
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE COMPUTACIÓN

“Pruebas de conocimiento nulo basados en
sistemas de ternas de Steiner”

T E S I S

Que presenta

EDGAR GONZÁLEZ FERNÁNDEZ

para obtener el grado de

DOCTOR EN CIENCIAS EN COMPUTACIÓN

Directores de la Tesis:

Dr. Guillermo Morales-Luna

Dr. Feliú Davino Sagols Troncoso

Ciudad de México FEBRERO, 2020

.

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

CAMPUS ZACATENCO

DEPARTMENT OF COMPUTER SCIENCE

“Zero-knowledge proofs based on Steiner triple
systems”

T H E S I S

submitted by

EDGAR GONZÁLEZ FERNÁNDEZ

for the degree of

PHD IN COMPUTER SCIENCE

Advisors:

Dr. Guillermo Morales-Luna

Dr. Feliú Davino Sagols Troncoso

Mexico City FEBRUARY, 2020

Resumen

El creciente uso de dispositivos electrónicos potentes y la disponibilidad de redes de

comunicación que proporcionan conectividad ubicua y de alto rendimiento, permite

a diversas aplicaciones digitales transmitir grandes volúmenes de datos en peŕıodos

breves de tiempo. En muchas ocasiones, los datos transmitidos requieren de un canal

de comunicación protegido mediante procedimientos confiables de autenticación y

privacidad basados en esquemas criptográficos. Para su implementación, estos esque-

mas consideran problemas matemáticos que son dif́ıciles de resolver. Aunque existe

una numerosa cantidad de algoritmos criptográficos, sólo unos cuantos son utilizados

en el mundo real, como lo son el conocido procedimiento de Rivest-Shamir-Adleman

(RSA), y el Estándar de Firma Digital (DSS por sus siglás en inglés), debido principal-

mente a su resistencia y fácil implementación. Estos algoritmos son la base de varias

técnicas de firma digital y protocolos de autenticación e identificación que se utilizan

comúnmente en comercio electrónico, transacciones bancarias y servicios guberna-

mentales, entre otros. Aunado a esto, su uso ha aumentado debido a la introducción

de nuevas aplicaciones, como la autenticación multifactorial y las criptodivisas.

El rápido desarrollo de técnicas de criptoanálisis y el auge de la computación

cuántica ponen en peligro estas medidas de seguridad, siendo la amenaza más alar-

mante la existencia de un algoritmo capaz de resolver eficientemente el problema de la

factorización, siempre que la construcción de una computadora cuántica sea posible.

Estas implicaciones sugieren que deben estudiarse y desarrollarse nuevos mecanis-

mos de seguridad ante la posible materialización de estas amenazas. Recientemente,

las pruebas de conocimiento nulo han sido consideradas como una alternativa a los

protocolos de autenticación e identificación existentes, siendo la mayor ventaja que

estos protocolos se basan en problemas que aún no han sido resueltos por algoritmos

cuánticos.

Además de los servicios de autenticación e identificación, tecnoloǵıas novedosas

como el blockchain y las criptodivisas, que requieren servicios de anonimato, han

mostrado las capacidades de las pruebas de conocimiento nulo: una técnica fiable

I

II

para demostrar el conocimiento de datos espećıficos sin revelar detalles; por ejemplo,

para demostrar que una cuenta tiene suficiente crédito para comprar un art́ıculo

sin conocer el saldo exacto. También se ha manifestado interés en dicha tecnoloǵıa

para la autenticación en el almacenamiento en la nube y en el Internet de las cosas,

fomentando el desarrollo de estos protocolos.

En esta tesis nos centramos en la dificultad de encontrar isomorfismos de diseños

combinatorios, espećıficamente sistemas de ternas de Steiner. Se realiza un estudio

exhaustivo de las herramientas más importantes para probar isomorfismo. Además,

se revelan algunas mejoras de estas técnicas y, con base a las observaciones de di-

cho análisis, se caracterizan instancias dif́ıciles, las cuales comprenden los elementos

básicos para una variedad de protocolos de conocimiento nulo.

Abstract

The increasing use of powerful electronic devices and the availability of communica-

tion networks that provide ubiquitous and high performance connectivity, allow dig-

ital applications to transmit huge volumes of data in short periods of time. In many

cases, the data transmitted requires a communication channel protected by reliable

authentication and privacy procedures based on cryptographic schemes. For their

implementation, these schemes consider mathematical problems that are difficult to

solve. Although several cryptographic algorithms exist, only a few of them are used

in real world applications, such as the well-known Rivest-Shamir-Adleman procedure

(RSA), and the Digital Signature Standard (DSS), mainly due to their robustness

and easy implementation. These algorithms are the basis of several digital signature

techniques, and authentication and identification protocols that are commonly used

in e-commerce, banking transactions and government services, among others. In ad-

dition, their use has increased due to the introduction of new applications, such as

multi-factor authentication and cryptocurrencies.

The rapid development of cryptanalysis techniques and quantum computers jeop-

ardizes these security measures, the most alarming threat being the existence of an

algorithm capable of efficiently solving the factorization problem, whenever the con-

struction of a quantum computer is possible. These implications suggest that new

security measures should be studied and developed in view of the possible material-

ization of these threats. Recently, zero-knowledge tests have been considered as an

alternative to existing authentication and identification protocols, the major advan-

tage being that these protocols are based on problems that have not yet been solved

by quantum algorithms.

In addition to authentication and identification services, novel technologies such

as blockchain and cryptocurrencies, which require anonymity services, have shown the

capabilities of zero-knowledge proofs: a reliable technique to demonstrate knowledge

of specific data without revealing details; for example, to demonstrate that an account

has enough credit to purchase an item without knowing the exact balance. Interest

III

IV

has also been expressed in such technology for authentication in cloud storage and

on the Internet of Things, encouraging the development of these protocols.

In this thesis we focus on the difficulty of finding isomorphisms of combinatorial

designs, specifically of Steiner triple systems. An exhaustive study of the most im-

portant tools for testing isomorphism is carried out. In addition, some improvements

of these techniques are revealed and, based on the observations of this analysis, dif-

ficult instances are characterized, which comprise the basic elements for a variety of

zero-knowledge protocols.

Dedicatoria

Para mi esposa e hija, por una etapa que apenas comienza.

V

VI

Agradecimientos

Al Consejo Nacional de Ciencia y Tecnologa (CONACyT) por el sustento económico

ofrecido por el programa de becas nacionales, sin el cual no seŕıa posible lograr este

objetivo.

A mis asesores, los Drs. Guillermo Morales y Feliú Sagols, por el apoyo que me

han brindado a lo largo de todo este proceso.

Al personal administrativo, en especial Sof́ıa Reza, Erika Ŕıos y Felipa Rosas, de

quienes siempre he recibido apoyo total.

A mis sinodales: los Drs. Guadalupe Rodŕıguez, Juan Carlos Ku, Oliver Schütze,

y Rafael Heraclio Villarreal, por los aportes y apoyo en la recta final de este proceso.

Finalmente a mis padres, que han estado conmigo en cada etapa y logro de mi

vida.

VII

VIII

Contents

List of Figures X

List of Tables XI

List of Algorithms XIII

1 Introduction 1

1.1 Related work . 2

1.2 Objectives . 3

1.3 Research products . 4

1.4 Outline . 5

2 Preliminaries and early work 7

2.1 Graph theory . 7

2.2 Interactive and zero-knowledge proof systems 8

2.3 Quasigroups . 9

2.4 Steiner triple systems . 9

2.5 Early work . 12

2.5.1 Implementation of cryptographic schemes based on multivariate

cryptography . 12

2.5.2 A zero-knowledge proof system based on an algebraic interpre-

tation of the graph isomorphism problem 16

3 Steiner triple systems 21

3.1 Subsystems and partial systems . 21

3.1.1 Embedding systems and defining sets 22

3.2 Cycle Graphs . 23

3.2.1 The switching transformation 26

3.2.2 Effect of switching on cycle graphs 29

IX

X CONTENTS

3.3 Configurations . 32

3.4 Trades . 33

4 The Isomorphism Problem for STS 35

4.1 Miller’s Algorithm . 35

4.2 Algorithm based on cycle graphs . 37

4.2.1 Complexity of the algorithm 40

4.2.2 Joining cycle graphs . 42

4.3 Improving Miller’s algorithm . 44

5 Building difficult instances 49

5.1 Hall triple systems . 50

5.1.1 Hill-climbing algorithm for HTS 51

5.1.2 Algebraic construction of HTS 54

5.2 Non-uniform instances . 55

5.3 Experimental results . 56

6 Zero Knowledge Proof Systems Based on STSs 61

6.1 A ZKP based on isomorphism problem 62

6.2 A ZKP based on non-isomorphism problem 63

6.3 A ZKP based on the switching transformation 64

6.3.1 Authentication protocol . 64

6.3.2 Cryptanalysis . 67

6.4 Implementation issues . 67

7 Conclusions and future work 69

References 71

List of Figures

2.1 Representations of a STS(7) . 10

2.2 A solution to Kirkman’s problem . 11

2.3 Process to generate the polynomials set associated to the graph iso-

morphism. 17

2.4 Isomorphism composition and resulting systems. 17

3.1 Cycle graph of the STS(15) example. 24

3.2 Cycles of length 4 obtained from a quadrilateral. 26

3.3 Visual representation of the cycle switch transform. 27

3.4 Effect of sw on cycle graphs. 31

3.5 Joining two cycles with a switching transformation. 32

4.1 Cycle graphs for isomorphism technique. 41

4.2 Solving isomorphism with cycle graphs. 43

6.1 Cycle switching in isomorphic graphs. 64

XI

XII LIST OF FIGURES

List of Tables

3.1 A Steiner triple system of size 15. 23

3.2 Small configurations in Steiner triple systems. 33

5.1 Dimension vs order. 51

5.2 Computational resources. 57

5.3 Results of executions of isomorphism tests. 58

5.4 Results of executions of isomorphism tests. 58

XIII

XIV LIST OF TABLES

List of Algorithms

1 Miller’s Algorithm for Quasigroup Isomorphism 36

2 Extending a partial bijection . 38

3 Finding isomorphisms with cycle graphs 39

4 Finding isomorphisms with cycle graphs 44

5 Getting a generator set . 46

6 Improved version of Miller’s algorithm 47

7 Hill-climbing algorithm for construction of Steiner triple systems . . . 52

8 Hill-climbing algorithm for construction of Hall triple systems 53

XV

XVI LIST OF ALGORITHMS

Chapter 1

Introduction

Considering recent advances in quantum computing and the threat it represents for

most of the security schemes employed in communication systems worldwide, it is

evident that novel and existing security measures must be proposed and analyzed.

In our original approach, we intended to analyze security schemes based on the Mul-

tivariate Quadratic Problem (MQ), which consists of solving a system of multivari-

ate quadratic polynomial equations on n variables. Some advances in this direction

include the development of a software package that allows performing cryptographic

operations using existing digital signature schemes based onMQ. A second approach

consisted in designing a zero-knowledge proof (ZKP) system based on solving a sys-

tem of quadratic polynomials built from a translation of the isomorphism problem on

graphs. Both works will be addressed briefly in Chapter 2. The analysis performed

on the latter approach led to defining a new direction for the research, which helped

to delineate the main topic for this work. In the search for difficult instances for the

graph isomorphism problem, some problems involving combinatorial designs turned

out to be related, in particular, the isomorphism in Steiner triple systems. In addition

to the isomorphism problem, further topics such as the problem inverting successive

cycle switch transformations (introduced in 3.2.1) in Steiner triple systems have been

considered. These approaches, which are not based on the MQ problem anymore,

have been useful in the development of other zero-knowledge protocols, introduced in

Chapter 6.

Though the cryptographic application is an important issue and, in fact, is one of

the motivations of the present work, it is worth mentioning that the main results are

also of interest from a combinatorial point of view: the central problem to be studied

is the isomorphism problem on Steiner triple systems (STS). Our main goal is to

provide difficult instances of this problem, addressed in detail in Chapter 4. Briefly, a

1

2 CHAPTER 1. INTRODUCTION

STS consists of a set X of n elements and a second set, conformed by triples of X in

such a way that any possible pair of elements in X is contained in exactly one triple.

More details about STSs will be introduced in Chapter 3.

1.1 Related work

Steiner triple systems, and in general, block designs have been employed in several

areas of science, from the design of experiments to coding theory. The first registers

of known applications of block designs date back to several centuries. One of the

first appearances was the construction of latin squares, a matrix arrangement of size

n×n where each row and column consists of n different elements. The first registered

construction is attributed to Choi Seok-Jeong in 1700 [9, I.2], and his main goal

was strongly related to the construction of magic squares. However, there is a more

prominent association of block designs with statistical applications, specifically related

to the design of experiments [16, 17]. In this context, a block refers to a sub-sample

of the universe. Each possible trial can be performed on a block to study the effects

according to the experiment carried out.

A closer use of combinatorial designs with the work here developed is related to

coding theory, particularly useful to study perfect codes [4], some of them generated

from Steiner triple systems [41]. Applications to further communication services can

be found in regard to optic fiber channels, where codes based on block designs are

proposed to allow synchronous and asynchronous communication between many users

over a common wide-band channel [10].

With regards to cryptographic applications, in [54], Stinson and Vanstone create

a scheme for secret sharing. Briefly, by considering a collection disjoint systems

S1, . . . , Sm, i.e., with no block in common, a block can be shared among three parties

by assigning an element to each one. To decide the source of such a block, the three

parties can share the information and look at the Si containing it. Since any pair is

contained precisely in a block, the combined information of any two or fewer parties

is not useful to retrieve the secret, in this case, the sub-index of the STS containing

the block. This idea, which is formalized in [54], is based on the idea of partitioning

a Steiner system S(t, w, v) in subsystems STS(t− 1, w, v). In short, a Steiner system

S(t, w, v) is a generalization of the definition for STSs, which consists of a set X of

size v and a block set B conformed by subsets of size w, such that any subset of size

t is contained in exactly one B ∈ B. A STS is Steiner system with parameters t = 2

and w = 3.

1.2. OBJECTIVES 3

In [50], a secret sharing protocol based on minimal defining sets (MDS), was

introduced. In short, a MDS is a minimal subset of the set of blocks B, which

extends uniquely to B. Again, by considering a collection of m STSs, in this case,

with known minimal designs, one sub-index is chosen as the secret. The MDS of

the selected STS is split by distributing blocks among the involved parties. Since

no subset with fewer elements can be used to reconstruct the original STS uniquely,

every participant most share the piece of information to retrieve the secret.

The main object of study of the present work also lies under the context of cryp-

tographic applications, specifically, studying STSs to construct authentication and

identification protocols using interactive and zero-knowledge techniques. These pro-

tocols are based on the isomorphism problem on STSs, which, in turn, is strongly

related to graph theory, since it has been proved that the isomorphism problem be-

tween combinatorial designs is polynomially equivalent to the graph isomorphism

problem [11]. In fact, some of the hardest instances in graph theory arise from com-

binatorial structures [43], such as strongly regular graphs, block designs, and coherent

configurations. In this context is that we study Steiner triple systems as a source of

difficult instances, suitable for cryptographic purposes. A closer inspection of such

combinatorial objects allows defining further transformations that will be helpful in

to study the construction of a ZKP proof system [48], which will be detailed in 6.3.

As far as we know, STSs have not been used before for identification purposes.

1.2 Objectives

The main goal of this work is to propose new cryptographic tools based on difficult

combinatorial problems related to Steiner triple systems and identify instances that

are suitable for cryptographic applications. In this respect, the investigation devel-

oped has considered two possible outcomes: either the isomorphism problem admits

the definition of difficult instances, or the problem is not hard enough and can be

solved efficiently. The examination of this problem with existing techniques leads to

assume the former sentence as truth up to now.

The specific goals to achieve the main objectives are:

• Implement and improve known algorithms to solve the isomorphism problem

on Steiner triple systems.

• Characterize difficult instances of the problem. This step is a consequence of

the improvement of the existing isomorphism solvers.

4 CHAPTER 1. INTRODUCTION

• Provide theoretical and experimental evidence of the difficulty of the proposed

instances.

• Design authentication and identification protocols based on zero-knowledge

proof systems using the information gathered from the previous objectives.

1.3 Research products

We can enumerate the participation in conferences and scientific publications product

of the results of the thesis work.

Conferences:

• Steiner Triple Systems and Zero Knowledge Protocols. Sagols Troncoso,

F.; Morales-Luna, G.; González Fernández, E. XV Reunión Española sobre

Criptoloǵıa y Seguridad de la Información, Granada, Spain, October 3–5, 2018.

• Public Key Infrastructure based on multivariate cryptography. González

Fernández, E., Morales-Luna, G., Sagols Troncoso, F., Garćıa Villalba, L.J.

IV Jornadas Nacionales de Investigación en Ciberseguridad, Donostia-San Se-

bastián, Spain, June 13–15.

• Infraestructura de Clave Pública en la Industria de Pagos con Tarje-

tas de Crédito. González Fernández, E.; Morales-Luna, G.; Sagols Troncoso,

F. Décimo Segundo Coloquio Nacional de Códigos, Criptograf́ıa y Áreas Rela-

cionadas (CNCCAR), June 26–28, 2017

• Protocolos de conocimiento nulo basados en problemas de geometŕıa

algebraica. González Fernández, E.; Sagols Troncoso, F.; Morales-Luna, G.

XLIX National Congress of the Mexican Mathematical Society (SMM), Aguas-

calientes, October 23–28, 2016.

• Procedimientos de autenticación de conocimiento nulo mediante técnicas

de geometŕıa algebraica. González Fernández, E.; Morales-Luna, G.; Sagols

Troncoso, F. II Jornadas Nacionales de Investigación en Ciberseguridad, Granada,

Spain, June 15–17, 2016

1.4. OUTLINE 5

Publications:

• González Fernández, E., Morales-Luna, G., Sagols Troncoso, F. Zero Knowl-

edge Authentication Protocols with Algebraic Geometry Techniques, Appl. Sci.

