, cuya solucion minima local debe ser un nimero entero [Peng and Xia, 2005]. Motivo
por el cual, se han estudiado varias estrategias de reducciéon de la SSE. Una estrategia para
reducir la SSFE es incrementar el niimero de clasteres; sin embargo, dicho incremento reduce
la robustez del modelo. Por lo que, un agrupamiento 6éptimo de K-Means bajo este criterio,
es aquel que minimiza la SSE, y hace uso del menor nimero de clisteres.

K-Means usualmente se asocia con la distancia euclideana y la SSE. Sin embargo, el
criterio de agrupamiento y la métrica de distancia a emplear se seleccionan en base a los
objetivos del agrupamiento y las caracteristicas del conjunto de datos. Por ejemplo, otro
criterio de agrupamiento valido, es maximizar la similitud entre las instancias que componen
cada uno de los clusteres y sus respectivos centroides, lo cual suele conocerse como cohesion
del cluster.

k

Total cohesion = Z Z Scosine (Ci, T). (4.41)
i=1 xeC;

?De acuerdo con |Tan et al., 2016], el mejor centroide para minimizar la SSE de un clister es la media
de los puntos en el cluster.
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K-Means se fundamenta en tres pasos principales: 1) la inicializacion aleatoria de los
centroide@, 2) la asignaciéon de cada una de las instancias al claster cuyo centroide esté
mas proximo y 3) la redefinicion de los centroides a partir de la media de las instancias per-
tenecientes a su respectivo clister. Luego, el algoritmo itera sobre los pasos dos y tres, hasta
que los centroides no varien o dicha variacién sea insignificante. En consecuencia, K-Means
converge en pocas iteraciones, de forma tal, que tiene una complejidad computacional de
O(n-k-1-d), donde n es el nimero de instancias, k es el namero de clusteres, [ es el nimero
de iteraciones y d es el nimero de atributos.

Entre sus desventajas destaca que el ntiimero de cltusteres debe definirse previamente, lo
cual resulta un inconveniente, teniendo en cuenta que la seleccién del ntiimero de clasteres
6ptimo es un problema NP—durﬂ. Motivo por el cual, han sido ideadas disimiles estrategias
de seleccion del niimero de clisteres, tales como el método del codo y el coeficiente de silueta
(S) [Kaufman and Rousseeuw, 2009|. El método del codo, utiliza la SSE como métrica de
desempeno, y consiste en identificar el valor de k£ que satisfaga que un incremento del mismo
no mejore sustancialmente la distancia media intra-cltster. Mientras que, el anélisis de la
silueta mide la calidad del agrupamiento a partir de la distancia entre los clisteres, tomando
como resultado el valor de k£ que maximiza la media de los coeficientes de silueta.

b—a
= = 4.42
S max(a,b)’ (442)

donde @ y b son la distancia media intra-claster y la distancia media a las instancias del
clister mas cercano respectivamente. El calculo de las matrices de distancia hace que este
algoritmo tenga una complejidad temporal y espacial de ©(N?), siendo desaconsejado su
empleo en conjuntos de datos de gran tamano |[Yuan and Yang, 2019].

Por otra parte, K-Means es susceptible a la presencia de valores atipicos en el conjunto
de datos, los cuales distorsionan los centroides redefinidos. Asimismo, el caricter aleatorio de
los centroides iniciales posibilita la existencia de clasteres vacios. Motivo por el cual, se han
propuesto varias soluciones, tales como el acercamiento incremental, el empleo de algoritmos
de agrupamiento jerdrquico y K-Means++-.

El acercamiento incremental, consiste en la actualizaciéon de los centroides luego de cada
asignacion. Por otra parte, la seleccidon de los centroides iniciales a partir de agrupamiento
jerarquico radica en extraer k clisteres del agrupamiento jerarquico realizado y utilizar los
centroides de éstos como centroides iniciales. En cambio, K-Means-++ supone inicializar el
primer centroide aleatoriamente, y elegir cada uno de los centroides restantes como el punto
lo mas lejos posible de los centroides ya existentes. No obstante, a pesar de las disimiles
estrategias propuestas con el objetivo de reducir las sensibilidades de K-Means, éste resulta
desacertado ante clisteres de diferentes tamanos, densidades o forma no globular, ya que
K-Means tiende a hacer globos y agrupar las zonas més densas.

26En el algoritmo K-Means los centroides iniciales no necesariamente coinciden con instancias ya existentes.
2"NP-duro es el conjunto de los problemas de decisién que contiene los problemas H tales que todo
problema L en NP puede ser transformado polinomialmente en H.
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Agrupamiento jerarquico. El agrupamiento jerarquico, consiste en la generacién de
conjuntos de clusteres anidados en forma de un arbol jerdrquico, usualmente representado
a través de un dendograma.

De manera general, existen dos tipos de agrupamiento jerérquico, el aglomerativo y el
divisivo. En el primero, se parte de tantos clasteres como instancias, y en cada iteracion se
unen los dos cliisteres més cercanos, hasta que se obtiene un tnico claster, o los k clasteres
deseados. Mientras que el segundo consiste en el proceso inverso, es decir, se parte de un
tnico clister compuesto por todas las instancias, y en cada iteraciéon se divide un cluster,
hasta que cada cluster contenga una tnica instancia o existan los k clusteres deseados. Am-
bas estrategias hacen uso de una matriz de distancia D,,x,, la cual es una matriz simétrica,
donde cada entrada D;; representa la distancia existente entre el i-ésimo y j-ésimo clister.

Sin importar el tipo de agrupamiento jerarquico a realizar, como resultado de la selecciéon
del par de clusteres méas préximos, en cada iteraciéon surge o se elimina un claster, y por
consiguiente, la matriz de distancia se modifica. Para ello, la distancia entre dos clisteres
cualesquiera se cuantifica a través del empleo de una de las siguientes estrategias:

= MIN: se mide a partir de la minima distancia existente entre dos instancias de distintos
clisteres A € C1 y B € (Cs. La aplicacion de esta estrategia tiene una complejidad
temporal de ©(n-m), siendo n y m el nimero de instancias existentes en los clusteres.

= MAX: esta estrategia consiste en la maxima distancia existente entre dos instancias
de distintos clisteres.

= Group Average: consiste en el promedio de las distancias de cada par de instancias
pertenecientes a diferentes clusteres.

» Distancia entre centroides: esta estrategia consiste en la distancia entre los cen-
troides de cada cluster.

s Método de Ward: consiste en el incremento de la SSE cuando se combinan dos
clasteres.

Si bien el agrupamiento jerarquico no es susceptible a problemas de inicializacién, ni
requiere la definicién previa del nimero de clisteres, las estrategias anteriores poseen varias
ventajas y desventajas. MIN permite la agrupaciéon de clisteres con forma no eliptica; no
obstante, al solo considerar el par de instancias mas cercanas de diferente clister, es sensible
a ruido y valores atipicos. Asimismo, MAX, Group Average y el método de Ward son menos
susceptibles a ruido y valores atipicos, pero suelen generar grupos de forma globular.

DBSCAN. El agrupamiento espacial basado en densidad de aplicaciones con ruido (DBS-
CAN), como su nombre lo indica, es un algoritmo de agrupamiento basado en densidad,
donde las regiones de alta densidad estan separadas por regiones de baja densidad. Este,
hace uso de un enfoque de clisteres en torno a su centro, por lo que el anélisis se fundamenta
en la relacion existente entre tres tipos de puntos: nicleo, frontera y ruido.
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En este enfoque, la densidad para un punto cualquiera, se estima a partir del ntumero
de puntos dentro de su radio (Eps). Es decir, un punto de tipo nicleo es aquel que esta en
el interior de una region densa, y tiene al menos un namero especifico de puntos (MinPts)
dentro de su radio. Asimismo, un punto de tipo frontera no es mas que la arista o frontera de
una regién densa, es decir, es aquel que si bien no es un punto de tipo ntcleo, se encuentra
en el “vecindario” de éste. Mientras que, un punto se clasifica como ruido cuando esta en
una region escasamente poblada, es decir, es aquel que no es nucleo ni frontera. DBSCAN
agrupa en un mismo claster a cualesquiera dos puntos que estén lo suficientemente cerca
dentro de una distancia Eps, asimismo con los puntos de tipo frontera. Por el contrario, omi-
te los puntos que se clasifiquen como ruido; por lo que no produce agrupamientos completos.

DBSCAN es robusto ante ruido, valores atipicos y la existencia de clisteres de diferentes
formas y tamanos. No obstante, es sensible ante la presencia de clusteres de diferentes
densidades y conjuntos de datos de alta dimensionalidad. Esto ultimo, a causa de la maldicion
de la dz’mensio’n@ yva que, a medida que aumenta el nimero de dimensiones, también lo hace
la distancia entre los puntos, lo cual dificulta la determinacién del Eps.

4.3.2.3. Resultados del analisis exploratorio

Inicialmente, se estandarizé la informacién existente en los conjuntos de datos Top500 y
SPECpower _ssj2008, y se redujo la dimensionalidad de este tltimo a partir del PCA. Sin
embargo, no se disminuy6 la dimensionalidad del conjunto de datos Top500, en vista del
nimero discreto de dimensiones presentes en éste y la sensibilidad de los algoritmos de re-
duccion de dimensionalidad a los valores atipicos, aspectos analizados en la seccién
Asimismo, se utiliz6 el coseno de similitud como métrica de similaridad, ya que la semejanza
entre documentos suele ser cuantificada a partir de esta métrica. En consecuencia, se empled
la maximizacién de la cohesiéon total como criterio de agrupamiento.

Por otra parte, si bien se contemplé la aplicaciéon del método del codo para la seleccion
del nimero de clusteres, diversos estudios lo clasifican como inadecuado [Yuan and Yang,
2019]. Estos, destacan la influencia que tiene la relaciéon existente entre los valores de k y
SSE, en la identificacién del punto de inflexién. Motivo por el cual, si el punto de inflexiéon
no es obvio, puede dificultarse la identificacién de k.

También, se consider6 elegir el nimero de clisteres a partir del empleo de técnicas de
agrupamiento espectral, tales como el Agrupamiento Espectral del Nuicleo (KSC) |Langone
et al., 2016 y la Silueta Global Espectral (GS) [Mur et al., 2016|. Sin embargo, dichas estra-
tegias, al basarse en el algoritmo de Agrupamiento Espectral, poseen una alta complejidad
computaciona]@ vy no garantizan valores elevados en los indices de validacién interna para
cada uno de los algoritmos de agrupamiento. En cambio, el coeficiente de silueta es consi-
derada la métrica de validacion interna maés efectiva y generalizada |Moulavi et al., 2014],
[Tomasini et al., 2016]. Asi pues, la eleccion del nimero de clasteres y la evaluacion de los
agrupamientos se llevd a cabo a través del analisis de esta métrica.

28E] efecto Hughes o maldicion de la dimensionalidad hace referencia a como la exactitud de un modelo
tiende a decrecer a medida que el namero de caracteristicas se incrementa [Hughes, 1968].
29E]1 algoritmo Agrupamiento Espectral tiene una complejidad temporal de o(n?).
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Determinar a priori los valores de los factores de entrada Eps y MinPts del algoritmo
DBSCAN, no es una tarea sencilla. Razén por la cual, se utilizo el algoritmo Método Dina-
mico DBSCAN (DMDBSCAN) [Rahmah and Sitanggang, 2016|, para determinar el valor
optimo de Eps. DMDBSCAN consiste en calcular para cada punto, la distancia a los n pun-
tos més cercanos, y ordenarlas de forma ascendente. Luego, similar al método del codo, se
toma como Eps la distancia dénde el cambio en la grafica es més pronunciado. Las figuras
y ilustran las distancias entre los sistemas presentes en los conjuntos de datos de
SPECpower _ssj2008 y Top500, y sus correspondientes quintos vecinos méas cercanos.
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Figura 4.26: SPECpower ssj2008: DMDBS-
CAN.

Figura 4.27: Top500: DMDBSCAN.

Las tablas y resumen los resultados obtenidos de la aplicaciéon de diversos algorit-
mos de agrupamiento, en los conjuntos de datos de SPECpower ssj2008 y Top500. Ademés,
destaca el variado ntimero de clusteres utilizados en cada uno de los agrupamientos, a fin de
maximizar el coeficiente de silueta, y la disimilitud de dichos coeficientes.

