
Centro de Investigación y de Estudios Avanzados
del Instituto Politécnico Nacional

Unidad Zacatenco

Departamento de Computación

Herramientas de exploración para

el tratamiento de problemas de optimización

con muchos objetivos

Tesis que presenta

Oliver Fernando Cuate González

para obtener el Grado de

Doctor en Ciencias en Computación

Director de la Tesis

Dr. Oliver Steffen Schütze

Ciudad de México Diciembre, 2019

ii

Center for Research and Advanced Studies
of the National Polytechnical Institute

Zacatenco Campus

Computer Science Department

Exploration Tools for the Treatment of

Many-objective Optimization Problems

Submitted by

Oliver Fernando Cuate González

As a fulfillment of the requirement for the degree of

Ph.D. in Computer Science

Advisor

Dr. Oliver Steffen Schütze

Mexico City December, 2019

iv

Resumen

El problema de optimización multiobjetivo (POM), surge de manera natural en
diversas áreas del conocimiento, como Economı́a, Finanzas y, en general, en la Indus-
tria; en las cuales se requiere optimizar simultáneamente dos o más funciones objetivo.
Una de las principales caracteŕısticas de un POM es que su conjunto solución, lla-
mado Conjunto de Pareto, t́ıpicamente forma un objeto de dimensión (k − 1), en
donde k es el número de objetivos involucrados en el problema. En la actualidad,
es posible aproximar dicho conjunto de interés de forma completa para un número
relativamente moderado de funciones objetivo (por ejemplo, para k = 3 o 4). En
este trabajo, abordamos el tratamiento numérico de POMs con más de 4 objetivos,
que también se denominan problemas de optimización con muchos objetivos (PO-
MOs), que recientemente han captado el interés en la industria, ya que los procesos
de toma de decisiones resultan ser cada vez más complejos. Para resolver este prob-
lema, utilizamos como marco de referencia el Pareto Explorer (PE), que se introdujo
por primera vez en la tesis de maestŕıa del autor de este trabajo. La fase principal de
este método es la exploración del conjunto de soluciones basado en las preferencias
del tomador de decisiones. Aunque esta fase mostró resultados muy prometedores en
problemas continuos y dos veces diferenciables, el uso del PE como una herramienta
completa para resolver diferentes tipos de POMs estaba inconcluso hasta ahora.

En este trabajo, nos enfocamos en resolver algunas deficiencias del PE como una
herramienta completa. Entre otros, nos concentramos en el tratamiento de problemas
con diferentes supuestos de suavidad, el cálculo de buenas soluciones iniciales y la apli-
cación del PE a problemas del mundo real. Además, desarrollamos una heuŕıstica para
preservar la diversidad en el espacio de decisión y proporcionamos una descripción
completa sobre cómo construir POMOs que sean escalables en variables, objetivos y
número de restricciones.

v

vi RESUMEN

Abstract

In many areas such as Economics, Finance, or Industry, problems naturally arise,
having several objectives that need to be optimized simultaneously. These are the so-
called Multiobjective Optimization Problems (MOPs). One important characteristic
of a MOP is that its solution set, the Pareto Set (PS), typically forms a (k − 1)-
dimensional object where k is the number of objectives involved in the MOP. Today,
it is only possible to approximate the entire set of interest for relatively few objec-
tives (say, k = 3 or 4). In this work, we address the numerical treatment of MOPs
with more than 4 objectives which are also termed as Many Objective Optimization
Problems (MaOPs) which have recently caught the interest in Industry since decision
making processes are getting increasingly complex. To solve this problem, we use
as baseline framework the Pareto Explorer (PE), a recently proposed continuation
method for the treatment of MaOPs, which was first introduced in the Masters thesis
of the author. The main phase of this method is the steering along the solution set
based on the preferences of the decision maker. Although this phase showed very
promising results in continuous and twice differentiable problems, the use of the PE
as a complete framework to solve different kinds of MOPs was incomplete until now.

In this work, we focus on solving some shortcomings of the PE as a complete tool.
Among others, we concentrate on the treatment of problems with different smoothness
assumptions, the computation of good initial solutions, and the application of the PE
to real-world problems. Furthermore, we develop a heuristic to preserve diversity in
decision space and we provide a full description of how to construct M(a)OPs that
are scalable in variables, objectives, and number of constraints.

vii

viii ABSTRACT

A Manuel y Javier,
dos ángles en el cielo

y a mi madre, Consuelo,
mi ángel en vida.

x

Agradecimientos

Primeramente, agradezco a mi asesor, Dr. Oliver Schütze, por su incansable labor
como investigador y su presión constante, ambos factores contribuyeron enormemente
en los resultados de este trabajo.

Agradezco también a CONACyT por la beca proporcionada para realizar mis es-
tudios de doctorado, aśı como los apoyos para estancias y congresos. A CINVESTAV,
un gran institución en cuyas instalaciones encontré el ambiente propicio para llevar
a buen puerto mi investigación; además, me permitió tener un desarrollo integral
mediante actividades culturales y deportivas. De igual forma, agradezco los apoyos
económicos recibidos por parte del CINVESTAV para estancias y congresos.

Gracias a mis sinodales, Dr. Guillermo Morales y Dr. Saúl Zapotecas, por sus
importantes aportes a este trabajo. Al Dr. Carlos Coello, no solo por sus comentarios
sobre este documento, sino también por sus excelente cursos, aprend́ı mucho en cada
uno de ellos. De forma muy especial, a la Dra. Adriana Lara, quien ha estado
presente en mi trayectoria académica, como mi asesora de tesis en la licenciatura y
como sinodal en maestŕıa y doctorado, y a quien siempre he admirado por su labor
profesional, pero aún más por su forma de ser como persona.

Quiero agradecer y reconocer el apoyo incondicional de mi madre, Consuelo Cuate.
Gracias por tu amor y comprensión en todas las etapas de mi vida, por siempre dar lo
mejor de ti, eres una motivación constante para hacer lo mismo. Agradezco también
al resto de mi familia, siempre presente, en especial a mis t́ıos, Francisco y Maŕıa, por
permitirme quedarme en su hogar cuando fue necesario.

Agradezco a mi gran amigo, Carlos González, por estar presente en todos los
buenos y malos momentos. A Diana Medrano, por su apoyo y amistad. A mis
amigos de la maestŕıa, David Laredo y Jhonatan Perera, por siempre tener los mejores
consejos, a pesar de la distancia y de seguir caminos distintos. A mis amigos de la
maestŕıa que siguieron también en el doctorado, Jesús Chi, por recordar traerme algo
cada que sale de viaje; y especialmente, a Angélica Serrano, por su compañ́ıa y por
todos los buenos momentos. A Rebeca Plata, por leer este trabajo en detalle y por
sus valiosos comentarios. Gracias a todos mis amigos, son parte importante en mi
vida.

xi

xii

A mis “hermanos académicos”, Adrián Sosa, Carlos Hernández y Sergio Alvarado,
aprend́ı algo de cada uno de ellos y en verdad fue notoria su ausencia en la etapa final
de mi doctorado. Mención aparte merece Lourdes Uribe, quien además es una gran
amiga y que afortunadamente compartió conmigo toda mi estancia en el doctorado;
hicimos un muy buen equipo.

Al grupo de secretarias, Sof́ıa, Felipa y Erika, por estar pendiente de todos los
estudiantes y apoyarnos siempre con la mejor disposición. A todo el personal del
Departamento de Computación, entre otros, Arcadio y José Luis, por hacer aún más
agradable mi estancia en este lugar. A todos los doctores con los que tuve la oportu-
nidad de tomar algún curso y que ayudaron a ampliar mis conocimientos. También
a todas las personas con las que tuve la fortuna de colaborar académicamente, en
especial al Dr. Alejandro Alvarado, que se nos adelantó en el camino. A todos los
miembros de mi equipo de fútbol, el Bayer, fueron buenos torneos y al final se logró
el campeonato. A la toda comunidad Cinves-tenis, disfruté mucho practicando este
deporte.

Por último, dedico este trabajo a mi t́ıo, Manuel Baltazar, quien me inculcó el
gusto por la lectura y, en gran medida, por las matemáticas. Fuiste parte fundamental
de lo que soy el d́ıa de hoy, me hubiera gustado que leyeras estas ĺıneas. También a
mi primo, Javier Cuate, quien sin palabras logró darme algunas de las lecciones más
importantes en mi vida. En paz descansen.

Gracias a todos los que de una forma u otra formaron parte de esta experiencia.

Contents

List of Figures xviii

List of Tables xxi

List of Algorithms xxiv

List of Acronyms xxvii

1 Introduction 1

1.1 Motivation . 2

1.2 Hypothesis . 3

1.3 Aims of the Thesis . 3

1.4 Contributions of this thesis . 4

1.5 Publications . 5

1.5.1 Prizes . 5

1.5.2 JCR Journals . 5

1.5.3 Other Journals . 6

1.5.4 Proceedings . 7

1.5.5 Textbooks . 7

1.6 Organization of the Thesis . 8

xiii

xiv CONTENTS

2 Basic Concepts 9

2.1 Single Objective Optimization . 9

2.1.1 Line Search Strategies . 11

2.1.2 Newton Method . 12

2.1.3 BFGS Method . 12

2.2 Multiobjective Optimization . 13

2.2.1 Definitions . 14

2.2.2 Optimality Conditions . 16

2.3 Solving a MOP . 17

2.3.1 Mathematical Programming Techniques 17

Continuation Methods . 17

Method of Hillermeier 18

Directed Search Predictor-Corrector Method 20

Reference Point Methods . 22

Reference Point Problem 22

Achievement Functions 22

2.3.2 Interactive Methods . 23

Pareto Navigator Method . 23

NIMBUS Method . 24

Nautilus Method . 24

2.3.3 Many-objective Optimization and Evolutionary Algorithms . . 24

Indicator based . 26

Large Populations . 26

Dimension Reduction . 26

2.3.4 MOEAs for CMOPs . 27

CONTENTS xv

2.3.5 Diversity in Decision Space 27

2.4 Multiobjective Benchmark Problems 29

2.5 Performance Indicators . 30

2.5.1 ∆p indicator . 31

2.5.2 Feasibility Ratio . 32

2.5.3 Reference Inverted Generational Distance 32

2.6 Pareto Tracer and Pareto Explorer 33

2.6.1 Pareto Tracer Method . 33

Predictor . 33

Corrector . 35

Handling Equality Constrains 35

Handling Inequality Constraints 38

2.6.2 Pareto Explorer . 40

Steering in Objective Space 41

Steering in Decision Space . 42

Steering in Weight Space . 46

3 Extensions of the Pareto Explorer for Continuous MaOPs 49

3.1 Unbiased Neighborhood Exploration 49

3.2 Pareto Explorer for Finding the Knee 51

3.2.1 Definition of the Knee . 53

3.2.2 Finding the Knee . 53

3.3 Real World Application: Plastic Injection Molding 55

3.3.1 The Model . 55

Design parameters . 55

Objectives . 57

xvi CONTENTS

3.3.2 Case study: A plastic gear . 58

Building the model . 59

3.3.3 Numerical Results . 59

Multi-objective PIM design 60

Many-objective PIM design 61

4 Exploration in Objective Space 71

4.1 Fine tuning method and application to knapsack 71

4.1.1 Framework for the fine tuning method 72

4.1.2 Framework instantiation . 74

The evolutionary solving process 75

Illustrative scenarios . 76

4.1.3 Numerical results . 77

4.2 Pareto Explorer for Linear MaOPs 79

4.2.1 Change in Objective Space . 79

4.2.2 Change in Weight Space . 82

4.2.3 Numerical Results . 84

3-objective case . 84

5-objective case . 85

5 MOEA-PT 87

5.1 First stage: Rough Approximation via Micro-NSGA-II 87

5.2 Second stage: Refinement via PT . 89

5.2.1 BOPs . 89

5.2.2 General MOPs . 91

5.3 Proposed Test Problems . 92

5.3.1 Eq1-ZDT1 . 92

CONTENTS xvii

5.3.2 Eq2-ZDT1 . 96

5.3.3 Eq-Quad . 97

5.4 Numerical Results . 98

6 Exploration in Decision Space 103

6.1 Proposed Framework . 104

6.1.1 Using the Averaged Distance in Decision Variable Space . . . 104

6.1.2 Variation Rate . 106

6.1.3 Integration into NSGA-II . 109

6.1.4 Integration into NSGA-III . 109

6.1.5 Integration into MOEA/D . 111

6.1.6 Integration into SMS-EMOA 112

6.2 Numerical Results . 113

7 A New Benchmark suite for Equality Constrained MOPs 125

7.1 Hyper-spheres as equality constraints 125

7.1.1 Hyper-spheres . 125

7.1.2 Embedding into higher dimensions 127

7.2 Equality constrained MOPs . 127

7.2.1 Eq-DTLZ . 128

Pareto sets for Eq-DTLZ 1-4 129

7.2.2 Eq-IDTLZ . 131

7.2.3 Examples . 132

7.3 Performance of MOEAs on Eq-(I)DTLZ 135

8 Conclusions and Future Work 143

8.1 Obtained Results . 143

xviii CONTENTS

8.2 Conclusions . 145

8.3 Future Work . 147

A Appendix 1 149

A.1 A Plastic Gear . 149

References 152

List of Figures

2.1 Functions in conflict . 13

2.2 Compromise solutions . 15

2.3 Pareto points . 16

2.4 Geometrical idea of Hillermeier method 19

2.5 Example of the Directed Search predictor-corrector method 21

2.6 Tangent vectors . 34

2.7 Illustration of the steering in objective space 42

2.8 Illustration of the steering in decision space 44

2.9 Illustration of the steering in weight space 48

3.1 Example of the unbiased neighborhood exploration 52

3.2 Illustrative example of the use of PE to find the knee 56

3.3 Illustrative example where PE is not able to find the knee 56

3.4 Result for on the PIM model with two objectives (f2 and f6) 61

3.5 Graphical result on the PIM model with two objectives (f1 and f5) . 62

3.6 Graphical result on the the PIM model with three objectives (f1, f5,
and f6) . 65

3.7 Graphical result on the complete PIM model for the first scenario (min-
imize f1 and f5). 66

3.8 Graphical result on the complete PIM model for the second scenario
(minimize f2 and f6). 67

xix

xx LIST OF FIGURES

3.9 Graphical result on the complete PIM model for the third scenario
(minimize f1, f5, and f6). 68

3.10 Graphical result on the complete PIM model for the last scenario (min-
imize f3, f5, and f6). 69

4.1 Illustrative example of fine tuning in objective space. 74

4.2 Illustrative scenarios on the MOKP for the bi-objective case 76

4.3 Illustrative example of the steering in objective space for linear MOPs. 82

4.4 Illustrative example of the change in weight space for linear MOPs. . 84

4.5 Graphical result on the bensolvedron problem with three objectives. . 85

4.6 Result of the 5-objective case. 86

5.1 Pareto set and front of the Eq1-ZDT1 with n = 30. 95

5.2 Pareto set and front of the Eq2-ZDT1 with n = 30. 98

5.3 Constraints and feasible region for the Torus problem 99

5.4 Pareto front approximations on the Eq1-Quad problem for the selected
MOEAs . 101

5.5 Pareto front approximations on the Eq2-Quad problem for the selected
MOEAs . 101

5.6 Pareto front approximations for the C-ZDT1 problem for the selected
MOEAs . 101

5.7 Pareto front approximations on the C-ZDT2 problem for the selected
MOEAs . 102

5.8 Pareto front approximations on the C-ZDT3 problem for the selected
MOEAs . 102

5.9 Pareto front approximations on the D&D problem for the selected
MOEAs . 102

6.1 Hypothetical bi-objective problem where two connected components of
the PS map to the entire PF. 104

LIST OF FIGURES xxi

6.2 Four different Pareto set/front approximations where all PF approxi-
mations are good, but the PS approximation is complete only in one
of them. 105

6.3 Illustrative example of the VR. 106

6.4 Graphical results of the run with the median values on the OMNI1
function with the (VR-)NSGA-II algorithms. 120

6.5 Graphical results of the run with the median values on the OMNI2
function with the (VR-)NSGA-II algorithms. 121

6.6 Graphical results of the run with the median values on the SCM1
function with the (VR-)SMS-EMOA algorithms. 121

6.7 Graphical results of the run with the median values on the RPH1
function with the (VR-)NSGA-II algorithms. 122

6.8 Graphical results of the run with the median values on the RPH2
function with the (VR-)NSGA-III algorithm. 122

6.9 Graphical results of the run with the median values on the RPH3
function with the (VR-)MOEA/D algorithms. 123

7.1 Different projections of the analytic Pareto set with k = 4, n = 13 and
one equality constraint. 133

7.2 Different projections of the analytic Pareto set with k = 4, n = 13 and
two equality constraints. 133

7.3 Graphical results of the selected MOEAS on the Eq-DTLZ1 problem 141

7.4 Graphical results of the selected MOEAS on the Eq-DTLZ2 problem 142

A.1 Warpage in the plastic part. 151

xxii LIST OF FIGURES

List of Tables

3.1 Objective functions of the PIM model 59

3.2 Parameters of the NSGA-III and the PT for the PIM. 60

3.3 Computational cost of the PE for the Scenarios 1-4 on the PIM. . . . 63

3.4 Comparison of the values from our model (FM) against the simulated
values (FS) on the PIM. 63

4.1 Parameters settings of the fine tuning method adopted for obtaining
the numerical results. 78

4.2 Numerical results of the fine tuning method on the MOKP 78

5.1 Values of γ and η . 97

5.2 Values of ∆2 and IF on the selected test problems. 100

6.1 Parameter configuration for each algorithm 116

6.2 Numerical results for the original and variation rate version of some
MOEAs in standard benchmark test problems. 118

6.3 Numerical results for the original and variation rate version of some
MOEAs in Type III test problems. 119

7.1 Eq-DTLZ and Eq-IDTLZ benchmark problems 134

7.2 Equality constraints for different values of k and p and the general case.135

7.3 Parameters of the selected MOEAs. 137

xxiii

xxiv LIST OF TABLES

7.4 Results for Eq-DTLZ 1-4 and Eq-IDTLZ 1-2 with k = 3 and p = 1 for
some MOEAs. 138

7.5 Results for Eq-DTLZ 1-4 and Eq-IDTLZ 1-2 with k = 4 and p = 1 for
some MOEAs. 139

7.6 Results for Eq-DTLZ 1-4 and Eq-IDTLZ 1-2 with k = 4 and p = 2 for
some MOEAs. 140

A.1 Material properties of PP. 149

A.2 Design variables. 150

A.3 Process parameters. 150

A.4 Flow rate profile. 150

A.5 Packing rate profile. 150

A.6 Objective functions. 151

List of Algorithms

2.1 Framework of the Pareto Explorer . 41
2.2 Steering in objective space . 43
2.3 Steering in decision space . 45
2.4 Modified steering in decision space 46
2.5 Steering in weight space . 47
3.1 Framework of UNE . 50
3.2 UNE: Evenly distributed solutions in objective space 51
4.1 Fine Tuning Framework . 73
4.2 PE: Movement in Objective Space . 81
4.3 PE: Change in Weight Space . 83
5.1 ε-NGSA-II . 90
6.1 Framework to include the Average Distance in Decision Variable Space

within any MOEA . 108
6.2 Pseudocode of VR-NSGA-II . 110
6.3 Iteration of the VR-NSGA-III . 111
6.4 Pseudocode of VR-MOEA/D . 112
6.5 Iteration of the VR-SMS-EMOA . 113

xxv

xxvi LIST OF ALGORITHMS

Acronyms

BFGS: Quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno

DM: Decision Maker

DTLZ: Deb-Thiele-Laumanns-Zitzler

GA: Genetic Algorithm

HV: Hypervolume

KKT: Karush, Kuhn and Tucker

MaOP: Many Objective Optimization Problem

MOP: Multiobjective Optimization Problem

MOEA/D: Multiobjective Evolutionary Algorithm Based on Decomposition

MOKP: Multi-Objective (multi-dimensional) 0-1 Knapsack Problem

PE: Pareto Explorer

PF: Pareto Front

PIM: Plastic Injection Molding

PS: Pareto Set

SOP: Scalar Optimization Problem

QN: Quasi-Newton

WASF: Wierzbicki’s Achievement Scalarizing Function

ZDT: Zitzler-Deb-Thiele

xxvii

xxviii LIST OF ACRONYMS

Chapter 1

Introduction

Optimization problems with multiple objectives arise naturally in areas such as
Economics, Finance and Industry, where it is necessary to obtain the greatest profit
with limited resources. Thus, the objectives under consideration are generally in
conflict with each other. Nowadays, there exist a lot of methods available for solving
such Multiobjective Optimization Problems (MOPs) [Coello et al., 2007, Deb, 2001,
Miettinen, 1999], each of then with strengths and weaknesses, looking increasingly
to efficiently solve more general problems. The solution to these problems typically
is not a single point but should rather a set of compromise vectors of the objectives
to be optimized. Ideally, these methods obtain a set of points whose images have a
uniform spread along the entire solution set of the given problem. However, for many
applications, it is important for a Decision Maker (DM) to find a set of points which
satisfy certain values for each objective function.

To solve this problem, we use as our baseline framework the Pareto Explorer
(PE), a recently proposed continuation method for the treatment of Many Objective
Optimization Problems (MaOPs), which was first introduced in the MSc thesis of the
author. The main phase of this method is the steering –in objective or decision space–
based on the preferences of the decision maker, which is presented in [Schütze et al.,
2019]. Although this phase shows very promising results in continuous and doubly
differentiable problems, the use of the PE as a complete framework to solve different
kinds of MOPs was incomplete until now.

In this work, we focus on solving some shortcomings of the PE as a complete tool.
Among others, we concentrate on the treatment of problems with different smoothness
assumptions, the computation of good initial solutions, and the applications of the
PE in real-world problems. Furthermore, we provide two more ways of steering for
the continuous case.

1

2 Chapter 1

1.1 Motivation

An important characteristic of continuous MOPs is that their solution sets, the
Pareto Sets (PS), typically form a (k − 1)-dimensional object where k is the number
of objectives involved in the MOP. Thus, it is only possible to approximate the entire
set of interest for a relatively low number of objectives (say, k = 3 or 4). In this
work, we also address the numerical treatment of MOPs with more than 4 objectives
which are termed as MaOPs. MaOPs have recently caught the interest in industry
due to the huge success of existing methods for the treatment of MOPs and because
decision making processes are getting more and more complex.

Several strategies for the treatment of continuous MaOPs have been proposed
and tested over the past decades. However, we can identify two principal classes of
approaches as the most common techniques to solve MaOPs. The first one is the use
of evolutionary algorithms in order to compute the entire set of optimal solutions.
This approach has the issue that for a MaOP a good approximation to the entire
solution set implies computing a huge number of candidate solutions. For example,
if we have k objective functions and we want M points for each dimension, then the
solution set will have Mk−1 points. That is, we have an exponential growth in k.
This is not suitable for a DM since he/she must evaluate all the solutions.

The second one is the use of local programming techniques that produce only one
single solution, which is, in general, not enough for a DM. Examples within this class
of methods are the reference point methods.

The PE method raises as a solution for continuous MaOPs and it is conceived
as a global/local exploration tool for the treatment of MaOPs, which consists of two
principal phases: i) obtaining a global optimal solution for a given MaOP and ii) the
local exploration of optimal solutions in a given direction provided by the DM.

In order to effectively set up this idea, we need to precisely define the role of the
direction provided by the DM and the meaning of improving a given solution according
to this direction. First, let us comment that specifying a direction with respect to
a starting solution can easily be thought by the DM in many different ways and for
different purposes. For the sake of illustration, let us consider a MOP with three
objectives (f1, f2, f3) and the following scenario: the DM has an optimal solution for
this problem that he/she is not fully satisfied with, e.g., he/she would like to minimize
the value of f2 as much as possible. However, a lot of options can be considered for
the above example. For instance, the vector d1 = (1,−1, 0)T can refer to a direction
(in objective space) aiming at reducing the second objective, while increasing the
first one. Similarly, the direction d2 = (0,−1, 1)T would imply a reduction of the
second objective together with a growth on the third objective. In both cases, we
could obtain the minimum value for f2, but following the direction d1 or d2 typically
produces different paths that can be associated with different DM preferences. By

Cinvestav Computer Science Department

Introduction 3

defining a direction, the DM can actually decide which objectives to improve and
which ones to “sacrifice” in order to refine his/her preferences. Performing such
local movements in objective space while following a whole path of Pareto optimal
solutions with respect to the preferred direction of the DM is the goal of the proposed
framework.

Though the first results were very promising, there are several lines of research
arising from this method. For instance, the PE method has been originally developed
for continuous MaOPs. However, in this work we extended the implementation of the
PE method for different smoothness assumptions, in particular, we consider discrete
and linear problems. The use of evolutionary algorithms or other techniques to find
global solutions is the first step to develop a memetic algorithm with the PE. This
may be considered in order to potentiate its applicability for real word problems.

Finally, the steering phase of the PE is based on the Pareto Tracer method which
can handle equality constraints. MOPs with equality constraints are scarce in the
literature, thus, the proposal of a benchmark for MaOPs is also needed.

1.2 Hypothesis

It is expected that the PE will be a widely accepted tool in academy and industry
for the numerical treatment of MaOPs. The PE will be developed and extended for
problems with different smoothness assumptions and will be used on several demon-
strators coming from real-world applications.

1.3 Aims of the Thesis

To develop and extend the PE method in order to provide an efficient numerical
tool for the adequate numerical treatment of MaOPs with different smoothness as-
sumptions. It is expected that the new algorithm pushes the state-of-the-art in this
field.

Our particular aims are presented in the following list

1. Extension of PE for smooth MaOPs. Here, we mainly focus on three aspects:
the use of PE for finding the knee of the Pareto front, the neighborhood explo-
ration, and the application of our framework to solve a real-world problem.

• Development of new steering directions (according to the application). For
instance, we can focus on the steering toward the knee of the Pareto front,

Cinvestav Computer Science Department

4 Chapter 1

which usually represents the best trade-off between all the involved objec-
tives. In many applications, the DM is looking for such a point.

• Detection of better distributions of the neighborhood for the phase of com-
plete exploration of the PE. We can see the desirable directions as points
evenly distributed in a hypersphere; the computation of such points is
still an open problem in maths. However, we can consider the existing
approaches to approximate them.

• Increase of the overall efficiency of the PE method. Although the compar-
isons against other methods are unfair by the originality of our proposal,
we can experimentally show that the computational cost of PE is low in
terms of function evaluations.

2. Computation of suitable initial solutions (according to the application). In
the context of the PE framework, the DM needs a few representative initial
candidate solutions to start with the steering process. The computation of such
candidate solutions has to be performed efficiently.

3. Extension to MaOPs with different smoothness assumptions. It is common,
for a wide variety of applications, that the second-order derivatives are not
available. Thus, we also need a way to deal with such kind of problems.

• Gradient-free version. Since the approximation of Jacobians and Hessians
is computationally expensive.

• Use of evolutionary algorithms for discrete problems. These algorithms
have been very successful in solving such problems.

4. Use of the method to solve real-world problems and different applications. A
way to validate our proposal is via an application, as the decision-making process
sometimes is not adequately reflected with benchmark problems.

1.4 Contributions of this thesis

This thesis contributes to the area of many-objective optimization, specifically it
provides an efficient way to steer a local search in a given direction. This contribution
is a module of a numerical tool called PE.

Our particular contributions are the following:

• We proposed the PE as a complete framework. In this work, one can find
several tools for the exploration of MaOPs, which can be integrated into the
PE framework. These tools are related to the computation of initial optimal

Cinvestav Computer Science Department

Introduction 5

solutions, the steering in objective space for MaOPs with different smoothness
assumptions, and the preservation of diversity in decision variable space.

• A MOEA that can compute a few good initial solutions for the steering in
objective space. The obtained solutions are representative and, by the nature
of MOEAs, they are at least good approximations of global solutions.

• A heuristic that preserves diversity in decision space. Most of the evolutionary
algorithms focus only in objective space, neglecting the critical information
provided by the variables of the problem. Moreover, in the PE context, diversity
in decision space also means promising initial solutions for the steering in such
space.

• A framework for the steering in objective space with different smoothness as-
sumptions. In this way, the PE framework is now more robust, and it can be
considered for solving a vast number of problems.

• A benchmark for constrained MOPs, which is scalable in the number of vari-
ables, objectives, and constraints. The mathematical expression of the Pareto
set is given for all the presented instances.

• A software package for free scientific use.

1.5 Publications

In this section we present the publications that have been derived from this thesis
(from 2016 to 2019).

1.5.1 Prizes

• Cuate, Oliver; Schütze, Oliver. “Variation Rate: An Alternative to Maintain
Diversity in Decision Space for Multi-objective Evolutionary Algorithms”. EMO
2019: Evolutionary Multi-Criterion Optimization.
Best Paper Award (Second Place)

1.5.2 JCR Journals

• Cuate, Oliver; Uribe, Lourdes; Lara, Adriana; Schütze, Oliver. “A Bench-
mark for Equality Constrained Multi-objective Optimization”. Swarm and
Evolutionary Computation DOI: https://doi.org/10.1016/j.swevo.2019.

100619

Cinvestav Computer Science Department

https://doi.org/10.1016/j.swevo.2019.100619
https://doi.org/10.1016/j.swevo.2019.100619

6 Chapter 1

Q1 in Computer Science, Artificial Intelligence and in Computer Science, The-
ory and Methods. Impact Factor: 6.33 in 2018 (3.242 5-year)

• Schütze, Oliver; Cuate, Oliver; Mart́ın, Adanay; Peitz, Sebastian; Dellnitz,
Michael. “Pareto Explorer: A global/local exploration tool for many-objective
optimization problems”. Engineering Optimization
DOI: https://doi.org/10.1080/0305215X.2019.1617286
Q2 in Engineering, Multidisciplinary and in Operations Research & Manage-
ment Science. Impact Factor: 1.809 in 2018 (2.136 5-year)

• Alvarado-Iniesta, Alejandro; Cuate, Oliver; Schütze, Oliver. “Multi-objective
and many objective design of plastic injection molding process”. International
Journal of Advanced Manufacturing Technology. Volume: 102, Issue: 9-12,
Pages: 3165-3180. 2019.
Q2 in Automation & Control Systems and in Engineering, Manufacturing. Im-
pact Factor: 2.496 in 2018 (2.75 5-year)

• Wang, Honggang; Laredo, David; Cuate Oliver; Schütze, Oliver. “Enhanced
directed search: a continuation method for mixed-integer multi-objective opti-
mization problems”. Annals of Operations Research. Volume: 279, Issue: 1-2,
Pages: 343-365. 2019.
Q2 in Operations Research & Management Science. Impact Factor: 2.284 in
2018 (2.267 5-year)

• Hernandez Mej́ıa, Jesus Alejandro; Schütze, Oliver; Cuate, Oliver; Lara, Adri-
ana; Deb, Kalyanmoy. “RDS-NSGA-II: A memetic algorithm for reference point
based multi-objective optimization”. Engineering Optimization. Volume: 49,
Issue: 5, Pages: 828-845
Q2 in Engineering, Multidisciplinary and in Operations Research & Manage-
ment Science. Impact Factor: 1.809 in 2018 (2.136 5-year)

1.5.3 Other Journals

• Cuate, Oliver; Schütze, Oliver. “Variation Rate to Maintain Diversity in
Decision Space within Multi-objective Evolutionary Algorithms”. Mathematical
and Computational Applications. Volume: 24, Issue: 3, Pages 82
Emerging Sources Citation Index (ESCI) in Web of Science

• Bogoya, Johan; Vargas, Andrés; Cuate, Oliver; Schütze, Oliver. “A (p,q)-
Averaged Hausdorff Distance for Arbitrary Measurable Sets”. Mathematical
and Computational Applications. Volume: 23, Issue: 3, Pages 51
Emerging Sources Citation Index (ESCI) in Web of Science

Cinvestav Computer Science Department

https://doi.org/10.1080/0305215X.2019.1617286

Introduction 7

• Pérez, Nancy; Cuate Oliver; Schütze, Oliver; Alvarado, Alejandro. “Including
Users Preferences in the Decision Making for Discrete Many Objective Opti-
mization Problems”. Computación y Sistemas. Volume: 20, Issue: 4, Pages:
589-607
LatIndex

1.5.4 Proceedings

• Cuate, Oliver; Schütze, Oliver. “Pareto Explorer for Solving Real World
Applications”. 18th Mexican International Conference on Artificial Intelligence
(MICAI 2019) (to appear)

• Cuate, Oliver; Uribe, Lourdes; Ponsich, Antonin; Lara, Adriana; Beltrán,
Fernanda; Rodŕıguez Sánchez, Alberto; Schütze, Oliver. “A New Hybrid Meta-
heuristic for Equality Constrained Bi-objective Optimization Problems”. EMO
2019: Evolutionary Multi-Criterion Optimization

• Cuate, Oliver; Schütze, Oliver; Grasso, Francesco; Tlelo-Cuautle, Esteban.
“Sizing CMOS operational transconductance amplifiers applying NSGA-II and
MOEAD”. 2019 42nd International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO)

• Cuate, Oliver; Derbel, Bilel; Liefooghe, Arnaud; Talbi, El-Ghazali; Schütze,
Oliver. “An Approach for the Local Exploration of Discrete Many Objective
Optimization Problems”. EMO 2017: Evolutionary Multi-Criterion Optimiza-
tion

• Cuate, Oliver; Lara, Adriana; Schütze, Oliver. “A Local Exploration Tool for
Linear Many Objective Optimization Problems”. 2016 13th International Con-
ference on Electrical Engineering, Computing Science and Automatic Control
(CCE)

1.5.5 Textbooks

• Schütze, Oliver; Cuate, Oliver. “Cálculo Diferencial”. Editorial Punto Fijo.
In press.
Textbook on Differential Calculus on high school level in Spanish

• Schütze, Oliver; Cuate, Oliver. “Cálculo Integral”. Editorial Punto Fijo. In
press.
Textbook on Integral Calculus on high school level in Spanish

Cinvestav Computer Science Department

8 Chapter 1

• Schütze, Oliver; Cuate, Oliver. “Cálculo Mental”. Editorial Punto Fijo. In
press.
Textbook on Mental Calculus on middle school level in Spanish

• Schütze, Oliver; Cuate, Oliver. “Club de Matemáticas: Resolviendo proble-
mas con Álgebra”. Editorial Punto Fijo. In press.
Textbook for introductory algebra on middle school level in Spanish

1.6 Organization of the Thesis

This thesis consists of seven chapters, including this introductory chapter. The
remainder of this document is organized as follows.

In Chapter 2, we present the basic concepts of scalar, multi, and many objec-
tive optimization problems. Further, we review some of the methods for solving
a continuous MOP along with some methods for MaOPs and Scalar Optimization
Problems (SOPs). The PE and PT methods, the main tools for this work, are also
described in detail in Chapter 2. In Chapter 3, we present some extensions of the
PE for continuous problems; in particular, we propose the unbiased neighborhood
exploration, and we provide a significant theoretical result that allows the use of PE
for finding the knee of the PF. Also, in this chapter, we demonstrate the effectiveness
of PE solving a real-world application: the plastic injection molding. On the other
hand, the adaption of the steering phase in objective space with different smooth-
ness assumptions is presented in Chapter 4; mainly, focusing on discrete and linear
MaOPs. In Chapter 5, we present a hybrid algorithm using the Pareto Tracer, which
is the core of PE, as the local searcher. While, in Chapter 6, we develop a heuristic to
preserve diversity in the decision space. In Chapter 7, we provide a full description of
how to construct M(a)OPs that are scalable in variables, objectives, and number of
constraints. Finally, in Chapter 7, we present our conclusions along with some ideas
to be considered for future work.

Cinvestav Computer Science Department

Chapter 2

Basic Concepts

We introduce some principal concepts and the necessary theoretical background
throughout this chapter to understand this work. The scope of this work contem-
plates the treatment of a particular class of optimization problems, Many Objective
Optimization Problems (MaOPs). Thus, we start by defining a Scalar Optimization
Problem (SOP) in Section 2.1 together with three different classes of algorithms to
solve such problems. In Section 2.2 we address Multiobjective Optimization Prob-
lems (MOPs) and state the definitions and optimality conditions used along this
work. We also explain the difference between SOPs and MOPs, as well as the conflict
that exists to find one or more suitable solutions for MOPs. Due to the importance
of some methods and approaches developed to solve MOPs numerically, we describe
the most widely used ones related to this work in Section 2.3. We describe some
benchmarks for MOPs in Section 2.4; and in Section 2.5, we define the indicators
that we use along this work. Finally, in Section 2.6, we describe in details the Pareto
Tracer and the Pareto Explorer methods, that build the core of this work.

2.1 Single Objective Optimization

In a SOP, we have a unique objective function which depends on one or more
variables, f : Rn → R, and which is subject to certain constraints. We can write a
continuous SOP in a standard form as:

min
x∈Rn

f(x),

s.t gj(x) ≤ 0, i = 1, ...,m,
hi(x) = 0, j = 1, ..., p,

(2.1)

where gj : Rn → R, i = 1, . . . ,m, are the inequality constraints and hi : Rn → R, j =
1, . . . , p, are the equality constraints. A special type of inequality constraints are the

9

10 Chapter 2

so called box constraints, which define limits for each component of the vector x ∈ Rn,
so box constraints have the form ai ≤ xi ≤ bi, with a, b ∈ Rn.

Definition 2.1. The set of points X = {x ∈ Rn | g(x) ≤ 0 and h(x) = 0} is called
feasible region where g : Rn → Rm and h : Rn → Rp are defined as the vector
functions of the given inequalities and equalities, respectively.

Unless specified differently, we assume along this work that the objective function
and the constraints are continuously differentiable. Under this assumption, we define
the gradient ∇f(x) ∈ Rn of a multivariable function f as the vector consisting of the
function partial derivatives

∇f(x) =


δf

δx1

(x)

...
δf

δxn
(x)

 (2.2)

and the Hessian matrix ∇2f(x) ∈ Rn×n as the square matrix of the second order
derivatives

∇2f(x) =



δf

δ2x1

(x)
δf

δx1δx1

(x) . . .
δf

δx1δxn
(x)

δf

δx2δx1

(x)
δf

δ2x2

(x) . . .
δf

δx2δxn
(x)

...

δf

δxnδx1

(x)
δf

δxnδx2

(x) . . .
δf

δ2xn
(x)


. (2.3)

To solve (2.1), the task is to find a vector x∗ ∈ X , such that the function evalua-
tion at x∗ gets a minimum value f(x∗) ∈ X . That is, there is no other x ∈ X , such
that f(x) < f(x∗). We can express this mathematically as follows:

Definition 2.2. a) A point x∗ a local minimizer of problem (2.1) if f(x∗) ≤ f(x) is
satisfied within a feasible neighborhood of x∗.

b) A point x∗ is a global minimizer of problem (2.1) if f(x∗) ≤ f(x) for all x ∈ X

Notice that, for some problems, the value f(x∗) could be obtained for more than
one vector. This means that, if we have a feasible solution and depending on char-
acteristics thereof, then it is possible to find a set of solution vectors, such that the

Cinvestav Computer Science Department

Basic Concepts 11

function takes the minimum value for each one. However, the optimal value of the
objective function is unique.

There exist a lot of methods to solve a SOP, each one of which tries to exploit
the characteristics of the given problem. Due to the scope of this work, we will not
be thorough about these methods. However, we briefly describe three of the most
common methods for the continuous case since those concepts will be useful in this
work.

2.1.1 Line Search Strategies

The idea of this kind of methods is to find a descent direction and then to compute
a step size that produces a sufficient decrement along the given direction [Nocedal
and Wright, 2006]. In general, an iteration of this method is given by

x0 ∈ Rn,

xi+1 = xi + tiνi, i = 0, 1, . . . ,
(2.4)

where xi ∈ Rn, x0 is the starting point, ti ∈ R+ is a step size and νi ∈ Rn is the
descent direction. Mathematically, we have the following

Definition 2.3. νi ∈ Rn is a descent direction for a function f : Rn → R at a point
xi ∈ Rn if

∇f(xi)
Tνi < 0. (2.5)

The above condition implies that

f(xi + tiνi) < f(xi), for t > 0 sufficienty small.

We can solve the following problem to find the best possible step size

min fν(t) = f(x+ tν). (2.6)

However, computing the exact solution of (2.6) may be costly. As a remedy, we
can seek for an acceptable step size.

The Armijo condition allows to get a sufficient decrease in the objective function
f . This condition is given by

f(x+ tν) ≤ f(x) + c1t∇f(x)Tν, (2.7)

where c1 ∈ (0, 1). On the other hand, a rule that prevents too small steps lengths is
given by

∇f(x+ tν)Tν ≤ c2∇f(x)Tν, (2.8)

where c2 ∈ (c1, 1). Equations (2.7) and (2.8) together are called the Wolfe conditions.

Cinvestav Computer Science Department

12 Chapter 2

2.1.2 Newton Method

A Newton method step [Nocedal and Wright, 2006] is computed by

x0 ∈ Rn,

xi+1 = xi −∇2f(xi)
−1∇f(xi), i = 0, 1, . . .

(2.9)

Here again, xi ∈ Rn and x0 ∈ Rn is the starting point. Notice that the structure
of (2.9) is very similar to the line search step (2.4), we can consider that the direction
νi = −∇2f(xi)

−1∇f(xi) ∈ Rn, and the step size ti = 1.

The Newton method possesses some important properties, for instance, it presents
typically local quadratic convergence. However, we need the Hessian at each iteration
making the method computationally expensive.

