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Resumen

En los últimos años, los algoritmos evolutivos multi-objetivo que adoptan funciones de

escalarización han mostrado ser una excelente alternativa para dar solución a problemas

de optimización multi-objetivo complejos. Sin embargo, estos algoritmos requieren una

adecuada configuración de sus parámetros (en particular de la función de escalarización)

para tener un buen desempeño.

Las caracteŕısticas de un problema multiobjetivo tales como la geometŕıa del frente de

Pareto o el número de funciones objetivo son útiles para determinar la mejor configuración

de parámetros.

En esta tesis se presenta una revisión de diversas funciones de escalarización que fueron

acopladas a algoritmos evolutivos multi-objetivo del estado del arte tales como: MOEA/D,

MOMBI-II y MOEA/D-DRA. Se diseñó una metodoloǵıa experimental de ajuste de pará-

metros fuera de ĺınea que fue aplicada a diversos casos de estudio entre los que se incluyeron:

1) analizar el comportamiento de las funciones de escalarización para resolver problemas

con geometŕıas convexas, cóncavas, lineales, mixtas y desconectadas del frente de Pareto,

2) identificar a las funciones de escalarización que son capaces de escalar en el número de

objetivos (hasta 10 objetivos) y 3) examinar la velocidad de convergencia de las funciones

de escalarización.

Además, se emplearon técnicas de adaptación de parámetros en ĺınea para combinar

simultáneamente varias funciones de escalarización con el objetivo de resolver eficientemente

una mayor diversidad de problemas multi-objetivo.

Los resultados presentados en esta tesis proporcionan pautas para diseñar nuevos al-

goritmos evolutivos multi-objetivo que sean robustos de tal forma que puedan adaptarse

adecuadamente a diversas caracteŕısticas de los problemas multi-objetivo.
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Abstract

In the last few years, decomposition-based multi-objective evolutionary algorithms, as

well as indicator-based multi-objective evolutionary algorithms that adopt scalarizing func-

tions, have shown to be an excellent choice for solving complex multi-objective optimization

problems. However, these algorithms require an appropriate setting of their parameters (in

particular of the scalarizing function) for them to have a good performance.

The features of a multi-objective problem such as the geometry of the Pareto front or

the number of objectives are useful to determine the best parameters settings.

In this thesis, we present a review of several scalarizing functions which were coupled to

state-of-the-art multi-objective evolutionary algorithms such as: MOEA/D, MOMBI-II and

MOEA/D-DRA. An experimental methodology for offline parameters setting was designed.

Such a methodology was applied to several study cases including the following: 1) analyzing

the behavior of the scalarizing functions for solving problems having convex, concave, linear,

mixed and disconnected Pareto front geometries, 2) identifying the scalarizing functions

which are able to scale up with an increasing number of objectives (up to 10 objectives)

and 3) examining the speed of convergence of the scalarizing functions.

Furthermore, online parameters setting techniques were adopted for simultaneously

combining several objectives with the aim of efficiently solving a greater variety of multi-

objective problems.

The results presented in this thesis provide hints for designing new multi-objective evo-

lutionary algorithms that are robust and can properly adapt to different features of multi-

objective problems.
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Chapter 1

Introduction

The optimization process is present in several real-world problems. Its solution requires
knowing the best set of decision variables to reach the maximum benefit allowed by the
constraints imposed on the problem. When a problem needs to optimize more than one ob-
jective function at the same time is called a Multi-objective Optimization Problem (MOP).

In recent years, the use of Multi-Objective Evolutionary Algorithms (MOEAs) has al-
lowed to tackle complex MOPs. The first generation of MOEAs were algorithms that used
Pareto dominance in their selection mechanism such as NSGA-II [31] and SPEA [179].
However, these MOEAs do not work properly in many-objective optimization (i.e., with
problems having more than three objectives). The two most common approaches to deal
with many-objective problems are: (1) indicator-based MOEAs and (2) decomposition-
based MOEAs. The former refers to the use of methods to assess the quality of the
approximation generated by the MOEA using a performance indicator. The best-known
indicator-based MOEA is SMS-EMOA [179] which is based on the hypervolume indica-
tor and is, therefore, computationally expensive in many-objective problems. Meanwhile,
decomposition-based MOEAs have several advantages such as scalability to many-objective
problems (MaOPs) [61,104], a high search ability for combinatorial optimization [74,75,136],
and a high compatibility with local search procedures [97, 117, 167]. In this category,
MOEA/D [171] is a computationally efficient algorithm that decomposes a MOP into a
set of single-objective problems with neighborhood relationships. A typical MOEA based
on decomposition uses a type of scalarizing function whose mathematical properties may
be appropriate to solve MOPs with certain characteristics related to certain Pareto front
shapes or to the number of objectives.

1.1 Motivation

The choice of most suitable scalarizing function in a decomposition-based MOEA plays
an important role in its performance to solve MOPs. Moreover, some scalarizing functions
need to define a parameter value to which they may be very sensitive. For example, Penalty
Boundary Intersection (PBI) [171] has a penalty parameter to balance convergence and uni-
formity along the true Pareto front. Several studies [36,75,136,137,159,161] have provided
a sensitivity analysis in scalarizing functions, indicating that the choice of an appropriate
parameter value depends on specific MOP’s features such as the Pareto front shape [36,49],
the number of decision variables and the number of objective functions.

Two possibilities for dealing with the parameter setting problem in MOEAs are the
offline parameter tuning and the online parameter control strategies. The first one refers
to establishing a priori a set of parameter values and use them in all the iterations of an
MOEA with the aim of reaching the best possible performance. In contrast, the second case
includes adaptive mechanisms that modify the parameter values based on the information
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8 Introduction

gathered during the evolutionary search process. Our interest in this work is to explore both
options, using the following guidelines: 1) to apply an offline parameter tuning methodology
to gain a better understanding of the behavior and robustness of scalarizing functions in
decomposition-based MOEAs to solve a set of test problems, and 2) to explore online
adaptive mechanisms during the excution of an MOEA to combine the advantages provided
by diverse scalarizing functions.

1.2 Problem Statement

Parameter tuning for configuring a MOEA is a combinatorial optimization problem that
consists of choosing from among the set of possible components, assembling them and
assigning specific values to their free parameters [11] with the aim of achieving the best
possible performance. Formally, the tuning problem can be defined as:

Definition 1.2.1 Given a metaheuristic M, its categorical parameters Pc = {c1, . . . , ck}
and numerical parameters Pn = {n1, . . . , nm} that respectively belong to the domains
D = {d1, . . . , dm+k}, a set of problem instances (I) and a performance measure (q), the
goal is to find the values for the elements in Pc and Pn such that these values allow the
algorithm to obtain the best aggregated performance measure (c(q)).

Offline parameter tuning is computationally expensive, but it is useful for deriving
knowledge about the relation among parameters involved in an MOEA. This procedure
can tackle the problem from two perspectives: 1) specialization of algorithms which means
that for a given algorithm configuration, the aim is to find a subset of optimization problems
on which this algorithm obtains good results, and 2) generalization of algorithms in which
the aim is to find an algorithm configuration that solves the largest number of problems
with different features.

Meanwhile, online parameter tuning has an acceptable computational cost but requires
of mechanisms to handle the trade-off between the exploration and the exploitation proce-
dures. Namely, given a pool of algorithmic configurations, the aim is to make a balance
between exploring all posible options or exploiting the most promising configurations pre-
viously tested. The aforementioned strategies should be limited by our budget of objective
function evaluations. Here, another problem arises: we need to establish a fair comparison
between the offline or online parameter setting technique and the baseline algorithm.

We can explore the best configuration of a particular component or set of parameters
used by MOEAs. In our case, we focus this thesis on the tuning of scalarizing functions to
improve the performance of MOEAs.
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1.3. General and Particular Objectives 9

1.3 General and Particular Objectives

In the following, we state the objectives of this thesis.

General Objective

To design offline and online tuning techniques for adapting the scalarizing functions used by
multi-objective evolutionary algorithms with the goal of solving multi-objective optimiza-
tion problems with different Pareto front shapes and high dimensionality in the objective
space.