Algoritmo No. clusteres | No. Ruido | Coeficiente de silueta | Descripciéon
Fuzzy C-Means 3 0.35643

K-Medoides 2 0.33237

DBSCAN 2 4 0.42475 Eps=0.3 MinPts=5
Agrupamiento Espectral | 3 0.61612

Esperanza maxima 10 0.15874

K-means 2 0.34844

Tabla 4.5: SPECpower _ssj2008: Anélisis de agrupamiento

Algoritmo No. clasteres | No. Ruido | Coeficiente de silueta | Descripcion
Fuzzy C-Means 3 0.41515

K-Medoides 4 0.21035

DBSCAN 2 8 0.54149 Eps=0.16 MinPts=5
Agrupamiento Espectral | 3 0.58699

Esperanza méaxima 4 0.57038

K-means 3 0.50167

Tabla 4.6: Topb00: Analisis de agrupamiento
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No obstante, el numero de dimensiones existentes en ambos conjuntos dificult6 la visua-
lizacion de la distribucion de los datos, y por consiguiente los clusteres resultantes. Ademas,
una tnica métrica de validacion interna puede resultar insuficiente para evaluar la calidad
del agrupamiento, y mas atn realizar comparaciones. Sin embargo, el principal objetivo de
este anélisis, no consistié en el agrupamiento de los datos, sino en la identificacién de las
variables de mayor relevancia para todos y cada uno de dichos agrupamientos.

Se estudiaron varias estrategias de seleccion de caracteristicas, con el objetivo de identi-
ficar cudles variables y en qué cuantia las mismas condicionaban la pertenencia a uno u otro
claster. Entonces, en base al impacto que tienen los valores atipicos en dichas estrategias,
el analisis se realiz6 a partir de Random Forest y FCBF. Con este fin, se aplicaron ambas
estrategias de selecciéon de caracteristicas en las particiones de los conjuntos de datos Top500
y SPECpower _ssj2008 generadas por los algoritmos de agrupamiento. Donde, como muestra
la figura [4:28] destaca la influencia de las arquitecturas de Procesamiento Paralelo Masivo
(MPP)@ y Ch’lsteﬂ en la distincion de los sistemas. Para més informacién ver apéndice

EM DBSCAN
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0.2 N N
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Agrupamiento Espectral Fuzzy C-Means B Total Cores
Hm Power (kW)
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S 0.2 . Rmax [TFlop/s]
g— [ | W Power Efficiency [GFlops/Watts]
- Cores per Socket
0.0 mmm Processor Speed (MHz)
K-Medoids K-Means
0.4
0.2 1 -
0.0 -

Figura 4.28: Top500: Seleccién de las caracteristicas a partir de Random Forest.

Si bien la arquitectura es de las variables de mayor relevancia, también lo son el rendi-
miento, consumo de potencia y eficiencia energética. Sin embargo, resulta curioso la varia-
bilidad de las caracteristicas de mayor influencia en los distintos agrupamientos. De manera
general, varios factores condicionan los resultados de un agrupamiento, tales como el tipo
y criterio de agrupamiento, la métrica de distancia y las fortalezas de los diversos algorit-
mos ante ruido, valores atipicos y clusteres de diferentes formas, tamanos y densidades. Asi
pues, los resultados obtenidos son razonables, ya que solo la métrica de distancia y el criterio
de agrupamiento son los parametros comunes para los distintos algoritmos de agrupamiento.

3OMPP es un disefio de procesamiento paralelo, donde los nodos estan herméticamente integrados, e
interconectados mediante un enlace de alta velocidad. Ademaés, cada nodo tiene su propio sistema operativo
y memoria, por lo que el intercambio de informacioén se realiza a través de la red de interconexion de nodos.

31E] claster es un tipo de arquitectura paralela distribuida, conformada por varios servidores independien-
tes e interconectados.

CINVESTAV-IPN Departamento de Computacion



56 Capitulo 4

Como resultado del analisis realizado, se concluy6 que en los servidores de HPC, la dife-
renciacion entre los sistemas estd dada principalmente en funcién del rendimiento, consumo
de potencia y eficiencia energética, sobre todo en niveles de carga discretos. Ademas, las
restantes variables de mayor relevancia estan directamente relacionadas con las anteriores,
por lo que es innecesario su analisis. Por lo tanto, se procedié con la definiciéon de un indica-
dor multivariado, capaz de cuantificar la idoneidad de los servidores de HPC, en base a las
caracteristicas de su contexto de trabajo, y la influencia de estas ultimas en el consumo de
potencia. Para ello, se decidié hacer uso del conjunto de datos Top500, pues a diferencia de
SPECpower _ssj2008, éste analiza el desempeno de los sistemas desde un entorno de HPC.

4.4. Indicador multivariado

A grandes rasgos, un indicador multivariado o compuesto, consiste en una métrica definida
a partir de variables individuales, con el objetivo de describir un fenémeno complejo en ge-
neral. [Freudenberg, 2003| defini6 a los indicadores multivariados como indices sintéticos de
multiples indicadores individuales. Asimismo, [Saisana and Tarantola, 2002 los definieron
como indicadores basados en subindicadores, que no tienen una unidad de medida significa-
tiva comun, y no hay una forma obvia de ponderar estos subindicadores.

El diseno de un indicador multivariado es un proceso que consta de diferentes etapas,
las que van desde la definiciéon del objetivo, hasta la validacién de la propuesta. Sin em-
bargo, diferentes autores destacan la falta de transparencia existente en ocasiones, durante
la construccion de un indicador compuesto, fundamentalmente en las etapas de agregacion,
ponderacién y analisis de robustez. Por lo que, a continuacién se describen cada una de estas
etapas y el analisis realizado en las mismas.

Marco conceptual. La definiciéon del marco conceptual es la primera etapa del proceso
de construccion de un indicador multivariado. Esta, no solo sustenta de manera conceptual
el desarrollo del indicador, sino que condiciona el anélisis a realizar en las posteriores etapas.
En consecuencia, el marco conceptual del presente trabajo, consiste en el planteamiento del
problema descrito en la seccion [I.2] el cual propici6 la propuesta del indicador compuesto.

Seleccion de los indicadores. Una vez definido el marco conceptual, se procede con la
seleccién de las variables e indicadores a sintetizar. Con este fin, es crucial la seleccion de
los indices de mayor relevancia, para con el fenémeno a describir e independencia estadisti-
ca entre si. No obstante, este tultimo criterio no es del todo indispensable, pues durante el
proceso de ponderacion se suele dar menor peso a las variables altamente correlacionadas, a
fin de evitar una doble contabilizacionP2)

El estudio realizado en la seccion [£.3.2.3 arrojo que el rendimiento, consumo de potencia
y eficiencia energética son las variables de mayor relevancia en términos de distinciéon entre
servidores de HPC. No obstante, el analisis multivariado previo destaco la existencia de una
alta correlacion entre los dos primeros. Por lo que, no tiene sentido el empleo de ambos, ni

32La doble contabilizacién se refiere a ponderar implicitamente un indicador por encima del nivel deseado.
Esto sucede cuando se incluyen dos indicadores colineales en el proceso de agregacion, sin moderar su
ponderacion para este efecto.
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reducir sus respectivos pesos con el objetivo de prevenir una doble contabilizacién. Asimismo,
la eficiencia energética tiene una mayor correlaciéon con el rendimiento que con el consumo
de potencia. Motivo por el cual, resulta mas adecuado definir el indicador compuesto en
términos de potencia y eficiencia enérgética.

Imputacion & Normalizaciéon. El preprocesamiento de los datos a emplear en el diseno
del indicador compuesto, y especificamente la seleccion de las estrategias de imputacion y
normalizacién, condicionan significativamente las restantes etapas del proceso de construc-
cion, y por consiguiente los resultados finales. Tomando como base el anélisis realizado en
las secciones y se decidié proseguir el estudio a partir de datos integros y sin
previa transformacion.

4.4.1. Ponderacion

La ponderacién es de las etapas de mayor incertidumbre en el disefio de un indicador com-
puesto, al no existir una metodologia genérica para este fin, y dado que la propia ponderacién
posee miltiples interpretaciones. Por una parte, se refiere a la importancia explicita que se le
atribuye a cada indice del indicador compuesto con respecto al resto; mientras que por otra,
se relaciona con la importancia implicita de los atributos |Greco et al., 2019|. De ahi que, es
deber del diseniador del indice la selecciéon del enfoque que mejor se ajuste a sus objetivos.

No pesos o pesos iguales. Esta estrategia radica en no distribuir ponderaciones a los
atributos, es decir, dar la misma importancia a todos los indices que componen el indicador.
La misma, es de las técnicas més utilizadas debido a su simplicidad, y en ocasiones a causa de
la falta de una estructura teérica, capaz de justificar un esquema de ponderaciéon diferencial.

Pluralidad del sistema de ponderaciéon. El que toma las decisiones elige entre una
variedad de esquemas de ponderacién, en base a la estructura y calidad de los datos o sus
creencias.

Proceso de asignacion de presupuesto. Consiste en asignar n puntos a un conjunto
de tomadores de decisiones, los que distribuyen dichos puntos en los indicadores o grupos
de indicadores, y luego utilizan un promedio de las elecciones de los expertos.

Proceso de jerarquia analitica. Se fundamenta en la traduccién de un problema com-
plejo a una jerarquia de tres niveles: el objetivo final, los criterios y las alternativas. Luego,
los expertos asignan importancia a cada criterio con respecto al resto; lo cual no solo intro-
duce una medida de coherencia, sino que ademaés, reduce la predisposicién de los pesos a
errores de juicio.

Pesos basados en datos. Esta estrategia es mas objetiva que las anteriores, al considerar
enfoques, tales como el anélisis de correlacion, regresion y componentes principales.
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El anélisis de correlaciéon tiene en cuenta la estructura y dinamica de los indicadores en
el conjunto de datos. Consiste en seleccionar una variable distintiva z y extraer de las res-
tantes variables la de mayor correlacion con z, siendo el peso de cada variable el coeficiente
de correlacion al cuadrado.

Asimismo, el analisis de regresion lineal miltiple define las ponderaciones a partir del
vinculo causal entre los subindicadores y el indicador de producto elegido. Por otra parte,
el empleo del PCA como una técnica de obtenciéon de peso, radica en utilizar como ponde-
raciones para los indicadores las cargas factoriales del primer componente. No obstante, en
ocasiones, el primer componente resulta insuficiente para explicar una gran porcién de la
varianza de los datos, y son necesarios mas componentes.

4.4.2. Agregacion

La agregacion, es la ultima etapa en la formacién de un indice compuesto. En ésta, se define
la estrategia de integraciéon de los subindicadores en base a las caracteristicas del problema
y de los propios indices.

Agregacion lineal. La agregacion lineal (LIN) se utiliza cuando todos los indicadores
poseen la misma escala. Este, es un enfoque de agregacién compensatoria, donde las pon-
deraciones deben percibirse como compensaciones entre los pares de indicadores, y no la
importancia de las variables.

Q
CI, =) wyly, (4.43)
=1

siendo C'I; el puntaje de un sistema s compuesto de @) variables, para cada una de las cuales
wy e Iys se refieren al peso y valor respectivamente.

Agregacion geométrica. La agregacion geométrica (GME) es apropiada cuando los in-
dicadores son estrictamente positivos, y se expresan en diferentes escalas de razon, redu-
ciéndose asi la compensabilidad cuando el indicador multivariado contiene indicadores con
valores discretos.

CI, =12, 1y, (4.44)

La definicién del indicador compuesto se hizo en base al sistema hipotético aspirado por
Geller, con un rendimiento de un ezaflop y un consumo de potencia de 20 MW |Geller, 2011].
Ademas, se empleé la estrategia de agregacidén geométrica, pues el consumo de potencia y
la eficiencia energética son variables de diferente escala, a la vez que no es objetivo dotar al
indicador de un caricter compensatorio.

potenciag ™ - eficiencia energéticaf

CI, = (4.45)

. — B
potencia, S - eficiencia energética,, ;

Por otra parte, las ponderaciones se definieron de forma tal, que se maximizase la dis-
tancia en términos de puntaje, entre el sistema de referencia antes mencionado, y todos los
servidores presentes en el conjunto de datos Topb00. Para ello, se evaluaron los sistemas que
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integran el Top500 a partir de 100 simulaciones, las que consistieron en variar los valores de
a v B. Especificamente, ambas ponderaciones, tomaron valores comprendidos entre 0.1 y 1,
es decir, o, € [0.1,1], siendo 0.1 el grado de relevancia mas discreto con que se evaluo
cada indicador. Ademas, se decidi6é no incrementar el rango de ponderacion, a fin de no su-
bestimar, ni sobreestimar ninguno de los indices. Entonces, por cada valor de «, se variaron
los valores de 3, de manera tal, que en cada iteraciéon se incrementaba 8 en 0.1, y luego de
considerar todos los posibles valores de 8 en su correspondiente intervalo, se reiniciaba el
valor de este dltimo y se incrementaba el valor de e en 0.1.