2.1.3 BFGS Method

We can use numerical methods to approximate the Hessians, e.g. finite differences
or automatic differentiation [Griewank and Corliss, 1992]. Yet, there exist more
suitable methods to update the Hessians when we do not have this information at
hand: the Quasi-Newton (QN) methods [Dennis and Moré, 1977]. QN methods build
a quadratic model of the problem to approximate the Hessians at each iteration.
These approximations produce, at most, superlinear convergence.

Some of the QN methods use a line search strategy, where the search direction is
given by

ν = −B−1∇f(x), (2.10)

where B ≈ ∇2f(x). Notice that the the only difference with the Newton method is
the use of B instead of the Hessian.

The most common method update is the Broyden-Fletcher-Goldfarb-Shanno (BFGS),
which is given by

Bi+1 = Bi +
Biss

TBi

sTBis
, (2.11)

where s = xi+1 − xi and and y = ∇f(xi+1)−∇f(xi).

A necessary and sufficient condition to guarantee the positive definiteness of B is
the curvature condition which is satisfied by imposing the Wolfe condition (2.8) on
the step size control.

Cinvestav Computer Science Department

Basic Concepts 13

2.2 Multiobjective Optimization

The continuous MOP is defined as

min
x∈Rn

F (x),

s.t gj(x) ≤ 0, i = 1, ...,m,
hi(x) = 0, j = 1, ..., p,

(2.12)

where F : Rn → Rk, F (x) = (f1(x), . . . , fk(x))T , fi(x) : Rn → R i = 1, . . . , k, with a
feasible region as in Definition 2.1.

The main difference between a SOP and a MOP is the nature of the solution
set. As we explained before, the solution for a SOP, if it exists, is typically a unique
optimum value that can be achieved by more than one point in the function domain.
On the other hand, the solution of a MOP implies finding a trade-off among all the
objective functions, and consequently, it leads to find an entire set of points instead
of a single solution. The above occurs when functions are in conflict with each other
(see e.g. Figure 2.1); thus, while we decrease one of the objective functions, some of
the others increase their value and vice versa.

x

f (x)

f1

f2

f3

Figure 2.1: Functions in conflict, values of functions f1, f2 and f3 have different
behavior with respect to x.

One important characteristic of MOPs is that their solution sets, the Pareto
Sets (PSs), typically form a (k − 1)-dimensional object where k is the number of
objectives involved in the MOP. Thus, it is only possible to approximate the entire

Cinvestav Computer Science Department

14 Chapter 2

set of compromise solutions for a relatively low number of objectives (say, k = 3 or
4). However, the vast majority of the time it is not easy to get such approxima-
tion. Therefore, it is important to provide numerical methods to obtain subsets of
representative solutions.

Further, in a real world problem, the objective functions commonly have distinct
units making them incomparable to each other. For example, we can not compare a
cost function versus a quality function. Even if all functions have the same measure-
ments, there is not a total order for vectors but only a partial order.

A total order in R refers to that, for all a, b ∈ R, it is always possible to know if
a ≤ b. We can define a partial order for vectors as follows, given c, d ∈ Rk we say that
c ≤ d ⇐⇒ ci ≤ di ∀i ∈ {1, . . . , k}. Therefore, we need a different way to compare
two vectors based on the values of the objectives.

For multiobjective optimization, the most commonly adopted method to compare
solutions is the one called Pareto dominance relation. This notion of optimality takes
into account the aspects that we have considered intuitively in this section. It was
originally proposed by Francis Ysidro Edgeworth in 1881 [Edgeworth, 1881] and was
later generalized by Vilfredo Pareto in 1896 [Pareto, 1896].

In order to formalize the above, we will introduce some definitions.

2.2.1 Definitions

We have two principal spaces when considering MOPs. The first one is called
decision space. This is the space formed by the variables x ∈ Rn of the problem;
according to our notation, this space is within the Rn. The second one is called
objective space and it is formed by the values F (x). The image of a decision vector is
in Rk. When we solve a MOP, we must do comparisons between images of decision
vectors, namely, we must do its comparison in objective space.

Definition 2.4 (Pareto dominance). A point y ∈ X is dominated by a point x ∈ X
if fi(x) ≤ fi(y) ∀ i ∈ {1, . . . , k} and fj(x) < fj(y) for some j ∈ {1, . . . , k}. In this
case, we use the notation x ≺ y; otherwise, we say that y is non dominated by x.

Definition 2.5. Let x∗ ∈ X be a feasible point of (2.12), x∗ is called weakly Pareto
optimal if @ x ∈ X s.t. fi(x) < fi(x

∗) ∀ i = 1, . . . , k.

Definition 2.6. A decision vector x∗ ∈ X is Pareto optimal with respect to (2.12)
if there does not exist another decision vector x ∈ X such that x ≺ x∗.

Definition 2.7. A point x∗ ∈ X is locally (weak) optimal if it is (weak) optimal in a
feasible neighborhood of x∗.

Cinvestav Computer Science Department

Basic Concepts 15

In Figure 2.2, we show a representation of a set of compromise solutions for two
functions, fi(x) and f2(x), which depend of the variable x ∈ R; each function fi takes
its minimum value at x∗i . As we can see, the line segment connecting x∗1 and x∗2 forms
the Pareto set.

x

f (x)

f1

f2

x∗1 x∗2

Figure 2.2: We illustrate the idea of compromise solutions. In this graph, we
have optimal values in the interval [x∗1, x

∗
2], as we can see, values of functions in

this interval present a trade-off for both.

We can see in Figure 2.3 examples of Pareto dominance, weakly Pareto optimality,
and Pareto optimality. This plot represents a surface in objective space for two
objective functions, f1(x) and f2(x). The points p2 and p3 are Pareto optimal. As
we can see, there is no other point with lesser value in both components; the point
p1 is weakly Pareto optimal because the point p2 dominates it, even so, p1 is not
dominated by the point p3; for its part, the point p4 is dominated by the other three
points.

Definition 2.8. The set of optimal points P for (2.12),

P = {x ∈ X | @ y ∈ X : y ≺ x},

is called the PS.

Definition 2.9. The set of images F of P,

F = F (P) = {F (x) ∈ Rk | x ∈ P},

Cinvestav Computer Science Department

16 Chapter 2

f1(x)

f2(x)
•F (p1)

•F (p2)

•
F (p3)

•
F (p4)

F (Q)

Figure 2.3: We show in this figure a 2D plot in objective space with four points,
p1 is a weakly Pareto optimal point, p2 and p3 are Pareto optimal points, and
finally, p4 is a dominated point in the Pareto sense.

is called the Pareto Front (PF).

Examples of PS and PF are shown in Figure 2.2 and Figure 2.3, respectively.
In Figure 2.2 the PS is the line segment connecting x∗1 and x∗2. Whereas that, in
Figure 2.3, the PF is represented by the curve from F (p2) to F (p3), the points in the
dashed line are weakly optimal points, (notice that f1(p1) = f1(p2)); and the point p4

is dominated by p2 and p3 (actually, it is dominated by any point in the continuous
line).

2.2.2 Optimality Conditions

A first order condition of optimality for differentiable MOPs is given by the
Karush-Kuhn-Tucker (KKT) equations, named after the work of Karush [Karush,
1939] and Kuhn and Tucker [Kuhn and Tucker, 1951].

Theorem 2.1. Suppose that x∗ is a local solution of (2.12). Then, there exist La-
grange multipliers α ∈ Rk, λ ∈ Rp and γ ∈ Rm such that the following conditions are

Cinvestav Computer Science Department

Basic Concepts 17

satisfied

k∑
i=1

αi∇fi(x∗) +

p∑
i=1

λi∇hi(x∗) +
m∑
i=1

γigi(x
∗) = 0 (2.13a)

hi(x
∗) = 0, i = 1 . . . p, (2.13b)

gi(x
∗) ≤ 0, i = 1 . . .m, (2.13c)

αi ≥ 0, i = 1 . . . k, (2.13d)

k∑
i=1

αi = 1, (2.13e)

γi ≥ 0, i = 1 . . .m, (2.13f)

γigi(x
∗) = 0, i = 1 . . .m. (2.13g)

Finally, an important aspect in the context of our work is that Pareto points
typically form a (k − 1)-dimensional differentiable manifold [Hillermeier, 2001]. This
and subsequent applications will be subject to an in-depth discussion throughout the
thesis.

2.3 Solving a MOP

A large variety of methods has been developed to solve MOPs. These methods
try to get a set of optimal solutions and they focus on two principal aspects. On the
one hand, it is important to generate points in all the PF, that is, a good extension;
on the other hand, an uniform distribution along the PF is desirable. Nevertheless,
as we will show in Section 2.3, according to the problem, it is sometimes necessary to
adopt a different approach to solve a MOP.

In this section, we describe the most important methods related to the solution of
MOPs. First, we focus on some Mathematical Programming techniques for MOPs.
After that, we describe some on Multi-objective Evolutionary Algorithms (MOEAs)
that are usually used to deal with MaOPs and with constrained MOPs (CMOPs), as
well as some MOPs in the literature related with the diversity in variable space.

2.3.1 Mathematical Programming Techniques

Continuation Methods

Continuation methods have been used to solve MOPs. These methods have the
advantage that they perform a movement along a set of interest. To achieve this, we

Cinvestav Computer Science Department

18 Chapter 2

need an initial optimal solution. Starting from this point, we compute a predictor,
which is a movement according to certain criteria; and then, we correct this point to
the solution set leading to a new candidate solution. The consideration of both the
predictor and in the corrector, gives rise to different methods.

Method of Hillermeier Many predictor-corrector methods are based on the Im-
plicit Function Theorem [Krantz and Parks, 2002]. We briefly state the main steps of
classical predictor-corrector methods for tracing one-dimensional solution sets. Ac-
cording to this theorem if x is a solution of

H(x) = 0, (2.14)

where H : RN+1 → RN and rank(H ′(x)) = N , then there exists a value ε > 0 and a
curve c : (−ε, ε)→ RN+1 such that c(0) = x and

H(c(s)) = 0 ∀ s ∈ (−ε, ε). (2.15)

Differentiating we obtain

H ′(c(s))c′(s) = 0. (2.16)

This means that we can get the tangent vectors c′(s) computing the kernel vectors
of H ′(x), This can be done via a QR factorization of the matrix H ′(x)T , i.e.

H ′(x)T = QR (2.17)

for an orthogonal matrix Q ∈ R(N+1)×(N+1) = (q1,qN+1) and a right upper tri-
angular matrix R ∈ R(N+1)×N . Doing so, the last column vector qN+1 is a kernel
vector.

Finally, the orientation of the curve can be controlled be monitoring the sign of

det

(
H ′(x)
qTN+1

)
. (2.18)

Thus, we can compute a predictor point p along the linearized solution curve
following the same orientation. Now we can get back to a curve c(x) using (2.14)
and p as starting point e.g. via a Gauss-Newton or a Levenberg-Marquardt method
[Björck, 1996].

A method was developed by Hillermeier in 2001 [Hillermeier, 2001], for the mul-
tiobjective optimization context by considering the auxiliary function F̂ : Rn+k →

Cinvestav Computer Science Department

Basic Concepts 19

Rn+1,

F̂ (x, α, λ) =

 ∑k
i=1 αi∇fi(x) +

∑p
i=1 λi∇hi(x)

h(x)∑k
i=1 αi − 1

 = 0. (2.19)

The set of KKT points of a non linear equality constrained is contained in the
zero set of F̂ , which motivates the continuation along F̂−1(0). We show a geometrical
idea of this method in Figure 2.4.

f1(x)

f2(x)

F (x∗)
•

α

F (Q)

Figure 2.4: We show in this figure the α vector, which is orthogonal to the
linearization PF at the point F (x∗) (dotted line).

The Hillermeier method proceeds as the general technique described above, but
instead of computing the determinant given in (2.18), the author checks the following
condition for two consecutive solutions

[xi − xi+1]q ≥ 0, (2.20)

where xi, xi+1 ∈ Rn+k+p and q is the tangent vector.

Also, the author suggests a step size which guarantees a uniform spread of the
solutions on the PF. That is, for two consecutive solutions we want

‖F (xi)− F (xi+1)‖ ≈ τ, (2.21)

where τ > 0 is the desirable spread. The suggested step size is given by

t =
τ

‖Jν‖
, (2.22)

where ν = xi+1 − xi.

Cinvestav Computer Science Department

20 Chapter 2

Directed Search Predictor-Corrector Method This method defines a way to
steer the search into any given direction in objective space [Schütze et al., 2011]. The
main idea of this method is as follows.

Let be x0 ∈ Rn a point in parameter space with rank(J(x0)) = k and d ∈ Rk

a given vector which represents a desired search direction in image space. Then, a
search direction ν ∈ Rn in decision space is sought such that for y0 := x0 + tν, where
t ∈ R+ is the step size (i.e., y0 represents a movement from x0 in direction v), it
holds:

lim
t→0

fi(y0)− fi(x0)

t
= 〈∇fi(x0), ν〉 = di, i = 1, ..., k. (2.23)

Using the Jacobian of F , Eq. (2.23) can be stated in matrix vector notation as

J(x0)ν = d. (2.24)

Hence, such a search direction ν can be computed by solving a system of linear
equations. Since typically the number of decision variables is (much) higher than the
number of objectives for a given MOP, i.e., n� k, system (2.24) is (probably highly)
underdetermined, which implies that its solution is not unique. One possible choice
is to take

ν+ = J(x0)+d, (2.25)

where J(x0)+ ∈ Rn×k denotes the pseudo inverse1 of J(x0). A new iterate x1 can
be computed as the following discussion shows: given a candidate solution x0, a new
solution is obtained via x1 = x0 + tν, where t > 0 is a step size and ν ∈ Rn is a
vector that satisfies (2.24). Among the solutions of system (2.24), ν+ is the one with
the smallest Euclidean norm. Hence, given t, one expects for a step in direction ν+

(decision space) the largest progress in d-direction (objective space).

Predictor Given a KKT point x0 ∈ Rn, it is known that its associated weight
vector α is orthogonal to the linearized Pareto front at F (x0) [Hillermeier, 2001] and
hence any direction orthogonal to α could be a promising predictor direction. To
compute such a direction a QR factorization on α can be performed:

α = QR = (q1, . . . , qk)(r11, 0, . . . , 0)T , (2.26)

where Q ∈ Rk×k is an orthogonal matrix and R ∈ Rk×1 with r11 ∈ R\{0} is an upper
triangular matrix. Since by Eq. (2.26) α = r11q1, it follows that a well spread set of
directions can be taken from any of the normalized search directions νi such that:

J(x0)νi = qi+1, i = 1, . . . , k − 1. (2.27)

1If the rank of J := J(x0) is k (i.e., maximal) the pseudo inverse is given by J+ = JT (JJT)−1.

Cinvestav Computer Science Department

Basic Concepts 21

To orientate the curve (i.e., to determine the signum of p) the change in one of
the objective values can be used. For this, the signum of the according entry of the
the direction vector q2 can be taken. If, for instance, an improvement according to f2

is sought, then

p = x0 − sgn(q22)
tν2

||v2||
, (2.28)

where t is the chosen step size.

Corrector Given a predictor p, the subsequent solution along the curve can be
computed by solving

x(0) = x0 ∈ Rn

~̇x(t) = J(x(t))+d, t > 0.
(2.29)

Using p as initial value and choosing d = −α0, i.e. the negative of the weight from
the previous solution x0, leading to a new solution x1. The new associated weight
vector α1 can be updated as follows:

α1 = min
λ∈Rk


∥∥∥∥∥

k∑
i=1

λi∇fi(x)

∥∥∥∥∥
2

s. t. λi ≥ 0, i = 1, . . . k,
k∑
i=1

λi = 1

 . (2.30)

Figure 2.5 displays a single iteration of the DS method, p stands for the predictor
direction, while c stands for the corrector direction. It can be seen from the images
that even though a movement along a linearization of the Pareto front at f(x0) is
desired, it is not always possible to move in such direction and, in consequence,
predictors usually end up above the Pareto front, making the use of corrector steps
necessary in most cases.

Figure 2.5: Example of the Directed Search predictor-corrector method.

Cinvestav Computer Science Department

22 Chapter 2

Reference Point Methods

Usually, the solution of a MOP involves finding a set of optimal points with
certain properties, e.g. that the image of this set has a uniform spread along the
whole PF of the given problem. However, there are real-world problems in which a
Decision Maker (DM) has knowledge about the problem or he/she wants to obtain
optimal solutions with certain characteristics instead of solutions in the whole PS.
The reference point methods are useful for these scenarios. The idea is to get the
closest solution to a given vector, usually infeasible, which is a guess of the DM.
These methods, where the DM has an active participation in the solution process,
are called interactive. The difference between an interactive method and the others
relies on the kind of information asked to the DM [Miettinen, 1999].

Reference Point Problem We can find different alternatives, which consider one
reference point at the same time, in order to get a solution. An example is the
classic reference point method, which was presented by Wierzbicki [Wierzbicki, 1981]
in 1981. This method uses a given reference point, that represents the preferences of
the DM, to solve a SOP. The solution of the SOP is presented to the DM and, if the
solution is not good enough for the DM, then a new reference point is proposed. The
process continues until the DM is in agreement with the solution.

The SOP in the reference point method employs an achievement function, which
we will define in the next section. Other methods consider different ways to use a
reference point, e.g, light beam search [Jaszkiewicz and S lowiński, 1999] and GUESS
[Buchanan, 1997].

Achievement Functions Most of the achievement scalarization functions are based
on the Tchebycheff metric. For this work, we the the so-called Wierzbicki’s achieve-
ment scalarizing function (WASF) an appropriate achievement scalarizing function.
Given a reference point Z, the WASF is defined as follows:

Definition 2.10.

g(x|Z, λ) := max
i=1,...,k

{λi|fi(x)− Zi|}+ ρ

k∑
i=1

λi(fi(x)− Zi), (2.31)

where the parameter ρ is the so-called augmentation coefficient, that must be set to a
small positive value, and λ = (λ1, . . . , λk) is a vector of weights, such that ∀i λi ≥ 0
and, for at least one i, λi > 0.

The exploration of the objective space, in most of the reference points methods,
is made by moving the reference point at each iteration. That is, weights do not

Cinvestav Computer Science Department

Basic Concepts 23

define preferences, but they are mainly used for normalizing each objective function.
Usually, the weights are set as:

λi =
1

znad
i − zutp

i

,

where znad and zutp are the nadir and the utopian point, respectively.

The utopian point is a vector formed by the minimum of each objective function,
znad
i = min fi(x) | x ∈ X ∀ i ∈ {1, . . . , k}; this point is generally infeasible. The

nadir point is a vector formed by the maximum of each objective function on the PF,
zutp
i = max fi(x) | x ∈ P ∀ i ∈ {1, . . . , k}. Typically, the estimation of the nadir point

is more complicated than the estimation of the utopian point.

The weighted Tchebycheff scalarizing function poses some convenient properties
over other scalarizing functions. As it is proved in [Miettinen, 1999] by using the
augmented version of this function we can find any Pareto optimal solution. It is
important to mention that the DM can provide both feasible and infeasible reference
points.

2.3.2 Interactive Methods

For its part, a different class of interactive methods, the learning-oriented methods,
exploit the preferences of the DM to direct the search and reduce the number of
solutions to consider. Such methods are useful when the set of optimal solutions is
very large, which is given for MaOPs. A wide variety of these interactive methods
have been developed in recent years [Branke et al., 2008].

Pareto Navigator Method

The Pareto Navigator [Eskelinen et al., 2010] is an interactive learning-oriented
method for nonlinear multiobjective optimization, which uses a set of optimal solu-
tions to create a polyhedral approximation of the PF. The DM can direct the search
along this polyhedral approximation according to her/his preferences. Once an inter-
esting region has been identified, the DM can continue with another method to get
an optimal solution.

It is important to stress that the navigation is not along optimal solutions and
that we need a set of initial optimal solutions to use this method, which is composed
by two principal phases: the initialization and the navigation.

1. Initialization. Given a set of optimal solutions, we construct a polyhedral in
objective space.

Cinvestav Computer Science Department

24 Chapter 2

2. Navigation. According to the preferences of the DM, we steer along the poly-
hedral until reaching a good zone for the DM. Then, we can use an achievement
function to get the closest optimal solution to this zone.

If the DM is not satisfied, we repeat the process, adding the new solution of the
initialization phase.

NIMBUS Method

NIMBUS [Miettinen and Mäkelä, 2000] is a system for non-linear optimization
problems. It has, as its main characteristic, an on-line GUI to solve MOPs. The GUI
allows the user to easily define preferences for the search. The method used by this
system to solve the MOP is an evolutionary algorithm, so it is a robust system.

Also, this system provides to the user with different kinds of plots to visualize
results for problems with many objective functions.

Nautilus Method

This is an interactive method, which is based on the assumption that the DM
prefers getting better solutions at each iteration [Miettinen et al., 2010] instead of
sacrificing the value of some function. For this reason, the interactive process of this
method starts at the nadir point and, based on the preferences of the user, all the
objectives can be improved at each iteration until reaching an optimal solution.

2.3.3 Many-objective Optimization and Evolutionary Algo-
rithms

The notion of many-criteria optimization was used for the first time in [Farina
and Amato, 2002]. Mathematically, a MaOP is defined in the same way as in Equa-
tion (2.12) but with k > 3 objectives. Thus, the methods described in Section 2.3
can be satisfactorily applied to MaOPs, since these mathematical techniques compute
only one solution at each execution.

However, another approach to work with high dimensional problems consist in
using Evolutionary Algorithms. This approach considers Genetic Algorithms and
other population-based algorithms. A thorough survey on multiobjective evolutionary
algorithms for MaOPs can be found in [von Lücken et al., 2014]. We can classify the
methods for the treatment of MaOP in two groups. We can briefly describe these
groups as follows:

Cinvestav Computer Science Department

Basic Concepts 25

i) Methods that adopt alternative preference relations:

• Crisp. An example of this kind of method is provided in [Di Pierro et al.,
2007]. In this work, the authors propose the use of Preference Ordering,
a generalization of Pareto optimality which employs two more stringent
definitions of optimality: Efficiency of Order and the Efficiency of order
k with degree z, as a ranking criterion in the framework of NSGA-II [Deb
et al., 2002]. This approach was validate with problems having up to 8
objective functions.

• Fuzzy. A fuzzy relation is introduced in [Farina and Amato, 2002]; it is
based on the number of components: bigger, smaller and equal between two
vectors. We can find in this paper an expression for the portion e in a k-
dimensional criteria domain, such that the dominance concept classifies as

equivalent solutions, e =
2k − 2

2k
. Thus, the definition of Pareto optimality

is not effective for MOPs.

ii) Methods that transform the original MaOP into a SOP:

• Based on scalarization functions,

– Decomposition based. The most famous method is MOEA/D [Zhang
and Li, 2007]; this method decomposes the original problem into a
set of scalar optimization problems, and a scalarization function with
different weights for each individual is assigned. In the original paper,
the method is tested on problems with up to 4 objective functions.

• Indicator based. A method to approximate the value of the Hypervolume
(HV) indicator was developed in [Bader et al., 2010]. The idea is to use a
Monte Carlo algorithm to estimate values of the HV for a large number of
objectives.

• Based on dimensional reduction techniques. Two kinds of objective reduc-
tion, linear objective reduction and nonlinear objective reduction, are pre-
sented in [Saxena et al., 2013]. Both are applied in an a posteriori manner
to get a set of nondominated solutions with some MOEA. The core idea is
to consider the correlation of the solution via an eigenvalue analysis to iden-
tify the set of important objectives. Tests of this approach include problems
with up to 50 objective functions.

• Based on space partitioning. ε Ranking-Evolutionary Multiobjective Opti-
mizer (εR-EMO) [Aguirre and Tanaka, 2009]; this method takes the basis
of the NSGA-II [Deb et al., 2002]. It uses a partition strategy to define
a schedule of subspace sampling and an adaptive ε-ranking procedure to
re-rank solutions in each subspace. The number of solutions to be consid-
ered at each partition and the number of generations before creating a new
partition are both set by the user.

Cinvestav Computer Science Department

26 Chapter 2

Next, we provide descriptions of some specific approaches corresponding to the
above taxonomy.

Indicator based

• S-metric Selection-EMOA (SMS-EMOA) [Beume et al., 2007]. The aim of this
method is to maximize the HV. The former selection criterion is the non-
dominated sorting procedure and the latter one is the HV. If the change of
certain individual by a new one improves the HV, then this change is preserved.

• Hypervolume Estimation Algorithm for Multi-objective Optimization (Hype)
[Bader and Zitzler, 2011]. As in [Bader et al., 2010], the idea is to approximate
the HV indicator. Hype uses the concept of environmental selection to create
a new population from the best solutions in the union set of the parent and
offspring populations; this allows us to estimate the HV value by sampling
solutions in different fronts. In this work, test problems with up to 50 objectives
are considered.

Large Populations

• A survey about MOEA/D and NSGA-II with large population, e.g. 10,000
individuals, is presented in [Ishibuchi et al., 2009].

• Dynamical Multiobjective Evolutionary Algorithm (DMOEA) [Zou et al., 2008].
This method is based on the principle of the minimal free energy in thermody-
namics. The method defines a fitness function, which considers three aspects:
the Pareto rank value of the individual, a function analog to the temperature
and the crowding distance [Deb et al., 2002].

• Grid-Based Evolutionary Algorithm (GrEA) [Yang et al., 2013]. This method
tries to strengthen the selection pressure toward the optimal direction while
maintaining an extensive and uniform distribution among solutions with the
help of a grid. Three grid-based criteria, based on grid dominance and grid
difference, are included to compute the fitness of individuals.

Dimension Reduction

• Pareto Corner Search Evolutionary Algorithm (PCSEA) [Singh and Ray, 2011].
This algorithm does a dimensionality reduction searching corners of the Pareto
front. The authors identify two classes of corners, and the minimization is
made using the L2 norm. Solutions that minimize either one of the objectives
or the rest of the objectives simultaneously are preferred. The dimensionality

Cinvestav Computer Science Department

Basic Concepts 27

analysis for the reduction is performed using a heuristic technique, which con-
siders a rate between the number of non-dominated solutions in a reference set
and the number of non-dominated solutions of such set after omitting specific
individuals.

2.3.4 MOEAs for CMOPs

An important part of this work are the constrained MOPs, for this reason, we
consider four state-of-the-art MOEAs in order to compare our proposed approaches.
These MOEAs incorporate different constraint-handling strategies in their environ-
mental selection procedures.

• NSGA-II. The popular non-dominated sorting genetic algorithm II [Deb et al.,
2002] was adopted in our comparative study. NSGA-II employs a binary tour-
nament based on feasibility in the mating selection procedure. In order to
determine the next generation, the crowding comparison operator considers the
feasibility of solutions.

• GDE3. The third evolution step of generalized differential evolution [Kukkonen
and Lampinen, 2005] was also adopted in our experimental analysis. GDE3 in-
troduces the concept of constraint-domination explained before to discriminate
solutions.

• cMOEA/D-DE. We also adopted the first version of the multiobjective evolu-
tionary algorithm based on decomposition for constrained multi-objective opti-
mization [Jan and Zhang, 2010]. cMOEA/D-DE utilizes a penalty function in
order to satisfy the constraint of the problem. The penalty function is added
to the scalarizing function employed by MOEA/D-DE [Li and Zhang, 2009] in
a straight forward manner to approximate the PF of a constrained MOP.

• eMOEA/D-DE. A version of MOEA/D-DE based on the ε-constraint method
for constrained optimization [Martinez and Coello, 2014] is also adopted in our
experimental study. eMOEA/D-DE employs the ε-constraint method to satisfy
the constraints of the problem by obtaining information about feasible solutions
in the neighborhood of MOEA/D-DE. Thus, the neighboring solutions are used
to defined the ε-constraint value which is dynamically adapted during the search
process of eMOEA/D-DE.

2.3.5 Diversity in Decision Space

Unlike evolutionary algorithms for single objective optimization problems (SOPs),
maintaining diversity in decision space is not a priority for most MOEAs; even the

Cinvestav Computer Science Department

28 Chapter 2

performance indicators are developed in order to measure the accuracy based only
on the objective function (e.g., the hypervolume [Zitzler and Thiele, 1999] and the
DOA [Dilettoso et al., 2017]). As an exception, there is the ∆p indicator [Schütze
et al., 2012, Bogoya et al., 2018], which can be viewed as an averaged Hausdorff
distance and which actually measures the distance between two general sets. For this
reason, we can use it as indicator both in objective space as well as in decision space.

Although works that explicitly consider at the same time variables and objec-
tives are scarce, one can find some related work on this topic. For instance, the
NSGA [Srinivas and Deb, 1994] (the algorithm that precedes the well-known NSGA-
II) uses fitness sharing in decision space. In [Jeffrey et al., 1993], some possible
techniques are proposed to spread out solutions, both in objective and decision de-
cision space: pointwise expansion, threshold sharing, sequential sharing, simultaneous
sharing multiplicative, and simultaneous sharing additive. It is important to point out
that the above approaches are only part of the discussion of the paper and they were
not implemented; the implemented algorithm was the Niched Pareto GA, a method
with phenotypic sharing. Besides, all of the described techniques depend on the nor-
mal fitness sharing method, that is, two additional parameters must be provided or
approximated (the niche radius σshare in each space).

The omni-optimizer algorithm [Deb and Tiwari, 2008] is proposed as a procedure
that aims at solving a wide variety of optimization problems (single or multi-objective
and uni- or multi-modal problems). The authors argue that, to solve different kinds
of problems, it is necessary to know different specialized algorithms. Thus, it is
desirable to have an algorithm which adapts itself for handling any number of con-
flicting objectives, constraints, and variables. The omni-optimizer is important in
the context of this work as it uses a two-tier fitness assignment scheme based on the
crowding distance of the NSGA-II. The primary fitness is computed using the pheno-
types (objectives and constraint values) and the secondary fitness is computed using
both phenotypes and genotypes (decision variables). The modified crowding distance
computes the average crowding distance of the population, both in objective and de-
cision variable space. If the crowding value for some individual is above average (in
any space), it is assigned the larger of the two distances; else the smaller of the two
distances is assigned. However, omni-optimizer has a more general purpose.

An algorithm that explicitly promotes the diversity of the decision space is the
MOEA/D with Enhanced Variable-Space Diversity (MOEA/D-EVSD), proposed in
[Castillo et al., 2017]. This method is an extension of the MOEA/D [Zhang and Li,
2007], but with an enhanced variable-space diversity control. In the first generations,
the MOEA/D-EVSD tries to induce a larger diversity via promoting the mating of
dissimilar individuals. Similarly to MOEA/D, a new individual is created for each
subproblem. Then, instead of randomly selecting two individuals of the neighborhood,
a pool of α candidate parents is randomly filled from the neighborhood with probabil-
ity δ, whereas it is randomly selected from the whole population with probability 1−δ.

Cinvestav Computer Science Department

Basic Concepts 29

Thus, the two selected parents are the ones that have the largest distance. As the
δ parameter is dynamically set, a gradual change between exploration and exploita-
tion can be induced. Additionally, a final phase to further promote intensification is
included, which is essentially a traditional MOEA/D coupled with Differential Evo-
lution (DE) operators. For the last generations of MOEA/D-EVSD the traditional
mating selection of MOEA/D is conserved together with the Rand/1/bin scheme for
the DE operators. The authors of this paper show that, by inducing a gradual loss
of diversity in the decision space, the performance of state-of-the-art of MOEAs can
be improved.

2.4 Multiobjective Benchmark Problems

In recent years, researchers have developed challenging optimization test problems.
Test problems are useful to evaluate characteristics of optimization algorithms and
eventually help in the design of more efficient solvers. In [Deb, 2001], a procedure
to design bi-objective unconstrained test problems via three functionals is proposed.
These functionals control some features of the problem. In particular, six specific test
problems are included (known as ZDT functions). The user is able to construct a new
test problem if a certain function f1 is chosen or a different variable mapping strategy
is adopted: y = M ·x, where M is a constant matrix. This mapping strategy is applied
in [Deb et al., 2002]. In [Deb et al., 2005], three different approaches for systematically
designing test problems are presented and the DTLZ benchmark is introduced. Some
main features of these test problems are the scalability in both the number of decision
variables and the number of objective functions. Due to their construction, the user
is able to control some difficulties such as convergence or distribution of the solution
set. Later, in [Huband et al., 2005], the WFG test problems were proposed. This
suite is scalable both in objective and decision variable space. Due to its design,
the user is able to integrate different characteristics such as multi-modality and non-
separability to the desired test problem. The authors included a wide variety of Pareto
optimal geometries. Later, Deb, Sinha, and Kukkonen [Deb et al., 2006] introduced
a test problem suite that uses linkages among variables. They considered three types
of linkages. The first one, linkage among variables that affects either convergence
or diversity. The second linkage affects both convergence and diversity. The third
one, non-linear linkage, causes linear operators to have difficulties when preserving
optimality of solutions. Finally, in [Ishibuchi et al., 2017] the authors modified the
DTLZ benchmark to evidence design issues of some references based MOEAs to deal
with different geometries of traditional problems.

Although several test problem suites have been designed, not all of them consider
constraints. In [Deb et al., 2001], some test problems for constrained multi-objective
optimization are proposed (CTP). In this proposal, the complexity of the constrained
search space can be controlled. Its design causes two kinds of difficulties: (i) Dif-

Cinvestav Computer Science Department

30 Chapter 2

ficulty near the Pareto front and (ii) difficulty in the entire search space. The test
problem generator has six controllable parameters. By setting different parameter
values, the user can create a new constrained test problem. Later, in [Zhang et al.,
2008], the authors proposed more test instances that resemble complicated real-life
problems to stimulate the MOEA research. The Adaptive Approach for Handling is
proposed in [Jain and Deb, 2014], also in this work several constrained MOPs are
stated. Such problems are classified in three different types: constrained problems
of Type-1, where the original Pareto-optimal front is still optimal, but there is an
infeasible barrier in approaching the Pareto-optimal front; constrained problems of
Type-2, which introduce infeasibility to a part of the Pareto-optimal front, that is,
they produce discontinuities in the Pareto-optimal fronts; and constrained problems
of Type-3, they involve multiple constraints in such way that the constrained Pareto-
optimal front is different to the Pareto-optimal front of the unconstrained problem.
Recently, in [Fan et al., 2019a], the authors proposed a general toolkit to construct
difficulty-adjustable and scalable constrained MOPs. The problems that can be con-
structed with this toolkit are obtained via the modification of a triplet of parameters,
(η, ζ, γ), that are related with three primary difficulty types: convergence-hardness,
diversity-hardness, and feasibility-hardness. The authors explain how to adjust the
difficulty level for each primary difficulty type according with the values of the triplet.

It is important to note that the above proposals focus on inequality constraints. In
particular, benchmark MOPs that contain equality constraints are scarce so far. For
instance, in [Saha and Ray, 2012], equality constraints are imposed to ZDT problems
in order to test a new MOEA that seeks for the preservation of feasible solutions. This
suite is scalable neither in the number of objectives nor in the number of constraints.
Further, for all constrained problems, the Pareto set is identical to the solution set
of the corresponding unconstrained problem. Consequently, a search that neglects all
constraints of the problem may lead to satisfying results.

The latter is, of course, an unwanted effect in the investigation of the ability of
the algorithm to handle constraints. That is, since solving an equality constrained
MOP implies satisfying all the equations, then in principle, it would be sufficient to
explore the feasible region. So it is important that a good benchmark has a feasible
region that differs from the optimal set. In this way, it is possible to evaluate the
performance of the algorithms from two different points of view, how good they are to
reach the feasible region and once in it, how effective they are to obtain the optimality
without losing the feasibility.

2.5 Performance Indicators

When dealing with SOPs, it is easy to determine when one solution is better than
another one. For doing that, we only look at the value of the objective function and

Cinvestav Computer Science Department

Basic Concepts 31

if f(a) < f(b), then, clearly, a is better than b. However, when dealing with MOPs,
comparisons are not so easy, since we have to compare two sets that represent two
different approximations to the PF. Performance indicators help us with this task, as
they map an approximation set to a single value, which can then be compared.

In this section we present the performance indicators used along this work.

2.5.1 ∆p indicator

The ∆p indicator [Schütze et al., 2012, Bogoya et al., 2018, Bogoya et al., 2019]
can be viewed as an averaged Hausdorff distance between an approximation set and
the real Pareto front of a MOP. This indicator is defined by slight modifications
of the indicators Generational Distance (GD) [Van Veldhuizen, 1999] and Inverted
Generational Distance (IGD) [Coello and Cortés, 2005]. Formally, the ∆p indicator
can be written as follows.

Let P = {~x1, . . . , ~x|P |} be an approximation and R = {~r1, . . . , ~r|R|} be a discretiza-
tion of the PF of a MOP, then

∆p(P,R) = max{GDp(P,R), IGDp(P,R)}, (2.32)

where GDp(P,R) =
(

1
|P |
∑|P |

i=1 d
p
i

) 1
p

and IGDp(P,R) =
(

1
|R|
∑|R|

j=1 d̂
p
j

) 1
p
, and where

di and d̂j are the Euclidean distance from ~xi to its closest member ~r ∈ R, and the
Euclidean distance from ~rj to its closest member ~x ∈ P , respectively. Here we have
chosen p = 2. The ideal indicator value is 0, and a low ∆p value indicates a good
approximation of P . Recently, Rudolph et al. [Rudolph et al., 2016] have shown that
for bi-objective problems the ∆p indicator prefers evenly spread solutions around
the Pareto front, and that this indicator thus complies with the terms “spread” and
“convergence” as used in the EMO community.

Hypervolume Indicator

The Hypervolume (or S-metric) [Zitzler and Thiele, 1999] is the most commonly
accepted indicator, as it is Pareto compliant. That is, let A1 = {a, a2, a3, . . . , aj} and
A2 = {b, a2, a3, . . . , aj}; if b < a, it follows that H(A2) ≥ H(A1). Where H is defined
as follows [Coello et al., 2007].

Definition 2.11. Let y(1), . . . , y(µ) ∈ Rk be a non-dominated set and r ∈ Rk such
that y(i) ≺ r for all i = 1, . . . , µ. The value

H
(
y(1), . . . , y(µ); r

)
= L

(
∪µi=1

[
y(i), r

])
,

Cinvestav Computer Science Department

32 Chapter 2

is termed the dominated hypervolume with respect to the reference point r, where L(·)
denotes de Lebesgue measure in Rk.

This indicator measures the size of the space covered or dominated. The hyper-
volume is described as the Lebesgue measure L of the union of hypercubes defined
by a non-dominated point y(i) and a reference point r. This union is expressed as
∪µi=1

[
y(i), r

]
. Note that H dependens on the selection of r. This performance indi-

cator is computational expensive, as its estimated complexity is O(nk+1), where n is
the number of decision variables and k is the number of objective functions.

2.5.2 Feasibility Ratio

The feasibility ratio (IF) indicator refers to the ratio of the number of feasible
solutions found in the final approximation P given by a MOEA. Mathematically, this
indicator can bee stated as follows

IF (P) =
Pf
|P |

, (2.33)

where Pf denotes the number of feasible solutions in P and |P | represents the cardi-
nality of the population P .

2.5.3 Reference Inverted Generational Distance

In this work, we consider a modification of the Inverted Generational Distance
(IGDZ) [Mej́ıa et al., 2017], which allows us to work with a set of reference points.
More specifically, given the set Z of reference points and a reference set archive A,
the distance of Z toward F (A) is measured as follows:

IGDZ(F (A), Z) :=
1

|Z|
∑|Z|

i=1 min
j=1,...,|A|

dist(Z∗i , F (aj)), (2.34)

where Z∗i denotes the point from the PF which is closest to Zi, i.e., ‖Zi − Z∗i ‖ =
dist(Z, F (PQ)). Hereby, dist measures the distance between point and set and be-
tween two sets as dist(u,A) = infv∈A ‖u − v‖ and dist(B,A) = supu∈B dist(u,A),
where u and v denote points from sets A and B. Like this, the optimal IGDZ value
is always zero. Notice, however, that the evaluation of the IGDZ value requires the
knowledge of the exact PF.

Other important performance indicators that are not considered in this work are,
R2 [Brockhoff et al., 2012, Hansen and Jaszkiewicz, 1994, Zitzler et al., 2008], and
the DOA [Dilettoso et al., 2017].

Cinvestav Computer Science Department

Basic Concepts 33

2.6 Pareto Tracer and Pareto Explorer

The next chapters of this work are highly related with the Pareto Tracer and
Pareto Explorer, which are described in detail in the following.

2.6.1 Pareto Tracer Method

The idea of the Pareto Tracer method [Mart́ın and Schütze, 2018] is to separate
the decision and weight space as opposed to the Hillermeier method. In the compound
(x, α, λ) space (see Equation 2.19), the non linearity may increase compared to the
x-space. For instance, if the PS is linear, then the related solution set does not have
to be linear in the compound space. Thus, when we separate x, α, and λ spaces the
non linearity comes to decrease and it implies that a corrector step is not needed
for linear PSs. The above also implies a reduction of the total computational cost.
However, the most important aspect of this work about this separation is that this
makes it possible to find a relationship between a direction in objective and decision
space, which is a fundamental part of this work.

We first consider the following unconstrained MOP

min
x∈Rn

F (x), (2.35)

and describe the sequel of the predictor and the corrector steps.

