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Resumen

En muchos problemas de la vida real nos enfrentamos con el problema de optimizar
varios objetivos al mismo tiempo. Por ejemplo, en diseño de producción los principales
objetivos seŕıan maximizar la calidad mientras se minimiza el costo de un producto
dado. Normalmente, los objetivos considerados están en conflicto con los demás
y por lo general no existe una única solución óptima. Por el contrario, podemos
esperar un conjunto completo de soluciones optimas, el llamado frente de Pareto,
y su imagen, el conjunto de Pareto. Problemas de este tipo son conocidos como
problemas de optimización multiobjetivo o MOPs, por sus siglas en inglés. Existen
diversas maneras de resolver MOPs, en este trabajo nos enfocamos en las técnicas de
programación matemática, especialmente en métodos de continuación particulares,
los cuales realizan una búsqueda a lo largo del conjunto de Pareto de un problema
dado.

En esta tesis, extendemos el algoritmo Pareto Tracer (PT), un método de Opti-
mización multiobjetivo recientemente propuesto, para el manejo eficiente de MOPs
con restricciones generales de desigualdad. El algoritmo presenta una mejora sobre el
algoritmo base ya que la versión original del algoritmo PT únicamente puede manejar
restricciones de igualdad y restricciones de caja. Nuestro algoritmo permite aproxi-
mar localmente los conjuntos de soluciones de un MOP dado, sin importar el número
de objetivos, variables, o el tipo de restricciones. Presentamos resultados de algunos
problemas académicos de referencia y comparamos nuestro algoritmo con otros del
estado del arte indicando la eficiencia de nuestro algoritmo. Nuestro principal obje-
tivo es adaptar el método Pareto Tracer (PT) existente [36] para que sea capaz de
manejar de manera confiable restricciones de desigualdad. PT es un método pre-
dictor corrector innovador (los detalles matemáticos del algoritmo se revisarán más
adelante) que es capaz de manejar restricciones de desigualdad y de caja.
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Abstract

In many real-world problems we are faced with the problem that several objectives
have to be optimized at the same time. For example, in product design the principal
goals would be to maximize the quality while minimizing the cost of the given prod-
uct. Normally, the considered objectives are in conflict with each other and there
is typically not one single optimal solution. Instead, we can expect an entire set of
optimal solutions, the so-called Pareto set, and its image, the Pareto front. Problems
of this kind are known as multi-objective optimization problems (MOPs). There
are several ways to solve MOPs, in this work we focus on mathematical program-
ming (MP) techniques, specially on particular continuation methods which perform
a search along the Pareto set of a given problem.

In this thesis, we extend the Pareto Tracer (PT), a recently proposed multi-objective
optimization method, for the efficient treatment of general inequality constrained
MOPs. The algorithm presents an improvement over its base algorithm since the orig-
inal version of the PT can only handle equality and box constraints. Our algorithm
allows to locally approximate the solution sets of a given MOP with no restrictions
on the number of objectives, variables, and the kind of the constraints. We present
results on some academic benchmark problems and compare our algorithms to the
state-of-the-art indicating the strength of our method. Our main goal is to adapt
the existing Pareto Tracer (PT) method [36] so that it can reliably handle inequality
constraints. PT is a novel predictor corrector method (mathematical details of the
algorithm shall be reviewed before) that can handle equality and box constraints.
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Chapter 1

Introduction

Optimization [37] is an important tool in Mathematics and Computer Science that
requires to identify some objective, a quantitative measure of the performance of the
system under study. This objective depends on certain characteristics called vari-
ables. The main goal in optimization is to find values of the variables, which improve
somehow the value of the objective function. Often the variables are restricted, or
constrained, in some way.

In multi-objective optimization (MOO) we simultaneously deal with several objective
functions at the same time. Usually, those functions are in conflict, for example, two
common goals in product design are to maximize the quality while to minimize the
cost of the product. Therefore, we need to define an optimal solution according to
more than one objective. For that purpose we use the notation of dominance, which
states that a solution is better than another one if at least one of its objectives is
improved while the others do not get worse.

The presence of multiple objectives in a problem, in principle, gives rise to a set
of optimal solutions, instead of a single optimal solution. This demands a user to
find as many solutions as possible. The knowledge of the solution set is essential
for the decision maker to envision the optimal problem resolution. A lot of meth-
ods for the treatment of multi-objective optimization problems (MOPs) have been
developed. Those methods compute the approximations of the solution set, called
the Pareto set (PS), and its image, the Pareto front (PF). Two known classes of
techniques for solving MOPs are mathematical programming (MP) techniques and
multi-objective evolutionary algorithms (MOEAs). MP techniques are fast and can
handle constraints, but they are of local nature, which means, they might get stuck
in local minima. Set based stochastic search methods, such as the MOEAs are of
global nature, ask for low requirements on the model and are universally applicable,
but they need quite a few computational resources leading to slow converge rates.

1



2 Chapter 1

1.1 Motivation

In particular, MP techniques are divided in three categories, according to the strate-
gies that they use to solve the problems. Scalarization methods, for instance, suggest
converting the MOP into a single-objective problem (SOP) by emphasizing one partic-
ular Pareto optimal solution at a time. Another group encloses the descent direction
methods, that are generally fast local convergent algorithms focused in finding only
one optimal point. Finally, continuations methods perform a search along the PS an
are very efficient if one (or more) solutions is at hand.

Our main motivation rests on existing continuation methods, this is because most of
the current ones are limited to cope just with equality constraints, that is the case
of the algorithm proposed by Hillermier [29] and the Pareto Tracer algorithm [36].
Few of them can also handle inequality constrains [35, 39] but they are restricted to
bi-objective optimization problems (BOPs).

1.2 Problem

In many real life situations one is faced with the problem that several objectives have
to be optimized currently, resulting in a MOP. Sometimes there exist restrictions on
the variables or the objective functions involved into the MOP. As stated above, there
exist alternatives to solve them and we are interesting on MP techniques, specially
on continuation methods. Although those are a good alternative, they are limited in
the constraints and the number of objectives they can deal with.

In this thesis work we focus on MOPs with inequality constraints. We pretend to give
the state of the art for a new algorithm able to handle with every class of constraints
no matter the number of variables nor objectives of the problem.

1.3 Aims of the Thesis

Pareto Tracer (PT) [36] is a novel predictor corrector method (mathematical details
of the algorithm shall be reviewed in the next chapter) that can handle equality and
box constraints. Our main goal is to adapt the existing PT method so that it can
reliably handle inequality constraints.

CINVESTAV Computer Science Department



Introduction 3

1.4 Final Contribution

This thesis contributes to the area of multi-objective optimization, specifically we
introduce a variation of a existing continuation method that improves the original one,
extending its scope into general inequality constrained MOPs. The method presented
in this thesis work is applicable to any MOP, with no restrictions in the class or the
number of the constraints nor the number of variables or objective functions. As result
of this thesis work, the following conference paper has been pusblished “A new hybrid
metaheuristic for equality constrained bi-objective optimization problems” [12].

1.5 Organization of the Thesis

This thesis consists of five chapters including this introductory chapter. The remain-
der of this work is organized as follows. Chapter 2 presents an extended theoretical
background, we describe MOPs and review the related work, it is, the algorithms
developed to solve them, paying special attention to MP techniques. The proposed
algorithm is described in detail in Chapter 3, we begin showing the needed of adapt
the existing Pareto Tracer algorithm, in order to can handle inequality constrained
MOPs. Modified algorithm is further on given. In Chapter 4 we present numerical
results on theoretical MOPs, later in this chapter, we compare our algorithm with
some existing ones. Finally, in Chaper 5 we present our conclusions and possible
paths for future work.

Computer Science Department CINVESTAV
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Chapter 2

Background

In this chapter we give a general background introducing the concepts required to
understand the work developed in this thesis. Here we focus on multi-objective opti-
mization problems (MOPs) and several ways that exist nowadays to solve them. The
chapter is divided into two parts: in the first one we give a formal definition of a
MOP and describe the optimality conditions that we use throughout this work. In
the second part we address mathematical programming (MP) techniques, a category
of methods for solving MOPs; we present and describe the commonly used algorithms
that belong to this category and that are related to this work. Finally, we discuss the
advantages and disadvantages of these methods and the need to develop new ones.

2.1 Multi-objective Optimization

In multi-objective optimization [4,29] several objective functions have to be optimized
at the same time. For example, consider that we want to buy a motorcycle and we
are interested in minimizing the cost while maximizing the speed. We represent this
example in Figure 2.1. If the only objective of this problem was to minimize the
cost, the optimal solution would be motorcycle A. On the other hand, if speed was
the only objective, the optimal solution would be motorcycle B. Since our goal is
satisfy both objectives, they can not be considered as two independent optimization
problems, whose results are the two extreme solutions discussed above. There are
other solutions between these two extreme points, which have different speeds and
costs. Between any two of these, one is better in terms of one objective, but it is at
expense of a sacrifice on the other objective. Thus, all the solutions, shown between
A and B are also optimal.