En este sentido, si bien valores elevados de o y 8 arrojaban valores superiores de C1, a
la vez reducian la distancia entre los SUT y el sistema de referencia (ver figura [£.29). En
consecuencia, esta distancia se maximizoé solo en los casos donde S tomaba valores conside-
rablemente superiores a los de «, exactamente « = 0.1y 5 =0.9 0 § =1 (ver figura .
Sin embargo, llamo la atencién la modesta relevancia que tiene el consumo de potencia en el
indicador propuesto. Asi pues, result6 de interés considerar, si esto se debi6 a que la eficien-
cia energética, es la caracteristica de mayor distanciamiento con respecto al sistema ezxaflop
propuesto por Geller, o a la necesidad de transformar los datos, a fin de que las escalas de
las variables no condicionen los resultados finales.

Figura 4.29: AnAlisis de calificaciones Figura 4.30: Anélisis de ponderaciones
por niveles de ponderacion. en base a la funcion objetivo.

También, la seleccion de [ entre los posibles valores 0.9 y 1, se realiz6 en términos del
desplazamiento promedio (AvS). Este, indica cuénto varia en promedio las calificaciones de
los sistemas bajo diferentes circunstancias.

S
Zli:‘ll(j[sz‘,f - CISi:f*
|15 ’

AvS = (4.46)
donde s; es la i-ésima instancia del conjunto de datos S, mientras que f y f* se refieren
a diferentes configuraciones de los factores de entrada. En este caso, con la variacién tni-
camente de (3, se obtuvo un desplazamiento promedio de 0.03001. Por lo que, el indicador
compuesto se defini6é de la siguiente forma

| . . .
CI. — potenciay "~ - eficiencia energéticay
s — . —1 . . - .
potencmmf - eficiencia energetica, s

(4.47)
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Si bien el proceso de construcciéon de un indicador compuesto puede ser transparente
y bien fundamentado, etapas tales como la imputacién, normalizacién y ponderacién estan
condicionadas por criterios del desarrollador. En consecuencia, es imprescindible la vali-
dacién del indicador, a fin de identificar cuan sensible es éste a variaciones, tanto de sus
pardmetros, como de las propias estrategias de diseno.

4.4.3. Analisis de robustez

Dado que la calidad de un modelo depende de la solidez de sus supuestos, es imprescindible
la evaluacién de las incertidumbres asociadas con el proceso de modelado y las elecciones
subjetivas tomadas. Usualmente, la robustez de los indicadores compuestos se evaltia a partir
de los anélisis de incertidumbre y sensibilidad.

El analisis de incertidumbre se refiere a los cambios que se observan en el resultado final,
al variar los factores de composicion del indice. Es decir, se basa en simulaciones que se
realizan en varias ecuaciones que constituyen el modelo subyacente. Entre los métodos de
evaluacién destaca la aproximacion de Monte Carlo, la cual consiste en multiples evaluacio-
nes del modelo con k factores de entrada.

Para la simulacién de los distintos escenarios de composicién, se utilizaron como factores
de incertidumbre, la estrategia de imputacion (X), la estrategia de normalizacion (X32), la
estrategia de agregacion (X3) y las ponderaciones a y 3 (X4 y X5 respectivamente).

0 Listwise,
1 Media, 0 No normalizar,
. 0 LIN,
X1 =<2 Moda, Xo=4¢1 Min-Max, X3 =
) o 1 GME.
3 Mediana, 2 Estandarizacion.
4 KNN.

Asimismo, las ponderaciones « y 3 se variaron a partir de la asignacion de diez valores,
que van desde 0.1 a 1 con incremento de 0.1. Entonces, las configuraciones se definieron a
través de la combinacion de los valores de los factores de entrada. Luego, se evalué en cuéles
de estas configuraciones, el sistema de referencia tenia calificaciones superiores a las de
todos los SUT. Como resultado, de las 3000 simulaciones realizadas, solo en seis se satisfizo
el criterio de selecciéon. En éstas, si bien vario la estrategia de imputacién, los valores de
los restantes factores permanecieron estéaticos (ver tabla . Ademas, el desplazamiento
promedio de las calificaciones, en base a las distintas configuraciones de los factores de
entrada, resultd despreciable.

Estrategia de Imputacion | Estrategia de Normalizacion | Estrategia de Agregacion | o I5]

Listwise No normalizar GME 0.1]0.9
Listwise No normalizar GME 0.1 1.0
Media No normalizar GME 0.1]0.9
Media No normalizar GME 0.1 1.0
Mediana No normalizar GME 0.1]0.9
Mediana No normalizar GME 0.1 1.0

Tabla 4.7: Anéalisis de incertidumbre.
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Por otra parte, el analisis de sensibilidad evalda la contribucion individual de los factores
de entrada a la varianza de los datos, asi como la varianza condicional correspondiente a dos
o mas factores. De manera general, la varianza aportada V; por el i-ésimo factor de entrada
X, se cuantifica como la cantidad de varianza esperada que se removeria si se determinase
el valor de Xj.

Vi = Vi, (Exi(Y]X))). (4.48)

Por lo que, la varianza total de un sistema V' (Y") puede ser descompuesta en dos términos,
el efecto principal (V;) y el efecto residual. Este ultimo, representa la cantidad esperada de la
varianza de salida que permaneceria sin explicacion, si el factor X; fuese dejado en libertad
sobre su rango de incertidumbre.

Vx,(Ex~i(Y]Xi)) + Ex, (Vi (Y]X3)) = V(Y). (4.49)

Asimismo, el indice de sensibilidad de primer orden .S;, se cuantifica como la contribucion
individual de X; a V(Y').
Vi
S; = . 4.50
Mientras que el indice de sensibilidad total Sp;, considera la contribucion de X; a V(Y'),
tanto en el primer orden, como en 6rdenes superiores, producto de la interaccién con los
restantes factores de entrada.

_VY) - Vx L (Ex, (YIXL)) - Ex (Vx, (Y]X40))
St = = . (4.51)
V(Y) V()
Como resultado de la aplicacion del anéalisis factorial fraccional [Saltelli et al., 2008, se
obtuvo que la eficiencia energética y el consumo de potencia son, en todos los 6rdenes, de los
factores de mayor impacto en la varianza del modelo. Mientras que, la ponderaciéon asignada

al consumo de potencia, y las estrategias de normalizacién y agregacién poseen una menor
relevancia (ver table |4.8)).

Estrategia de Imputaciéon | Potencia | Eficiencia energética
Estrategia de Imputaciéon | 0.00325 -0.10879 | -0.01097 0.00384
B -0.10879 -0.01293 | 0.00384 -0.01097
Potencia -0.01097 0.003841 | -0.11094 | -0.10879
Eficiencia energética 0.00384 -0.01097 | -0.10879 0.36628

Tabla 4.8: Indices de sensibilidad de primer y segundo orden de los factores de entrada.

El anélisis de robustez realizado corroboré no solo el impacto de los factores de entrada
en las calificaciones finales de los sistemas, sino también, la relevancia de los mismos para
con la varianza del modelo. Ademas, destacéd que las escalas de las variables no condicionan
la discreta relevancia del consumo de potencia en el indicador propuesto, sino que es la
eficiencia energética, el principal elemento de distincién con respecto al sistema exaescala
propuesto por Geller. De ahi que, luego de la validacion del proceso de construccion del
indicador compuesto, resta tnicamente analizar las bondades y desventajas de éste, para
con el andlisis energético de servidores de HPC.
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ESTA PAGINA SE DEJO EN BLANCO INTENCIONALMENTE.
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RESULTADOS Y DISCUSION

El presente trabajo, se sustenté en el analisis de las tendencias y relaciones de varios in-
dicadores de proporcionalidad y eficiencia energética, asi como los factores més influyentes
en el contexto de trabajo de los servidores de HPC. En lo que se refiere a indicadores de
proporcionalidad energética, se concluyd que los sistemas cada vez desperdician menos po-
tencia en estado inactivo, y de manera general, menor es la brecha de consumo de potencia
con respecto a un comportamiento proporcionalmente energético. Sin embargo, la creciente
carencia de linealidad en los sistemas, constituye el principal desafio en términos de propor-
cionalidad energética.

Por otra parte, la eficiencia energética, tanto promedio, como por nivel de utilizacion, es
otro de los indices de mayor crecimiento en los servidores de HPC. No obstante, es erronea la
relacion que diversos estudios establecen entre la proporcionalidad y la eficiencia energética
de los sistemas [Jiang et al., 2017]. Pues, mejoras en un indicador no necesariamente tiene un
impacto directo en el otro. De ahi que, la amplitud de las zonas de alta eficiencia energética,
no esté condicionada por la proporcionalidad energética de los medios de computo.

En términos de proporcionalidad energética, especificamente, con relaciéon a la existen-
cia de sistemas superproporcionales, destaco la influencia de diversos factores, tales como
la eficiencia energética y el consumo de potencia en niveles discretos de carga de trabajo.
Ademas, llamdé ain més la atencion, cuéan determinante es en este sentido, la tecnologia de
los dispositivos de almacenamiento y el tipo de gabinete. Sobre todo, el tipo de gabinete
es un elemento interesante a analizar, ya que tiene una estrecha relacién con el sistema de
disipacién de calor, elemento que no suele ser considerado por los benchmarks de HPC, ni
de consumo de energia.

En otro orden de ideas, durante la definicion del indicador REFE, [Hsu et al., 2012| con-
sideraron la similitud de los rankings Top500 y Green500, ya que los sistemas de mayor
rendimiento, eran también los de mayor eficiencia energética. Esto, a causa de la alta corre-
laciéon existente entre dichos indicadores. Asimismo, analizaron la influencia de la eficiencia
energética en el DR, concluyendo que los sistemas de mayor proporcionalidad energética,
poseian también mayor eficiencia energética. Sin embargo, con el paso de los afios, este com-
portamiento ha variado significativamente. A continuacion, se desarrolla el presente anélisis
a partir de 189 servidores que integran los conjuntos de datos Top500 y Green500.
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En el Top500, como resultado del empleo del rendimiento como criterio de calificacion, la
curva de tendencia de este indicador, describe un comportamiento decreciente, a medida que
aumenta la posicion en el ranking. Ademés, el consumo de potencia y la eficiencia energética
presentan variaciones abruptas, pues los sistemas de mayor rendimiento, no necesariamente
son los de mayor eficiencia energética, ni consumo de potencia (ver figura .
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Figura 5.1: Top500: Tendencia de los indices a través del ranking.

Asimismo en el Green500, donde, si bien como se indico en el capitulo [3] la eficiencia
energética es el indicador que condiciona la calificacién de los sistemas, son las curvas de
tendencia del rendimiento y consumo de potencia las que carecen de un comportamiento
mono6tono (ver figura . También, del empleo de la eficiencia energética como criterio
de distincién, se obtuvieron mas variaciones en los restantes indicadores, que al utilizar el
rendimiento como criterio de calificacion.
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Figura 5.2: Green500: Tendencia de los indices a través del ranking.

Ademas, se estudiaron las bondades del indicador REE en relacion con el analisis ener-
gético de los servidores de HPC. Este estudio, arroj6 que dicho indicador resulta insuficiente
para explicar los resultados obtenidos del anéalisis de agrupamiento realizado en la seccién
[4:3:2.3] Lo cual es logico, si se considera el numero de dimensiones que el PCA indic6 son
necesarias para explicar aproximadamente el 80 % de la varianza de los datos (ver seccion

pagina .
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REEFE tiene estrecha relaciéon con el rendimiento de los sistemas y el total de ntcleos
existentes en los mismos. Sin embargo, tiene una baja correlacién con los niicleos presentes
en los aceleradores graficos, procesadores y co-procesadores, asi como con la arquitectura y
la frecuencia base. Ademaés, posee una correlacion media y baja con el consumo de potencia
y la eficiencia energética respectivamente (ver tabla . Por lo que, las calificaciones que
éste asigna estéan principalmente en funcién del rendimiento de los equipos. Es decir, los
sistemas de mayor calificacién, sobresalen por su alto rendimiento y consumo de potencia,
mientras que la eficiencia energética no es determinante, a pesar de ser uno de los indices
utilizados para la definicion de REE.

Total C Accelerator /Co-Processor Rmax Power | Power Efficiency | Processor Speed Cores
otat Lores Cores |[TFlop/s] | (kW) | [GFlops/Watts] (MHz) per Socket
0.6120 0.2128 0.9818 0.6971 | 0.3534 0.0471 0.1658

Tabla 5.1: REE: Coeficientes de correlacién de Pearson.