Predictor

The typical task for the computation of predictor points in continuation methods
is to determine the tangent space to the given set. In order to do this, we use the
function F̂ that is obtained from the KKT conditions

F̂ (x, α) =

(∑k
i=1 αi∇fi(x)∑k
i=1 αi − 1

)
= 0. (2.36)

Differentiating F̂ we obtain

F̂ ′(x, α)

(
ν
µ

)
=

(∑k
i=1 αi∇2fi(x) ∇f1(x) . . . ∇fk(x)

0 1 . . . 1

)(
ν
µ

)
= 0 (2.37)

The second equation of (2.37) yields,

k∑
i=1

µi = 0. (2.38)

Cinvestav Computer Science Department

34 Chapter 2

Having a µ ∈ Rk that satisfies (2.38) we obtain

k∑
i=1

αi∇2fi(x)ν = −
k∑
i=1

µi∇fi(x) = −JTµ, (2.39)

and it is possible to find a relationship between ν and µ, i.e., a relationship between
the objective space and the variable space:

νµ = −W−1
α JTµ, (2.40)

where Wα ∈ Rn×n is given by

Wα :=
k∑
i=1

αi∇2fi(x). (2.41)

If rank(J) = k − 1, we can compute the set of tangent vectors via a QR factor-
ization of α

α = QR = (q1, q2, . . . , qk)R, (2.42)

where qi ∈ Rk and R ∈ Rk×1. Let Q2 denote the matrix formed by the last k − 1
columns vectors of Q

Q2 = (q2, . . . qk). (2.43)

The column vectors of this matrix form an orthonormal basis of the linearized
Pareto front at F (x) (see Figure 2.6).

α

span{Q2}

F (x∗)
P F

Figure 2.6: We show a plane formed by the tangent vectors of the PF at the
point F (x∗) via QR factorization.

Given a direction ν ∈ Rn in decision space, the corresponding movement in ob-
jective space for infinitesimal step sizes is given by

d = Jν. (2.44)

Cinvestav Computer Science Department

Basic Concepts 35

The orientation of the movements along the tangent space is related to (2.44).
Thus, the task is to find the proper orientation vector µd ∈ Rk that satisfies

Jνµd = d. (2.45)

The vector νµ can be obtained with the vector µd that solves:(
−JW−1

α JT

1 . . . 1

)
µd =

(
d
0

)
. (2.46)

Hence, the predictor is given by the following expression,

p = x∗ + tνµ, (2.47)

where t is the step size which can be chosen, as for the Hillermeier method, by
Equation (2.22).

Corrector

The goal of the corrector phase is to ensure that the resulting solution is on the
efficient set.

The PT applies the Newton method for MOPs [Fliege et al., 2009] to realize the
corrector step. The Newton direction is defined as the solution to:

min
(ν,δ)∈Rn×R

δ

s.a ∇fi(x)Tν + 1
2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k,

(2.48)

where δ serves as a measure of the expected decrease in objective space produced
by a line search in direction ν in parameter space. An acceptable step size may be
decided by a backtracking procedure with a modification of the (component-wise)
Armijo condition.

Handling Equality Constrains

Now, we consider the following MOP:

min
x∈Rn

F (x),

s.t hi(x) = 0, i = 1, ..., p.
(2.49)

Cinvestav Computer Science Department

36 Chapter 2

In the presence of equality constraints, the following function has to be considered,
that again evolves from the KKT systems; let F̃ : Rn+k+p → Rn+p+1,

F̃ (x, α, λ) =

 ∑k
i=1 αi∇fi(x) +

∑p
j=1 λj∇hj(x)

h(x)∑k
i=1 αi − 1

 = 0. (2.50)

Now, we can proceed as in the unconstrained case. We define:

Wα,λ :=
k∑
i=1

αi∇2fi(x) +

p∑
j=1

λj∇2hj(x) ∈ Rn×n, (2.51)

and

H :=

 ∇h1(x)T

...
∇hp(x)T

 ∈ Rp×n. (2.52)

Doing so, we can write F̃
′

as:

F̃
′
(x, α, λ) =

 Wα,λ JT HT

H 0 0
0 1, . . . , 1 0

 . (2.53)

Predictor. In order to compute a kernel vector of (2.53), we consider ν ∈ Rn,
µ ∈ Rk and ξ ∈ Rp, such that: Wα,λ JT HT

H 0 0
0 1, . . . , 1 0

 ν
µ
ξ

 =

 0
0
0

 . (2.54)

The choice of a vector µ which satisfies (2.46) allows to reduce (2.54) to:(
Wα,λ HT

H 0

)(
νµ
ξ

)
=

(
−JTµ

0

)
. (2.55)

If rank(Wα,λ) = n and rank(H) = p, then the matrix on the left hand side is
regular and so the solution of (2.55) is unique.

Corrector. For the corrector step, we need a modification of the Newton method
for the given MOP. A suggestion is to modify the Newton direction via:

min
(ν,δ)∈Rn×R

δ

s.a ∇fi(x)Tν + 1
2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k.

hi(x) +∇hi(x)Tν = 0, i = 1, ..., p.

(2.56)

Cinvestav Computer Science Department

Basic Concepts 37

The additional restriction arises from applying the Newton method to h. The
following result shows how we can view this modification as a particular penalization
method. The new penalized MOP is given by:

min
x∈Rn

Fh : Rn → Rk, (2.57)

where Fh =
(
fh1 , . . . , f

h
k

)T
, and

fhi (x) = fi(x) + CP (x), (2.58a)

P (x) =
1

2

p∑
i=1

hi(x)2 =
1

2
‖h(x)‖2. (2.58b)

Proposition 2.1 ([Mart́ın and Schütze, 2018]). Let x ∈ Rn be given and the f
′
is be

strictly convex, and (ν∗, δ∗) be a solution of (2.56). Then

(a) If ν∗ = 0, then δ∗ = 0 and x is a KKT point of (2.49).

(b) If ν∗ 6= 0 and δ∗ < 0, then ν∗ is a descent direction of (2.57) for C = 0 (i.e. a
descent direction of the unconstrained MOP (2.12)).

(c) If ν∗ 6= 0 and δ∗ ≥ 0, then ‖h(x)‖2 6= 0 and ν∗ is a descent direction of (2.57)
for

C >
maxi=1,...,k∇fi(x)Tν∗

‖h(c)‖2
≥ 0. (2.59)

As we compute descent directions of (2.57), there are 3 possibilities: (i) we can
improve F but not P , (ii) we can improve both, and (iii) we can improve P but not
F . This is reflected in the step size control. A component-wise Armijo condition is
used together with the following function:

F̃h(x) =


F (x) δ < 0 y ‖h(x)‖2 = 0
(F (x), P (x))T δ < 0 y ‖h(x)‖2 6= 0
P (x) δ ≥ 0

(2.60)

Notice that if δ < 0, then (i) or (ii) is satisfied. We know, by Proposition 2.1, that
ν∗ is a descent direction of F . If ‖h(x)‖2 = 0, then we can not further improve P ,
so this is not considered. Now, if ‖h(x)‖2 6= 0, then F and P can be simultaneously
decreased through a linear search in direction ν∗. If δ ≥ 0, then at least one of the
objectives increases its value with the direction ν∗.

By Proposition 2.1, we have ‖h(x)‖2 6= 0 and ν∗ is a descent direction of (2.57)
for some C > 0. The choice of a step size, which produces a sufficient decrement in

Cinvestav Computer Science Department

38 Chapter 2

P , which depends on the value of C � 0. So, we take as an acceptable step size a
t ∈ R+, which satisfies:

F̃h(x− tν) ≤ F̃h(x) + ct∆F̃h(x)ν. (2.61)

Here, δ is a measurement of the expected decrement of F in objective space and
the derivative of P in the direction ν∗ is given by:

h(x)THν∗ = −‖h(x)‖2 ≤ 0.

Thus, we can use −‖h(x)‖2 to measure the possible reduction as a penalty. The
term ∆F̃h of (2.61) represents the expected decrement of F̃h in objective space, and
it is given by:

∆F̃h(x) =


δe δ < 0 y ‖h(x)‖2 = 0
(δe,−‖h(x)‖2)T δ < 0 y ‖h(x)‖2 6= 0
−‖h(x)‖2 δ ≥ 0,

(2.62)

where e = (1, . . . , 1)T ∈ Rk.

Handling Inequality Constraints

We consider the box constrained case

min
l≤x≤u

F (x), (2.63)

where l, u ∈ Rn are the lower and upper bounds, respectively.

Predictor. We can include the set of active constraints as equality constraints
to solve (2.63), i.e.

−xi + li = 0, i ∈ Il
xi − ui = 0, i ∈ Iu,

where
Il = {i| − xi + li > −ε, i = 1, . . . , n}
Iu = {i|xi − ui > −ε, i = 1, . . . , n}

for some ε ∈ R+, and Il,u = {i|i ∈ Il o i ∈ Iu}. Hence F̃ : Rn+k+r → Rn+r+1 is
given by

F̃ (x, α, ρ, %) =


∑k

i=1 αi∇fi(x)−
∑

i∈Il ρiei +
∑

i∈Iu %iei
(−xi + li)i∈Il
(xi − ui)i∈Iu∑k

i=1 αi − 1

 = 0, (2.64)

Cinvestav Computer Science Department

Basic Concepts 39

where ei is the i− th canonical vector and r = |Il,u|. We define Il,u ∈ Rr×n as

[Il,u]ji =

{
−eTi i ∈ Il
eTi i ∈ Iu

, j = 1, . . . , r, (2.65)

where [Il,u]ji denotes the j − th row of Il,u. Notice that

F̃
′
(x, α, ρ, %) =

 Wα JT ITl,u
Il,u 0 0
0 1, . . . , 1 0

 . (2.66)

Now we must compute a kernel vector of (2.66). Let ν ∈ Rn, µ ∈ Rk and η ∈ Rr

be vectors, such that Wα JT ITl,u
Il,u 0 0
0 1, . . . , 1 0

 ν
µ
η

 =

 0
0
0

 . (2.67)

A vector µ, which satisfying (2.46), reduces (2.67) to(
Wα ITl,u
Il,u 0

)(
ν
η

)
=

(
−JTµ

0

)
. (2.68)

If rank(Wα) = n and rank(Il,u) = r, then we have a regular matrix and the
solution of (2.68) is unique. We obtain by (2.68)

Wαν + ITl,uη = −JTµ (2.69a)

Il,uν = 0, (2.69b)

and by (2.69b), we notice that νi = 0 for i ∈ Il,u. So, it is enough to compute
the previous “j-th” components of ν, such that j /∈ Il,u. In addition, we know that
(ITl,uν)j = 0 for j /∈ Il,u, then

W Ic
α ν

Ic = −JTIcµ, Ic := {1, . . . , n}\Il,u, (2.70)

where W Ic
α comes to remove i − th row and column of Wα ∀ i ∈ Il,u. Analogously,

νIc is obtained from removing the i-th element of ν and JIc comes from removing the
i-th column of J .

Corrector. The Newton direction is computed via solving

min
(ν,δ)∈Rn×R

δ

s.t ∇fi(x)Tν + 1
2
νT∇2fi(x)ν ≤ δ, i = 1, ..., k.

−νi − xi + li ≤ 0, i ∈ Il.
νi + xi − ui ≤ 0, i ∈ Iu.

(2.71)

Cinvestav Computer Science Department

40 Chapter 2

We assume that xi is not active respect to both its upper and lower bound at
the same time. For the step size control, we use again a component-wise Armijo
condition, but in this case, we impose the following upper limit:

tmax = min
i=1,...,n

ti, (2.72)

where

ti =


li−xi
νi

νi < 0
ui−xi
νi

νi > 0, i = 1, . . . , n.

+∞ νi = 0.

(2.73)

2.6.2 Pareto Explorer

The main limitation of the PT for its application to MaOPs is that it is focused
on the computation of the entire Pareto set/front of a given problem. This, however,
gets intractable for an increasing number of objectives as discussed above. Moreover,
even if we can compute such a huge amount of data, the problem arises of how it
would be presented to the DM in a useful way. This is where the Pareto Explorer
(PE) finds its niche, as this approach is mainly focused on the computation of a single
trajectory along the landscape defined by the Pareto set/front. PE can hence be seen
as a compilation of methods to follow the path given by the DM’s needs, ultimately
leading him/her to discover what he/she is looking for in a timely manner. The PE is
thought to evolve as an interactive tool, where it can receive feedback from the user at
any stage of the exploration. The PT, on the other hand, is designed to receive a fixed
initial set of settings and run until completion, i.e., ideally until an approximation of
the entire solution set is generated. Both techniques PT and PE complement each
other and shall optimize their implementations based on their respective scopes.

The PE method consists of two main stages: first an initial solution x0, which
is ideally Pareto optimal or at least a KKT point, is computed or selected out of a
set of possible solutions for the given problem; and secondly, the Pareto landscape
is explored around x0, where a steering is performed according to the DMs’ prefer-
ences. Algorithm 1 shows the general framework of the PE. In general, the first part
of the PE can be accomplished by any existing solver for M(a)OPs, including MP
techniques such as scalarization methods that already incorporate preference infor-
mation, evolutionary reference point problems ([Deb and Sundar, 2006]), knee based
solvers ([Rachmawati and Srinivasan, 2006]), or the execution of a MOEA (e.g.,[Deb
and Jain, 2014, Zhang and Li, 2007, Beume et al., 2007]) followed by the selection of
a starting point out of the final population. Here, it is advisable to choose a global
method to avoid searching around a candidate solution that is only locally optimal.
For the second stage, however, the PE will play its main role by restricting the search
to a movement directed by the user’s preferences. These preferences, as we will see

Cinvestav Computer Science Department

Basic Concepts 41

Algorithm 2.1 Framework of the Pareto Explorer

Require: multi-objective optimization problem of the form (2.12)
Ensure: sequence {x0, x1, . . .} of candidate solutions that perform a movement along

the Pareto set/front into user specified directions.
1: compute/select an initial solution x0 ∈M of (2.12)
2: for i = 0, 1, . . . do
3: compute a candidate solution xi+1 in the vicinity of xi according to the decision

makers’ preferences
4: end for

later on, can be expressed in terms of directions in either decision or objective space,
as well as in the space of the weight vectors.

In the following, we present several continuation methods that perform a local
search from a given initial solution into user specified directions. All methods will
make use of the steering feature of the PT as well as the explicit formulations of the
tangent spaces.

We will assume that the initial solution x0 is regular. All methods generate fur-
ther regular solutions of the given MaOP (i.e., the movement is performed along the
Pareto set/front). All steering procedures except the Unbiased Neighborhood Explo-
ration are presented such that they perform the largest possible trajectory in this
direction and are thus not in interaction with the DM. These adaptations, however,
are straightforward.

Steering in Objective Space

It might be desired to steer the search into a user specified direction from a given
solution x0. The first proposed approach is to perform the steering in objective space,
i.e., PE considers the case where the DM desires to change the objective values w.r.t.
F (x0). That is, a direction dy ∈ Rk is given with the aim to guide the search toward
certain preferences that are only known in objective space. However, as the Pareto
front is not known, it is of course unclear whether a movement in dy can be actually
performed. Then, since the linearized front at F (x0) can be computed, and since
the underlying idea is to steer the search along the set of optimal solutions, it makes
sense to perform a ‘best fit’ movement as follows (compare to Fig. 2.7a): (i) first,

dy is projected onto TyF (M) to obtain a best fit direction d
(i)
y in the ith step of the

algorithm. Next, (ii) a movement is performed in direction d
(i)
y using the steering

properties of PT. Step (i) can be realized via a QR-factorization of α0, and step (ii)

via selecting the predictor direction νi that satisfies (2.40) for d := d
(i)
y , together with

Cinvestav Computer Science Department

42 Chapter 2

a corrector as used in PT. The process has to be stopped at iteration i when

〈d(i)
y , dy〉 ≤ ε1︸ ︷︷ ︸

(a)

or sign((d(i)
y)j) = −sign((d(i−1)

y)j) ∀j = 1, . . . , k︸ ︷︷ ︸
(b)

, or ‖αi‖∞ ≥ 1− ε2︸ ︷︷ ︸
(c)

(2.74)

for some (small) thresholds ε1, ε2 > 0. In case (a) the corrected direction d
(i)
y is nearly

orthogonal to dy, and thus, no further improvement in this direction can be expected
(see Fig 2.7b). This point, however, can only be reached for certain step sizes. If
the steps are too large, an oscillating behavior can be observed (case (b)). Finally,
if a corner of the Pareto set is reached (case (c)), no further improvement in the
dy-direction can be performed as the search is restricted to Pareto-optimal solutions.
The pseudo code of the steering in objective space is shown in Algorithm 2.2.

0 2 4 6 8 10 12

0

2

4

6

8

10

12 F(PQ)

dk
d

TF (x∗)

F (x∗)

f1

f 2

(a)

−2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

12 F (P)

dy

TyfF (M)
F (xf)

f1

f 2

(b)

Figure 2.7: (a) d
(i)
y is the orthogonal projection of dy onto the linearized Pareto

front at F (xi) and hence the best fit direction for a movement along the Pareto
front. (b) the process has to be stopped at xf if TyfF (M) and dy are orthogonal

to each other, that is, d
(f)
y = 0.

Steering in Decision Space

Similar to the steering in objective space, PE can perform a best fit movement
along the Pareto set for a given preference direction in decision space for which we
will present two variants.

The first variant is analog to the best fit movement in objective space as presented
above. That is, for a given point xi ∈M and a given a direction dx ∈ Rn in decision
space, one can project dx onto the linearized Pareto set at xi. This vector νi can now
be used as predictor in a PC step of the PT (compare to Fig. 2.8 (a)). Algorithm 2.3

Cinvestav Computer Science Department

Basic Concepts 43

Algorithm 2.2 Steering in objective space

Require: x0 ∈ M with associated weight α0, direction dy ∈ Rk in objective space,
distance τ > 0, tolerances ε1, ε2 > 0, maximal number MaxIter of iterations

Ensure: set {x1, . . . , xi} of candidate solutions around x0 whose images F (xi) are a
best fit movement in dy-direction along the Pareto front

1: for i = 0, 1, . . . ,MaxIter do
2: if ‖αi‖∞ ≥ 1− ε2 then
3: return {x1, . . . , xi} . corner of Pareto set reached
4: end if
5: compute αi = QiRi = (q

(i)
1 , q

(i)
2 , . . . , q

(i)
k)Ri

6: set Bi := (q
(i)
2 , . . . , q

(i)
k)

7: set d
(i)
y := BiB

T
i dy

8: if |〈d(i)
y , dy〉| ≤ ε1 then

9: return {x1, . . . , xi} . no movement in the dy-direction can be performed
10: end if
11: if sign((d

(i)
y)j) = −sign((d

(i−1)
y)j), ∀j = 1, . . . , k then

12: return {x1, . . . , xi} . oscillation of candidate solutions
13: end if
14: set ti := τ/‖Jνi‖
15: set νi = −W−1

α µdi where µdi is computed as in (2.46)
16: set x̃i+1 = xi + tiνi
17: compute solution xi+1 of (2.12) near x̃i+1 using a corrector step
18: end for
19: return {x1, . . . , xMaxIter}

Cinvestav Computer Science Department

44 Chapter 2

shows the pseudo code of this steering in decision space. Hereby, the columns of Xi

form an ONB of TxiM. The search has to be stopped when

〈dx, νi〉 ≤ ε1︸ ︷︷ ︸
(a)

or 〈xi − x0, dx〉 ≤ 〈xi−1 − x0, dx〉︸ ︷︷ ︸
(b)

, or ‖αi‖∞ ≥ 1− ε2︸ ︷︷ ︸
(c)

. (2.75)

In case (a), the search direction νi is nearly orthogonal to dx and thus, no further
improvement in this direction can be expected. As for the steering in objective space,
this can only be achieved for sufficiently small step sizes. Instead, oscillations around
a Pareto point whose tangent space is orthogonal to dx can occur (case (b)). Finally,
the search has to be stopped if a corner of the Pareto set is reached (case (c)).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
PQ

dn

d

Tx∗

x∗

x1

x
2

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1

0

1

2

3

P
x0

dx

x32

x1

x
2

(b)

Figure 2.8: (a): best fit direction in decision space. (b): example of the steering
in decision space for a MOP with n = 2 and k = 5. For the final iteration, x32
makes ‖α‖∞ = 1.

Next, we present a modification of the above movement. For this, assume that
the DM has the aim to change the solution in decision space while it is desired to
keep the change in objective space as low as possible. This could be the case when
there is a change in the supply (e.g., one component has become more expensive)
while the product is already established in a certain desired market niche. For this
scenario, one possibility is to change the original direction dx via a best fit direction
ν∗ for which the change in objective space is zero (for infinitesimal step sizes) leading
to

min
ν
− dTx ν

s.t. Jν = 0

‖ν‖2
2 = 1,

(2.76)

Cinvestav Computer Science Department

Basic Concepts 45

Algorithm 2.3 Steering in decision space

Require: x0 ∈ M with associated weight α0, direction dx ∈ Rn in decision space,
distance τ > 0, tolerances ε1, ε2 > 0, maximal number MaxIter of iterations

Ensure: set {x1, . . . , xi} of candidate solutions around x0 that perform a best fit
movement in dx-direction along the Pareto front

1: for i = 0, 1, . . . ,MaxIter do
2: if ‖αi‖∞ ≥ 1− ε2 then
3: return {x1, . . . , xi} . corner of Pareto set reached
4: end if
5: set νi := XiX

T
i dx/‖XiX

T
i dx‖

6: if |〈νi, dx〉| ≤ ε1 or 〈xi − x0, dx〉 ≤ 〈xi−1 − x0, dx〉 then
7: return {x1, . . . , xi} . no movement in dx-direction can be performed
8: end if
9: set x̃i = xi + tiνi

10: compute solution xi+1 of (2.12) near to x̃i+1 using a corrector step
11: end for
12: return {x1, . . . , xMaxIter}

and proceed as above using the solution ν∗ of (2.76) instead of dx. If dx is not
orthogonal to the kernel of J at the current iterate xi, ν

∗ can be computed via an
orthogonal projection of dx onto the kernel: if

JT = QR = (Q1|Q2)R (2.77)

is a QR-factorization of JT , then the column vectors of Q2 ∈ Rn×(n−k+1) form an
ONB of ker(J). Thus, the projected vector is given by

ν̃∗ = Q2Q
T
2 dx, (2.78)

and ν∗ can be computed via a normalization of ν̃∗. If ν̃∗ = 0, this means that dx is
orthogonal to ker(J), and the search can be stopped. To compute the predictor for
the resulting PC method, ν∗ is then projected onto TxiM, i.e.,

νi :=
XiX

T
i ν
∗

‖XiXT
i ν
∗‖

=
XiX

T
i Q2Q

T
2 dx

‖XiXT
i Q2QT

2 dx‖
. (2.79)

The rest of the resulting PC method is identical to its base variant. One possible
problem is that the projected vector ν∗ could already be orthogonal to TxiM leading
to a stop of the algorithm. The following short discussion, however, shows that ν∗

is always Wα-orthogonal to TxiM which means that orthogonality is only given in a
few cases. To see the last statement, let ti = −W−1

α JTµi be a tangent vector. Then

tTi Wαν
∗ = −(W−1

α JTµi)
TWαν

∗ = −µTi JW−1
α Wαν

∗ = −µTi Jν∗ = 0. (2.80)

Algorithm 2.4 shows the pseudo code of the modified steering in decision space, where
the secondary objective is to minimize the change in objective space.

Cinvestav Computer Science Department

46 Chapter 2

Algorithm 2.4 Modified steering in decision space

Require: x0 ∈ M with associated weight α0, direction dx ∈ Rn in decision space,
distance τ > 0, tolerances ε1, ε2 > 0, maximal number MaxIter of iterations

Ensure: set {x1, . . . , xi} of candidate solutions around x0 that perform a best fit
movement in the dx-direction along the Pareto front while minimizing the change
in objective space

1: for i = 0, 1, . . . ,MaxIter do
2: if ‖αi‖∞ ≥ 1− ε2 then
3: return {x1, . . . , xi} . corner of Pareto set reached
4: end if
5: compute νi as in (2.79)
6: if |〈νi, dx〉| ≤ ε1 or 〈xi − x0, dx〉 ≤ 〈xi−1 − x0, dx〉 then
7: return {x1, . . . , xi} . no movement in dx-direction can be performed
8: end if
9: set x̃i = xi + tiνi

10: compute solution xi+1 of (2.12) near to x̃i+1 using a corrector step
11: end for
12: return {x1, . . . , xMaxIter}

Steering in Weight Space

The last movement we present here is the steering in weight space where the DM
might be interested to gradually change the importance of the objectives. The key for
this steering is the observation that a vector µ ∈ Rk with

∑k
i=0 µi = 0 can be seen as

a change in weight space. Another way to see this is that for every two convex weights
α(1), α(2) ∈ Rk the difference vector ∆α := α(1)− α(2) is of the above form. For k = 2
objectives, there are only two choices for µ after normalization: µ = (1,−1)T and
µ = (−1, 1)T . The first one means that the importance of f1 should be increased and
thus its values be decreased for the sacrifice of f2. Hence, µ = (1,−1)T should result
in a movement left up the Pareto front from F (x0) while µ = (−1, 1)T should result in
a movement right down. Regrettably, the resulting movement depends on the shape
of the Pareto front as it makes a difference if the front is convex or concave. In order
to steer the movement into the desired direction, we need to apply a small trick: we
have to indicate for a selected objective fi if its value has to increase or decrease
during the search. More precisely, we choose a value ci ∈ {−1, 1} and compute the
potential predictor direction νµ = −W−1

α JTµ as described above. Then, we choose
the predictor direction νi in the ith step as

νi :=

{
νµ if sign((Jν̃)i) = sign(ci)
−νµ else

. (2.81)

Cinvestav Computer Science Department

Basic Concepts 47

The search has to be stopped when

αi = 0, i ∈ {1, . . . , k}︸ ︷︷ ︸
(a)

or sign(J(xi)νi)j) = −sign(J(xi−1)νi−1)j), j ∈ {1, . . . , k}︸ ︷︷ ︸
(b)

.

(2.82)
Case (a) is given near the boundary of the Pareto set, and no further change in
α-space according to µ can be performed. Case (b) indicates that there has been
a change in the curvature of the Pareto front (e.g., from concave to convex) which
means that the value of µ has a different meaning. The pseudo code of this steering
can be found in Algorithm 2.5.

Algorithm 2.5 Steering in weight space

Require: x0 ∈ M with associated weight α0, direction µ ∈ Rk in weight space,
preference ci ∈ {−1, 1} of change in the ith objective function distance τ > 0,
tolerance ε0, maximal number MaxIter of iterations

Ensure: set {x1, . . . , xi} of candidate solutions around x0 that perform a best fit
movement along the Pareto set w.r.t. µ.

1: for i = 0, 1, . . . ,MaxIter do
2: if αi ≤ ε for a i ∈ {1, . . . , k} then
3: return {x1, . . . , xi} . boundary of Pareto set reached
4: end if
5: compute νµ as in (2.40)
6: if sign((Jν̃)i) = sign(ci) then
7: νi := νµ
8: else
9: νi := −νµ

10: end if
11: if sign(J(xi)νi)j) = −sign(J(xi−1)νi−1)j) for a j ∈ {1, . . . , k} then
12: return {x1, . . . , xi} . change in curvature of the Pareto front
13: end if
14: set ti := τ/‖Jνi‖
15: set x̃i+1 = xi + tiνi
16: compute solution xi+1 of (2.12) near to x̃i+1 using a corrector step
17: end for
18: return {x1, . . . , xMaxIter}

This method is at first highly related to the weighted sum method (WS, [Gass and
Saaty, 1955]), which is probably the most widely used scalarization method, where
the SOP

min
x∈Q

k∑
i=1

αifi(x) (2.83)

is obtained by introducing a convex weight α ∈ Rk. The above mentioned steering
could e.g. be realized via solving a sequence of SOPs of the form (2.83) using the

Cinvestav Computer Science Department

48 Chapter 2

weights
αi = α0 + tiµ, (2.84)

where α0 is the weight vector of the initial solution x0, ti a chosen step size, and µ the
desired change in weight space. It is, however, well known ([Das and Dennis, 1997])
that the choice of the weight vector α in (2.83) is a delicate problem. For instance,
small changes in α do not have to lead to small changes in the solution of (2.83),
while such changes can be controlled in Algorithm 2.5 via the choice of τ . Next, as
discussed above, the resulting movement actually depends on the curvature of the
Pareto front, and cannot be adjusted as in (2.81).

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F (P)

F (x0)

F (x8)

f1

f 2

(a) Steering in
weight space

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F (P)

F (x0)

F (x8)

f1

f 2

(b) Weighted sum
method

Figure 2.9: Example where a movement towards the lower right of the Pareto
front desired.

Cinvestav Computer Science Department

Chapter 3

Extensions of the Pareto Explorer
for Continuous MaOPs

As we explained before, the Pareto Explorer (PE) consists of two principal phases.
The first one is about how to obtain a global optimal solution for a given MaOP,
which will be addressed in the next chapter. The second phase –explained in detail
in Section 2.5– is the local exploration of the optimal solutions, both in objective and
decision spaces. In this chapter, we describe two more ways to steer the search using
the PE for continuous MaOPs, and we present a real-world application which was
solved using the continuous PE.

For this, in Section 3.1, we consider the scenario where the DM is almost satis-
fied with a particular solution x0, then he/she wants to explore the nearest optimal
solutions around x0, i.e., an unbiased neighborhood exploration. In Section 3.2, we
present the second way of steering, which employs the PE to find points in the “knee”
of the PF. The knee of the PF is a region of interest for many applications, that will
be mathematically defined in this section. Finally, in Section 3.3, we explain how to
use the PE framework to solve the problem of the Plastic Injection Molding (PIM)
with seven objectives.

3.1 Unbiased Neighborhood Exploration

The first exploration tool is the Unbiased Neighborhood Exploration (UNE, see
Algorithm 3.1). The aim of this tool is to provide the DM with a set of well-distributed
solutions in the vicinity of the current solution. This way, an unbiased overview of the
Pareto landscape is generated around x0 (respectively around F (x0)) with a budget
of N further solutions that have to be computed. As no bias is given or even wanted,
it makes sense to evenly distribute the search directions in which the new solutions xi

49

50 Chapter 3

are computed. Therefore, PE has been designed to make use of an existing specialized
algorithm for the computation of evenly distributed points on the unit hypersphere.
The key for such an even distribution is (2.40) that allows to explicitly compute
the respective direction in tangent space. In particular, one can obtain such even
distributions as follows:

A compute a set p1, . . . , pN ∈ Rm of evenly distributed points on the unit sphere
Ωm := {x ∈ Rm : xTx = 1} via the minimizing potential energy problem ([Nie
and Ellingwood, 2004])

min Π2(p1, . . . , pN) =
∑

1≤j≤i≤N

1

‖pi − pj‖2
2

. (3.1)

B Let B ∈ Rm×(k−1) be a matrix whose column vectors bl build an orthonormal
basis (ONB) of the solution set (i.e., either of TxM—in that case we have
m = n or TyF (M) (m = k)). Then, the evenly distributed predictor directions
are given by

νi := Bpi =
k−1∑
l=1

pi,lbl, (3.2)

where pi,l denotes the l-th entry of pi.

Algorithm 3.2 shows one example of how to obtain evenly spread solutions in
objective space such that the difference vectors F (xi)−F (x0) approximately have the
same lengths.

Algorithm 3.1 Framework of UNE

Require: x0 ∈M, number N of neighborhood solutions
Ensure: set {x1, . . . , xN} of candidate solutions around x0.

compute a set ν1, . . . , νN ∈ Rn of well-distributed directions
compute step sizes ti, i = 1, . . . , N
compute predictors x̃i := x0 + tiνi, i = 1, . . . , N
compute solutions xi, i = 1, . . . , N , of (2.12) near to x̃i using a corrector step
return X := {x1, . . . , xN}

In order to obtain such evenly spread solutions in decision space, one has to modify
Algorithm 3.2 as follows: (i) the columns of B form an ONB of TxM, (ii) the predictor
directions are set as νi := Bpi, and (iii) the step size is ti := τ for all directions.

Figure 3.1 shows some numerical results of the UNE on the benchmark function
DTLZ2. As it can be seen, evenly spread solutions can be obtained either in decision
or objective space for different values of N .

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 51

Algorithm 3.2 UNE: Evenly distributed solutions in objective space

Require: x0 ∈ M with associated weight α0, number N of neighborhood solutions,
distance τ > 0

Ensure: set {x1, . . . , xN} of candidate solutions around x0 whose images F (xi) are
evenly spread around F (x0) with ‖F (xi)− F (x0)‖ ≈ τ
compute pi, i = 1, . . . , N , as described in A
compute α0 = QR = (q1, q2, . . . , qk)R
set B := (q2, . . . , qN)
set di := Bpi, i = 1, . . . , N
set νi := −W−1

α µdi , i = 1, . . . , N , where the µdi ’s are computed as in (2.46)
set ti := τ/‖Jνi‖, i = 1, . . . , N
set x̃i := x0 + tiνi, i = 1, . . . , N
compute solutions xi, i = 1, . . . , N , of (2.12) near to x̃i via a corrector step
return X := {x1, . . . , xN}

We also tested the DTLZ2 problem with rNSGA-II [Deb and Sundar, 2006] trying
to reproduce the UNE results in objective space. We consider similar conditions
for a fair comparison, that is, we use the initial points of the UNE example as the
reference points for the rNSGA-II (they were also placed within the initial population)
and ε = τ in order to obtain a similar spread. Different runs of rNSGA-II show some
important issues of this method in contrast to our approach. We obtain a different
distribution of the final population, that is, we do not have control about the final
number of solutions near to each reference point or about the spread between them.

3.2 Pareto Explorer for Finding the Knee

A lot of applications require finding the solution with an adequate trade-off be-
tween all the objectives. The knee of the PF usually provides such a point. In [Das,
1999], we can find a mathematical definition of the knee and a procedure, based on
the NBI algorithm, for reaching it.

In this section, we use the Pareto Explorer framework [Schütze et al., 2019] for
finding the knee of MaOPs. We also prove the equivalence of the knee definition
of [Das, 1999] with the proposed approach. Finally, we demonstrate the advantages
of our proposal on several examples.

Cinvestav Computer Science Department

52 Chapter 3

(a) Evenly spread
solutions around x0

(b) Images of the
solutions in (a)

(c) Pre-images of
the solutions in (d)

(d) Evenly spread
solutions around
F (x0)

Figure 3.1: Examples of the unbiased neighborhood exploration on DTLZ2
with n = 3, k = 3, and different values of N , N = 3, 4, 5, 8. On the top we, can
see the exploration in decision space; and, on the bottom, we can observe the
exploration in objective space. Starting points are the same for both cases in
order to show the variations.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 53

3.2.1 Definition of the Knee

The definition of the knee of Das [Das, 1999] is stated as:

max
(α,t,β)

t

s.t.
Φβ + tn̂ = F (x)− F ∗

eTβ = 1
h(x) = 0
g(x) ≤ 0
βi ≥ 0, i = 1, 2, · · · , k,

(3.3)

where Φ is the matrix of the Convex Hull of Individual Minima (CHIM) and n̂ is the
normalized normal of the CHIM.

Notice that we can write (3.3) as:

min
(α,β,t)

− t (3.4a)

s.t. (3.4b)

eTβ − 1 = 0 (3.4c)

F (x)− Φβ − tn̂− F ∗ = 0 (3.4d)

h(x) = 0 (3.4e)

g(x) ≤ 0 (3.4f)

−βi ≤ 0, i = 1, 2, · · · , k. (3.4g)

3.2.2 Finding the Knee

In order to see the equivalence of the solution provided by the PE and the Das
method, we present one important theoretical result.

Theorem 3.1. Let x∗ be a KKT point of (2.12) such that α̂T n̂ = −1 (that is,
α = tn̂, t ∈ R \ {0}). If F (x∗) can be obtained via the NBI method, then there exists
t∗ and β∗ such that the vector (x∗, β∗, t∗) is also a KKT point of the problem (3.4).

Proof. First we write the KKT conditions for the problem (3.4) associated to (2.12)
as follows.

There exist Lagrange multipliers λ̄ = (ν̄T , ᾱT , λ̃T)T ∈ Rk+k+p and γ̄ = (γ̃T , ζ̄T)T ∈
Rm+k, where ν̄ ∈ Rk, ᾱ ∈ Rk, λ̃ ∈ Rp, γ̃ ∈ Rm, and ζ̄ ∈ Rk, such that the following

Cinvestav Computer Science Department

54 Chapter 3

conditions are satisfied: 0
0
−1


︸ ︷︷ ︸
∇(3.4a)

+

 0
e
0


︸ ︷︷ ︸
∇(3.4c)

ν̄ +

 J(x∗)
−Φ
−n̂


︸ ︷︷ ︸
∇(3.4d)

ᾱ +

p∑
i=1

λ̃i

 ∇hi(x∗)0
0


︸ ︷︷ ︸

∇(3.4e)

+

m∑
i=1

γ̃i

 ∇gi(x∗)0
0


︸ ︷︷ ︸

∇(3.4f)

+

 0
−e
0


︸ ︷︷ ︸
∇(3.4g)

ζ̄ = 0

(3.5a)

eTβ − 1 = 0 (3.5b)

F (x)− Φβ − tn̂− F ∗ = 0 (3.5c)

hi(x
∗, β∗, t∗) = hi(x

∗) = 0, i = 1 . . . p, (3.5d)

gi(x
∗, β∗, t∗) = gi(x

∗) ≤ 0, i = 1 . . .m, (3.5e)

− βi ≤ 0, i = 1, 2, · · · , k, (3.5f)

γ̂i ≥ 0, i = 1 . . .m, (3.5g)

ζ̄i ≥ 0, i = 1 . . . k, (3.5h)

γ̂igi(x
∗, β∗, t∗) = γ̂igi(x

∗) = 0, i = 1 . . .m, (3.5i)

− ζ̄iβi = 0, i = 1 . . . k. (3.5j)

By our assumptions, we have that ∃ t∗ and β∗ such that (3.5b), (3.5c), and (3.5f)
are satisfied. Also notice that conditions (2.13b) and (2.13c) are equivalent to (3.5d)
and (3.5e), respectively.

Notice that (3.5a) does not depend of β and t, then we only have to show that
any point x∗ (a KKT point of (2.12)) also satisfies it. As x∗ satisfies (2.13a), then we
have that:

k∑
i=1

αi∇fi(x∗) +

p∑
i=1

λi∇hi(x∗) +
m∑
i=1

γigi(x
∗) = 0,

and then, for c ∈ R it follows that:

c

(
k∑
i=1

αi∇fi(x∗) +

p∑
i=1

λi∇hi(x∗) +
m∑
i=1

γigi(x
∗)

)
= c · 0 = 0

⇒
k∑
i=1

c · αi∇fi(x∗) +

p∑
i=1

c · λi∇hi(x∗) +
m∑
i=1

c · γigi(x∗) = 0

(3.6)

Now, we set c =
1

‖α‖
, ᾱ = c · α (that is, ᾱ is a unit vector ᾱ = α̂), γ̃ = c · γ, and

λ̃ = c · λ.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 55

Finally, we have to verify the three equations for the condition (3.5a). Due to
(3.6), the first equation of (3.5a) is satisfied. The last equation is satisfied by our
assumption α̂T n̂ = −1; while, we can set ν̄ = Φᾱ for the second equation. On the
other hand, if we set ζ̂ = 0 (the zero vector), γ̂ = γ, and as c > 0, then we can easily
verify the equivalence of the conditions (2.13f) and (2.13g), with (3.5g) and (3.5i),
respectively. Notice this also makes (3.5h) and (3.5j) true.

In this way, all the conditions of (3.5) (i.e., (3.5a)-(3.5j)) are satisfied by any x∗

with an associated vector α such that α̂T n̂ = −1 �

Notice that Theorem 3.1 depends on the existence of t∗ and β∗ for a particular
x∗, i.e., that the NBI problem can obtain such point x∗. As it is explained in [Das
and Dennis, 1998], this is always possible for the bi-objective case. However, for
k ≥ 3, the NBI method is not able to find all the points in the boundary, but such
overlooked points are likely lying near the periphery of the Pareto surface, and they
are not relevant in the context of finding the knee of the PF. Even so, it is important
to have a complete analysis of this case, which is part of our future work.

We can use PE to find x∗. Notice that, by the first stopping criterion of the
steering in objective space, the PE will return the desired solution if we steer in
objective space with the direction n̂ (see Figure 3.2). That is, Theorem 3.1 provides
us a way to find the KKT solution of (3.3) using the PE. Notice that the opposite is
not always possible, i.e., a solution to a KKT point of (3.3) could not correspond to
a KKT point with α̂T n̂ = −1 (see Figure 3.3).

3.3 Real World Application: Plastic Injection Mold-

ing

3.3.1 The Model

In the following, we describe the many-objective PIM model consisting of seven
objectives that we have used for this study. Further on, we present a plastic gear that
we use as demonstrator for the application of the PE.

Design parameters

The process parameters we are considering here are the melt temperature (Tmelt),
the packing time (tpack), the packing pressure (Ppack) and the cooling time (tcool),
which are briefly defined as follows:

Cinvestav Computer Science Department

56 Chapter 3

f1(x)

f2(x)

◦
dy
◦

◦

α̂0

t∗

κ

•
n̂

Φβ∗

• α̂κ

Figure 3.2: Illustrative example of the use of PE to find the knee. Here we start
the steering in objective space at the point x0 (with a corresponding weighted
vector α̂0) into direction dy := n̂. We compute a sequence of points until the stop-
ping criterion (a) is satisfied, i.e., we have found the knee κ = (f1(x∗), f2(x∗))T .
Notice that α̂κ (associated to x∗) is in the opposite direction of n̂, and hence
α̂T n̂ = −1.

f1(x)

f2(x)

α̂κ•
κ

•
n̂

Φβ∗
t∗

Figure 3.3: In this figure we can see an example where there does not exist a
KKT point x∗ of problem (2.12) such that α̂T n̂ = −1, then for the solution of
(3.4) we have that α̂Tκ n̂ 6= −1. Notice that if we use the PE in this problem, it
stops because the stopping criterion (b) at the same point κ, however, this is not
the case in general.