2020, 10(2), 465.

1.4 Outline

The document is structured as follows. In Chapter 2 some basic concepts related with

Steiner triple systems are briefly introduced. This chapter settles most of the notation

that will be used through all the work. Additionally, a more detailed presentation of

the early results briefly introduced in this chapter will be provided: the implemen-

tation of cryptographic schemes based on the MQ problem and a zero-knowledge

protocol based on the graph isomorphism and MQ.

In Chapter 3, more advanced topics regarding STSs are discussed. This discussion

will be fundamental to understand the improvements of the isomorphism techniques

and the construction of difficult instances. Additional transformations which produce

non-isomorphic systems are examined for further applications.

Subsequently, in Chapter 4 the Miller’s technique is studied. Up to now, this is the

best algorithm known to solve the isomorphism problem for STSs, and more generally,

for quasigroups. Improvements for some difficult instances are proposed. The analy-

sis of the possible improvements allows to perform a more accurate description and

estimation of the hardness of the isomorphism problem. In effect, this chapter turns

out to be the most relevant from the combinatorial point of view. Some algorithms

are developed and compared, and experimental evidence showing improvements of

the Miller algorithm are exposed, though the asymptotical complexity is not reduced.

In Chapter 5, all previous theory studied and developed is used to achieve one

of the main goals of this work: the characterization and construction of difficult in-

stances, suitable for cryptographic purposes. A family of systems will be found to be

resistant against the original Miller algorithm but not against the proposed improve-

ments. Another group of systems will provide resistance against both techniques, and

will be considered as the base for the authentication protocols.

The definition of zero-knowledge proof systems is carried out in Chapter 6. The

first and second are an adaptation of the classical isomorphism and non-isomorphism

interactive proofs defined for the graph isomorphism problem. The third protocol adds

a more complex problem for the initial public and private information: the problem of

inverting a composition of switching transformations. Since these transformations are

6 CHAPTER 1. INTRODUCTION

believed to connect every isomorphism class, this conjecture leads us to think that the

problem is harder than the isomorphism problem, considering that an isomorphism

can be expressed as a suitable sequence of transformations.

Finally, in Chapter 7 the conclusions and future directions of the current research

are explored.

Chapter 2

Preliminaries and early work

In this section the basic background and notation of the mathematical objects which

will be used frequently along this work are introduced. Some related contributions

which are part of early research stages will be briefly discussed. These contributions

are part of some original topics considered before establishing the main subject of

study: the isomorphism problem in Steiner triple systems.

2.1 Graph theory

A graph is a pair G = (V,E) where V = {v1, . . . , vn} is a set on n elements, the

vertices, and E is a subset of
(
V
2

)
:= {e ⊂ V | |e| = 2}, the edges. The order and size

of G are the cardinality of the sets V and E, respectively. Two different vertices

v1, v2 ∈ V are adjacent if they are connected by an edge. Analogously, two different

edges e1, e2 ∈ E are adjacent if they share one and only one vertex. The graph

G = (V,E) defined by E = {vivj ∈
(
V
2

)
| vivj 6∈ E} is the complementary graph of G.

This consists of pairs of non-adjacent vertices.

If two disjoint subsets V1, V2 ⊂ V exist such that V1
⋃
V2 = V and such that

every edge has vertices in both sets V1 and V2, then the graph is said to be bipartite.

Furthermore, G is complete bipartite provided that every vertex in V1 is connected to

every vertex in V2 and vice versa.

Now, consider two graphs G = (U,D) and H = (V,E). Consider a bijections of

sets φ : U → V that preserves edges, i.e., if {u, v} ∈ D implies {φ(u), φ(v)} ∈ E.

The φ is an isomorphism between G and H, and G and H are said to be isomorphic,

denoted G ≈ H. The graph isomorphism problem (GI) is defined as the task of finding

an isomorphism between G and H, or deciding that this they are not isomorphic.

Formally, GI can be defined as follows.

7

8 CHAPTER 2. PRELIMINARIES AND EARLY WORK

Decision problem

Instance: Two graphs G = (U,D), H = (V,E).

Solution:

{
1 if there is an isomorphism φ : G→ H

0 otherwise.

Search problem

Instance: Two graphs G = (U,D), H = (V,E).

Solution: Either a proof that H and G are not isomorphic or the isomorphism

φ : G→ H.

Finally, a matching in a graph G is a subset M ⊆ E with the property that no two

edges e1, e2 ∈ M are adjacent. The matching is perfect if, in addition, every vertex

of G is an paired by an edge of M .

2.2 Interactive and zero-knowledge proof systems

Some very handy cryptographic tools used for authentication and identification ser-

vices are the zero-knowledge proofs. A basic description of such systems consists of

two parties: the verifier performs a series of questions to the prover, who must an-

swer correctly in each round to convince the verifier. The prover will be capable of

answering correctly on each round only if he has legitimate information.

For this process to be securely implemented, some characteristics regarding the

interaction of the involved parties are desirable. The whole verification process should

be computationally efficient for an authentic verifier, whereas it must be infeasible for

an unauthentic prover to impersonate the authentic one. Furthermore, no information

that allows a malicious verifier to reveal the prover’s secret can be gathered, though

this is commonly relaxed to “no statistically significant information”. The following

points summarize the desirable characteristics of a ZKP system:

• Completeness. An authentic prover will always be accepted by an honest verifier.

• Soundness. On interacting with a non-authentic prover, the verifier will reject

with a very high probability.

• Zero-knowledge. A malicious verifier is not capable of getting any extra infor-

mation from the challenge-response procedure, other than the correctness of the

assertion.

2.3. QUASIGROUPS 9

This means that a verifier will always accept an authentic prover. However, a ma-

licious prover has a chance to impersonate an authentic one, but with very small

probability.

2.3 Quasigroups

Definition 1. A quasigroup is a set Q together with an operation ∗ such that:

i) Q is closed under ∗.

ii) For every a, b ∈ Q there exist unique solutions x, y ∈ Q such that x ∗ a = b and

a ∗ y = b.

An isomorphism between two quasigroups (Q1, ∗), (Q2, ◦) is a bijection φ : Q1 → Q2

such that φ(x ∗ y) = φ(x) ◦ φ(y) for every x, y ∈ Q1.

For simplicity, we refer to the pair (Q, ∗) defining a quasigroup by Q, and the

operation x∗y by xy. Exponential notation xn is also preferred. A subset H ⊂ Q is a

subquasigroup if H is a quasigroup by itself. Let J be a subset of Q. The subquasigroup

generated by Q, denoted 〈J〉, is the smallest subquasigroup containing J . If 〈J〉 = Q

then J is a set of generators for Q. An isomorphism of quasigroups φ : Q1 → Q2

can be completely defined by a suitable set of generators {xi, . . . , xm} ⊂ Q1, and

{y1, . . . , ym} ⊂ Q2, where yi = φ(xi) for i = 1, . . . ,m. It is worth observing that not

every minimal generating set has the same size, for instance, consider the symmetric

group on n symbols Sn. It is well-known that a generating set of minimum size

consists of 2 elements: a n-cycle and any transposition. However, another minimal

generating set exists, consisting of n − 1 adjacent transpositions. For n > 3 the

symmetric group admits minimal generating sets of different size.

A quasigroup that satisfies x2 = x, x(xy) = y, and (yx)x = y for any two elements

x, y ∈ Q is known as a Steiner Quasigroup. The nomenclature of such quasigroups

will become clear once we address the theory of Steiner triple systems and its relation

to quasigroups with more detail. Further results on quasigroups in general can be

found in [47, 51].

2.4 Steiner triple systems

Definition 2. A Steiner triple system (STS) of order n, denoted STS(n), consists

of a pair S = (X,B) where X is a set of n elements, the symbols or points ; and B

10 CHAPTER 2. PRELIMINARIES AND EARLY WORK

is a set of unordered triples {x, y, z} ⊂ X, the blocks or lines, such that for any pair

{x, y} ⊂ X there exists a unique B ∈ B with {x, y} ⊆ B.

Standard counting arguments prove that each element in X must occur in exactly

r = n−1
2

blocks, and that the triple system consists of exactly b = n(n−1)
6

blocks. Since

both r and b are integers, we get necessary conditions for the existence of an STS(n),

namely, n mod 6 ∈ {1, 3}, which, in fact, turn out to be sufficient.

Two STS S = (X,B) and S ′ = (X ′,B′) are isomorphic if there is a permutation

φ : X → X ′ such that B′ = {{φ(i), φ(j), φ(k)}| {i, j, k} ∈ B}. The permutation

φ defines a permutation of blocks, called an isomorphism between STSs. Since the

permutation and the isomorphism are highly related, the isomorphism will also be

denoted φ. For simplicity, the set of points X will be regarded as the set of integers

{0, . . . , n− 1}, unless another definition is specified.

The smallest example of a STS is the system composed by a single block, namely,

S = ({0, 1, 2}, {{0, 1, 2}}). However, we may also think of the empty set as a de-

generate STS S = (∅, {∅}). For consistency with the requirements for the number of

elements and blocks, we will not consider this case, and every STS will be nonempty.

Example 1. Let us illustrate the aforementioned definitions with a small example:

a STS(7). The size of the set of blocks is 7·6
6

= 7, and in this example, it is defined by

B = {{0, 1, 2}, {0, 3, 4}, {0, 5, 6}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.

Two different representations of the set of blocks of can be seen in Figure 2.1: an

edge-disjoint partition of the complete graph K7 into triangles (left), and the set of

lines of the Fano plane (right). In the graph representation, it is possible to see a

strong relation of the isomorphism problem for STS and the isomorphism problem

for graphs.

0
1

2

34

5

6

0

1 5

4

3

26

Figure 2.1: Representations of a STS(7)

2.4. STEINER TRIPLE SYSTEMS 11

A more systematic study of STSs has been carried out since Kirkman proposed

the Kirkman’s schoolgirl problem, named after him. The following is a transcription

of the original text found in [32]:

Fifteen young ladies in a school walk out three abreast for seven days in succession:

it is required to arrange them daily so that no two shall walk twice abreast.

The solution to this problem is, in fact, a STS(15), but not every STS(15) holds

the condition. To observe how quickly the problem grows in complexity, a solution

to Kirkman’s problem is pictured in Figure 2.2. In this case the number of blocks

required to define the STS(15) is 35.

0
1

2

3

4

5

6
78

9

A

B

C

D

E

Figure 2.2: A solution to Kirkman’s problem

In addition to the graph related representation, Steiner triple systems have a nice

geometric interpretation, which will be useful throughout this work.

Definition 3. A Steiner triple system is a pair (X,B) where X is a set of n elements

called points, and B is a set of lines, satisfying:

• Every line is a 3-subset of X,

• Any two different points lie in exactly one line.

It is easy to see that both definitions are equivalent.

12 CHAPTER 2. PRELIMINARIES AND EARLY WORK

Several constructions for STSs exist in the literature, such as the methods pro-

posed by Bose and Skolem [35], or iterative algorithms such as the Hill-climbing tech-

nique [53]. Also, the geometric representation can be useful when developing some

constructions of STSs, such as the Fano plane or the Hall triple systems, introduced

in Chapter 5.

The problem of deciding whether two STSs are isomorphic leads to an interesting

classification problem: counting the number of non-isomorphic systems of a given

order n. Two isomorphic STSs are said to belong to the same isomorphism class. The

number of isomorphism classes explodes in a supra-exponential way as the cardinality

of the base set increases. For orders 7, 9, 13, 15, and 19 the number of classes are 1,

1, 2, 80, and 11 084 874 829, respectively. The exact number of isomorphism classes

for orders 21 and 25 is unknown. However, it is believed to be on the order of 1013

and 1015, respectively. A survey of basic results on STSs can be found in [7, 35].

2.5 Early work

In this section, two main directions explored in the early stage of the definition of

the desired research results are briefly explained. The discussion does not affect the

understanding of the principal results introduced in subsequent chapters and can be

skipped.

2.5.1 Implementation of cryptographic schemes based on mul-

tivariate cryptography

This section presents work developed in collaboration with MSc. Eliver Prez Ville-

gas, former student of the Master program of the Department of Computer Science

at CINVESTAV. The result of this effort can be found in https://github.com/

cinvestavcs-mexicocity/MQCrypto. This consists of an implementation of some

popular cryptographic primitives based on multivariate polynomials. It was later

presented in the 2018 Spanish Cybersecurity Research Conference (JNIC2018).

Multivariate Cryptography is based on the proved difficulty of solving a multi-

variate quadratic system, known as the MQ problem, which belongs to the class

of NP-complete problems [49]. Besides, MQ is harder than many collision finding

problems, in particular, it is quantum resistant. We denote by Fq the finite field of

q = pr elements, with p a prime number and r a positive integer, and consider positive

integers m and n. Most of the PKC systems based on MQ consist of the following:

https://github.com/cinvestavcs-mexicocity/MQCrypto
https://github.com/cinvestavcs-mexicocity/MQCrypto

2.5. EARLY WORK 13

• an easily solvable quadratic map Q : Fnq → Fmq ,

• affine bijective maps S : Fnq → Fnq , T : Fmq → Fmq ,

• a quadratic system P obtained as P := T ◦Q ◦ S.

The system P is used as the public key and must be difficult to solve, while Q,S

and T conform the private key. The main purpose of S and T is to hide the algebraic

structure that makes Q easy to solve. An early attempt to develop a multivariate

cryptosystem was published in [37], producing the Matsumoto-Imai cryptosystem.

Since then, many other schemes have been developed by changing the way the cen-

tral map Q is generated, being the most promising variations of the Hidden Field

Equations (HFE) [44] and Rainbow [14] constructions.

In addition to quantum resistance, multivariate cryptosystems have attractive

characteristics that makes them a suitable option for its implementation, e.g., fast

computation, short signatures, diversity of constructions and natural resistance against

timing attacks. On the other hand, many of the aforementioned schemes have shown

vulnerabilities against cryptographic analysis. Even more, these cryptosystems pro-

duce very big keys compared to ECDSA and RSA. Though this is not a big restriction

for devices with high memory capabilities, as servers, personal computers or mobile

devices, it could be difficult to store keys in limited memory devices used in financial

transactions, such as smart cards.

We have implemented the mqcrypto command-line application (available online:

https://github.com/cinvestavcs-mexicocity/MQCrypto) to provide cryptographic

primitives based on MQ and we expect to produce software to provide the full ca-

pabilities of PKI as a completion of the current work. The algorithms provided are a

compilation of multivariate algorithms that have resisted cryptanalysis and are being

considered by NIST to be part of the post-quantum public key standards.

2.5.1.1 Supported Algorithms

Up to now, we have integrated the following algorithms: Rainbow5640, Rainbow6440,

Rainbow16242020, Rainbow256181212, Pflash, 3ICP, TTS6440 whose implementa-

tions and specifications can be found on https://bench.cr.yp.to/ebats.html. Ad-

ditionally, we have implemented Sflash v1, Sflash v2 and UOV using the open-source

software SageMath, available on http://www.sagemath.org/. This software is re-

quired if these algorithms are to be used.

The main cryptographic functions provided by the mqcrypto tool are described

next:

https://github.com/cinvestavcs-mexicocity/MQCrypto
https://bench.cr.yp.to/ebats.html
http://www.sagemath.org/

14 CHAPTER 2. PRELIMINARIES AND EARLY WORK

• Key generation. Key pairs are created at random following the standard

constructions, as can be seen in [13]. The user is asked for a password to generate

an AES ciphering key which will be used to store the private key. Public and

private keys are stored separately and the private one is never delivered in clear.

• Signing. The signature utility has as input a document, file or text, the ci-

phered private key, and the password used in the generation process. Also a

digest method can be selected from Sha-256 and Sha-512. If no method is pro-

vided, Sha-256 is used by default. The output is either printed on the terminal

or stored in a file if a path is provided.

• Verifying. This command verifies a signature using the corresponding public

key. The inputs for this process are the signature, the public key, and the

document or text that has been signed. Once it completes the execution, the

command returns a positive answer if the sign is authentic and a negative one

in other case.

In the following example the input file.txt will be signed and the signature will be
stored in the file.sgn.

> mqcrypto sign Rainbow5640Private.pem -in file.txt

-out file.sgn -sha256 -passin pass:password

The output is a Base64 string encoding an ASN.1 structured object. Codification of

the key pair is exhibited with more detail in Section 2.5.1.2.

For a more detailed presentation of this software, we invite the reader to look

at [45] and the additional documentation found on the Github page of the project.

2.5.1.2 Codification of Signatures and Keys

Resulting key pairs and message signatures follow an ASN.1 encoding. A public key

consists of a set of m polynomials in n variables over a finite field. This information

is encoded as follows

MPKCPublicKey ::= SEQUENCE {

variables INTEGER, -- n

polynomials INTEGER, -- m

fieldchar INTEGER, -- p

fielddegree INTEGER, -- k

polynomialSet OCTET STRING, -- P}.

2.5. EARLY WORK 15

However, the values of n,m, p and k can be defined previously as domain parameters

known to every entity involved in the authentication process. In this case, only the

field polynomialSet must be provided. A private key is encoded as follows

MPKCPrivateKey ::= SEQUENCE {

affine1 INTEGER, -- S

affine2 INTEGER, -- T

polynomialSet OCTET STRING, -- Q}.

In general, key length increases dramatically as m and n increase, since the growth of

the number of coefficients per polynomial is quadratic. Nevertheless, some algorithms

admit short codification for the private key by using numeric parameters. This is

the case for schemes based on Matsumoto and Imai, where the parameter theta is

sufficient to recover the private polynomial set.