La figura muestra el comportamiento de los indices de rendimiento, consumo de
potencia y eficiencia energética, luego de ordenar descendentemente los servidores a partir
de su valor de REE. En esta figura, se observa la tendencia principalmente decreciente de
los sistemas en términos de eficiencia energética. No obstante, dicho patrén es resultado de
la correlaciéon existente entre la eficiencia energética y el rendimiento, ya que la curva de
tendencia de este dltimo describe igual evolucién y es menos accidentada.
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Figura 5.3: REE: Tendencia de los indices a través del ranking.

Con respecto al indicador propuesto en el presente trabajo, CI esta altamente correla-
cionado con la eficiencia energética del medio de computo. Mientras que, posee una baja
correlaciéon con el rendimiento, consumo de potencia y caracteristicas asociadas al procesa-
dor y la arquitectura del sistema (ver tabla . También, al igual que REFE, el indicador
C1 resulta insuficiente para describir los agrupamientos realizados en la seccion

Total Cores Accelerator/Co-Processor Rmax Power | Power Efficiency | Processor Speed Cores
Cores [TFlop/s] | (kW) | [GFlops/Watts] (MHz) per Socket
0.0523 0.1196 0.1704 -0.0816 | 0.9802 0.1549 0.1494

Tabla 5.2: CI: Coeficientes de correlacién de Pearson.
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Al calificar y ordenar descendentemente los sistemas en funcién del indicador CI, destaca
que la curva de tendencia de la eficiencia energética no es del todo decreciente (ver figura
. No obstante, se evidencia el predominio de la eficiencia energética, en comparacion con
el resto de los indices, en términos de la calificaciéon asignada a cada uno de los sistemas.
Ademas, a diferencia de REE, en CI la curva de tendencia asociada al rendimiento no descri-
be un patron decreciente. Asimismo, el consumo de potencia no describe un comportamiento
mondtono, debido a la discreta ponderaciéon asignada a este indice en el indicador CI. En
consecuencia, al ser la eficiencia energética el factor preponderante, los sistemas de menor
escala se veran beneficiados, puesto que suelen ser éstos los de mayor eficiencia energética.
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Figura 5.4: CI: Tendencia de los indices a través del ranking.

La figura [5.6] ilustra los sistemas cuyos CI se consideran atipicos segin la estrategia
de caja y bigotes (ver figura . Estos tltimos, son en su mayoria sistemas de elevada
eficiencia energética y discreto consumo de potencia. Sin embargo, destaca la existencia
entre los sistemas atipicos de un equipo de elevado consumo de potencia. El mismo, es la
supercomputadora Fugaku, actual ocupante de la primera y décima posiciéon del Topb500
y Greenb00 respectivamente. Lo que, ilustra cudn dominante es la eficiencia energética en
el indicador propuesto. De forma tal, que un sistema de gran consumo de potencia puede
alcanzar valores elevados de C1, si su eficiencia energética es lo suficientemente significativa.
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Figura 5.5: Top500: CI atipicos. Figura 5.6: Top500: Sistemas con CI atipicos.
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Por otra parte, se calificaron los sistemas presentes en el Top500 y Green500 a partir de
los indicadores REFE y CI, y se mantuvo la disposicién original de ambos conjuntos de datos.
Este analisis arroj6é una mayor coincidencia entre el orden de los servidores en el Topb00 y
el ranking conformado en funcion del indicador REE (ver figura . Mientras, el ranking
definido en base al indicador CI se asemeja mas a la jerarquia de los sistemas en el Green500
(ver figura . Esto, a causa de los indices preponderantes en ambos indicadores. Este
estudio ademas, corrobord que la eficiencia energética es uno de los principales elementos
de distincion de los servidores de HPC, siendo el criterio que mayor niimero de oscilaciones
provoco en los restantes indices de anélisis (ver tabla .
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Figura 5.7: Top500: Tendencia de los Figura 5.8: Greenb00: Tendencia de los indi-
indicadores CI y REE. cadores CI v REEFE.
Variaciones
Rmax |TFlop/s| | Power (kW) | Power Efficiency [GFlops/Watts] | Total
Top500 0 48 42 90
Green500 | 180 86 0 276
REE 88 93 69 250
CI 83 87 86 256

Tabla 5.3: Numero de variaciones por criterio de ordenamiento.

Si bien C'I a diferencia de REE no es susceptible a doble contabilizacion, las calificaciones
que C1T asigna estan parcializadas a favor de la eficiencia energética. Por lo que, se cree aiin
mas acertado el anélisis conjunto a partir de los indicadores compuestos CI y REE. Puesto
que, el primero cuantifica en qué medida el incremento de la eficiencia energética se debid
a la reduccion del consumo de potencia. Mientras que el segundo, si bien tiene en cuenta
la eficiencia energética, al considerar el rendimiento de los equipos, centra el anélisis en los
servidores de HPC. Por lo que se redefiniria REFE de la siguiente forma:

rendimientos)® - (eficiencia energética,)?
S

REE = (5.1)

(rendimientoycp)® - (eficiencia energética,.;)?’

donde las ponderaciones « y 8 no variarian su valor original, es decir &« = 8 = 1, puesto que
estos valores maximizan la distancia entre el sistema de referencia y los SUT.
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Similar al EDD, la construcciéon de un diagrama a partir de los indicadores CI y REF,
permite el analisis de la distancia entre los SUT y el sistema de referencia, en términos de los
principales indices. Donde, el sistema de referencia se representa a partir de la coordenada
(1,1), y cada uno de los cuadrantes en torno a la misma, agrupa sistemas cuyo rendimiento
y eficiencia energética poseen un comportamiento especifico, en comparacién con el sistema
de referencia. De forma tal, que el primer cuadrante aglomera a aquellos SUT que poseen
mayor rendimiento y eficiencia energética que el sistema de referencia, el tercer cuadrante
ilustra el caso opuesto, y el segundo y cuarto cuadrante representan las compensaciones.

Los sistemas presentes en el Top500 tienen valores inferiores de REE y CI, en compara-
cién con el sistema exaescala propuesto por Geller. Lo cual, es evidente, ya que fue uno de
los criterios de construccion del indicador CI, y puesto que el sistema de referencia tiene un
mayor rendimiento y eficiencia energética que todos los servidores presentes en el Top500.
La figura [5.9] ilustra un mayor distanciamiento de los sistemas exaescala, en términos de
rendimiento y eficiencia energética, asi como una cada vez mayor influencia de la reduccién
del consumo de potencia en la eficiencia energética de los sistemas.

1.75

1.50

1.25

1.00

REE

0.75

0.50

0.25

0.00 7 T T T T T
0.00 025 050 0.75 1.00 125 150 1.75 2.00
(@]

Figura 5.9: Top500: Diagrama C'I-REFE.

Entonces, al ser la eficiencia energética y el consumo de potencia elementos de distincion
entre los servidores de HPC, y ya que, la maximizacién de la eficiencia energética y la
reduccién del consumo de potencia son dos de los principales desafios del desarrollo de
sistemas exaescala, el indicador CI resulta un indice de utilidad para el estudio de las
tendencias de las actuales y futuras estrategias de administracion de energia. Ademas, como
se destaco anteriormente, los indicadores REFE y CI dan mayor relevancia a un determinado
indice con respecto al resto, no obstante, CI es mas equilibrado, por lo que es de utilidad
para considerar varias caracteristicas de los servidores de HPC.
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CaprPiTULO 6

CONCLUSIONES Y TRABAJO FUTURO

El estudio realizado, destaco la relevancia que tienen factores, tales como el tipo de gabi-
nete y el sistema de refrigeracion, para con la proporcionalidad energética de los servidores
de HPC. A la vez que, rebatio, en funcion del indicador EP, la afirmacion que realizaron
[Hsu and Poole, 2015| referente a que, las mejoras en la proporcionalidad energética de los
sistemas, tienen un impacto directo en la eficiencia energética de los mismos. De ahi que,
se rechazara el planteamiento realizado por |Jiang et al., 2017|, acerca de que la EP de los
sistemas condiciona la amplitud de las zonas de alta eficiencia energética.

Si bien el analisis energético desarrollado se centré en el indicador EP, los resultados
del estudio no habrian variado significativamente, de haberse enfocado la investigacién en
el indicador DR. Esto, a causa de la alta correlacién existente entre dichos indicadores, y
el discreto margen de error que se obtuvo de la aproximaciéon de la EP, a partir del DR y
la LD. Aproximaciéon mediante la cual, se concluy6 que las futuras mejoras en la EP, y de
manera general en materia de proporcionalidad energética, deben enfocarse principalmente
en maximizar la linealidad de los sistemas. Pues, si bien cada vez es menor el consumo
de potencia en estado idle, en los restantes niveles de utilizaciéon dicho consumo es progre-
sivamente menos proporcional. Ademas, los resultados de esta investigacion, muestran la
insuficiente contribucion de los indicadores de proporcionalidad y eficiencia energética con-
siderados, para con el analisis energético de los servidores de HPC.

Esta investigacion dio respuesta a muchas de las interrogantes planteadas por |Varsa-
mopoulos and Gupta, 2010]. Demostr6é que la técnica DVFES, no solo no garantiza la pro-
porcionalidad energética de los sistemas, sino que en un futuro cercano tendra una menor
incidencia en el ahorro de energia, hasta quedar obsoleta, a causa de un cada vez menor
voltaje de operaciéon de los ntcleos presentes en los procesadores. También, se considera
que la proporcionalidad energética continuara siendo relevante en los modos de suspension
e hibernacién de los servidores, pues muchos servidores de HPC consumen una cantidad de
potencia considerable en estado inactivo.

Por otra parte, del analisis de las tendencias actuales de diseno de servidores, se vaticina
el estancamiento de la frecuencia base de los procesadores, fenémeno con discretas varia-
ciones en la ultima década. Pues, el incremento de la frecuencia base de los procesadores
aumenta el rendimiento de los equipos de computo, pero también el consumo de potencia
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dindmica, y por consiguiente energia. Ademas, si bien el niimero de nucleos presentes en los
procesadores continuard en aumento, el incremento de los mismos se vera truncado, a menos
que se ideen nuevas estrategias de administracion de energia, o se incremente la eficiencia
energética de estos tltimos. Ya que, seguir aumentando el namero de ntcleos por chip, man-
teniendo la potencia y la temperatura a un nivel manejable, es en la actualidad, la principal
interrogante de muchos trabajos de investigacién.

La arquitectura, el rendimiento, el consumo de potencia y la eficiencia energética son
varios de los elementos de distinciéon de los servidores de HPC. Pero, es la eficiencia ener-
gética, y no la proporcionalidad energética uno de los principales desafios en el diseno de
sistemas exaescala. Sin embargo, las actuales carencias en ambos conceptos, son resultado
de las deficientes estrategias de administracion de energia existentes. De ahi que, es vital el
desarrollo y empleo de nuevas estrategias de administraciéon de energia, que posibiliten el
incremento de la eficiencia energética, en base a la disminucién del consumo de potencia, y
no el incremento del rendimiento.

El indicador propuesto es insuficiente por si solo para realizar el analisis energético de los
servidores de HPC. No obstante, es de gran utilidad en este sentido, pues tiene en cuenta dos
de los aspectos méas determinantes en el desarrollo de sistemas exaescala. Entonces, se consi-
dera que el empleo de CI puede resultar beneficioso para el aprovisionamiento de servidores
y el desarrollo de estrategias de administracién de energia. Por lo que, se recomienda que
estudios futuros aborden la tendencia del indicador CI, tanto en el estado peak, como en los
restantes niveles de utilizacion, y la relacién existente entre este indicador y los indicadores
de proporcionalidad energética estudiados.

A fin de incrementar la proporcionalidad y eficiencia energética, reducir el consumo de
potencia, y finalmente desarrollar sistemas exaescala, se han realizado gran variedad de in-
vestigaciones. Sin embargo, la profundidad de las mismas se ha visto limitada a causa de un
déficit de informaciéon. Ademas, los benchmarks actuales resultan necesarios, pero no sufi-
cientes. Por lo que, se carece de un benchmark de HPC con un enfoque gradual de carga de
trabajo, que considere el impacto energético, tanto de los nodos de forma individual, como
de los diferentes componentes de hardware y software. Asimismo, un benchmark idéneo de
HPC, debe ser también capaz de simular el usual contexto de trabajo y tareas que suelen
procesar estos servidores.