In this work we consider MOPs that can be mathematically expressed as follows:

5



6 Chapter 2

Figure 2.1: Hypothetical example of a MOP.

min
x∈Rn

F (x),

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p,

(2.1)

where the function F (x) : Rn → Rk represents the vector of k objective functions
F (x) = (f1(x), . . . , fk(x))T , fi(x) : Rn → R, x ∈ Rn is the vector of n decision
variables x = (x1, . . . , xn)T , G(x) : Rn → Rm and H(x) : Rn → Rp are inequality
and equality constraints, respectively, with G(x) = (g1(x), . . . , gm(x))T , gi : Rn → R,
H(x) = (h1(x), . . . , hp(x))T , hi : Rn → R. In this work the objective functions and
the constraints are assumed to be continuously differentiable.

There is a special class of inequality constraints called box constraints, which are of
the form ai ≤ xi ≤ bi, where a, b ∈ Rn and set limits for each component of the
variables vector x.

Depending on the type of the variables and the mathematical nature of the objective
functions and the constraints, the MOPs are classified in different manners. If the
variables involved are continuous and both the objective function and the constraints
are linear, the problem is denominated linear programming problem. If any of the
variables involved is integer or binary, while the constraints and the objective func-
tion are both linear, the problem is denominated mixed-integer linear programming

CINVESTAV Computer Science Department



Background 7

problem. Analogously, if the objective function or any constraint is nonlinear and all
variables are continuous, the problem is denominated nonlinear programming prob-
lem. If additionally any variable is integer the corresponding problem is denominated
mixed-integer nonlinear programming problem [10].

Definition 2.1. The feasible region in decision space of a MOP is defined by

P = {x ∈ Rn | g(x) ≤ 0 and h(x) = 0}, (2.2)

where g : Rn → Rm and h : Rn → Rp are defined as the vector functions of the
inequalities and equalities, respectively.

As we mentioned before, in multi-objective optimization we consider more than one
objective. Usually, objective functions are in conflict. For example, as we can see
in Figure 2.2 while we minimize one of the two objective functions, the other one
increases its value and vice versa. For this reason, no single point will minimize all the
objective functions at once, but rather there is an entire set of optimal configurations.
The optimality of a MOP is defined by the concept of dominance.

Figure 2.2: Conflicting functions, every function has a different behavior with respect to x.

In the following we give the definition of dominance with respect to (2.1).

Definition 2.2. A point y ∈ Rn is dominated by a point x ∈ Rn (x ≺ y) with respect
to a MOP if

fi(x) ≤ fi(y) ∀i = 1, ..., k

Computer Science Department CINVESTAV



8 Chapter 2

and

fj(x) < fj(y)

for at least one index j ∈ {1, ..., k}. Else, y is called non-dominated by x.

Definition 2.3. Pareto set and Pareto front.

a) A point x ∈ Rn is called Pareto optimal if there is no y ∈ Rn such that y ≺ x.

b) The set of optimal configurations for a MOP

PS = {x ∈ P | @y ∈ P : y ≺ x},

is called the Pareto set (PS).

c) The image F (PS) of the PS is called the Pareto front (PF).

In general and under certain mild assumptions on the MOP, PS and PF form a (k−1)
dimensional objects [29].

Now we present an example of the PF and the PS of a MOP. Let’s consider the MOP
described in (2.3).

min

{
f1(x) = x1,

f2(x) = x2,

s.t. x21 + x22 − 0.1− 1 cos

(
9 arctan

x1
x2

)
≥ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.55,

0 ≤ x1 ≤ π,

0 ≤ x2 ≤ π.

(2.3)

In Figure 2.3 it is represented the feasible region for (2.3), it corresponds to the area
limited by the curves, which represent the inequality constraints. Figure 2.1 shows
the PS and the PF of the MOP (for this particular case the PS and the PF of the
problem are the same because of the problem definition).

A natural question, that arises from the fact that typically the solution set of a MOP
is not given by a single point, is how to measure the performance of and algorithm
for solving MOPs, aiming for the approximation of the entire PS and PF. One way
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Figure 2.3: Feasible region of (2.3).

(a) Pareto set (b) Pareto front

Figure 2.4: PS and PF representation.
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to do this is to measure the distance of the outcome set of the algorithm to the set
of interest. One such distance function is the Hausdorff distance dH . [28]. There also
exits another another performance indicator called ∆p [3], which can be viewed as an
‘averaged Hausdorff distance’ between the outcome set and the PF.

A first-order condition of optimallity for differentiable MOPs is given by the Karush-
Kuhn-Tucker (KKT) conditions [31, 32]. Those are only necessary conditions, it is,
the points that satisfy these requirements are just candidates for being a local min-
ima. In (2.4) we present the KKT conditions for general MOPs.

Theorem 2.1. Let fi, gi and hi be continuously differentiable. If x ∈ Rn is optimal,
then there exist vectors λ ∈ Rk, γ ∈ Rm and α ∈ Rp s.t.

KKT for constrained MOPs
Let fi, gi and hi be continuously differentiable. If x ∈ Rn is optimal, then there exist
vectors λ ∈ Rk, γ ∈ Rm and α ∈ Rp s.t.

k∑
i=1

λi∇fi(x) +
m∑
i=1

γi∇gi(x) +

p∑
i=1

αi∇hi(x) = 0,

gi(x) ≤ 0, i = 1, . . . ,m,

hi = 0, i = 1, . . . , p,

k∑
i=1

λi = 1,

λi ≥ 0, i = 1, . . . , k,

γi ≥ 0, i = 1, . . . ,m,

γigi(x) = 0, j = 1, . . . ,m.

(2.4)

Points x that satisfy (2.4) are called KKT points.

In case the MOP contains no constraints, the KKT conditions significantly reduce as
we can see in (2.5).

Theorem 2.2. KKT for unconstrained MOPs
Let the MOP be unsconstrained and all the objectives be continuously differentiable.
If x is an optimal point, then there exist scalars λ1 . . . λk s.t.
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k∑
i=1

λi = 1,

k∑
i=1

λi∇fi(x) = 0,

λi ≥ 0.

(2.5)

Two known classes of techniques for solving MOPs are mathematical programming
(MP) techniques and multi-objective evolutionary algorithms (MOEAs).

MOEAs [9] are stochastic search algorithms which are very popular due to their global
set base approach. They use a set (called population) of solutions. These solutions
“evolve” through special operators based on the species evolutionary process, some
examples of this operators are the mutation and the crossover. This evolutionary
process is expected to lead the individuals covering all the PF. These methods ask
for low requiremts on the model and are universally applicable, but they need quite
a few resources leading to slow converge rates. One of the most famous algorithm of
this category is the Nondominated Sorting Genetic Algorithm (NSGA-II) [15], which
was proposed by Kalyanmoy Deb et al. in 2002. Following we briefly describe the
algorithm as we will use it later on in order to make some comparisons with the
algorithm presented in this work.

MOEAs that use non-dominated sorting and sharing have been criticized mainly for:
their computational complexity, their non-elitism approach and the need to specify a
sharing parameter. NSGA-II is a non-dominated sorting-based MOEA which allevi-
ates all of the above three difficulties. Specifically, a selection operator is presented
that creates a mating pool by combining the parent and offspring populations.

On the other hand, MP techniques are based on classical optimization methods, such
as the Newton method. Those techniques are fast but also are of local nature, that
is, they can get easily trapped in local minima and for this reason a starting point is
needed in order to obtain the PS of a MOP. In next section we describe in detail this
category.

2.2 Mathematical Programming Techniques

In this section we shortly describe some of the existing mathematical programming
(MP) techniques. We consider three different categories that are described hereupon,
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discussing about its advantages and disadvantages. Also we introduce some of the
most representative methods of every category.

2.2.1 Scalarization Methods

Methods of this kind transform the MOP into a single-objective or scalar optimization
problem (SOP) [25, 44]. They formulate a SOP such that optimal solutions of it are
Pareto optimal solutions to the MOP. Doing so, they reduce the problem into an
easier one, but only one solution is given in one single run of the algorithm and not
the entire PS. Scalarization methods are sometimes used to approximate the entire
PS by considering a sequence of SOPs.

In this approach, the parameters are not known in advance and the decision maker
has to choose them. For some problems, this choice can be problematic. There are
several scalarization methods [8,20,22], below we describe three of most applied ones.

Weighted Sum (WS) Method

This method was suggested by Gass and Staaty in 1995 [24, 34]. The idea is to
associate each objective with a weighting coefficient and to minimize the WS of the
objectives. The weighted sum method reads as follows:

min
x
fw(x) =

k∑
i=1

wifi(x), where wi ≥ 0,
k∑
i=1

wi = 1.

However, by modifying the weights, different points on the PS can be found, but
varying the weights systematically may not necessarily result in an even distribution
of the points along the PS. For this reason, in some cases, a complete representation
of the PS will not be achieved. By using this method it is impossible to obtain points
on non-convex portions of the PS, it is the case in Figure 2.5. This is a serious
and significant limitation because in the real world, if this method is used for non-
convex problems, therefore, the PF generated will be incomplete, leaving out a set of
solutions.

Normal Boundary Intersection (NBI)

This method was developed by Das and Dennis in 1996 [13]. It is a scalarization
strategy specially designed for the generation of even distributed optimal solutions in
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Figure 2.5: Drawbak of the WS method: the non-convex part of the PF, represented by points is
not going to be achieved by the method.

the objective space. The first step is to compute an approximation of the convex hull
of individual minima (CHIM). This is done via minimizing each objective function
fi, i = 1, ..., k.