MIPrivateKey ::= SEQUENCE {

affine1 INTEGER, -- S

affine2 INTEGER, -- T

exponent INTEGER, -- theta}

This implementation aims to provide fundamental tools for employing standard-

ized multivariate techniques for Public Key Infrastructure.

A brief analysis regarding possible applications of projective spaces in multivari-

ate cryptography was carried out taking in account suggestions received in the pre-

doctoral exam. In particular, techniques based on projective geometry lead to algo-

rithms for searching solutions and estimating the number of points in an algebraic

variety.

The number of points in an algebraic variety is important in schemes based on

solving a set of polynomial equations. Too many of them might facilitate finding

solutions which could be used to recover ciphered text or forge digital signatures. In

this respect, the well-known Bezout’s theorem [12, 8.7] provides an upper bound for

the number of common solutions that can be found in algebraic curves. This could

be of interest for desiging schemes with polynomials having total degree other than

2.

Other approaches aim to find the solutions by considering the geometric properties

of some existing algorithms, such as the Euclid algorithm [28], or the Relinearisation

and the XL algorithm [40], used in cryptology for multivariate equation solving. In

the later work, authors describe different constructions of algorithm to find solutions

to an equation system making use of the Veronese variety.

16 CHAPTER 2. PRELIMINARIES AND EARLY WORK

Due to the adjustment of the main objectives of this work, further research in this

direction could not be further developed.

2.5.2 A zero-knowledge proof system based on an algebraic

interpretation of the graph isomorphism problem

Now, a summary of the zero-knowledge proof system presented in [23] is introduced.

The cited article can be consulted for futher details.

The notion of isomorphism between graphs can be translated to a strictly alge-

braic language. The idea is to perform a proper reduction from GI toMQ motivated

by conventional reductions of several problems in graphs to boolean quadratic poly-

nomials [21, 42]. For this, we need to consider a set of n2 variables, denoted {Xi,k} for

i, k = 1, . . . , n. The first set of polynomials to append, restrict any possible solution

to values in the set {0, 1}. The polynomials are defined as follows:

X2
i,k −Xi,k for i, k ∈ {1, . . . , n}. (2.1)

The next batch of polynomials restricts the zero-set to solutions that represent a

perfect matching, i.e., exactly one vertex ui from U is connected to a vertex of V and

vice versa. This associates the solutions to the existence of a perfect matching M .

n∑
k=1

Xi,k − 1 for i = 1, . . . , n (2.2)

n∑
i=1

Xi,k − 1 for k = 1, . . . , n

The last set of polynomials guarantee that the solution is related exclusively to the

isomorphism arising from the perfect matching:

Xi,kXj,l for every i, j, k, l which satisfy

(uiuj /∈ D ∧ vkvl ∈ E)∨
(uiuj ∈ D ∧ vkvl /∈ E) (2.3)

What has been explained can be observed in Figure 2.3.

The interaction process of the protocol starts by generating a pair of isomorphic

graphs, its associated polynomial system F0, and a solution x0 for F0. Subsequently, a

third graph K isomorphic to H is generated. Knowing the graph H and the applied

permutation allows to obtain a second polynomial set F1 and a its corresponding

2.5. EARLY WORK 17

u2 v2

u1 v1

u3 v3

u4 v4

X2,2

X4,3

X4,4

(a) An isomorphism between G and H can

be seen as a perfect matching in the graph

KU,V , preserving adjacencies between G and

H.

u2 v2

u1 v1

u3 v3

u4 v4

X2,2

X4,3

(b) The edges u2v2 and u3v4 cannot belong

simultaneously to M because u2u3 ∈ D,

but v2v4 /∈ E. The polynomial X2,2X3,4 is

added to the ideal I.

Figure 2.3: Process to generate the polynomials set associated to the graph isomor-

phism.

G H K

(F0,x0) (F1,x1)
Ψ

φ ψ

Figure 2.4: Isomorphism composition and resulting systems.

solution x1. The following diagram allows to visualize the operation here performed.

Though the pair (F1,x1) can be obtained in the same fashion than the pair (F0,x0),

i.e., by computing the polynomial set related to the corresponding graph isomorphism,

a more direct approach consists in directly applying suitable permutations to the

subindices k, l for the variables obtained from the edges of H and H. In fact, let

us define the permutation σφ by σφ(i) = k if φ(ui) = vl. Then the edge uiuj ∈ D

transforms into edge

φ(ui)φ(uj) = vσφ(i)vσφ(j).

A similar permutation σψ, dependant on the action ψ, is obtained by relating edges of

graph H and edges of graph K. The set of polynomials fulfilling condition (2.3) leads

18 CHAPTER 2. PRELIMINARIES AND EARLY WORK

to a direct definition of the set of polynomials corresponding to H and K obtained

from the public polynomial set as

Xσφ(i),σψ(k)Xσφ(j),σψ(l). (2.4)

A solution for the system F1 is provided by applying permutations σφ, σψ to reorder

the entries of the vector x1 in a similar fashion.

Observe that applying the permutation σψ to the subindices of Xi,k is equivalent

to apply an affine transformation T , which might be represented by a matrix with

one and only one element with value 1 on each column and each row (a permutation

matrix) defined by

T (i, j) =

{
1 if j = σψ(i)

0 otherwise.

A similar transformation S is related to φ, this time, it is applied on the right

side.

S(i, j) =

{
1 if j = σφ(i)

0 otherwise.

Indeed, S, T can be used to compute the new polynomial see as Ψ(F1) = S ◦ F0 ◦ T ,

and the new solution to such system by x1 = Ψ(x0) = S · x0 · T , which consists of a

matrix multiplications.

Finally, if instead of using the isomorphism ψ : H → K to obtain the second poly-

nomial system, the composition γ = ψ ◦φ is used, we get a third system, constructed

by computing the new set Xi,σγ(k)Xj,σγ(l), which requires of a single permutation, and

in matrix notation only of the inner affine transformation T . Since both systems rely

on the difficulty of computing a graph isomorphism, theoretically anyone could be

used without losing security in the defined protocol.

2.5.2.1 Authentication protocol

The complete authentication protocol is outlined by the following steps, which are

performed between Peggy (the prover) and Victor (the verifier):

Key Generation:

1. Peggy picks a graphG and randomly generates a permutation of the set {1, . . . , n}.
This permutation is used to create the isomorphic graph H together with its

isomorphism φ. Then the public key F0 using the technique aforementioned.

The private key is pair (F0,x0), the public system together with a solution.

2.5. EARLY WORK 19

Authentication:

1. Peggy generates a permutation σ for the set {1, . . . , n} at random and computes

the polynomial system F1, which is sent to Victor as a compromise.

2. Victor creates a challenge by selecting at random b ∈ {0, 1}. Victor sends b to

Peggy.

3. Once Peggy has received b she must answer accordingly:

• if b = 0, she sends the transformation Ψ to Victor.

• if b = 1, then she sends the solution x1 of F1.

4. According to the value of b Victor performs the following to authenticate Peggy:

• if b = 0, he computes the system F ′1 = Ψ(F0) and verifies whether he

F ′1 = F1.

• if b = 1, he checks whether F1(x1) = 0 or not.

Since the problem relies in part on the hardness of the GI problem, this analysis led

us to search suitable instances, which in turn guided the search to the combinatorial

field, which is explored through the rest of this work.

20 CHAPTER 2. PRELIMINARIES AND EARLY WORK

Chapter 3

Steiner triple systems

The definition of STS and some basic information has already been discussed in Chap-

ter 2. In this chapter, further topics related to STSs are introduced and discussed.

3.1 Subsystems and partial systems

Definition 4. A partial Steiner triple system (PSTS) P consists of a set X, the

points, and a set triples P ⊂
(
X
3

)
, the blocks, such that every point lies in at least one

block and any pair of different points lies in at most one block of P . The order of P

is |X|. A subsystem of a STS S = (X,B) consists of the pair T = (Y, C) with Y ⊂ X,

C ⊂ B, and such that (Y, C) is a STS.

With the above definition, a (PSTS) can be regarded as a STS with ”missing”

blocks. It is clear that subsystems of isomorphic STSs have a one-to-one correspon-

dence, a result that can be useful when looking for isomorphisms between two systems.

By defining the intersection between two subsystems T1 = (Y1, C1), T2 = (Y2, C2) of S

as T1
⋂
T2 = (Y, C) where

C = C1
⋂
C2, Y =

⋃
B∈C

B.

We get the following result.

Proposition 1. Consider a STS S and two subsystems T1, T2 ⊂ S. Then T1
⋂
T2 is

either empty or a subsystem.

Proof. Let T1 = (Y1, C1) and T = (Y1, C1) be two subsystems of a STS S = (X,B).

Consider all triples C = {B1, . . . , Bl} ∈ C1
⋂ C2. Let Y =

⋃l
i=1Bi. if |C| = 0 we are

21

22 CHAPTER 3. STEINER TRIPLE SYSTEMS

done. Otherwise, consider any pair {x, y} ⊂ Y . From the definition of Y , it follows

that at least one block Bi contains {x, y}. Now, from the definition of S, exactly one

block contains it, as required.

With this result, it is possible to argue that there is a unique subsystem that

contains any subset of blocks, leading to the following definition.

Definition 5. Let S be a STS and {B1, . . . , Bm} ⊂ B. The subsystem generated by

{Bi}mi=1 (denoted 〈B1, . . . , Bn〉) is the smallest subsystem T containing {Bi}mi=1, and

it is defined as

T =
⋂

{Bi}mi=1⊂T
T is a subsystem

T.

In addition to the subsystem generated by a subset of lines, a subsystem generated

by a subset of points Y ⊂ X is the subsystem (Y , C) of the smallest order with Y ⊂ Y .

In the subsequent, we will consider only non-trivial subsystems, i.e., subsystems with

at least 7 elements. A STS without non-trivial subsystems is said to be subsystem-free.

In the same fashion as in vector spaces, it is of interest knowing the least quantity

of points or lines needed to generate the full system. Though it is possible to deal with

these questions with the items already defined, related topics developed in subsequent

chapters will make this task easier.

3.1.1 Embedding systems and defining sets

The embedding problem in the context of STSs is a decision problem defined as follows:

Instance: A PSTS P = (Y,P) and an admissible integer k.

Solution:

{
1 if there is an STS(n) containing P

0 otherwise.

The Doyen-Wilson Theorem [15] establishes that a PSTS of order k can always be

embedded into a STS(n) if n ≥ 2k + 1 is an admissible integer. Later, Colbourn [6]

proved that the problem is NP-complete for other values of n, specifically, for n < 2k.

PSTS and subsystems are useful, considering the following applications:

• Considering a PSTS, the problem of extending to a full STS can be considered

for cryptographic purposes.

3.2. CYCLE GRAPHS 23

• If the set pf blocks P of a PSTS P can be extended uniquely to the set of

blocks B of a STS S, then a reduced representation of S can be provided, i.e.,

the partial system gives the same information than the full system.

Thus, this problem sets the ground for interesting applications in cryptography. It is

also interesting in regard to the efficient codification of STSs, since a small subset that

can be easily embedded uniquely in a STS will have the same amount of information

than the full set. However, if not selected appropriately, several other systems can

be obtained, or even worse, the problem of retrieving the original system can be

intractable.

3.2 Cycle Graphs

The notion of cycle graphs and cycle lists, to be introduced next, were formalized

in [52]. They provide useful invariants to deal with the problem of counting iso-

morphism classes. However, operations between systems can be derived from these

objects. They will be utterly useful for the analysis of difficult instances performed

in Chapter 5. This section starts by providing a formal definition of cycle graphs.

Definition 6. Let S = (X,B) be an STS(n). Consider a pair {x, y} ⊂ X and the

unique block B = {x, y, z} containing both, x and y. The cycle graph Gxy is defined

by the set of vertices Vxy = X −B and edges

Exy = {{u, v} | {u, v, x} ∈ B − {B}}
⋃
{{u, v} | {u, v, y} ∈ B − {B}}.

It will be evident later why the graph associated to the pair {x, y} is called cycle

graph. We continue with an example to better understand the nature of these objects.

Example 2. Consider the STS(15) represented in Table 3.1. In this depiction, each

column must be regarded as a block. This representation will be used in the rest of

this work.

00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbceddecbcdbeebdc

Table 3.1: A Steiner triple system of size 15.

Let us compute the cycle graph G01 using Definition 6. The vertex set is defined

as V01 = {3,4,5,6,7,8,9,a,b,c,d,e}. Now, continue with the set of edges E0 by

24 CHAPTER 3. STEINER TRIPLE SYSTEMS

selecting every pair {a, b} ⊂ V01 such that, together with 0, conforms a block in S.

Then

E0 = {34, 56, 78, 9a, bc, de}.
Similarly, E1 = {35, 46, 79, 8a, bd, ce}. Following Definition 6, the cycle graph

for the pair 01 is defined by the edges E01 = E0
⋃
E1. The graph G01 is shown in

Fig. 3.1.

3 4 7 8 b c

5 6 9 a d e

Figure 3.1: Cycle graph of the STS(15) example.

The resulting graph G01 consists of 3 disjoint cycles. Furthermore, each cycle is

of even length. In fact, every cycle graph Gxy is 2-regular and bipartite, i.e., every

graph consists of a disjoint union of even length cycles, as we show next.

Proposition 2. Let S = {X,B} be an STS(n), and x and y two different elements of

X. The cycle graph Gxy is a disjoint union of cycles of even length on n− 3 vertices.

Proof. From Definition 6, we have Vxy = X − {x, y, z}. Thus Vxy consists of n − 3

vertices. Next, we show that Gxy is 2-regular, thus a union of disjoint cycles. Consider

a vertex u ∈ V and the blocks containing {u, x} and {u, y}. These blocks are different,

otherwise u = z, which is not possible from the definition of Vxy. Then, at least two

different edges are incident on u, those arising from blocks {u, v, x} and {u,w, y}. By

definition, no other block contains {u, x} or {u, y}, then no more edges in Exy are

incident on u, and Gxy is 2-regular.

Next, it is verified that the length of each cycle is even. It should be noticed that

the edges of Gxy can be alternately labeled with x or y, thus having an even number

of edges.

Isomorphic STSs will have cycle graphs strongly related by the defition of an

siomorphism between them.

Proposition 3. Consider two isomorphic STSs S, S ′ with isomorphism φ. Now, let

Gx,y be a cycle graph of S corresponding to the pair {x, y}. Let x′ = φ(x), y′ = φ(y)

and the cycle graph G′x′y′ of S ′ . Then φ defines a graph isomorphism between Gx,y

and G′x′,y′.

3.2. CYCLE GRAPHS 25

Proof. It is clear from the definition that and edge {u, v} ∈ Gx,y if and only if

{φ(u), φ(v)} ∈ G′x′,y′ . This provides an isomorphism between graphs.

This leads to a straightforward definition of invariants that summarize better the

structure of the graphs.

Definition 7. The cycle list associated to a cycle graph is the list of sizes of its

individual components (c1, . . . , cl) with ci ≥ ci+1. The set of all
(
n
2

)
cycle lists is

known as the cycle structure of S.

Example 3. Considering the system of Example 2, the cycle list for this cycle graph

is given by (4, 4, 4). An additional object related to the cycle graphs is that of cycle

vector, which is a tuple that shows the distribution of the cycle lists. Consider the

possible values of the cycle lists of S, we can enumerate them as l1 = (4, 4, 4), l2 =

(8, 4), l3 = (6, 6) and l4 = (12). In the STS of Table 3.1 the resulting cycle vector is

(21,36,0,48), meaning that it contains 21 graphs with cycle list l1, 36 with cycle list

l2 and so on.

All of the aforementioned invariants can be calculated efficiently, being the com-

plete cycle structure, which is computed in time and space O(V 3), the most compu-

tationally expensive. However, non-isomorhic systems can share the same invariants.

Take, for example, the triple systems #7 and #13 presented in the canonical list of 80

non-isomorphic STS(15), shown in [7] Table 1.28. Both of these systems have cycle

vectors (21,36,0,48), even though they are not isomorphic.

A more simple invariant consists in considering only the number of cycles of length

4. In fact, the so-known Pasch configurations or quadrilaterals, closely related to these

cycles of minimal length, have been more carefully studied. A quadrilateral consists

of a set of 4 blocks in B of the form

Q = {(a, b, c), (a, d, e), (b, d, f), (c, e, f)}

whenever they exist. Three different cycles of length 4 can be obtained from this

quadrilateral, corresponding to the cycle graphs Gaf , Gbe, and Gcd correspondingly.

The aforementioned cycles can be seen in Fig. 3.2.

Then, a STS containing M different quadrilaterals will contain 3M different cycles

of length 4. Some results about the number of quadrilaterals that can be contained in

STSs can be found in [55]. These will be useful in the analysis of the ZKP proposed

in Section 6.3. For this reason, we proceed to enunciate a couple of them.

26 CHAPTER 3. STEINER TRIPLE SYSTEMS

b d a d a b

c e c f e f

Figure 3.2: Cycles of length 4 obtained from a quadrilateral.

Theorem 1. Let MQ(n) be the maximum number of quadrilaterals in any STS(n).

Then

MQ(n) ≤ n(n− 1)(n− 3)/24.

Theorem 2. An STS(n) contains exactly n(n − 1)(n − 3)/24 quadrilaterals if and

only if it is isomorphic to a projective geometry PG(k, 2), for some k ≥ 2.

The projective plane PG(k, 2) is built by considering S = Fk2 − {0}. Lines consist

of three points x, y, z ∈ X satisfying x+ y + z = 0. Each line will be considered as a

block for the STS. Thus, to create a STS(n) with all cycle switches of size 4 the size

of S must be v = 2k − 1 for some k. Finally, as a consequence of Theorem 2, there is

a unique STS, up to isomorphism, such that every cycle switch is of length 4.