En vista del modesto camulo de informacién de que se dispuso para la realizaciéon de
este estudio, y la carencia de un benchmark adecuado para con el anélisis energético de
servidores de HPC, se considera provechoso el desarrollo de futuros trabajos investigativos
sobre el presente tema, que profundicen en la influencia del DVFS en el ahorro energético
en arquitecturas modernas. Ademas, entre las preguntas que se derivan de los resultados
obtenidos en esta investigacién se encuentra ;qué impacto tiene el tipo de gabinete, las ar-
quitecturas heterogéneas y el sistema operativo, en especial el calendarizador de procesos,
en materia de proporcionalidad energética? Dado que estas interrogantes requieren investi-
gacion adicional, se considera imprescindible desarrollar en el corto plazo, un estudio que
examine cuan adecuadas son varias de las vigentes politicas de calendarizacién, en funcién
del ahorro energético de los servidores de HPC.
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APENDICE A

ESQUEMAS LOGICOS

En el presente apéndice, se describen los esquemas logicos de los conjuntos de datos de
SPECpower _ssj2008, Top500 y Greenb00, con el objetivo de detallar los factores que consi-
deran cada uno de dichos conjuntos, y facilitar la comprension del anélisis realizado durante

la etapa de preprocesamiento de datos.

El conjunto de datos de SPECpower ssj2008, se compone de un total de 734 instancias.
Las cuales, a su vez, constan de 87 atributos, distribuidos en 29 variables discretas, 23
variables continuas, 30 variables nominales y 5 variables ordinales, siendo ademaés, todas

ellas, variables de entrada (ver tabla [A.1)).

Caracteristica Tipo de variable Descripcion

Benchmark Nominal Nombre del benchmark
Benchmark Version Continua Version del benchmark
Hardware Vendor Nominal Proveedor del hardware

System Nominal Nombre del sistema bajo prueba
Nodes Discreta Numero de nodos

Form Factor Nominal Tipo de gabinete

Test Method Nominal Método de prueba utilizado
Result Continua Eficiencia energética promedio
ssj _ops @ 100 % of target load Discreta Rendimiento al 100 % de trabajo
ssj_ops @ 90% of target load Discreta Rendimiento al 90 % de trabajo
ssj ops @ 80 % of target load Discreta Rendimiento al 80 % de trabajo
ssj _ops @ 70 % of target load Discreta Rendimiento al 70 % de trabajo
ssj ops @ 60 % of target load Discreta Rendimiento al 60 % de trabajo
ssj _ops @ 50 % of target load Discreta Rendimiento al 50 % de trabajo
ssj _ops @ 40 % of target load Discreta Rendimiento al 40 % de trabajo
ssj _ops @ 30 % of target load Discreta Rendimiento al 30 % de trabajo
ssj _ops @ 20 % of target load Discreta Rendimiento al 20 % de trabajo
ssj _ops @ 10 % of target load Discreta Rendimiento al 10 % de trabajo
Average watts @ 100 % of target load Continua Potencia al 100 % de trabajo
Average watts @ 90 % of target load Continua Potencia al 90 % de trabajo
Average watts @ 80 % of target load Continua Potencia al 80 % de trabajo
Average watts @ 70 % of target load Continua Potencia al 70 % de trabajo
Average watts @ 60 % of target load Continua Potencia al 60 % de trabajo
Average watts @ 50 % of target load Continua Potencia al 50 % de trabajo
Average watts @ 40 % of target load Continua Potencia al 40 % de trabajo
Average watts @ 30 % of target load Continua Potencia al 30 % de trabajo
Average watts @ 20 % of target load Continua Potencia al 20 % de trabajo
Average watts @ 10 % of target load Continua Potencia al 10 % de trabajo
Average watts @ active idle Continua Potencia al 0% de trabajo
Performance/power @ 100 % of target load Continua Eficiencia al 100 % de trabajo
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Caracteristica

Tipo de variable

Descripciéon

Performance/power @ 90 % of target load

Continua

Eficiencia al 90 % de trabajo

Performance/power @ 80 % of target load Continua Eficiencia al 80 % de trabajo
Performance/power @ 70 % of target load Continua Eficiencia al 70 % de trabajo
Performance/power @ 60 % of target load Continua Eficiencia al 60 % de trabajo
Performance/power @ 50 % of target load Continua Eficiencia al 50 % de trabajo
Performance/power @ 40 % of target load Continua Eficiencia al 40 % de trabajo
Performance/power @ 30 % of target load Continua Eficiencia al 30 % de trabajo
Performance/power @ 20 % of target load Continua Eficiencia al 20 % de trabajo
Performance/power @ 10 % of target load Continua Eficiencia al 10 % de trabajo
# Cores Discreta Numero total de nucleos
# Chips Discreta Numero de procesadores
# Cores Per Chip Discreta Numero de nucleos por procesador
# Threads Per Core Discreta Nuamero de hilos por nicleo
Processor Nominal Nombre del procesador
Processor MHz Discreta Frecuencia base del procesador
Processor Characteristics Nominal Descripcion del procesador
CPU(s) Orderable Nominal Numero de CPUs
1st Level Cache Nominal Descripcion de la caché de 1¢" nivel
2nd Level Cache Nominal Descripcion de la caché de 29° nivel
3rd Level Cache Nominal Descripcién de la caché de 3" nivel
Other Cache Nominal Descripcion de otras memorias cachés
Memory (GB) Discreta Almacenamiento en la RAM
Operating System Nominal Nombre del sistema operativo
Operating System Version Nominal Version del sistema operativo
File System Nominal Tipo de sistema de archivos
DIMMS Nominal Modulos de RAM
Memory Description Nominal Descripciéon de la RAM
Network Controller Discreta Numero de controladores de red
NICs Connected Discreta Tarjetas de red conectadas
NICs enabled (firmware) Discreta Tarjetas de red activas en el firmware
NICs enabled (OS) Discreta Tarjetz?s de red activas
en el sistema operativo
Network speed Discreta Velocidad de red
JVM Vendor Nominal Proveedor de la JVM
JVM Version Nominal Version de la JVM
JVM Instances Discreta No. de instancias de la JVM
. . Comandos utilizados para configurar
JVM Affinity Nominal la afinidad para cada %VM ¢
JVM Bitness Discreta Tamano del puntero
. . Opciones de la linea de comandos
JVM Options Nominal depJVM utilizadas
Initial Heap Discreta Tamano inicial de la pila de la JVM
Max Heap Discreta Tamano maximo de la pila de la JVM
System Source Nominal Estrategia de ensamblado del sistema
System Designation Nominal Clasificacion del sistema
Power Provisioning Nominal Tipo de fuente de alimentacién
Disk Drive Nominal Descripcion de las unidades de disco
Disk Controller Nominal Proveedor del controlador de discos
Power Management Nominal Habillii.:acic')n. d ¢ las funci’ones de
administracion de energia
Power Supply Details Nominal Descripcion de las fuentes de energia
Power Supplies Installed Discreta No. de fuentes de energia instaladas
Power Supply Rating (watts) Discreta Potencia total disponible
. . Fecha en que los requerimientos
HW Avail Ordinal de hardware estuvieron disponibles
SW Avail Ordinal Fecha en que los Fequeri{nientps
de software estuvieron disponibles
License Discreta No. de licencia del probador
Tested By Nominal Probador
Test Sponsor Nominal Patrocinador de la prueba
Test Date Ordinal Fecha de evaluacion
Published Ordinal Fecha de publicacién
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Caracteristica Tipo de variable Descripcion
Updated Ordinal Fecha de actualizaciéon

Tabla A.1: SPECpower_ssj2008: Esquema logico.

Asimismo, el conjunto de datos Top500 se compone de 35 atributos, distribuidos en 19
variables nominales, 4 variables continuas y 12 variables discretas, todas ellas variables de

entrada (ver tabla [A.2]).

Caracteristica Tipo de variable | Descripciéon

Rank Discreta Posicion en el ranking

Previous Rank Discreta Posicion anterior inmediata en el ranking

Name Nominal Nombre asignado a la supercomputadora
Computer Nominal Descripcion general de la supercomputadora

Site Nominal Instalaciéon que opera la supercomputadora
Manufacturer Nominal Fabricante

Country Nominal Pais

Year Discreta Ano de instalacion o de mayor actualizacion
Segment, Nominal Sector de desempefio

Total Cores Discreta No. total de nicleos

Accelerator/Co-Processor Cores Discreta No. de ntcleos en el acelerador o coprocesador
Rmax [TFlop/s| Continua Rendimiento méaximo en el benchmark LINPACK
Rpeak [TFlop/s| Continua Rendimiento maximo teérico

Nmax Discreta Tamano del problema para el cual se obtuvo Rmax
Nhalf Discreta Tamano del problema para lograr la mitad de Rmax
HPCG [TFlop/s]| Continua Rendimiento alcanzado en el benchmark HPCG
Power (kW) Discreta Potencia consumida

Power Source Nominal Fuente de alimentacion

Power Efficiency [GFlops/Watts| | Continua Eficiencia energética del sistema

Architecture Nominal Arquitectura de diseno

Processor Nominal Procesador

Processor Technology Nominal Nombre de la tecnologia utilizada por el procesador
Processor Speed (MHz) Discreta Frecuencia base del procesador

Operating System Nominal Sistema operativo

OS Family Nominal Familia del sistema operativo

Accelerator /Co-Processor Nominal Descripcion del acelerador/coprocesador

Cores per Socket Discreta No. de ntcleos por procesador

Processor Generation Nominal Generacion del procesador

System Model Nominal Modelo del servidor

System Family Nominal Familia del servidor

Interconnect Family Nominal Familia de red de interconexion

Interconnect Nominal Red de interconexion

Continent Nominal Continente

Site ID Discreta Identificador de la instalacion

System ID Discreta Identificador del sistema

Tabla A.2: Top500: Esquema logico.

Por otra parte, el conjunto de datos Green500 se compone de 35 variables, desglozadas
en 19 variables nominales, 4 variables continuas y 12 variables discretas (ver tabla [A.3)).
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Caracteristica Tipo de variable Descripcién

Rank Discreta Posicion en el ranking

TOP500 Rank Discreta Posicion en el ranking del Top500

Name Nominal Nombre asignado a la supercomputadora
Computer Nominal Descripcion general de la supercomputadora
Site Nominal Instalaciéon que opera la supercomputadora
Manufacturer Nominal Fabricante

Country Nominal Pais

Year Discreta Ao de instalacion o de mayor actualizacion
Segment Nominal Sector de desempefio

Total Cores Discreta No. total de nicleos

Accelerator /Co-Processor Cores | Discreta No. de ntcleos en el acelerador o coprocesador
Rmax [TFlop/s| Discreta, Rendimiento méaximo en el benchmark LINPACK
Rpeak [TFlop/s| Discreta Rendimiento méaximo tedrico

Power (kW) Continua Potencia consumida

Power Source Nominal Fuente de alimentacion

Power Efficiency [GFlops/Watts| | Continua Eficiencia energética del sistema

Power Quality Level Discreta Nivel de calidad de la energfa

Optimized Run (HPL) Continua Rendimiento alcanzado en el benchmark HPL
Optimized Run (Peak Power) Continua Potencia consumida en el benchmark HPL
Architecture Nominal Arquitectura de disefio

Processor Nominal Procesador

Processor Technology Nominal Nombre de la tecnologia utilizada por el procesador
Processor Speed (MHz) Discreta Frecuencia base del procesador

Operating System Nominal Sistema operativo

OS Family Nominal Familia del sistema operativo

Accelerator /Co-Processor Nominal Descripcion del acelerador /coprocesador
Cores per Socket Discreta Nuamero de nucleos por procesador

Processor Generation Nominal Generacion del procesador

System Model Nominal Modelo del servidor

System Family Nominal Familia del servidor

Interconnect Family Nominal Familia de red de interconexiéon

Interconnect Nominal Red de interconexion

Continent Nominal Continente

Site ID Discreta Identificador de la instalacion

System ID Discreta Identificador del sistema

Tabla A.3: Green500: Esquema logico.
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APENDICE B

SELECCION DE CARACTERISTICAS

La tabla describe la influencia de las caracteristicas que integran el conjunto de datos
de SPECpower_ssj2008, en términos de superproporcionalidad energética. Esto, en base a
las estrategias de seleccion de caracteristicas Random Forest y el estadistico x2.