Given a MOP, let F ∗i = f(x∗i ) and x∗i be the respective global minimizers of fi(x),
i = 1, . . . k and the vector F ∗ = (f ∗1 , ..., f

∗
k )T is referred to as the shadow minimum

where f ∗j = fj(x
∗
j) for j = 1, .., k. Φ ∈ Rk×k is a matrix called the pay-off matrix,

whose ith column is given by F ∗i − F ∗ . Then the CHIM can be represented as the
set of points in Rk that are convex combinations of F ∗i − F ∗, i.e.

{
Φβ

∣∣∣∣ β ∈ Rk,
k∑
i=1

βi = 1, βi ≥ 0, , i = 1, 2, ..., k

}
. (2.6)

The second step is to solve the NBI-subproblem, described in (2.7), for selected values
of β ∈ Rk.

max
(x,t)∈Rn×R

t, (2.7)

s.t. Φβ + tn̂ = F (x),

hi(x) = 0, i = 1, ...,m,

gi(x) ≤ 0, i = 1, ..., p,

ai ≤ x ≤ bi, i = 1, ..., n.
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The idea is to generate a subset of the efficient set by solving the NBI-subproblem
for various β .

One weak point of the NBI method is that for highly nonlinear problems, it is hard
to obtain optimal solutions due to the indirect equality constraints. Further, NBI is
not applicable to MOPs with p ≥ 4. An advantage of this method is that there is not
problem with concave and convex portions of the PS, using it we can find everything.

ε -constraint Method

This method was first proposed by Haimes et al. in 1971 [27]. It suggests to refor-
mulate the MOP by just keeping one of the objectives and restricting the rest of the
objectives within the user’s specified values. Systematic modification of the values of
the objective functions forming the additional constraints leads to the generation of
an even distributed PS. The problem can be mathematically expressed as follows:

min
x
fi(x)

s.t. fj(x) ≤ εj, j ∈ {1, ..., k} \ {i}
hi(x) = 0 i = 1, ...,m

gi(x) ≤ 0 i = 1, ..., p.

The approach of this method is to minimize one objective, say fi(x), subject to
the additional constraints fj(x) ≤ εj, j = 1, ..., p, j 6= i, and some ε > 0, where ε
represents the “worst” value that fj is allowed to take. It has been shown that if the
solution of this method is unique, then it is efficient. Two issues with this approach
are (i) that it is necessary to preselect which objective to minimize and (ii) the proper
choice of the ε. Also, the algorithm has troubles with flat search regions.

There are some variations of this method that try to improve it, for example, the
elastic constraint method [18,19] is a modification that gives conditions on the char-
acterization for efficient and properly efficient solutions and the special case given
in [5], in which the epsilon is replaced by a (more informed) quantity related to the
structure of the problem.
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2.2.2 Descent Direction Methods

A descent direction (DD) is a direction in which all objectives decrease for sufficiently
small step size. If all objectives are differentiable in x, then a DD, let’s call it ν, can
be characterized as

〈∇fi(x), ν〉 < 0, i = 1, ..., k. (2.8)

In contrast to standard scalarization approaches for multiobjective optimization, in
this methods we do not transform the problem at hand into a parameterized scalar
optimization problem before settling to solve the transformed problem, instead, a line
search is performed according to a DD.

Almost all methods that belong to this category have its own strategy for selecting
the step length, the search direction and the stopping criteria. Below we describe
three such methods.

Newton Method

It is an extension of Newton’s method for unconstrained multi-objective optimization
proposed by Fliege et al. in 2000 [21]. At each iterate the Newton’s direction is ob-
tained by minimizing the max-ordering scalarization of the variations on the quadratic
approximations of the objective functions. The objective functions are assumed to
be twice continuously differentiable and locally strongly convex.

In each iteration, the algorithm replaces each objective function with a quadratic
model for it, as in the “clasical” Newton method. With these local models at hand,
the max-scalarization of the variations of the quadratic approximations is minimized
and a joint descent direction is obtained.

Now it is presented the definition of Newton direction for a MOP. As in the classi-
cal one-criterion case, the Newton direction will be a solution to a suitably defined
problem involving quadratic approximations of the objective functions fj. Moreover,
again as in the scalar case, in a critical point, the Newton step will be 0 ∈ Rn.

For x ∈ Rn, the Newton direction s(x) at x is defined as the optimal solution of

 min max
j=1,...,k

Ofj(x)T s+
1

2
sTO2fj(x)s,

s.t. s ∈ Rn.
(2.9)

Computer Science Department CINVESTAV



16 Chapter 2

In order to find a direction of descent for all objective functions involved, it is necessary
to solve a scalar optimization problem.

The optimal value of problem (2.9) will be denoted by θ(x). Hence,

θ(x) = inf
s∈Rn

max
j=1,...,k

Ofj(x)T s+
1

2
sTO2fj(x)s, (2.10)

and

s(x) = arg min
s∈Rn

max
j=1,...,k

Ofj(x)T s+
1

2
sTO2fj(x)s. (2.11)

The problem (2.9) is equivalent to


min g(t, s) = t,
s.t. Ofj(x)T s+ 1

2
sTO2fj(x)s− t ≤ 0 (1 ≤ j ≤ k),

(t, s) ∈ R× Rn.
(2.12)

The Lagrangian of this problem is

L((t, s), λ) = t+
k∑
j=1

λj

(
Ofj(x)T s+

1

2
sTO2fj(x)s− t

)
. (2.13)

Direct calculation of the Karush-Kuhn-Tucker conditions yields

k∑
j=1

λj = 1,
k∑
j=1

λj
(
OT (x) + O2fj(x)s

)
= 0, (2.14)

λi ≥ 0, Ofj(x)T s+
1

2
sTO2fj(x)s ≤ t (1 ≤ j ≤ k), (2.15)

λj

(
Ofj(x)T s+

1

2
sTO2fj(x)s− t

)
= 0 (1 ≤ j ≤ k). (2.16)

Problem (2.12) has a unique solution, (θ(x), s(x)). As this is a convex problem and
has a Slater point, there exist a KKT multiplier λ = λ(x), which, together with
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s = s(x) and t = θ(x), satisfies conditions (2.14)-(2.16). In particular, from (2.14)
one obtains

s(x) = −

[
k∑
j=1

λj(x)∇2fj(x)

]−1 k∑
j=1

λj(x)∇fj(x). (2.17)

Hence, the Newton direction defined in this algorithm is a Newton direction for a stan-
dard scalar optimization problem, implicity induced by weighting the given objective
functions by the a priori unknown KKT multipliers.

Now we are going to talk about the step size control using the Armijo rule. For the
scalar case (k = 1)F : U → R, at a nonstationary point x ∈ U , the classical Armijo
rule for the Newton search direction s(x) can be read as follows

F (x+ ts(x)) ≤ F (x) + βts(x)T∇F (x), (2.18)

with β ∈ (0, 1). To accept a full Newton step close to a local optima where ∇2F > 0
(it is, the Hessian of F is positive definite), one must choose β ∈ (0, 1/2) [17]. Note
that in this setting (k = 1),

θ(x) =
1

2
s(x)T∇F (x). (2.19)

So, we can rewrite the Armijo rule as

F (x+ ts(x)) ≤ F (x) + σtθ(x), (2.20)

with the choice σ = 2β ∈ (0, 1) allowing full Newton steps to be accepted close to
a local optimum where ∇2F > 0. The above inequality, interpreted componentwise,
will be our criterion for accepting a step in the multiobjective Newton direction.

In algorithm 1 it is sketched the Newton algorithm for multicriteria optimization. At
each step, at a nonstationary point, it is minimized the maximum of all local models
as in (2.9) to obtain the Newton step (2.11), wich is a descent direction. Under
suitable local assumptions, full Newton steps are always accepted and the generated
sequence converges superlinear (or quadratically) to a local solution.

On the advantage we can remark that problems whose objective functions display
a weak or moderate amount of curvature do not represent a challenge for the algo-
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Algorithm 1 Newton algorithm for multicriteria optimization

Require: x0 ∈ U, 0 ≤ σ < 1
1: set k = 0
2: define T = {1/2n|n = 0, 1, 2, ...}
3: while true do
4: Solve the direction search problem (2.9) to obtain s(xk) and θ(xk) as in (2.11)

and (2.10)
5: if θ(xk) = 0 then
6: Stop
7: else
8: Go to 10
9: end if

10: (Line search) Choose tk as the largest t ∈ T such that
xk + ts(xk) ∈ U ,

fj(xk + ts(xk)) ≤ fj(xk) + σtα(xk), j = 1, ...,m.
11: (Update) Define xk+1 = xk + tks(xk) and set k = k + 1. Go to 4.
12: end while

rithm, also it works fine in the non-convex case. Although, this algorithm experiences
difficulties when employed on problems exhibiting a high degree of curvature.

The Direct Search Descent Method

This is an iterative method based on the idea of steering the search along a predefined
direction in objective space, which has the advantage that has a physical meaning
and the search can be steered according to the given situation [41]. This method
allows to find a (descent) direction ν = ν(α) ∈ Rn for every search direction α ∈ Rk.