For the most simple case, consider k = 3 and n = 7. We regard each vector

in Fk2 as a binary representation of an integer. Then the STS is built on set X =

{1,2,3,4,5,6,7} and triples

{123, 145, 167, 246, 257, 347, 356}.

This example corresponds to the Fano Plane.

In addition to isomorphisms, more transformations between systems can be de-

fined. In the next section, new operations on STSs which create systems that are not

always isomorphic will be introduced.

3.2.1 The switching transformation

Let S be a STS, x, y two different elements of its base set, and consider the cycle

graph Gxy. Since Gxy is a disjoint union of cycles, any vertex v ∈ Vxy determines a

component of the cycle graph uniquely. We denote the component containing v by

Gv
xy. From the definition of cycle component, we deduce that {x, y, v} is not a block

of S.

3.2. CYCLE GRAPHS 27

Definition 8. Let S = (X,B) be a STSs and {x, y, v} a triple not contained in the

set of blocks of S. Consider the component C = Gv
xy and define the sets T and T ′ as

follows:

T = {{v1, v2, c} ∈ B | {v1, v2} ∈ E(C))}, T ′ = {B4{x, y} | B ∈ T },

where4 denotes the usual symmetric difference of sets. The switching transformation

or switch under the cycle Gv
xy is the pair S ′ = (X,B′) where

B′ = (B − T)
⋃
T ′.

We denote the transformation by swC(S) or swvxy(S) interchangeably.

In other words, a switch consists of a replacement of the blocks in T of the form

{v1, v2, x} by the block {v1, v2, y} and conversely. The set T is determined by the

selection of the triple {x, y, v}.

Example 4. Consider again S as the STS(15) presented in Table 3.1. The represen-

tation of S is written again next.

S: 00000001111112222223333444455556666

13579bd3478bc3478bc789a789a789a789a

2468ace569ade65a9edbceddecbcdbeebdc

Consider the cycle graph G9
5,6. To produce S ′ = sw9

5,6(S), we proceed by comput-

ing the set of vertices and edges V5,6 and E5,6, respectively. Select the component

of the cycle graph containing vertex 9 and compute T and T ′, as it has been pre-

viously defined. Figure 3.3 is a visual representation of the operation. A block is

comprised of two vertices and the edge label. The resulting system S ′ is isomorphic

Figure 3.3: Visual representation of the cycle switch transform.

28 CHAPTER 3. STEINER TRIPLE SYSTEMS

to system #2 in Table 1.28 of [7], the isomorphism being given by the transposition

(d e). Now, by applying a new switching S ′′ = sw7
5,6(S

′) results again in a new STS,

which, in this case, is exactly system #2. The first transformation takes S into a

non-isomorphic system, but the second one transforms S ′ into an isomorphic one.

The result of a cycle switching is always a new STS of the same order. Both,

isomorphic and non-isomorphic systems can be obtained by performing the switching

operation.

Theorem 3. Let S = (X,B) be a STS(n) and {x, y, v} ⊂ X a block not contained in

B. Then S ′ = swvxy(S) is an STS(n) which, in general, is not isomorphic to S.

Proof. To verify this assertion, we will proceed in two steps: first, we show that the

size of the block set of S ′ is exactly n(n−1)
6

and second, that every pair of elements

{a, b} is contained in a block of S.

1) Since T ⋂ T ′ = ∅ and |T | = |T ′|, the number of blocks after applying swvxy does

not change.

2) Consider a pair of elements a, b ∈ X and the block B = {a, b, c} ∈ B that contains

it. Since block {a, b, c} 6∈ T is not replaced, it suffices to check pairs contained in

blocks of T .

• If a, b 6∈ {x, y}, then c ∈ {x, y}. If c = x then the block B is transformed into

B′ = {a, b, y} ∈ S ′. When c = y the case is analogous.

• Now, consider a = x. Note that the block {y, b, c}, which contains {b, y} will be

transformed into {x, b, c}, then the pair {x, b} lies in a block in T ′. The same

analysis applies to a = y and also to b ∈ {x, y}.

Since any pair is contained in at least one block and the number of blocks is n(n−1)
6

,

the resulting system S ′ is a STS. The fact that the transformation is not necessarily

isomorphic, is followed directly by the result obtained in Example 2.

By applying swvxy when Gv
xy is a cycle of length n− 3, the resulting STS is always

isomorphic, with the isomorphism given by the permutation (x y). A more general

result can be stated.

Proposition 4. Let S be a STS, {x, y} ⊂ X, and Gxy a cycle graph with connected

components C1, . . . , Cl. Let S ′ be the STS

S ′ = swCl ◦ · · · ◦ swC1(S).

Then S ′ is isomorphic to S.

3.2. CYCLE GRAPHS 29

Proof. After applying switchings with all the cycles Ci, the result is equivalent to

permute the set X with the transposition (x y).

Proposition 5. Let S and Ci be as in the last proposition. Then

swCi ◦ swCj(S) = swCj ◦ swCi(S)

for every 1 ≤ i, j ≤ l.

Proof. For each cycle Ci, we consider the corresponding partial systems Ti = {{a, b, c} ∈
B | {a, b} ∈ Ci} and T ′i = {B4{x, y} | B ∈ T }. The result for i = j is clear. If

i 6= j then Ti
⋂ Tj = ∅ and T ′i

⋂ T ′j = ∅. The set operations (S − Ti)
⋃ T ′i are not

dependant on the order in which they are performed, then the transformations are

commutative.

The switching operation is very useful to get new systems from previously known

ones. In the case of STSs of order ≤ 19 it has been shown that any system can be

obtained as a result of applying switching transformations [24, 30]. In other words,

the isomorphism classes of systems of order at most 19 are connected with the switch

transformation. The result is unknown for systems of higher order.

From Proposition 5 it can be concluded that the switch transformation is invert-

ible, with an inverse being the transformation itself. Thus, an inverse of a composition

of several switchings is just the composition of the applied transformation in reversed

order.

An interesting task consists in finding a composition of switches that send a STS

into another. Given the huge amount of systems for n > 15 and the infinite possible

combinations of compositions, this problem is in fact a difficult one. The easiest case

consists in inspecting a couple of systems transformed by applying a single switch.

The required transformation can be easily found by looking at the blocks that differ

from the block sets of S1 and S2.

Given the importance of the set T involved in the transformation, we will denote

T vxy to the partial subsystem

T vxy = {{a, b, c} ∈ B | {a, b} ∈ Gv
xy}

to specify its relation to the switching operation defined by the graph Gv
xy.

3.2.2 Effect of switching on cycle graphs

In addition to the behavior of the switching transformation in STSs, it is also im-

portant to analyze its effect on cycle graphs. In the subsequent, Gv
xy will be the

component of Gxy containing the vertex v, where {x, y, v} is a suitable triple.

30 CHAPTER 3. STEINER TRIPLE SYSTEMS

Note 1. Consider a block {a, b, c} ∈ B. The pair {a, b} appears as an edge of Gc,x

for every x 6∈ {a, b}. This can be seen directly from the definition of Gc,x.

The influence of the transformation can be easily observed by analyzing the edges

affected. This is stated in the following proposition.

Proposition 6. Let C = Gv
xy and C its complement in Gxy. A cycle graph Gij

remains unchanged iff either

1. {i, j} = {x, y}, or

2. {i, j} ⊂ V (C)
⋃{z}, or

3. |C| = 4 and {i, j} are opposite vertices in C.

Proof. ⇒)

1. Gv
xy only switches vertices x, y when they appear in Gij. None of these appear

in Vxy.

2. Consider the sets T vxy and Tij, corresponding to the blocks related to the cycle

graph component Gv
xy and the cycle graph Gij. A particular case of these block

sets can be seen in Figure 3.3. It is clear that, if T vxy
⋂ Tij = ∅, then the

structure of the cycle graph is not affected. That the intersection is empty

means that no block with a pair of the form {x, v} or {y, v} with v ∈ V (C) is

present in Tij. Since x and y will be elements in V (Gij), then we should have

{i, j} ⊂ V (C)
⋃{z}, as stated.

3. If |C| = 4, then T ixy is a Pasch configuration, which can be regarded as

T ixy = {{i0, i1, x}, {i1, i2, y}, {i2, i3, x}, {i3, i0, y}}

with i = i0, j = i2, since they are opposed vertices. Observe that Gij has

the cycle (i1, x, i3, y), which, after swapping x and y, is mapped to (i1, y, i3, x).

Though relabelled, the obtained cycle is identical, but in reverse order. The re-

maining components of Gij are not affected since their vertices are not elements

of C.

⇐) We need to show that for any pair {i, j}, which is not identified by one of the

three groups listed above, its cycle graph Gij is modified.

First, note that V (C)
⋃
V (C)

⋃{z} = X − {x, y}. Let us start with i ∈ V (C)

and j 6= x. Then x ∈ V (Gij) and the block {i, x, u} ∈ T . Consider two cases:

3.2. CYCLE GRAPHS 31

x . . . y . . .

u . . . u . . .

(a) Gij for i ∈ V (C), j 6∈ {x, y}

x v y v

u y u x

(b) x, y ∈ Vij as opposite vertices.

Figure 3.4: Effect of sw on cycle graphs.

1. i 6= y. Then after applying swC the edge {x, u} ∈ Eij is transformed into {y, u}.

2. i = y. Then the cycle Gij is transformed into Gix.

In any case, the cycle graph is transformed. Observe that the only case where this

switch does not change the graph is for the case |C| = 4 and i, j are opposite vertices.

Let us continue with a final observation regarding the switching operation. Con-

sider a cycle graph Gxy with at least two components. Let vi and vj two vertices of

Gxy from different components, with respective edges {vi, vi+1} and {vj, vj+1}. Now,

consider the transformation swxvi,vj+1
. This transformation maps the triple {vi, vi+1, x}

to {vj+1, vi+1, x}. Additionally, the triple {vj, vj+1, x} is mapped to {vj, vi, x}. The

result is shown in Fig. 3.5. In particular, if Gx
vi,vj+1 is a Pasch configuration, then the

cycles Gvi
xy and G

vj
xy will be joined in a unique cycle.

A similar observation can be done in the opposite direction. By applying the

switch transformation swxvi,vj to a cycle having edges {vi, vj} and {vi+1, vj+1}, the

original cycle will be split into two different cycles of shorter length. These operations

are better visualized in Figure 3.5.

32 CHAPTER 3. STEINER TRIPLE SYSTEMS

vi vi+1 vi vi+1

vj vj+1 vj vj+1

x

x

x x

Figure 3.5: Joining two cycles with a switching transformation.

3.3 Configurations

Related to partial systems and cycle graphs, the concept of configuration has been

widely studied since they provide additional characterizations of STSs that permit

deciding isomorphism. This is, configurations provide more invariants to the existent

catalog.

Definition 9. Let S be a STS. An l-line configuration is a subset of l lines (blocks)

of the set B. An l-line configuration on m points is a set of l blocks whose union has

size m and is denoted as (m, l)-configuration.

In other words, a configuration consists of a partial system extracted from a STS.

An example of the above definition is the Pasch configuration previously introduced.

The existence problem arises again when trying to identify all possible l-configurations

on m points. Isomorphisms between configurations are induced by STS isomorphisms.

For instance, for m = 6 and l = 4, there is a unique configuration up to isomorphism,

known as the Pasch configuration. A study of the number of possible configurations

of small size can be found in [26]. We follow the notation there introduced.

Constructions of STSs avoiding certain configurations have been proposed, for

instance, the anti-Pasch systems [25, 36], or the 6-sparse systems, studied in [19],

which are systems with no (8,6)-configurations.

The smallest anti-Pasch STS has order 15, numbered 80 in the Table 1.28 [6] and

is unique (up to isomorphism) in this sense. Opposite to this behavior, the STS(15)

number 1 has the maximum possible number of such configurations, likewise, unique

up to isomorphism.

The set of triples involved in 6-cycles can be considered as an (8, 6)-configuration,

which is isomorphic to {012, 034, 135, 246, 257, 367}. The 6-cycle configuration is one

3.4. TRADES 33

of the five non-isomorphic (8, 6)-configuration that can be contained in Steiner triple

systems. These configurations, denoted E1, E2, E3, E4 and E5 in [26], together with

the 2 (7, 5)-configurations D1, D2, known as mitre and mia, are essential for building

difficult instances of the isomorphism problem, which will be addressed in Chapter 5.

The following table extracted from [19], enumerates relevant (n, n+ 2)-configurations

for n ≥ 6.

n Name Blocks

4 Pasch 012, 034, 135, 245

5 Mitre 012, 034, 135, 236, 456

5 Mia 012, 034, 135, 245, 056

6 6-cycle 012, 034, 135, 246, 257, 367

6 Crown 012, 034, 135, 236, 147, 567

6 012, 034, 135, 236, 146, 057

6 012, 034, 135, 236, 146, 247

6 012, 034, 135, 236, 147, 257

Table 3.2: Small configurations in Steiner triple systems.

Different from what is done in [19], we will aim our efforts in finding systems with

as many (8,6)-configurations, specifically, 6-cycles. The reason for this will become

apparent in Chapter 5.

3.4 Trades

Consider the sets T and T ′ defined in Theorem 3. By replacing the triples in T by

those contained in T ′, we obtained a new STS. These sets of triples can be regarded

as partial subsystems of S and S ′, respectively. What has been done in this case was

the result of applying a switch, but this can be easily generalized to provide another

operation on STSs.

Definition 10. A trade is a pair of configurations {T , T ′} where each pair {x, y} ⊂ X

appears in some block of T if and only if it also appears in a block of T ′.
This definition ensures that after trading, the resulting system S = (S − T)

⋃ T ′
is also a STS. The smallest trade corresponds, in fact, to Pasch configurations. Fur-

ther details about trades can be found in [18] where suitable configurations and the

determination of non-isomorphic trades of small size are discussed. For our purposes,

the following result is enough to address our main goal.

34 CHAPTER 3. STEINER TRIPLE SYSTEMS

Proposition 7. Let T = (Y, T) be a subsystem of S. Define T ′ = φ(T) for the

isomorphism induced by a permutation of the set Y . Then (T, T ′) is a trade.

Proof. Since T is a subsystem, every pair {x, y} ⊂ Y is contained in some block of

T . The same happens for T ′, since it is a Steiner triple subsystem on the same set,

fulfilling the definition of trade.

Chapter 4

The Isomorphism Problem for

Steiner Triple Systems

We remind that two STSs S1 = (X,B), S2 = (X ′,B′) are isomorphic if there is a

bijection φ : X → X ′ that induces a bijection between triple sets B → B′. Though

in a brute force search, one must look at the n! possibilities that could result in an

isomorphism, the problem is can be addressed more effectively. Our main goal in this

chapter is to characterize difficult instances for the isomorphism problem to propose

parameters for cryptographic purposes.

Two different problems are discussed:

1. Given two systems, decide whether they are isomorphic or not.

2. Given two isomorphic systems, find an isomorphism between them.

Up to now, the best algorithms to solve these problems in general work by construc-

tion, i.e., by specifying a bijection that specifies the required isomorphism is given or

proving that no bijection exists.

4.1 Miller’s Algorithm

It is possible to regard a STS S = (X, T) as a quasigroup by defining the pair (Q, ∗)
where Q = X and ∗ : Q→ Q is defined as follows:

• For every pair of different elements x, y ∈ S, set x ∗ y = z if {x, y, z} ∈ T .

• x ∗ x = x for every x ∈ X.

35

36 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

It is straightforward to verify that the quasigroup described above is a Steiner quasi-

group. The relevance of these quasigroups will become more evident in Chapter 4.

The main goal in this section is to extend the existing relations between quasigroups

and STSs.

The first procedure to be considered was presented by Miller in 1978 [39]. This

algorithm finds isomorphisms by construction in time O(nlog(n)), and is suitable for

many algebraic structures. The algorithm was proposed to find isomorphisms between

quasigroups. To introduce the aforementioned algorithm, first let us note that for a

subquasigroup H of Q, if x ∈ Q − H then |xH| ≥ 2|H|, i.e., the subquasigroup

generated by appending an element to H at least doubles its size. This observation is

key for finding a generator set of the quasigroup, which us the main result that leads

to Miller’s algorithm, shown in Alg. 1.

Algorithm 1 Miller’s Algorithm for Quasigroup Isomorphism

Require: Two quasigroups Q, Q′

Ensure: Isomorphism φ : Q→ Q′ are isomorphic or falseotherwise

1: Find a set of generators H of size m with m ≤ log(n)

2: for each possible subset H ′ ⊆ Q′ of size m do

3: if there is a bijection φ : H 7→ H ′ inducing an isomorphism then

4: return φ

5: return false

This algorithm has a complexity O(nlogn), as it will be analyzed next. First, there

are
(
n
m

)
different subsets of size m in Q, thus, the loop in step 2 iterates

(
n
m

)
in the

worst case. Step 3 should test all possible assignments of the m generators. There

are m! possible bijections. We can conclude that at most
(
n
m

)
m! = n(n − 1) . . . (n −

m + 1) < nm = O(nlogn) are required to determine an isomorphism or decide that

Q,Q′ are not isomorphic.

Thus, in order to find hard instances for the isomorphism problem, we should find

systems such that the smallest generator set of its Steiner quasigroup has as many

elements as possible. The relation of generators and quasigroups is clear. The more

generators a quasigroup has, the more subquasigroups it contains.

Proposition 8. A STS S contains a nontrivial subsystem T ⊂ S if and only if its

associated quasigroup QS contains a nontrivial subquasigroup QT ⊂ tS. Moreover,

there is a bijective relation between the subquasigroups and subsystems.

Proof. Consider a STS S and a subsystem T ⊂ S. Since T is a STS by itself, it has an

associated quasigroup QT . Since every element of QT is an element of QS, then QT is

4.2. ALGORITHM BASED ON CYCLE GRAPHS 37

a subquasigroup. Additionally, if T ′ 6= T is another subsystem, then the underlying

set of T ′ is different to that of T . Thus QT ′ 6= QT .