Particular Objectives

1. To investigate the most promising scalarizing functions and their properties to solve
different Pareto front shapes.

2. To design a methodology of parameter tuning with the aim of selecting the most
suitable scalarizing function for solving several classes of MOPs.

3. To analyze the performance of diverse scalarizing functions to solve MOPs with com-
plicated Pareto front shapes and high dimensional objective space.

4. To study the convergence speed of scalarizing functions in different types of Pareto
front shapes.

5. To study online adaptation techniques in decomposition-based MOEAs.

6. To design online adaptation strategies for different scalarizing functions.

1.4 Current Contributions

Our current contributions related to this thesis are the following:

Conference publications

• Miriam Pescador-Rojas and Carlos A. Coello-Coello, A novel local search mecha-
nism based on reflected-ray tracing coupled with MOEA/D. In Proceedings of the 2016
IEEE Symposium Series on Computational Intelligence, SSCI 2016. ISBN 978-1-5090-
4240-1

• Miriam Pescador-Rojas, Raquel Hernández Gómez, Elizabeth Montero, Nicolás
Rojas-Morales, Maŕıa-Cristina Riff, and Carlos A. Coello Coello, An Overview of
Weighted and Unconstrained Scalarizing Functions. In: Trautmann H. et al. (eds)
Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer
Science, vol 10173. Springer, Cham, pp. 499-513. ISBN 978-3-319-54156-3

• Miriam Pescador-Rojas and Carlos A. Coello-Coello, Collaborative and Adaptive
Strategies of Different Scalarizing Functions in MOEA/D, 2018 IEEE Congress on
Evolutionary Computation (CEC), Rio de Janeiro, 2018, pp. 1-8.
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10 Introduction

• Miriam Pescador-Rojas and Carlos A. Coello-Coello, Studying the effect of tech-
niques to generate reference vectors in many-objective optimization., In Proceedings
of The Genetic and Evolutionary Computation Conference, 2018

• Miriam Pescador-Rojas and Carlos A. Coello-Coello, Studying the Effect of Ro-
bustness Measures in Offline Parameter Tuning for Estimating the Performance of
MOEA/D, IEEE Symposium Series on Computational Intelligence, 2018

Journal publications

• Miriam Pescador-Rojas, Raquel Hernández Gómez, Elizabeth Montero, Nicolás
Rojas-Morales, Maŕıa-Cristina Riff, and Carlos A. Coello Coello, Performance im-
provement in Scalarizing Methods based on the Chebyshev function coupled to Multi-
objective Evolutionary Algorithms, 2019 (to be submitted to the IEEE Transactions
on Evolutionary Computation journal)

1.5 Organization of this work

The remainder of this thesis is organized as follows: Chapter 2 introduces some theoret-
ical background on multi-objective optimization. Also, we present a general overview of
multi-objective evolutionary algorithms (MOEAs). Chapter 3 provides the mathematical
definitions of diverse scalarizing functions and their model parameters. Moreover, we ana-
lyze the use of these functions in MOEAs. Chapter 4 explains the definition of an offline
and online parameter tuning. Besides, we present the most representative methods used for
configuring MOEAs. Chapter 5 presents our proposal of offline parameter tuning method-
ology which is employed in different case studies involving the performance of scalarizing
functions and their scalability in objective space. Chapter 6 describes our proposed ap-
proaches about the online adaptive strategies to use simultaneously multiple scalarizing
functions and techniques to control their parameter model. Finally, Chapter 7 presents
our general conclusions and some possible paths for future work. Appendix A describes
the test problems used in our comparative studies. Appendix B presents figures and tables
related to Chapter 5 for the case study involving the effect on convergence and distribution
of nondominated solutions produced by differente types of scalarizing functions. Appendix
C shows plots that illustrate the impact on convergence speed of the scalarizing functions
presented in the experiments of Chapter 6.
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Chapter 2

Background and Related Work

2.1 Multi-objective Optimization

Multi-objective optimization problems (MOPs) are very common in real-world applications,
and involve the solution of problems that have two or more (often conflicting) objectives,
which we aim to optimize at the same time.

Let us assume that, we have an MOP with m objective functions (fi, i = 1, . . . ,m) and n
decision variables (xi, i = 1, . . . , n). The goal of optimization is to minimize simultaneously
all objectives. Mathematically, it can be described as follows:

minimize f(x) =
[
f1(x), f2(x), . . . , fm(x)

]T
subject to x ∈ S

where S is the feasible space of solutions and x = [x1, x2, . . . , xn]T ∈ S is the vector of
decision variables. fi : IRn → Z1, i ∈ {1, . . . ,m} are the objective functions.

Some MOPs have complicated characteristics that cause difficulties for converging to
the Pareto optimal solutions. For example, a large number of decision variables (large-scale
MOPs) or a large number of objective functions (many-objective problems). Furthermore,
there are several Pareto front shapes such as linear, convex, concave, mixed or disconnected
geometries (see Fig. 2.1).
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Figure 2.1: Examples of Pareto Front shapes

1Where Z is the feasible objective region.
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12 Background and Related Work

2.1.1 Optimality Definitions

Next, we introduce some definitions to describe the concept of optimality in which we are
interested.

Pareto optimality. A decision vector x∗ ∈ S is a Pareto optimal solution if there does
not exist another decision vector x ∈ S such that fi(x) ≤ fi(x

∗) for all i = 1, ...,m and
fj(x) < fj(x

∗) for at least one index j. Equivalently, an objective vector z∗ ∈ Z is a Pareto
optimal solution if the decision vector corresponding to it is Pareto optimal.

Weak Pareto optimality. A point x∗ ∈ S , is weak Pareto optimal if there does not exist
another point, x ∈ S , such that fi(x) < fi(x

∗). In other words, a point is weakly Pareto
optimal if there is no other point that improves all of the objective functions simultaneously.

Pareto dominance.

1. Given two vectors u,v ∈ IRm, we say that u dominates v (u � v) iff u is better than
u. i.e. ∀i{1, . . . ,m}, ui ≤ vi ∧ ∃j ∈ {1, . . . ,m} : uj < vj .

If we compare two solutions, we have three possibilities: 1) u dominates v, 2) u is
dominated by v or 3) u and v are incomparable. Figure 2.2 illustrates these three
possibilities, in a bi-objective optimization problem.

2. We say that a set of non-dominated solutions (or Pareto optimal solutions) conforms
the Pareto Optimal Set (POS). Matematically, POS ∗ := {x ∈ S |6 ∃y ∈ S : y ≺ x}

3. In objective space, this set is called the Pareto Optimal Front (POF). Matemati-
cally, POF ∗ := {F(x) ∈ Z | x ∈ POS ∗}. We thus wish to determine the POF from
the set POS of all the decision variable vectors that satisfy Equation (2.1).

Figure 2.2: A bi-objective problem that illustrates the three possible cases where two solu-
tions are compared according to Pareto dominance.
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2.1. Multi-objective Optimization 13

2.1.2 Reference Points

There exist representative points in the objective space as follows.

Ideal objective vector. Let z∗ = [z∗1 , · · · , z∗m]T be a vector that denotes the optimum
value of the ith objective function of an MOP. It can be obtained by minimizing each of the
objective functions individually. In general, z∗ is unattainable in an MOP where objectives
have some degree of conflict among them.

Utopian objective vector. Let z∗∗ = z∗i −εi for all i = 1, ...,m, where εi > 0 is a relatively
small but computationally significant scalar.

Nadir objective vector. Let znad ∈ IRm be a vector defined by the upper bounds for the
objective function values of the Pareto optimal solutions.

During the iterative procedure of a Multi-Objective Evolutionary Algorithm (MOEA),
an estimation of the ideal and Nadir vectors can be computed by means of the minimum and
maximum objective values from the current set of Pareto optimal solutions. This procedure
may not obtain an exact computation of the ideal and Nadir objective vectors, mainly
because of setting inappropriate values by the influence of weak Pareto solutions. For more
details, a review of Nadir point estimation procedures can be consulted in [33]. Figure 2.3
shows an example of the ideal and Nadir vectors in a bi-objective optimization problem.