Let x0 ∈ Rn be a given point and the vector d ∈ Rk presents a desired search direction
in image space. More precisely, a search direction ν ∈ Rn in parameter space is sought
such that for x1 = x0 + tν, where t ∈ R+ is the step size, it holds:

lim
t→0

fi(x1)− fi(x0)
t

= 〈∇fi(x0), ν〉 = di, i = 1, ..., k. (2.21)

Using the Jacobian of F , we can write (2.21) in matrix notation as

∇F (x0)ν = d. (2.22)

The solution of (2.22) is a descent direction provided that all components of d are
negative. Typically the number of variables is higher that the number of objectives
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in a given MOP (n >> k), so system (2.22) is (probably highly) underdeterminated,
implying that its solution is not unique. One choice is take the solution with the
lowest norm leading to

ν+ = ∇F (x0)
+d, (2.23)

where ∇F (x0)
+ denotes the pseudo inverse of ∇F (x0)

1.

Note that (2.23) is the solution of (2.22) with the smallest Euclidean norm. Hence,
given a small step size t, one expects for a step in direction ν+ (decision space) the
largest progress in d−direction (objective space). Also, the trajectory followed by this
procedure is identical to the solution curve of the subsequent initial value problem
(IVP):

x(0) = x0 ∈ Rn, t = 0,

ẋ(t) = ν+(x(t)), t > 0,
(2.24)

whose limit point x∗ is also a critical point of the considered MOP. Talking about the
step size, the rank of the matrix rank(∇F (x)) can of course not be used to detect
the endpoint of the curve numerically, but instead the condition k2 number can be
used as follows

k2 =

√
ρ1
ρ2
≥ ε, (2.25)

where ρ1, ρ2 are the largest and smallest singular value of ∇F (x), respectively; and ε
is a given large threshold since we may expect than k2 →∞ as x(t)→ x∗. Algorithm
2 describes a possible algorithm to trace the solution curve of IVP.

Steepest Descent Method

There exist a steepest descent method for unconstrained MOPs and a “feasible descent
direction” method for the constrained case [23]. Here we present the first one. This
method does not scalarize the original problem and neither ordering information nor
weighting factors for the different objective functions are assumed to be known.

Let range(A) denotes the range of the linear mapping given by the matrix A. A
necessary condition for a point x ∈ Rn to be locally Pareto optimal is

1In the case the rank of ∇F (x0) = J is maximal, the pseudo inverse is given by J+ = JT (JJT )−1.
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Algorithm 2 Directed search method

Require: Starting point x0 ∈ Rn with rank(∇F (x0)) = k, tol ∈ R+, convex weight
α0 ∈ Rk.

1: i = 0
2: while k2(∇F (xi)) < tol do
3: compute νi = −∇F (xi)

+αi
4: compute ti ∈ R+

5: set xi+1 = xi + tiνi
6: choose αi+1 ∈ Rk

7: set i = i+ 1
8: end while

range (∇F (x) ∩ (−R + +))k = ∅, (2.26)

The idea of the general algorithm is the following: choose an x and check if (2.2.2)
holds. If not, compute a direction ν and make a step with a suitably chosen step
length from x along ν. This let us a new point, and the scheme can be repeat.

Now the process of computing the search direction is described. Suppose that it
is given a point x ∈ Rn. Define A = ∇F (x) and the function fx : Rn → Rk by
fx(ν) = max{(Aν)i|i = 1, ..., k}.

Consider the unconstrained minimization problem

min fx(ν) +
1

2
||ν||2

s.t.ν ∈ Rn.
(2.27)

Instead of solving problem (2.27) exactly, it is interesting to deal with inexact solu-
tions. So, if x is not Pareto critical, we say that ν is an approximative solution of
(2.27) with tolerance σ ∈ [0, 1] if

fx(ν) +
1

2
||ν||2 ≤ σα(x), (2.28)

where, as above, fx(ν) = maxi(∇F (x)ν)i and α(x) is the optimum value of problem
(2.27). Observe that for σ = 1 only the exact solution satisfies the above inequality.

Define A ∈ Rk×n,
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||A||∞,2 = max
x 6=0

||Ax||∞
||x||

. (2.29)

Then ||.||∞,2 is a norm in Rk×n and

||A||∞,2 = max
i=1,...,k

||Ai, .|| = max
i=1,...,k

(
n∑
j=1

A2
i,j

) 1
2

. (2.30)

In the following we explaine the computing of the step length. Suppose that we have
a direction ν ∈ Rn with ∇F (x)ν < 0. To compute a step length t > 0 we use an
Armijo-like rule. Let β ∈ [0, 1] be a prespecified constant. The condition to accept t
is

F (x+ tν) ≤ F (x) + βt∇F (x)ν. (2.31)

We start with t = 1, and while this condition is not satisfied, we set t = t/2. Finiteness
of this procedure follows from the fact that (2.2.2) holds strictly for t > 0 small
enough.

The hold algorithm is presented following

Algorithm 3 Steepest descent for multi-objective optimization

Require: Choose β ∈ (0, 1), σ ∈ (0, 1] and x0 ∈ Rn

1: set k = 0
2: if x(k) is Pareto critical then
3: STOP
4: end if
5: Compute ν(k), an approximative solution of (2.27) at x = x(k) with tolerance σ.
6: Compute a step length tk ∈ (0, 1] as the maximum of

Tk = {t = 1/2j|j ∈ N, F (x(k) + tν(k)) ≤ F (x(k)) + βt∇F (x(k))ν(k)}
7: Set x(k+1) = x(k) + tν(k)

8: k = k + 1
9: Go to 2

2.2.3 Continuation Methods

Those methods are also known as embedding or homotopy methods and have been
applied to solve MOPs. The main motivation to use them for the numerical treatment
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of MOPs comes from the fact, mentioned before, that in general and under certain
mild assumptions on the MOP, the PS forms a (k − 1) dimensional object, where k
represents the number of objectives involved in the MOP. Thus, specialized techniques
capable to perform a search along the manifold of solutions promise to be efficient
applied to this context.

In the following we shortly review general continuation methods, for details we refer
to [1].

Let H(x, λ) = 0 be underdetermined system of nonlinear equations; in general, such
a system implicity defines a curve or one-manifold of solutions points. Continuation
methods numerically tracing such curves.

Assume that we are given

H(x) = 0, (2.32)

where H : RN+1 → RN is a smooth map. When we say that a map is smooth we
shall mean that it has as many continuous derivatives as needed.

If we have a point x ∈ RN+1 that is a solution of (2.32) and the Jacobian matrix H ′(x)
has maximum rank, i.e. rank(H ′(x)) = N , then it follows from the Implicit Theorem
Function (IFT) [29] that there exist a smooth curve s ∈ (−ε, ε) 7→ c(s) ∈ RN+1 for
some open interval (−ε, ε) containing zero such that c(0) = x and

H(c(s)) = 0, ∀s ∈ (−ε, ε) (2.33)

By differentiating (2.33) it follows that the tangent c′(s) satisfies the equation

H ′(c(s))c′(s) = 0 (2.34)

and can be found via computing kernel vectors of H ′(x). This is done in literature
by QR factorization [26] of H ′(x)T . If

H ′(x) = QR = (q1, q2, ...., qN+1)R (2.35)

for an orthogonal matrix Q ∈ RN+1 × N + 1 and a right upper triangle matrix R ∈
RN+1×N , then the last column vector qN+1 of Q is such a desired kernel vector. The
orientation of the curve can be inferred by monitoring the sign of
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det

(
H ′(x)
qTN+1

)
. (2.36)

The relation between the classical continuation methods and multi-objective opti-
mization is as follows: the first-order optimality conditions for MOPs (see Theorem
2.1, in page 10) lead to an undetermined system of equations. So, applying the IFT
on the underlying system and under some mild conditions, it is inferred that the
optimal solution set is a (k − 1) dimensional object.

Predictor-corrector Methods

The idea of predictor-corrector (PC) methods is to numerically trace the curve c define
above by generating a sequence of points xi, i = 1, 2, ..., along the curve satisfying
a chosen tolerance criterion, say H(x) ≤ ε for some ε > 0. We assume here that a
regular 2 starting point x0 ∈ RN+1 is given such that H(x0) = 0.

We define the regular solution set as

M = {x ∈ S|H(s) = 0, x regular}. (2.37)

The PC methods consist of two steps which can in general be described as follows:

(P) Predict step p1, p2, ..., s of distinct (and well distributed) points which are near
to x0 and to M .

(C) For i = 1, 2, ..., s starting with the predicted point pi, compute by some (typi-
cally few) iterative steps an approximated element xi of M , i.e. H(xi) ≈ 0.

In Figure 2.6 we present a more illustrative example of the working principle of the
PC methods.

Method by Hillermier

This method was proposed by Hillermier in [29]. It utilizes the KKT conditions and
can cope with equality constraints. However, two of its drawbacks are the Hessians
requirement and the lack of strategies to handle inequality constraints.

Consider the map

2A point x ∈ RN+k is called regular if the first derivative, ∇H(x), has full rank.
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Figure 2.6: Example of PC performance.