From the last result, we note that STSs with several subsystems are required for

the isomorphism problem to be difficult if addressed with Miller’s algorithm. Never-

theless, a big amount of subsystems or, equivalent, a quasigroup with several genera-

tors do not guarantee that the problem is difficult, and one of the main drawbacks of

Miller’s algorithms relies in the selection of possible bijections done for every possible

subset of size m, performed in step 2. Instead, a more intelligent selection by choosing

suitable generators improves considerably the performance of the algorithm for the

most difficult cases. The enhancements will be introduced in Section 4.3.

The next step is to identify more attributes that help to identify convenient sys-

tems. The desirable characteristics will arise in the next section while discussing

another approach to address the isomorphism, this time directly in Steiner triple

systems.

4.2 Algorithm based on cycle graphs

As mentioned in Section 3.2, cycle graphs and cycle lists provide useful invariants for

fast non-isomorphism tests. Though isomorphic STSs have identical cycle structure,

the converse is not necessarily true. In this section, we deliver a deeper analysis of

the cycle graph to provide another isomorphism test. The computational complexity

of such an algorithm is better than Miller’s algorithm in most of the cases. Even

though the complexity is not improved for every case, the most important result in the

following analysis is the provision of characteristics required for difficult isomorphisms

instances.

Let us recall that an isomorphism φ : S → S ′ between STSs yields a bijection

between isomorphic cycle graphs Gxy 7→ Gφ(x)φ(y). Then, to provide an isomorphism

between STSs, we can focus on solving the isomorphism problem in graphs. Specif-

ically, an isomorphism between graphs consisting of disjoint cycles will be required.

Once a suitable solution for two given cycle graphs is found (one for each system), the

next step is to verify that the selected assignation provides, in fact, an isomorphism

for S and S ′.

Consider two cycles of length l. Then, a total of 2l different isomorphisms can

be defined between them. They are obtained by shifting the vertices forward and

backward. If a cycle graph consists of a single cycle, the problem of finding an

isomorphism is easily solved. In fact, we need only to test the possible isomorphisms

38 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

between the selected cycle of S and the different cycle graphs of S ′ consisting of a

unique cycle. The problem gets harder when we consider cycle graphs conformed by

the union of several cycles.

Proposition 9. Let G and G′ be disjoint unions of k cycles of length l. Then there

are (2l)k! different isomorphism between G and G′.

Proof. Each cycle from G can be mapped to any cycle in G′. We have k! different

options for defining the component-wise isomorphism. The conclusion is obtained by

considering the observation that two cycles have 2l different isomorphisms.

Corollary 1. Let G and G′ be disjoint unions of k = k1 + · · · + kr cycles of length

l1, . . . , lr correspondingly. Then there are
∑

i(2li)ki! different isomorphism between G

and G′.

Even though there are several possible isomorphisms between cycle graphs, just

a few of them (if any) develop in a valid isomorphism for the underlying systems.

It is possible to avoid verifying every isomorphism by extending partial bijections

obtained from one or more components. Once two isomorphic cycle graphs are chosen

to start the isomorphism search, Algorithm 2 can be used to extend a bijection from

a partial definition. This algorithm allows to fix values from assigned vertices in step

Algorithm 2 Extending a partial bijection

Require: Steiner Triple Systems S and S ′ and a partial bijection φ

Ensure: An extension of the partial bijection

1: for each pair {a, b} ⊂ X do

2: if {a, b} is mapped under φ then

3: a′, b′ ← φ(a), φ(a)

4: Search the triple {a′, b′, c′} containing {a′, b′}
5: if c is mapped under φ then

6: if c′ 6= φ(c) then

7: return false # inconsistent assignment

8: else

9: φ(c)← c′

10: return φ

9. Previously, in step 7, unsuitable assignations are detected, allowing to discard the

partial bijection. This is done by verifying that φ(xy) = φ(x)φ(y) for every x, y ∈ X.

4.2. ALGORITHM BASED ON CYCLE GRAPHS 39

If Algorithm 2 fails to extend an isomorphism for STSs, a new isomorphism be-

tween cycle graphs must be tried. If no isomorphism can be found from the selected

couple of graphs, a new pair must be inspected. We are ready to provide the full

algorithm for isomorphism test based on cycle graphs. First, since longer cycles fix

more elements than shorter ones, we search in S for the cycle graph with bigger com-

ponents. Another approach is to select the one with the least components. Once a

good cycle graph has been chosen, we proceed by trying to find a suitable bijection

by trying on every possible isomorphism between cycle graphs. If every isomorphic

graph of S ′ has been tried and no STS isomorphism is found, we can conclude that

S and S ′ are not isomorphic. These ideas are summarized in Algorithm 3.

Algorithm 3 Finding isomorphisms with cycle graphs

Require: Steiner triple systems S and S ′ of the same order.

Ensure: Isomorphism if exists or false otherwise.

1: {x, y} ← any pair with Gxy having minimal number of components

2: for each {x′, y′} ⊂ X ′ do

3: for each possible graph isomorphism φ : Gxy → G′x′y′ do

4: φ← Extend(φ, S, S ′) # use Algorithm 2

5: if φ : S → S ′ is a complete isomorphism then

6: return φ

7: return false

The algorithm can be improved by starting step 3 with the longest connected

component and using Algorithm 2 to accelerate the analysis. In fact, the number

of cycle graph isomorphisms to consider can be drastically reduced according to the

following result.

Proposition 10. Let S be a STS and Gxy a cycle graph with a connected component

C ⊂ Gxy with |C| ≥ n−2
2

. The set T , as defined in the switching transformation,

generates the system S.

Proof. The number of elements in the partial STS T is at least n+1
2

, given by Y =

V (C)
⋃{x, y}. Let QS be the Steiner quasigroup defined by S. Since |Y | ≥ |QS |

2
, then

〈Y 〉 = QS. The bijective relation between subsystems and subquasigroups leads to

the result.

With this result, it is only required to find a cycle with appropriate length, i.e.,

with length at least n−3
2

, which happens in several cases. For instance, the smallest

case when no cycle with length less than n− 3 exists is for n = 15. Only 2 out of the

40 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

80 non-isomorphic classes have such behavior, corresponding to the STS #1 and #2

in the canonical table shown in [9]. Every cycle graph in STS #1 consists of three

disjoint cycles of length four each. In STS #2, the count of cycles with lengths (8,4)

is 48, and for cycles with lengths (4,4,4) is 57. In the remaining systems, cycles of

length 12 can be obtained. In view of what has been mentioned before, only system

#1 represents a challenge to solve the isomorphism problem.

As a matter of fact, of the 11,084,874,829 different classes of order 19, only

86,972,331 posses non-trivial subsystems [31]. This means that 99.2% of these in-

stances posses cycles of length 16, and then the isomorphism problem is efficiently

solved. The remaining classes contain either a subsystem of size 7 or of size 9 (or

both). From these results, it is expected that only a very small number of the sys-

tems of any order provide some difficulty. Thus, for a huge number of instances,

the expected running time will be polynomial. A single cycle will suffice to run the

isomorphism test.

4.2.1 Complexity of the algorithm

The complexity analysis for the proposed algorithm is mainly based on Proposi-

tions 9 and 10. According to the aformentioned results, the worst case would appear

when every cycle graph has the maximum number of components, this is k =
⌊
n−3
4

⌋
.

The ideal case would happen when every cycle has length 4. With the notation intro-

duced in Proposition 9, l = 4 the maximum number of isomorphisms can be estimated

as

(2l)k! = 8 ·
⌊
n− 3

4

⌋
! = O(nbn−3

4 c)

However, as mentioned before, by using Algorithm 2 in combination with Algo-

rithm 3, a bijection can be extended without using all possible isomorphisms, which

can reduce the running time of the algorithm, and when a cycle of length l ≥ n−3
2

is

found, the number of possible graph isomorphisms to consider is reduced to 2l. Now,

since the procedure is performed for each cycle graph, the number of iterations is (at

most) n(n−1)
2

, the total complexity would rise to

n(n− 1)

2
(2l)k! = 8

n(n− 1)

2

⌊
n− 3

4

⌋
! = O

(
nbn−3

4 c+2
)

This is much more expensive than the Miller’s algorithm, but only for very few

cases. In the vast majority of the systems, k is reduced to 1 and l ≥ n/2. The

performance of the algorithm is drastically improved to O(n3).

4.2. ALGORITHM BASED ON CYCLE GRAPHS 41

The upper bound for the worst case complexity of the proposed algorithm can

be lowered by noticing that many of the graph isomorphisms lead to inconsistent

bijections. This is early noticed by Algorithm 2, allowing to discard several bijections.

A more refined analysis will be performed in Section 4.3, where improvements to the

Miller algorithm are proposed based on the observations here detailed.

Example 5. To better understand the isomorphism test based on cycle graphs, a

run willl be performed in two STSs of samlle order. For this, consider two isomorphic

triple systems: Since both systems are isomorphic, the cycle vector of both systems

S1: 00000001111112222233333444556666788

123457c24578a4579b4579d59a9a789cbab

6da8b9e3cde9b68caeb68ce7deecaebdddc

S2: 0000000111111222223333444455666778a

123458923589d3569b4567578abc79c8a9b

67bcaed4c7abea8decd98e69beedbaedccd

is identical. In both cases, cycles of length 12 exist, and should be selected to provide

a fast isomorphism search. However, to detail the use of the algorithms previously

mentioned, the analysis will be carried out over the cycle graph G01 of S1 and G09 of

S ′, both consisting of two cycles of length 6. The graphs are shown in Figure 4.1.

2 3 a 4 c e

d 5 b 8 9 7

(a) Cycle graph of S for the pair {0, 1}.

1 b 3 2 e 8

6 a 5 7 4 c

(b) Cycle graph of S′ for the pair {0, 9}.

Figure 4.1: Cycle graphs for isomorphism technique.

We consider assigning the vertex sets in the order shown in Figures 4.1a and 4.1b.

Additionally, 09d ∈ S2 must be the image of 016 ∈ S1 under φ. We start considering

42 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

the partial bijection defined by assigning vertices in the following way

0 7→ 0 6 7→ d 3 7→ b b 7→ 5

1 7→ 9 2 7→ 1 a 7→ 3 5 7→ a

Then, for every pair in the defined subset we find the third element looking in its

containing block. For instance, consider the block 02d of S1. Since the image of the

pair 02 is 01, then the partial function φ is extending by setting φ(d) = 6. After one

round the function is extended with

0 7→ 0 2 7→ 1 b 7→ 5 4 7→ e e 7→ 7

1 7→ 9 3 7→ b 5 7→ a 8 7→ 8 7 7→ 4

6 7→ d a 7→ 3 d 7→ 6 9 7→ c c 7→ 2

A fast inspection shows that in effect, this bijection is a suitable isomorphism

of triple systems. The isomorphism between the remaining cycles is fixed by the

isomorphism defined in the first components.

4.2.2 Joining cycle graphs

The first observation to take in account comes from whats has been developed in

Section 3.2: the switching transformation can be used to create new instances with

longer or shorter cycles. Having this in mind, the goal is to get suitable transforma-

tions that lowers the expensive step of finding an isomorphism between graphs with

several cycles. This is achieved by selecting two isomorphic cycle graphs, say Gxy and

G′x′y′ , from S and S ′ respectively, and transforming them into graphs Hxy and H ′x′y′

with few cycle graphs, ideally getting a single one. This allows to apply Algorithm 3

efficiently. A single step is required to pass from a cycle graph with several cycles

to another with a single one. This step consists in performing suitable switching

transformations to join the cycles into a single one.

Specifically, consider a system S and a cycle graphGxy with connected components

C1, . . . , Ck. For each component, pick a vertex vi ∈ Ci. The system having a unique

cycle is given by

T = swxv1v2 ◦ · · · ◦ swxvk−1vk
(S)

The resulting STS T has indeed at least a cycle graph with a unique component. To

verify this, define T0 = S and Ti = swvivi+1(Ti−1) for i = 1, . . . , n − 1. The cycles

C1, C2 ⊂ Gxy are transformed into a unique cycle on the vertex set V (C1)
⋃
V (C2).

The remaining cycles are unchanged, as has already been observed in 3.2.2. Thus, the

4.2. ALGORITHM BASED ON CYCLE GRAPHS 43

cycle containing v1 after i iterations is conformed by the vertex set V =
⋃i+1
j=1 V (Cj),

having length
∑i+1

j=1 |V (Cj)|.
Finally, solving the isomorphism problem for the long cycles helps to solve the

problem in the original systems. This idea is better understood in the commutative

diagram shown in Figure 4.2. In this diagram we chose to denote by sw to the

composition = swxv1v2 ◦ · · · ◦ swxvk−1vk
for simplicity.

· · · · · ·

· · ·

· · ·

· · ·

· · ·

Gxy

sw

φ

Hxy

sw−1

G′x′y′

φ

H ′x′y′

Figure 4.2: Solving isomorphism with cycle graphs.

In order to provide a correct algorithm, it should be observed that the switching

transformation is not commutative, thus the ordering of the cycles Ci matters. The

left side arrow of Figure 4.2 can be computed with an arbitrary order, however the

right arrow should be selected carefully. In addition to the order, an additional

difficulty lies in the process of selection of elements {x, y, v} to perform swvx,y, the

resulting systems T and T ′ obtained from isomorphic systems S and S ′ must be

isomorphic as well. To ensure that on each transformation, the resulting systems are

again isomorphic, a closer inspection on how the cycles are transformed could be done

to guarantee that at least, the cycle vectors are identical on every step. To this end,

the result obtained in Proposition 6 can be beneficial. Nevertheless, the simplicity

and fine results obtained by the improvements introduced in the next section moved

us to employ the technique there proposed. Given this information, Algorithm 4 can

be used to find an isomorphism between STSs provided that it exists.

44 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

Algorithm 4 Finding isomorphisms with cycle graphs

Require: Steiner triple systems S and S ′ of the same order.

Ensure: Isomorphism if exists or false otherwise.

1: Select {x, y} ⊂ X at random.

2: Compute the cycle graph Gxy

3: Select vi ∈ Ci at random for each component C1, . . . , Ck ∈ Gxy

4: T ← swxv1v2 ◦ · · · ◦ swxvk−1,vk
(S)

5: for each {x′, y′} ∈
(
X
2

)
do

6: if Gx′,y′ ≈ Gxy then

7: for each σ ∈ Sk do

8: Select v′i ∈ C ′σ(i) at random

9: T ′ ← swxv′1v′2
◦ · · · ◦ swx′v′k−1,v

′
k
(S ′)

10: φ← TestIsomorphism(T ,T ′) #use Alg.3 on Gxy and Gx′y′

11: if φ is an isomorphism then

12: return φ

13: return false

4.2.2.1 Complexity

Let us recall that the notation swvxy(S) is only another way to express swxy(S,C),

where v ∈ V (C). Then the selection of the vertex sequence vi aforementioned can

be arbitrary within each corresponding cycle Ci. As to the complexity of the algo-

rithm, the relevant process starts corresponds to iterations in steps 5 and 7. Step

5 iterates over every possible pair, totaling n(n−1)
2

at most. The second iteration

is necessary to cover all possible transformations, following the observation on the

non-commutativity of the switching operation. Finally, test isomorphism is linear on

n, since the test is made on one cycle. The maximum number of iteration is then

k!nn(n−1)
2

.

Comparable to the cycle graph algorithm presented in section 3, the expensive

step lies in the amount of possible permutations in the component set of the cycle

graph Gxy.

4.3 Improving Miller’s algorithm

An significant improvement of Miller’s algorithm has been presented in [8]. The tech-

nique employed consists in computing a representation for a STS, known as the canon-

ical form, which is unique up to isomorphism, i.e., two non-isomorphic STSs will have

4.3. IMPROVING MILLER’S ALGORITHM 45

a different canonical form. To obtain a canonical representation, a lexicographic or-

dering of the triples is considered to define an ordering in the set of all STS(n). Since

a STS(n) has roughly n! different representations, obtaining the canonical form re-

quires comparing all possible isomorphisms, which requires an exponential amount of

comparisons. This upper bound is lowered with the help of Miller’s algorithm, thus

requiring only the permutation of generators. The final complexity of the algorithm

reduces to O((log n)2) running time while requiring O(nlogn+2) processors to achieve

this bound.

This is a considerable improvement, and considering nowadays technology, this

poses a huge disadvantage for using the isomophism problem on STSs for crypto-

graphic purposes. In addition to this, it is conjectured that the average-case com-

plexity of Miller’s algorithm is polynomial, something that has been already pointed

out in Section 4.2. Notwithstanding, a detailed analysis is required in order to find

instances where the number of processors required makes the task infeasible. In this

section, improvements to the (sequential) Miller’s algorithm are proposed to find suit-

able instances. These improvements are guided by a more detailed analysis of both

the cycle graphs and their relation to the Steiner quasigroups generators. Results

previously obtained concerning cycle graphs will be utterly useful for this purpose.

Cycle graphs are useful to guide the search of the generators of the associated

quasigroup. For instance, take the isomorphic systems S1 and S2 given in Example 5,

and the cycles shown in Figure 4.1. It is an easy task to verify that the elements

{2,3,a} are generators for QS1 . These elements are mapped into the set of generators

{0,9,1} (in this order) of QS2 by the isomorphism found. both triples are consecutive

edges of G0,1 and G0,9 respectively. On the other hand, the triple {0,1,2} is also a

set of generators of QS2 , but there is no bijection of X sending {2,3,a} into {0,1,2}
that yields an isomorphism φ already found in Example 5. This can be easily verified

by hand, but also because the later triple does not appear as consecutive vertices of

any isomorphic cycle graph of S2.

The current approach is based on a more intelligent selection of the generators of

the quasigroup associated to STSs. As it has been mentioned in Section 4.2, isomor-

phism tests on systems with big cycle graph components can be executed efficiently.