Figure 2.3: Reference points commonly used in multi-objective optimization

2.1.3 Performance Quality Measures

Performance indicators are mathematical models that give us a quantitative measure to as-
sess the quality of an approximate Pareto Front (PF). Let A ∈ S be a set of m−dimensional
objective vectors. A is called an approximate PF if any element of A does not weakly dom-
inate any other vector in A.
A should accomplish some key features: Firstly, convergence towards the POF, namely

that all elements in A are non-dominated and no other solutions exist which dominates
them. The second characteristic is the coverage (spread) along the PF which means that the
candidate solutions are located around all the regions of the PF. If A has a good coverage, it
can provide to the decision maker a wide variety of possibilities. The hypervolume [177] and
the unary R2 [15] indicators are examples of quality measures that incorporate both aspects,
and they are also Pareto compliant. Finally, a uniform distribution of the solutions along
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14 Background and Related Work

the PF is desirable. This refers to having solutions uniformly distributed in the objective
space. The three above aspects can be visualized in Figure 2.4. Unfortunately, there does
not exist a quality indicator that measures the three characteristics at the same time.

Figure 2.4: The key aspects to assess the quality of the POS (the circles represent the
candidate solutions, and the continuous line illustrates a POF with concave shape). (a) this
case has a good coverage and uniform distribution but not convergence to the real POF,
(b) solutions are located in the optimal PF but do not have a good coverage, (c) good
convergence and coverage but the solutions are not uniformly distributed and (d) this is
the desired case in which the candidate solutions reach the optimal PF, and have a good
coverage and a uniform distribution.

Let I(A) : Sk → IR, be a k−ary quality indicator function which assigns each vector
(A1,A2, . . . ,Ak) of k approximate PFs a real value I(A1, . . . ,Ak). It would be desirable
that a quality indicator is Pareto compliant. This means:

Definition 2.1.1 Assuming that greater indicator values correspond to higher quality, an
indicator I : S → IR is Pareto compliant if for all A,B ∈ S : A � B =⇒ I(A) ≥ I(B).

Next, we describe the most important performance measures adopted in this thesis.

2.1.4 Hypervolume Indicator

Zitzler and Thiele [179] proposed the Hypervolume (HV) indicator, also known as Lebesgue
measure (L) or S-metric. It measures convergence towards the PF and maximum spread
through the union of hypercubes formed by all non-dominated elements in A with respect
to a reference point r (see Figure 2.5, where it is shown an example of the computation of
the hypervolume in a bi-objective optimization case).

HV is Pareto compliant, but it becomes very costly as the number of objectives increases.
A high HV value is better. Its mathematical formulation is defined in the following equation:

HV (A, r) = L
(
∪µi=1 [A(i), r]

)
. (2.1)

2.1.5 Generational Distance Indicator and its variations

Van Veldhuizen and Lamont [154] introduced the Generational Distance (GD) indicator to
measure a relative distance between the obtained set of nondominated solutions and the
POF. Its mathematical definition is the following:

Let Z = {z1, z2, . . . z|Z|} be the best reference point set known, where |Z| is the cardi-
nality of Z. And A = {a1, a2, . . . a|A|} be the aproximated set of nondominated solutions.
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Figure 2.5: A graphical example of computing hypervolume in a bidimensional space.

GD(A,Z) =
1

|A|

√√√√ |A|∑
i=1

di
2, (2.2)

where di is the Euclidean distance from ai ∈ A to its nearest member in Z.

Coello and Cortés [22] proposed the Inverted Generational Distance (IGD) indica-
tor as a modification of GD. It has the aim of determining how far is located each element of
POF (Z) from the estimated set of nondominated solutions (A). Its mathematical definition
is:

IGD(Z,A) =
1

|Z|

( |Z|∑
i=1

d̂i
p
) 1
p
, (2.3)

where p ∈ N, usually set to p = 2 and d̂i is the Euclidean distance from zi ∈ Z to its nearest
member in A.

Schütze et al. [140] proposed a variation of IGD in order to make a fair comparison when
comparing outcomes of different magnitudes. This slight modification is defined by:

IGDp(Z,A) =
( 1

|Z|

|Z|∑
i=1

d̂i
p
) 1
p
. (2.4)

Both indicators, IGD and IGDp are Pareto non-compliant.

Recently, Ishibuchi [77] proposed the IGD+ indicator, which is weakly Pareto compliant.
Here, the modified distance and model are defined by the following equations:
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IGD + (Z,A) =
1

|Z|
∑
z∈Z

min
a∈A

d+(z,a), (2.5)

where d+(z,a) is modified distance calculation defined as follows:

d+(z,a) =

√√√√ m∑
i=1

(max{ai − zi, 0})2. (2.6)

The aforementioned IGD indicator and its variations can assess convergence and uniform
distribution along the PF. The smaller the indicator values the closer the approximation A
is to the reference set Z.

2.1.6 R2 indicator

Hansen and Jaszkiewicz [58] proposed a weakly Pareto complaint indicator, called R2 which
maps each objective vector in MOP into a scalar value through a utility function (i.e., a
scalarizing function). Given an approximate Pareto point set A and a set of weight vectors
λ, the R2 indicator is defined as:

R2(A : Λ, z∗) =
1

|Λ|
∑
λ∈Λ

min
a∈A
{ max
i∈{1,...,m}

λi|ai − z∗i | }, (2.7)

where z∗ is a reference point such as the ideal or the utopian point in order to normalize
the objectives. More details about scalarizing functions can be seen in Chapter 3. R2 is
a good option in many objective problems because of its lower computational cost. Lower
values of this indicator are desirable.

2.2 Multi-Objective Evolutionary Algorithms

The following sections present a general overview of the most representative Multi-Objective
Evolutionary Algorithms (MOEAs) to solve multi- and many-objective optimization pro-
blems. We classify them in two groups: Pareto-based and Non-Pareto-based MOEAs.

The use of Evolutionary Algorithms (EAs) to solve optimization problems has become
a trending research area, mainly in recent years [23]. An EA aims to solve complex op-
timization problems through stochastic mechanisms that provide good approximations to
optimal solutions in a reasonable computational time. Evolutionary optimization adopts
some specific terminology, such as the following:

• Population: a set of candidate solutions used in every generation of an EA. Typically,
an EA maintains fixed the population size.

• Individual: a member of the EA population that represents a candidate solution of
the optimization problem.

• Generation: an iteration of an EA.

• Fitness: a function derived from equation (2.1) (optimization problem) to obtain the
quality of a candidate solution.
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• Evolutionary operators: the procedures to generate new solutions (children) using
the individuals from the current population.

• Selection mating operator: a mechanism to choose a mating pool of parent solu-
tions whose information is used to generate new solutions.

• Elitism: a procedure to identify at each generation the best solution and to maintain
them during the evolutionary process.

• Survival selection: a mechanism to determine if a set of solutions survives and
continue to the next generation.

Figure 2.6 and Algorithm 1 show a typical structure of an EA. The first step consists
of initializing a random population of candidate solutions. Here, it is recommended to use
a strategy such as latin hypercubes for generating a uniform distribution of values of the
decision variable space to explore all possible regions in search space. The second step is to
evaluate each element in the population using the objective(s) function(s) that define the
problem. In the case of an MOP there exist strategies to transform a vector optimization
problem into a scalar value. The next step is to select the parent solutions which will be
used to generate new solutions via an evolutionary procedure. The selection of appropriate
evolutionary operators depends on the type of optimization problem to be solved. The
following step is to apply a survival selection procedure to choose the solutions that pass to
the next generation. These last four steps are repeated until a certain termination criterion
is reached. Lines 3, 4 and 6 in Algorithm 1 vary according to the type of MOEA adopted.

Algorithm 1: A general Evolutionary Algorithm procedure

Data: Optimization problem
Result: Solution of the optimization problem

1 Initialize population.
2 while termination criterion has not been reached do
3 Fitness Assignment.
4 Parent selection.
5 Evolutionary operators.
6 Survival selection.