F̃ (x, α, λ) =



k∑
i=1

αj∇fj(x)

p∑
j=1

λj∇hj(x)

h(x)
k∑
j=1

αj − 1

 = 0. (2.38)

The set of KKT points of a nonlinear equality constrained MOP is contained in the
zero set F̃ which motivates the continuation along F̃−1(0). For BOPs the method
is the same as the general technique described in Section 2.2.3 but with the follow-
ing modification: instead of computing the determinant in (2.36) to orientate the
continuation, the author proposes to check whether the condition

[x− x̃] · q ≥ 0 (2.39)

is met, where x = (x, α, λ) ∈ Rn+k+p is the current corrector point, x̃ is the previously
solutions and q is the tangent vector. If that is not the case, the direction of q is
flipped. Then, a suitable step length that guarantees a uniform spread of solutions
on the front is sought. That is, for two consecutive solutions x̃ and x, it is desirable
that

||F (x)− F (x̃)|| ≈ τ, (2.40)

where τ is specified by user. For this, one can take the step size

t =
τ

||Jq||
(2.41)
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The multi-objective MOPs (k > 1) case is handled by taking kernel vectors of F̃ ′T .
Given that

F̃ ′(x, α, λ) = QR = (q1, q2, ..., qn+k)R (2.42)

for orthogonal matrix Q ∈ R(n+k+p)×(n+k+p) and a right upper triangular matrix
R ∈ R(n+k+p)×(n+p+11), the last k− 1 column vectors of Q forms an othonormal basis
of the linearized solution set in the compound (x, α) space. Thus, one can e.g., move
in the direction of the computed orthonormal vectors qn+p+2, ..., qn+p+k to obtain
predictors that aregrid-aligned along the tangent space of the optimal manifold in
decision space. A problem of this election, though, is that after mapping the computed
predictors to the objective space, the grid alignment is probably not kept. Finally, the
continuation algorithm is stopped if one of the Lagrange multipliers αj, j ∈ (1, ..., k)
is negative, which indicates that a non-optimal solution has been found.

Equispaced Pareto Front Construction

This method was proposed by Victor Pereyra et. al. in 2013 [39]. The algorithm
is based on convex combinations of the objectives and homotopy continuation. For
simplicity we consider a bi-objective optimization problem (BOP) (k = 2), but the
construction described here can be extended to MOPs. We introduce the scalar
objective function:

f(x, λ) = (1− λ)f1(x) + λf2(x), (2.43)

where 0 ≤ λ ≤ 1, and the same problem constraints apply. From standard homotopy,
the method starts at λ = 0 and then steps λ in some fashion, obtaining successive
solutions and a discrete sample of the PS and PF. However, using this method there
is no sure way to obtain a uniform sampling with it because the parametrization of
the PF by λ is usually a very nonlinear unknown map.

In the current method we use the idea of intrinsic parametrization of the PF by
using discrete arc length. Let x∗1 and x∗2 be the minimizers of f1(x) and f2(x), define
x0 = x1∗ and xl+1 = x∗2 to be the end-points of the PS, where l is the desired number
of points in the PF segment joining the points.

Given a collection fi = f(xi), i = 0, 1, . . . , l + 1 (where in the general case f(x) is
the vector [f1(x), . . . , fk(x)]T ), we define the chord length of a polygon defined by the
points as Sl =

∑l
i=0 ‖fi+1 − fi‖ where the l2 norm is used as penalty function. If the
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points are sampling of a smooth curve, then when the spacing between the points
tends to zero, the chord length tends to the arc length of the curve. Now we define

γ =
α‖f(x0)− f(xl+1)‖

l
, (2.44)

where the distance between the images of the minimizers times a factor α > 1 is an
estimate of the total chord length of the Pareto front (accounting for curvature). In
the unlikely case that f(x0) = f(xl+1) we are finished because the PF would be a
single point. Otherwise, γ 6= 0 and we impose the following equispacing constraint:

‖f(x)− fprev‖2 = γ2, (2.45)

where fprev is a previous point in the homotopy process.

We then minimize the scalarized function subject to all constraints with λ as addi-
tional variable:

min
x,λ

(1− λ)f1(x) + λf2(x)

subject to g(x) ≤ 0, x ∈ D,
‖f(x)− fprev‖2 = γ2 .

(2.46)

With fprev = f(x0), let the solution be (x1, λ1). We repeat the process with fprev =
f(x1) to obtain (x1, λ2), and so on. The corresponding discrete Pareto front is defined
as the set {f(xi), i = 0, . . . , l + 1}, where {xi, i = 0, . . . , l + 1} is the Pareto set. If
the process is successful we obtain a discrete representation of the Pareto front with
equispaced values f(xi). One disadvantage that we can note is with the use of this
intrinsic parametrization, the λ parametrization of the front loses importance.

Zig Zag Search Method

The zigzag search method was proposed by Honggang Wang in 2012 [43], it is a new
method that use a gradient-based zigzag search approach for BOPs. It progressively
finds a set of non-dominated solutions by searching around the PF, making an efficient
local search using the gradients of the objective functions.

The zigzag algorithm consists of three steps: finding the first Pareto optimal (FPO)
search, zig search and zag search, which we describe in the following.
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Figure 2.7: Projection of ∇f1(x0) onto ∇f2(x0).

An FPO search is based on a line search solution against objective one (f1) while
maintaining the smallest value of objective two (f2). It consists of two main parts:
1) a regular line search returns an optimal solution for f2; 2) a horizontal search for
f2 meaning a search along the projection of ∇f2 onto ∇f1:

∇FPO = ∇f2(x0)− 〈∇f1(x0),∇f2(x0)〉
∇f1(x0)
||∇f1(x0)||

. (2.47)

A zig search tries to find a solution that relaxes the value of f1 somewhat while
keeping f2 the same. It projects the gradient of f1 onto f2:

∇zig = ∇f1(x0)− 〈∇f1(x0),∇f2(x0)〉
∇f2(x0)
||∇f2(x0)||

. (2.48)

Now, along this direction x1 = x0 + t∇zig is obtained and evaluated, as shown in
Figure 2.7, t represents the step size. The zig function is sketched in Algorithm 4.

Similarly, zag search also searches along the gradient projection of one objective to
another. However, it will follow the projection of f2 onto f1:

∇zag = ∇f2(x0)− 〈∇f1(x),∇f2(x0)〉
∇f1(x0)
||∇f1(x0)||

. (2.49)

Zag search tends to find the best solution for f2 while trying to keep f1 the same.
And x1 = x0 + t∇zag. The zig function is sketched in Algorithm 5.

Then, zigzag from the solution obtained from FPO enables the formation of a whole
PF.
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Algorithm 4 Zig function

Require: x0 ∈ Rn

1: if ∇f1(x0) = 0 then
2: set ∇zig = rand()
3: else if ∇f2(x0) = 0 then
4: set ∇zig = ∇f1(x)
5: else
6: set α = angle(∇f1(x0),∇f2(x0))
7: if α! = π then
8: set ∇f2(x) = ∇f2(x0)

||∇f2(x0)||
9: set ∇zig = ∇f1(x0)− (∇f1(x0),∇f2(x0))∇f2(x0)

10: (project ∇f1(x0) on the othogonal plane of ∇f2(x0))
11: else
12: set ∇zig = ∇f1(x0)
13: end if
14: end if
15: x = x0 + t∇zig

16: set x = project(x) (project x into X)

Algorithm 5 Zag function

Require: x0 ∈ Rn

1: set n = 0
2: set xn+1 = xn
3: while xn+1 ≥ xn do
4: set n = n+ 1
5: if ∇f2(xn) = 0 then
6: set ∇f2(xn) = rand()
7: end if
8: if ∇f1(xn) = 0 then
9: set ∇zag = ∇f2(xn)

10: else
11: set α = angle(∇f1(xn),∇f2(x))
12: if α! = π then
13: set ∇f1(xn) = ∇f1(xn)

||∇f1(xn)||
14: set ∇zag = ∇f2(xn)− 〈∇f1(xn),∇f2(xn)〉∇f1(xn)
15: else
16: set ∇zag = ∇f2(xn)
17: end if
18: end if
19: set xn+1 = xn − t∇zag

20: x = project(x)
21: end while
22: return x = xn
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Pareto Tracer Method

The Pareto Tracer (PT) algorithm was proposed by Mart́ın and Schütze in 2015 [36].
It is a novel PC method for the numerical treatment of MOPs. The present author’s
algorithm utilizes F̃ , but separates decision and weight space leading to significant
savings in the overall computational cost.

For simplicity, unconstrained problems (2.50) are addressed and constraint handling
presented later. That is, first we consider the problem

min
x∈Rn

F (x) (2.50)

Predictor

Let x ∈ Rn be a KKT point of (2.50) and α ∈ Rk its associated Lagrange multiplier,
by the KKT conditions we have

F̃ (x, α) =

(∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
= 0. (2.51)

Let ν ∈ Rn and µ ∈ Rk, by differentiating (2.51) we obtain

F̃ ′(x, α)

(
ν
µ

)
=

(∑k
i=1 αi∇2fi(x) ∇f1(x) . . . ∇fk(x)

0 1 . . . 1

)(
ν
µ

)
=

(
0
0

)
. (2.52)

By the second equation in (2.52) it follows that

k∑
i=1

µi = 0. (2.53)

Now assume that a vector µ 6= 0 is given such that (2.53) is fulfilled. Then, by the
first equation in (2.52),

k∑
i=1

αi∇2fi(x)ν = −
k∑
i=1

µi∇fi(x) = −JTµ, (2.54)
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where J denotes the Jacobian of F at x.