• x1: Melt temperature (Tmelt): the temperature of the plastic melt as it enters
the mold.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 57

• x2: Packing time (tpack): the period of time where additional plastic is injected
into the cavity to compensate for inherent shrinkage during the injection phase.

• x3: Packing pressure (Ppack): the pressure exerted on the melt entrance during
the packing phase. In our case, we consider Ppack as the packing pressure applied
over the effective packing time, t1=0.5tpack, in a packing pressure profile.

• x4: Cooling time (tcool): the period of time after the packing phase and before
the mold opening and part ejection. It can represent up to 50% of the cycle
time.

These process parameters are the most frequently used parameters considered in
the literature (e.g., [Alvarado-Iniesta et al., 2019, Kitayama et al., 2017, Kitayama
and Natsume, 2014] and references therein).

Objectives

The outcomes of interest (or objectives) we consider here are related to the quality
and productivity of the PIM process. The quality is measured by means of cosmetic
and functional characteristics, while productivity is measured by indicators such as
processing time and energy usage. Cosmetic characteristics are measured by means
of warpage in the product, shrinkage and sink marks. Commonly, these objectives
are considered in other works [Alvarado-Iniesta et al., 2019, Kitayama et al., 2017,
Kitayama and Natsume, 2014]. Functional properties are represented by residual
stresses such as Von Mises and shear stresses [Alvarado-Iniesta et al., 2018, Bakhtiari
et al., 2016]. Productivity is measured by the cycle time and clamping force usage
[Kitayama et al., 2017]. Likewise, these outcomes are defined next:

• f1: Warpage (mm): produced by non-uniform shrinkage in the plastic part.
Besides, by temperature differences from one side of the mold to the other.
This objective is mainly affected by packing time and cooling time.

• f2: Volumetric Shrinkage (%): all plastic parts tend to shrink, however, it is
desired to have a minimum and uniform shrinkage. Non-uniform volumetric
shrinkage leads to warpage and distortion of molded parts. High values may
lead to sink marks or voids. It shows the percentage of part volume as the
part is cooled from high temperature and high pressure to room conditions.
Positive values represent volume shrinkage, while negative values mean volume
expansion. This objective is affected by melt temperature, packing pressure and
cooling time.

Cinvestav Computer Science Department

58 Chapter 3

• f3: Sink marks (mm): Plastic parts could present sink marks in the finished
look. Higher values of this mean high degree on sink. It is an index to evaluate
the packing effect. If it is positive, it means that packing is not enough, leading
to sink marks. If it is negative, it means overpacking. A proper packing keeps
the indicator close to zero. This objective is affected by packing pressure and
packing time.

• f4: Von Mises stress (MPa): the Von-Mises thermal residual stress of the ejected
part. Thermal induced residual stress is the stress status after the part is ejected
and cooled down to room temperature. Non-uniform volumetric shrinkage will
cause residual stress if it did not transform into warpage. Higher values of
residual stress cause void defects. Von Misses stress is the scalar that represents
the equivalent stress used for breakage test of the product, which is defined
with the stress components for each axis. This objective is affected by melt
temperature and cooling time.

• f5: Shear stress (%): the source of the residual stress in molded parts. If the
shear stress is not distributed evenly, it can cause some dimensional problems.
Too high shear stress might tend to drastically deform molecular chains, even
to break and then weaken the strength of the plastic part. This objective is
mainly affected by melt temperature.

• f6: Cycle time (seconds): the total time of a process run, this includes the
filling time, mold opening time, packing time, and cooling time. This objective
is affected by packing and cooling times which can represent up to 70% of the
total cycle time.

• f7: Clamping force (Ton): the maximum force of machine (clamping unit)
to keep the mold closed against the cavity pressure during injection/packing
phases. It can be considered as a great influence for energy saving. This objec-
tive is affected by packing pressure and packing time.

3.3.2 Case study: A plastic gear

As a case study, we will use in this work the design of a particular plastic gear. A
finite element (FE) model containing 32,025 elements was developed for simulating
the injection molding process in MOLDEX3D R15 2018 (www.moldex3d.com). The
material used is a type of polypropylene (PP) supplied by A. Schulman whose trade
name is POLYFLAM RPP 374ND CS1. The properties of the material can be seen
in Appendix A.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 59

Building the model

The main goal of a surrogate model is to be as accurate as possible via using as
few samples as possible. One of the major steps on the process of constructing a
surrogate model is the sample collection. In this work, we collected a total of 150
samples at selected values of x ∈ D, where

D :=

x ∈ R4 :

190 ≤ x1 ≤ 230
3 ≤ x2 ≤ 5

60 ≤ x3 ≤ 100
8 ≤ x4 ≤ 14

 . (3.7)

to evaluate y ∈ R7 via D-optimal [Box and Draper, 1971] and Latin hypercube [Mckay
et al., 2000] experimental designs. Hence, these samples are used to generate surrogate
models of fi, i = 1, . . . , 7, of the outcomes of interest, which make them suitable for
an optimization algorithm.

Generation of a surrogate model can be seen as a multi-dimensional non-linear
optimization problem, which can be solved via least squares. Therefore, the problem
can be formally defined as

min
β
‖f(x, β)− y‖2

2 = min
β

∑
i

(f(xi, β)− yi)2, (3.8)

where x is the input sample vector, y is the output sample vector, β is the parameter
vector, and f is the surrogate model. The problem presented in (3.8) can be solved
using different methods [Lawson and Hanson, 1995]. Polynomial and artificial neural
networks models [Abhishek et al., 2017, D’Addona et al., 2017] represent some of the
most popular surrogate models in engineering. Table 3.1 shows the results of the
surrogate models generated for each one of the outcomes of interest.

Table 3.1: Objective functions of the PIM model

Function Surrogate model R2 training R2 testing
f1 Quadratic 0.99 0.99
f2 Quadratic 0.99 0.99
f3 Shallow neural network 0.98 0.93
f4 Quadratic 0.98 0.98
f5 Shallow neural network 0.82 0.89
f6 Linear 1.00 1.00
f7 Quadratic 0.93 0.93

3.3.3 Numerical Results

In this section, we present some numerical results for hypothetical scenarios of the
PIM design. For this, we will first consider selected sub-problems with two and three

Cinvestav Computer Science Department

60 Chapter 3

objectives. The consideration of these MOPs might be interesting in case the decision
maker has a strong preference on just a few objectives. Further, the results show that
all the objectives are indeed in conflict and that the entire problem consisting of
seven objectives cannot be treated any more with traditional methods. In the second
sub-section, we will show some numerical results of the Pareto Explorer on the seven-
objective MaOP on four selected scenarios.

Multi-objective PIM design

First we look at the MOP that is defined by the two objectives f2 (quadratic) and
f6 (linear). Figure 3.4 shows the numerical results of the PT and the evolutionary
algorithm NSGA-III [Deb and Jain, 2014]. See Table 3.2 for the chosen parameter
setting of both algorithms. NSGA-III and PT yield almost identical results and are
capable of approximating the Pareto front perfectly. A huge difference, however, is in
the computational effort needed to compute the results. NSGA-III is given a budget
of 50,000 function evaluations. In contrast, PT required 190 function and another
190 Jacobian calls. If counting one Jacobian call by 4 function evaluations (as this
can be done if the Jacobians were evaluated via automatic differentiation [Griewank
and Corliss, 1992]), then the PT result would have been obtained via total of less
than 1,000 function evaluations which is significantly less than for the evolutionary
algorithm.

Table 3.2: Parameters of the NSGA-III and the PT for the PIM.

Algorithm Parameter Value

NSGA-III

Population size 92
Reference points 91
Crossover probability 1
Mutation probability 1/n
Distribution index for crossover 20
Distribution index for mutation 20

PT
τ 0.01
x0 (210.00, 4.00, 80.00, 11.00)T

Second, we consider the MOP that is defined by f1 (quadratic) and f5 (which is
multi-modal and is defined by a neural network model). Figure 3.5 shows the results
obtained by PT and NSGA-III. Again, PT spends much less function evaluations
(around 4,000 counting one Jacobian call as 4 function calls as above) than NSGA-III
(50,000). However, as PT was run with one single starting point, it only detects
one part of the Pareto front that consists of 2 connected components. As it does
not detect the 2nd component, it computes also some solutions that are only locally
optimal. NSGA-III, on the other hand, is capable of detecting both components and
delivers a suitable approximation of the solution set.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 61

4.5 5 5.5 6 6.5 7 7.5
16

17

18

19

20

21

22

23

24

25

f2

f 6

NSGA−III
Pareto Tracer

Figure 3.4: Obtained Pareto fronts by PT and NSGA-III for the PIM model
defined by f2 and f6.

Finally, we consider a three-objective problem defined by the objectives f1, f5, and
f6. Since f5 is multi-modal we first run NSGA-III to obtain a rough approximation
of the two-dimensional Pareto front, see Figure 3.6. In order to refine the obtained
solutions, we apply PT where we feed this algorithm with each of the individuals from
the final population of NSGA-III. As it can be seen, a much better approximation
of the entire Pareto front can be obtained. To achieve this result, we have given
NSGA-III a budget of 150,000 function calls, which has led to 100 non-dominated
solutions. In the second step, PT has used 64,369 function evaluations and 5,877
Jacobian evaluations (leading to 8,7877 function evaluations when using automatic
differentiation) leading to a total of 1,948 non-dominated solutions. We think that
this combination is most effective for three-objective problems which is confirmed by
other computations.

From all results it can be seen that all objectives are in conflict with each other.
Thus, one cannot expect to be able to compute suitable finite size approximations of
the entire Pareto set/front for problems with more objectives. That is why we will
consider applications of the Pareto Explorer for this case in the next section.

Many-objective PIM design

Here, we consider the entire design problem that consists of seven objectives. As
one cannot expect any more to compute suitable approximations of the entire solution
set (which can then be presented to the decision maker), we have to restrict ourselves
to some selected hypothetical scenarios that can occur. We stress, however, that these

Cinvestav Computer Science Department

62 Chapter 3

0.16 0.17 0.18 0.19 0.2 0.21
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

f1

f 5

NSGA−III
Pareto Tracer
Individual Minima

Figure 3.5: Obtained Pareto fronts by PT and NSGA-III for the PIM model
defined by f1 and f5.

are just illustrators for a possible decision making. The decision making process for
a given problem will heavily depend on the given setting and on the preferences of
the decision maker.

For all cases we have chosen to take x0 = (210.00, 4.00, 80.00, 11.00)T as our initial
solution, which is the middle point for each variable in the considered range of the
sampling process. Hence, x0 is chosen as our initial solution for Step 1 of the PE.
This is done for simplicity and to have the same starting point for all scenarios and
to show the effect of the different steerings. We stress, however, that in principle any
other starting point could be taken or computed. For the demonstration of Step 2 of
the PE, we consider the four following scenarios:

Scenario 1 (S1): For this scenario, we try to minimize the values of f1 and f5 at the
same time. Thus, the direction that we consider is dy = (−1, 0, 0, 0,−1, 0, 0)T

with a step size τ = 0.03. That is, we are interested in solutions that reduce
both the warpage and the shear stress (in the same amount) during the search
along the Pareto front.

Scenario 2 (S2): Here, our goal is to minimize f2 and f6 at the same time. Thus,
the direction that we consider is dy = (0,−1, 0, 0, 0,−1, 0)T with a step size
τ = 0.01.

Scenario 3 (S3): Here, we want to minimize the functions f1, f5, and f6 at the
same time. The direction that we consider is then dy = (−1, 0, 0, 0,−1,−1, 0)T

with a step size τ = 0.01.

Scenario 4 (S4): Finally, we want to minimize the functions f3, f5, and f6 at the
same time. The direction that we consider is thus dy = (0, 0,−1, 0,−1,−1, 0)T

with a step size τ = 0.01.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 63

The computational cost of these scenarios are presented in Table 3.3 and a com-
parison of the values with our model and the values with the simulator are presented
in Table 3.4.

Table 3.3: Computational cost of the PE for the Scenarios 1-4 on the PIM.

S1 S2 S3 S4
Solutions 323 218 212 205
Function Evaluations 324 226 227 217
Jacobian Evaluations 324 226 227 217

Table 3.4: Comparison of the values from our model (FM) against the simulated
values (FS) on the PIM.

Initial Configuration
x0 210.0000 4.0000 80.0000 11.0000
FS(x0) 0.2016 5.6565 9.7470 0.0717 0.8690 20.1000 11.9460
FM(x0) 0.2040 5.7271 9.7329 0.0713 0.8774 20.1000 11.8221

Case 1
x323 230.0000 3.0000 60.0000 13.0163
FS(x323) 0.1887 5.2977 8.3664 0.0854 0.7680 21.1163 12.4440
FM(x323) 0.1896 5.3191 8.1392 0.0854 0.7437 21.1163 12.9238

Case 2
x218 212.7412 3.3488 60.0000 9.6531
FS(x218) 0.2442 6.5442 9.2361 0.0769 1.0300 18.1019 7.4741
FM(x218) 0.2425 6.4453 9.6549 0.0767 0.9258 18.1018 11.7376

Case 3
x212 213.3452 3.3421 60.0000 9.6950
FS(x212) 0.2437 6.5210 9.1729 0.0772 1.0300 18.1371 7.9492
FM(x212) 0.2419 6.4289 9.6057 0.0770 0.9199 18.1371 11.7847

Case 4
x205 217.3894 3.2880 60.7034 9.8649
FS(x205) 0.2414 6.4710 9.1775 0.0787 1.0100 18.2529 8.9651
F (x205) 0.2404 6.3740 9.4653 0.0787 0.8806 18.2529 11.7933

We can see from Figure 3.7 that both f1 and f5 improve their values with respect
to the initial F (x0). However, at the end of the optimization process, we obtain the
best value for f5, while for f1 the best value was reached in a previous step. It can
be also appreciated in Figure 3.8, that f2 and f6 are clearly in conflict. Then, when
we reduce the value of f6, the value of f2 increases. At the end of the optimization
process, we obtain the best value for f6 and the worst value for f2.

Cinvestav Computer Science Department

64 Chapter 3

On the other hand, in Figure 3.9 we observe that the functions f1 and f6 are
directly in conflict, while for f5 the value depends of both functions. At the end of
the optimization process, we obtain the best value for f6 and the worst value for f1;
for the case of f5 the initial and the final values are similar, but along the steps such
value has a lot of variation. Notice that, the result for this scenario is almost the
same than the previous one.

Finally, from Figure 3.10 it is clear that PE reduces two of the three functions.
We notice that the values of f6 and f3 are always reduced, while the change in f5 is
not constant. At the end of the optimization process, we obtain the best value for f3

and f6, while the best values for f5 is obtained in a previous step. However, notice
that, in some step, the values of f1, f5 and f6 are improved with respect of the initial
one.

As can be seen, the movement has been performed in all cases according to the
desired direction. We have presented here the entire path of solutions. However, in
a real decision making process, the DM can of course choose at any time either to
accept a computed candidate solution, or to change the direction in which the steering
has to be performed.

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 65

0.2

0.25

0.3

0.35

0.7 0.8 0.9 1 1.1 1.2 1.3

16

18

20

22

24

26

f1

f5

f 6

NSGA−III
Pareto Tracer

(a) Objectives

190
200

210
220

230

3

3.5

4

4.5

5
60

70

80

90

100

x1
x2

x
3

(b) x1, x2, x3

190
200

210
220

230

3

3.5

4

4.5

5
8

9

10

11

12

13

14

x1
x2

x
4

(c) x1, x2, x4

190
200

210
220

230

60

70

80

90

100
8

9

10

11

12

13

14

x1
x3

x
4

(d) x1, x3, x4

3
3.5

4
4.5

5

60

70

80

90

100
8

9

10

11

12

13

14

x2
x3

x
4

(e) x2, x3, x4

Figure 3.6: Example of PT and NSGA-III on the PIM model for f1, f5, and
f6

Cinvestav Computer Science Department

66 Chapter 3

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

objectives

va
lu
es

Steps
Initial
Final

(a) Line plot

x1

x2

x3

x4

Initial
Quarter
Middle
Final

(b) Pareto Set

f1

f2

f3

f4

f5

f6

f7

Initial
Quarter
Middle
Final

(c) Pareto Front

Figure 3.7: Graphical result on the complete PIM model for the first scenario
(minimize f1 and f5).

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 67

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

objectives

va
lu
es

Steps
Initial
Final

(a) Line plot

x1

x2

x3

x4

Initial
Quarter
Middle
Final

(b) Pareto Set

f1

f2

f3

f4

f5

f6

f7

Initial
Quarter
Middle
Final

(c) Pareto Front

Figure 3.8: Graphical result on the complete PIM model for the second scenario
(minimize f2 and f6).

Cinvestav Computer Science Department

68 Chapter 3

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

objectives

va
lu
es

Steps
Initial
Final

(a) Line plot

x1

x2

x3

x4

Initial
Quarter
Middle
Final

(b) Pareto Set

f1

f2

f3

f4

f5

f6

f7

Initial
Quarter
Middle
Final

(c) Pareto Front

Figure 3.9: Graphical result on the complete PIM model for the third scenario
(minimize f1, f5, and f6).

Cinvestav Computer Science Department

Extensions of the Pareto Explorer for Continuous MaOPs 69

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

functions

v
a
lu
e
s

Steps
Initial
Final

(a) Line plot

x1

x2

x3

x4

Initial
Quarter
Middle
Final

(b) Pareto Set

f1

f2

f3

f4

f5

f6

f7

Initial
Quarter
Middle
Final

(c) Pareto Front

Figure 3.10: Graphical result on the complete PIM model for the last scenario
(minimize f3, f5, and f6).

Cinvestav Computer Science Department

70 Chapter 3

Cinvestav Computer Science Department

Chapter 4

Exploration in Objective Space

In this chapter, we present two approaches to deal with MOPs with different
smoothness assumptions. The idea is to perform a steering in objective space similar
to the continuous PE. In Section 4.1, we present a fine tuning method to deal with
general MaOPs; while, in Section 4.2 we treat linear MaOPs.

The motivation of our proposals is to allow the DM to navigate along the Pareto
front by starting from a given initial solution x0, possibly coming from the output
of any available optimization technique as with the continuous PE. This initial solu-
tion x0 is to be viewed as a departure point in the objective space from where the DM
can refine his/her preferences by discovering on-line the vicinity of x0, and eventually
finding new preferred points in the objective space. Consequently, we shall provide
the DM with the necessary tools in order to explore a whole path of solutions being
as near as possible to the PF and to locally explore the landscape of Pareto optimal
solutions in an iterative manner, i.e., from one solution to a nearby one. For this
purpose, the DM is required to provide a direction in the objective space, in which
the search process shall be steered. Informally speaking, steering the search along
the given direction means providing the DM with a sequence of candidate solutions
xi, i = 1, . . . , N , that can be viewed as forming a path in the objective space and
such that every solution xi is improving the previous solution xi−1 with respect to
the direction given by the DM in the objective space.

4.1 Fine tuning method and application to knap-

sack

For the target framework to work it is important to keep in mind the notion of
Pareto optimality when performing a movement in objective space. For instance,

71

72 Chapter 4

assuming that the starting solution is a Pareto optimal solution, then it is obviously
not possible to improve all the objectives simultaneously. Consequently, the DM can
still define a direction which does not involve an optimal movement, because no prior
knowledge on the shape of the Pareto front is assumed. In the rest of this section,
we provide a step-by-step description of the proposed framework and the necessary
algorithmic components for its proper realization. This shall also allow us to better
highlight the different issues one has to address in such context.

4.1.1 Framework for the fine tuning method

We assume that the DM has a preferred direction d in objective space. More
formally, given an initial solution x0, we assume that the DM is interested in a solution
x1 which is in the vicinity of x0 such that the following holds:

F (x1) ≈ F (x0) + td, (4.1)

where t > 0 is a given (typically small) step size.

As it is very unlikely that such a point x1 exists where the exact equality in
Equation (4.1) holds (note also that the Pareto front around F (x0) is not known), we
propose to consider a ‘best approximation’ using an ‘approximated’ reference point
Z1 as follows:

Z1 := F (x0) + t̄d, (4.2)

where t̄ > 0 is a given, fixed (problem dependent) step size. Then, we propose to
compute the ‘closest’ Pareto optimal solution to the reference point Z1 in the objective
space, which will hence constitute the next point x1 to be presented to the DM. Notice
that we still have to define a metric specifying the closeness of optimal points with
respect to the reference point – this will be addressed later. Once x1 is computed, the
DM can consequently change his/her mind or not, by providing a new direction or by
keeping the old one. The framework then keeps updating the sequence of reference
points and providing the DM with the corresponding closest optimal solutions in an
interactive manner. The proposed framework is hence able to provide the DM with a
sequence of candidate solutions such that the respective sequence of objective vectors
(ideally) performs a movement in the specified direction d.

In Algorithm 4.1, we summarize the high-level pseudo code of the proposed
method. We first remark that the procedure RefPoint implements the idea of
transforming the direction d provided by the DM into a reference point, which we
simply define as follows:

Zi = F (xi−1) + δd, (4.3)

where xi−1 is the previous (starting) solution and δ a parameter specifying the mag-
nitude of the movement in objective space. Actually, δ can be viewed as the preferred

Cinvestav Computer Science Department

Exploration in Objective Space 73

Algorithm 4.1 Fine Tuning Framework

Require: starting point x0

Ensure: sequence {xi} of candidate solutions
for i = 1, 2, . . . do

Let d ∈ Rk . Search direction in objective space
Let δ ∈ R+ . Step size in objective space
Zi = RefPoint(xi−1, d) . Reference point in step i
SOPi = G(Zi) . Next single objective problem to solve
xi = Emo Optimizer(SOPi) . evolutionary search for the next solution

end forreturn X := {x1, x2 . . .}

Euclidian distance between two consecutive solutions ‖F (xi−1)− F (xi)‖ in objective
space. It hence defines the preferred step size of the required movement, which is
kept at the discretion of the DM. Notice also that both the direction d and the step
size δ can be changed interactively by the DM, which we do not include explicitly in
the framework of Algorithm 4.1 for the sake of simplicity.

Given this reference point, one has to specify more concretely which solution
should be sought for the decision maker. This is modeled by function G, which takes
the current reference point into account and outputs a (single-objective) SOP to be
solved. At last, the procedure Emo Optimizer refers to the (evolutionary) algorithm
that effectively computes the next solution to be presented to the DM. At this stage
of the presentation, it is still not fully clear how to define function G and how to
effectively implement the evolutionary solving procedure, which is at the core of this
paper. Before going into the technical details of these crucially important issues, let
us comment on Figure 4.1 showing two hypothetical scenarios in the two-objective
case, chosen for the sake of a better visualization. For F (x0), the reference point Z1

is feasible when choosing the direction d = (1,−1)T . That is, there exists a point
x such that F (x) = Z1. We want a function G(Z1) that prevents x to be actually
chosen. Instead, the solution x1 should be a natural candidate since it is a Pareto
optimal solution where F (x1) is the closest element to Z1 in the Pareto front. The
second scenario is for a given point x0 such that Z1 is infeasible. Here, it is clear that
the solution of G(Z1) must be a Pareto optimal solution whose image F (x1) is the
closest to the given reference point. Notice that in both cases, the Pareto Front is
not known when defining function G(Z).

In the following, we propose a possible answer for the definition of G, as well as
some alternative (single- and multi-objective) evolutionary procedures for solving the
corresponding SOP.

Cinvestav Computer Science Department

74 Chapter 4

−12 −10 −8 −6 −4 −2 0

−12

−10

−8

−6

−4

−2

0

d

F (x0)

Z1
F (x1)

F (x̄0)

Z̄1

F (x̄1)

F (PD)

f1

f 2

Figure 4.1: Illustrative example of fine tuning in objective space.

4.1.2 Framework instantiation

Since the direction provided by the DM could be arbitrary, and given that we
do not assume any prior knowledge neither about the Pareto front, nor on the initial
solution from where to steer the search; we propose the following modeling of function
G(x|Z), defining the next point to be computed by our framework. We rely on the
WASF (see Section 2.3.1). The motivation of using such a function is that the optimal
solution to Problem (2.31) is a Pareto optimal solution [Miettinen and Mäkelä, 2002],
independently of the choice of the reference point. This is an interesting property
of the WASF that allows us to deal with reference points that might be defined on
the feasible or the infeasible region of the objective space. Notice that this is to
contrast to other scalarizing functions, such as the widely-used Chebychev function,
that constraints the reference point to be defined beyond the Pareto front.

In our framework, the WASF is intended to capture the DM preferences, expressed
by the reference point computed with respect to the DM’s preferred direction. How-
ever, the weighting coefficient vector still has to be specified. It is known that for a
given reference point, the solutions generated using different weight vectors are in-
tended to produce a diverse set of solution in the objective space. We here choose to
set the weight vector λ as (1/k, 1/k, . . . , 1/k)T , which can be viewed as one empir-
ical choice implying a relative fairness among the objectives while approaching the
reference point.

Cinvestav Computer Science Department

Exploration in Objective Space 75

The evolutionary solving process

In order to solve the previously defined SOP, we investigate two alternative evo-
lutionary approaches.

The first one consists in using a standard Genetic Algorithm (GA). More precisely,
and with respect to the experimented knapsack problem, we use the same evolutionary
mechanisms and parameters than [Alves and Almeida, 2007], i.e., a parent selection
via a random binary tournament with probability 0.7, an elitist replacement strategy
that keeps the best individual, a binary crossover operator with probability 0.5, a
single point mutation, and an improve and repair procedure [Alves and Almeida,
2007] for handling the capacity constraints. However, the initial population of the
GA is adapted with respect to the iterations of our proposed framework as follows.
Each time the SOP defined by the WASF and the corresponding reference point
is updated, we initialize the population with 1/4 of the best individuals from the
previous iteration, that we complement with randomly generated individuals. In the
first iteration of our framework, the initial population is generated randomly. In
our preliminary experiments, this was important in order to obtain a good trade-
off between quality and diversity within the evolutionary process. Actually, this
observation leads us to consider the following alternative evolutionary algorithm,
where population diversity is maintained in a more explicit manner, by using an
MOEA for solving the target SOP.

More precisely, our second alternative solving procedure is based on an adaptation
of the MOEA/D framework [Zhang and Li, 2007]. We recall that MOEA/D is based
on the decomposition of a given MOP into multiple subproblems using different weight
vectors, which are then solved cooperatively. In contrast to the original algorithm,
where the entire Pareto front is approximated using an ideal reference point and a
diverse set of weight vectors, typically generated in a uniform way in the objective
space; we are here interested in a single solution with respect to the target reference
point. Hence, we still consider a set of uniformly-distributed weight vectors, but we
use the WASF where the reference point is fixed in order to focus the search process
on the region of interest for the DM. At the end of the MOEA/D search process, we
output the best-found solution for the weight vector λ = (1/k, 1/k, . . . , 1/k)T , which
precisely corresponds to the target SOP defined with respect to the DM preferred
direction. Similarly to the GA, our preliminary experiments revealed that the choice
of the initial population for MOEA/D has an important impact on the quality of the
target solution. Accordingly, apart from the first iteration where the initial population
is generated at random, we choose to systematically initialize MOEA/D with the
population obtained with respect to the previous reference point. Due to the explicit
diversity of the MOEA/D population, this initialization strategy revealed a reasonable
choice in our initial experiments.

Cinvestav Computer Science Department

76 Chapter 4
F

in
e

tu
n

in
g

G
A

7000 7500 8000 8500 9000 9500 10000
7000

7500

8000

8500

9000

9500

10000

10500

f1

f 2

7000 7500 8000 8500 9000 9500 10000
7000

7500

8000

8500

9000

9500

10000

10500

f1

f 2

7000 7500 8000 8500 9000 9500 10000
7000

7500

8000

8500

9000

9500

10000

10500

f1

f 2

F
in

e
tu

n
in

g
M

O
E

A
/
D

7000 7500 8000 8500 9000 9500 10000
7000

7500

8000

8500

9000

9500

10000

10500

11000

f1

f 2

7000 7500 8000 8500 9000 9500 10000
7500

8000

8500

9000

9500

10000

10500

11000

f1

f 2

6500 7000 7500 8000 8500 9000 9500 10000
7500

8000

8500

9000

9500

10000

10500

f1

f 2

F (x0) = (9789, 8387)T F (x0) = (8600, 7570)T F (x0) = (9789, 8387)T

d = (0, 1)T d = (0, 1)T d = (−1, 0)T

Figure 4.2: Illustrative scenarios on the MOKP for the bi-objective case. The
best-known PF approximation is in thin black points. Reference points are shown
using red squared points. The output solutions are shown as circled black point.
The population is depicted using a variable color scale. δ = 500.

Illustrative scenarios

To exemplify the possible scenarios, we experiment in the following the tuning
method on the multiobjective (multi-dimensional) 0-1 knapsack problem (MOKP)
with different assumptions. This is in order to highlight the behavior of the framework
under some possible representative scenarios and to identify the main raised issues.

We define the exemplary scenarios changing the input values of the fine tuning
method, i.e., the initial optimal solution F (x0), the direction in objective space d
and the step size δ. For each investigated scenario, we provide plots rendering the
computed reference points, the projection of the selected solutions (xi) in the objective
space, and the final population of each of the two considered evolutionary algorithms,
together with the best-known PF approximation. This is reported in Figure 4.2 for
a bi-objective MOKP instance from [Zitzler and Thiele, 1999]. Notice that, since
we are interested in the impact of the input parameters, we assume that the initial
solution x0 could be optimal or not, which implies that the first-obtained reference
point can also be optimal or not. Thus, by simplicity we omit the first update of the
reference point, and we consider that Z1 = F (x0). At last, we consider 10 iterations
of the proposed method, a population size of 150, and 7, 500 function evaluations
when running the solution procedure at each iteration.

Cinvestav Computer Science Department

Exploration in Objective Space 77

In Figure 4.2 (left), we consider a Pareto optimal solution as a starting point and
a fixed direction vector (provided by the DM) corresponding to the scenario where
the second objective is to be refined repeatedly. We can clearly see that running
the proposed framework is able to gradually improve the output solutions and to
effectively steer the search along the desirable input direction. However, the output
solutions are not necessarily optimal, which we clearly attribute to the relatively few
amount of computational effort used when running the evolutionary solving proce-
dure. Interestingly, using the MOEA/D algorithm as a solving procedure (bottom)
for the single-objective reference point target problem appears to work much better
than the single-objective GA (top). We clearly attribute this to the diversity issues
that the evolutionary process is facing when trying to find Pareto optimal solutions.
This is confirmed in our second scenario depicted in Figure 4.2 (middle), where the
initial solution is chosen to be a non-optimal one. This second scenario also demon-
strates that the proposed approach behaves in a coherent manner even if the solution
considered in each iteration is not optimal. Notice that these two scenarios consider
the same preferred direction, which is actually pointing to regions where there exist
some non-dominated points. In Figure 4.2 (right), we instead consider the scenario
where a non-optimal direction d = (−1, 0)T is provided, that is a direction that points
towards a dominated region of the objective space. This leads to the critical situation
where the computed reference point might be dominated. Again, we notice that the
proposed approach can handle this situation properly and that the MOEA/D-based
solving procedure performs better than the GA.

4.1.3 Numerical results

In this section, we present some numerical results of our approach using the mod-
ified (fine tuning) MOEA/D as a solver, since it was shown to provide better perfor-
mance than the fine tuning GA. In order to appreciate the behavior of the proposed
method, we compare it against the original MOEA/D algorithm. However, since
the original MOEA/D is intended to compute an approximation of the whole PF, a
special care has to be taken.

First, the proposed method enables to only output a path of solutions based on
the computed reference points. For this reason, we use IGDZ (see Section 2.5.3)
to compare our results. The value of IGDZ can be straightforwardly computed for
our approach using the set of reference points computed at each iteration and the
best-available PF approximations as the discretization of the PF. For the original
MOEA/D, we consider to first extract from the archive maintained by MOEA/D the
nearest solutions (in objective space) to the same reference points computed by our
approach. Then, these solutions are considered in order to compute an IGDZ value
for the original MOEA/D. By comparing the IGDZ values for our method as well as
for the original MOEA/D, our intent is to highlight the benefits that can be expected

Cinvestav Computer Science Department

78 Chapter 4

Table 4.1: Parameters settings of the fine tuning method adopted for obtaining
the numerical results reported in Table 4.2. Number of knapsacks (KS), items,
population size (P), maximal number of functions evaluations for each reference
point (ZEvs), number of considered reference points (|Z|), step size δ, initial
reference point Z0 and desirable direction dk.

KS Items P ZEvs |Z| δ Z0 dk
2 250 150 7500 10 300 (10000, 8000)T (0, 1)T

2 500 200 10000 10 300 (16000, 19000)T (1, 0)T

3 100 351 17600 10 200 (4056, 3314, 3228)T (0, 1, 1)T

3 100 351 17600 10 200 (4056, 3314, 3228)T (0, 0, 1)T

4 500 455 17500 10 300 (13643, 14224, 16968, 16395)T (1, 1, 0, 0)T

4 500 455 17500 10 300 (16716, 16867, 14178, 13234)T 0, 0, 1, 1

Table 4.2: Numerical results. Number of knapsacks (KS), items, population
size (P), maximal number of functions evaluations (Ev), and IGDZ ; minimum,
average, standard deviation (in a small font) and a maximum of 20 independent
runs were adopted for our experiments. The comparison of results is done with
respect to IGDZ .

KS Items P Ev IGDZ

Finite Tuning original MOEA/D

2 250 150 75000 69.86 80.73 (7.02) 90.22 40.34 47.51 (4.73) 59.01
2 500 200 100000 241.45 271.04 (15.34) 291.85 153.12 173.79 (10.89) 192.08
3 100 351 176000 35.84 41.62 (3.56) 47.93 34.05 46.82 (5.13) 57.03
3 100 351 176000 24.10 30.85 (4.82) 41.29 25.63 32.54 (4.35) 40.79
4 500 455 175000 184.73 228.05 (26.95) 289.81 365.29 494.72 (66.79) 577.90
4 500 455 175000 144.85 198.48 (20.12) 231.05 311.34 463.83 (70.58) 589.30

when locally steering the search along a preferred direction in an interactive way, with
respect to computing a global approximation set form which we steer the search a
posteriori. It is however worth noticing that such a comparison is only conducted for
the sake of illustrating the accuracy of our approach and its effective implementation
which should not be considered as an alternative to existing (global) multi-objective
optimization algorithms.

In the following, we consider some benchmark instances of the considered MOKP1,
as specified in Table 4.1, which also summarizes the different parameters settings
used for the proposed method. MOEA/D was adopted using the same settings as
in its original paper [Zhang and Li, 2007]. Notice that, overall, the same number
of function evaluations are used for both the original MOEA/D and the proposed
method. Table 4.2 shows the obtained results for the consider scenarios over 20
independent runs for each instance and algorithm.

We notice that, for k = 2, the original MOEA/D is able to obtain better results
than the proposed Fine Tuning method. This is because MOEA/D can generate

1http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/

Cinvestav Computer Science Department

Exploration in Objective Space 79

points close to the entire PF when the number of objectives is limited. However,
we can observe that, the larger the number of objectives, the better the Fine Tuning
approach. This is because MOEA/D requires more approximation points and function
evaluations in order to cover the entire PF as the dimensionality grows, while the Fine
Tuning approach is able to naturally focus on certain regions of the PF. We remark
that this fact also improves the execution time, because the Fine Tuning approach
does not require any external archive, while for MOEA/D to output a high-quality
global PF approximation, an archive is actually used for the MOKP.

4.2 Pareto Explorer for Linear MaOPs

When both the objectives and the constraints are linear, we have a linear MOP;
respectively, a linear MaOP in case k > 3. Such problems can be expressed as

min
x∈Rn

Px

s.t. Bx ≤ b,
(4.4)

where P ∈ Rk×n, B ∈ Rm×n, x ∈ Rn with 0 ≤ x, and b ∈ Rm.

In the following we assume that we are given a (Pareto) optimal solution x0 of a
linear MaOP and that the DM is interested in a local exploration of x0 with respect
to F (x0) = Px0 along the Pareto set/front. For this, we suggest in the following two
different strategies, (i) one that allows to choose a direction in image space, and (ii)
another one that allows to change the weights of the different objectives.

4.2.1 Change in Objective Space

The first method is based on the assumption that the DM has a preferred direction
dk ∈ Rk, to explore in the objective space. That is, given a particular point Px0 on
the Pareto front, he/she is interested on generating new solutions xnew, such that
their objective values are ideally given by

F (xnew) ≈ F (x0) + tdk, (4.5)

where t > 0.

In order to conserve the linearity of the problem, we consider an equivalent for-

Cinvestav Computer Science Department

80 Chapter 4

mulation (see [Steuer and Choo, 1983]) of Equation (2.31) as follows:

min
(x,α)∈Rn+1

α− ρ
k∑
i=1

fi(x)

s.t. wi(fi(x)− zi) ≤ α

i = 1, . . . , k,

x ∈ S.

(4.6)

Since the shape of the Pareto front is not known, it is also unclear (and rather
unlikely) that such solutions indeed exist. Instead, one could numerically trace a
solution path {xi} through those objective values that best fit (4.5), via defining the
sequence of reference points

Z0 := F (x0)

Zi+1 := Zi + tidz, i = 0, 1, . . . ,
(4.7)

where each ti > 0, and solving Problem (4.6) for each reference point. Now, the linear
MaOPs (Problem (4.6)) can be expressed in the following way:

min
x̂∈Rn+1

ĉT x̂

s.t. B̂x̂ ≤ b,

P̂ x̃ ≤ Ẑi,

(4.8)

where

ĉ := [−ρeP | 1], (4.9)

ĉ ∈ Rn+1, e = (1, . . . , 1)T ∈ Rk P ∈ Rk×n as in (4.4):

x̂ := (xT , α)T , (4.10)

x̂ ∈ Rn+1.

B̂ := [B | 0m], (4.11)

B ∈ Rm×n defined as in (4.4), 0m = (0, . . . , 0)T ∈ Rm, and b ∈ Rm defined as in (4.4).

P̂ := [WP | − e], (4.12)

P̂ ∈ Rk×(n+1), W ∈ Rk×k a diagonal matrix with Wi,i = wi, i = 1, . . . , k; and Ẑ ∈ Rk

as
Ẑi := WZi. (4.13)

Cinvestav Computer Science Department

Exploration in Objective Space 81

In the particular case that all the weights wi are equal, i.e.,

w1 = · · · = wk,

which is equivalent to an unbiased sum of the objectives, the problem gets simplified
as follows: we can consider W as the Rk×k identity matrix and we have then for the
constraints:

P̂ x̃ ≤ Ẑ ⇔ [WP | − e]x̂ ≤ WZ

⇔ [P | − e]x̂ ≤ Z.
(4.14)

The above way is how the constraints are considered in this approach.

Proceeding in this manner one obtains a sequence of candidate solutions such that
the respective sequence of images performs (ideally) a movement in the dk-direction.
Algorithm 4.2 shows the pseudo code of this method. The choice of ti−1 defines the
distance between two consecutive solutions ‖F (xi−1)−F (xi)‖, in objective space; and
is thus problem dependent. One problem that is still remaining is to detect when to
stop the process. We assume here that the DM performs a local search around x0,
i.e., he/she will stop after a few iterations. If this is not the case, the search will be
stopped at an iteration step i+1 such that xi+1 ≈ xi, i.e., when the process generates
very similar or the same candidates. This case occurs when the candidates reach the
boundary of the Pareto set.

Algorithm 4.2 PE: Movement in Objective Space

Require: Initial optimal solution x0, desired direction dk in objective space.
Ensure: Sequence X = {x1, x2, . . .} of candidate solutions.

1: Z0 := Px0

2: for i = 0, 1, . . . do
3: choose step size ti > 0
4: set Zi+1 := Pxi + tidk
5: solve (4.8) using Zi+1 starting from xi to obtain xi+1

6: end for

Example For illustration purposes we consider the following bi-objective problem
(i.e., k = 2):

min
x∈R2

F (x) =

(
1 0
0 1

)
x

s.t.(
−7 −11
−6 −2

)
x ≤

(
−77
−30

)
0 ≤ x1 ≤ 11

0 ≤ x2 ≤ 15.

(4.15)

Cinvestav Computer Science Department

82 Chapter 4

0 2 4 6 8 10
0

5

10

15
F (Q)

F (x0)

dk

dk

f1

f 2

Figure 4.3: Illustrative example of the steering in objective space for linear
MOPs.

The Pareto front of MOP (4.15) is convex and consists of two line segments (com-
pare to Figure 4.3). When choosing

x0 = (1, 12)T

with
Px0 = (1, 12)T

and
dk = (1,−1)T ,

then the application of Algorithm 1 performs a movement right down the Pareto front.
Note that for the first three iterations the solutions are dominating the reference
points, while afterwards, dominated solutions are obtained. Hence, the the true
Pareto front does not have to be known when choosing the direction dk. This holds
for MaOPs of any value of k.