In 1984, David Schaffer [138] adapted a simple genetic algorithm to solve multi-objective
optimization problems. The proposal, called Vector Evaluated Genetic Algorithm (VEGA),
was the first MOEA reported in the specialized literature and it consisted on dividing the
whole population into m subpopulations, at each iteration (m is the number of objectives).
Then, each solution in every subpopulation is assigned a fitness value based on one objective
function corresponding to their subpopulations (i.e., an individual in subpopulation one gets
evaluated with respect to objective one). VEGA uses proportional selection and applies
crossover between two solutions from different subpopulations. Then, the mutation operator
is applied to each individual. VEGA has two main drawbacks: it does not use an explicit
mechanism to maintain diversity and the population tends to converge to solutions which
are very superior in one objective, but very poor at others.
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Figure 2.6: General structure of an evolutionary algorithm.

2.2.1 Pareto-based MOEAs

The first generation of MOEAs were algorithms that used Pareto dominance in their se-
lection mechanism such as MOGA [44], NSGA-II [31] and SPEA [179]. MOEAs based on
Pareto dominance compare individuals preferring those that are less dominated by other
members in the population. When a tie occurs, a secondary selection criterion is applied,
usually oriented to improve the diversity of solutions. However, these MOEAs do not work
properly in many-objective optimization (i.e., with problems having more than three objec-
tives), because the selection pressure quickly dilutes as we increase the number of objectives.

The next section describes the most representative algorithms based on Pareto domi-
nance.

The Multi-Objective Genetic Algorithm (MOGA) [44] was proposed by Carlos
M. Fonseca and Peter J. Fleming in 1993. MOGA implemented a variant of the rank-
based fitness assignment method (which was proposed by Goldberg in 1989 [50]) to sort the
population. This method assings a rank value to each solution xi of the current population,
using Equation (2.8). Then, the rank value is interpolated considering the best and the
worst rank values.

rank(xi) =
1

1 + ni
, (2.8)

where ni is the number of solutions that dominate the solution xi.

Figure 2.7 illustrates this ranking process. In this example, the points a, b and c are
nondominated solutions, and therefore the rank value equal to one. Point d is dominated by
b and c and has a rank value equal to three, whereas point e is dominated by all the others
and it has a rank value equal to five. Algorithm 2 shows all the steps used by MOGA.
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Figure 2.7: An example of the ranking method used by MOGA.

Algorithm 2: The Multi-Objective Genetic Algorithm

1 Initialize population.
2 Evaluate objective values.
3 Assign rank based on Pareto dominance.
4 Compute niche count.
5 Assign linearly scaled fitness.
6 Assign Shared Fitness.
7 while termination criterion has not been reached do
8 Selection via stochastic universal sampling.
9 Single point crossover.

10 Mutation.
11 Evaluate objective values.
12 Assign rank based on Pareto dominance.
13 Compute niche count.
14 Assign linearly scaled fitness.
15 Assign shared fitness.

Deb et al. [31] proposed the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), which eventually became one of the most popular MOEAs used to solve MOPs
with two and three objective functions. In NSGA-II, every solution in the population has
two associated values which correspond to the two following mechanisms:
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1. The nondominated sorting method is used to rank the solutions based on Pareto
dominance. This is, the population composed by parents and offspring is classified in
different levels of dominance. The first step is to identify the nondominated solutions
and then, these solutions are removed to obtain a new set of nondominated solutions.
So, each subset is associated with different fronts as we can see in Figure 2.8.

2. The crowding distance procedure, which is used to preserve the diversity of solutions.
The first step in this procedure is to sort the set of solutions in ascending order
according to one objective function. Then, each solution is assigned the average
distance of its two neighboring solutions as we can see in Figure 2.8. This procedure
is used as a tie-breaker in the selection phase. Namely, if two solutions x and y are
in the same nondominated front, the solution with a higher crowding distance wins.
Otherwise, the solution with the lowest rank is selected.

Algorithm 3 shows all steps employed by NSGA-II. This MOEA adopts Simulated Bi-
nary Crossover and Polynomial-based Mutation, which are described in Algorithms 4 and
5, respectively.

Figure 2.8: Non-dominated sorting and crowding distance methods used by NSGA-II.

Eckart Zitzler [180] proposed the Strength Pareto Evolutionary Algorithm (SPEA)
which combines procedures from different MOEAs. SPEA works with two population: 1)
the whole population P , with dominated and non-dominated solutions and 2) a copy of
only non-dominated solutions stored in an external archive E with a limit on size. When
the external population size is exceeded, the members in the population are pruned using
the average linkage method [113] which is a clustering technique aimed to preserve the
characteristics of the nondominated front and to maintain a uniform distribution. At each
generation, SPEA employs a fitness assignment mechanism based on fitness sharing using
the information of the external population as follows:

• The fitness of each element i in the external population E is assigned using:

fi =
k

N + 1
(2.9)

where k represents the number of solutions dominated by the external solution i and
N is the population size of P .
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Algorithm 3: The Non-dominated Sorting Genetic Algorithm II

1 Initialize population.
2 Generate random population (size N).
3 Evaluate objective values.
4 Assign rank (level) based on Pareto dominance (sorting mechanism).
5 Generate offspring population.
6 Binary tournament selection.
7 Recombination and mutation.
8 while termination criterion has not been reached do
9 With parent and offspring populations, assign rank (level) based on Pareto

dominance (sorting mechanism).
10 Generate sets of non-dominated fronts.
11 for each front do
12 Determine crowding distance between points on each front.
13 Select points (elitist) on the lower front (with lower rank) and which have the

highest crowding distance value.

14 Binary tournament selection.
15 Apply recombination and mutation operators.

• The fitness of each element in population P is computed using:

fj =

∑
i,j�i si +N + 1

N + 1
(2.10)

where si refers the sum of the solutions dominated by elements j in the external
population.

Figure 2.9 illustrates an example of the fitness sharing procedure adopted in SPEA for
a bi-objective optimization problem.

Figure 2.9: An example of the assignment mechanism used by SPEA.

Algorithm 6 shows the details of SPEA.
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Algorithm 4: Simulated Binary Crossover

Data: x1 and x2: mating parents.
Pc: Crossover rate
ηc: crossover distribution index
n: the number of decision variables
xupper and xlower: the vector of upper and lower bounds for each decision variable.
Result: y1 and y2: a modified vector

1 i← 0;
2 r ← U [0, 1];
3 if r ≤ Pc then
4 do
5 r1 ← U [0, 1];
6 if r1 ≤ 0.5 then
7 β = 1 + (2(x1

i − xloweri )/(x2
i − x1

i ))

8 α = 2− β−(ηc+1)

9 r2 ← U [0, 1];

10 βq ←


(α× r2)

1
ηc

+1
if r2 ≤

1

α( 1

(2− α× r2)

) 1
ηc

+1
otherwise

11 y1
i = 0.5(x1

i + x2
i )− βq × (x2

i − x1
i )

12 β = 1 + (2(xupperi − x2
i )/(x

2
i − x1

i ))

13 α = 2− β−(ηc+1)

14 βq ←


(α× r2)

1
ηc

+1
if r2 ≤

1

α( 1

(2− α× r2)

) 1
ηc

+1
otherwise

15 y2
i = 0.5(x1

i + x2
i )− βq × (x2

i − x1
i )

16 else
17 y1

i = x1
i

18 y2
i = x2

i

19 i+ +

20 while (i 6= n);

2.2.2 Non-Pareto-based MOEAs

MOEAs based on Pareto dominance have difficulties to handle many-objective optimization
problems. Some of these problems are:

• The number of nondominated solutions increases exponentially with respect to the
number of objective functions. In consequence, MOEAs based on Pareto dominance
considerably reduce their selection pressure as the number of objectives increases.