This fact will be used to provide a substantial improvement for the Miller’s algorithm.

Proposition 11. Let S = (X,B) be a STS and QS its Steiner quasigroup. Consider

a pair of elements {x, y} ⊂ X and the cycle graph Gxy. Let C ⊂ Gxy be a connected

component with edges {v0, v1} and {v1, v2}, v0 6= v2. Then

〈V (C)〉 = 〈v0, v1, v2〉.

46 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

Proof. Observe that x, y ∈ 〈v0, v1, v2〉 (directly from the definition of cycle graph).

The complete cycle is obtained by observing that

vi+1 =

{
vix if y = vi−1vi

viy if x = vi−1vi

for i = 3, . . . , |C| − 1. In fact, for any element in v ∈ V (C), it can be seen that

〈x, y, v〉 = 〈v0, v1, v2〉.

Additionally, the Steiner subsystem T generated by the triples T xxy involved in the

cycle component C is related to the subquasigroup generated by QT = 〈v0, v1, v2〉.
This is, the bocks in T vxy generate essentialy the same object than the vertices vi. Any

3 vertices of a cycle of length v − 3 generate the full Steiner quasigroup, i.e., it has

only 3 generators. Considering this observation, testing isomorphism on two random

STSs is generally performed efficiently, since the number of generators in the Miller’s

test is extremely low. Only 3 in a vast amount of the cases. Avoiding these cases will

be the main objective for the next section.

The algorithm here proposed makes use of the aforementioned result by using

bigger cycles first. The first step is to get a small set of generators. Algorithm 5

gets generators considering a cycle graph with few components as possible. To find a

generator set with minimum size, we should proceed by performing Algorithm 5 for

every pair {x, y} ⊂ X, however, by considering a cycle graph as determined in step

1, it is guaranteed that the size is close to the minimum.

Algorithm 5 Getting a generator set

Require: Steiner triple system S and a pair {x, y}.
Ensure: A set of generators of the Steiner quasigroup of S.

1: C1, . . . , Ck connected components of Gxy with |Ci| ≥ |Ci+1|.
2: V,← {v1, . . . , vk} with vi selected at random from Ci

3: R← {x, y}
4: Q← 〈x, y〉
5: while V 6= ∅ do

6: i← minimum sub-index of vi ∈ V
7: R← R

⋃{vi}
8: Q← 〈R〉
9: V ← V −Q
10: return R

4.3. IMPROVING MILLER’S ALGORITHM 47

The algorithm is based on the Miller’s algorithm, but in this case we start by

adding the elements that generate bigger sub-quasigroups first. Though the maximum

number of elements in V is
⌊
n−3
4

⌋
, the maximum number of elements in the generator

set is log n.

The isomorphism search algorithm starts at finding a set of generators from one

of the Steiner quasigroup. Then, from isomorphic cycle graphs generators are also

extracted and bijections between generator sets are verified to check if an isomorphism

is obtained. Suitable bijections considered in step 6 of Algorithm 6 must consider the

length of cycle Ci which contains vi. This is, if |Ci| 6= |C ′j| then φ(vi) 6= vj.

Algorithm 6 Improved version of Miller’s algorithm

Require: Steiner triple systems S and S ′ of the same order.

Ensure: Isomorphism if exists or false otherwise.

1: Let {x, y} be such that Gxy has minimal number of connected components

2: R←Generators(S, x, y) #use Algorithm 5

3: for each {x′, y′} ⊂ X ′ do

4: if the cycle lists of Gxy and G′x′y′ are identical then

5: R′ ←Generators(S ′, x′, y′) #use Algorithm 5

6: for each suitable bijection φ : R→ R′ do

7: if φ defines an isomorphism then

8: return φ

9: return false

The main difference of Algorithm 6 with Miller’s algorithm consists in testing a

set of generators of S ′ related to the fixed set of generators of S related by their

membership to cycles of the same length. This is done in step 6, where, at most,

(log n)! different bijections should be tested. The corresponding running time does

not differ from that of Miller’s technique. As we have already noted, for the average

case, the number of generators is extremely low, and the original algorithm could

outperform the improved one, mainly because the latter requires computing a series

of cycle graphs to find the best option. To reduce this computational burden, only

a small sample of the possible n(n−1)
2

pairs is selected and the best graph for the

test is kept. Practical examples will be performed and analyzed in Chapter 5 to

provide further evidence on the choice of suitable systems for the ZKP protocol to be

proposed.

Thus, in addition to requiring small cycles in every cycle graph, it is also desir-

able that an important number of cycle graphs Gxy are isomorphic. Otherwise, the

48 CHAPTER 4. THE ISOMORPHISM PROBLEM FOR STS

smallest number of isomorphism classes in the set of cycle graphs can be used to find

the isomorphism between systems. This requirement is an important one since Algo-

rithm 6 is designed to discard unsuitable generators (step 4), improving the efficiency

for this instances substantially.

Chapter 5

Building difficult instances

In the previous chapter, desirable characteristics for Steiner triple systems to provide

difficult isomorphism instances were established. The characterization emerged as

the result of examining the best general algorithms that solve the STS isomorphism

problem. A summary of the characteristics is listed below:

• The Steiner quasigroup of the STS must have as many generators as possible.

• Cycle graphs must have several connected components, and ideally, every con-

nected component should have the same length.

• The isomorphism test given in Alg. 6, discards non-isomorphic graphs. Thus,

every cycle graph should be isomorphic, i.e., the STSs should be uniform.

Points 2 and 3 can be relaxed to analyze a broader group of instances. For point

2, we consider systems that allow few different lengths of its cycles. This is, for every

cycle graph Gxy with cycle list (c1, . . . , cl) we have #{ci 6= 0} < α for a small α.

Point 3 can be relaxed to consider ”almost” uniform systems. Such systems will be

regarded as those where the cycle vector has few non-zero entries. Techniques to

build instances with these characteristics will be addressed in 5.2.

The first class of instances considered are those containing only cycles of length 4,

the ideal case for the instances we are looking for. This case has been briefly addressed

in 3.2, and as mentioned, unfortunately, there is a unique instance for each admissible

n (up to isomorphism), which happens to be isomorphic to a projective space PG(2, k).

For this reason, this class of systems are not suitable for cryptographic purposes.

Any base of the system Fk2 can be used to construct the required isomorphism, which

reduces the complexity drastically, even by applying the Miller’s algorithm, since

49

50 CHAPTER 5. BUILDING DIFFICULT INSTANCES

any bijection between two sets of generators of the Steiner quasigroup defines an

isomorphism.

The next set of systems to be considered are those having every cycle of length 6.

In this case, a family of systems, known as Hall triple systems (HTS), are well suited

for this task.

5.1 Hall triple systems

Among the instances that pose difficulties for the isomorphism tests previously pro-

posed, some of the most promising due to its characteristics (uniformity, number and

size of cycles) are the Hall triple systems.

Definition 11. A Hall triple system is a STS where any two intersecting blocks

generate a subsystem isomorphic to STS(9).

Then, any three elements of the related Steiner quasigroup will generate a sub-

quasigroup of size 3 (if every element lies within the same block) or 9. In [27] Hall

proves that every HTS has order 3k for k > 1. It is worth mentioning that systems of

this kind are rare, but the exact number or an approximate density is unknown. Up

to now, all that is known is summarized in the following table, extracted from [9]).

Order: 32 33 34 35 36 37 38

Number of HTS: 1 1 2 2 4 13 ≥ 45

The table shows the number of existing Hall triple systems of size 3k for k < 9.

For higher dimensions, the results are currently unknown.

Regarding the number of generators of such systems, Beneteau shows that any two

minimal generator sets of a HTS have the same cardinality [3]. A HTS is said to have

dimension m if the cardinality of any minimal generator set is m+ 1. Unfortunately,

the dimension of an HTS is not always close to log n, as desired. In fact, the maximum

number of generators for a HTS of order n = 3k is k + 1, and it holds only for one

system of order 3k (up to isomorphism). Table 5.1 (extracted from [9]) summarizes

the number of non-isomorphic HTSs of dimension d for small d. It is possible to see

that instances of dimension close to k + 1 are numerous, and will be considered for

the proof system specification.

5.1. HALL TRIPLE SYSTEMS 51

Order

34 35 36 37 38

D
im

e
n
si

o
n

3 1 0 0 0 0

4 1 1 1 1 4

5 0 1 2 6 ≥ 17

6 0 0 1 5 ≥ 13

7 0 0 0 1 11

8 0 0 0 0 1

Table 5.1: Dimension vs order.

The second characteristic we need to verify is the length of the components of

cycle graphs. Fortunately it is not difficult to verify that the cycle graphs in these

type of systems show good behaviour.

Proposition 12. Every cycle graph of a HTS is a disjoint union of 6-cycles.

Proof. Consider an HTS S = (X,B) and a subset {x, y, v} 6∈ B. By definition, these

3 points generate a subsystem of size 9 and contains the cycle Gv
xy, therefore has

length 6. Since any cycle is uniquely determined by 3 non-collinear elements, the

result follows.

Once we have identified HTSs as a reliable source of difficult instances, it is re-

quired to construct systems of this nature to provide practical examples. To this

end, we require of further characterizations that allow to implement better suited

construction techniques. The following sections address this problem.

5.1.1 Hill-climbing algorithm for HTS

Hill-climbing algorithms are iterative procedures applied frequently to find approxi-

mate solutions of optimization problems, such as the well-known traveling salesman

problem [34]. In the field of combinatorial designs, a fast implementation to con-

struct STSs was provided by Stinson [53], and several other have been designed to

build systems with specific characteristics, such as ortogonality [20], Pasch-free [25]

or directed triple systems [33].

The original hill-climbing algorithm designed by Stinson defines the live points as

elements x ∈ X that have not occurred in n−1
2

blocks. If the size of a partial STS is

less than n(n−1)
6

, then live points can be found. On each iteration, a new live point

is found and a new block containing it is created. The total size of the block set

52 CHAPTER 5. BUILDING DIFFICULT INSTANCES

increases or remains, but do not decrease. The procedure proposed by Stinson for

STS construction is detailed in Algorithm 7.

Algorithm 7 Hill-climbing algorithm for construction of Steiner triple systems

Require: Admissible integer n.

Ensure: A STS(n).

1: B ← ∅
2: while |B| < n(n−1)

6
do

3: Pick a random live point x

4: Pick random y, z which have not occurred with x

5: B0 ← {x, y, z}
6: if y, z have not occurred in a block of B then

7: B ← B⋃{B0}
8: else

9: B1 ← block containing {y, z}
10: B ← B⋃{B0} − {B1}
11: return ({1, . . . , n},B)

Additional restrictions in the hill-climbing construction are included to guaran-

tee that the output STS is in fact a HTS. A useful result in this direction can be

found in [46]. Petelczyc shows that a STS is a HTS if and only if it does not

contain neither C16-configurations (Pasch) nor CA-configurations, the later defined

as any (8, 5)-configuration isomorphic to {012, 034, 056, 137, 246}. This observations

and knowing that every cycle graph must contain only cycles of length 6 allow us to

define a hill-climbing algorithm for the construction of such systems.

Similar to Stinson’s algorithm, at every iteration a new block is considered as

candidate to be added to the partial STS, but two tests must be performed to avoid

that Pasch or CA-configurations are created with the newly created block. Addition-

ally, instead of starting from scratch, the algorithm can be initialized with a partial

system B, which should be a suitable HTS-subsystem. The input subsystem must

not be modified. Algorithm 8 shows the steps to be performed to get a HTS.

Unfortunately, at every iteration there is a chance of leaving the partial STS

unmodified, which arises after selecting a pair x, y already contained in a block B1

and choosing a new block B0 that introduces any of the undesirable configurations.

A upper limit in the number of iterations could be added to avoid an infinite loop.

A more detailed inspection of the verification performed in step 13 shows that this

process might be a source of computational burden. A straightforward verification

5.1. HALL TRIPLE SYSTEMS 53

consists in selecting every subset S of size 3 of P and verify if this is isomorphic to

the quadrilateral. One way to prove this is by verifying that:

1. the union of the four blocks is a set of size 6,

2. every element appears exactly twice.

However, since the Pasch configuration is the unique (6, 4)-configuration that can

appear in a STS, only the first condition must be verified. Moreover, observe that

two disjoint blocks cannot be part of a quadrilateral simultaneously. Thus only blocks

whose intersection with B0 is not empty must be considered.

Algorithm 8 Hill-climbing algorithm for construction of Hall triple systems

Require: Exponent k and partial HTS B.

Ensure: A HTS of order 3k or false if construction fails.

1: P ← B
2: n← 3k

3: while |P| < n(n−1)
2

do

4: Pick a random live point x

5: Pick random y, z which have not occurred with x

6: B0 ← {x, y, z}
7: B1 ← ∅
8: if y, z have occurred in a block of B then

9: B1 ← block containing {y, z}
10: if B1 ∈ B then

11: goto 4

12: P ← P − {B1}
13: if P⋃{B0} is free of Pasch and CA configurations then

14: P ← P⋃{B0}
15: else if B1 6= ∅ then

16: P ← P⋃{B1}
17: return ({1, . . . , n},P)

The verification for CA-configurations will require more steps. To evaluate the

new block, we start by choosing every S ⊂ P of size 4 such that S⋃{{x, y, z}} is a

(8, 5)-configuration. Then the size of the union of the blocks must be 8. Two different

invariants are considered:

54 CHAPTER 5. BUILDING DIFFICULT INSTANCES

• the degree of the elements in the partial STS S
⋃{{x, y, z}}. This is, the number

of blocks containing an element. For a CA-configuration, the sorte list of degrees

must be equal to (3,2,2,2,2,2,1,1)

• Considering the graph G = (V,E) where V is the set block and

E =
{

(B1, B2) | B1, B2 ∈ B, B1

⋂
B2 = ∅

}
,

the sorted list of degrees in G must be (4,4,3,3,2).

These verifications turn out to be sufficient to verify that a set fo 5 blocks is not a

CA-configuration.

A second point of interest is the initial subsystem considered in the algorithm.

Instead of starting from an empty set as the original hill-climbing algorithm, it is

possible to provide a good starter by using, for example, a HTS of a big size or,

knowing that any two intersecting blocks in a HTS generate a STS(9), by providing

several subsystems of size 9 as base building blocks. In the former case, a HTS of size

3k can be input to Algorithm 5.1 to obtain one of a bigger size. In addition to the

size, the number of generators will be bigger. For the later approach, 3k−2 disjoint

STS(9) can be created by taking subsets of 9 disjoint elements.

Unfortunately, due to the size of a STS(3k), even for moderate values of k, and the

scarcity of such systems, the algorithm might require a long time before finding new

instances. For this reason, we study additional direct construction techniques. The

main disadvantage with the direct approaches is that only a subset of the existing

HTSs can be constructed, which might limit the number of instances that can be

considered.

5.1.2 Algebraic construction of HTS

The most basic of the algebraic constructions for HTS consists in considering the set

of lines of a vector space Fk3 as the block set. A line consists of 3 elements (x, y, z)

such that x + y + z = 0, where 0 must be regarded as the vector with zero entries.

In the same fashion as the analysis done for PG(2, k), any set of k + 1 generators of

the associated quasigroup can be used to find an isomorphism between isomorphic

systems, which makes the isomorphism problem easily solvable and not suitable for

cryptographic purposes. This system is called the affine Hall triple system, denoted

AG(3, k). The affine HTS surges as a special case of the following construction [9,

28.5].

5.2. NON-UNIFORM INSTANCES 55

Consider the vector space Fk+1
3 with k ≥ 3 and choose a basis e0, . . . , ek. Let

α = (α0, . . . , αk) and β = (β0, . . . , βk) be such that

x =
k∑
i=0

αiei; y =
k∑
i=0

βiei.

Then z is defined as the element such that

x+ y + z =
∑
i<j<k

Λijk(αi − βi)(αjβk − αkβj)e0 (5.1)

where (Λijk)i<j<k is a sequence of elements of F3. By setting Λijk = 0 for every

i < j < k, the right part of (5.1) is always zero. Thus, coincides with the definition

of the affine HTS.

Example 6. Considering the above construction, let k = 4 and

Λijk =

{
1 if i = 1, j = 2, k = 3

0 otherwise.

Then the STS(34) obtained is an HTS that is not isomorphic to AG(3, 4). In fact the

dimension of AG(3, 4) is 5 whereas the HTS constructed is 4.

The characteristic that makes the isomorphic problem in AG(3,k) efficiently solv-

able is that a bijection between any pair of sets of generators of two isomorphic

systems can be used to build an isomorphism of systems. This is not the case for

non-affine systems. Thus, algorithms require in general more time to find suitable

generators. Experimental support of this assertion will be offered in Section 5.3.

5.2 Non-uniform instances

Every system considered so far is uniform: all cycle graphs are pairwise isomorphic.

In the case of projective geometries, every cycle graph is the union of cycles of length

4. For Hall triple systems, the length is 6 for every cycle.

In Section 3.2.1, an approach to join and split cycles in cycle graphs using the

switching transform was described. Starting with an STS S with cycles of small

length, it is possible to provide a new instance with cycles of size similar to those

obtained in the former system. Take for instance a projective geometry S =PG(2k).

Consider any pair of different elements x, y and apply the cycle switch svx,y for a

suitable v. The resulting system S ′ = swvxy(S) will contain some cycles of length 8.

56 CHAPTER 5. BUILDING DIFFICULT INSTANCES

For instance, consider k = 5. The system PG(2, 5) consists of 31 elements and

each cycle graph of 31−3
4

= 7 connected components. The unique non-zero element of

the cycle vector corresponds to the tuple (4, 4, 4, 4, 4, 4, 4), and its value is 31·30
2

= 465.