2

Random Forest b%

Caracteristica Score Caracteristica Score
Performance/power @ 100 % of target load 0.05570 Performance/power @ 10 % of target load 5.40604
Processor Turbo Boost 0.05058 Performance/power @ 20 % of target load 5.11908
Performance/power @ 70 % of target load 0.04604 Performance/power @ 30 % of target load 4.66256
Performance/power @ 60 % of target load 0.04579 Performance/power @ 40 % of target load 4.47246
Average watts @ 10 % of target load 0.04048 Performance/power @ 50 % of target load 3.98179
Performance/power @ 80 % of target load 0.03955 Performance/power @ 60 % of target load 3.46414
Processor MHz 0.03872 Performance/power @ 70 % of target load 2.99726
Performance/power @ 90 % of target load 0.03582 Form Factor_2U 2.66364
Average watts @ active idle 0.03517 Disk Drive Technology SATA 2.53922
Performance/power @ 40 % of target load 0.03335 Performance/power @ 80 % of target load 2.50960
Average watts @ 20 % of target load 0.03079 Form Factor blade 2.21153
Performance/power @ 10 % of target load 0.03070 Performance/power @ 90 % of target load 1.70514
Performance/power @ 30 % of target load 0.02938 Disk Drive Technology SSD 1.22097
ssj_ops @ 30 % of target load 0.02829 Average watts @ active idle 0.99795
Performance/power @ 50 % of target load 0.02788 Disk Drive Technology SAS 0.99358
Average watts @ 60 % of target load 0.02645 Processor Turbo Boost 0.95420
Performance/power @ 20 % of target load 0.02638 Processor MHz 0.94021
Average watts @ 100 % of target load 0.02637 Performance/power @ 100 % of target load 0.89872
Average watts @ 90 % of target load 0.02334 Average watts @ 10 % of target load 0.82468
ssj _ops @ 40 % of target load 0.02196 Average watts @ 50 % of target load 0.81903
Average watts @ 30 % of target load 0.02145 Average watts @ 60 % of target load 0.81245
Average watts @ 40 % of target load 0.02111 Average watts @ 40 % of target load 0.81169
ssj_ops @ 20 % of target load 0.01933 Average watts @ 70 % of target load 0.80784
ssj_ops @ 50 % of target load 0.01913 Average watts @ 20 % of target load 0.78960
Average watts @ 70 % of target load 0.01902 Average watts @ 30 % of target load 0.78536
# Cores Per Chip 0.01745 Average watts @ 80 % of target load 0.76514
ssj _ops @ 60 % of target load 0.01737 Form Factor other 0.73717
Average watts @ 50 % of target load 0.01717 File System btrfs 0.70512
ssj_ops @ 90 % of target load 0.01690 Nodes 0.67560
Power Supply Rating (watts) 0.01440 Average watts @ 90 % of target load 0.65831
Average watts @ 80 % of target load 0.01437 File System XF'S 0.65034
ssj _ops @ 80 % of target load 0.01419 Form Factor 7U 0.51282
ssj _ops @ 100 % of target load 0.01368 Average watts @ 100 % of target load 0.51164
Power Supplies Installed 0.01303 # Cores Per Chip 0.50199
ssj _ops @ 10 % of target load 0.01279 # Chips 0.44168
ssj_ops @ 70% of target load 0.01265 Disk Drive Amount 0.35256
# Cores 0.01015 # Cores 0.35214
GB per Disk Drive 0.00790 # Threads Per Core 0.26538

75




76

Random Forest

X2

Memory (GB) 0.00686 ssj_ops @ 90 % of target load 0.19001
Operating System Family Microsoft Windows | 0.00506 ssj _ops @ 80 % of target load 0.18984
# Chips 0.00307 Power Supplies Installed 0.18963
Form Factor 1U 0.00246 ssj_ops @ 40 % of target load 0.18963
Form Factor 2U 0.00208 ssj _ops @ 70 % of target load 0.18942
File System NTFS 0.00136 ssj _ops @ 20 % of target load 0.18936
Disk Drive Technology SATA 0.00116 ssj_ops @ 50 % of target load 0.18926
File System XF'S 0.00110 ssj_ops @ 10 % of target load 0.18920
Operating System Family Linux 0.00085 ssj_ops @ 60 % of target load 0.18896
Disk Drive Technology SSD 0.00046 ssj_ops @ 30 % of target load 0.18889
Form Factor 4U 0.00040 ssj_ops @ 100 % of target load 0.18751
Nodes 8.59E-05 | Form Factor 3U 0.16025
Form Factor 7U 0 Form Factor 10U 0.16025
Form Factor Tower 0 Form Factor 1U 0.15200
Form Factor blade 0 Form Factor 5U 0.12820
Form Factor other 0 Memory (GB) 0.11406
Form Factor 3U 0 GB per Disk Drive 0.11079
Form Factor 12U 0 Form Factor 12U 0.06410
Form Factor_5U 0 File System EXT4 0.03205
File System NFS 0 File System NFS 0.03205
Form Factor_ 10U 0 File System ext3 0.03205
Disk Drive Amount 0 Form Factor 4U 0.01131
File System btrfs 0 Form Factor Tower 0.01104
File System ext3 0 Operating System Family Linux 0.00982
Disk Drive Technology SAS 0 Power Supply Rating (watts) 0.00147
# Threads Per Core 0 Operating System Family Microsoft Windows | 0.00117
File System EXT4 0 File System NTFS 0.00031

Tabla B.1: SPECpower _ssj2008: Influencia de los atributos en materia de superproporcio-

nalidad energética.

Asimismo, las tablas a continuacion detallan la importancia que tienen los atributos que
integran el conjunto de datos de SPECpower ssj2008, en funcién de la distincion de los
agrupamientos realizados en la seccion [£.3.2.3

Random Forest

2

X

Caracteristica Score Caracteristica Score
Form Factor 3U 0.21533 Form Factor 3U 351.419
Form Factor 12U 0.06303 Form Factor 12U 318.509
Power Supply Rating (watts) 0.05381 File System EXT4 79.5029
# Chips 0.04386 Power Supplies Installed 66.6213
Power Supplies Installed 0.03657 Disk Drive Amount 42.6714
File System EXT4 0.03374 Memory (GB) 35.3203
Performance/power @ 60 % of target load 0.02939 Power Supply Rating (watts) 27.8022
Memory (GB) 0.02928 Disk Drive Technology SAS 23.2076
Form Factor 5U 0.02483 Form Factor 5U 20.5322
Average watts @ 60 % of target load 0.02400 Average watts @ active idle 6.2721
ssj ops @ 80 % of target load 0.02318 Average watts @ 10 % of target load 4.51902
Performance/power @ 100 % of target load 0.02257 Average watts @ 20 % of target load 3.93714
Disk Drive Amount 0.02046 Average watts @ 30 % of target load 3.56929
Performance/power @ 50 % of target load 0.01809 Average watts @ 40 % of target load 3.30306
Average watts @ 30 % of target load 0.01642 File System NTFS 3.25275
Average watts @ 20 % of target load 0.01620 Average watts @ 50 % of target load 3.05742
Performance/power @ 10 % of target load 0.01609 Average watts @ 60 % of target load 2.82501
Average watts @ 100 % of target load 0.01555 Average watts @ 80 % of target load 2.79996
ssj _ops @ 30 % of target load 0.01420 Average watts @ 70 % of target load 2.71332
ssj ops @ 40 % of target load 0.01387 Operating System Family Microsoft Windows | 2.71228
Processor Turbo Boost 0.01369 Operating System Family Linux 2.71228
Average watts @ 50 % of target load 0.01320 Average watts @ 90 % of target load 2.65085

CINVESTAV-IPN

Departamento de Computacion




Seleccion de caracteristicas T7

Performance/power @ 20 % of target load 0.01306 Disk Drive Technology SSD 2.57280
Average watts @ 70 % of target load 0.01239 Average watts @ 100 % of target load 2.51229
Average watts @ 10 % of target load 0.01194 File System btrfs 2.17056
Processor MHz 0.01180 Form Factor 2U 1.68657
Average watts @ 90 % of target load 0.01171 File System XF'S 1.52514
ssj_ops @ 90 % of target load 0.01123 Form Factor 1U 1.45872
ssj_ops @ 20 % of target load 0.01091 # Chips 0.89148
Performance/power @ 70 % of target load 0.01087 Nodes 0.76609
ssj _ops @ 100 % of target load 0.01080 Form Factor Tower 0.74925
Performance/power @ 80 % of target load 0.01059 ssj_ops @ 20 % of target load 0.62626
ssj _ops @ 10 % of target load 0.01006 ssj _ops @ 100 % of target load 0.62554
Average watts @ 40 % of target load 0.00954 ssj _ops @ 10 % of target load 0.62466
Average watts @ active idle 0.00950 ssj_ops @ 90 % of target load 0.62380
Average watts @ 80 % of target load 0.00936 ssj_ops @ 70 % of target load 0.62362
Performance/power @ 90 % of target load 0.00865 ssj_ops @ 30 % of target load 0.62347
Performance/power @ 30 % of target load 0.00859 ssj _ops @ 60 % of target load 0.62315
GB per Disk Drive 0.00809 ssj_ops @ 50 % of target load 0.62308
Performance/power @ 40 % of target load 0.00763 ssj _ops @ 40 % of target load 0.62252
ssj_ops @ 70 % of target load 0.00753 ssj ops @ 80 % of target load 0.62192
Disk Drive Technology SATA 0.00715 # Cores 0.59468
# Cores 0.00673 Form Factor_ blade 0.54603
ssj_ops @ 50 % of target load 0.00668 Disk Drive Technology SATA 0.53952
# Cores Per Chip 0.00617 # Threads Per Core 0.46384
ssj_ops @ 60 % of target load 0.00588 Performance/power @ 10 % of target load 0.38226
Disk Drive Technology SAS 0.00542 Performance/power @ 20 % of target load 0.33102
Disk Drive Technology SSD 0.00364 Performance/power @ 30 % of target load 0.30453
Operating System Family Linux 0.00208 # Cores Per Chip 0.29971
File System XF'S 0.00187 GB per Disk Drive 0.29921
# Threads Per Core 0.00085 Performance/power @ 40 % of target load 0.27416
Form Factor_1U 0.00068 Performance/power @Q 50 % of target load 0.24323
File System NTFS 0.00054 Processor Turbo Boost 0.22644
Operating System Family Microsoft Windows | 0.00034 Form Factor 4U 0.21434
Nodes 7.83E-05 | Performance/power @ 60 % of target load 0.21099
Form Factor other 0 Performance/power @ 80 % of target load 0.19634
Form Factor 2U 0 Performance/power @ 90 % of target load 0.19423
File System NF'S 0 Performance/power @ 70 % of target load 0.19046
Form Factor blade 0 Form Factor other 0.16832
Form Factor Tower 0 Performance/power @ 100 % of target load 0.16665
File System btrfs 0 Form Factor 7U 0.11577
File System _ext3 0 Form Factor_ 10U 0.03554
Form Factor_ 10U 0 Processor MHz 0.01640
Form Factor 7U 0 File System NF'S 0.00706
Form Factor 4U 0 File System ext3 0.00706

Tabla B.2: SPECpower ssj2008: Influencia de los atributos en los agrupamientos de DBS-

CAN

2

Random Forest X

Caracteristica Score Caracteristica Score
Operating System Family Linux 0.03696 Form Factor 12U 505.40
Operating System Family Microsoft Windows | 0.03491 Memory (GB) 501.35
GB per Disk Drive 0.03408 ssj ops @ 90 % of target load 443.94
Average watts @ 80 % of target load 0.03027 ssj ops @ 100 % of target load 443.84
Average watts @ 40 % of target load 0.02831 ssj _ops @ 20 % of target load 443.50
Performance/power @ 100 % of target load 0.02627 ssj ops @ 80 % of target load 443.48
Average watts @ active idle 0.02562 ssj _ops @ 60 % of target load 443.43
ssj _ops @ 40 % of target load 0.02484 ssj _ops @ 40 % of target load 443.38
Average watts @ 90 % of target load 0.02468 ssj _ops @ 30% of target load 443.32
ssj_ops @ 30 % of target load 0.02452 ssj _ops @ 50 % of target load 443.18
Average watts @ 70 % of target load 0.02430 ssj _ops @ 70 % of target load 443.11
Average watts @ 50 % of target load 0.02406 ssj_ops @ 10 % of target load 443.02
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Random Forest