4.2.2 Change in Weight Space

The second approach for the guided space exploration is based on the assumption
that the DM has a certain idea about the importance of preference for each objective;
and he/she would like to make a related change in the corresponding weight space.
More precisely, given a vector w of weights, the task is to minimize Problem (4.6)
(respectively Problem (4.8)) for the given weight w.

The change in weight space can be realized as follows: assume a convex weight
w(0) is given; and also a vector ∆w ∈ Rk which represents the desired changes, with
the next property

k∑
i=1

∆wi = 0. (4.16)

Cinvestav Computer Science Department

Exploration in Objective Space 83

Then, the new weight vector can be computed via

w(1) := w(0) + t∆w, (4.17)

where t > 0 is a given step size. It is easy to see that if t is small enough, then w(1)

is also a convex weight.

One problem that remains is that the initial weight vector w(0) is not known
exactly unless the initial solution x0 is obtained by solving (4.6) directly. On the
other hand, a good approximation to the utopian point Z∗ is necessary to get points
along all the PF.

Thus, at each iteration of the method, Equation (4.6) is solved for the current w(i)

and Z∗. Algorithm 4.3 shows the pseudo code of this second approach. The algorithm
has to be stopped if one of the weights becomes non-positive.

Algorithm 4.3 PE: Change in Weight Space

Require: starting point x0, initial weight w(0), vector of changes ∆w, tolerance ε for
maximal change in objective space.

Ensure: Sequence X = {x1, x2, . . .} of candidate solutions.
get an approximation of Z∗

for i = 1, 2, . . . do
choose ti > 0
set w(i+1) := w(i) + ti∆w
solve (4.6) starting with xi using w(i) as weight vector and ε as tolerance to

obtain xi+1

end for

Example We revisit the bi-objective problem (4.15) with x0 as in Example 1.
The obtained sequence of objective vectors

Pxi

for

w(0) = (0.95, 0.05)T ,

with

∆w = (−0.5, 0.5)T and ti = 0.15,

is shown in Figure 4.4. Again, we obtain a movement right down the Pareto front
which makes sense as the change of weights represents an emphasis on the second
objective, while the first objective gets less attention.

Cinvestav Computer Science Department

84 Chapter 4

0 2 4 6 8 10
0

5

10

15
F (Q)

F (x0)

f1

f 2

Figure 4.4: Illustrative example of the change in weight space for linear MOPs.

4.2.3 Numerical Results

Here we present two possible scenarios on the scalable benchmark problem ben-
solvedron (see [Löhne and Weißing,]). This is a problem with k objectives (where k
can take any integer value) and n = (k + 2p)k variables and constraints. We have
chosen here to consider the problem for k = 3 (which allows us to show the entire
Pareto front) and for k = 5. In both cases, we tried to get a similar path of solutions
for both approaches. We stress that it is impossible to show a comparison to other
methods as those either compute single solutions or aim at computing the entire so-
lution set. For both cases, a comparison is unfair. The further investigation of our
method, however, will be subject of future studies.

3-objective case

For our first scenario we fix k = 3 and p = 2 leading to a 3-objective problem,
with n = 343 decision variables and the same number of constraints. We have chosen
a point x0 with objective vector

Px0 = (−160,−160,−160)T .

For the movement in objective space, we have chosen dk = (0,−2,−1)T , and step
size ti = 15. To obtain a similar solution path for the change of weights method,
we have chosen w(0) = (1/3, 1/3, 1/3)T , dw = (0.3,−0.2,−0.1)T and ti = 0.1. For
each approach, we have computed 10 iterations; the results are shown in Figure 4.5.
The Pareto front has been computed with BenSolve ([Löhne and Weißing,]). The
computational time to compute the entire set on a computer with 6.9 GB of RAM
and processor AMD A8-4555M was around two seconds (1.965 s). The computation
of the 10 solutions took 0.80 and 0.94 seconds for the two approaches.

Cinvestav Computer Science Department

Exploration in Objective Space 85

(a) Movement in objec-
tive space.

(b) Change of weights.

Figure 4.5: Graphical result on the bensolvedron problem with three objectives.

5-objective case

Next we consider k = 5 and p = 0, i.e., we have a 5-objective problem with
n = 3, 125 decision variables and constraints. We have taken a point x0 with

Px0 = (−160,−160,−160,−160,−160)T

as initial solution, which is not Pareto optimal. For the movement in objective space,
we have chosen

dk = (0,−2,−1, 0, 1)T

and ti = 15. For the change of weights, we have taken

w(0) = (0.2, 0.2, 0.2, 0.2, 0.2)T ,

and
∆w = (0.1,−0.2,−0.1, 0.1, 0.1)T

with ti = 0.01. We computed 20 steps for each approach. The results are shown in
Figure 4.6. In this case, we are not able to show the Pareto front. We have stopped
the execution of BenSolve after a running time of 6 hours, and it was not able to
deliver the Pareto set within this time, while the computation of the 20 solutions took
27.99 and 40.21 seconds for the each of the two approaches.

Cinvestav Computer Science Department

86 Chapter 4

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

(a) Movement in objective space.

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

f1

f2
f3

f4
f5

(b) Change of weights.

Figure 4.6: Result of the 5-objective case.

Cinvestav Computer Science Department

Chapter 5

MOEA-PT

In this chapter, we present a hybrid of a MOEA with the PT [Cuate et al., 2019].
As it is explained in Section 2.6.1, the PT method is a continuation strategy that can
efficiently perform movements along the Pareto front of a given MOP. However, this
reconstruction process is carried out locally, which involves that we must provide a
reduced set of relevant approximated solutions, i.e., with reasonably good convergence
and dispersion over the front. Therefore, before using the PT, we need a MOEA to
produce this first set of promising solutions. This is closely related to the first phase
of PE, as its aim is also to obtain a reduced set of candidate solutions. The difference
is that with PE, we only need to select one element of the resulting set as an initial
point for the steering phase; while for the PT, we need to take advantage of every
point of the set in order to approximate the entire PS.

For the treatment of Bi-Objective Optimization Problems (BOPs), we have de-
cided to use a micro-GA, that is based on NGSA-II. On the other hand, for MOPs
with more than three objectives, a modified implementation of NSGA-II [Deb et al.,
2002], is developed. In a second and last phase, PT takes over and refines the ob-
tained solutions. In the following, we describe the two stages of the resulting hybrids
M-NSGA-II/PT) and ε-NSGA-II/PT.

5.1 First stage: Rough Approximation via Micro-

NSGA-II

The aim of the MOEA to be implemented is to generate an approximated Pareto
set that contains only a few solutions since the construction of the real front will be
subsequently performed by the PT. However, these solutions should be diverse enough
to identify all the components of a possibly disconnected front. Finally, the MOEA

87

88 Chapter 5

should be able to handle equality constraints efficiently. Therefore, the MOEA used
in the first step should meet the following characteristics:

– The number of solutions in the roughly approximated set is small, in order to
reduce the computational burden of the local search (PT). Indeed, in case of
a completely connected front, one single approximated solution might allow to
build the entire Pareto front.

– The MOEA should promote diversity, since the rough approximation produced
should cover all the extent of the Pareto front and identify all the different
components, in case of a disconnected front.

– The MOEA must be able to handle equality constraints. As mentioned be-
fore, a severely constrained problem might cause diversity issues that should be
overcome by the MOEA.

Note that the two first features are conflicting, since the number of elements of
the approximated front should be small enough to avoid unnecessary computations.
Nonetheless, there must be enough approximated solutions to ensure the identification
of all the components, in case of having a disconnected Pareto front. To deal with
2 or 3 objective problems such as those treated in this section, we observed that
20 points in the rough approximation represents a good trade-off between these two
requirements. This means that the MOEA should work either with small populations
or maintaining a small external archive.

Decomposition-based algorithms constitute a viable option. Actually, some pre-
liminary experiments were performed with MOEA/D, but the use of small popula-
tions drastically increases the velocity of information transfer within the population.
As a consequence, using too many neighbors (3 or more) led to very few different
solutions in the final population. On the other hand, with too few neighbors, the
algorithm is not able to converge to the real Pareto front. Finally, those conver-
gence troubles encouraged the use of a dominance-based algorithm, NSGA-II, which
can efficiently handle a two-objective problem and allows the easy integration of a
constraint-handling mechanism.

In order to balance the cost of the two stages, the algorithm handles a small
population (preliminary tests showed that 20 individuals allow a sufficiently good
convergence) and the crowding distance operator is used to maintain diversity. Re-
garding constraint handling, the Constraint Dominance Principle (CDP) is combined
with ε-constraint[Takahama and Sakai, 2006], to avoid the risk of premature conver-
gence towards the first feasible solutions found by the algorithm. CDP implements
the standard feasibility rules: if two solutions are infeasible, the one with the lower
constraint violation is selected; if one solution is feasible and the other one is infeasi-
ble, the feasible one wins; finally, in case that both solutions are feasible, the decision
is taken according to the dominance criterion.

Cinvestav Computer Science Department

MOEA-PT 89

In addition, according to the ε-constraint strategy, constraints are first relaxed at
the beginning of the run, so that a solution x such that Φ(x) ≤ ε is considered as
feasible (where Φ(x) represents the total amount of constraint violation of x). Then, ε
is gradually reduced, having slightly infeasible solutions competing with feasible ones
and allowing diversity preservation during the run. A decreasing schedule of ε was
proposed in the framework of single-objective optimization in [Takahama and Sakai,
2006], where ε decreases according to a polynomial function until a critical generation
Tc is reached. Then, ε is set to 0 and the constraint handling technique reduces to
the above-mentioned CDP:

ε =

{
ε(0) (1–t/Tc)

cp if 0 < t < Tc

0 if t ≥ Tc,
(5.1)

where t is the generation number, cp is a parameter controlling the speed of the
decrease and ε(0) is the constraint relaxation level at the first generation. This pa-
rameter is computed as the total constraint violation of xθ, which is the θ-th solution
in the first population, sorted in decreasing order of the total constraint violation Φ:
ε(0) = Φ(xθ).

Finally, an additional parameter was introduced in order to improve diversity:
parent selection is performed with tournaments implementing the CDP extended
with ε-constraint. However, the resulting winner of the tournament is considered
only with probability pf : in other cases (i.e., with probability 1 − pf), the winner
individual is randomly chosen. The entire process is shortly described, for the reader
convenience, in Algorithm 5.1.

5.2 Second stage: Refinement via PT

The main task at this stage is to appropriately process the resulting archive P
provided by the MOEA. The main challenge here is to avoid unnecessary effort, e.g.
via computing non-optimal KKT points along local Pareto fronts that are already
dominated by previously computed solutions. While this is relatively easy for k = 2
objectives (see [Cuate et al., 2019]), this task becomes more complicated with higher
values of k.

5.2.1 BOPs

PT could spend a lot of additional function evaluations computing non-optimal
KKT points. We can solve this and other issues using PT for BOPs [Mart́ın and
Schütze, 2014] as described below. After the first stage, and before using PT, we
need a post-processing procedure for archive P as in the following steps:

Cinvestav Computer Science Department

90 Chapter 5

Algorithm 5.1 ε-NGSA-II

P ← pop init()
Evaluate each individual xi ∈ P to obtain F (xi) and φ(xi)
Compute ε(0) and set ε = ε(0)
for t← 1 to MaxGen do

P ′ ← crossover(P) . Parent selection through tournament and ε-constraint
P ′′ ← mutation(P ′)
Q← P ∪ P ′′
QF ← Feasible(Q, ε), QI = Infeasible(Q, ε)
QF ← FastNonDominatedSorting(QF)
QI = SortConstraintV iolation(QI)
Fill P with QF , using crowding distance if necessary
if |QF | < PopSize then

Complete P with QI

end if
Update ε through equation 5.1

end for
P ← reduce(P) . return 20 solutions
Return P and F (P)

1. Improve every point in P by the modification of the Newton method (2.56).

2. Remove all dominated points in the new archive (possible local fronts).

3. Sort the final archive P, according to f1, in such a way that f1(p(1)) < . . . <
f1(p(m)), where p(i) ∈ P, i = 1, . . . ,m.

Now, we can use PT as follows: we take the first element p(1) ∈ P as the starting
point for PT with a left-up movement (µ(2)), and we compute as many solutions as
possible (until there is no conflict with the other points of P). Then, we perform the
right-down movement (µ(1)) starting at p(1), but from this case, we have to consider
the value of the next element in P (and also the previous one in case we having) in
order to avoid extra function evaluations.

In general, let xd be the current solution for the right-down movement of PT
starting from p(i), i = 1, . . . ,m − 1, τ as in Eq. (2.21), and θ ∈ (0, τ); then we have
the following stopping criteria:

• ‖F (xd)− F (p(i+1))‖2 < θ. That is, we reach the next point in P . In case xd ≺
p(i+1), we delete p(i+1) from P and we continue with the right-down movement
(compute a new xd). Otherwise, we stop and select p(i+1) as a new starting
point.

Cinvestav Computer Science Department

MOEA-PT 91

• f2(xd) < f2(p(i+1)). When the first condition is not satisfied, this condition
means that xd ≺ p(i+1). If that is the case, we delete p(i+1) from P and continue
with the right-down movement (compute a new xd).

• No improvements in the f2 direction could be achieved (PT’s stopping condi-
tion). If the PT stops, then we select p(i+1) as a new starting point (we move
to a different connected component of the Pareto front).

Additionally, for p(i), i = 2, . . . ,m, we have also to perform and verify the left-up
movement. Here, we assume that a previous right-down movement was made. Let
xu be the current solution for the left-up movement of PT starting from p(i), i =
2, . . . ,m, xd the last solution obtained by the right-down movement starting from
p(i−1), τ as in Eq. (2.21), and θ ∈ (0, τ); then we have the following stopping criteria:

• ‖F (xu)− F (xd)‖2 < θ. This condition prevents the computation of extra solu-
tions in previously considered regions of the Pareto front.

• f2(xu) > f2(xd). When the first condition is not satisfied, this condition means
that xd ≺ xu. If that is the case, then we stop and we continue with the
right-down movement for p(i+1).

• No improvements in the f1 direction could be achieved (PT’s stopping condi-
tion). If the PT stops, then we continue with the right-down movement for next
point p(i+1).

5.2.2 General MOPs

The following procedure works for a general k. Before PT can be executed, the
following post-processing has to be done on P :

1. Let τ be the desired minimal distance between two solutions in objective space.
In this first step, go over P and eliminate elements that are too close to each
other (if needed). This leads to the new archive P̃ .

2. Apply the Newton method (2.56) to all elements of P̃ . Remove all dominated
solutions, and elements that are too close to each other as in the first step. This
leads to the archive P̄ .

3. To obtain a “global picture” of the part of the Pareto front that will be computed
by PT, construct a partition of a potentially interesting subset S of the image
space into a set of hyper-cubes (or k-dimensional boxes) with radius ≈ τ . This
partition can be easily constructed via using a binary tree whose root represents
S (see [Dellnitz et al., 2005] for details, where, however, the partition is used

Cinvestav Computer Science Department

92 Chapter 5

in decision variable space). S is a box that is constructed out of P̄ as follows:
denote by mi and Mi the minimal and maximal value of the i-th objective value
of all elements in P̄ , respectively. Then the i-th element of the center of S is
set to (mi + Mi)/2 and its i-th element of the radius to (Mi − mi)/2. In the
computations, we will only allow storing one candidate solution within each of
these boxes in the archive A to guarantee a spread of the solutions.

Then, in the first step, the element p(1) ∈ P̄ is chosen as the starting point for PT,
where f1(p(1)) = m1. An external archive A will be created that will be the reference
for PT and that will be the set of solutions that will be returned after the application
of ε-NSGA-II/PT. At the beginning, it is A := {p(1)}. In parallel, a box collection C
will be created that contains all the (unique) boxes out of the above partition that
contain all the elements of A. In the first step, C will set to the box that contains
p(1). The application of PT leads to a sequence of candidate solutions xi, i = 1, . . . , s.
For each xi the following steps are performed:

1. If xi is dominated by any element of A, then the current application of PT is
stopped.

2. Else, it is checked if the unique box that contains xi is already contained in C.
If this is not the case, add this box to C and add xi to A. Else, decline xi and
proceed with xi+1.

After this, take the element from P̄\{p(1)} with the smallest value of f2 as the
starting point for PT and proceed as above. Proceed in this manner, sorting in a
cyclic way according to each objective, until all elements p ∈ P̄ have been chosen as
starting points for PT.

5.3 Proposed Test Problems

Here, we propose two bi-objective test problems, Eq1-ZDT1 and Eq2-ZDT1, and
one three-objective problem, Eq-Quad. All problems are scalable in the number of
decision variables, and for all problems the inclusion of the equality constraint(s) has
an influence on the location of the Pareto set.

5.3.1 Eq1-ZDT1

The original ZDT1 is a bi-objective problem with box constraints that can be
defined for an arbitrary number n of decision variables. Meanwhile, the proposed

Cinvestav Computer Science Department

MOEA-PT 93

Eq1-ZDT1 problem is stated as follows

f1(x) = x1

f2(x) = g(x)
(

2−
√

f1(x)
g(x)

) (5.2)

s.t. h(x) = (x1 − 0.5)2 + (x2 − 0.4)2 − 0.25 = 0 (5.3)

where

g(x) = 1 +
9

n− 1

n∑
i=2

x2
i (5.4)

As we can see, the Eq1-ZDT1 (5.2) is also a scalable bi-objective problem in the
number of variables, which changes the box constraints by an equality constraint (with
the implicit inequality constraint that x1 ≥ 0 so that f2 is defined). The constraint
of this problem (5.3) defines a kind of “hyper-cylinder”, where the variables x1 and
x2 are placed on a circle, while the remaining variables xi, i = 3, . . . , n can take any
value.

In the following, we will provide the Pareto set for Eq1-ZDT1. For this, we need
the set Ph ⊂ Q defined as

Ph :=
{
x ∈ Rn : (x1 − 0.5)2 + (x2 − 0.4)2 = 0.25,

xi = 0, i = 3, . . . , n.}
(5.5)

Theorem 5.1. Let Ph be defined as in (5.5) and n = 30. Then the subset PEq1 ⊂ Ph
given by

PEq1 = {x ∈ Rn : x1 ∈ [0, γ],

x2 = 0.4−
√

0.25− (x1 − 0.5)2, xi = 0, i = 3, . . . , n}.
(5.6)

where γ ≈ 0.977336 is the Pareto set of Eq1-ZDT1.

Proof. a) First, we prove that @ y ∈ Q \ Ph such that y ≺ x, where x ∈ Ph.
Suppose that ∃ y ∈ Rn \ Ph such that h(x) = 0 and y ≺ x,∀x ∈ Ph. First, let

x := (y1, y2, 0, . . . , 0)T , (5.7)

with (y1 − 0.5)2 + (y2 − 0.4)2 = 0.25. Then, let ∆ := (∆1, . . . ,∆n)T ∈ Rn \ ∅
with ∆1 = ∆2 = 0; as y ∈ Rn \ Ph we can choose y as follows:

y := x+ ∆ = (y1, y2,∆3, . . . ,∆n)T , (5.8)

Now, from (5.2) note that

Cinvestav Computer Science Department

94 Chapter 5

1. For the first objective we have that f1(y) = f1(x) = y1.

2. For the second objective we have that

g(x) = 1 +
9

n− 1

n∑
i=2

x2
i

= 1 +
9

n− 1

(
y2

2 +
n∑
i=3

0

)
= 1 +

9

n− 1
y2

2,

g(y) = 1 +
9

n− 1

n∑
i=2

y2
i

= 1 +
9

n− 1

(
y2

2 +
n∑
i=3

∆2
i

)
,

⇒ g(x) < g(y).

Then,

y1

g(x)
>

y1

g(y)
⇒

√
y1

g(x)
>

√
y1

g(y)

⇒ −
√

y1

g(x)
< −

√
y1

g(y)

⇒ 2−

√
f1(x)

g(x)
< 2−

√
f1(y)

g(y)
.

Finally,

g(x) < g(y)⇒

g(x)

(
2−

√
f1(x)

g(x)

)
< g(y)

(
2−

√
f1(y)

g(y)

)
⇒ f2(x) < f2(y),

which contradicts the hypothesis. Thus @ y ∈ PD \ Ph |x ≺ y with x ∈ Ph.

b) Now we show that the points PEq1 are not dominated by each other and they
dominate all the points in the set Ph \ PEq1.

Let x, x′ ∈ Ph such that x1 = x′1 and |x2| < |x′2|. Notice that we can express x2

in terms of x1 as

x2 = 0.4±
√

0.25− (x1 − 0.5)2, (5.9)

Cinvestav Computer Science Department

MOEA-PT 95

and it is clear that the points of the form (x1, 0.4 +
√

0.25− (x1 − 0.5)2) are

dominated by the points (x1, 0.4 −
√

0.25− (x1 − 0.5)2) (that is, the inferior
half of the circle), then g(x) < g(x′)⇒ f2(x) < f2(x′).

Now, we can write f2(x) with x ∈ Phd in terms of x1 as

f2(x1) =

(
(n− 1) + 9C2(x1)

n− 1

)(
2− x1

(n− 1) + 9C2(x1)

)
. (5.10)

where, C(x1) = 0.4−
√

0.25− (x1 − 0.5)2.

Computing the derivative of Eq. (5.10) we have

f ′2(x1) = −
(5(n− 1) + 180x1 − 90)

√
0.25− (x1 − 0.5)2 − 72x1 + 36

5(n− 1)
√

0.25− (x− 0.5)2
. (5.11)

The derivative of f2 has only one root at γ = x∗1 ≈ 0.977336. Also, note that
for a point a we have that if a ∈ [0, γ], then f ′2(a) < 0. On the other hand,
if a ∈ [γ, 1], then f ′2(a) > 0. Hence, f2(x) is monotonically decreasing, and
consequently, points in PEq1 are not dominated by each other.

Finally, by (a) and (b) we have that PEq1 is the Pareto set of Eq1-ZDT1. �

To obtain γ for the formulation of the Pareto set we needed to consider f ′2 which
depends on n. The proof is analog for other values of n with changing value of γ.
Some of these values can be found in Table 5.1.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x1

x
2

Unconstrained Pareto set

constraint

constrained Pareto set

(a) Projection of the
Pareto set onto the
x1x2-plane

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

f1

f 2

Unconstrained Pareto front

image of the constraint

constrained Pareto front

(b) Pareto front

Figure 5.1: Pareto set and front of the Eq1-ZDT1 with n = 30.

Cinvestav Computer Science Department

96 Chapter 5

5.3.2 Eq2-ZDT1

Via adding box constraints to Eq1-ZDT1, we can define the Eq2-ZDT1 problem
as follows

f1(x) = x1

f2(x) = g(x)
(

2−
√

f1(x)
g(x)

) (5.12)

s.t. h(x) = 0 (5.13)

0 ≤ xi ≤ 1, i = 1, . . . , n, (5.14)

where h(x) and g(x) are defined as in (5.3) and (5.4), respectively.

Next, we will provide the analytical Pareto set for Eq2-ZDT1.

Theorem 5.2. For n = 30, x ∈ Rn, the Pareto set for the Eq2-ZDT1 problem (see
Figure 5.2) is given by

PEq2 := {x ∈ Rn : x1 ∈ I1 ∪ I2 ∪ I3, x2 = I(x1),

xi = 0, i = 3, . . . , n.}
(5.15)

where I1 := [0, 0.2], I2 := [η, 0.8), I3 := [0.8, γ], η ≈ 6.700214, and

I(x1) :=

{
0.4−

√
0.25− (x1 − 0.5)2, x1 ∈ I1 ∪ I3

0.4 +
√

0.25− (x1 − 0.5)2, x1 ∈ I2

(5.16)

Proof. a) Let Ph be defined as in (5.5), and PEq1 as in (5.6) and then first part of
this proof is analogs the previous analysis for Eq1-ZDT1.

b) As second step, we need to remove all the points in PEq1 that do not satisfy the
box constraints. In particular, as xi = 0, i = 3, . . . , n, we focus on x1 and x2.
For x1, x2 ∈ Ph, we have that x1 ∈ [0, 1] and x2 ∈ [−0.1, 0.4], i.e., some values
of x2 do not satisfy the lower bound.

We can express x1 as follows:

x1 = 0.5 +
√

0.25− (x2 − 0.4)2, (5.17)

thus, for x2 = 0 we can find the values of x1 that define I1 and I3 via:

x1 = 0.5± 0.3 ⇒ I1 = [0, 0.2] I3 = [0.8, γ]

After removing the non-feasible points from PEq1 we have a gap in Pareto

set/front. Now, notice that, some points x ∈ Ph : x2 = 0.4+
√

0.25− (x1 − 0.5)2

(that is, x 6∈ PEq1), could be within the gap. That is, we have to find the values
of x ∈ Ph \ PEq1 such that f2(x1) ∈ [f(0.8), f(0.2)].

Cinvestav Computer Science Department

MOEA-PT 97

For this we consider:

f̄2(x1) =

(
(n− 1) + 9C2

2 (x1)

n− 1

)(
2− x1

(n− 1) + 9C2
2 (x1)

)
. (5.18)

where, C2(x1) = 0.4 +
√

0.25− (x1 − 0.5)2.

Notice that [f2(0.8), f2(0.2)] ⊂ [f̄2(0.8), f̄2(0.2)] and f̄2 is a continuous function,
then for the intermediate value theorem ∃x1,0.8, x1,0.2 such that f̄2(x1,0.2) =
f2(0.2) and f̄2(x1,0.8) = f2(0.8), respectively.

For n = 30, such values are x1,0.8 ≈ 0.9773356 and x1,0.2 ≈ 0.670021. Then
I2 = [η, 0.8), with η = x1,0.2, as x1,0.8 > 0.8 and f2(0.8) < f̄2(0.8).

Finally, by (a) and (b) we have that PEq2 is the Pareto set of Eq2-ZDT2. �

As we can observe, the values of γ and η depend on n (see Theorems 5.1 and 5.2).
We refer to Table 5.1 for these values for other dimensions of the decision variable
space. See Figure 5.2 for Pareto set and front of Eq2-ZDT2.

Table 5.1: Values of γ and η for different dimensions n of the decision variable
space. γ and η are used to describe the Pareto sets of Eq1-ZDT1 and Eq2-ZDT1.

n γ η
16 0.954380 0.863336
17 0.957029 0.848048
18 0.959445 0.832853
19 0.961656 0.817805
20 0.963686 0.802946
21 0.965554 0.788312
22 0.967278 0.773932
23 0.968874 0.759830
24 0.970353 0.746025
25 0.971727 0.732530
26 0.973006 0.719359
27 0.974199 0.706518
28 0.975314 0.694012
29 0.976357 0.681847
30 0.977336 0.670021
31 0.978253 0.658536
32 0.979116 0.647389

5.3.3 Eq-Quad

Finally, we propose a modification of the problem taken from [Mart́ın and Schütze,
2018] which has three quadratic objectives and two equality constraints:

Cinvestav Computer Science Department

98 Chapter 5

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x1

x
2

Unconstrained Pareto set

constraint

feasible points

constrained Pareto set

(a) Projection of the
Pareto set onto the
x1x2-plane

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

f1

f 2

Unconstrained Pareto front

image of the constraint

image of feasible points

constrained Pareto front

(b) Pareto front

Figure 5.2: Pareto set and front of the Eq2-ZDT1 with n = 30.

fj(x) = ‖x− a(j)‖2
2, j = 1, . . . , k,

where x ∈ Rn, k = 3, and a(1) = (1,−1.4,−0.4)T , a(2) = (−1.4, 1,−0.4)T , and
a(3) = (0.4, 0.4, 0.8)T .

subject to

h1(x) = r2 − x2
3 −

(
R−

√
x2

1 + x2
2

)2

= 0

h2(x) = x1 + x2 − x3 = 0
−1.5 ≤ x1 ≤ 1
−1.5 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1.

Figure 5.3 shows the constraints and the Pareto set for n = 3. As can be seen,
the Pareto set consists of two connected components that can be both expressed by
curves (and which are hence 1-dimensional).

5.4 Numerical Results

Here, we present some numerical results that compare the behavior of some state-
of-the-art MOEAs against the proposed ε-NSGA-II/PT. As test functions we have
chosen to take the three test problems proposed above, Eq1-Quad from [Mart́ın and
Schütze, 2018], the CZDT test suite as well as a modification of a problem from
Das and Dennis problem (D&D) stated in [Mart́ın and Schütze, 2018]. A point x is
considered to be feasible if ‖h(x)‖ < ε, where we have taken ε = 1e − 04, which is
common in evolutionary computation.

Cinvestav Computer Science Department

MOEA-PT 99

Figure 5.3: Constraints and feasible region for the Torus problem

Our experiments have shown that the new hybrid needs between 15, 000 and
17, 000 function evaluations (FEs) to obtain good results for the bi-objective problems
and 110, 000 to 140, 000 FEs for the three-objective problems. In order to make the
comparison fair, we have set a final budget of 20, 000 FEs for all the selected MOEAs
on the bi-objective problems and 150, 000 FEs for the three-objective problems. For ε-
NSGA-II/PT, we have split the budget for the bi-objective problems into 15, 000 FEs
for ε-NSGA-II and the remaining 5, 000 FEs for PT (and 100, 000 plus 50, 000 FEs
for three-objective problems). For the realization of PE, we have used Automatic
Differentiation to compute the gradients, which allows to express the cost of the
continuation method in terms of FEs. For all experiments, we have executed 30
independent runs. We performed the Wilcoxon Test for the statistical significance
to validate the results. For this, we consider the value α = 0.05. Based on the test
results, for the comparison between ε-NSGA-II/PT and any of the chosen MOEAs the
symbol “↑” means that the obtained results are statistically significant. The symbol
“−−” means that no ∆2 value could be computed for the algorithm. This was the
case if a MOEA detected no feasible solutions for at least 25 runs.

Figures 5.4-5.5 show the results for Eq1-Quad and Eq2-Quad, respectively; while,
the figures for the bi-objective problems are shown in Figures 5.6-5.9. The theoretical
PF is marked with dots (.), while approximations from the algorithms are marked
with triangles (4). The Pareto fronts for the other test problems have been omitted
due to space limitations, however, Table 5.2 shows the indicator values, ∆2 and IF ,
for all test problems. Smaller values of ∆2 correspond to better qualities of the
approximated solution, while larger values for IF indicate more feasible solutions in
the approximation. The best values are displayed in boldface for each problem and
each indicator. We can see that the new hybrid algorithm significantly outperforms
the other algorithms in nine out of the ten test functions. In some cases, the MOEAs
are not able to find any feasible solution within the given FE budget. ε-NSGA-II/PT,
however, loses against c-MOEA/D on Eq2-Quad. This due to the fact that the real
Pareto front is disconnected, and in most of the runs the first stage of our proposal
was not able to find adequate solutions near both components. Therefore, in the

Cinvestav Computer Science Department

100 Chapter 5

Table 5.2: Values of ∆2 and IF on the selected test problems.

Method ∆2 IF
C
Z
D
T
1

ε-NSGA-II/PT 0.0038 1.0000
(std.dev) (0.0002)

c-MOEA/D – 0.0000
(std.dev) (–)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 – 0.0000
(std.dev) (–)

NSGA-II – 0.0000
(std.dev) (–)

C
Z
D
T
2

ε-NSGA-II/PT 0.0038 1.0000
(std.dev) (0.0002)

c-MOEA/D – 0.0000
(std.dev) (–)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 – 0.0000
(std.dev) (–)

NSGA-II – 0.0000
(std.dev) (–)

C
Z
D
T
3

ε-NSGA-II/PT 0.0156 1.0000
(std.dev) (0.0164)

c-MOEA/D – 0.0000
(std.dev) (–)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 – 0.0000
(std.dev) (–)

NSGA-II – 0.0000
(std.dev) (–)

C
Z
D
T
4

ε-NSGA-II/PT 0.0031 1.0000
(std.dev) (0.0016)

c-MOEA/D – 0.0000
(std.dev) (–)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 – 0.0000
(std.dev) (–)

NSGA-II – 0.0000
(std.dev) (–)

C
Z
D
T
6

ε-NSGA-II/PT 0.0884 1.0000
(std.dev) (0.0180)

c-MOEA/D – 0.0000
(std.dev) (–)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 – 0.0000
(std.dev) (–)

NSGA-II – 0.0000
(std.dev) (–)

Method ∆p F. Ratio

D
&

D

ε-NSGA-II/PT 0.3442 1.0000
(std.dev) (0.6553)

c-MOEA/D ↑ 4.5168 0.0270
(std.dev) (2.1485)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 – 0.0000
(std.dev) (–)

NSGA-II – 0.0000
(std.dev) (–)

E
q
1
-Z

D
T
1

ε-NSGA-II/PT 0.0158 1.0000
(std.dev) (0.0015)

c-MOEA/D ↑ 0.4088 0.5060
(std.dev) (0.2504)

e-MOEA/D ↑ 0.1683 0.3787
(std.dev) (0.0488)

GDE3 ↑ 3.0997 0.6653
(std.dev) (0.5521)

NSGA-II ↑ – 0.0013
(std.dev) (–)

E
q
2
-Z

D
T
1

ε-NSGA-II/PT 0.1251 1.0000
(std.dev) (0.0428)

c-MOEA/D ↑ 0.6624 0.4700
(std.dev) (0.2215)

e-MOEA/D ↑ 0.7800 0.4617
(std.dev) (0.1235)

GDE3 ↑ 3.6144 0.8873
(std.dev) (0.5234)

NSGA-II ↑ 2.4662 0.0037
(std.dev) (1.6368)

E
q
1
-Q

u
a
d

ε-NSGA-II/PT 0.1261 1.0000
(std.dev) (0.0043)

c-MOEA/D ↑ 0.5714 0.2533
(std.dev) (0.0953)

e-MOEA/D ↑ 3.1760 0.0014
(std.dev) (0.6012)

GDE3 ↑ 0.9133 0.2666
(std.dev) (0.0931)

NSGA-II – 0.0001
(std.dev) (–)

E
q
2
-Q

u
a
d

ε-NSGA-II/PT 1.9969 1.0000
(std.dev) (1.0378)

c-MOEA/D ↑ 0.4737 0.1583
(std.dev) (0.2000)

e-MOEA/D – 0.0000
(std.dev) (–)

GDE3 ↑ 2.8142 0.0047
(std.dev) (1.1008)

NSGA-II – 0.0000
(std.dev) (–)

second stage, we were in most cases only able to compute one of the two components.
However, note that all the solutions of the final approximation are feasible in all the
independent runs.

Cinvestav Computer Science Department

MOEA-PT 101

0

2

4

6

1

2

3

4

5

6
1

1.5

2

2.5

3

3.5

4

4.5

f1
f2

f
3

(a)
cMOEAD

0

2

4

6

1

2

3

4

5

6
1

1.5

2

2.5

3

3.5

4

4.5

f1
f2

f
3

(b)
eMOEAD

0

2

4

6

1

2

3

4

5

6
1

2

3

4

5

6

f1
f2

f
3

(c)
GDE3

0

2

4

6

1

2

3

4

5

6
1

1.5

2

2.5

3

3.5

4

4.5

f1
f2

f
3

(d)
NSGA2

0

2

4

6

1

2

3

4

5

6
1

1.5

2

2.5

3

3.5

4

4.5

f1
f2

f
3

(e)
ε-
NSGAII/PT

Figure 5.4: Pareto front approximations on the Eq1-Quad for the selected
MOEAs using a budget of 150, 000 function evaluations.

0
2

4
6

8

0

2

4

6

8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1
f2

f
3

(a)
cMOEAD

0
2

4
6

8

0

2

4

6

8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1
f2

f
3

(b)
eMOEAD

0
2

4
6

8

0

2

4

6

8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1
f2

f
3

(c)
GDE3

0
2

4
6

8

0

2

4

6

8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f1
f2

f
3

(d)
NSGA2

0
2

4
6

8

0

2

4

6

8
0

0.5

1

1.5

2

f1
f2

f
3

(e)
ε-
NSGAII/PT

Figure 5.5: Pareto front approximations on the Eq2-Quad for the selected
MOEAs using a budget of 150, 000 function evaluations.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f
2

(a)
NSGA-
II

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f
2

PFconst

Micro

(b)
M-
NSGA-
II/
PT

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f
2

(c)
NSGA-
IIMPP

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f
2

PFconst

MOEA−DD

(d)
MOEA/
D/
D

Figure 5.6: Pareto front approximations on the C-ZDT1 problem for the se-
lected MOEAs with 20, 000 function evaluations.

Cinvestav Computer Science Department

102 Chapter 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

(a)
NSGA-
II

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

PFconst

Micro

(b)
M-
NSGA-
II/
PT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

(c)
NSGA-
IIMPP

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f
2

PFconst

MOEA−DD

(d)
MOEA/
D/
D

Figure 5.7: Pareto front approximations on the C-ZDT2 problem for the se-
lected MOEAs with 20, 000 function evaluations.

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f1

f
2

(a)
NSGA-
II

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f
2

PFconst

Micro

(b)
M-
NSGA-
II/
PT

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f
2

PFconst

NSGA− II −MPP

(c)
M-
NSGA-
IIMPP

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

f1

f
2

PFconst

MOEA−DD

(d)
MOEA/
D/
D

Figure 5.8: Pareto front approximations on the C-ZDT3 problem for the se-
lected MOEAs with 20, 000 function evaluations.

0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

f1

f
2

(a)
NSGA-
II

0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

f1

f
2

(b)
M-
NSGA-
II/
PT

0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

f1

f
2

(c)
M-
NSGA-
IIMPP

0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

f1

f
2

(d)
MOEA/
D/
D

Figure 5.9: Pareto front approximations on the D&D problem for the selected
MOEAs with 20, 000 function evaluations.

Cinvestav Computer Science Department

Chapter 6

Exploration in Decision Space

State-of-the-art MOEAs that measure the approximation quality of their outcome
entirely in objective space work typically well if there is a 1:1 relationship between
Pareto set and Pareto front (that is, if for every y ∈ F (PD) there exists exactly one
x ∈ PD such that F (x) = y). That is, if a good1 finite size approximation of the
Pareto front is found by the MOEA, the corresponding finite size approximation of
the Pareto set is, in many cases, also satisfying. This, however, does not hold any
more if there is an m : 1 relationship between Pareto set and front (i.e., if there are
multiple xi ∈ PD such that F (xi) = y for a y ∈ F (PD)). If, for instance, there are
several connected components of the Pareto set that map to the same part of the
Pareto front, a good Pareto front approximation does not imply a good (or at least
satisfying) approximation of the Pareto set. To see this, consider the hypothetical bi-
objective problem that is shown in Figure 6.1. The Pareto set of this problem consists
of two disjunct connected components that map both to the same Pareto front (that
is, every y ∈ F (PD) has exactly two pre-images). Figure 6.2 shows four possible
approximations in decision and objective space. As can be seen, the approximation
quality is very high for all sets in objective space, while this is not the case for the
Pareto set approximations. Out of them, only the last one is “complete” according
to the given discretization. MOEAs that merely measure their outcomes in objective
space cannot distinguish between those solutions, and consequently, the Pareto set
approximation is left to chance. MOPs of this kind are termed Type III problems in
[Rudolph et al., 2007].

To overcome this problem, we propose to develop a density estimator that aims to
obtain a good distribution, both in objective and decision space. Usually, a classical
density estimator groups the population considering only the objective values. Such
classification is commonly used to define selection criteria for its elements, giving them
certain reference value based on its distribution in objective space. According to

1The goodness can be measured e.g. by any existing performance indicator.

103

104 Chapter 6

the design of each algorithm, the individual with either lower or higher reference value
is chosen. The idea is to define a relationship between this reference value in objective
space and a certain measurement in decision space. In this way, the first grouping
phase identifies promising solutions in objective space; meanwhile, the second phase
favors solutions with the most different values in the decision space. Our goal is to
properly represent the trade-off between these two aspects.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

(a) Pareto Set

−4 −3 −2 −1 0
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

f1

f 2

(b) Pareto Front

Figure 6.1: Pareto set and Pareto front of a hypothetical bi-objective problem
where the Pareto set consists of two connected components that both map to
the entire Pareto front.

6.1 Proposed Framework

In the following, we describe the Variation Rate, a heuristic that can preserve
diversity in decision space. The obtained points can be used in a next step by the PT
or PE methods for a reconstruction of all the optimal points or for an exploration in
decision space, respectively.

6.1.1 Using the Averaged Distance in Decision Variable Space

Here, we discuss why we think that the usage of the averaged distance is an ade-
quate measure in decision space that serves our purpose.

Let I = {x1, . . . , xs} ⊂ R be a finite set, then the averaged distance d̄ between

Cinvestav Computer Science Department

Exploration in Decision Space 105

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

−4 −3 −2 −1 0
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

f1

f 2

(a)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

−4 −3 −2 −1 0
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

f1

f 2

(b)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

−4 −3 −2 −1 0
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

f1

f 2

(c)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

−4 −3 −2 −1 0
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

f1

f 2

(d)

Figure 6.2: Four different Pareto set/front approximations, where all Pareto
front approximations are good (e.g, in the Hausdorff sense), but where only in
case (d) the Pareto set approximation is complete.

each element xi ∈ I and the rest of the elements in I is given by

d̄(xi, I) =
1

s− 1

s∑
j=1
j 6=i

d(xi, xj), (6.1)

where d(xi, xj) is the desired metric for the distance between the two elements xi and
xj in the decision space, which can vary according to the encoding or the adopted
norm. In this work, we consider the Euclidean distance, i.e., d(xi, xj) = ‖xi − xj‖2.
Though the averaged distance is defined for every finite set I ∈ Rn, we will apply
it on sets where the values of their images, F (xi), i = 1, . . . , s, are close to each other.