• Density estimators are normally computationally expensive with a higher number of
objectives.
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Algorithm 5: Polynomial-based mutation

Data: y: vector to be modified.
Pm: Rate of use
ηm: mutation distribution index
n: the number of decision variables
yupper and ylower: the vector of upper and lower bounds for each decision variable.
Result: y′: a modified vector

1 i← 0;
2 do
3 r ← U [0, 1];
4 if r ≤ Pm then

5 δ1 ←
yi−yLoweri

yUpperi −yLoweri

;

6 δ2 ←
yUpperi −yi

yUpperi −yLoweri

;

7 r ← U [0, 1];

8 δq ←

[(2r) + (1− 2r) ∗ (1− δ1)ηm+1]
1

ηm+1 − 1 if r ≤ 0.5

1− [2(1− r) + 2 · (r − 0.5) ∗ (1− δ2)ηm+1]
1

ηm+1 otherwise

9 y′i ← yi + δq ·
(
yUpperi − yLoweri

)
10 i+ +

11 while (i 6= n);

Algorithm 6: The Strength Pareto Evolutionary Algorithm

1 Initialize population P .
2 Create empty external set E.
3 while termination criterion has not been reached do
4 Copy nondominated members of P to E.
5 Remove elements from E which are covered by any other member of E.
6 Prune E (using clustering) when the maximum capacity of E has been exceeded.
7 Compute fitness of each individual in P and in E.
8 Use binary tournament selection with replacement to select individuals from

P + E (multiset union).
9 while the mating pool is not full do

10 Apply crossover and mutation operators.

• In a high dimensional objective space, is difficult for the decision maker to establish
preferences.

The two main approaches to deal with many-objective problems are: (1) indicator-based
MOEAs and (2) decomposition-based MOEAs. The former refers to the use of methods to
assess the quality of the approximation generated by a MOEA to select solutions or as a
secondary selection criterion, whereas the latter transforms a multi-objective problem into
several single-objective problems which are solved simultaneously.
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Indicator-based MOEAs favor solutions that highly contribute to a performance indi-
cator, which reflects a quality aspect regarding convergence and diversity of the current
population. The indicator-based Evolutionary Algorithm (IBEA) [181] was proposed as a
general framework for coupling evolutionary algorithms to a selection mechanism based on
a performance indicator. IBEA is an algorithm that incorporates a mating selection using
binary tournaments and includes an iterative procedure for removing the worst individual
from the population to update the fitness values of the remaining individuals. Another
well-known indicator-based MOEA is the S-Metric Selection Evolutionary Multiobjective
Optimization Algorithm (SMS-EMOA) [41] which is a steady-state algorithm that generates
at each generation only one new individual with the goal of maximizing the hypervolume
indicator. In SMS-EMOA, the primary selection criterion mechanism is the non-dominated
sorting algorithm, and the secondary criterion is the hypervolume which is applied only to
the last front. SMS-EMOA is a powerful MOEA, but it is too expensive (computationally
speaking), specially in many-objective optimization problems.

On the other hand, decomposition-based MOEAs transform a MOP into several single-
objective subproblems, and each one is associated with a different target direction that
optimizes a particular aggregating function. Decomposition-based MOEAs have several
advantages such as scalability to many-objective problems (MaOPs) [61,104], a high search
ability for combinatorial optimization [74,75,136], and a high compatibility with local search
methods [97,117,167].

In this thesis, we focus on MOEAs that use reference vectors and aggregating functions.
The next section provides details of the most representative algorithms within this class.

The framework called Multi-Objective Evolutionary Algorithm based on De-
composition (MOEA/D) proposed by Zhang [171] has been widely used to solve a large
number of MOPs. MOEA/D decomposes a MOP into several single-objective subproblems
which are solved in a collaborative manner. Each solution from the population is associated
with a weight vector to optimize a scalarizing function. Two goals should be accomplished
during the search process. First, to minimize the distance between a candidate solution and
the reference point (typically, the ideal vector) to achieve convergence towards the Pareto
optimal front. The second step is to maintain a diversity of solutions through the target
directions of the search previously defined by a uniform distribution around all regions of
objective space. A crossover operator is applied only in a neighborhood of solutions pre-
defined according to the nearest neighbors in weight vector space. Figure 2.10 shows an
example of the search process applied by MOEA/D. Here, five target directions (λ1, . . . , λ5)
are defined in two-dimensional space. Each solution optimizes one direction to converge to
the Pareto optimal front.

Algorithm 7 shows the main steps employed in MOEA/D. The initialization process
(lines 1 to 4) generates a set of N weight vectors, a population with N candidate solutions
and a reference point. Each solution is evaluated by a scalarizing function g(f |λj ,Ω). In the
iterative process, each element xs from the population is enhanced by applying evolutionary
operators via a selection of parent solutions from its neighborhood. After that, an update
process modifies the reference point and the current population according to the scalarizing
function values (see Chapter 3, for more details about scalarizing functions). The steps
described in lines 6 to 12 are repeated until the stopping criterion is satisfied.

The first version of MOEA/D adopted Simulated Binary Crossover (SBX) [30] and
Polynomial-based Mutation (PM). These evolutionary operators are described in Algo-
rithms 4 and 5. The framework of MOEA/D was tested with the Weighted Sum, Chebyshev
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Figure 2.10: Example of the search process in MOEA/D in two dimensions.

Algorithm 7: MOEA/D algorithm

Data: N: population size
T: neighborhood size
Result: Pareto Set Approximation

1 Initialize N weight vectors λ1, . . . , λN .
2 Determine the neighborhood of each weight vector by recording its nearest T

neighbors.
3 Initialize the population x1, . . . , xN and evaluate them.
4 Initialize the reference point z∗.
5 Reproduction and update
6 while Stopping conditions are not satisfied do
7 for each sε{1, . . . , N} do
8 Select mating parents from the neighborhood of xs.
9 Generate a new solution y by using operators of recombination and mutation.

10 Update the reference point z∗.
11 Evaluate new solutions via scalarizing function.
12 Update the population.

and Penalty Boundary Intersection (PBI) functions (their mathematical definition can be
seen in Chapter 3). PBI attained the best performance in problems with more than three
objectives. In the other cases, a good option was the Chebyshev function.

There are several enhanced versions of MOEA/D. Some modifications include the fo-
llowing: 1) to replace the genetic operators by other evolutionary approaches [102], 2) to
modify the selection and replacement strategies, 3) the use of online tuning techniques or
mechanisms based on learning period models to select an operator from a predefined pool.
Next, we describe the most representative approaches that have been proposed in the spe-
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cialized literature. MOEA/D-DE [102] replaces the genetic operators SBX and PM by those
of Differential Evolution (DE) [145] and introduces an additional parameter δ to balance
the selection of the mating parents between the neighborhood of the target subproblem and
the whole population. MOEA/D-DE was able to successfully solve the test instances of
the CEC 2009 competition [99]. In [65], Huang and Li presented a comprehensive study of
MOEA/D-DE using different DE schemes.

Chen et al. [19] replaced the DE operator by a guided mutation technique [64]. Ad-
ditionally, a replacement mechanism was incorporated via a priority queue to monitor the
subproblems that were successfully updated before. This is similar to the process adopted
in priority-scheduling used in operating systems. In [172], Zhang proposed the MOEA/D-
DRA with two crossover operators: Simplex Crossover (SPX) and Center of Mass Crossover
(CMX). Every k generations, MOEA/D-DRA monitors a relative decrease of the objec-
tives for each subproblem and based on this, a tournament selection strategy is employed.
MOEA/D-AMS proposed in [21] improved MOEA/D-DE using two strategies: 1) a con-
trolled selection of subproblems with the goal of identifying unsolved subproblems to use
more computational effort on these, and 2) an adaptive mating selection mechanism that
considered the Euclidean distance between individuals in decision space instead of the dis-
tance between weight vectors. Adaptive Differential Evolution for Multiobjective Problems
(ADEMO/D) [155] incorporated a pool of mutation strategies adaptation inspired by the
adaptive SaDE algorithm. Each strategy is associated with a probability of use which is
updated based on its success and failure counters. Other proposals include adaptive mech-
anisms. For more details see Chapter 4.