X2

Performance/power @ 70 % of target load 0.02336 Operating System Family Linux 393.11
ssj _ops @ 100 % of target load 0.02326 Operating System Family Microsoft Windows | 393.11
ssj _ops @ 10 % of target load 0.02319 # Cores 328.38
ssj_ops @ 70 % of target load 0.02292 Average watts @ 100 % of target load 301.74
ssj ops @ 60 % of target load 0.02290 Average watts @ 90 % of target load 298.94
File System NTFS 0.02189 Average watts @ 80 % of target load 285.14
Performance/power @ 80 % of target load 0.02183 Average watts @ 70 % of target load 274.96
ssj ops @ 80 % of target load 0.02134 Average watts @ 60 % of target load 264.73
Memory (GB) 0.02106 Average watts @ 50 % of target load 250.90
Average watts @ 20 % of target load 0.02042 Average watts @ 40 % of target load 239.76
Average watts @ 60 % of target load 0.02019 Average watts @ 30 % of target load 230.08
# Cores Per Chip 0.02019 Average watts @ 20 % of target load 220.08
Performance/power @ 50 % of target load 0.02003 Average watts @ 10 % of target load 213.05
Performance/power @ 60 % of target load 0.01979 Form Factor blade 210.66
Performance/power @ 20 % of target load 0.01904 File System NTFS 209.26
Performance/power @ 90 % of target load 0.01888 Performance/power @ 10 % of target load 177.61
Performance/power @ 40 % of target load 0.01861 Performance/power @ 20 % of target load 176.49
ssj_ops @ 50 % of target load 0.01820 Performance/power @ 30 % of target load 173.99
Performance/power @ 10 % of target load 0.01805 Performance/power @ 40 % of target load 172.95
ssj_ops @ 90 % of target load 0.01790 Performance/power @ 50 % of target load 170.44
# Threads Per Core 0.01781 Performance/power @ 60 % of target load 163.64
# Cores 0.01754 # Chips 158.18
Average watts @ 100 % of target load 0.01734 Average watts @Q active idle 155.62
Average watts @ 30 % of target load 0.01675 Performance/power @ 70 % of target load 153.96
Performance/power @ 30 % of target load 0.01623 Performance/power @ 80 % of target load 140.54
ssj_ops @ 20 % of target load 0.01462 Performance/power @ 90 % of target load 125.69
Processor Turbo Boost 0.01318 Disk Drive Technology SAS 124.11
Disk Drive Technology SAS 0.01299 Performance/power @ 100 % of target load 115.71
Average watts @ 10 % of target load 0.01164 # Cores Per Chip 115.70
File System XF'S 0.01127 Power Supplies Installed 113.29
Power Supply Rating (watts) 0.01079 Nodes 106.06
Form Factor_blade 0.00966 Form Factor_other 82.156
Form Factor 4U 0.00917 Power Supply Rating (watts) 61.261
# Chips 0.00859 Disk Drive Amount 60.745
Disk Drive Amount 0.00741 File System XFS 55.359
Nodes 0.00735 Processor Turbo Boost 37.903
Disk Drive Technology SSD 0.00709 # Threads Per Core 37.431
Power Supplies Installed 0.00679 File System btrfs 37.253
File System btrfs 0.00641 Disk Drive Technology SSD 23.736
Processor MHz 0.00620 GB per Disk Drive 14.578
Form Factor_Tower 0.00488 Form Factor 7U 14.489
Disk Drive Technology SATA 0.00401 Form Factor 2U 14.465
Form Factor 2U 0.002638 Disk Drive Technology SATA 12.995
Form Factor 3U 0.00211 Form Factor Tower 7.3432
Form Factor 7U 0.00128 Form Factor 1U 6.4049
Form Factor 1U 0.00128 Processor MHz 5.0095
Form Factor other 0.00108 Form Factor 4U 4.6330
Form Factor 12U 0.00096 Form Factor 3U 4.1671
Form Factor 5U 0.00066 Form Factor 10U 3.7584
Form Factor_ 10U 9.143E-05 | Form Factor 5U 3.0273
File System NFS 3.877E-05 | File System NFS 1.6940
File System ext3 0 File System ext3 1.6940
File System EXT4 0 File System EXT4 1.1931

Tabla B.3: SPECpower ssj2008: Influencia de los atributos en los agrupamientos de Espe-

ranza Maxima.

2

Random Forest X
Caracteristica Score Caracteristica Score
Performance/power @ 10 % of target load 0.06916 Average watts @ 60 % of target load 964.74
Performance/power @ 70 % of target load 0.05405 Average watts @ 70 % of target load 964.48
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Seleccion de caracteristicas 79
Random Forest 2
ssj_ops @ 70 % of target load 0.05355 Average watts @ 80 % of target load 957.79
Performance/power @ 50 % of target load 0.05006 Average watts @ 50 % of target load 954.11
ssj _ops @ 80 % of target load 0.04555 Average watts @ 90 % of target load 944.24
Performance/power @ 60 % of target load 0.04345 Average watts @ 100 % of target load 943.06
ssj _ops @ 90 % of target load 0.04143 Average watts @ 40 % of target load 941.09
Performance/power @ 20 % of target load 0.03483 Average watts @ 30 % of target load 919.03
Nodes 0.03273 Average watts @ 20 % of target load 892.22
ssj _ops @ 10 % of target load 0.03247 Performance/power @ 10 % of target load 889.53
Average watts @ 100 % of target load 0.03233 Average watts @ 10 % of target load 873.93
Performance/power @ 90 % of target load 0.03031 Performance/power @ 20 % of target load 865.75
Average watts @ 90 % of target load 0.02965 Performance/power @ 30 % of target load 836.46
ssj _ops @ 100 % of target load 0.02942 Performance/power @ 40 % of target load 813.66
Average watts @ 10 % of target load 0.02864 Performance/power @ 50 % of target load 794.76
Performance/power @ 30 % of target load 0.02862 Performance/power @ 60 % of target load 768.62
Performance/power @ 80 % of target load 0.02585 Performance/power @ 70 % of target load 717.93
ssj _ops @ 30 % of target load 0.02537 # Cores 680.70
Average watts @ 40 % of target load 0.02473 Performance/power @ 80 % of target load 635.38
Average watts @ 70 % of target load 0.02451 Average watts @Q active idle 630.06
Power Supply Rating (watts) 0.02179 ssj _ops @ 90 % of target load 572.08
Average watts @ 20 % of target load 0.02093 ssj ops @ 80 % of target load 571.58
# Cores Per Chip 0.01949 ssj _ops @ 30 % of target load 571.44
# Chips 0.01825 ssj _ops @ 10 % of target load 571.39
Average watts @ 30 % of target load 0.01816 ssj _ops @ 70 % of target load 571.37
ssj _ops @ 50 % of target load 0.01753 ssj _ops @ 40 % of target load 571.34
ssj _ops @ 20 % of target load 0.01682 ssj_ops @ 20 % of target load 571.17
Performance/power @ 40 % of target load 0.01680 ssj ops @ 60 % of target load 571.15
ssj _ops @ 60 % of target load 0.01677 ssj ops @ 50 % of target load 570.96
Average watts @ 60 % of target load 0.01585 ssj ops @ 100 % of target load 570.82
Average watts @ 80 % of target load 0.01453 Performance/power @ 90 % of target load 554.37
Average watts @ 50 % of target load 0.01367 # Chips 535.81
Performance/power @ 100 % of target load 0.01328 Performance/power @ 100 % of target load 496.60
Average watts @ active idle 0.01224 # Cores Per Chip 362.77
Memory (GB) 0.00993 Memory (GB) 355.20
ssj_ops @ 40 % of target load 0.00529 Nodes 337.23
Power Supplies Installed 0.00371 Form Factor blade 195.13
# Cores 0.00273 Power Supply Rating (watts) 124.45
Processor MHz 0.00177 Power Supplies Installed 99.155
Processor Turbo Boost 0.00062 Processor Turbo Boost 77.831
GB per Disk Drive 0.00045 Form Factor other 73.175
Form Factor blade 0.00035 Operating System Family Microsoft Windows | 54.374
Form Factor 1U 0.00034 Operating System Family Linux 54.374
Form Factor_Tower 0.00028 File System NTFS 47.741
Form Factor 4U 0.00022 Form Factor 2U 37.385
File System btrfs 0.00021 Disk Drive Technology SSD 28.873
# Threads Per Core 0.00021 File System btrfs 28.502
Form Factor other 0.00021 # Threads Per Core 27.233
Form Factor 5U 0.00020 File System XFS 24.310
File System EXT4 0.00011 Disk Drive Technology SATA 20.800
File System XF'S 0.00011 Form Factor 1U 18.619
Form Factor_7U 7.840E-05 | Form Factor Tower 18.425
Disk Drive Technology SATA 5.430E-05 | GB per Disk Drive 17.393
Form Factor_3U 4.819E-05 | Form Factor 10U 13.100
Form Factor 2U 2.956E-05 | Form Factor 7U 13.091
Form Factor 12U 0 Disk Drive Technology SAS 6.9287
Disk Drive Technology SAS 0 Disk Drive Amount 5.9591
File System ext3 0 Form Factor 12U 5.0904
Operating System Family Linux 0 Processor MHz 4.8136
File System NTFS 0 File System EXT4 2.5212
File System NF'S 0 Form Factor 4U 2.1933
Operating System Family Microsoft Windows | 0 Form Factor 3U 1.5497
Form Factor_ 10U 0 Form Factor 5U 0.7085
Disk Drive Amount 0 File System NFS 0.3961
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Random Forest

Disk Drive Technology SSD

[ 0

File System ext3

[ 0.3961

Tabla B.4: SPECpower ssj2008: Influencia de los atributos en los agrupamientos de Fuzzy

C-Means.

2

Random Forest X

Caracteristica Score Caracteristica Score
# Cores Per Chip 0.10303 Performance/power @ 10 % of target load 1588.7
Performance/power @ 70 % of target load 0.08590 Performance/power @ 20 % of target load 1527.1
ssj _ops @ 50 % of target load 0.05790 Performance/power @ 30 % of target load 1460.5
ssj_ops @ 60 % of target load 0.05701 Performance/power @ 40 % of target load 1408.9
Performance/power @ 10 % of target load 0.05325 Performance/power @ 50 % of target load 1364.4
ssj ops @ 80 % of target load 0.05192 Performance/power @ 60 % of target load 1299.4
ssj _ops @ 100 % of target load 0.05140 Performance/power @ 70 % of target load 1200.8
ssj _ops @ 70 % of target load 0.04681 Performance/power @ 80 % of target load 1054.7
ssj_ops @ 30 % of target load 0.04550 Performance/power @ 90 % of target load 904.01
Performance/power @ 50 % of target load 0.04039 Performance/power @ 100 % of target load 822.54
Performance/power @ 40 % of target load 0.03879 # Cores Per Chip 779.68
ssj_ops @ 90 % of target load 0.03839 # Cores 285.06
Performance/power @ 60 % of target load 0.03784 ssj ops @ 90 % of target load 284.01
ssj _ops @ 10 % of target load 0.03772 ssj ops @ 40 % of target load 283.92
Performance/power @ 90 % of target load 0.03749 ssj ops @ 10 % of target load 283.90
Performance/power @ 20 % of target load 0.03495 ssj ops @ 30 % of target load 283.89
ssj_ops @ 20 % of target load 0.03210 ssj _ops @ 20 % of target load 283.88
Performance/power @ 30 % of target load 0.03164 ssj ops @ 80 % of target load 283.83
Performance/power @ 80 % of target load 0.03109 ssj _ops @ 70 % of target load 283.83
ssj _ops @ 40 % of target load 0.02116 ssj _ops @ 50 % of target load 283.82
Performance/power @ 100 % of target load 0.01527 ssj _ops @ 100 % of target load 283.78
Memory (GB) 0.01005 ssj _ops @ 60 % of target load 283.71
Average watts @ 90 % of target load 0.00487 Memory (GB) 201.44
Average watts @ 100 % of target load 0.00475 Average watts @ 100 % of target load 165.80
Average watts @ 60 % of target load 0.00386 Average watts @ 90 % of target load 160.42
Average watts @ 80 % of target load 0.00329 Average watts @ 80 % of target load 155.34
Average watts @ 70 % of target load 0.00275 Average watts @ 70 % of target load 149.80
Average watts @ 50 % of target load 0.00262 Average watts @ 60 % of target load 145.16
# Cores 0.00252 Average watts @ 50 % of target load 141.11
# Chips 0.00217 Average watts @ 40 % of target load 137.65
Average watts @ active idle 0.00214 Processor Turbo Boost 134.82
Average watts @ 30 % of target load 0.00204 Average watts @ 30 % of target load 132.92
Average watts @ 10 % of target load 0.00172 Average watts @ 20 % of target load 126.20
Processor Turbo Boost 0.00143 Average watts @ 10 % of target load 119.04
Processor MHz 0.00091 Operating System Family Linux 114.43
Form Factor 3U 0.00089 Operating System Family Microsoft Windows | 114.43
Nodes 0.00067 File System NTFS 91.083
Average watts @ 20 % of target load 0.00065 # Chips 86.851
GB per Disk Drive 0.00049 Average watts @Q active idle 70.854
Operating System Family Microsoft Windows | 0.00049 File System XFS 56.967
Average watts @ 40 % of target load 0.00045 Nodes 54.592
File System NTFS 0.00044 # Threads Per Core 44.756
Disk Drive Technology SAS 0.00031 GB per Disk Drive 39.450
Operating System Family Linux 0.00029 File System btrfs 35.145
Power Supply Rating (watts) 0.00027 Form Factor Tower 34.527
File System btrfs 7.091E-05 | Form Factor other 31.445
File System EXT4 7.075E-05 | Form Factor blade 28.130
Power Supplies Installed 3.501E-05 | Processor MHz 21.306
Form Factor 1U 1.358E-06 | Disk Drive Technology SAS 16.031
File System XFS 0 Power Supplies Installed 14.962
File System NFS 0 Disk Drive Technology SSD 11.885
File System ext3 0 Form Factor 1U 11.833
Disk Drive Technology SATA 0 Disk Drive Amount 11.038
# Threads Per Core 0 Form Factor 10U 7.4572
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Random Forest X2
Form Factor Tower 0 Form Factor 7U 5.4510
Form Factor_other 0 Form Factor 12U 2.9483
Form Factor blade 0 Disk Drive Technology SATA 2.5508
Form Factor 7U 0 File System EXT4 0.6811
Form Factor 5U 0 File System NFS 0.6811
Form Factor 4U 0 File System ext3 0.6811
Form Factor 2U 0 Form Factor 5U 0.1493
Form Factor 12U 0 Form Factor 2U 0.0337
Form Factor_ 10U 0 Form Factor 4U 0.0091
Disk Drive Amount 0 Power Supply Rating (watts) 0.0051
Disk Drive Technology SSD 0 Form Factor 3U 0.0005

Tabla B.5: SPECpower ssj2008: Influencia de los atributos en los agrupamientos de K-

Medoides.