Assume also that the matrix

Wα =
k∑
i=1

αi∇2fi(x) ∈ Rn×n (2.55)

is regular. Then, given µ, the vector νmu that satisfies (2.52) can be expressed as

νµ = −W−1
α JTµ. (2.56)

Given a direction in decision space ν ∈ Rn, the corresponding movement in objective
space for infinitesimal step sizes is given by

d = Jν. (2.57)

The orientation of the movements along the tangent space is related to (2.57), now
we want to find the proper orientation vector d ∈ Rk such that

Jνµd = d. (2.58)

Since, further, µd has to satisfy (2.53), then assuming than rank(J) = k − 1, νµd can
be computed via (2.56) using the vector µd that solves

(
−JW−1

α JT

1 . . . 1

)
µd =

(
d
0

)
. (2.59)

So the predictor is given by p = x + tνµ at the given KKT point x, it is required to
select the step size t.

Corrector

PT takes the Newton method for unconstrained MOPs from [21] as corrector, where
the Newton direction is defined as the solution of
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min
(ν,δ)∈Rn×R

δ

s.t. ∇fi(x)Tν +
1

2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k.

(2.60)

where δ serves has measure of the expected decrease in objective space produced by
a line search in direction ν in parameter space.

Algorithm 6 shows one way to explore the Pareto set/front around a given solution
x0 which follows the steps described above.

Algorithm 6 Local exploration of the Pareto set/front around x0
Require: KKT point x0 of (2.50) with associated convex weight, directions

µ1, .., µs ∈ Rt, τ > 0
Ensure: KKT points xi, i = 1, ..., s around x0

1: {PREDICTOR STEP}
2: for i = 1, ..., s do
3: Compute νi = νmui as in (2.56)
4: Compute ti
5: Compute pi = x0 + ti + νi
6: end for
7: {CORRECTOR STEP}
8: for i = 1, ..., s do
9: Compute KKT point xi (and associated weight) using (2.60) starting with pi

10: end for

Handling equality constraints

Now we are going to consider MOPs of the form

min
x∈Rn

F(x),

s.t. hi = 0, i = 1, ..., p.
(2.61)

Lets consider the auxiliary KKT map F̃ : Rn+k+p → Rn+p+1

F̃ (x, α, λ) =

∑k
i=1 αi∇fi(x) +

∑p
i=1 λi∇hi(x)

h(x)∑k
i=1 αi − 1

 = 0. (2.62)

Defining
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Wα,λ =
k∑
i=1

αi∇2fi(x) +

p∑
i=1

λi∇2hi(x) ∈ Rn×n, (2.63)

and

H =

∇h1(x)T

...
∇hp(x)T

 ∈ Rp×m, (2.64)

leads to

F̃ (x, α, λ) =

Wα,λ JT HT

H 0 0
0 1 . . . 1 0

 ∈ R(n+p+1)×(n+k+p) (2.65)

In order to compute the kernel vectors of (2.65) let ν ∈ Rn, µ ∈ Rk and χ ∈ Rp such
that

F̃ (x, α, λ) =

Wα,λ JT HT

H 0 0
0 1 . . . 1 0

 =

νµ
ξ

 =

0
0
0

 . (2.66)

Again µ is chosen to satisfy (2.53) which reduces (2.66) to

(
Wα,λ HT

H 0

)(
νµ
ξ

)
=

(
−JTµ

0

)
. (2.67)

If rank(Wα,λ) = n and rank(H) = p it follows that the solution of (2.67) is unique
since then the matrix on the left-hand side is regular.

Corrector

For the corrector step the Newton method has been modified to the current context.
The suggestion is to compute the Newton direction via

min
(ν,δ)∈Rn×R

δ

s.t. ∇fi(x)Tν +
1

2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k,

hi(x) +∇hi(x)Tν = 0, i = 1, ..., p.

(2.68)
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The difference of (2.68) over the unconstrained version (2.60) is the additional con-
straint h(x)+Hv = 0. In [36] it is shown that the flow defined by this search direction
let’s from any initial solution to ta KKT point (if existing).

As a conclusion of this chapter we can state that there exist a wide variety of MP
techniques that are applicable to MOPs. As state in the introductory chapter, this
work is foucus on continuation methods, in special, the algorithm of PT. This algo-
rithm is applicable to problems with an unlimited number of variables and objectives.
So far, however, PT can only handle equality and box constraints. In the next chapter
we will demonstrate how to modify PT to efficiently treat inequalities as well.
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PT for General Inequality
Constrained MOPs

In this chapter we present the extensions of the Pareto Tracer for general inequality
constrained MOPs. This chapter is divided in two parts. In the first one, we motivate
the needed changes for PT and in the second one we present the modified algorithm
in detail.

3.1 Motivation

As we state in Chapter 2, PT is a predictor corrector method that can handle equality
and box constraints. In real life we face with MOPs that involve not only equality
and box constraints but also general inequality constraints. For that reason we aim
to improve PT so that it can deal with any kind of constraints.

In order to show the deficiency of PT, we present an example that involves an in-
equality constrained MOP. Using this example we try to show that the algorithm is
currently not able to solve inequality constrained MOPs correctly.

Let us consider the following unconstrained MOP (3.1).

min

{
f1(x) = (x1 + 3)2 + x22
f2(x) = x21 + (x2 + 3)2

(3.1)

Figure 3.1 shows the solution sets of this problem obtained by using PT.
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(a) (b)

Figure 3.1: Solutions sets of problem (3.1).

Next we consider the same problem with the following inequality constraints

g1(x) = (x1 + 1)2 + (x2 + 0.5)2 ≤ 1.62 (3.2)

Note that g1(x) represents a restriction over the decision space and geometrically
is a circle of diameter 1.6 and center (−1,−0.5). Figure 3.2 shows the geometrical
representation of the constraint. Adding this constraint to the unconstrained MOP
(3.1) the feasible region of this new problem corresponds to the area inside the circle
as shown in Figure 3.3. For the results in decision space of the new problem we expect
two things: (i) preserves the solutions of the uncostrained MOP (3.1) that are inside
the feasible region and (ii) a projection in the feasible set of all the solutions of the
uncostrained MOP (3.1) that are not inside the feasible region. Figure 3.1 shows the
solution in decision space that we aim, the expected solution set is represented by the
red points.

As we mentioned before, PT is of local nature and the solution sets depend on the
starting point. Hence, if we apply PT to this problem we can obtain different solution
sets using different starting points. Figure 3.5 shows the solution sets obtained by
applying PT with the starting point (−3,−3) and Figure 3.6 shows the solution sets
obtained with the starting point (1, 1). It is important to remember that PT is
not able to handle inequality constraints and for that reason we put the inequality
constraint as an equality one, that’s why the results in decision space of the two
solutions sets mentioned before correspond to a part of the circle constraint.
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Figure 3.2: Pareto set of the unconstrained problem (3.2) and representation of g1.

Figure 3.3: Feasible region of (3.1) according to g1 .

Computer Science Department CINVESTAV



38 Chapter 3

Figure 3.4: Pareto set of the constrained problem.

(a) (b)

Figure 3.5: Solution sets obtained by PT for problem (3.1) with (3.2) using the starting point
(-3,-3).
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(a) (b)

Figure 3.6: Solution sets obtained by PT for problem (3.1) with (3.2) using the starting point
(1,1).

Figure 3.7: Pareto Front of the constrained problem.

If we compare the results in objective space shown in Figure 3.5 and 3.6 with the
objective space of the real solution set shown in Figure 3.7 we observe that the last
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set dominates the other two. We can say that an improper handling of constraints
can lead us to a non-optimal solution set. For the above we are interested on improve
the PT method in order it can deal with any kind of constraints. In the next section
we introduce a modification of PT leading to an adequate handling of inequality
constraints.

3.2 Algorithm

The challenge is to solve constrained MOPs of the form

min
x∈Rn

F (x),

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p.

(3.3)

PT already handles equality constraints so we focused on the inequality constraints.

The primary idea is to consider the inequality constraints as equality ones, selecting
in every iteration of the algorithm the correct ones. Later we are going to explain in
detail how we make this selection.

As we explained before, the PT method consists of two steps: the predictor and
the corrector. For the predictor step we use the same as the original PT method,
if the problem has equality constraints we use the predictor for equality constrained
MOPs (choosing the predictor direction ν by solving (2.67)) in other case we use
the predictor for unconstrained MOPs (choosing the predictor direction ν by solving
(2.59)). For the corrector step we also use the Newton method presented in [21] as
follows:

min
(ν,δ)∈Rn×R

δ

s.t. ∇fi(x)Tν +
1

2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k,

hi(x) +∇hi(x)Tν = 0, i = 1, ..., p.

gi(x) +∇gi(x)Tν = 0, i ∈ I,

(3.4)

where I represents a list indices that we create as follows:

Algorithm 7 shows how to build the index set I. The algorithm checks all inequalitues
gi, and adds index i in the following two cases:
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Algorithm 7 Build I

Require: xp given by the predictor step
1: I = ∅
2: for i = 1, ..., q do
3: if gi(xp) > tol then
4: I = I ∪ i
5: else if gi(xp) ∈ (−tol, tol) ∧∆g(xp)

Tνxp > 0 then
6: I = I ∪ i
7: end if
8: end for
9: return I

• If gi(xp) > tol, i.e. if xp significantly violates const gi.