As an illustrative example, let’s consider again the Type III bi-objective problem
whose Pareto set and front are shown in Figure 6.3. The set I is given by the three
points H, �, and F. All three images are relatively close to the given reference point
Z. Let’s assume for simplicity that the distances of all three images to Z are given
by one (i.e., ‖Z − F (H)‖ = ‖Z − F (�)‖ = ‖Z − F (F)‖ = 1). Further, we assume
that for the distances in variable space we have d(�,F) = 0.4, d(�,H) = 2, and
d(H,F) = 2.2. Then, we obtain

d̄(F, I) =
2.6

2
= 1.3, d̄(�, I) =

2.4

2
= 1.2, and d̄(H, I) =

4.2

2
= 2.1

Cinvestav Computer Science Department

106 Chapter 6

x1

x2

H

�
F

•

•
f1(x)

f2(x)

F

�
H

Z•

Figure 6.3: Illustrative example of the VR.

Notice that the point with the biggest average distance in variable space is also the
most different individual in this space. In other words, elements with the maximum
average distance in decision space have the desired behavior for Type III problems.

However, is it not sufficient only to take into account the average distance of the
variables as a selection criteria. Our problem now is how to select an individual that
has both a good quality in objective space as a good distribution in variable space.
We discuss this issue in the following.

6.1.2 Variation Rate

As explained before, the generic selection criterion of most MOEAs prefers individ-
uals with “the best” reference value in objective space, and this could be a maximum
or a minimum value according to the selection procedure. For instance, the selection
criterion of the NSGA-II prefers individuals with the biggest crowding distance, while
the niching procedure of the NSGA-III favors individuals with the least distance to
an induced line. In our case, we have to consider both the reference value provided
by the classical selection criterion, as well as the average distance in decision variable
space to solve Type III problems.

We first consider selection mechanisms that prefer small reference values. For this,
let I be a set of points in decision space whose images are close to each other, let vi
be the reference value for each xi ∈ I and let d̄(xi, I) be defined as in (6.1). Then the
variation rate ri for each element xi is stated as follows:

ri =
vi

d̄(xi, I)
(6.2)

Cinvestav Computer Science Department

Exploration in Decision Space 107

This makes sense as for Type III problems the elements of the neighborhood I will
have a similar reference value in objective space, while the average distances will be
larger for the most different solutions in decision space. Hence, its quotient (the vari-
ation rate) will tend to be smaller than for the rest of the quotients. Thus, through
the variation rate, we have a way to relate the objective and the decision spaces in
order to choose the best individual in each group.

Next, we address selection mechanisms that prefer large reference values. For
this, we have two options. The first one is to edit the selection criterion to prefer
small values in order to use the variation rate. The second alternative is to use a
product instead of a quotient. We decided to conserve the essence of each MOEA,
and therefore, we implemented the second option in this work, to what we call the
inverse variation rate. More precisely, for a set I as above with reference values vi for
each xi ∈ I and d̄(xi, I) as defined as in (6.1), the inverse variation rate r̃i is defined
as follows:

r̃i = vi · d̄(xi, I), (6.3)

Using this definition, elements with the largest values are hence preferred.

In order to illustrate these two approaches, we go back to the example shown in
Figure 6.3 where we already have the values of d̄ and vi for all the three elements of
the set I. Suppose that we have to select two out of the three individuals F, H, and
�.

If we work with a MOEA which has a selection criterion that prefers individuals
with the least distance to Z in objective space, then the only option we have is
randomly choosing them (since vH = ‖Z − F (H)‖ = 1, v� = ‖Z − F (�)‖ = 1, and
vF = ‖Z−F (F)‖ = 1). However, if we use the variation rate, then the values change
to:

rF =
1

1.3
≈ 0.7692 r� =

1

1.2
≈ 0.8333, and rH =

1

2.1
≈ 0.4762,

In this way, we select H as the preferred solution and the second one is F, which
preserves individuals in both of the disconnected regions in decision space.
The desired two-element population is hence given by

P = {H, F}

Otherwise, if we work with a MOEA which has a selection criterion that prefers
individuals with the largest distance to Z in objective space (maybe in order to
preserve diversity), then the option we have again is randomly choosing two of them.
However, if we use the inverse variation rate, that is:

r̃F = 1 · 1.3 = 1.3, r̃� = 1 · 1.2 = 1.2, and r̃H = 1 · 2.1 = 2.1,

Cinvestav Computer Science Department

108 Chapter 6

then it also leads H and F as the selected individuals.

The desired two-element population is again given by

P = {H, F}

Observe that in both cases we conserve one individual in each disconnected com-
ponent of the Pareto set. It is something that we can not guarantee with the use of
a standard approach.

Notice that for all MOPs with a 1:1 relationship of the Pareto set and the Pareto
front it is expected that solutions in the same neighborhood have similar reference
values in objective space and also a similar average distance in decision space. Thus,
it is also likely that making the quotient or the product of these values does not
significantly affect the original selection criterion. This will be shown in Section 4 on
several classical benchmark problems.

We can now state a general framework. A pseudocode of the Variation Rate is
shown in Algorithm 6.1.

Algorithm 6.1 Framework to include the Average Distance in Decision Variable
Space within any MOEA

Require: Parameters of the selected MOEA
Ensure: Final population Pt

1: t← 0
2: P0 ← InitializePopulation()

3: while the stop criterion is not satisfied do
4: Mt ← VariationOperator(Pt)
5: Vt ← SelectProcedure(Pt ∪Mt)
6: Pt ← SelectByVariationRate(Vt)
7: t← t+ 1
8: end while

In Algorithm 6.1, the procedure SelectByVariationRate takes the reference val-
ues Vt in objective space provided by SelectProcedure (we assume it is based on a
classical selection criterion), and then it updates such values according to the varia-
tion rate or the inverse variation rate in order to improve the selection mechanism to
deal with Type III problems.

As we can see, this framework can be used in principle within any MOEA, however,
the particular use of the variation rate or the inverse variation rate will depend on
the given MOEA. In the following, we explain how to adapt the Variation Rate for
four of the most representative MOEAs.

Cinvestav Computer Science Department

Exploration in Decision Space 109

6.1.3 Integration into NSGA-II

The first algorithm that we consider is the classical NSGA-II, which has been used
successfully for the treatment of a large number of applications. This is a domination-
based multi-objective evolutionary algorithm; that is, this method directly applies the
Pareto dominance relation and an elitism strategy to preserve the best individuals
along the optimization process. The elitism operator is incorporated via a special par-
ent selection based on two mechanisms: fast-non-dominated-sorting and crowd-
ing distance. The former conserves best individuals based on the Pareto dominance
relation, whereas the latter is used to promote the preservation of the diversity.

We consider the classification in fronts performed by the non-dominated-sorting as
our neighborhood structure because the crowding distance is applied only in the last
front that can contribute elements to the next population. This means that we have
to integrate the diversity in decision space into the crowding distance. The crowding
distance procedure sorts the elements in the last front according to the values of an
objective, then the crowding distance of an individual pi is the average distance in
objective space from the previous and the next individuals (according to the induced
order), that is, the individuals pi−1 and the pi+1. In order to preserve the extreme
individuals, the crowding distance of the first and the last element is set as a big
value. This means that the crowding distance prefers elements with big values, and
hence, we use the inverse variation rate.

The pseudocode of the modification of the NSGA-II with the variation rate (VR-
NSGA-II) is shown in Algorithm 6.2. The differences between the NSGA-II and the
VR-NSGA-II are line 12 and 20. In line 12, we compute the inverse variation rate
values of the last front, while, in line 20, we perform the selection according to these
values.

6.1.4 Integration into NSGA-III

We consider this algorithm here because it is able to properly deal with MOPs
with many objectives. This algorithm is similar to its predecessor, the NSGA-II in
the variation operators and in the classification of the fronts via the non-dominated-
sorting; however, the crowding distance is replaced by a more sophisticated procedure.

Here, the idea is to take advantage of the association method of the NSGA-III,
which defines a “neighborhood” structure in a very convenient way for our purpose.
The association method assigns each element of Fj (the last front by classifying after
the non-dominated-sorting) to the nearest induced line by some weight wi ∈ Z, where
Z is a set of reference points. Each weight can have more than one associated element,
forming a neighborhood.

Cinvestav Computer Science Department

110 Chapter 6

Algorithm 6.2 Pseudocode of VR-NSGA-II

Require: Population size (Ps), crossover probability (Pc), mutation probability (Pm)
Ensure: Final Population

1: Population ← InitializePopulation(Ps)
2: FastNondominatedSorting(Population)

3: Selected ← SelectParentsByRank(Population, Ps)
4: Children ← CrossoverAndMutation(Selected, Pc, Pm)
5: while ¬StopCondition() do
6: Union ← Merge(Population, Children)
7: Fronts ← FastNondominatedSorting(Union)
8: Parents ← ∅
9: FrontL ← ∅

10: for Fronti ∈ Fronts do
11: Vt ←CrowdingDistanceAssignment(Fronti)
12: Rt ←InverseVariationRateAssigment(Vt)
13: if Size(Parents)+Size(Fronti) > Ps then
14: FrontL ← i
15: break
16: else
17: Parents ← Merge(Parents, Fronti)
18: end if
19: if Size(Parents)¡Ps then
20: FrontL ← SortByRankAndInverseVariationRate(FrontL)
21: for P1 to P

Ps−Size(FrontL)
do

22: Parents ← Pi
23: end for
24: end if
25: Selected ← SelectParentsByRankAndDistance(Parents, Ps)
26: Population ← Children
27: Children ← CrossoverAndMutation(Selected, Pc, Pm)
28: end for
29: end while
30: return Children

In the original NSGA-III, niching is realized by sorting the obtained groups in the
association stage according to its cardinality in ascending order. The element with the
least distance to the induced line in each group is selected, and the algorithm continues
with the next group until the population is filled. Thus, we modify the niching
method. To include the diversity in decision space, our new niching procedure does
not prefer the element with the least distance value. Instead, it prefers the one with
the smallest variation rate.

The pseudocode of an iteration of the VR-NSGA-III algorithm with variation

Cinvestav Computer Science Department

Exploration in Decision Space 111

rate is shown in Algorithm 6.3. We only show the iteration as the complete code is
basically identical to NSGA-II with a different selection mechanism. Here, the main
difference of the variation rate version is in line 14; while the original NSGA-III uses
ninching as part of its selection criterion, the VR-NSGA-III employs the variation
rate, as it is stated in line 14.

Algorithm 6.3 Iteration of the VR-NSGA-III

Require: Reference points Z, current population Pt
Ensure: Next population Pt+1

1: St = ∅, i = 1
2: Qt = apply variation operators to Pt
3: Mt = Pt ∪Qt

4: (F1, F2 . . . ,) = non-dominated-sorting(Mt)
5: while |St| ≤ N do
6: t = St ∪ Fi
7: i = i+ 1
8: end while
9: Add first fronts to Pt+1

10: Fi := last added front
11: Normalize Fi
12: Associate elements of Fi with each Z
13: Vt := Niching of Fi
14: Rt := SelectByVariationRate(Vt)
15: Pt+1 : St ∪Rt

6.1.5 Integration into MOEA/D

MOEA/D is part of the Decomposition-Based Evolutionary Algorithms, which
transform the original multi-objective optimization problem into a set of single-
objective optimization problems that are simultaneously solved. In particular, this
method takes a set of weights to define neighborhoods. The set of nearest weights
defines one neighborhood and the best individuals are selected based on the value
of a certain aggregative function. MOEA/D considers the weighted aggregation of
objectives as an elitist mechanism. Furthermore, the neighborhood structure pro-
motes the mating of close solutions. Different aggregative functions can be used in
the MOEA/D framework. However, individuals with the least values are selected. In
this work, we employ the Tchebycheff function, which is the most popular approach.

In order to include variation rate to the MOEA/D, we modify the selection cri-
terion. Instead of preferring individuals with the least aggregative function value,
we use the least value of the variation rate. For this, we employ the neighborhood
structure of the original MOEA/D.

Cinvestav Computer Science Department

112 Chapter 6

The pseudocode of VR-MOEA/D is shown in Algorithm 6.4. The change in this
algorithm is very subtle In line 9, we compute the variation rate of the elements of
the neighborhood and the offspring (B(i) ∪ y) instead of only computing the values
of the aggregative function.

Algorithm 6.4 Pseudocode of VR-MOEA/D

Require: N number of solutions and weight vectors; T neighborhood size.
Ensure: Final Population

1: Initialize N weight vectors λ1λ2, · · · , λN
2: Set N subproblems defined by the N weight vectors
3: Set N neighborhoods B(i) = {wi,1, · · · , wi,T}, where wi,j = λj are the closest

weight vectors to λi

4: {x1, · · · , xN} ← InitializePopulation(N)
5: while ¬ StopCondition() do
6: for i ∈ N do
7: Randomly select two solutions from B(i) to generate an offspring y
8: Apply variation operators to y
9: Compute the values Vr of B(i) ∪ y via the aggregative function g.

10: Compute Variation Rate Vt of the elements of B(i) ∪ y
11: for x in B(i) do
12: if ry ¡ rx then
13: Replace x with y
14: end if
15: end for
16: end for
17: end while
18: return Children

6.1.6 Integration into SMS-EMOA

SMS-EMOA is an indicator-based algorithm, which means that it uses in its se-
lection criterion the value of a certain performance indicator. In case of SMS-EMOA,
it is the hypervolume indicator.

This algorithm is similar to the NSGA-II but it replaces the crowding distance
by the contribution to the hypervolume of each individual in the last front. That is,
the individuals of the last front with the biggest contribution to the hypervolume are
preferred.

In this case, to adapt the SMS-EMOA we consider the inverse variation rate, as
the original mechanism criterion of this algorithm prefers high values. Again, we use
the last front as our neighborhood structure.

Cinvestav Computer Science Department

Exploration in Decision Space 113

The pseudocode of an iteration of this method is shown in Algorithm 6.5 as the
rest of the algorithm is basically the NSGA-II. We observe that, in line 12, we modify
the values of the hypervolume contributions with the variation rate and we use them
for the selection mechanism.

Algorithm 6.5 Iteration of the VR-SMS-EMOA

Require: Current population Pt
Ensure: Next population Pt+1

1: St = ∅, i = 1
2: Qt = apply variation operators to Pt
3: Mt = Pt ∪Qt

4: (F1, F2 . . . ,) = non-dominated-sorting(Mt)
5: while |St| ≤ N do
6: t = St ∪ Fi
7: i = i+ 1
8: end while
9: Add first fronts to Pt+1

10: Fi := last added front
11: Vt ← ComputeHypervolumeContributions(Fi)
12: Rt := SelectByVariationRate(Vt)
13: Pt+1 : St ∪Rt

6.2 Numerical Results

In this section, we show some numerical results and comparisons to the state-of-
the-art to demonstrate the benefit and strength of the variation rate. To this end, we
first compare the original version of each algorithm against its corresponding version
that uses the variation rate (respectively, the inverse variation rate) on some widely
used (non-Type III) benchmark problems. This is done in order to show that the
performance of each algorithm is not significantly affected for standard problems.
In the next step, we test again the original and variation rate versions of the se-
lected MOEAs on some Type III problems, where the advantage of the variation rate
becomes apparent.

The benchmark problems that we use for the first part of these experiments are
the well known test problems DTLZ 1-4 [Deb et al., 2005], IDTLZ 1 and IDTLZ2 [Jain
and Deb, 2014], as well as the test problems WFG 1-5 [Huband et al., 2006]. For the
second part, we use the six following Type III problems.

The first Type III problem is taken from [Deb and Tiwari, 2008], which is defined

Cinvestav Computer Science Department

114 Chapter 6

as follows:

f1(x) =
n∑
i=1

sin(πxi), f2(x) =
n∑
i=1

cos(πxi), (6.4)

where 0 ≤ xi ≤ 6. This problem, denoted as OMNI1 in this work, has a total of
243 different disconnected components that form the Pareto set, and all of these
components map to the same Pareto front.

The second problem, also taken from [Deb and Tiwari, 2008], is defined as follows:

f1(x) = sin

(
π

n∑
i=1

xi

)
, f2(x) = cos

(
π

n∑
i=1

xi

)
, (6.5)

where 0 ≤ xi ≤ 1, and i = 1, 2, . . . , 6. This problem is denoted as OMNI2 in this work.
Let y =

∑6
i=1 xi be the sum of the variables, then the Pareto set consists of the points

x where 1 ≤ y ≤ 1.5 or 3 ≤ y ≤ 3.5. In addition, here, both connected components
map to the same Pareto front. That is, every point on the Pareto front can be
obtained in different infinite ways via the combinations of the variables mentioned.

The third Type III problem is the application stated in [Schütze et al., 2013, Sun
et al., 2018], where subdivision techniques have been used to tackle the problem. It
is stated as follows: for f1, f2 R5 → R, it is:

f1(x) =
n∑
i=1

xi,

f2(x) = 1−
n∏
i=1

(1− wi(xi)),
(6.6)

where

wi(z) =


0.01 · exp

(
−
(z

20

)2.5
)
, for i = 1, 2,

0.01 · exp
(
− z

15

)
, for 3 ≤ i ≤ 5.

(6.7)

Finally, we consider the methodology from [Rudolph et al., 2007] to construct
three more problems, denoted in this work as RPH1, RPH2, and RPH3. These are
bi-objective problems with two variables. In order to properly define them, we use
the following functions.

First, we define the objective functions for the RPH1-3 problems

f1(x) = (x1 + a)2 + x2
2,

f2(x) = (x1 − a)2 + x2
2,

(6.8)

where x ∈ R2 and a ∈ R+. The variants of the RPH problems are obtained with the
following functions.

Cinvestav Computer Science Department

Exploration in Decision Space 115

Let t1(x) and t2(x), with x ∈ R2, be the tile identifiers that are determined via:

t̂1(x) = sgn(x1) ·

⌈
|x1| −

(
a+ c

2

)
2a+ c

⌉
,

t̂2(x) = sgn(x2) ·

⌈
|x2| − b

2

b

⌉
,

(6.9)

which restrict the problem to nine tiles using the relation ti = sgn(t̂i(x)) ·min{|t̂i|, 1},
with i = 1, 2.

Then, RPH1 is defined as f
(1)
i (x) = f(x̂(x)), where x̄ : R2 → R2 is defined by the

following transformation:

x̂1(x1) = x1 − t1 · (c+ 2a),
x̂2(x2) = x2 − t2 · b.

(6.10)

For the RPH1-3 problems, we fix the constant values a = 4, b = 10, and c = 4.

The RPH2 problem is defined as the RPH1, but it rotates the variables. That is,
for an angle θ, we have

r(x) =

(
cos θ − sin θ
sin θ cos θ

)
x, (6.11)

and then f
(2)
i (x) = f

(1)
i (r(x)). In this work, we use θ = π

4
.

Finally, via the following transformation d : R2 → R

d(x) = x1 ·
(
x2 − L+ ε

U − L

)
, (6.12)

for some small ε > 0 and where U and L denote the upper and lower bound of the
search space, respectively; we can define the RPH3 as: f

(3)
i (x) = f

(2)
i (d(x), x2), which

is a rotated and transformed problem. In this work, we use ε = 0.1 for the RPH3
problem, while L = −20 and U = 20 are the the upper and lower bounds of each
variable for the RPH1-3 problems.

We used the PlatEMO platform [Tian et al., 2017] to run our tests. The param-
eters settings of all the used algorithms are shown in Table 6.1. For all experiments,
we executed 30 independent runs. The numerical results with the mean and standard
deviation of the hypervolume and ∆p indicators are shown in Tables 6.2 and 6.3. In
these tables, we have put in boldface the best value between each pair of algorithms
(the original version and the version with variation rate). We also performed the
Wilcoxon test [Gibbons and Chakraborti, 2011] as our statistical significance test to
validate the results. For this, we considered the value α = 0.05. We put in gray the
cell where such difference has statistical significance according to this test.

Cinvestav Computer Science Department

116 Chapter 6

Table 6.1: Parameter configuration for each algorithm. Mutation probability
mp, crossover probability cp, neighborhood size T , and number of reference points
#Z.

Parameter NSGA-II NSGA-III MOEA/D SMS-EMOA

mp 1/n 1/n 0.1 1/n
cp 0.8 0.8 1.0 0.8
T - - 20 -

#Z - 200 - -

From the tables, we obtain that, for the classical benchmark problems, the original
version of the selected MOEAs has a better ∆p value than the variation rate version
in 27 out of the 44 combinations, where only 19 out of these values have statistical
significance, which is an expected result. However, it is important to notice that the
variation rate versions do not always lose. According to the ∆p indicator values, the
variation rate versions are better in 17 out of 44 cases, but only in two with statistical
significance.

For the hypervolume indicator, something similar happens. Here, the original
version of the MOEAs is better than the variation rate version in 33 out of 44 runs,
with statistical significance in 21 cases, while the variation rate version wins in 11 out
of 44 cases for this indicator, where three of them have statistical significance.

In total, from the 88 possible combinations (algorithms, indicators and problems),
we have statistical significance in 45 cases; this means that, almost 50% of the time,
it is not possible to say that the original version is different than the variation rate
version. Moreover, in the cases when we have statistical significance, we can see in
Table 6.2 that the averaged values are very similar.

We observe the advantages of the variation rate versions with the Type III prob-
lems (see Table 6.3). For these problems, we use the ∆p both in objective and decision
space (we denote this in the table as Obj. ∆p and Var. ∆p, respectively). We observe
a similar behavior in objective space; here, 16 out of 24 possible combinations are bet-
ter for the original MOEAs (but only 6 out of these 34 have statistical significance).
However, in decision space, the variation rate versions are better than the original
versions; we have that 18 out of 24 combinations have better ∆p values, almost all
of them with statistical significance (only, in one case, we can not reject the null
hypothesis).

Graphical results are shown in Figures 6.4–6.9; we plot the original MOEA and its
corresponding variation rate version with the best value for each problem (according
to the median of all runs using the Var. ∆p).

In Figure 6.4, we can see that the obtained distribution is better for the variation

Cinvestav Computer Science Department

Exploration in Decision Space 117

rate version; it looks similar to that obtained by the original algorithm. However,
we have to recall that this problem has 243 different disconnected components in the
Pareto set, and some of them are overlapping in the plot. In Figure 6.5, we notice that
the variation rate version can obtain points at the two regions in this representation
(we plot y on both axes, where y =

∑6
i=1 xi), while the original version is only able

to compute points in one of them. On the other hand, in Figure 6.6, we can see that
both the original and the variation rate versions can approximate the disconnected
components of this problem well (except by the MOEA/D algorithm). Nonetheless,
the variation rate version is better in this problem, according to the values of Table 6.3.

For the RPH problems, we can see in Figure 6.7 that the variation rate version of
the NSGA-II can obtain four out of the nine disconnected components of the Pareto
set, while the original version only gets three out of them; moreover, the distribution
in decision space is also improved. In Figure 6.8, we can see again a similar behavior
between the variation rate and the original version of the NSGA-III algorithm, which
is also confirmed by the values of Table 6.3, where the variation rate version wins
in three out of the four baseline algorithms for the RPH2 problem, but only in one
has statistical significance. Finally, for the RPH3 problem, we can see in Figure 6.9
how the variation rate can significantly improve the performance of the MOEA/D
algorithm in its distribution in decision space, as the original version only obtains
points in one out of the nine disconnected components of the Pareto set, while the
variation rate version obtains five out of them.

Cinvestav Computer Science Department

118 Chapter 6

Table 6.2: Numerical results for the original and variation rate version of some
MOEAs in standard benchmark test problems. We show the mean and standard
deviation (up and down in the cell, respectively). We put in boldface the best
value and in gray the cells with statistical significance according to the Wilcoxon
test.

Problem Ind.
NSGA-II NSGA-III MOEAD SMSEMOA

Original VR Original VR Original VR Original VR

DTLZ1
∆p

0.0155 0.0181 0.0105 0.0105 0.0105 0.0105 0.0358 0.0719
0.0004 0.0006 0.0000 0.0000 0.0000 0.0000 0.0639 0.1213

HV
0.8473 0.8454 0.8576 0.8575 0.8571 0.8572 0.8359 0.8351
0.0013 0.0012 0.0003 0.0006 0.0005 0.0004 0.0081 0.0079

DTLZ2
∆p

0.0410 0.0410 0.0277 0.0277 0.0277 0.0280 0.0539 0.0536
0.0008 0.0014 0.0000 0.0000 0.0000 0.0000 0.0041 0.0041

HV
0.5630 0.5641 0.5813 0.5813 0.5814 0.5793 0.5593 0.5588
0.0018 0.0015 0.0000 0.0001 0.0000 0.0001 0.0013 0.0020

DTLZ3
∆p

0.0666 0.0572 0.0301 0.0295 0.0316 0.0308 0.0687 0.1386
0.0780 0.0855 0.0021 0.0015 0.0027 0.0019 0.0522 0.2410

HV
0.5577 0.5598 0.5714 0.5730 0.5660 0.5677 0.5526 0.5456
0.0052 0.0074 0.0060 0.0044 0.0068 0.0053 0.0066 0.0213

DTLZ4
∆p

0.0400 0.0450 0.0277 0.0277 0.1359 0.0293 0.0719 0.0725
0.0007 0.0015 0.0000 0.0000 0.2069 0.0000 0.1096 0.1095

HV
0.5650 0.5676 0.5812 0.5813 0.5287 0.5721 0.5521 0.5522
0.0013 0.0013 0.0001 0.0001 0.0971 0.0002 0.0483 0.0481

IDTLZ1
∆p

0.0156 0.0187 0.1542 0.0774 0.0177 0.0181 0.0371 0.0422
0.0005 0.0011 0.2459 0.1318 0.0000 0.0001 0.0708 0.0984

HV
0.2301 0.2268 0.2331 0.2326 0.2287 0.2275 0.2218 0.2217
0.0017 0.0018 0.0007 0.0006 0.0001 0.0002 0.0035 0.0038

IDTLZ2
∆p

0.0394 0.0406 0.0412 0.0412 0.0475 0.0456 0.0513 0.0510
0.0008 0.0012 0.0008 0.0010 0.0008 0.0007 0.0035 0.0048

HV
0.5495 0.5425 0.5550 0.5533 0.5565 0.5548 0.5410 0.5408
0.0011 0.0019 0.0020 0.0017 0.0001 0.0002 0.0023 0.0018

WFG1
∆p

0.1626 0.2488 0.2143 0.2392 0.2495 0.7113 0.3413 0.3408
0.0224 0.0405 0.0266 0.0342 0.0176 0.0929 0.0353 0.0283

HV
0.9257 0.8582 0.8740 0.8629 0.8892 0.5933 0.8697 0.8725
0.0095 0.0249 0.0157 0.0198 0.0237 0.0428 0.0170 0.0152

WFG2
∆p

0.1270 0.1329 0.0830 0.0830 0.2166 0.2222 0.1405 0.1377
0.0072 0.0083 0.0012 0.0013 0.0335 0.0320 0.0069 0.0067

HV
0.9356 0.9334 0.9393 0.9392 0.9203 0.9200 0.9309 0.9307
0.0009 0.0010 0.0006 0.0006 0.0061 0.0049 0.0015 0.0011

WFG3
∆p

0.5261 0.7354 0.7229 0.7200 0.8110 0.8788 0.4541 0.4633
0.0241 0.0234 0.0180 0.0224 0.0261 0.0462 0.0488 0.0653

HV
0.4131 0.4080 0.4013 0.4006 0.3826 0.3613 0.3672 0.3649
0.0013 0.0023 0.0016 0.0018 0.0163 0.0142 0.0052 0.0033

WFG4
∆p

0.1641 0.1968 0.1142 0.1147 0.1361 0.2240 0.2349 0.2301
0.0044 0.0053 0.0007 0.0007 0.0028 0.0053 0.0099 0.0136

HV
0.5502 0.5328 0.5751 0.5741 0.5550 0.5180 0.5336 0.5339
0.0026 0.0029 0.0008 0.0008 0.0028 0.0029 0.0026 0.0031

WFG5
∆p

0.1857 0.1927 0.1385 0.1388 0.1515 0.1549 0.2191 0.2181
0.0038 0.0041 0.0004 0.0003 0.0013 0.0014 0.0149 0.0131

HV
0.5178 0.5148 0.5396 0.5393 0.5225 0.5200 0.5168 0.5166
0.0032 0.0029 0.0003 0.0002 0.0023 0.0029 0.0021 0.0027

Cinvestav Computer Science Department

Exploration in Decision Space 119

Table 6.3: Numerical results for the original and variation rate version of some
MOEAs in Type III test problems. We show the mean and standard deviation
(up and down in the cell, respectively). We put in boldface the best value and
in gray the cells with statistical significance according to the Wilcoxon test.

Problem Ind.
NSGA-II NSGA-III MOEAD SMSEMOA

Original VR Original VR Original VR Original VR

OMNI1
Obj ∆p

0.0218 0.0220 0.0293 0.0306 0.1605 0.2363 0.0210 0.0206
0.0006 0.0005 0.0030 0.0046 0.0145 0.0547 0.0017 0.0012

Var ∆p
2.2071 1.8804 1.8876 1.9313 4.3767 3.2976 2.2525 2.0409
0.2928 0.1603 0.1852 0.2480 0.6295 0.7931 0.2978 0.2544

OMNI2
Obj ∆p

0.0038 0.0039 0.0048 0.0048 0.0237 0.0278 0.0039 0.0039
0.0001 0.0001 0.0000 0.0000 0.0000 0.0076 0.0001 0.0000

Var ∆p
1.1649 0.7206 0.8714 0.7576 1.2561 0.9800 0.9073 0.7366
0.0360 0.0075 0.0956 0.0312 0.1039 0.1302 0.0853 0.0071

SCM1
Obj ∆p

0.3149 0.3138 0.3599 0.3594 81.3852 81.3853 0.2852 0.2681
0.0135 0.0123 0.0198 0.0303 0.0043 0.0042 0.0297 0.0252

Var ∆p
3.7266 3.7751 3.5737 3.6209 38.5910 38.5912 2.5058 2.4572
0.1461 0.1440 0.1586 0.1468 0.0020 0.0022 0.0309 0.0261

RPH1
Obj ∆p

0.1636 0.1653 0.4323 0.4334 2.6365 3.3847 0.1551 0.1535
0.0042 0.0040 0.0028 0.0042 0.0027 0.7119 0.0023 0.0026

Var ∆p
6.8061 4.2771 1.6001 1.0450 8.0157 5.2802 2.7075 5.3446
2.5349 0.7180 1.3496 0.8738 2.8617 0.7714 1.9102 0.4255

RPH2
Obj ∆p

0.1725 0.1745 0.4302 0.4365 2.6459 3.1017 0.1580 0.1574
0.0027 0.0051 0.0109 0.0141 0.0175 0.6411 0.0038 0.0035

Var ∆p
2.6822 3.0836 1.4661 1.2051 11.3906 6.6796 1.2333 1.1097
0.9276 0.7577 0.5815 0.6150 3.0919 1.5272 0.5085 0.5499

RPH3
Obj ∆p

0.1701 0.1732 0.4314 0.4340 2.6572 3.1012 0.1555 0.1564
0.0040 0.0047 0.0182 0.0140 0.0360 0.6169 0.0038 0.0032

Var ∆p
6.3361 2.8003 3.0233 2.1521 8.6873 4.7500 2.8545 1.6417
1.7299 0.8529 1.9181 0.9408 2.0764 1.5926 1.1084 0.5711

Cinvestav Computer Science Department

120 Chapter 6

−5 −4 −3 −2 −1 0

−5

−4

−3

−2

−1

0

f1

f 2

(a)

−5 −4 −3 −2 −1 0

−5

−4

−3

−2

−1

0

f1

f 2
(b)

(c)

Figure 6.4: Graphical results of the run with the median values on the OMNI1
function with the NSGA-II algorithm. (a) Objective Space Original; (b) Objec-
tive Space VR; (c) Decision Space, pairwise plot of each variable. The left-down
and red marks correspond to the original algorithm, while the right-up and blue
ones are the VR version.

Cinvestav Computer Science Department

Exploration in Decision Space 121

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

y

(a)

−1 −0.8 −0.6 −0.4 −0.2 0

−1

−0.8

−0.6

−0.4

−0.2

0

f1

f 2

(b)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y

y

(c)

−1 −0.8 −0.6 −0.4 −0.2 0

−1

−0.8

−0.6

−0.4

−0.2

0

f1

f 2

(d)

Figure 6.5: Graphical results of the run with the median values on the OMNI2
function with the NSGA-II algorithm. (a) Decision Space Original; (b) Objective
Space Original; (c) Decision Space VR; (d) Objective Space VR.

0
10

20
30

40

0

10

20

30

40
0

10

20

30

40

x1
x2

x
3

(a)

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

f1

f 2

(b)

0
10

20
30

40

0

10

20

30

40
0

10

20

30

40

x1
x2

x
3

(c)

0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

f1

f 2

(d)

Figure 6.6: Graphical results of the run with the median values for the SCM1
function for the SMS-EMOA algorithm. (a) Decision Space Original; (b) Ob-
jective Space Original; (c) Decision Space VR; (d) Objective Space VR.

Cinvestav Computer Science Department

122 Chapter 6

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x1

x
2

(a)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

f1

f 2

(b)

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x1

x
2

(c)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

f1

f 2

(d)

Figure 6.7: Graphical results of the run with the median values on the RPH1
function with the NSGA-II algorithm. (a) Decision Space Original; (b) Objective
Space Original; (c) Decision Space VR; (d) Objective Space VR.

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x1

x
2

(a)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

f1

f 2

(b)

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x1

x
2

(c)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

f1

f 2

(d)

Figure 6.8: Graphical results of the run with the median values on the RPH2
function with the NSGA-III algorithm. (a) Decision Space Original; (b) Objec-
tive Space Original; (c) Decision Space VR; (d) Objective Space VR.

Cinvestav Computer Science Department

Exploration in Decision Space 123

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x1

x
2

(a)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

f1

f 2

(b)

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x1

x
2

(c)

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

f1

f 2

(d)

Figure 6.9: Graphical results of the run with the median values on the RPH3
function with the MOEA/D algorithm. (a) Decision Space Original; (b) Objec-
tive Space Original; (c) Decision Space VR; (d) Objective Space VR.

Cinvestav Computer Science Department

124 Chapter 6

Cinvestav Computer Science Department

Chapter 7

A New Benchmark suite for
Equality Constrained MOPs

As we stated in Section 2, the PE and PT methods can deal with equality con-
strained MOPs. This is an important feature of these methods, as MOEAs have a lot
of problems to properly deal with this kind of problems (we show this with the nu-
merical results of this chapter). Moreover, in the literature there is not a benchmark
for Equality Constrained MOPs. For this reason, we propose a procedure to construct
this kind of problems, that are scalable in variables, objectives, and constraints. We
describe our benchmark in this chapter.

7.1 Hyper-spheres as equality constraints

For the construction of our test problems, we will use hyper-spheres. In the
following, we discuss how they can be used so that the resulting MOP is scalable
both in the number of decision variables and the number of constraints.

7.1.1 Hyper-spheres

The hyper-sphere or m-sphere

Sm = {x ∈ Rm+1 : ‖x‖2
2 = r}, (7.1)

withm ≥ 0, defines am-dimensional manifold that is embedded on (m+1)-dimensional
Euclidean space. We can use the fact that the intersection of two m-spheres is a
(m− 1)-sphere under certain conditions in order to construct an object of dimension
m− 1. For this, let Sm1 , S

m
2 ⊂ Rm+1 be two m-spheres with centers c, c′ ∈ Rm+1 and

125

126 Chapter 7

radii r, r
′ ∈ R. Further, suppose that ci = c′i, i = 1, . . . ,m and 0 < |cm+1 − c′m+1| <

min {r, r′}. Then,

(x1 − c1)2 + . . .+ (xm+1 − cm+1)2 = r2 (7.2)

(x1 − c′1)2 + . . .+ (xm+1 − c′m+1)2 = r′2. (7.3)

From (7.2) and (7.3) it follows that

2(c′m−1 − cm−1)xm+1 = r2 − r′2 − c2
m+1 + c′2m+1, (7.4)

so that any point in the intersection Sm1 ∩ Sm2 must lie in the hyperplane

xm+1 =
r2 − r′2 − c2

m+1 + c′2m+1

2(c′m+1 − cm+1)
, (7.5)

and its equation is
(x1 − c1)2 + . . .+ (xm − cm)2 = r2

m, (7.6)

where r2
m may be found from either Eq. (7.2) or (7.3). In particular, if we consider

two spheres Sm1 and Sm2 with the same radius r ∈ R+ and centers c ∈ Rm+1 and
c′ := c + rem+1, respectively, where em+1 ∈ Rm+1 is the (m + 1)-canonical vector.
Then

r2
m =

3

4
r2, (7.7)

and this (m− 1)-sphere lies in

xm+1 = cm+1 +
r

2
. (7.8)

Following this way, we can add any number of spheres to reduce the dimension. For
instance, we know that Ŝk−3 = Ŝk−2∩Sk−2, where Ŝk−2 6= Sk−2. Now, the next sphere
to intersect must be a Sk−3 sphere, i.e, Ŝk−4 = Ŝk−3 ∩ Sk−3 = (Ŝk−2 ∩ Sk−2) ∩ Sk−3,
and so on. We can express this recursively as follows

Ŝi−1 = Ŝi ∩ Si, (7.9)

where

Ŝi = Sk−2 ∩

(
i+1⋂

j=k−2

Sj

)
. (7.10)

Let c′ ∈ Rk−1 denote the “reference center” vector and let r ∈ R+ be the “reference
radius”. Further, let Si−1 ∈ Ri be the spheres

(x1 − c1)2 + . . .+ (xi − ci)2 = r2
i , (7.11)

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 127

where cj = c′j, j = 1, . . . , i − 1, ci = c′i + ri+1; then, for the intersection Si−1 as
in (7.9), we have

r2
i =

3

4
r2
i+1, (7.12)

with rk−1 = r and i = k − 1, k − 2, . . . , 1.

7.1.2 Embedding into higher dimensions

In order to be scalable in the number of decision variables, it is important that
our spheres can be placed in Rn for any value of n. Let Sm−1 be a sphere with
center c ∈ Rm and radius r ∈ R+ as in (7.9), such that Sm−1 ∈ [0, 1]m ⊂ Rm, where
0 < m < k ≤ n. Then, the following degenerate sphere expression fulfills:(

m∑
i=1

(xi − ci)2 − r2

)2

+
n∑

j=m+1

(xj − aj−m)2 = 0, (7.13)

where a ∈ Rn−m. This comes because every term in the left hand side of (7.13) should
be zero. In fact, although each constraint depends on x ∈ Rn, its dimension is given
by the dimension of the sphere.

In order to be scalable in the number p of equality constraints, we define

hi(x) :=
k−i∑
i=1

(xi − ci)2 − r2
i = 0, (7.14)

where x ∈ Rn, i = 1, . . . , p and ri+1 defined as in Eq. (7.12). Notice that, hi(x) is
basically the equation of the Sk−i−1 sphere, but here every xj ∈ [0, 1], j = k − i +
1, . . . , n can take any value.

7.2 Equality constrained MOPs

Here, we propose the equality constrained MOPs, called Eq-DTLZ and Eq-IDTLZ,
which utilize the structure of constraints as discussed in the previous section. All test
problems are scalable in the number of decision variables (n) and objectives (k) as
well as in the number p of equality constraints. We provide the analytical Pareto set
for all of these problems.

The Eq-(I)DTLZ problems are based on the DTLZ problems, that were selected
due to their properties, which allows performing a study on the behavior of some
MOEAs under different conditions when we include some equality constraints. These
properties are as follows:

Cinvestav Computer Science Department

128 Chapter 7

DTLZ1 Multi-objective problem with a linear Pareto-optimal front. The difficulty
in this problem is to converge to the hyper-plane. The search space contains
(11z − 1) local Pareto-optimal fronts, where |xM | = z, each of which can be
attracted by a MOEA.

DTLZ2 This function can also be used to investigate a MOEA’s ability to scale up
its performance in a large number of objectives. The Pareto front is concave.
For k > 3 the Pareto-optimal solutions must lie inside the first quadrant of the
unit sphere in a three-objective plot with fk as one of the axes.

DTLZ3 The above problem introduces (3z− 1) local Pareto-optimal fronts, and one
global Pareto-optimal front. All local Pareto fronts are parallel to the global
Pareto front and an MOEA can get stuck at any of them. The Pareto front is
concave, scalable, and multi-frontal.

DTLZ4 This function is a modification of DTLZ2. This modification allows a dense
solution set to exist near the fk − f1 plane. It is used to investigate a MOEA’s
ability to maintain a good distribution of solutions. The Pareto-optimal front
is concave and separable.

IDTLZ1-2 Such functions are modified so that the corresponding Pareto-optimal
front is inverted. The problem is such that minimizing each objective function
has a unique solution. It is called an inverted function because it is in disagree-
ment with our defined hyper-plane for which the maximum (and not minimum)
point of each objective among all points on the hyper-plane is a unique point.

7.2.1 Eq-DTLZ

We will refer to the Pareto set of DTLZ 1-4 [Deb et al., 2005] as PB ⊂ Rn which
is stated as

PB := {x ∈ Rn : xi ∈ [0, 1], i = 1, . . . , k − 1,

xj = 0.5, j = k, . . . , n}.
(7.15)

We can see from (7.15) that the Pareto set lies in the (k − 1)-dimensional hyper-
cube, i.e., the DTLZ 1-4 problems are non-degenerated. In other words, the dimension
of the Pareto set and the Pareto front is k − 1. The idea of Eq-DTLZ is to include
some equality constraints in such a way that for every added constraint we can reduce
the dimension of the Pareto set/front by one.