The Improved Metaheuristic Based on the R2 Indicator for Many-Objective
Optimization (MOMBI-II) proposed by Hernández and Coello [61] is an effective al-
gorithm to tackle many-objective problems. MOMBI-II used the Achievement Scalarizing
Function (ASF) [162] which outperforms the Chebyshev model adopted in MOEA/D (for
more details see Chaper 3). In contrast, MOMBI-II computes the R2 indicator for rank-
ing the current population. If two individuals contribute with the same utility, then the
tiebreaker is set by the lower Euclidean distance. MOMBI-II incorporates various reference
points: z∗, znadir, zmin and zmax. The last two are updated in an adaptive way according
to the variance of the Nadir point. They are also used to normalize each objective in the
current population using:

f ′i =
fi(x)− zmini

zmaxi − zmini

∀i ∈ {1, . . . ,m}. (2.11)

MOMBI-II is more computationally expensive than MOEA/D but is effective in avoiding
the generation of weakly Pareto optimal solutions. Algorithm 8 shows the general steps
executed by MOMBI-II.

The Non-dominated Sorting Genetic Algorithm-III (NSGA-III) [82] incorporates some
procedures from the NSGA-II but it incorporates the use of reference points and a scalarizing
function.

NSGA-III uses the general framework of a genetic algorithm: it initializes the population
and applies mating selection for creating new solutions via evolutionary operators (SBX and
PM). In order to solve a MOP, NSGA-III uses the following operators:

• It establishes a set of reference directions for each objective function (similar to
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Algorithm 8: MOMBI-II algorithm

Data: N: population size
Result: Pareto set approximation

1 Initialize N weight vectors λ1, . . . , λN .
2 Initialize the population x1, . . . , xN and evaluate each individual.
3 Compute the L2 − norm of objective space for the population.

4 Initialize the reference points: zmin ← z∗ and zmax ← znad.
5 Reproduction and update
6 while Stopping conditions are not satisfied do
7 for each sε{1, . . . , N} do
8 Select mating parents.
9 Generate new solutions y by using operators of recombination and mutation.

10 Compute the L2 − norm of objective space for the population
11 Normalize the objective functions.
12 Execute the R2 ranking procedure (Algorithm 9)).
13 Update the population.
14 Update the reference point z∗ via Algorithm 10.

Algorithm 9: R2 ranking algorithm

Data: Population P , set of weight vectors Λ
Result: Ranked population

1 Set p.rank ← p.α←∞∀p ∈ P .
2 for λ ∈ Λ do
3 for p ∈ P do
4 p.α← g(p.F|0, λ).

5 Sort P w.r.t. the fields α and L2 in increasing order; rank ← 1.
6 for p ∈ P do
7 p.rank ← min{p.rank, rank}. rank ← rank + 1.

MOEA/D).

• At each generation, nondominated sorting is applied to the population in order to
identify levels of nondominance.

• The solutions are transformed using a normalization process that involves the ideal
point.

• Each solution optimizes the ASF and includes a second selection mechanism based on
the Euclidean distance between the candidate solution and the associated reference
point.

Figure 2.11 shows an example related to the operation of NSGA-III. The dotted lines
represent the target directions established by the reference point which is shown in red color.
The normalized candidate solutions in blue color are associated to each target direction.

Algorithm 11 shows the general structure of NSGA-III.
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Algorithm 10: Update Reference Points

Data: zmin, zmax, population P
Result: updated reference points zmin, zmax

1 Update z∗ and znadir:
2 zmin ← min{zmini , z∗i } ∀ ∈ {1, . . . ,m}
3 Store znad in record.

4 Obtain vector of variances v ∈ IRm for znad from record.
5 if maxj∈{1,...,m}vj > α then

6 zmaxi ← maxj∈{1,...,m} z
nad
j ∀i ∈ {1, . . . ,m}

7 else
8 for all i ∈ {1, . . . ,m} do
9 if |zmaxi − zmini | < ε then

10 zmaxi ← maxj∈1,...,m z
max
j .

11 Mark zmaxi .

12 else if znadi > zmaxi then
13 zmaxi ← 2znadi − zmaxi .
14 Mark zmaxi .

15 else if vi = 0 and zmaxi has not been marked recently then
16 Obtain the maximum value α for znadi from record.
17 zmaxi ← (zmaxi + α)/2.
18 Mark zmaxi .

19 Set p.rank ← p.α←∞∀p ∈ P
20 for λ ∈ Λ do
21 for p ∈ P do
22 p.α← g(p.F|0, λ).

23 Sort P w.r.t. the fields α and L2 in increasing order rank ← 1.
24 for p ∈ P do
25 p.rank ← min{p.rank, rank}.
26 rank ← rank + 1.

2.3 Summary

In this chapter, we explained the basic mathematical definitions that are required to under-
stand the rest of the thesis. We also provided a description of the performance indicators
that are adopted to validate our results.

We discussed the characteristics of diverse MOEAs based on Pareto dominance and
MOEAs that use reference points and scalarizing functions. We provide details of the
MOEA/D and MOMBI-II frameworks because our experiments are focused on the behavior
and performance of scalarizing functions.

The next chapter provides a review of several scalarizing functions used in the areas of
mathematical programming and evolutionary computation. We will explain their mathe-
matical properties based on their model parameters and their effect in different evolutionary
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Figure 2.11: A graphical representation of the operation of the NSGA-III algorithm in a
problem with two objective functions.

Algorithm 11: The NSGA-III algorithm

Data: A set of structured reference points and a parent population Pt
Result: A new population Pt+1

1 St = ∅, i = 1.
2 Qt = Recombination + mutation (Pt).
3 Rt = Pt ∪Qt.
4 (F1, F2, . . .) = non-dominated-sort(Rt).
5 while |St| ≤ N do
6 St = St ∪ Fi and i = i+ 1

7 Last front to be included: Fl = Fi.
8 if |St| = N then
9 Pt+1 = St, break.

10 else

11 Pt+1 = ∪l−1
j=1Fj Points to be chosen from Fl : K = N − |Pt+1|.

12 Normalize objectives and create reference set Zr, using (fn, St, Z
r, Zs, Za)

13 Associate each member s of St with a reference point, [π(s), d(s)] associate with
(St, Z

r)%π(s) to the closest reference point, d : distance between s and π(s).
14 Compute niche count of reference point j ∈ Zr : ρj = Σs∈St/Fl((π(s) = j).

15 Choose K members one at a time from Fl to construct Pt+1.
16 Niching(K, ρj , π, d, Zr, Fl, Pt+1).

algorithms of the state-of-the-art as well as the challenges that they face to tackle diverse
Pareto front shapes.
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Chapter 3

Weighted and Unconstrained
Scalarizing Functions

A Scalarizing Function (SF) also known as utility or aggregation function is a useful mathe-
matical programming technique used to transform a multi-objective optimization problem
(MOP) into a single-objective one, its goal is to combine a vector of objective functions
y = [f1, . . . , fm]T to obtain a scalar value g(y) : IRm → IR. There exists a large variety
of SFs that can be employed as a priori, a posteriori or progressive preference articulation
mechanisms [105]. SFs can be classified according to the way in which they perform the
transformation in weighted/unweighted SFs and if they add extra restrictions into the origi-
nal MOP. Figure 3.1 shows a taxonomy of the SFs based on their mathematical definition.

Scalarizing Functions

Unweighted

ConstrainedUnconstrained

Weighted

ConstrainedUnconstrained

Figure 3.1: A taxonomy of scalarizing functions.

Some examples of weighted and unweighted SFs without constrained functions are the
global criterion method [109, p. 67] and the Lp-metric function [109, p. 70]. Unweighted and
constrained SFs have been used in methods such as: ε-Constraint [109, p. 85], Lexicographic
ordering [109, p. 119], Light Beam Search [109, p. 179], Reference Direction [109, p. 191],
whereas some instances of weighted and constrained approaches are the Hybrid Method [109,
p. 96] and the Reference Direction Approach [109, p. 185].