• If gi(xp) ∈ (−tol, tol) ∧∆g(xp)
Tνxp > 0, i.e. that the value of the constraint at

the point given by the predictor step is almost zero and and the gradients point
outside the feasible region.

If either of these two cases occurs we the need to consider the restriction gi for the
corrector step.

Now we present the solution sets obtained by the modified PT applied to the con-
strained problem used in the above section. We also use the same starting points as
before.

(a) (b)

Figure 3.8: Solution sets obtained by PT for problem (3.1) with (3.2) using the starting point
(-3,-3).
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(a) (b)

Figure 3.9: Solution sets obtained by the modified PT for problem (3.1) with (3.2) using the
starting point (1,1).

Finally we present an example that involves two inequality constraints. Consider the
following MOP

min

{
f1(x) = (x1 + 3)2 + (x2 − 2)2,

f2(x) = x21 + (x2 + 3)2,

s.t. g1(x) = (x1 + 1)2 + x22 ≤ 22,

with g2(x) = (x1 + 2)2 + (x2 + 2)2 ≤ 2.2

(3.5)

Figure 3.11 presents the geometrical representation of the problem (3.5).
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Figure 3.10: Geometrical representation of the problem (3.5).

Figure 3.11 presents the solution sets obtained by the modified PT for the problem
(3.5) using the starting point (-3,1).

(a) (b)

Figure 3.11: Solution sets obtained by the modified PT for problem (3.5) using the starting point
(-3,-3).
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Numerical Results

In this chapter we present numerical results obtained by PT for general inequality
constrained MOPs, for simplicity we will refer to it as PT. In order to compare the
algorithm, we also present the results obtained by the scalarization methods NBI
and the ε -constraint method presented in Section 2.2.1 and by the MOEA NSGA-
II. For all comparisons we use the quasi-Newton implementation of the PT that
requires derivative information but no Hessians. In order to make a comparison
of the different algorithms that require different derivative information we measure
the overall function calls that are required in case automatic differentiation [11] is
used to compute the derivatives and Hessians, respectively (we refer to it as “total
evaluations”). As performance indicator we have chosen to use the averaged Husdorff
distance ∆2 [3, 40]. The average runs of the NSGA-II is 10 and we always consider
the best approximation reached (in terms of ∆2).

4.1 Binh and Korn Problem

Our first test example is a modification of the BOP from Binh and Korn [2] where
we add two inequality constraints as follows:

min

{
f1(x) = 4x21 + 4x22,

f2(x) = (x1 − 5)2 + (x2 − 5)2,

s.t. (x1 − 2)2 + (x2 − 1)2 ≤ 2.32,

(x1 − 3)2 + (x2 − 3)2 ≥ 1.52,

with 0 ≤ x1 ≤ 5,

0 ≤ x2 ≤ 3.

(4.1)
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Figure 4.1 shows the feasible region of this problem. Figures 4.2 and 4.3 present the
approximations of the solution sets of this problem obtained with the four different al-
gorithms. Table 4.1 shows a comparison of the computational effort for all algorithms.
As it can be seen, PT, NBI and NSGA-II all obtain almost perfect approximations
in objective space (the performance of NSGA-II is slightly better than the other two.
Note, however, that NSGA-II also uses a population size of 100 opposed to the others
that generate around 50 solutions). Regarding the computational effort (in terms of
“total evaluations”) PT clearly outperforms the other algorithms.

Figure 4.1: Feasible region of the Binh and Korn problem (4.1).
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Table 4.1: Computational efforts for the Binh and Korn problem (4.1).

PT NBI ε-constraint method NSGA-II
Solutions 52 52 52 100

Function Evaluations 151 427 336 2000
Jacobian Evaluations 133 425 336 -
Hessian Evaluations - 373 284 -
Total of Evaluations 683 8095 6224 2000

∆2 0.6050 0.6025 0.9272 0.5703

Table 4.2: Parameters used by NSGA-II for the Binh and Korn problem (4.1).

Population size 100
Number of generations 20
Probability of crossover 0.9
Probability of mutation 0.5
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.2: Results in decision space for the Binh and Korn problem (4.1).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.3: Results in objective space for the Binh and Korn problem (4.1).
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4.2 Chakong and Haimes Problem

Our second test example is the BOP presented in (4.2) [7], which depends on two
variables and is subject to one nonlinear inequality constraint and one linear inequality
constraint. Figure 4.4 shows the feasible region of this problem. Figures 4.5 and
4.6 present the approximations of the solution sets of this problem obtained with
the four different algorithms. Table 4.3 shows a comparison of the computational
effort for all algorithms. As it can be seen all the algorithms obtain almost perfect
approximations in objective space, being PT and NBI the most outstanding ones. In
terms of the computational effort (i.e., “total evaluations”) PT clearly outperforms
the other algorithms. Note that NSGA-II shows the worst performance even while
using a population size of 100 opposed to the others that generate around 80 solutions.

min

{
f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,

f2(x) = 9x1 − (x2 − 1)2,

s.t. x21 + x22 ≤ 225,

x1 − 3x2 + 10 ≤ 0,

with − 20 ≤ x1, x2 ≤ 20.

(4.2)

Figure 4.4: Feasible region of the Chakong and Haimes problem (4.2).

CINVESTAV Computer Science Department



Numerical Results 51

(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.5: Results in decision space for the Chakong and Haimes problem (4.2).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.6: Results in objective space for the Chakong and Haimes problem (4.2).
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Table 4.3: Computational efforts for the Chakong and Haimes problem (4.2).

PT NBI ε-constraint NSGA-II
Solutions 80 80 80 100

Function Evaluations 540 678 578 3000
Jacobian Evaluations 499 678 578 -
Hessian Evaluations - 598 498 -
Total of Evaluations 2536 12958 10858 3000

∆2 1.1459 1.1457 1.2141 1.2307

Table 4.4: Parameters used by NSGA-II for the Chakong and Haimes problem (4.2).

Population size 100
Number of generations 30
Probability of crossover 0.9
probability of mutation 0.5
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4.3 Tanaka Problem

Next we consider the problem of Tanaka [42], which depends on two variables and is
subject to two nonlinear inequality constraints. Figure 4.7 shows the feasible region
of this problem. Figures 4.8 and 4.9 present the approximation of the solution sets of
this problem obtained with the different algorithms. Table 4.5 shows a comparison
of the computational effort for all algorithms. As it can be seen, PT and NBI obtain
almost perfect approximations in objective space while the ε−constraint method and
NSGA-II leave out some of the solutions. Nevertheless, to obtain the solutions shows
for PT we had to run the algorithm three times with three different starting points,
opposed to the others where we need only one run of the algorithm. In terms of the
computational effort, once again PT clearly outperforms the other algorithms.

min =

{
f1(x) = x1,

f2(x) = x2,

s.t. x21 + x22 − 1− 0.1cos

(
16 arctan

(
x1
x2

))
≥ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,

with 0 ≤ x1 ≤ π

0 ≤ x2 ≤ π.

(4.3)

Figure 4.7: Feasible region of the Tanaka problem (4.3).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.8: Results in decision space for the Tanaka problem (4.3).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.9: Results in the objective space for the Tanaka problem (4.3).
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Table 4.5: Computational efforts for the Tanaka problem (4.3).

PT NBI ε-constraint NSGA-II
Solutions 70 63 70 100

Function Evaluations 606 488 2114 20000
Jacobian Evaluations 207 488 1022 -
Hessian Evaluations - 418 998 -
Total of Evaluations 1434 9128 22170 20000

∆2 0.0154 0.0187 0.0516 0.0364

Table 4.6: Parameters used by NSGA-II for the Tanaka problem (4.3).

Population size 100
Number of generations 200
Probability of crossover 0.9
Probability of mutations 0.5
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4.4 Example 4: Osykzka and Kundu Problem

Our next test example is the BOP (4.4) [38], which depends on five variables and is
subject to four linear inequality constraints and two nonlinear inequality constraints.
Figure 4.10 presents the approximation of the solution sets of this problem obtained
with the four different algorithms. Table 4.7 shows a comparison of the computational
effort for all algorithms. As it can be seen, NBI and ε−constraint show the worst
performances, their approximations in objective space are not in the real solution set,
instead they are far enough of it. Note that the performance of PT is considerably
better than the performance of NSGA-II. The computational effort of PT clearly
outperforms the other algorithms. Neverthless, to obtain the solutions shows for PT
we had to run the algorithm four times with four different starting points, opposed
to the others where we need only one run of the algorithm.

min


f1(x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2

f2(x) =
6∑
i=1

x2i

s.t. x1 + x2 − 2 ≥ 0

6− x1 − x2 ≥ 0

2− x2 + x1 ≥ 0

2− x1 + 3x2 ≥ 0

4− (x3 − 3)2 − x4 ≥ 0

(x5 − 3)2 + x6 − 4 ≥ 0

with 0 ≤ x1, x2, x6 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

(4.4)

Table 4.7: Computational efforts for the Osykzka and Kundu problem (4.4).

PT NBI ε-constraint method NSGA-II
Solutions 435 634 634 145

Function Evaluations 2051 11279 6606 20000
Jacobian Evaluations 850 11208 6570 -
Hessian Evaluations - 10574 5936 -
Total of Evaluations 5451 479071 270326 20000

∆2 0.1801 60.7296 60.8988 2.8244
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGAII

Figure 4.10: Results in decision space for the Osykzka and Kundu problem (4.4).
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Table 4.8: Parameters used by NSGA-II for the Osykzka and Kundu problem (4.4).