For the DTLZ problems, we can state a defined in Eq. (7.13) as a = {ai =
xm+i, i = 1, 2, . . . , k − m − 1, aj = 0.5, j = k, . . . , n}, where each xm+i is defined
as in Eq. (7.8). Notice that, we can write any constraint (the spheres Sk−2, . . . Sm)
using Eq. (7.13) with m = k − 2, . . . ,m, respectively. On the other hand, we have

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 129

Sm−1 ⊆ PB ⇒ PD = Sm−1, that is, the Pareto set is formed for all the vectors that
satisfy Eq. (7.13) and this is a (m− 1)-manifold. Hence, if we take a (k − 2)-sphere
Sk−2 ∈ [0, 1]k−1 ⊂ Rk−1 as our first constraint, then the dimension of the Pareto set
will be k − 2, and the Pareto set will be formed for all the points such that

k−1∑
i=1

(xi − ci)2 = r2, (7.16)

where c ∈ Rk−1 is the center of the sphere and r ∈ R is the radius. We can proceed
analogously for a general p and obtain our first benchmark.

The definitions of the test problems Eq-DTLZ 1-4 can be seen in Table 7.1.

Pareto sets for Eq-DTLZ 1-4

Let H : Rn → Rp

H(x) := (h1(x), h2(x), . . . , hp(x))T , (7.17)

be the map formed by the p equality constraints. From our previous analysis, we can
characterize the solutions x ∈ H−1(0) as follows,

x = (v1, . . . , vm, x
′
m+1, . . . , x

′
k−1, xk, . . . , xn)T , (7.18)

where v ∈ Rm is a point in the Sm−1 sphere, x′m+i, i = 1, . . . , k−m− 1, is computed
as in Eq. (7.8) and xj ∈ [0, 1], j = k, . . . , n. This means that PD 6= H−1(0) and we
need to find which vectors of H(x) form the Pareto set.

Theorem 7.1. Let PB be defined as in (7.15) and H(x) as in (7.17). Then PC =
PB ∩H−1(0) is the Pareto set of Eq-DTLZ 1-4.

Proof. Assume ∃x ∈ PC such that ∃ y ∈ H(x) \ PU : y ≺ x. Since y ∈ H(x) \ PU , we
can define y as follows:

y := (v1, . . . , vm, x
′
m+1, . . . , x

′
k−1, 0.5 + ∆1, . . . , 0.5 + ∆n−k)

T , (7.19)

where ∆ ∈ Rn−k+1 \ ∅; and we choose x as

x = (v1, . . . , vm, x
′
m+1, . . . , x

′
k−1, 0.5, . . . , 0.5)T . (7.20)

Now, we have

Cinvestav Computer Science Department

130 Chapter 7

1. Eq-DTLZ 1. For this problem, we have

fi(x) = (1 + g(x)) (1− xk−1)
k−i∏
i=1

xi (7.21)

where

g(x) = 100
(
| x | +

n∑
i=k

(xi − 0.5)2 − cos(20π(xi − 0.5))
)
,

then note that g(x) reaches its global minimum at xj = 0.5 for j = k, . . . , n.
Therefore

g(x) < g(y), ⇒ (1 + g(x)) < (1 + g(y))

⇒ fi(x) < fi(y), ∀i = 1, . . . , k.

which contradicts the hypothesis.

2. Eq-DTLZ 2. For this problem, we have

fi(x) = (1 + g(x)) sin(0.5πxk−1)
k−i∏
i=1

cos(0.5πxi) (7.22)

where

g(x) =
n∑
i=k

(xi − 0.5)2,

then

g(x) =
n∑
i=k

(0.5− 0.5)2 = 0,

g(y) =
n∑
i=k

(0.5 + ∆i − 0.5)2 =
n∑
i=k

∆2
i > 0,

⇒ g(x) < g(y), ⇒ (1 + g(x)) < (1 + g(y))

⇒ fi(x) < fi(y), ∀i = 1, . . . , k.

which contradicts the hypothesis.

3. Eq-DTLZ 3. For this problem, we have

fi(x) = (1 + g(x)) sin(0.5πxk−1)
k−i∏
i=1

cos(0.5πxi) (7.23)

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 131

where

g(x) = 100
(
| x | +

n∑
i=k

(xi − 0.5)2 − cos(20π(xi − 0.5))
)
.

Note that g(x) is the same function as in Eq-DTLZ 1. That is, the proof follows
analogously to those shown before.

4. Eq-DTLZ 4. For this problem, we have

fi(x) = (1 + g(x)) sin(0.5πxαk−1)
k−i∏
i=1

cos(0.5πxαi) (7.24)

with g(x) defined as in Eq-DTLZ 2 and the α parameter allows for a meta-
variable mapping in Eq-DTLZ 2 xi → xαi , the authors suggest α = 100. As
g(x) is the same function as in Eq-DTLZ 2, the proof follows analogously.

Finally, for all cases we conclude that ∀y ∈ H(x) \ PU , ∃x ∈ PC such that x ≺ y.
On the other hand, recall that all the points in PB are non-dominated with respect
to each other; therefore, PC ⊂ PB is also a set of non-dominated solutions. �

7.2.2 Eq-IDTLZ

For these functions, the following transformation is applied to each objective f̃i(x)
for DTLZ 1-4:

f̃i(x) := 0.5(1 + g(x))− fi(x). (7.25)

Hereby, g(x) is as for the DTLZ functions. These problems have the same Pareto
set as the DTLZ 1-4 problems, with the difference that the Pareto fronts are rotated.

Extending the above approach to inverted DTLZ 1-4 problems, we obtain the
following result

Theorem 7.2. Let PB be as defined in (7.15) and H(x) as in (7.17). Then PC =
PB ∩H−1(0) is the Pareto set of Eq-IDTLZ 1-4.

Proof. Recall that for the inverted DTLZ 1-4 problems

fi(x) = 0.5(1 + g(x))− fi(x),

Cinvestav Computer Science Department

132 Chapter 7

but g(x) is the same as the original DTLZ 1-4 problems. So, by the proof of Theo-
rem 7.2.1, we know that

(1 + g(x)) < (1 + g(y))

⇒ 0.5(1 + g(x)) < 0.5(1 + g(y)), (7.26)

and that
fi(x) < fi(y) ∀ i = 1, . . . , k. (7.27)

Then, by (7.26) and (7.27), we have that

0.5(1 + g(x))− fi(x) < 0.5(1 + g(y))− fi(y) ∀ i = 1, . . . , k. (7.28)

Therefore, ∀y ∈ H(x) \ PI , ∃x ∈ PC such that x ≺ y. On the other hand, recall
that all the points in PI are non-dominated with respect to each other; thus, PC ⊂ PI
is also a set of non-dominated solutions. �

The definitions of the test problems Eq-DTLZ 1-4 and Eq-DTLZ 1-2 can be seen
in Table 7.1.

7.2.3 Examples

In the following, we present some examples of the Pareto sets of the proposed
MOPs. Figure 7.1 shows the Pareto set of Eq-(I)DTLZ 1-4 for k = 4, n = 13, and
p = 1. Analogously, Figure 7.2 corresponds to the Pareto set of all proposed MOPs for
k = 4, n = 13, and p = 2. We can see that the dimension of the Pareto set is reduced
when we add constraints, that is, for the same problem we have a sphere when p = 1
and a circle when p = 2. Notice that, as we consider k = 4 for the examples shown in
Figures 7.2 and 7.1, then we can represent the main characteristics of all projections
with the three cases that we show (remember that, for unconstrained problems, the
dimension of the Pareto set is k−1; in particular, for these examples, we have a three-
dimensional object given by xi ∈ [0, 1], i = 1, 2, 3, and xj = 0.5, j = 4, . . . , 13). That
is, we can see projections of the three principal variables x1, x2, and x3 (Figures 7.1a
and 7.2a), two of them (Figures 7.1b and 7.2b), or one of them (Figures 7.1c and
7.2c). It is worth noticing that, in all the cases where none of the above variables are
involved, we have that xi = 0.5 for i = 4, . . . 13.

Thus, with this approach, we can reduce the dimension of both the Pareto set
and Pareto front via the choice of H(x) (see Table 7.2). In the following, we present
an example that shows how to build a constrained MOP with this proposal. Given
a MOP with k = 5 and n = 10, we set p = 3, meaning that we want 3 constraints.

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 133

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

(a)

0

0.5

1

0

0.2

0.4

0.6

0.8

1
−0.5

0

0.5

1

1.5

x
4

x1
x2

(b)
x1, x2, x4

0
0.5

1 −1
0

1
20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x4
x1

x
3

(c)
x1, x3, x4

Figure 7.1: Different projections of the analytic Pareto set with k = 4, n =
13 and one equality constraint. Every plot shows the box constrained Pareto
set of the problem (dot region), and the blue disk corresponds to the equality
constrained Pareto set.

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

(a)

0

0.5

1

0

0.2

0.4

0.6

0.8

1
−0.5

0

0.5

1

1.5

x
4

x1
x2

(b)
x1, x2, x4

0
0.5

1 −1
0

1
20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x4
x1

x
3

(c)
x1, x3, x4

Figure 7.2: Different projections of the analytic Pareto set with k = 4, n =
13 and two equality constraints. Every plot shows the box constrained Pareto
set of the problem (dot region), and the blue ring corresponds to the equality
constrained Pareto set.

Then, we can define the center and radius as c = (0.5, . . . , 0.5)T ∈ R10, and r = 0.4,
which produce the set of equality constraints H(x) := (h1(x), h2(x), h3(x))T , where:

h1(x) =
4∑
i=1

(xi − 0.5)2 − 0.16 = 0,

h2(x) =
3∑
i=1

(xi − 0.5)2 + (x4 − 0.9)2 − 0.16 = 0

h3(x) =
2∑
i=1

(xi − 0.5)2 +
(
x3 − (0.5 +

√
0.012)

)2

−0.012 = 0.

Cinvestav Computer Science Department

134 Chapter 7

Table 7.1: Eq-DTLZ and Eq-IDTLZ benchmark problems

Function Definition Box
E

q
-D

T
L

Z

E
q
-D

T
L

Z
1

fi(x) = (1 + g(x)) (1− xk−1)
∏k−i
i=1 xi,

where, i = 1, . . . , k,

g(x) = 100
(
| x | +

∑n
i=k (xi − 0.5)2 − cos(20π(xi − 0.5))

)
0 ≤ xj ≤ 1
j = 1, . . . , n.k = 3 p = 1 h1(x) =

∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-D

T
L

Z
2

fi(x) = (1 + g(x)) sin(0.5πxk−1)
∏k−i
i=1 cos(0.5πxi),

where, i = 1, . . . , k,

g(x) =
∑n
i=k (xi − 0.5)2 0 ≤ xj ≤ 1

j = 1, . . . , n.k = 3 p = 1 h1(x) =
∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-D

T
L

Z
3

fi(x) = (1 + g(x)) sin(0.5πxk−1)
∏k−i
i=1 cos(0.5πxi),

where, i = 1, . . . , k,

g(x) = 100
(
| x | +

∑n
i=k (xi − 0.5)2 − cos(20π(xi − 0.5))

)
0 ≤ xj ≤ 1
j = 1, . . . , n.k = 3 p = 1 h1(x) =

∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-D

T
L

Z
4

fi(x) = (1 + g(x)) sin(0.5πxαk−1)
∏k−i
i=1 cos(0.5πxαi),

where, i = 1, . . . , k,

g(x) =
∑n
i=k (xi − 0.5)2 0 ≤ xj ≤ 1

j = 1, . . . , n.k = 3 p = 1 h1(x) =
∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-I

D
T

L
Z

E
q
-I

D
T

L
Z

1

fi(x) = 0.5(1 + g(x))− (1 + g(x)) (1− xk−1)
∏k−i
i=1 xi,

where, i = 1, . . . , k,

g(x) = 100
(
| x | +

∑n
i=k (xi − 0.5)2 − cos(20π(xi − 0.5))

)
0 ≤ xj ≤ 1
j = 1, . . . , n.k = 3 p = 1 h1(x) =

∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-I

D
T

L
Z

2

fi(x) = 0.5(1 + g(x))− (1 + g(x)) sin(0.5πxk−1)
∏k−i
i=1 cos(0.5πxi),

where, i = 1, . . . , k,

g(x) =
∑n
i=k (xi − 0.5)2 0 ≤ xj ≤ 1

j = 1, . . . , n.k = 3 p = 1 h1(x) =
∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-I

D
T

L
Z

3

fi(x) = 0.5(1 + g(x))− (1 + g(x)) sin(0.5πxk−1)
∏k−i
i=1 cos(0.5πxi),

where, i = 1, . . . , k,

g(x) = 100
(
| x | +

∑n
i=k (xi − 0.5)2 − cos(20π(xi − 0.5))

)
0 ≤ xj ≤ 1
j = 1, . . . , n.k = 3 p = 1 h1(x) =

∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

E
q
-I

D
T

L
Z

4

fi(x) = 0.5(1 + g(x))− (1 + g(x)) sin(0.5πxαk−1)
∏k−i
i=1 cos(0.5πxαi),

where, i = 1, . . . , k,

g(x) =
∑n
i=k (xi − 0.5)2 0 ≤ xj ≤ 1

j = 1, . . . , n.k = 3 p = 1 h1(x) =
∑2
i=1 (xi − 0.5)2 − 0.42 = 0

k = 4
p = 1 h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.42 = 0

p = 2
h1(x) =

∑3
i=1 (xi − 0.5)2 − 0.52 = 0,

h2(x) =
∑2
i=1 (xi − 0.5)2 + (x3 − 1)2 − 0.52 = 0

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 135

Table 7.2: Equality constraints for different values of k and p and the general
case.

Hk,p(x)

k = 3 p = 1 h1(x) =

2∑
i=1

(xi − ci)2 − r2 = 0

k = 4
p = 1 h1(x) =

3∑
i=1

(xi − ci)2 − r2 = 0

p = 2
h1(x) =

3∑
i=1

(xi − ci)2 − r2 = 0,

h2(x) =

2∑
i=1

(xi − ci)2 + (x3 − (c3 + r))2 − r2 = 0

k = 5

p = 1 h1(x) =

4∑
i=1

(xi − ci)2 − r2 = 0

p = 2
h1(x) =

4∑
i=1

(xi − ci)2 − r2 = 0,

h2(x) =

3∑
i=1

(xi − ci)2 + (x4 − (c4 + r))2 − r2 = 0

p = 3

h1(x) =

4∑
i=1

(xi − ci)2 − r2 = 0,

h2(x) =

3∑
i=1

(xi − ci)2 + (x4 − (c4 + r))2 − r2 = 0

h3(x) =

2∑
i=1

(xi − ci)2 + (x3 − (c3 + r1))2 − r21 = 0,

where r1 =
√

3
4r

2.

k p < k
hi(x) =

k−i∑
i=1

(xi − ci)2 − r2i = 0,

where r0 = r.

7.3 Performance of MOEAs on Eq-(I)DTLZ

In this section, we present some numerical examples that show the behavior of
some state-of-the-art MOEAs on the new benchmark problems. For this, we have
selected NSGA-II [Deb et al., 2002], NSGA-III [Jain and Deb, 2014], Adaptive NSGA-
III [Jain and Deb, 2014], MOEA/ D/ D [Li et al., 2015], and GDE3 [Kukkonen
and Lampinen, 2005]. NSGA-II, NSGA-III and Adaptive NSGA-III uses feasibility
rules in the selection process. In case the selection process considers two infeasible
individuals, a penalty function is used to determine which individual violates more the
constraints. GDE3 is an extension of differential evolution for global multi-objective
optimization. This method handles constraints using the same principles as NSGA-

Cinvestav Computer Science Department

136 Chapter 7

II. Finally, MOEA/D/D combines dominance and decomposition-based approaches
for solving many-objective optimization problems. MOEA/D/D also uses feasibility
rules and the penalty function proposed in NSGA-II, but it is not only used in the
selection process. It is present also in the update procedure of the algorithm, and
this consideration helps with the preservation of diversity of the population.

For all experiments we used the PlatEMO [Tian et al., 2017] framework, where we
executed 30 independent runs using 50, 000, 100, 000 and 150, 000 function calls for
MOPs with k = 3; and using 200, 000, 300, 000 and 500, 000 function calls for MOPs
with k = 4. We stress that there exist some recent algorithms that deal with con-
straints such as CMOEA/D-DE-SR, CMOEA/D-DE-CDP [Jan and Khanum, 2013],
and PPS-MOEA/D [Fan et al., 2019b]. However, we have to omit a comparison
here since for none of the mentioned algorithms an implementation in PlatEMO was
available, and have to leave this for future work.

Table 7.3 contains the algorithm parameter values used for the experiments. The
performance indicators ∆2 [Schütze et al., 2012] and the hypervolume HV [Zitzler
et al., 2007] are used to measure the algorithm effectiveness. Tables 7.4 and 7.5 show
the results for Eq-DTLZ 1-4 with k = 3 and k = 4, respectively. In Table 7.4 we can
see the results for the Eq-IDTLZ 1-2 with k = 3; and finally, Table 7.5 shows the
results for the Eq-IDTLZ 1-2 with k = 4. For all these tables, Column # shows the
averaged number of feasible solutions at the end of each run. For this, we consider a
solution x to be feasible if ‖H(x)‖2 ≤ 1e− 4.

From the tables, as well as from the figures we can observe that the approximation
qualities are not satisfying. This is likely a result from the fact that none of these
MOEAs have been designed so far to incorporate equality constraints.

In Figure 7.3, we see the result for GDE3, which has, on average, 90 feasible
solutions (see Table 7.4). However, most of these solutions are in the “tube” and
their images are very far away from the real Pareto front (in the range that we
selected, neither of them were displayed). On the other hand, we have the result of
NSGA-II and NSGA-III, which are the MOEAs with the best indicator values for
Eq-DTLZ1. In Figure 5.5, we show again GDE3, which has a similar performance,
i.e., the feasible solutions are within the “tube”; and the two MOEAs with the best
∆p values for Eq-DTLZ2, NSGA-II and NSGA-III.

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 137

Table 7.3: Parameters of the selected MOEAs.

MOEA Parameter Value

N
S

G
A

-I
I Population size 100

Crossover probability 0.8
Mutation probability 1

n
Distribution index for crossover 20
Distribution index for mutation 20

N
S

G
A

-I
II

A
N

S
G

A
-I

II

Population size 92
Reference points 91
Crossover probability 1
Mutation probability 1/n
Distribution index for crossover 20
Distribution index for mutation 20

M
O

E
A
\

D
\

D

Population size 91
weight vectors 91
Crossover probability 1
Mutation probability 1/n
Distribution index for crossover 30
Distribution index for mutation 20
Penalty parameter of PBI 5
Neighborhood size 20
Probability used to select in the neighborhood 0.9

G
D

E
3

Population size 100
CR 0.2
F 0.2
Distribution index for mutation 20

Cinvestav Computer Science Department

138 Chapter 7

Table 7.4: Results for Eq-DTLZ 1-4 and Eq-IDTLZ 1-2 with k = 3 and p = 1
for some MOEAs. (# is average of the number of feasible solutions at the end
of each run).

50,000 100,000 150,000
Method ∆p HV # ∆p HV # ∆p HV #

E
q
-D

T
L

Z
1

ANSGA-III 0.2323 9.2858e-03 1.00 0.1795 1.2811e-02 1.00 0.1832 1.2651e-02 1.00
(std.dev) (0.0719) (0.0041) (0.0722) (0.0042) (0.0767) (0.0048)

GDE3 166.7477 0.0000e+00 0.41 149.6107 0.0000e+00 0.70 125.1485 0.0000e+00 0.91
(std.dev) (6.9725) (0.0000) (7.4593) (0.0000) (16.1758) (0.0000)

MOEADD 2.2988 1.5387e-02 1.00 1.6887 1.5652e-02 1.00 0.6970 1.6555e-02 0.98
(std.dev) (3.9807) (0.0047) (4.4745) (0.0049) (2.4116) (0.0054)

NSGA-II 0.1808 1.2619e-02 1.00 0.1826 1.3100e-02 1.00 0.1666 1.3606e-02 1.00
(std.dev) (0.0692) (0.0049) (0.0600) (0.0043) (0.0743) (0.0048)

NSGA-III 0.1877 1.1123e-02 1.00 0.1731 1.2500e-02 1.00 0.1727 1.4026e-02 1.00
(std.dev) (0.0731) (0.0042) (0.0623) (0.0042) (0.0748) (0.0053)

E
q
-D

T
L

Z
2

ANSGA-III 0.4164 1.7425e-01 1.00 0.4924 1.5215e-01 1.00 0.4351 1.8532e-01 1.00
(std.dev) (0.1686) (0.0552) (0.1641) (0.0499) (0.1537) (0.0545)

GDE3 1.1905 1.4467e-03 0.43 1.1180 6.1652e-03 0.76 0.9887 1.8859e-02 0.98
(std.dev) (0.0378) (0.0046) (0.0505) (0.0139) (0.0723) (0.0185)

MOEADD 0.4350 1.6434e-01 1.00 0.4305 1.6033e-01 1.00 0.3696 1.8951e-01 1.00
(std.dev) (0.1683) (0.0608) (0.1654) (0.0585) (0.1595) (0.0607)

NSGA-II 0.4437 1.7386e-01 1.00 0.3977 1.8545e-01 1.00 0.3895 1.9099e-01 1.00
(std.dev) (0.1513) (0.0516) (0.1626) (0.0521) (0.1877) (0.0558)

NSGA-III 0.4830 1.5836e-01 1.00 0.4276 1.8031e-01 1.00 0.3794 1.9586e-01 1.00
(std.dev) (0.1846) (0.0562) (0.1640) (0.0522) (0.1381) (0.0470)

E
q
-D

T
L

Z
3

ANSGA-III 1.5875 5.2920e-02 1.00 0.5048 1.3578e-01 1.00 0.4635 1.5289e-01 1.00
(std.dev) (1.6046) (0.0516) (0.1701) (0.0539) (0.1784) (0.0549)

GDE3 879.6119 0.0000e+00 0.41 820.9253 0.0000e+00 0.75 700.6133 0.0000e+00 0.96
(std.dev) (23.9536) (0.0000) (31.5546) (0.0000) (52.9224) (0.0000)

MOEADD 14.5069 9.0199e-02 1.00 9.9210 1.5471e-01 1.00 1.7548 1.7833e-01 0.96
(std.dev) (19.7134) (0.0625) (18.3423) (0.0515) (5.7219) (0.0594)

NSGA-II 0.7561 8.5652e-02 1.00 0.5296 1.2794e-01 1.00 0.5037 1.4055e-01 1.00
(std.dev) (0.4374) (0.0597) (0.1657) (0.0384) (0.1802) (0.0571)

NSGA-III 1.7594 5.4301e-02 1.00 0.5369 1.2404e-01 1.00 0.4899 1.3495e-01 1.00
(std.dev) (2.0103) (0.0579) (0.1516) (0.0381) (0.1800) (0.0489)

E
q
-D

T
L

Z
4

ANSGA-III 0.8927 0.0000e+00 1.00 0.9173 0.0000e+00 1.00 0.9924 0.0000e+00 1.00
(std.dev) (0.1908) (0.0000) (0.1542) (0.0000) (0.1458) (0.0000)

GDE3 1.6249 0.0000e+00 0.44 0.6345 0.0000e+00 1.00 0.6249 0.0000e+00 1.00
(std.dev) (0.1573) (0.0000) (0.0680) (0.0000) (0.0279) (0.0000)

MOEADD 1.0363 0.0000e+00 0.98 1.0361 0.0000e+00 0.90 1.0773 0.0000e+00 0.91
(std.dev) (0.1859) (0.0000) (0.1787) (0.0000) (0.1208) (0.0000)

NSGA-II 0.8521 0.0000e+00 1.00 0.8599 0.0000e+00 1.00 0.8649 0.0000e+00 1.00
(std.dev) (0.1794) (0.0000) (0.1245) (0.0000) (0.1243) (0.0000)

NSGA-III 0.9113 0.0000e+00 1.00 0.9365 0.0000e+00 1.00 0.9921 0.0000e+00 1.00
(std.dev) (0.1813) (0.0000) (0.1665) (0.0000) (0.1568) (0.0000)

E
q
-I

D
T

L
Z

1

ANSGA-III 0.2243 4.4889e-03 1.00 0.2243 4.1900e-03 1.00 0.1935 5.4621e-03 1.00
(std.dev) (0.0774) (0.0021) (0.0732) (0.0022) (0.0726) (0.0023)

GDE3 283.1098 0.0000e+00 0.41 251.3672 0.0000e+00 0.71 212.4951 0.0000e+00 0.89
(std.dev) (10.4742) (0.0000) (13.4323) (0.0000) (21.6521) (0.0000)

MOEADD 3.4448 6.3285e-03 1.00 0.7503 7.0050e-03 1.00 1.3854 7.2420e-03 1.00
(std.dev) (7.7558) (0.0023) (3.1174) (0.0020) (4.8200) (0.0020)

NSGA-II 0.2304 4.3745e-03 1.00 0.2070 5.0626e-03 1.00 0.1838 5.7159e-03 1.00
(std.dev) (0.0646) (0.0018) (0.0641) (0.0018) (0.0704) (0.0023)

NSGA-III 0.1953 4.5958e-03 1.00 0.2135 4.8155e-03 1.00 0.2172 5.1530e-03 1.00
(std.dev) (0.0626) (0.0018) (0.0753) (0.0021) (0.0743) (0.0026)

E
q
-I

D
T

L
Z

2

ANSGA-III 0.4379 1.0003e-01 1.00 0.4322 1.0958e-01 1.00 0.4400 9.9467e-02 1.00
(std.dev) (0.1775) (0.0494) (0.1916) (0.0495) (0.1927) (0.0544)

GDE3 1.2222 2.7783e-04 0.44 1.1454 3.3265e-03 0.81 0.9874 8.7486e-03 0.99
(std.dev) (0.0358) (0.0015) (0.0563) (0.0067) (0.0817) (0.0107)

MOEADD 0.4722 9.9690e-02 0.99 0.4598 1.0674e-01 1.00 0.4446 1.0927e-01 0.97
(std.dev) (0.1782) (0.0373) (0.1831) (0.0363) (0.2025) (0.0460)

NSGA-II 0.4378 1.0107e-01 1.00 0.4056 1.1500e-01 1.00 0.3807 1.3126e-01 1.00
(std.dev) (0.1525) (0.0424) (0.1609) (0.0412) (0.1852) (0.0478)

NSGA-III 0.4568 9.4090e-02 1.00 0.4307 1.1251e-01 1.00 0.4023 1.1577e-01 1.00
(std.dev) (0.1425) (0.0424) (0.1737) (0.0394) (0.1913) (0.0462)

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 139

Table 7.5: Results for Eq-DTLZ 1-4 and Eq-IDTLZ 1-2 with k = 4 and p = 1
for some MOEAs. (# is average of the number of feasible solutions at the end
of each run).

200,000 300,000 500,000
Method ∆p HV # ∆p HV # ∆p HV #

E
q
-D

T
L

Z
1

ANSGA-III 0.1403 2.0917e-03 1.00 0.1263 2.1639e-03 1.00 0.1163 2.4119e-03 1.00
(std.dev) (0.0621) (0.0007) (0.0456) (0.0006) (0.0488) (0.0006)

GDE3 105.4149 0.0000e+00 0.97 43.9482 0.0000e+00 1.00 19.2151 0.0000e+00 1.00
(std.dev) (29.1985) (0.0000) (26.2691) (0.0000) (9.6110) (0.0000)

MOEADD 1.9029 2.0180e-03 1.00 0.2360 2.1493e-03 1.00 0.2203 2.4363e-03 0.99
(std.dev) (4.9098) (0.0007) (0.5022) (0.0006) (0.6569) (0.0005)

NSGA-II 0.1400 2.1356e-03 1.00 0.1315 2.2726e-03 1.00 0.1093 2.6012e-03 1.00
(std.dev) (0.0607) (0.0007) (0.0623) (0.0006) (0.0412) (0.0005)

NSGA-III 0.1388 1.9419e-03 1.00 0.1121 2.2874e-03 1.00 0.1335 2.1171e-03 1.00
(std.dev) (0.0461) (0.0006) (0.0309) (0.0005) (0.0639) (0.0007)

E
q
-D

T
L

Z
2

ANSGA-III 0.3766 1.2962e-01 1.00 0.3881 1.2796e-01 1.00 0.3102 1.5029e-01 1.00
(std.dev) (0.1298) (0.0343) (0.1519) (0.0436) (0.1142) (0.0351)

GDE3 1.0951 1.0227e-03 1.00 0.8815 8.4280e-03 1.00 0.6344 2.6954e-02 1.00
(std.dev) (0.0489) (0.0024) (0.0566) (0.0093) (0.0699) (0.0174)

MOEADD 0.3926 1.0698e-01 1.00 0.3439 1.2296e-01 1.00 0.3559 1.2090e-01 0.98
(std.dev) (0.1347) (0.0363) (0.1065) (0.0352) (0.1309) (0.0366)

NSGA-II 0.3180 1.5444e-01 1.00 0.3188 1.5177e-01 1.00 0.2875 1.6824e-01 1.00
(std.dev) (0.1204) (0.0348) (0.1238) (0.0397) (0.1351) (0.0416)

NSGA-III 0.3784 1.2526e-01 1.00 0.3426 1.3301e-01 1.00 0.2687 1.5845e-01 1.00
(std.dev) (0.1304) (0.0396) (0.1156) (0.0368) (0.0873) (0.0315)

E
q
-D

T
L

Z
3

ANSGA-III 0.4402 9.1970e-02 1.00 0.4020 1.0668e-01 1.00 0.4059 1.1820e-01 1.00
(std.dev) (0.1140) (0.0245) (0.0995) (0.0264) (0.1432) (0.0371)

GDE3 702.8266 0.0000e+00 0.95 489.6774 0.0000e+00 1.00 235.1171 0.0000e+00 1.00
(std.dev) (90.5679) (0.0000) (130.7910) (0.0000) (124.3284) (0.0000)

MOEADD 6.9869 1.0514e-01 1.00 7.5595 1.1124e-01 0.99 9.4657 1.1767e-01 0.96
(std.dev) (16.5245) (0.0346) (13.6181) (0.0342) (18.7491) (0.0425)

NSGA-II 0.3990 1.1246e-01 1.00 0.4103 1.1237e-01 1.00 0.3694 1.3219e-01 1.00
(std.dev) (0.1033) (0.0248) (0.1127) (0.0314) (0.1519) (0.0459)

NSGA-III 0.4513 9.4477e-02 1.00 0.4632 9.2126e-02 1.00 0.4373 1.0062e-01 1.00
(std.dev) (0.1432) (0.0330) (0.1296) (0.0350) (0.1343) (0.0370)

E
q
-D

T
L

Z
4

ANSGA-III 1.1518 0.0000e+00 1.00 1.1655 0.0000e+00 1.00 1.1548 0.0000e+00 1.00
(std.dev) (0.0877) (0.0000) (0.0690) (0.0000) (0.0487) (0.0000)

GDE3 1.7942 0.0000e+00 0.62 1.2749 0.0000e+00 0.97 1.1126 0.0000e+00 1.00
(std.dev) (0.1539) (0.0000) (0.2958) (0.0000) (0.0858) (0.0000)

MOEADD 1.2004 0.0000e+00 0.98 1.1925 0.0000e+00 0.98 1.2064 0.0000e+00 0.98
(std.dev) (0.0606) (0.0000) (0.0812) (0.0000) (0.0494) (0.0000)

NSGA-II 1.1111 0.0000e+00 1.00 1.1278 0.0000e+00 1.00 1.1441 0.0000e+00 1.00
(std.dev) (0.0755) (0.0000) (0.0513) (0.0000) (0.0421) (0.0000)

NSGA-III 1.1492 0.0000e+00 1.00 1.1296 0.0000e+00 1.00 1.1601 0.0000e+00 1.00
(std.dev) (0.0762) (0.0000) (0.0883) (0.0000) (0.0692) (0.0000)

E
q
-I

D
T

L
Z

1

ANSGA-III 0.1770 4.5274e-04 1.00 0.1742 5.9833e-04 1.00 0.1579 6.0165e-04 1.00
(std.dev) (0.0485) (0.0002) (0.0481) (0.0002) (0.0569) (0.0003)

GDE3 276.8964 0.0000e+00 0.87 124.6459 0.0000e+00 1.00 36.9768 2.3605e-05 1.00
(std.dev) (49.3092) (0.0000) (71.3200) (0.0000) (28.6105) (0.0001)

MOEADD 2.4053 5.8740e-04 1.00 0.7574 5.2090e-04 1.00 2.6786 5.9474e-04 1.00
(std.dev) (8.3746) (0.0003) (3.1285) (0.0003) (7.3435) (0.0003)

NSGA-II 0.1880 4.4054e-04 1.00 0.1710 5.8898e-04 1.00 0.1351 7.3235e-04 1.00
(std.dev) (0.0622) (0.0003) (0.0599) (0.0002) (0.0487) (0.0004)

NSGA-III 0.1572 5.8704e-04 1.00 0.1704 5.6080e-04 1.00 0.1705 5.1858e-04 1.00
(std.dev) (0.0513) (0.0002) (0.0464) (0.0002) (0.0494) (0.0003)

E
q
-I

D
T

L
Z

2

ANSGA-III 0.3949 5.8823e-02 1.00 0.3737 6.4042e-02 1.00 0.3565 7.6060e-02 1.00
(std.dev) (0.1064) (0.0254) (0.1217) (0.0282) (0.1255) (0.0256)

GDE3 1.2680 5.6012e-04 1.00 1.0102 1.6977e-03 1.00 0.7066 7.1966e-03 1.00
(std.dev) (0.0886) (0.0017) (0.0961) (0.0027) (0.0908) (0.0064)

MOEADD 0.4411 4.9904e-02 1.00 0.4559 5.4874e-02 0.95 0.3935 5.9261e-02 0.97
(std.dev) (0.1139) (0.0185) (0.1489) (0.0256) (0.1181) (0.0245)

NSGA-II 0.3088 7.7665e-02 1.00 0.3149 8.5321e-02 1.00 0.2898 9.5782e-02 1.00
(std.dev) (0.1316) (0.0331) (0.1322) (0.0320) (0.1473) (0.0425)

NSGA-III 0.3918 5.8573e-02 1.00 0.3557 6.9857e-02 1.00 0.3938 6.2936e-02 1.00
(std.dev) (0.1192) (0.0251) (0.1003) (0.0246) (0.1315) (0.0318)

Cinvestav Computer Science Department

140 Chapter 7

Table 7.6: Results for Eq-DTLZ 1-4 and Eq-IDTLZ 1-2 with k = 4 and p = 2
for some MOEAs. (# is average of the number of feasible solutions at the end
of each run).

200,000 300,000 500,000
Method ∆p HV # ∆p HV # ∆p HV #

E
q
-D

T
L

Z
1

ANSGA-III 0.2735 4.7381e-04 1.00 0.2525 5.7108e-04 1.00 0.2653 4.1813e-04 1.00
(std.dev) (0.0450) (0.0003) (0.0600) (0.0003) (0.0457) (0.0003)

GDE3 180.1942 0.0000e+00 0.01 182.5249 0.0000e+00 0.01 189.2532 0.0000e+00 0.01
(std.dev) (6.2677) (0.0000) (8.0290) (0.0000) (8.1336) (0.0000)

MOEADD 0.2910 2.5956e-04 0.90 0.2768 3.4217e-04 0.93 0.5146 3.8035e-04 0.80
(std.dev) (0.0564) (0.0002) (0.0477) (0.0003) (1.4282) (0.0003)

NSGA-II 0.2696 5.5364e-04 1.00 0.2452 6.4946e-04 1.00 0.2535 6.3457e-04 1.00
(std.dev) (0.0538) (0.0003) (0.0612) (0.0004) (0.0580) (0.0003)

NSGA-III 0.2792 4.9979e-04 1.00 0.2777 4.3820e-04 1.00 0.2734 5.6532e-04 1.00
(std.dev) (0.0460) (0.0003) (0.0497) (0.0004) (0.0445) (0.0003)

E
q
-D

T
L

Z
2

ANSGA-III 0.7553 2.1471e-02 1.00 0.7576 2.2727e-02 1.00 0.7131 2.9263e-02 1.00
(std.dev) (0.0788) (0.0143) (0.0794) (0.0132) (0.0861) (0.0123)

GDE3 1.1851 0.0000e+00 0.00 1.1679 0.0000e+00 0.01 1.1407 7.0851e-05 0.02
(std.dev) (0.0442) (0.0000) (0.0383) (0.0000) (0.0356) (0.0004)

MOEADD 0.6356 2.5679e-02 0.94 0.7221 1.7111e-02 0.80 0.6454 2.2654e-02 0.84
(std.dev) (0.2003) (0.0164) (0.1576) (0.0175) (0.2240) (0.0165)

NSGA-II 0.7560 2.1120e-02 1.00 0.6882 3.0116e-02 1.00 0.6808 3.5500e-02 1.00
(std.dev) (0.0853) (0.0154) (0.0848) (0.0150) (0.0889) (0.0185)

NSGA-III 0.7331 2.2257e-02 1.00 0.7033 2.7953e-02 1.00 0.7163 2.7012e-02 1.00
(std.dev) (0.0934) (0.0158) (0.0783) (0.0120) (0.0936) (0.0141)

E
q
-D

T
L

Z
3

ANSGA-III 0.7467 2.0993e-02 1.00 0.7345 2.3463e-02 1.00 0.7340 2.1322e-02 1.00
(std.dev) (0.0498) (0.0121) (0.0781) (0.0097) (0.0934) (0.0113)

GDE3 957.3515 0.0000e+00 0.00 986.8496 0.0000e+00 0.01 995.2061 0.0000e+00 0.02
(std.dev) (28.7975) (0.0000) (20.0831) (0.0000) (30.1458) (0.0000)

MOEADD 2.7655 2.3234e-02 0.86 2.5255 1.5373e-02 0.88 0.6508 2.5170e-02 0.98
(std.dev) (8.7815) (0.0200) (6.7121) (0.0140) (0.2172) (0.0180)

NSGA-II 0.7759 1.9365e-02 1.00 0.7060 2.8315e-02 1.00 0.7329 2.5670e-02 1.00
(std.dev) (0.0667) (0.0130) (0.1086) (0.0149) (0.0657) (0.0175)

NSGA-III 0.7505 2.2988e-02 1.00 0.7567 1.8175e-02 1.00 0.7133 2.6541e-02 1.00
(std.dev) (0.0888) (0.0138) (0.0755) (0.0121) (0.0717) (0.0110)

E
q
-D

T
L

Z
4

ANSGA-III 1.8168 0.0000e+00 0.63 1.3375 0.0000e+00 0.96 1.3693 0.0000e+00 0.92
(std.dev) (0.7684) (0.0000) (0.3442) (0.0000) (0.3941) (0.0000)

GDE3 2.1729 0.0000e+00 0.00 2.1920 0.0000e+00 0.00 2.1578 0.0000e+00 0.00
(std.dev) (0.0472) (0.0000) (0.0437) (0.0000) (0.0523) (0.0000)

MOEADD 1.2623 0.0000e+00 0.85 1.2706 0.0000e+00 0.83 1.2872 0.0000e+00 0.86
(std.dev) (0.0567) (0.0000) (0.0497) (0.0000) (0.0630) (0.0000)

NSGA-II 1.3157 0.0000e+00 0.93 1.3791 0.0000e+00 0.89 1.3020 0.0000e+00 0.96
(std.dev) (0.2978) (0.0000) (0.3907) (0.0000) (0.2152) (0.0000)

NSGA-III 1.4570 0.0000e+00 0.83 1.4508 0.0000e+00 0.89 1.3902 0.0000e+00 0.93
(std.dev) (0.5407) (0.0000) (0.5779) (0.0000) (0.3881) (0.0000)

E
q
-I

D
T

L
Z

1

ANSGA-III 0.2842 2.7608e-04 1.00 0.2713 3.0512e-04 1.00 0.2675 3.9467e-04 1.00
(std.dev) (0.0420) (0.0002) (0.0444) (0.0002) (0.0484) (0.0002)

GDE3 394.4817 0.0000e+00 0.01 399.6722 0.0000e+00 0.01 412.7986 0.0000e+00 0.01
(std.dev) (11.5844) (0.0000) (14.0671) (0.0000) (15.1309) (0.0000)

MOEADD 0.8120 2.5498e-04 0.99 1.1708 2.8837e-04 0.86 0.2920 2.8243e-04 0.93
(std.dev) (2.9878) (0.0002) (4.8514) (0.0002) (0.0449) (0.0001)

NSGA-II 0.2739 2.8454e-04 1.00 0.2558 3.4889e-04 1.00 0.2653 3.5920e-04 1.00
(std.dev) (0.0420) (0.0002) (0.0548) (0.0002) (0.0463) (0.0002)

NSGA-III 0.2923 2.7932e-04 1.00 0.2735 3.2622e-04 1.00 0.2673 3.3804e-04 1.00
(std.dev) (0.0328) (0.0001) (0.0517) (0.0002) (0.0431) (0.0002)

E
q
-I

D
T

L
Z

2

ANSGA-III 0.7368 1.2937e-02 1.00 0.7469 1.4338e-02 1.00 0.7135 1.8397e-02 1.00
(std.dev) (0.0780) (0.0101) (0.0822) (0.0113) (0.0782) (0.0152)

GDE3 1.6088 0.0000e+00 0.00 1.5881 0.0000e+00 0.01 1.5498 0.0000e+00 0.02
(std.dev) (0.0641) (0.0000) (0.0549) (0.0000) (0.0554) (0.0000)

MOEADD 0.7087 1.7435e-02 0.87 0.6984 2.0164e-02 0.80 0.6996 2.0251e-02 0.81
(std.dev) (0.1617) (0.0134) (0.1398) (0.0163) (0.1685) (0.0160)

NSGA-II 0.7581 1.8413e-02 1.00 0.6833 1.6652e-02 1.00 0.6882 1.9565e-02 1.00
(std.dev) (0.0790) (0.0115) (0.0800) (0.0140) (0.0917) (0.0154)

NSGA-III 0.7530 1.5853e-02 1.00 0.7289 1.4447e-02 1.00 0.7037 2.3990e-02 1.00
(std.dev) (0.0694) (0.0136) (0.0817) (0.0141) (0.1235) (0.0135)

Cinvestav Computer Science Department

A New Benchmark suite for Equality Constrained MOPs 141

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

Pareto Set
Approximation

(a)
PS
GDE3

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x
3

x1
x2

Pareto Set
Approximation

(b)
PS
NSGA-
II

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x
3

x1
x2

Pareto Set
Approximation

(c)
PS
NSGA-
III

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

f1f2

f 3

Pareto Front
Approximation

(d)
PF
GDE3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

f1f2

f 3

Pareto Front
Approximation

(e)
PF
NSGA-
II

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

f1f2

f 3

Pareto Front
Approximation

(f)
PF
NSGA-
III

Figure 7.3: Results of the MOEAS on Eq-DTLZ1 and a budget of 150, 000
function evaluations.