In this thesis, we focus on weighted and unconstrained SFs which are mathematically
defined as follows:

minimize g(f ′(x);λ) (3.1)

subject to x ∈ S, (3.2)

where λ = {λ1, . . . , λm} is a weight vector and each component of λ must satisfy that
λi > 0 for all i ∈ {1, . . . ,m} and

∑m
i=1 λ

i = 1 [135]. f ′(x) is a normalization of the objective
vector, which allows handling negative or incommensurable objectives, and may adopt one
of the forms:

f ′(x) := f(x)− z ∗, (3.3)

f ′′(x) :=
f(x)− z ∗

znad − z ∗
, (3.4)
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f ′′′(x) := znad − f(x). (3.5)

Other forms to transform the objective functions to dimensionless form are presented in
[105, p. 373]. In [120, p. 865], evidence is provided to validate that the lack of a normalization
process causes deterioration in the performance of an MOEA based on decomposition.

The use of weight vectors in the SFs can be seen as a representation of order that defines a
relative importance of the objective functions in a MOP establishing search directions in the
objective space. Typically, the more uniform is the distribution of these search directions,
the more the diversity of solutions over the objective space. Setting one or more of the
weight components to zero can result in weak Pareto optimality [105].

In general, weighted and unconstrained SFs minimize some distance metric between a
candidate optimal solution and a reference point (e.g., the ideal or nadir vectors) using
a target direction (weight vector). Other SFs combine two distance metrics and some of
them also consider the deviation distance to the weight vector. Some desirable properties
for capturing optimal solutions via SFs are described next:

1. Sufficient condition. SFs should be monotonically increasing concerning every objec-
tive function. Namely, g(f ′(x);λ) is strictly increasing if it is nondecreasing and if it
presents a positive response to an increase in at least one input value.

Mathematically, an SF is Pareto compliant, if it satisfies:

∀x,y ∈ S : x ≺ y ⇒ g(f ′(x);λ) < g(f ′(y);λ), (3.6)

and weakly Pareto-compliant if it holds:

∀x,y ∈ S : x � y ⇒ g(f ′(x);λ) ≤ g(f ′(y);λ). (3.7)

Otherwise, an SF is Pareto non-compliant.

2. Necessary condition. Any Pareto optimal point should be obtainable by an SF by
adjusting its model parameters or weight vectors.

3. In addition, the SFs should avoid numerical problems such as overflow and underflow.

During the last decades, SFs have been successfully coupled to MOEAs such as
MOEA/D [171], MOMBI-II [61], NSGA-III [82], or RVEA [20] achieving a good perfor-
mance in terms of convergence and uniform distribution along the Pareto optimal front
(especially in MOPs with many objectives) at a low computational cost. Nevertheless, sev-
eral studies [36, 49, 75, 81, 124] have revealed that their efficiency depends strongly on the
Pareto front geometry and the number of objective functions. For example, the weighted
sum function [166] has a faster convergence speed [79] but can only solve MOPs with convex
Pareto front shapes. Conversely, SFs with additional model parameters such as the Penalty
Boundary Intersection (PBI) function are able to handle MOPs with different Pareto front
geometries. However, several experimental works [75, 110, 136, 137] have shown a high pa-
rameter sensitivity on the penalty parameter of PBI (θ), indicating that the choice of an
appropriate value depends on specific features of the MOP.

This chapter is focused on the study of weighted and unconstrained SFs. We analyze
their mathematical definition and properties to generate Pareto optimal solutions in MOPs
with different features. Moreover, we present a review of the most representative MOEAs
in which each SF has been employed.
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3.1 Scalarizing Functions based on the Lp metric

The Lp−metric function also known as the weighted norm (WN) model [168] is one
SFs to that best adapts any Pareto front shape. It has been used recently in [75,81] to deal
with different Pareto front curves. Its mathematical definition is described in the following
equation:

min glp(x|λ, f ′, p) =
( m∑
i=1

λi
∣∣f ′i(x)

∣∣p) 1
p
, (3.8)

where f ′i(x) can be defined by equations (3.3), (3.4), (3.5) and the exponent p is a variable
parameter that can be set in the range 1 ≤ p < ∞. The basic idea of WN is to minimize
the distance from the POF to the reference point, being able to generate Pareto optimal
solutions when p ∈ [1,∞) [109, p. 98].

A specific p−value can represent other classical functions; one example is the so-called
weighted sum method [166]. When p = 1, this model involves a linear combination of
objectives, but does not provide a necessary condition for Pareto optimality, neither captures
solutions on non-convex Pareto front shapes. When p = 2, the weighted least square
model [109, p. 97] is represented. Athan and Papalambros [4] proved that higher p values
increase the effectiveness of the method in providing the whole Pareto optimal set. If
p → ∞, the model is transformed into the Chebyshev function, also known as weighted
min-max method [85] that can achieve Pareto optimal points, especially with a non-convex
Pareto front geometry.

In figure 3.2, we can appreciate a contour line plot to visualize the effect of the search
performed by the three aforementioned models. In this plot, the same direction vector
λ = (0.5, 0.5) is used. The L1 metric finds optimal solutions only in the extremes of the
Pareto front, while L2 can find more than one solution if the curvature coincides with the
Pareto front. L∞ intersects one optimal solution in the same search direction. It shows the
influence of the curvature of SFs to obtain candidate solutions, given a specific Pareto front
shape.

Considering this effect, Ishibuchi [75, 81] have proposed local estimations in the Pareto
front curvature to adjust the p−value. In [159], the behavior of WN was studied on
MOEA/D, using continuous test problems having up to 7 objectives. The value of p was
adaptively fine-tuned based on a local estimation of the Pareto front shape, taking different
values from the set {1/2, 2/3, 1, 2, 3, . . . , 10, 1000}.

The Weighted Sum (WS) [166] is one of the most commonly used SFs, which linearly
combines the objectives as follows:

min gws(x|λ, f ′) =
∑
i

λif
′
i(x). (3.9)

WS cannot generate solutions in concave regions of the Pareto front [98]. Some attempts
have been proposed to alleviate this drawback, such as its combination with other SFs
[67, 79, 80], the use of dynamic weights in combination with a secondary population [84],
and the use of WS as a local search engine [121, 160]. Additionally, some studies have re-
ported that WS is an effective method for solving many-objective problems [73, 114]. This
SF has been integrated into several evolutionary algorithms (see e.g., [78, 171]).
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Figure 3.2: A contour line plot for the Lp− metric function when p = 1, p = 2, p→∞ and
λ = (0.5, 0.5) in a bi-objective optimization problem.

Weighted Compromise Programming (WCP) [168] is a variation of the Global
Criterion Method [23, p. 32] that includes the weight vector for modeling preferences as
follows:

min gwcp(x|λ, f ′, p) =
∑
i

(
λif
′
i(x)

)p
. (3.10)

A high value of p ∈ (1,∞) is preferred to obtain the complete Pareto Optimal Set (POS) [4].
In [98], the authors recommend to use odd values for this parameter and coupled WCP
(p = 9) with a metaheuristic for solving convex and concave Pareto fronts with 2 and 3
objectives.

The Weighted Power (WPO) [100], also known as the p-power Lagrangian formula-
tion, is given by:

min gwpo(x|λ, f ′, p) =
∑
i

λi
(
f ′i(x)

)p
. (3.11)

For a suitable value of p ∈ [1,∞), this SF can also find optimal solutions in concave Pareto-
fronts [101, 105]. In [34], WPO was coupled with a genetic algorithm, where the weight
vectors and the exponent p were updated during the evolutionary process according to
predefined rules.

3.2 Scalarizing Functions based on Chebyshev model

The Chebyshev (CHE) function [85] also known as the weighted min-max [67, 105]
defined in equation (3.12) minimizes the maximum value found by the linear combination
between each objective function and a weight vector component. This model is weakly
Pareto compatible.

min gche(x|λ, f ′) = max
i,...,m

{
λi
∣∣f ′i(x)

∣∣} . (3.12)
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The CHE function was used in the MOEA/D [171] framework showing a clear effec-
tiveness to obtain at least weakly Pareto optimal solutions in non-convex Pareto fronts, in
contrast to the weighted sum method. Graphically, the optimal solutions are located in the
knee and extremes of the Pareto front (see left column in Table 3.1).

A recent analysis [46] has revealed that the search ability of CHE is equivalent to Pareto-
based methods. Thus, in many-objective problems, the probability to obtain non-dominated
solutions using CHE is lower than the WN (0 < p < ∞) and equivalent to Pareto-based
methods. CHE has been adopted by different MOEAs (see e.g., [60, 171]).