2

Random Forest X
Caracteristica Score Caracteristica Score
File System EXT4 0.12776 | File System ext3 90.345
File System ext3 0.12460 | File System EXT4 86.870
Form Factor 3U 0.05658 | Form Factor 3U 79.506
Performance/power @ 80 % of target load 0.04521 | Form Factor 7U 20.848
Performance/power @ 30 % of target load 0.03718 | Disk Drive Technology SAS 10.194
Average watts @ 30 % of target load 0.03347 | File System NTFS 9.6548
Average watts @ active idle 0.02887 | Operating System Family Microsoft Windows | 8.5421
Performance/power @ 90 % of target load 0.02878 | Operating System Family Linux 8.5421
Performance/power @ 60 % of target load 0.02807 | Power Supplies Installed 7.4035
# Chips 0.02559 | Processor Turbo Boost 5.7805
ssj_ops @ 70 % of target load 0.02455 | # Threads Per Core 4.2680
GB per Disk Drive 0.02402 | Power Supply Rating (watts) 1.8723
Power Supplies Installed 0.02376 | Disk Drive Technology SSD 1.6046
ssj ops @ 80 % of target load 0.02301 | GB per Disk Drive 1.1309
ssj_ops @ 50 % of target load 0.02221 | Performance/power @ 30 % of target load 0.8411
Performance/power @ 40 % of target load 0.02005 | Performance/power @ 20 % of target load 0.8332
Average watts @ 60 % of target load 0.01959 | Performance/power @ 40 % of target load 0.8273
Performance/power @ 70 % of target load 0.01792 | Performance/power @ 10 % of target load 0.8222
Average watts @ 90 % of target load 0.01769 | Performance/power @ 50 % of target load 0.8088
Form Factor 7U 0.01748 | Performance/power @ 60 % of target load 0.7728
ssj_ops @ 40 % of target load 0.01669 | Performance/power @ 70 % of target load 0.7290
ssj_ops @ 30 % of target load 0.01608 | Performance/power @ 80 % of target load 0.6853
Performance/power @ 10 % of target load 0.01546 | Performance/power @ 90 % of target load 0.6367
Performance/power @ 50 % of target load 0.01511 | Performance/power @ 100 % of target load 0.6152
Memory (GB) 0.01475 | Form Factor 2U 0.6102
ssj _ops @ 10 % of target load 0.01426 | Average watts @ active idle 0.3754
Operating System Family Microsoft Windows | 0.01320 | # Cores Per Chip 0.3640
Performance/power @ 20 % of target load 0.01302 | Form Factor_1U 0.3194
ssj_ops @ 90 % of target load 0.01176 | Disk Drive Technology SATA 0.2675
ssj _ops @ 100 % of target load 0.01071 | Nodes 0.2398
Nodes 0.01069 | Form Factor Tower 0.1643
Average watts @ 70 % of target load 0.01047 | Form Factor blade 0.1198
Average watts @ 40 % of target load 0.01028 | ssj ops @ 10 % of target load 0.1185
Power Supply Rating (watts) 0.01002 | ssj ops @ 90 % of target load 0.1183
Average watts @ 50 % of target load 0.00987 | ssj ops @ 40 % of target load 0.1183
File System NTFS 0.00981 | ssj ops @ 50 % of target load 0.1181
Average watts @ 10 % of target load 0.00952 | ssj_ops @ 30 % of target load 0.1181
ssj_ops @ 20 % of target load 0.00942 | ssj ops @ 80 % of target load 0.1181
Average watts @ 20 % of target load 0.00782 | ssj_ops @ 20 % of target load 0.1181
Processor Turbo Boost 0.00545 | ssj ops @ 60 % of target load 0.1180
Processor MHz 0.00541 | ssj ops @ 100 % of target load 0.1179
Disk Drive Amount 0.00492 | ssj ops @ 70 % of target load 0.1178
Performance/power @ 100 % of target load 0.00267 | Memory (GB) 0.0909
File System NF'S 0.00196 | # Cores 0.0787
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Random Forest

X2

Operating System Family Linux 0.00137 | Average watts @ 10 % of target load 0.0675
# Threads Per Core 0.00113 | File System XFS 0.0608
# Cores 0.00071 | Average watts @ 20 % of target load 0.0597
# Cores Per Chip 0.00052 | Average watts @ 30 % of target load 0.0539
Disk Drive Technology SAS 0.00030 | Form Factor 4U 0.0470
Form Factor 4U 0 # Chips 0.0428
Disk Drive Technology SATA 0 Average watts @ 40 % of target load 0.0406
ssj_ops @ 60 % of target load 0 Form Factor_other 0.0369
File System btrfs 0 File System _ btrfs 0.0353
File System XF'S 0 Disk Drive Amount 0.0342
Average watts @ 100 % of target load 0 Average watts @ 50 % of target load 0.0282
Average watts @ 80 % of target load 0 Average watts @ 60 % of target load 0.0154
Form Factor 2U 0 Form Factor 10U 0.0078
Form Factor 10U 0 Form Factor 5U 0.0062
Form Factor 12U 0 Average watts @ 70 % of target load 0.0059
Form Factor other 0 Average watts @ 100 % of target load 0.0035
Form Factor blade 0 Form Factor 12U 0.0031
Form Factor Tower 0 File System NF'S 0.0015
Form Factor 1U 0 Average watts @ 90 % of target load 0.0009
Form Factor 5U 0 Average watts @ 80 % of target load 0.0006
Disk Drive Technology SSD 0 Processor MHz 1.357E-05

Tabla B.6: SPECpower _ssj2008: Influencia de los atributos en los agrupamientos de Spectral

Clustering.

2

Random Forest X

Caracteristica Score Caracteristica Score
ssj_ops @ 40 % of target load 0.09253 Performance/power @ 10 % of target load 1076.9
ssj _ops @ 70% of target load 0.08336 Performance/power @ 20 % of target load 1054.0
ssj _ops @ 100 % of target load 0.07819 Performance/power @ 30 % of target load 1023.0
ssj _ops @ 20 % of target load 0.07512 Performance/power @ 40 % of target load 999.07
ssj_ops @ 90 % of target load 0.06088 Performance/power @ 50 % of target load 974.50
ssj _ops @ 80 % of target load 0.05775 Performance/power @ 60 % of target load 936.49
ssj_ops @ 60 % of target load 0.05286 Performance/power @ 70 % of target load 887.65
Performance/power @ 70 % of target load 0.05118 Performance/power @ 80 % of target load 806.91
ssj _ops @ 10 % of target load 0.04886 Performance/power @ 90 % of target load 707.54
ssj_ops @ 50 % of target load 0.04477 # Cores Per Chip 701.37
# Cores Per Chip 0.04000 Performance/power @ 100 % of target load 651.82
Performance/power @ 80 % of target load 0.03843 # Cores 329.77
ssj _ops @ 30% of target load 0.03711 ssj_ops @ 90 % of target load 319.34
Memory (GB) 0.03306 ssj ops @ 10 % of target load 319.31
Performance/power @ 50 % of target load 0.02963 ssj ops @ 40 % of target load 319.28
Performance/power @ 90 % of target load 0.02522 ssj ops @ 30 % of target load 319.26
# Cores 0.01689 ssj ops @ 20 % of target load 319.20
Performance/power @ 60 % of target load 0.01629 ssj ops @ 80 % of target load 319.18
Performance/power @ 40 % of target load 0.01513 ssj ops @ 50 % of target load 319.18
Performance/power @ 100 % of target load 0.01397 ssj _ops @ 70 % of target load 319.18
Performance/power @ 20 % of target load 0.01212 ssj _ops @ 100 % of target load 319.10
Performance/power @ 30 % of target load 0.01140 ssj _ops @ 60 % of target load 319.05
Performance/power @ 10 % of target load 0.01068 Average watts @ 100 % of target load 227.89
Average watts @ 90 % of target load 0.00849 Memory (GB) 223.48
Average watts @ 70 % of target load 0.00733 Average watts @ 90 % of target load 222.83
Average watts @ 50 % of target load 0.00659 Average watts @ 80 % of target load 220.53
Average watts @ 10 % of target load 0.00431 Average watts @ 70 % of target load 217.25
Average watts @ 20 % of target load 0.00408 Average watts @ 60 % of target load 214.76
Average watts @ 100 % of target load 0.00350 Average watts @ 50 % of target load 212.31
Average watts @ 80 % of target load 0.00333 Average watts @ 40 % of target load 209.82
Average watts @ 30 % of target load 0.00238 Average watts @ 30 % of target load 206.40
Average watts @ active idle 0.00229 Average watts @ 20 % of target load 200.61
# Chips 0.00174 Average watts @ 10 % of target load 194.44
Operating System Family Microsoft Windows | 0.00130 # Chips 140.65
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Random Forest Z
Average watts @ 40 % of target load 0.00122 Average watts @Q active idle 135.32
Nodes 0.00108 Processor Turbo Boost 131.20
GB per Disk Drive 0.00093 Operating System Family Microsoft Windows | 130.85
Processor Turbo Boost 0.00091 Operating System Family Linux 130.85
Processor MHz 0.00083 Nodes 106.35
Average watts @ 60 % of target load 0.00075 File System NTFS 104.87
Power Supply Rating (watts) 0.00070 File System XFS 60.857
File System XF'S 0.00053 Form Factor blade 58.080
File System NTFS 0.00050 GB per Disk Drive 43.290
Disk Drive Technology SATA 0.00037 # Threads Per Core 41.671
Disk Drive Technology SSD 0.00032 File System btrfs 37.379
File System btrfs 0.00020 Form Factor Tower 37.159
Form Factor_other 0.00018 Form Factor other 33.559
Power Supplies Installed 0.00012 Power Supplies Installed 27.135
Form Factor blade 0.00012 Form Factor 1U 14.546
Operating System Family Linux 7.832E-05 | Processor MHz 12.790
Form Factor 2U 4.840E-05 | Disk Drive Technology SSD 10.347
File System EXT4 4.810E-05 | Disk Drive Technology SAS 9.5151
Form Factor_4U 2.439E-05 | Disk Drive Amount 8.4508
# Threads Per Core 2.402E-05 | Form Factor 10U 7.9105
Form Factor 1U 0 Form Factor 7U 6.0818
Disk Drive Technology SAS 0 Disk Drive Technology SATA 3.3318
File System ext3 0 Form Factor 12U 3.1262
Disk Drive Amount 0 Power Supply Rating (watts) 2.1593
Form Factor 10U 0 File System EXT4 1.5569
File System NF'S 0 Form Factor 3U 0.9198
Form Factor Tower 0 Form Factor 2U 0.8298
Form Factor 12U 0 File System NFS 0.6424
Form Factor_5U 0 File System _ext3 0.6424
Form Factor_3U 0 Form Factor 5U 0.1990
Form Factor_7U 0 Form Factor 4U 0.0182

Tabla B.7: SPECpower ssj2008: Influencia de los atributos en los agrupamientos de K-

Means.
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