The system S2 which results after applying swvxy will have 144 graphs with cycle list

(4, 4, 4, 4, 4, 8). By symmetry, any suitable triple (x, y, v) will output an isomorphic

result.

Though the change is small and the number of generators is reduced with respect

to the original STS(2k), experimental results detailed in 5.3 show that these systems

provide difficult instances for the Miller algorithm, and in some cases, for the improved

algorithms developed in Section 4.3.

Another useful tool for providing systems with small cycles relies on the transfor-

mation performed by using trades. We have seen in Section 3.4 that we can obtain

new systems by exchanging suitable isomorphic subsets from a pair of STSs of the

same order. For S =PG(2, k) it is easy to proceed: consider a subsystem T of order

7 of S and obtain a random permutation T ′ = φ(T). The new system is given by

S ′ = (S − T)
⋃
T ′. The biggest cycle gathered in this way is 12, while must of the

cycles remain with size 4.

In a similar fashion, Hall triple system can lead to new systems, where the cycles

and the number of generators do not change drastically, either by applying a random

switching transformation or by using trades. Since any two intersecting blocks gen-

erate a subsystem of size 9, two random blocks can be chosen to get a STS(9), which

is randomly permuted to replace the original subsystem.

With all the new instances and the proven resistance to isomorphism tests, it

is possible to consider the obtained systems for proposing cryptographic protocols.

Nonetheless, the improvements achieved for the original Miller’s algorithm show that

the complexity of many instances can be drastically lowered, which would require

much bigger systems, something undesirable for practical scenarios.

5.3 Experimental results

In this section some experimental results of instances addressed with both, the original

Miller’s algorithm and the improved algorithm, are presented. Table 5.2 shows the

available resources of the equipment used to perform the tests described later.

In the first set of tests, systems derived from PG(2,k) are considered. For each k,

two different types instances are constructed and analyzed:

• PG(2, k), whose minimal generating sets has k generators and every cycle is

5.3. EXPERIMENTAL RESULTS 57

Resources Characteristics

OS Ubuntu 18.04

RAM memory 4 GB

Processor Intel Core 2 Quad CPU Q8200 @ 2.33GHz x 4

Language Python v3.5

Table 5.2: Computational resources.

isomorphisc to a union of disjoint 4-cycles,

• a system derived from PG(2, k) by applying a cycle switch operation at random.

We have been able to find minimal generating sets of size k − 1. Some cycle

graphs contain exactly one cycle of length 8.

For both cases, around of 20 examples are runned to obtain an average of the

running time for both, the projective and the transformed instances. An observation

worth mentioning is that running times can differ a lot even for instances of the same

size. This can be due possibly to the different existing isomorphisms between systems,

but also on the initial selection of the first generating set, a phenomenon that requires

of further research.

It has been previously stated that PG(2, k) is not a difficult instance, even for

the original Miller’s algorithm, mainly because any set of generators can be paired to

produce a valid isomorphism. However, in the second case it does not happen, as it can

be seen from the results of the algorithm executions. For the first class of instances,

it is possible to see that the performance is comparable in both cases. Even more, the

original algorithm outperforms the modified version here developed. A very different

behavior is observed for the transformed system. The running time varies from just

a few seconds up to several minutes for small instances for the improved algorithm,

while the running time for the original Miller is extremely high, as shown in Table 5.3.

An horizontal line means that the algorithm has not been able to provide a result

within a day. The executions make clear that even a small modification by means of

the cycle switch, turns an easy instance into difficult ones for Miller’s algorithm. The

main advantage in our proposal lies in the fact that the search of possible bijections

is made from possible generating sets, while Miller’s is made from every possible set

of elements. As the order n grows, the amount of possible combinations grows.

The second set of instances are created from the algebraic HTS construction stud-

ied in 5.1.2, and in the same fashion as the first set of tests, 20 executions per order are

58 CHAPTER 5. BUILDING DIFFICULT INSTANCES

Running time (seconds)

Miller Algorithm Improved Miller

k = 4
PG(2, k) 0.0004 0.0037

Switched 0.0407 0.0022

k = 5
PG(2, k) 0.0020 0.0395

Switched 2.692 0.734

k = 6
PG(2, k) 0.0191 0.029

Switched – 32.771

k = 7
PG(2, k) 0.044 0.083

Switched – –

Table 5.3: Results of executions of isomorphism tests.

performed to obtain the average running time. It is worth noticing that the behavior

of both algorithms is similar to what has been shown before: Miller’s algorithm seems

to be better suited for the affine case AG(3, k), while the improved algorithm shows

a huge advantage as soon as k starts growing, as seen on Table 5.4. The exponential

increment of the running time in the affine case is related to the number of opera-

tions needed to generate the quasigroup. It is possble to see the running time in the

non-affine case increases even more.

Running time (seconds)

Miller Algorithm Improved Miller

k = 4
Affine 0.018 2.407

Non-affine 0.0253 0.0236

k = 5
Affine 0.222 0.279

Non-affine 0.523 0.582

k = 6
Affine 3.702 3.565

Non-affine – 10.149

k = 7
Affine 30.035 36.023

Non-affine – 694.9

k = 8
Affine 424.9188 –

Non-affine – –

Table 5.4: Results of executions of isomorphism tests.

5.3. EXPERIMENTAL RESULTS 59

The results obtained from both series of experiments show that the characteriza-

tion carried out in Chapter 5 is correct. STSs whose cycle graphs consist of several

connected components will provide difficult isomorphism instances. This difficulty

has been measured by applying the best algorithm known to address this problem.

An alternative improvement of such algorithm has worked better for the instances

obtained from a cycle switching construction. From this result, the need of a more

detailed analysis is clear, and as we have already stated, a possibility lies in the study

of the generating sets, where a more intelligent selection might be better suited for

isomorphism testing. For example, we know that an element belonging to a cycle of

length l must be paired with a similar element. This observation has been used in

the improved Algorithm 6. A more refined selection might be done by counting the

number of cycles of length l that contain this same element, which can be used as an

invariant, thus reducing the possible bijections by performing a closer inspection to

the cycle graph information. This ideas will be considered for future research.

60 CHAPTER 5. BUILDING DIFFICULT INSTANCES

Chapter 6

Zero Knowledge Proof Systems

Based on STSs

One of the first and most known zero-knowledge proof is based on the isomorphism

problem in graphs (GI) [2]. The main difficulty in this approach resides in the fact

that the GI problem can be easily solvable for the average case with state-of-the-

art solvers such as nauty or Traces [38], saucy [5], or bliss [29] among others, thus

purely random generators are not suitable for cryptographic purposes. In addition to

these results, Babai [1] has proposed a novel technique reducing the complexity of GI

to quasi-polynomial time (with a running time of 2O((logn)c)). Notwithstanding, the

general problem is still difficult, and, as noted in [43], some of the hardest instances

arise from combinatorial objects such as strongly regular graphs, block designs, and

coherent configurations.

We have already studied how to create hard instances for the isomorphism problem

in Steiner triple systems. We are ready to propose some ZKP systems based on this

and other difficult problems.

Problem 1: consider two different Steiner triple systems S0, S1 (not necessarily

isomorphic). Find a sequence of triples [{xi, yi, vi}]mi=1 such that

S1 = swvmxm,ym ◦ · · · ◦ swv1x1y1(S0)

Another related problem can be formulated as follows.

Problem 2: consider two different Steiner triple systems S0, S1 (not necessarily

isomorphic). Find a bijection φ : X → X and a triple {x, y, v} such that

S1 =
[
φ ◦ swvxy

]m
(S0).

61

62 CHAPTER 6. ZERO KNOWLEDGE PROOF SYSTEMS BASED ON STSS

Regarding problem 1, it is conjectured that a composition of switching trans-

formations connects any two isomorphism classes. Considering the vast amount of

isomorphism classes, addressing this problem by brute force is unfeasible. It is un-

known whether a similar conjecture can be done for the second case. Note also trades

can be taken into consideration since switchings can be regarded as a particular case

of trades. However, the difficulty of encoding properly such transformations make it

preferable to work with switchings, since only three numbers are required to express

the specify the transformation.

In the following sections, some zero-knowledge proofs are introduced for STSs.

Sections 6.1 and 6.2 are based on analogous descriptions for graph isomorphism in-

stances. In section 6.3, a novel proof system is introduced, which makes use of the

cycle switching transformation. For this reason, a more detailed analysis of this pro-

cedure is provided. Finally, we address the implementation concerns that must be

tackled to provide an implementation of the proof systems to be presented.

6.1 A ZKP based on isomorphism problem

A straightforward approach to defining a proof system is based on the isomorphism

problem. Isomorphisms can be defined for several mathematical objects, and in those

where the problem of isomorphism is difficult, zero-knowledge proof systems can be

defined, based mainly on the following commutative diagram.

S0 S1

S2

φ

φ ◦ ψ ψ

The security of the protocol relies on the hardness of computing φ◦ψ without knowing

ψ, even knowing the isomorphism φ. In fact, the difficulty is comparable to computing

the isomorphism φ.

For this purpose, well-known problems, such as the Graph Isomorphism prob-

lem (GI) [2] and, recently, the Isomorphism Problem for Multivariate Polynomials

(IP) [44]. Difficult instances for Steiner triple systems, already discussed in Chap-

ter 5, can be considered to provide a similar protocol. This protocol, in an analogous

fashion to that provided for GI, starts by selecting a suitable system S0 = (X,B)

6.2. A ZKP BASED ON NON-ISOMORPHISM PROBLEM 63

and a random permutation φ. The pair S0, S1 = φ(S0) is published, while the iso-

morphism φ is kept secret. The interaction between prover and verifier is described

next.

6.1.0.1 Key generation

Choose a STS S0 = (X,B0) and a random permutation φ : X → X. The pair (S0, S1)

where S1 = φ(S0) is the public key. The private key consists of the triple (S0, S1, φ1).

6.1.0.2 Authentication process

1. Prover. Select a random permutation ψ. Compute S2 = φ(S1). Send S2 to V .

2. Verifier. Select a random bit α ∈ {0, 1} and send it to P .

3. Prover. Let ψ0 = ψ ◦ φ, ψ1 = ψ. Send ψ′ = ψα to V according to the received

α.

4. Verifier. If ψ′(Sα) = S2 approve, otherwise reject.

For the protocol to be secure, hard isomorphism instances, as studied in 5, must be

considered.

6.2 A ZKP based on non-isomorphism problem

The existence of a graph non-isomorphism protocol [22] allows to define a similar

protocol for STSs. Both, prover and verifier decide a pair of non-isomorphic triple

STSs S0, S1 to interact.

6.2.0.1 Key generation

Choose two random non-isomorphic STSs S0, S1 as public key. The private key is a

way to decide efficiently S0 6∼= S1.

1. Verifier. Choose a random bit α ∈R {0, 1} and a random bijection φ : X → X.

Constructs T = φ(Sα) and sends to the prover.

2. Verifier In addition to T , the verifier must perform a zero-knowledge proof to

show that he knows which of S0, S1 is isomorphic to T .

64 CHAPTER 6. ZERO KNOWLEDGE PROOF SYSTEMS BASED ON STSS

3. Prover. Performs an isomorphism test to decide β ∈ {0, 1} such that T ∼= Gβ.

Send β to the verifier.

4. Verifier Verifies that, in effect, α = β.

In this case, non-isomorphic systems where invariants do not provide a way to dif-

ferentiate them are desirable. This is the case of Hall triple systems with the same

number of generators, which additionally have all cycle graphs isomorphic.

6.3 A ZKP based on the switching transformation

The aim of this section is to introduce a novel proof-system built adopting a com-

binatorial approach. To define a one-way function, we consider the difficulty of two

problems already detailed at the beginning of the chapter: finding an isomorphism

and inverting cycle switchings. To understand the challenge step of the authentica-

tion protocol, the commutative diagram shown in Figure 6.1 might be of help. The

basis of the challenge resides in the fact that, swvxy(S) ∼= swv
′

x′y′(T) if an isomorphism

φ : S → T exists with x′ = φ(x), y′ = φ(y), v′ = φ(v).

S0 = S S1
. . . Sm

T0 = T T1 . . . Tm

swv1
x1y1

swv2
x2y2

swvm
xmym

sw
v′
1

x′
1y

′
1

sw
v′
2

x′
2y

′
2

sw
v′
m

x′
my′

m

φ φ φ

Figure 6.1: Cycle switching in isomorphic graphs.

After each round, the prover will answer correctly to the challenge by providing

the isomorpism φ or the series of transformed triples that define cycle switch elements

[{x′i, y′i, v′i)]mi=1 needed to transform T0 into Tm with switching cycles. The procedure

is explained next.

6.3.1 Authentication protocol

6.3.1.1 Key generation

To generate the key pair, the following steps are performed:

6.3. A ZKP BASED ON THE SWITCHING TRANSFORMATION 65

1. A Steiner triple system S = (X,B) of order n is chosen at random (from a set

of difficult isomorphism instances) and a list of triples L = [{xi, yi, vi}]mi=1 such

that {xi, yi, zi} ∈
(
X
3

)
− B.

2. Compute the sequence [Si]
m−1
i=0 of STS(n) such that

Si =

{
S0 if i = 0

swvixiyi(Si−1) if i > 0.

The public key consists of the pair (S0, Sm), while the private key consists of (S0, Sm, L).

6.3.1.2 Authentication process

The verifier shall be convinced that the prover possesses the private key. The following

interaction performed to this end.

1. Prover : selects randomly a permutation φ : X → X and builds the STS(n) T0,

Tm isomorphic, respectively, to S0 and Sm. Sends (T0, Tm) to the verifier.

2. Verifier : chooses randomly a bit α ∈ {0, 1} and sends it to the prover as

challenge.

3. Prover. The prover gets α and responses accordingly:

α = 0: the isomorphism φ : S0 → T0

α = 1: the list L′ of triples to transform T0 into Tm. This is computed as

L′ = [{φ(x), φ(y), φ(z)}].

4. Verifier: Verifies that the answer is correct by applying the transformation,

which depends on the value α.

6.3.1.3 Completeness

Certainly, the protocol is complete because the genuine prover knows both the iso-

morphism φ and the list of triples L. As it has already been pointed out, the set of

triples L′ to perform the series of switching transformations can be computed using

the original list L and the isomorphism φ.

66 CHAPTER 6. ZERO KNOWLEDGE PROOF SYSTEMS BASED ON STSS

6.3.1.4 Soundness

First, it is assumed that computing L from (S0, Sm) alone is computationally infeasi-

ble. More details on this problem are given in 5.3.

Consider an illegitimate prover who wants to cheat the verifier by convincing him

of the knowledge of the secret without knowing it. On each round, he can decide one

of the following actions:

1. Knowing the pair (S0, Sm), the rogue prover is able to generate a random iso-

morphism φ′ and perform it on both, S0 and Sm. If the verifier challenges with

α = 0, then he can provide the applied isomorphism. However, if the prover is

challenged with alpha = 1, he is required to provide the list L. Unknowing the

list L, it will be impossible for the rogue verifier to provide L′.

2. A second approach is to select random triples L′ = [{x′, y′, v′}] and perform

the series of switching transformations on an arbitrary STS T ′0. If the verifier

challenges with α = 1 then the rogue prover will be able to provide a series L′

to transform T ′0 into T ′m. However, if the challenge happens to be α = 0, he

will be unable to provide a suitable isomorphism transforming T ′0 = φ(S0) and

T ′m = φ(Sm). Note that even if T ′0 is computed using a random isomorphism

φ : S0 → T ′0, it is still unfeasible to get Tm = φ(Sm).

Then, the protocol is sound because with k rounds, the probability of k correct replies

is 2−k, and it tends to zero as k increases, giving the rogue prover an insignificant

probability of succeeding.

6.3.1.5 Zero-knowledge

To verify that the protocol is in fact zero-knowledge,

Consider a verifier that wants to obtain additional information, other than the fact

that the prover knows the list L. In a round of the interaction, he can either know an

isomorphism φ : (S0, Sm)→ (T0, Tm) or the list L′. In the first case, the only way to

get the original list of triples L is by computing a series of triples [{x′i, y′i, v′i}]mi=1 used

to transform T0 into Tm to obtain [{φ−1(x′i), φ−1(y′i), φ−1(v′i)}]
m
i=1. We have argued

that addressing this problem directly is unfeasible, and interacting until getting a

repeated pair (T0, Tm) requires that the same isomorphism φ is chosen again.

This is, consider that the verifier always challenges with α = 0 and keeps track of

the isomorphism φi for a series of rounds i = 1, . . . , r. This problem can be expressed

by means of the birthday paradox: the malicious verifier needs to interact i, j

6.4. IMPLEMENTATION ISSUES 67

6.3.2 Cryptanalysis

The proposed algorithm relies in the security of two main problems: the isomorphism

of Steiner triple systems and the inversion of a composition of cycle switches. However,

an attacker may consider a slight variation of the isomorphism problem:

Problem: Given four STS(n) S0, S1, T0, T1 such that a permutation φ : X → X

induces isomorphisms φ : S0 → T0 and φ : S1 → T1, find that permutation.

Though slightly simpler than the Isomorphism Problem, there is no immediate

modification of the algorithm proposed in [39] to solve the isomorphism problem in

nlogn steps. However, to ensure that the protocol remains secure, both couples of

isomorphic instances must be difficult to address. Two main results discussed in

Chapter 5 and Section 3.2.2 will help to provide an appropriate construction of such

pairs: the analysis of difficult instances of isomorphism problems and the effect of the

switching transformation on cycle graphs. For the second issue, triples such that the

number of connected components in each cycle graph is still big after the switching

transformation are selected. Knowing that this selection is possible is key in the

protocol construction. Nonetheless, the number of suitable instances for a given n

remains unknown. For instance, the number of non-affine Hall triple systems of a

given order 3k is still unknown for k > 8. Future research in this direction is required

to provide a complete construction.