Cinvestav Computer Science Department

142 Chapter 7

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

Pareto Set
Approximation

(a)
PS
GDE3

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

Pareto Set
Approximation

(b)
PS
NSGA-
II

0

0.5

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x1
x2

x
3

Pareto Set
Approximation

(c)
PS
NSGA-
III

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

f1f2

f 3

Pareto Front
Approximation

(d)
PF
GDE3

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

f1f2

f 3

Pareto Front
Approximation

(e)
PF
NSGA-
II

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

f1f2

f 3

Pareto Front
Approximation

(f)
PF
NSGA-
III

Figure 7.4: Results of the MOEAs on Eq-DTLZ2 and a budget of 500, 000
function evaluations.

Cinvestav Computer Science Department

Chapter 8

Conclusions and Future Work

In this chapter, we first summarize the thesis work in Section 8.1. After that, we
discuss our findings and contributions and point out their limitations in Section 8.2.
Finally, in Section 8.3, we outline directions for possible future research.

8.1 Obtained Results

In this section, we briefly present the principal contributions of this work.

As described in Chapter 2, PE is a global/local tool for the treatment of MaOPs
that consist of two phases. The first one is about obtaining a set of a few candidates
–ideally optimal solutions, but a set of good approximations is enough– to perform a
steering phase according to the preferences of the DM. Thus, the second phase is the
local exploration following the Pareto landscapes (PS and PF) in a given direction.
However, the PE framework was only able to deal with continuous MaOPs, and it was
focused on the steering phase, mainly, with the steering in objective space, steering
in decision variable space, and the steering in weight space.

First, we focused on the extension of the PE for continuous MaOPs. In this sense,
we considered the scenario in which the DM is almost satisfied with a particular
solution (which can be provided by one of the steering phases of PE or via a differ-
ent method, e.g., a reference point method), then he/she wants to explore solutions
around it. For dealing with this scenario, we proposed the Unbiased Neighborhood
Exploration, which can perform the exploration in neighborhoods around a specific
solution both in objective and decision spaces (Section 3.1). In this new approach of
steering, we obtain a set of N elements evenly distributed around the desired solution.
Here the DM can decide in which space to perform the steering and the number N
of desired neighbors.

143

144 Chapter 8

On the other hand, it is known that the DM usually wants to obtain the knee of
the PF in many applications. Consequently, we presented a way to find the knee for
continuous MaOPs using PE, which is equivalent to the mathematical definition of
the knee. We provided the mathematical proof of this fact (Section 3.2).

To finish with the PE for continuous MaOPs, we demonstrated the effectiveness
and usefulness of this method with the plastic injection molding process (Section 3.3).
The use of applications is essential in the context of interactive methods because
making fair comparisons is not always possible, due to the fact that each process
requires different pieces of information. Moreover, comparisons of the PE against
other continuation methods or MOEAs is unfair, as they try to approximate all the
set of optimal solutions.

We extended the PE framework for the treatment of MaOPs with different smooth-
ness assumptions. In particular, we proposed a fine tunning approach using MOEAs
to deal with the steering in objective space for discrete problems, which we test
with the well-known multi-objective knapsack problem (Section 4.1). We also apply
this approach with linear MaOPs, but using the Simplex method as the local search
strategy (Section 4.2).

It is also essential to provide the initial optimal solutions for the steering phases;
such solutions must be global and representative of the PF, i.e., they have to cover the
extension of the real PF, and they must be present at any disconnected component
of the real PF. It is also desirable to obtain a reduced set of them with a reasonable
computational effort. In this direction, we decided to hybridize PT with a MOEA with
the described characteristics, which can also deal with equality constrained MOPs,
as PT can handle this type of constraint. Notice that, in principle, we can use a set
of solutions provided by any MOEA as initial points for the steering phases of PE.
However, for the case of PT (where the goal is to approximate the entire optimal set),
we need to provide a way to properly treat such solutions (Chapter 5).

Related with the exploration in decision space, we know that while so far, entirely
a few suitable diversity mechanisms exist to obtain a spread in objective space, the
consideration of the Pareto set approximations has been mainly neglected. This
represents a possible shortcoming. To solve this, we proposed the variation rate,
a heuristic to preserve diversity in decision space (Chapter 6). This topic is also
important in the context of the exploration tools for the PE because the DM could
be interested in the steering in decision space, which would require points in all the
disconnected components of the Pareto set.

Finally, as we noticed the absence of an adequate benchmark for equality con-
strained MOPs, we proposed a new test suite for equality constrained MOPs (Chapter
7).

We will discuss the particular conclusions for each one of the above contributions

Cinvestav Computer Science Department

Conclusions and Future Work 145

in the next section.

8.2 Conclusions

Here, we discuss, based on the examples and and the numerical results of Chapters
3-7, the impact of this work.

In Section 3.1, we developed, as an extension to the continuous PE, a way to
explore the neighborhood around a specific solution both in objective and decision
space. The result of this algorithm is a set of N neighbors evenly distributed around
the initial optimal solution that we demonstrate with some examples. Although mak-
ing comparisons against this approach is very difficult, since no other method can do
the same, we present a comparison using the rNSGA-II to show it. Numerical results
show that our approach is very efficient; it spends only one function evaluation, with
its corresponding Jacobian, to compute each neighbor (which is impossible to obtain
with any MOEA). Moreover, all the graphs show the desired evenly distribution.
Also, in Section 3.2, we mathematically demonstrate that the PE can find the knee
for continuous MaOPs. Thus, we can conclude that our method works very well in
continuous MaOPS.

In Section 3.3, we consider the many-objective design of a plastic injection mold-
ing process, which consists of seven objectives that all have a potentially significant
impact on the decision-making process. We demonstrated on the case study of a
particular plastic gear that the PF of related MOPs can be reliably computed via a
continuation-like method and using a surrogate model. More precisely, we use PT
for subproblems where we consider only 2 and 3 objectives; while, when considering
the complete model (k = 7), none of the classical methods can be chosen any more
due to the “curse of dimensionality”. As an alternative, we utilized the PE. For this,
we investigated four different scenarios. It is conjectured from these results that the
PE can serve as a powerful tool for the many-objective design of plastic injection
molding.

In Section 4.1, we addressed a decision-making tool for discrete MaOPs, where we
used the multidimensional multi-objective knapsack problem as a demonstrator. Here
we proposed a local fine-tuning method that allows the search process to be steered
from a given solution along the PF in a user-specified direction. More precisely, we
presented a framework and two possible realizations of it: one by means of a GA
for directly solving the dynamic reference point problem, and another one based on
MOEA/D that focuses on a region of the Pareto front delimited by the reference point.
Given that only a particular segment of the Pareto front is computed, one retrieves
a much more accurate search efficiency compared against the classical method (i.e.,
aiming to compute all Pareto optimal solutions), which we have demonstrated on

Cinvestav Computer Science Department

146 Chapter 8

several benchmark problems. We think that this method can be used as a post-
processing step to all existing many-objective optimization solvers and that this will
actually help the DM to identify his/her most-preferred solution.

In Section 4.2, we adapted the framework presented in Section 4.1 for the numer-
ical treatment of linear MaOPs. More precisely, we performed two approaches that
were capable of following a preference-directed path to explore a large dimensional
objective space locally. We conducted experiments for three and five objective bench-
mark problems. We stress that the method is in principle not restricted to moderate
values of k as for each problem a sequence of SOPs is generated, and for each SOP,
one optimal solution is obtained using the Simplex method.

In Chapter 5, we have proposed a two-phase hybrid algorithm combining a MOEA,
based on the NSGA-II, and the PT. Numerical results and comparisons against four
state-of-the-art MOEAs have shown that this new strategy is highly competitive and
can lead to satisfying results with a moderate budget of function evaluations.

In Chapter 6, we dealt with the problem of conserving diversity in decision space
without losing quality in objective space. To achieve this goal, we have first presented
the general framework of the variation rate that combines the usage of the averaged
distance in variable space with the selection operator that is given by the multi-
objective evolutionary algorithm (MOEAs). We have also illustrated the possible
integration of the variation rate into four MOEAs that represent the state-of-the-
art. Numerical results have shown that the use of the variation rate improves the
performance of the standalone algorithms for Type III problems, while the variation
rate algorithms are not significantly worse for the standard benchmark problems, even
in some cases variation rate improves the performance of the original algorithm.

Finally, in Chapter 7, we have first proposed a set of eight equality constrained
MOPs for the benchmarking of MOEAs. All problems are based on the well-known
and widely used DTLZ and IDTLZ test problems and inherit their valuable proper-
ties. Moreover, all problems are scalable in the number of decision variables and the
number of objectives as well as in the number of equality constraints. The Pareto
sets of all problems differ from the corresponding Pareto sets of the unconstrained
counterparts and can be expressed analytically, which are two further important as-
pects for benchmarking. In a next step, we have shown the performance of some
selected state-of-the-art MOEAs on the proposed Eq-(I)DTLZ problems. The com-
putations have shown that the results of the different evolutionary algorithms are yet
not satisfactory, as they present a poor distribution along the Pareto set/front.

Cinvestav Computer Science Department

Conclusions and Future Work 147

8.3 Future Work

Though the results along this work are strongly promising, there are several lines
of research arising from all our proposals that may be pursued in the future.

For instance, we know that the performance of the PE for continuous MaOPs de-
pends, of course, of several factors (e.g., the step size and the initial optimal solution).
For this reason, we need to provide more detailed numerical results to validate the
proposals for the unbiased neighborhood exploration and the approach for finding the
knee of the PF.

On the other hand, more research has to be performed in this direction to ob-
tain a new class of hybrid evolutionary algorithms for the fast and reliable numerical
treatment of general MOPs. For this task, it will be necessary to reduce the required
derivative information. Further, more comparisons have to be performed to demon-
strate the benefit of the novel hybrid. Finally, it is intended to apply this approach
to real-world problems. For instance, for the plastic injection molding process, we
can also extend the PE implementation to handle movements in directions in decision
space and weight space to increase the set of alternatives given the preferences of the
DM.

Related with the approaches for different smoothness assumptions, although this
work can be considered as a proof-of-principle, there is still much to be done. First
of all, the tuning of the method is an issue to guarantee to get better solutions in
less time, and it may be interesting to consider other solvers. For instance, we intend
to investigate other potential local search strategies according to the problem to be
solved.

In the case of the variation rate, it will be mandatory to adapt some of the
genetic operators of the evolutionary algorithms to exploit the diversity in decision
space, as the variation rate is only a selection mechanism. In order to obtain optimal
solutions, specifically in decision space, the exploration will have to be increased.
Furthermore, it will be necessary to develop a specific indicator for problems of Type
III. In general, performance indicators evaluate an approximation based on the value
of the objectives, and this does not provide enough information for the distribution
of the variables.

Finally, from the results with our benchmark, it can be said that the design of
MOEAs for the fast and reliable treatment of equality constrained problems is un-
doubtedly a critical path for future research. We think that the Eq-(I)DTLZ bench-
mark suite can make a significant contribution to achieve this goal.

Cinvestav Computer Science Department

148 Chapter 8

Cinvestav Computer Science Department

Appendix A

Appendix 1

In this appendix we provide the properties of the plastic gear used in the Plastic
Injection Molding (PIM) problem (see Section 3.3).

A.1 A Plastic Gear

The properties of the material are listed in Table A.1. The process parameters,
their ranges and units, utilized as design variables are listed in Table A.2. Tables
A.3, A.4 and A.5 lists the rest of process parameters considered during the numerical
simulation. Similarly, Table A.6 lists the outcomes of interest. Figure A.1 illustrates
an example of the warpage scale in the simulation software.

Table A.1: Material properties of PP.

Density [g/cm3] 1.35
Eject temperature [◦C] 90
Thermal conductivity [erg/(sec cm ◦C)] 35000
Elastic modulus [dyne/cm2] 3e+010
Poisson ratio 0.38
Heat capacity [erg/(g ◦C)] 1.5e+007
Melt temperature range [◦C] 200–220
Mold temperature range [◦C] 40–80

149

150 Chapter A

Table A.2: Design variables.

Process parameter Design variable Range
Melt temperature [◦C] x1 190–230
Packing time [sec] x2 3–5
Packing pressure [MPa] x3 84–140
Cooling time [sec] x4 8–14

Table A.3: Process parameters.

Process parameter Value
Filling time [sec] 0.10
Mold temperature [◦C] 60.0
Maximum pressure machine [MPa] 140.00
Injection volume [cc] 1.89
VP switch by volume filled [%] 98.00
Mold opening time [sec] 5.00
Ejection temperature [◦C] 90.0
Air temperature [◦C] 25.0

Table A.4: Flow rate profile.

Section Time [%] Flow rate [%]
1 20 30
2 40 60
3 80 90
4 100 30

Table A.5: Packing rate profile.

Section Time [%] Flow rate [MPa]
1 50 x3

2 80 70
3 100 35

Cinvestav Computer Science Department

Appendix 1 151

Table A.6: Objective functions.

Outcome Function Optimization
Maximum warpage deformation [mm] f1 Minimize
Maximum volumetric shrinkage [%] f2 Minimize
Maximum Von Mises stress [MPa] f3 Minimize
Sink marks displacement [mm] f4 Minimize
Maximum claming force [ton] f5 Minimize
Cycle time [sec] f6 Minimize
High shear stress [%] f7 Minimize

Figure A.1: Warpage in the plastic part.

Cinvestav Computer Science Department

152 Chapter A

Cinvestav Computer Science Department

Bibliography

[Abhishek et al., 2017] Abhishek, K., Rakesh Kumar, V., Datta, S., and Mahapatra,
S. S. (2017). Parametric appraisal and optimization in machining of CFRP com-
posites by using TLBO (teaching–learning based optimization algorithm). Journal
of Intelligent Manufacturing, 28(8):1769–1785.

[Aguirre and Tanaka, 2009] Aguirre, H. and Tanaka, K. (2009). Many-objective op-
timization by space partitioning and adaptive ε-ranking on mnk-landscapes. In
Evolutionary Multi-Criterion Optimization, pages 407–422. Springer.

[Alvarado-Iniesta et al., 2019] Alvarado-Iniesta, A., Cuate, O., and Schütze, O.
(2019). Multi-objective and many objective design of plastic injection mold-
ing process. The International Journal of Advanced Manufacturing Technology,
102(9):3165–3180.

[Alvarado-Iniesta et al., 2018] Alvarado-Iniesta, A., Guillen-Anaya, L. G.,
Rodŕıguez-Picón, L. A., and Ñeco-Caberta, R. (2018). Multi-objective opti-
mization of an engine mount design by means of memetic genetic programming
and a local exploration approach. Journal of Intelligent Manufacturing.

[Alves and Almeida, 2007] Alves, M. and Almeida, M. (2007). MOTGA: A multi-
objective Tchebycheff based genetic algorithm for the multidimensional knapsack
problem. Computers & operations research, 34(11):3458–3470.

[Bader et al., 2010] Bader, J., Deb, K., and Zitzler, E. (2010). Faster hypervolume-
based search using monte carlo sampling. In Multiple Criteria Decision Making for
Sustainable Energy and Transportation Systems, pages 313–326. Springer.

[Bader and Zitzler, 2011] Bader, J. and Zitzler, E. (2011). Hype: An algorithm for
fast hypervolume-based many-objective optimization. Evolutionary computation,
19(1):45–76.

[Bakhtiari et al., 2016] Bakhtiari, H., Karimi, M., and Rezazadeh, S. (2016). Mod-
eling, analysis and multi-objective optimization of twist extrusion process using
predictive models and meta-heuristic approaches, based on finite element results.
Journal of Intelligent Manufacturing, 27(2):463–473.

153

154 BIBLIOGRAPHY

[Beume et al., 2007] Beume, N., Naujoks, B., and Emmerich, M. (2007). SMS-
EMOA: Multiobjective selection based on dominated hypervolume. European Jour-
nal of Operational Research, 181(3):1653–1669.

[Björck, 1996] Björck, A. (1996). Numerical methods for least squares problems. Siam.

[Bogoya et al., 2018] Bogoya, J. M., Vargas, A., Cuate, O., and Schütze, O. (2018).
A (p,q)-averaged Hausdorff distance for arbitrary measurable sets. Mathematical
and Computational Applications, 23(3).

[Bogoya et al., 2019] Bogoya, J. M., Vargas, A., and Schütze, O. (2019). The aver-
aged Hausdorff distances in multi-objective optimization: A review. Mathematics,
7(10).

[Box and Draper, 1971] Box, M. J. and Draper, N. R. (1971). Factorial designs, the
|X ′X| criterion, and some related matters. Technometrics, 13(4):731–742.

[Branke et al., 2008] Branke, J., Deb, K., Miettinen, K., and Slowinski, R. (2008).
Multiobjective optimization: Interactive and evolutionary approaches, volume 5252.
Springer Science & Business Media.

[Brockhoff et al., 2012] Brockhoff, D., Wagner, T., and Trautmann, H. (2012). On
the properties of the R2 indicator. In Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’12, pages 465–472, New York,
NY, USA. ACM.

[Buchanan, 1997] Buchanan, J. T. (1997). A naive approach for solving MCDM prob-
lems: The guess method. Journal of the Operational Research Society, 48(2):202–
206.

[Castillo et al., 2017] Castillo, J. C., Segura, C., Aguirre, A. H., Miranda, G., and
León, C. (2017). A multi-objective decomposition-based evolutionary algorithm
with enhanced variable space diversity control. In Proceedings of GECCO 2017,
pages 1565–1571, New York, NY, USA. ACM.

[Coello and Cortés, 2005] Coello, C. A. C. and Cortés, N. C. (2005). Solving multi-
objective optimization problems using an artificial immune system. Genetic Pro-
gramming and Evolvable Machines, 6(2):163–190.

[Coello et al., 2007] Coello, C. A. C., Lamont, G. B., Van Veldhuizen, D. A., et al.
(2007). Evolutionary algorithms for solving multi-objective problems, volume 5.
Springer.

[Cuate et al., 2019] Cuate, O., Uribe, L., Ponsich, A., Lara, A., Beltran, F., Sánchez,
A. R., and Schütze, O. (2019). A new hybrid metaheuristic for equality constrained
bi-objective optimization problems. In Deb, K., Goodman, E., Coello Coello, C. A.,
Klamroth, K., Miettinen, K., Mostaghim, S., and Reed, P., editors, Evolutionary

Cinvestav Computer Science Department

BIBLIOGRAPHY 155

Multi-Criterion Optimization, pages 53–65, Cham. Springer International Publish-
ing.

[D’Addona et al., 2017] D’Addona, D. M., Ullah, A. M. M. S., and Matarazzo, D.
(2017). Tool-wear prediction and pattern-recognition using artificial neural network
and dna-based computing. Journal of Intelligent Manufacturing, 28(6):1285–1301.

[Das, 1999] Das, I. (1999). On characterizing the “knee” of the Pareto curve based
on normal-boundary intersection. Structural optimization, 18(2):107–115.

[Das and Dennis, 1997] Das, I. and Dennis, J. E. (1997). A closer look at drawbacks
of minimizing weighted sums of objectives for Pareto set generation in multicriteria
optimization problems. Structural optimization, 14(1):63–69.

[Das and Dennis, 1998] Das, I. and Dennis, J. E. (1998). Normal-boundary intersec-
tion: A new method for generating the Pareto surface in nonlinear multicriteria
optimization problems. SIAM J of Opt, 8(3):631–657.

[Deb, 2001] Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algo-
rithms, volume 16. John Wiley & Sons.

[Deb and Jain, 2014] Deb, K. and Jain, H. (2014). An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sorting ap-
proach, part i: Solving problems with box constraints. IEEE Trans Evol Comp,
18(4):577–601.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation,
IEEE Transactions on, 6(2):182–197.

[Deb et al., 2001] Deb, K., Pratap, A., and Meyarivan, T. (2001). Constrained test
problems for multi-objective evolutionary optimization. In International conference
on evolutionary multi-criterion optimization, pages 284–298. Springer.

[Deb et al., 2006] Deb, K., Sinha, A., and Kukkonen, S. (2006). Multi-objective test
problems, linkages, and evolutionary methodologies. In Proceedings of the 8th an-
nual conference on Genetic and evolutionary computation, pages 1141–1148. ACM.

[Deb and Sundar, 2006] Deb, K. and Sundar, J. (2006). Reference point based multi-
objective optimization using evolutionary algorithms. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pages 635–642.

[Deb et al., 2005] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scal-
able test problems for evolutionary multiobjective optimization. In Evolutionary
multiobjective optimization, pages 105–145. Springer.

Cinvestav Computer Science Department

156 BIBLIOGRAPHY

[Deb and Tiwari, 2008] Deb, K. and Tiwari, S. (2008). Omni-optimizer: A generic
evolutionary algorithm for single and multi-objective optimization. European Jour-
nal of Operational Research, 185(3):1062 – 1087.

[Dellnitz et al., 2005] Dellnitz, M., Schütze, O., and Hestermeyer, T. (2005). Cov-
ering Pareto sets by multilevel subdivision techniques. Journal of Optimization
Theory and Applications, 124(1):113–155.

[Dennis and Moré, 1977] Dennis, Jr, J. E. and Moré, J. J. (1977). Quasi-Newton
methods, motivation and theory. SIAM review, 19(1):46–89.

[Di Pierro et al., 2007] Di Pierro, F., Khu, S.-T., Savic, D., et al. (2007). An inves-
tigation on preference order ranking scheme for multiobjective evolutionary opti-
mization. Evolutionary Computation, IEEE Transactions on, 11(1):17–45.

[Dilettoso et al., 2017] Dilettoso, E., Rizzo, S. A., and Salerno, N. (2017). A weakly
Pareto compliant quality indicator. Mathematical and Computational Applications,
22(1).

[Edgeworth, 1881] Edgeworth, F. Y. (1881). Mathematical psychics: An essay on the
application of mathematics to the moral sciences. Number 10. CK Paul.

[Eskelinen et al., 2010] Eskelinen, P., Miettinen, K., Klamroth, K., and Hakanen, J.
(2010). Pareto navigator for interactive nonlinear multiobjective optimization. OR
Spectrum, 32(1):211–227.

[Fan et al., 2019a] Fan, Z., Li, W., Cai, X., Li, H., Wei, C., Zhang, Q., Deb, K.,
and Goodman, E. (2019a). Difficulty adjustable and scalable constrained multi-
objective test problem toolkit. Evolutionary Computation, pages 1–28.

[Fan et al., 2019b] Fan, Z., Li, W., Cai, X., Li, H., Wei, C., Zhang, Q., Deb, K., and
Goodman, E. (2019b). Push and pull search for solving constrained multi-objective
optimization problems. Swarm and Evolutionary Computation, 44:665 – 679.

[Farina and Amato, 2002] Farina, M. and Amato, P. (2002). On the optimal solution
definition for many-criteria optimization problems. In Proceedings of the NAFIPS-
FLINT international conference, pages 233–238.

[Fliege et al., 2009] Fliege, J., Drummond, L. G., and Svaiter, B. F. (2009). New-
ton’s method for multiobjective optimization. SIAM Journal on Optimization,
20(2):602–626.

[Gass and Saaty, 1955] Gass, S. and Saaty, T. (1955). The computational algorithm
for the parametric objective function. Naval Research Logistics Quarterly, 2(1):39–
45.

[Gibbons and Chakraborti, 2011] Gibbons, J. D. and Chakraborti, S. (2011). Non-
parametric statistical inference. Springer.

Cinvestav Computer Science Department

BIBLIOGRAPHY 157

[Griewank and Corliss, 1992] Griewank, A. and Corliss, G. F. (1992). Automatic
differentiation of algorithms: theory, implementation, and application. Defense
Technical Information Center.

[Hansen and Jaszkiewicz, 1994] Hansen, M. P. and Jaszkiewicz, A. (1994). Evaluat-
ing the quality of approximations to the non-dominated set. IMM, Department of
Mathematical Modelling, Technical Universityof Denmark.

[Hillermeier, 2001] Hillermeier, C. (2001). Nonlinear multiobjective optimization: A
generalized homotopy approach, volume 135. Springer.

[Huband et al., 2005] Huband, S., Barone, L., While, L., and Hingston, P. (2005).
A scalable multi-objective test problem toolkit. In International Conference on
Evolutionary Multi-Criterion Optimization, pages 280–295. Springer.

[Huband et al., 2006] Huband, S., Hingston, P., Barone, L., and While, L. (2006). A
review of multiobjective test problems and a scalable test problem toolkit. IEEE
Transactions on Evolutionary Computation, 10(5):477–506.

[Ishibuchi et al., 2009] Ishibuchi, H., Sakane, Y., Tsukamoto, N., and Nojima, Y.
(2009). Evolutionary many-objective optimization by NSGA-II and MOEA/D with
large populations. In 2009 IEEE International Conference on Systems, Man and
Cybernetics. IEEE.

[Ishibuchi et al., 2017] Ishibuchi, H., Setoguchi, Y., Masuda, H., and Nojima, Y.
(2017). Performance of decomposition-based many-objective algorithms strongly
depends on Pareto front shapes. IEEE Transactions on Evolutionary Computation,
21(2):169–190.

[Jain and Deb, 2014] Jain, H. and Deb, K. (2014). An evolutionary many-objective
optimization algorithm using reference-point based nondominated sorting ap-
proach, part ii: Handling constraints and extending to an adaptive approach. IEEE
Transactions on Evolutionary Computation, 18(4):602–622.

[Jan and Khanum, 2013] Jan, M. A. and Khanum, R. A. (2013). A study of two
penalty-parameterless constraint handling techniques in the framework of moea/d.
Applied Soft Computing, 13(1):128 – 148.

[Jan and Zhang, 2010] Jan, M. A. and Zhang, Q. (2010). MOEA/D for constrained
multiobjective optimization: Some preliminary experimental results. In 2010 UK
Workshop on Computational Intelligence (UKCI), pages 1–6.

[Jaszkiewicz and S lowiński, 1999] Jaszkiewicz, A. and S lowiński, R. (1999). The
‘Light Beam Search’ approach an overview of methodology applications. Euro-
pean Journal of Operational Research, 113(2):300–314.

Cinvestav Computer Science Department

158 BIBLIOGRAPHY

[Jeffrey et al., 1993] Jeffrey, H., Nafpliotis, N., and Goldberg, D. E. (1993). Multi-
objective optimization using the niched Pareto genetic algorithm. IlliGAL report,
(93005):61801–2296.

[Karush, 1939] Karush, W. (1939). Minima of functions of several variables with
inequalities as side constraints. PhD thesis, Master’s thesis, Dept. of Mathematics,
Univ. of Chicago.

[Kitayama et al., 2017] Kitayama, S., Miyakawa, H., Takano, M., and Aiba, S.
(2017). Multi-objective optimization of injection molding process parameters for
short cycle time and warpage reduction using conformal cooling channel. The In-
ternational Journal of Advanced Manufacturing Technology, 88(5):1735–1744.

[Kitayama and Natsume, 2014] Kitayama, S. and Natsume, S. (2014). Multi-
objective optimization of volume shrinkage and clamping force for plastic injection
molding via sequential approximate optimization. Simulation Modelling Practice
and Theory, 48:35 – 44.

[Krantz and Parks, 2002] Krantz, S. G. and Parks, H. R. (2002). The implicit func-
tion theorem: History, theory, and applications. Springer.

[Kuhn and Tucker, 1951] Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear pro-
gramming. In Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, 1950, pages 481–492, Berkeley and Los Angeles. Univer-
sity of California Press.

[Kukkonen and Lampinen, 2005] Kukkonen, S. and Lampinen, J. (2005). GDE3: The
third evolution step of generalized differential evolution. In Evolutionary Compu-
tation, 2005. The 2005 IEEE Congress on, volume 1, pages 443–450. IEEE.

[Lawson and Hanson, 1995] Lawson, C. L. and Hanson, R. J. (1995). Solving least
squares problems, volume 15. Siam.

[Li and Zhang, 2009] Li, H. and Zhang, Q. (2009). Multiobjective optimization prob-
lems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions
on Evolutionary Computation, 13(2):284–302.

[Li et al., 2015] Li, K., Deb, K., Zhang, Q., and Kwong, S. (2015). An evolutionary
many-objective optimization algorithm based on dominance and decomposition.
IEEE Trans. Evolutionary Computation, 19(5):694–716.

[Löhne and Weißing,] Löhne, A. and Weißing, B. Bensolve-vlp solver, version 2.0. 1.
URL http://bensolve. org.

[Mart́ın and Schütze, 2014] Mart́ın, A. and Schütze, O. (2014). A new predictor cor-
rector variant for unconstrained bi-objective optimization problems. In EVOLVE-A
Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation
V, pages 165–179. Springer.

Cinvestav Computer Science Department

BIBLIOGRAPHY 159

[Mart́ın and Schütze, 2018] Mart́ın, A. and Schütze, O. (2018). Pareto tracer: A
predictor–corrector method for multi-objective optimization problems. Engineering
Optimization, 50(3):516–536.

[Martinez and Coello, 2014] Martinez, S. Z. and Coello, C. A. C. (2014). A multi-
objective evolutionary algorithm based on decomposition for constrained multi-
objective optimization. In 2014 IEEE Congress on Evolutionary Computation
(CEC), pages 429–436.

[Mckay et al., 2000] Mckay, M. D., Beckman, R. J., and Conover, W. J. (2000). A
comparison of three methods for selecting values of input variables in the analysis
of output from a computer code. Technometrics, 42(1):55–61.

[Mej́ıa et al., 2017] Mej́ıa, J. A. H., Schütze, O., Cuate, O., Lara, A., and Deb,
K. (2017). RDS-NSGA-II: a memetic algorithm for reference point based multi-
objective optimization. Engineering Optimization, 49(5):828–845.

[Miettinen, 1999] Miettinen, K. (1999). Nonlinear Multiobjective Optimization, vol-
ume 12 of International Series in Operations Research and Management Science.
Kluwer Academic Publishers, Dordrecht.

[Miettinen et al., 2010] Miettinen, K., Eskelinen, P., Ruiz, F., and Luque, M. (2010).
Nautilus method: An interactive technique in multiobjective optimization based
on the nadir point. European Journal of Operational Research, 206(2):426–434.

[Miettinen and Mäkelä, 2000] Miettinen, K. and Mäkelä, M. M. (2000). Interactive
multiobjective optimization system www-nimbus on the internet. Computers &
Operations Research, 27(7):709–723.

[Miettinen and Mäkelä, 2002] Miettinen, K. and Mäkelä, M. M. (2002). On scalariz-
ing functions in multiobjective optimization. OR spectrum, 24(2):193–213.

[Nie and Ellingwood, 2004] Nie, J. and Ellingwood, B. R. (2004). A new directional
simulation method for system reliability. part i: application of deterministic point
sets. Prob Eng Mech, 19(4):425–436.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006). Numerical optimiza-
tion. Springer Series in Operations Research and Financial Engineering. Springer.

[Pareto, 1896] Pareto, V. (1896). Cours D’économie politique. Lausanne, F. Rouge;
Paris, Pichon.

[Rachmawati and Srinivasan, 2006] Rachmawati, L. and Srinivasan, D. (2006). A
multi-objective evolutionary algorithm with weighted-sum niching for convergence
on knee regions. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation, pages 749–750.

Cinvestav Computer Science Department

160 BIBLIOGRAPHY

[Rudolph et al., 2007] Rudolph, G., Naujoks, B., and Preuss, M. (2007). Capabilities
of EMOA to detect and preserve equivalent Pareto subsets. In EMO 2017, pages
36–50, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Rudolph et al., 2016] Rudolph, G., Schütze, O., Grimme, C., Domı́nguez-Medina,
C., and Trautmann, H. (2016). Optimal averaged Hausdorff archives for bi-
objective problems: theoretical and numerical results. Computational Optimization
and Applications, 64(2):589–618.

[Saha and Ray, 2012] Saha, A. and Ray, T. (2012). Equality constrained multi-
objective optimization. In 2012 IEEE Congress on Evolutionary Computation,
CEC 2012, pages 1–7.

[Saxena et al., 2013] Saxena, D. K., Duro, J. A., Tiwari, A., Deb, K., and Zhang, Q.
(2013). Objective reduction in many-objective optimization: Linear and nonlinear
algorithms. Evolutionary Computation, IEEE Transactions on, 17(1):77–99.

[Schütze et al., 2019] Schütze, O., Cuate, O., Mart́ın, A., Peitz, S., and Dellnitz,
M. (2019). Pareto explorer: a global/local exploration tool for many-objective
optimization problems. Engineering Optimization, 0(0):1–24.

[Schütze et al., 2012] Schütze, O., Esquivel, X., Lara, A., and Coello, C. A. C. (2012).
Using the averaged Hausdorff distance as a performance measure in evolutionary
multiobjective optimization. IEEE Transactions on Evolutionary Computation,
16(4):504–522.

[Schütze et al., 2011] Schütze, O., Lara, A., and Coello Coello, C. (2011). The di-
rected search method for unconstrained multi-objective optimization problems.
Proceedings of the EVOLVE–A Bridge Between Probability, Set Oriented Numerics,
and Evolutionary Computation.

[Schütze et al., 2013] Schütze, O., Witting, K., Ober-Blöbaum, S., and Dellnitz, M.
(2013). Set Oriented Methods for the Numerical Treatment of Multiobjective Opti-
mization Problems, pages 187–219. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Singh and Ray, 2011] Singh, H. I., A. and Ray, T. (2011). A Pareto corner search
evolutionary algorithm and dimensionality reduction in many-objective optimiza-
tion problems. IEEE Trans on Evol Comp, 15(4):539–556.

[Srinivas and Deb, 1994] Srinivas, N. and Deb, K. (1994). Muiltiobjective optimiza-
tion using nondominated sorting in genetic algorithms. Evolutionary Computation,
2(3):221–248.

[Steuer and Choo, 1983] Steuer, R. E. and Choo, E.-U. (1983). An interactive
weighted tchebycheff procedure for multiple objective programming. Mathemat-
ical programming, 26(3):326–344.

Cinvestav Computer Science Department

BIBLIOGRAPHY 161

[Sun et al., 2018] Sun, J.-Q., Xiong, F.-R., Schütze, O., and Hernández, C. (2018).
Cell Mapping Methods. Springer.

[Takahama and Sakai, 2006] Takahama, T. and Sakai, S. (2006). Constrained opti-
mization by the ε constrained differential evolution with gradient-based mutation
and feasible elites. In 2006 IEEE International Conference on Evolutionary Com-
putation, pages 1–8.

[Tian et al., 2017] Tian, Y., Cheng, R., Zhang, X., and Jin, Y. (2017). Platemo: A
matlab platform for evolutionary multi-objective optimization [educational forum].
IEEE Computational Intelligence Magazine, 12(4):73–87.

[Van Veldhuizen, 1999] Van Veldhuizen, D. A. (1999). Multiobjective evolutionary
algorithms: classifications, analyses, and new innovations. Technical report, Air
Force Institute of Technology.

[von Lücken et al., 2014] von Lücken, C., Barán, B., and Brizuela, C. (2014). A
survey on multi-objective evolutionary algorithms for many-objective problems.
Computational Optimization and Applications, 58(3):707–756.

[Wierzbicki, 1981] Wierzbicki, A. P. (1981). A mathematical basis for satisficing de-
cision making. Springer.

[Yang et al., 2013] Yang, S., Li, M., Liu, X., and Zheng, J. (2013). A grid-based evo-
lutionary algorithm for many-objective optimization. Evolutionary Computation,
IEEE Transactions on, 17(5):721–736.

[Zhang and Li, 2007] Zhang, Q. and Li, H. (2007). MOEA/D: a multiobjective evolu-
tionary algorithm based on decomposition. IEEE Trans on Evol Comp, 11(6):712–
731.

[Zhang et al., 2008] Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., and
Tiwari, S. (2008). Multiobjective optimization test instances for the cec 2009 spe-
cial session and competition. University of Essex,UK and Nanyang technological
University, Singapore, special session on performance assessment of multi-objective
optimization algorithms, technical report, 264.

[Zitzler et al., 2007] Zitzler, E., Brockhoff, D., and Thiele, L. (2007). The hypervol-
ume indicator revisited: On the design of Pareto-compliant indicators via weighted
integration. In International Conference on Evolutionary Multi-Criterion Opti-
mization, pages 862–876. Springer.

[Zitzler et al., 2008] Zitzler, E., Knowles, J., and Thiele, L. (2008). Quality Assess-
ment of Pareto Set Approximations, pages 373–404. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Cinvestav Computer Science Department

162 BIBLIOGRAPHY

[Zitzler and Thiele, 1999] Zitzler, E. and Thiele, L. (1999). Multiobjective evolution-
ary algorithms: a comparative case study and the strength Pareto approach. IEEE
transactions on Evolutionary Computation, 3(4):257–271.

[Zou et al., 2008] Zou, X., Chen, Y., Liu, M., and Kang, L. (2008). A new evolution-
ary algorithm for solving many-objective optimization problems. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(5):1402–1412.

Cinvestav Computer Science Department

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Hypothesis
	Aims of the Thesis
	Contributions of this thesis
	Publications
	Prizes
	JCR Journals
	Other Journals
	Proceedings
	Textbooks

	Organization of the Thesis

	Basic Concepts
	Single Objective Optimization
	Line Search Strategies
	Newton Method
	BFGS Method

	Multiobjective Optimization
	Definitions
	Optimality Conditions

	Solving a MOP
	Mathematical Programming Techniques
	Continuation Methods
	Method of Hillermeier
	Directed Search Predictor-Corrector Method

	Reference Point Methods
	Reference Point Problem
	Achievement Functions

	Interactive Methods
	Pareto Navigator Method
	NIMBUS Method
	Nautilus Method

	Many-objective Optimization and Evolutionary Algorithms
	Indicator based
	Large Populations
	Dimension Reduction

	MOEAs for CMOPs
	Diversity in Decision Space

	Multiobjective Benchmark Problems
	Performance Indicators
	p indicator
	Feasibility Ratio
	Reference Inverted Generational Distance

	Pareto Tracer and Pareto Explorer
	Pareto Tracer Method
	Predictor
	Corrector
	Handling Equality Constrains
	Handling Inequality Constraints

	Pareto Explorer
	Steering in Objective Space
	Steering in Decision Space
	Steering in Weight Space

	Extensions of the Pareto Explorer for Continuous MaOPs
	Unbiased Neighborhood Exploration
	Pareto Explorer for Finding the Knee
	Definition of the Knee
	Finding the Knee

	Real World Application: Plastic Injection Molding
	The Model
	Design parameters
	Objectives

	Case study: A plastic gear
	Building the model

	Numerical Results
	Multi-objective PIM design
	Many-objective PIM design

	Exploration in Objective Space
	Fine tuning method and application to knapsack
	Framework for the fine tuning method
	Framework instantiation
	The evolutionary solving process
	Illustrative scenarios

	Numerical results

	Pareto Explorer for Linear MaOPs
	Change in Objective Space
	Change in Weight Space
	Numerical Results
	3-objective case
	5-objective case

	MOEA-PT
	First stage: Rough Approximation via Micro-NSGA-II
	Second stage: Refinement via PT
	BOPs
	General MOPs

	Proposed Test Problems
	Eq1-ZDT1
	Eq2-ZDT1
	Eq-Quad

	Numerical Results

	Exploration in Decision Space
	Proposed Framework
	Using the Averaged Distance in Decision Variable Space
	Variation Rate
	Integration into NSGA-II
	Integration into NSGA-III
	Integration into MOEA/D
	Integration into SMS-EMOA

	Numerical Results

	A New Benchmark suite for Equality Constrained MOPs
	Hyper-spheres as equality constraints
	Hyper-spheres
	Embedding into higher dimensions

	Equality constrained MOPs
	Eq-DTLZ
	Pareto sets for Eq-DTLZ 1-4

	Eq-IDTLZ
	Examples

	Performance of MOEAs on Eq-(I)DTLZ

	Conclusions and Future Work
	Obtained Results
	Conclusions
	Future Work

	Appendix 1
	A Plastic Gear

	References