Population size 400
Number of generations 50
Probability of crossover 0.9
Probability of mutations 0.5
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4.5 CTP1 Problem

Next we consider the CTP1 problem (4.5) [16], which depends on two variables and is
subject to two nonlinear inequality constraints. Figure 4.11 shows the feasible region
of this problem. Figures 4.12 and 4.13 present the approximation of the solution
sets of this problem obtained with the four different algorithms. Table 4.9 shows a
comparison of the computational effort for all algorithms. As it can be seen all the
algorithms obtain almost perfect approximations in objective space, being the perfor-
mance of NSGA-II the best of all. Note, however than NSGA-II and the ε−constraint
method generate around 100 solutions opposed to the other two that generate around
60 solutions. Regarding the computational effort PT clearly outperforms the other
algorithms. Nevertheless, to obtain the solutions shows for PT we had to run the
algorithm four times with four different starting points, opposed to the others where
we need only one run of the algorithm.

min

f1(x) = x1,

f2(x) = (1 + x2) exp
(
− x1

1+x2

)
,

s.t.
f2(x)

0.858 exp (−0.541f1(x))
≥ 1,

f2(x)

0.728 exp (−0.295f1(x))
≥ 1,

with 0 ≤ x1, x2 ≤ 1.

(4.5)

Table 4.9: Computation efforts for the CTP1 problem (4.5).

PT NBI ε-constraint NSGA-II
Solutions 52 76 110 100

Function Evaluations 130 808 830 4000
Jacobian Evaluations 88 808 830 -
Hessian Evaluations - 698 720 -
Total of Evaluations 482 4754 15670 4000

∆2 0.0130 0.0094 0.0809 0.0683

Table 4.10: Parameters used by NSGA-II for CTP1 problem (4.5).

Population size 100
Number of generations 40
Probability of crossover 0.9
Probability of mutations 0.5
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Figure 4.11: Feasible region of the CTP1 problem (4.5).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGAII

Figure 4.12: Results in decision space for the CTP1 problem (4.5).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGAII

Figure 4.13: Results in objective space for the CTP1 problem (4.5).
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4.6 Const-Ex Problem

Our next test problem is the BOP (4.6) [14], which depends on two variables and
is subject to two linear inequality constraints. Figure 4.14 shows the feasible region
of this problem. Figures 4.15 and Figure 4.13 present the approximation of the
solution sets of this problem obtained with the four different algorithms. Table 4.11
shows a comparison of the computational effort for all algorithms. As it can be seen,
PT and NSGA-II obtain almost perfect approximations in objective space while the
ε−constraint method and NBI leave out some of the solutions. The performance of PT
is the best of all, also, this algorithm considerably outperforms the other algorithms
in terms of computational effort.

min

{
f1(x) = x1,

f2(x) = 1+x2
x1

,

s.t. x2 + 9x1 ≥ 6,

− x2 + 9x1 ≥ 1,

with 0.1 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 5.

(4.6)

Figure 4.14: Feasible region of ConstEx problem (4.6).

Computer Science Department CINVESTAV



66 Chapter 4

(a) PT (b) NBI

(c) ε-constraint method (d) NSGAII

Figure 4.15: Results in decision space for the Const-Ex problem (4.6).
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(a) PT (b) NBI

(c) ε-constraint method (d) NSGA-II

Figure 4.16: Results in objective space for the Const-Ex problem (4.6).
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Table 4.11: Computational efforts for the Const-Ex problem (4.6).

PT NBI ε-constraint NSGA-II
Solutions 85 84 84 100

Function Evaluations 108 593 664 4000
Jacobian Evaluations 88 590 663 -
Hessian Evaluations - 56 579 -
Total of Evaluations 460 3849 12580 4000

∆2 0.0286 2.5487 2.5488 0.0706

Table 4.12: Parameters used by NSGA-II for the Const-Ex problem (4.6).

Population size 100
Number of generations 40
Probability of crossover 0.9
Probability of mutations 0.5
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4.7 Tamaki Test Problem

Next we consider the problem of Tamaki [33], which depends on three variables and is
subject to one nonlinear inequality constraint. Figures 4.17 and Figure 4.18 present
the approximation of the solution sets of this problem obtained with the three different
algorithms (the implementation of the ε- constraint method that we were using [30]
is not able to solve problems with more than two objectives). Table 4.13 shows a
comparison of the computational effort for all algorithms. As it can be seen, PT and
NBI both obtain almost perfect approximations, the performance of PT is slightly
better than NBI. Note, however, that PT generates approximately 3 times the number
of solutions than NBI. Regarding the computational effort PT clearly outperforms the
other two algorithms.

min


f1(x) = x1,

f2(x) = x2,

f3(x) = x3,

s.t. x21 + x22 + x23 ≥ 0,

with 0 ≤ x1 ≤ 4.

(4.7)

Table 4.13: Computational efforts for the Tamaki problem (4.7).

PT NBI ε-constraint NSGA-II
Solutions 305 112 N/A 52

Function Evaluations 2498 3758 N/A 50000
Jacobian Evaluations 1101 3758 N/A -
Hessian Evaluations - 3293 N/A -
Total of Evaluations 6902 91236 N/A 500000

∆2 0.0380 0.6353 N/A 1.0204

Table 4.14: Parameters used by NSGA-II for the Tamaki problem (4.7).

Population size 100
Number of generations 500
Probability of crossover 0.9
Probability of mutations 0.5
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(a) PT (b) NBI

(c) NSGA-II

Figure 4.17: Results in decision space for the Tamaki problem (4.7).
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(a) PT (b) NBI

(c) ε-constraint method

Figure 4.18: Results in objective space for the Tamaki problem (4.7).

Computer Science Department CINVESTAV



72 Chapter 4

4.8 Three Objective Test Problem

For our last test problem we propose the MOP (4.8), which depends on three variables
and is subject to one linear equality constraint and one nonlinear inequality constraint.
For this problem we obtained feasible solutions only using PT. Figures 4.19 and
Figure 4.20 present the approximation of the solution sets obtained with PT. Table 4.8
shows a comparison of the computational effort for all algorithms. For this problem
we can not compare the performance of the algorithms, instead, according with the
indicator ∆2 we can say that the performance of PT is good enough. Regarding the
computational effort PT clearly outperforms the other algorithms.

min


f1(x) = (x1 + 3)2 + (x2 + 3)2 + (x3 + 3)2,

f2(x) = (x1 − 9)2 + (x2 + 5)2 + (x3 + 5)2,

f3(x) = (x1 − 5)2 + (x2 − 8)2 + x23,

s.t. x1 − 2x2 − 3x3 = 0,

sin(2x1)− x2 ≤ 0.

(4.8)

Table 4.15: Computation efforts for the proposed test problem (4.8).

PT NBI ε-constraint NSGA-II
Solutions 378 0 N/A 0

Function Evaluations 1923 2290 N/A 50000
Jacobian Evaluations 756 1641 N/A -
Hessian Evaluations - 1431 N/A -
Total of Evaluations 4947 40336 N/A 50000

∆2 2.0658 - N/A -

Table 4.16: Parameters used by NSGA-II for the proposed test problem (4.8).

Population size 100
Number of generations 500
Probability of crossover 0.9
Probability of mutations 0.5
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Figure 4.19: Result in the decision space for the proposed test problem (4.8).

Figure 4.20: Result in objective space for the proposed test problem (4.8).
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Conclusions and Future Work

In this chapter we summarize the work developed in this thesis, discuss its findings
and contributions, and point out its limitations. We also outline directions for future
research.

First, we shortly describe the principal contributions of this work. As stated in
Chapter 3, PT is a predictor corrector method for solving MOPs. PT can handle
equality constraints and box constrains but is not able to handle general inequality
constraints. In this tesis work we modified PT so that it can reliably, leading to a
new continuation method that is state of the art.

For the algorithm presented in this work we modified the corrector step of the existing
PT. More precisely, we consider particular inequality constraints as equality ones. In
every corrector step of the method we evaluate all the inequality constraints and we
decide which of the equality constraints we need to consider as well.

We tested our algorithm on academic benchmark problems and we observed a con-
siderably better performance of our algorithm compared with the other ones. It is
important to remark that with less function evaluations our algorithm is able to com-
pute solutions sets as good as the solution sets computed by the other algorithms. We
also observed that improvements over the other algorithms increase as the number of
objectives in the MOP increases.

As conclusion we can consider PT as a highly competitive algorithm for the treatment
of constrained MOPs.
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Future Work

There are several lines of research arising from this work that may be pursued in the
future. Following we list some of them.

• Hybridization of PT with multi-objective evolutionary algorithms (MOEAs):
PT is of local nature, and is hence in need of suitable starting points. Further,
for each given solution, the PT is restricted to the connected component of the
Pareto set/front that contains this starting point. A hybridization with MOEAs
that are of global nature is a possible remedy.

• Application to real world problems: finally, we would like to demonstrate the
strength of PT (and/or the related hybrid that uses as local search engine) on
more realistic problems. We conjecture that the novel method will be highly
advantageous in particular for more complex problems that contains several
constraints, and are defined in higher dimensional search spaces.
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