In regards to the problem of inverting switching transformations, it is conjectured

that any isomorphism class of STS(n) can be reached by applying switching trans-

formations. Since the amount of STS(n) isomorphism classes grows exponentially

as n grows, it is difficult to keep track of all possible sequences of switching cycles.

Additionally, the sequence of triples that can be chosen is given by[(
n

3

)
− n(n− 1)

6

]m
=

[
n(n− 1)(n− 3)

6

]m
which grows exponentially in the number transformations performed. Thus, it is also

unfeasible to perform an exhaustive search of such transformations. Then the problem

of finding the secret information from the public pair (S0, Sm) is not computationally

tractable.

6.4 Implementation issues

The main goal of this work is to study and define precise characteristics to propose

difficult instances of the isomorphism problem in Steiner triple systems, which has

68 CHAPTER 6. ZERO KNOWLEDGE PROOF SYSTEMS BASED ON STSS

been successfully addressed in Chapter 5. Some zero-knowledge proof systems were

adapted and proposed to take advantage of the results obtained.

One of the most important issues is referent to the encoding and transmission

of the information. Remind that the aforementioned protocols require interaction

between two entities, who have to exchange information each round. It is possible

to see that the exchange of a permutation or the lists of triples is not particularly

demanding, but sending the definition of a STS. A straightforward encoding lies in the

definition matrix of the associated Steiner quasigroup, requiring exactly n2 entries.

However, the commutativity of such quasigroup makes that only the upper triangular

matrix (without the diagonal) is required. This reduces the number of values to be

stored to n(n−1)
2

. Finally, the redundancy introduced by the operation defined by the

set of blocks makes that only n(n−1)
6

values are indispensable. These arguments can

be seen in the following Cayley tables.

◦ 0 1 2 3 4 5 6

0 0 3 6 1 5 4 2

1 3 1 4 0 2 6 5

2 6 4 2 5 1 3 0

3 1 0 5 3 6 2 4

4 5 2 1 6 4 0 3

5 4 6 3 2 0 5 1

6 2 5 0 4 3 1 6

◦ 0 1 2 3 4 5 6

0 - 3 6 1 5 4 2

1 - - 4 0 2 6 5

2 - - - 5 1 3 0

3 - - - - 6 2 4

4 - - - - - 0 3

5 - - - - - - 1

6 - - - - - - -

◦ 0 1 2 3 4 5 6

0 - 3 6 - 5 - -

1 - - 4 - - 6 -

2 - - - 5 - - -

3 - - - - 6 - -

4 - - - - - - -

5 - - - - - - -

6 - - - - - - -

Another possible solution to this problem is to provide a minimal defining set.

This could provide an optimal encoding of such a system, but, as mentioned in 3.1.1,

the reconstruction of the unique STS might pose problems since embedding a partial

STS into a STS of a given size can be an NP-complete problem. Additionally, finding

minimal defining sets is not an easy task. An efficient generation of defining sets that

lead to reconstruct the complete system easily can be helpful.

Chapter 7

Conclusions and future work

In Chapter 5, the main goal of our research was obtained. This goal consisted in

describing the characteristics that a STS must have to generate difficult instances of

the isomorphism problem. The process followed directly from the improvements to

the Miller’s technique, proposed in Algorithms 4 and 6. The identification of such

instances allows to define cryptographic applications, some of them corresponding to

ZKP systems, detailed in Chapter 6.

Similar to the isomorphism problem in graphs, the isomorphism problem in STSs

turns out to be tricky. Difficult instances are scarce, and difficult to identify. Fur-

thermore, even though we have found that difficult instances exist by performing

an analysis on how Miller’s algorithm works, it does not guarantee that specialized

algorithms cannot be proposed to deal with these special cases. Additionally, we

are aware that improvements on the proposed algorithms can be done by employing

more efficient implementations, including the use of more suitable languages, such as

C/C++, and distributed computing.

The improvements and analysis performed in Chapter 6 leads to future research

lines that can be followed to provide further improvements. In fact, the surgery

technique for joining cycle graphs, explained in Algorithm 4, can be more selective by

performing a more careful analysis of how cycle graphs are affected under the cycle

switch transformation. Remind that, in order to achieve a valid result, the joining of

cycles by means of the cycle switch transformation must ensure that T is isomorphic

to T ′ (obtained in steps 4 and 9 of the algorithm). Since the cycle vector is a reliable

invariant, the idea is to provide a set of transformations such that the cycle vector of

T and T ′ are identical.

Another possible source of improvements can be found in how generators are

determined in Algorithm 6. Observe that the first set of generators is obtained by

69

70 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

using the original idea of Miller, but starting with elements that generate ”big” sub-

quasigroups. The main source of complexity is introduced in step 5, where a second

set of suitable generators must be computed. The selection must be made as defined

in Algorithm 5, but having that the selection of a different vertex in a cycle graph

leads to a different bijection definition. Since every possible assignation should be

considered, the complexity is increased. A more refined study to discard unfeasible

vertex selections could be performed to reduce this computational burden.

Another subject for future research can be determined by the search of Hall triple

systems. It has been mentioned that, for k ≥ 8, the exact number of isomorphism

classes of HTSs is unknown. Two main issues stand out:

• More accurate bounds on the number of existing isomorphism classes of HTSs

of order 3k could be reached from better algorithms for deciding isomorphism,

however this would undermine the strength of the proposed systems.

• If HTSs offer difficulties for the isomorphism problem, also finding accurate

bounds the number of isomorphism classes will be difficult.

Knowing an estimate of isomorphism classes is essential since very few of them would

lead to an insecure protocol. In this same direction, the improvement of Hill-climbing

algorithms, suitable for big instances is required.

More cryptographic uses can be considered by examining the problems discussed

in this work, for instance, the difficulty of inverting a composition cycle switches, and

the NP-complete problem of embedding a partial STS into a full system.

Finally, in the near future, we expect to publish the results obtained from this

work. Also, it is desirable to adapt the parallel algorithm proposed in [8] to the

techniques here developed.

Bibliography

[1] Babai, L. Graph isomorphism in quasipolynomial time. In Proceedings of the

Forty-eighth Annual ACM Symposium on Theory of Computing (Cambridge,

MA, USA, June 2016), ACM Press, New York, NY, USA, pp. 684–697.

[2] Bellare, M., Micali, S., and Ostrovsky, R. Perfect zero-knowledge in

constant rounds. In Proceedings of the Twenty-second Annual ACM Symposium

on Theory of Computing (Baltimore, Maryland, USA, May 1990), ACM Press,

New York, NY, USA, pp. 482–493.

[3] Beneteau, L. Topics about moufang loops and hall triple systems. Simon

Stevin 54, 2 (1980), 107–124.

[4] Bours, P. A. H. On the construction of perfect deletion-correcting codes using

design theory. Des. Codes Cryptography 6, 1 (July 1995), 5–20.

[5] Codenotti, P., Katebi, H., Sakallah, K. A., and Markov, I. L. Con-

flict analysis and branching heuristics in the search for graph automorphisms.

In Proceedings of the 25th International Conference on Tools with Artificial In-

telligence of the IEEE (Herndon, VA, USA, November 2013), IEEE Computer

Society, pp. 907–914.

[6] Colbourn, C. Embedding partial steiner triple systems is NP-complete. Jour-

nal of Comb. Theory A 35, 1 (1983), 100–105.

[7] Colbourn, C., and Rosa, A. Triple Systems. Oxford mathematical mono-

graphs. Clarendon Press, 1999.

[8] Colbourn, C. J., and D R Stinson, L. T. A parallelization of miller’s nlogn

isomorphism technique. Information Processing Letters 42 (1992), 223–228.

71

72 BIBLIOGRAPHY

[9] Colbourn, C. J., and Dinitz, J. H. Handbook of Combinatorial De-

signs, Second Edition (Discrete Mathematics and Its Applications). Chapman &

Hall/CRC, 2006.

[10] Colbourn, C. J., Dinitz, J. H., and Stinson, D. R. Applications of Com-

binatorial Designs to Communications, Cryptography, and Networking. Lond.

Math. S. Cambridge University Press, 1999, pp. 37–100.

[11] Colbourn, M. J., and Colbourn, C. J. Concerning the complexity of

deciding isomorphism of block designs. Discrete Appl. Math. 3, 3 (1981), 155 –

162.

[12] Cox, D. A., Little, J., and O’Shea, D. Ideals, Varieties, and Algorithms:

An Introduction to Computational Algebraic Geometry and Commutative Alge-

bra, 3 ed. Undergraduate Texts in Mathematics. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2007.

[13] Ding, J., Gower, J. E., and Schmidt, D. S. Multivariate Public Key

Cryptosystems, 1 ed., vol. 25. Springer-Verlag, Berlin, Heidelberg, 2006.

[14] Ding, J., and Schmidt, D. Rainbow, a new multivariable polynomial signa-

ture scheme. In Proceedings of the Third International Conference on Applied

Cryptography and Network Security (New York, NY, USA, June 2005), Springer,

Berlin/Heidelberg, Germany, pp. 164–175.

[15] Doyen, J., and Wilson, R. M. Embeddings of steiner triple systems. Discrete

Math. 5, 3 (July 1973), 229–239.

[16] Fisher, R. A. The arrangement of field experiments. Journal of the Ministry

of Agriculture of Great Britain (1926), 503–513.

[17] Fisher, R. A., and Yates, F. Statistical tables for biological, agricultural and

medical research, 3 ed. Oliver & Boyd, 1949.

[18] Forbes, A. D., Grannell, M. J., and Griggs, T. S. Configurations and

trades in steiner triple systems. Australas. J. Combin. 29 (2004), 75–84.

[19] Forbes, A. D., Grannell, M. J., and Griggs, T. S. On 6-sparse steiner

triple systems. J. Comb. Theory Ser. A 114, 2 (Feb. 2007), 235–252.

[20] Gibbons, P. B., and Mathon, R. The use of hill-climbing to construct

orthogonal steiner triple systems. J. Comb. Des. 1, 1 (1993), 27–50.

BIBLIOGRAPHY 73

[21] Goldreich, O. Computational Complexity: A Conceptual Perspective. Cam-

bridge University Press, June 2008.

[22] Goldreich, O., Micali, S., and Wigderson, A. Proofs that yield nothing

but their validity or all languages in np have zero-knowledge proof systems. J.

ACM 38, 3 (July 1991), 690–728.

[23] González Fernández, E., Morales-Luna, G., and Sagols Troncoso,

F. A Zero-Knowledge Proof Based on a Multivariate Polynomial Reduction of

the Graph Isomorphism Problem. Preprints. 2018.

[24] Grannell, M., Griggs, T., and Murphy, J. Switching cycles in Steiner

triple systems. Utilitas Math. 56 (1999), 3–21.

[25] Grannell, M., Griggs, T., and Whitehead, C. The resolution of the

anti-pasch conjecture. J. Comb. Des. 8 (01 2000), 300–309.

[26] Grannell, M. J., and Griggs, T. S. Configurations in steiner triple systems.

In Ch. CRC Res. Notes. CRC Press, 1999.

[27] Hall, J. I. On the order of Hall triple systems. J. Combin. Th. 29 (1980),

261–262.

[28] Hilmar, J., and Smyth, C. Euclid meets bzout: Intersecting algebraic plane

curves with the euclidean algorithm. Am. Math. Mon. 117, 3 (2010), 250–260.

[29] Junttila, T., and Kaski, P. Engineering an efficient canonical labeling tool

for large and sparse graphs. In Proceedings of the Meeting on Algorithm En-

gineering & Experiments (New Orleans, Louisiana, 2007), SIAM, Philadelphia,

PA, USA, pp. 135–149.

[30] Kaski, P., Mäkinen, V., and Österg̊ard, P. R. J. The cycle switching

graph of the Steiner triple systems of order 19 is connected. Graph. Combinator.

27, 4 (July 2011), 539–546.

[31] Kaski, P., Österg̊ard, P. R. J., Topalova, S., and Zlatarski, R.

Steiner triple systems of order 19 and 21 with subsystems of order 7. Discrete

Math. 308 (July 2008).

[32] Kirkman, T. P. Lady’s and gentleman’s diary, 1850.

74 BIBLIOGRAPHY

[33] Kreher, D. L., Stinson, D. R., and Veitch, S. Block-avoiding point

sequencings of directed triple systems. arXiv:1907.11186, 2019.

[34] Lin, S., and Kernighan, B. W. An effective heuristic algorithm for the

traveling-salesman problem. Oper. Res. 21, 2 (Apr. 1973), 498–516.

[35] Lindner, C. C., and Rodger, C. A. Design Theory, 2 ed. Chapman &

Hall/CRC, 2008.

[36] Ling, A. C. H., Colbourn, C. J., Grannell, M. J., Griggs, T. S., Ling,

A. C. H., Colbourn, C. J., Usa, T. V., and Griggs, T. S. Construction

techniques for anti-pasch steiner triple systems. J. London Math. Soc (2000),

641–657.

[37] Matsumoto, T., and Imai, H. Public quadratic polynomial-tuples for efficient

signature-verification and message-encryption. In Advances in Cryptology —

EUROCRYPT ’88 (Davos, Switzerland, May 1988), Lect. Notes Comput. Sc.,

Springer, Berlin/Heidelberg, Germany, pp. 419–453.

[38] McKay, B. D., and Piperno, A. Practical graph isomorphism, II. J. Symb.

Comput. 60 (2014), 94 – 112.

[39] Miller, G. L. On the nlog2 n Isomorphism Technique (A Preliminary Report).

In Proceedings of the Tenth Annual ACM Symposium on Theory of Computing

(San Diego, California, USA, May 1978), ACM Press, New York, NY, USA,

pp. 51–58.

[40] Murphy, S., and Paterson, M. B. A geometric view of cryptographic equa-

tion solving. J. Math. Cryptol. (2008), 63–107.

[41] Näslund, M. On steiner triple systems and perfect codes. Ars Comb. 53 (1999).

[42] Nemhauser, G. L., and Wolsey, L. A. Integer and Combinatorial Opti-

mization. Wiley-Interscience, New York, NY, USA, 1988.

[43] Neuen, D., and Schweitzer, P. Benchmark Graphs for Practical Graph

Isomorphism. In Proceedings of the 25th Annual European Symposium on Al-

gorithms (Dagstuhl, Germany, 2017), vol. 87 of Leibniz International Proceed-

ings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

pp. 60:1–60:14.

BIBLIOGRAPHY 75

[44] Patarin, J. Hidden fields equations (HFE) and isomorphisms of polynomi-

als (IP): Two new families of asymmetric algorithms. In Proceedings of the

International Conference on the Theory and Application of Cryptographic —

EUROCRYPT ’96 (Saragossa, Spain, May 1996), Springer, Berlin/Heidelberg,

Germany, pp. 33–48.

[45] Pérez Villegas, E. Plataforma de experimentación criptográfica basada

en Geometŕıa Algebraica. Master’s thesis, Computer Science Department,

CINVESTAV-IPN, Mexico City, 2017.

[46] Petelczyc, K., Pramowska, M., Pramowski, K., and ynel, M. A note

on characterizations of affine and hall triple systems. Discrete Math. 312 (08

2012), 23942396.

[47] Pflugfelder, H. O. Quasigroups and Loops: Introduction. Sigma series in

pure mathematics. Heldermann Verlag Berlin, 1990.

[48] Sagols, F., Morales-Luna, G., and González Fernández, E. Steiner

triple systems and zero knowledge protocols. In Actas de la XV Reunión Española

sobre Criptoloǵıa y Seguridad de la Información — RECSI2018 (Granada, Spain,

2018), pp. 18–21.

[49] Sakalauskas, E. The multivariate quadratic power problem over Zn is NP-

complete. Inf. Technol. Control 4, 1 (2012), 33–39.

[50] Seberri, J., and Street, A. P. Strongbox secured secret sharing schemes.

Util. Math. 57 (2000), 147 – 163.

[51] Shcherbacov, V. Elements of Quasigroup Theory and Applications. CRC

Press, 2017.

[52] Stinson, D. R. A comparison of two invariants for steiner triple systems:

Fragments and trains. Ars Combinatoria (1983).

[53] Stinson, D. R. Hill-climbing algorithms for the construction of combinatorial

designs. In Algorithms in Combinatorial Design Theory, 1 ed., vol. 26 of Annals

of Discrete Mathematics. 1985, pp. 321–334.

[54] Stinson, D. R., and Vanstone, S. A. A combinatorial approach to threshold

schemes. SIAM J. Discret. Math. 1, 2 (May 1988), 230–236.

76 BIBLIOGRAPHY

[55] Stinson, D. R., and Wei, Y. J. Some results on quadrilaterals in steiner

triple systems. Discrete Math. 105, 1-3 (1992), 207–219.

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Related work
	Objectives
	Research products
	Outline

	Preliminaries and early work
	Graph theory
	Interactive and zero-knowledge proof systems
	Quasigroups
	Steiner triple systems
	Early work
	Implementation of cryptographic schemes based on multivariate cryptography
	A zero-knowledge proof system based on an algebraic interpretation of the graph isomorphism problem

	Steiner triple systems
	Subsystems and partial systems
	Embedding systems and defining sets

	Cycle Graphs
	The switching transformation
	Effect of switching on cycle graphs

	Configurations
	Trades

	The Isomorphism Problem for STS
	Miller's Algorithm
	Algorithm based on cycle graphs
	Complexity of the algorithm
	Joining cycle graphs

	Improving Miller's algorithm

	Building difficult instances
	Hall triple systems
	Hill-climbing algorithm for HTS
	Algebraic construction of HTS

	Non-uniform instances
	Experimental results

	Zero Knowledge Proof Systems Based on STSs
	A ZKP based on isomorphism problem
	A ZKP based on non-isomorphism problem
	A ZKP based on the switching transformation
	Authentication protocol
	Cryptanalysis

	Implementation issues

	Conclusions and future work
	References