Some modified CHE models have been introduced with the goal of avoiding the gen-
eration of weakly Pareto solutions. The so-called Augmented Chebyshev (ACHE)
function [144] given by equation (3.13) considers the CHE function and an augmented term
defined by the L1− metric which is multiplied by a small positive scalar α. In contrast to
equation (3.12), the ACHE function generates different slopes for each objective function.

min gache(x|λ, f ′, α) = max
i,...,m

{
λi
∣∣f ′i(x)

∣∣}+ α

m∑
i=1

∣∣f ′i(x)
∣∣. (3.13)

A too small value of α may result in a loss of significance of the extra term, still leading
to the generation of weakly Pareto optimal solutions. However, a too large value of this pa-
rameter may cause that some non-dominated points become unreachable [129]. Although
the recommendation is to use small values of α, such as [0.001, 0.01] [143], some studies
have shown a better performance when using large values, revealing a high sensitivity of
this parameter on discrete many-objective problems [80].

Another variation to the CHE model is known as modified Chebyshev (MCHE)
function [86] defined by equation (3.14). Here, both terms described in the ACHE model
are affected by a weight vector. This model generates the same slopes for all objective
functions. More details can be consulted in [109, p. 101]. Both, the ACHE and MCHE are
compatible with Pareto optimality.

min gmche(x|λ, f ′, α) = max
i,...,m

{
λi

(∣∣f ′i(x)
∣∣+ α

m∑
i=1

∣∣f ′i(x)
∣∣)}, (3.14)

where α should be a small positive value. The features of this method are discussed and
illustrated in [109]. To the best of our knowledge, this SF has not been exploited in any
MOEA.

In the CHE, ACHE and MCHE models, the optimal achievement solutions are located
in an opposite direction to the reference line established by each weight vector. The use
of reciprocal weight vectors corrects this behavior. The most common approach is the
so-called Achievement Scalarizing Function (ASF) [162], similar to the CHE model.
This function minimizes the maximum value found multiplying each objective function by
a reciprocal weight vector. It is given by equation (3.15).

min gasf (x|λ, f ′) = max
i,...,m

{f ′i(x)

λi

}
. (3.15)
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The ASF model has been widely employed in solving many-objective optimization pro-
blems (more than three objectives) with different decomposition-based MOEAs such as
MOMBI-II [61] NSGA-III [82] and MOEA/D-GRA [175]. ASF can find Pareto opti-
mal points parallel to λ, improving diversity in many-objective problems, as was shown
in [35,61,165].

There are interesting observations about the convergence and distribution of the Pareto
optimal solutions found by the CHE function and its reciprocal version (ASF). Table 3.1
shows the median execution of 30 independent runs using the MOEA/D framework [171] on
DTLZ1, DTLZ3, and DTLZ3−1 which have linear, concave and convex Pareto front shapes,
respectively. Also, we computed the mean and standard deviation for two performance
indicators: Hypervolume (HV) [179] and a modification of Inverted Generation Distance
(IGD+) [75] to measure convergence, spread, and uniformity. Here, we can appreciate that
CHE finds solutions in the extremes and the knee of the Pareto front (thus, the HV is
greater than ASF). In contrast, a better uniform distribution of the optimal points was
reached by ASF in all three Pareto front shapes tested.

In the case of the augmented Chebyshev functions, an appropriate value for the param-
eter α has an impact on the performance of the MOEA. In [129] and [27] it was mentioned
that a small α value can find all nondominated solutions in non-convex problems while, on
the other hand, a large α value prevents the generation of weakly Pareto optimal solutions.
Moreover, a too small α value may cause an underflow numerical problem which results is
a loss of significance in the augmentation term.

The weighted Chebyshev functions and its variations have been commonly used in the
improved MOEA/D versions [19, 65, 102, 172]. These proposals have incorporated other
changes in their components such as the evolutionary operators or have included strategies of
resource allocation based on the SF performance. Similar to the ACHE function, Miettinen
[109, p. 111] proposed the Augmented Achievement Scalarizing Function (AASF)
[109, p. 111] defined in equation (3.16). In this case, the augmented term is equal to the
weighted sum function with reciprocal weight vector. It is noted that the formulation of
ASF and AASF does not include the absolute value of f ′.

min gaasf (x|λ, f ′, α) = max
i,...,m

{f ′i(x)

λi

}
+ α

m∑
i=1

f ′i(x)

λi
, (3.16)

α should take small values. In [151], it was recommended to set α ≈ 10−4. There are few
MOEAs that adopt this scalarizing function [134,151].

Figure 3.3 shows the parallel coordinates for CHE, ASF and AASF (α = 0.1) to ap-
preciate their behavior in the search process for bi-objective problems considering convex,
concave and linear Pareto fronts.

In this thesis, we introduce two additional models using the ACHE and MCHE models,
defined by equations (3.17) and (3.18), respectively. The aim of these two additional models
is to corroborate if reciprocal weight vectors are more beneficial in previous CHE versions.

min grache(x|λ, f ′, α) = max
i,...,m

{∣∣∣∣f ′i(x)

λi

∣∣∣∣}+ α

m∑
i=1

∣∣f ′i(x)
∣∣, (3.17)
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Table 3.1: Distribution of Pareto optimal solutions on linear, convex and concave Pareto
front shapes.

CHE ASF

DTLZ1

IHV = 2.6969e+01(1.4894e-04) IHV = 2.6900e+01(1.0348e-02)

IGD+ = 1.6334e-02(2.7468e-04) IGD+ = 1.1585e-02(1.7939e-04)

DTLZ3

IHV = 2.6385e+01(5.3241e-03) IHV = 2.6374e+01(1.0869e-02)

IGD+ = 3.1332e-02(2.1360e-03) IGD+ =2.3957e-02(2.3843e-03)

DTLZ3−1

IHV = 2.6920e+01(2.4372e-03) IHV = 2.6871e+01(2.6856e+01)

IGD+ = 1.5650e-06(8.2029e-07) IGD+= 8.8691e-05(5.9436e-05)

min grmche(x|λ, f ′, α) = max
i,...,m

{∣∣f ′i(x)
∣∣+ α

∑m
i=1

∣∣f ′i(x)
∣∣

λi

}
. (3.18)

The weighted Chebyshev method and its variations have been commonly used in the im-
proved MOEA/D versions ( [102], [19], [65], [172], [21], [155], [175]).

In Figure 3.4, we can appreciate the parallel coordinates for the aforementioned aug-
mented CHE models. In Chapter 6, we present a parameter sensitivity study related to the
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Figure 3.3: (a) The CHE function, (b) the ASF model and (c) the AASF with α = 0.1. In
the three cases, the target direction is defined by λ1 = 0.3 and λ2 = 0.7
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Figure 3.4: Graphical comparison of the contour lines for (a) The MCHE, (b) RMCHE, (c)
ACHE, (d) RACHE functions with α = 0.1 and target direction is defined by λ1 = 0.3 and
λ2 = 0.7

augmented SF based on the CHE model.

3.3 Scalarizing Functions based on Penalty Boundary Inter-
section model

The Penalty Boundary Intersection (PBI) [171] draws ideas from the Normal-Boundary
Intersection (NBI) method [28], defined as follows:

min gpbi(x|λ, f ′, θ) = d1 + θd2 (3.19)

where d1 =

∣∣∣∣f ′(x) •
λ

‖λ‖

∣∣∣∣ and d2 =

∥∥∥∥f ′(x)− d1
λ

‖λ‖

∥∥∥∥ .
d1 represents the distance between the reference point and an optimal solution to assess con-
vergence. Similarly, d2 defines the perpendicular distance between the reference vector and
an optimal point to assess uniformity. θ is a penalty parameter that balances convergence
(measured by d1) and diversity (measured by d2), both to be minimized [164]. The PBI
function can produce uniformly distributed solutions in objective space by setting appro-
priate values for θ. Some studies [75, 136, 137] have provided a sensitivity analysis of PBI,
indicating that the choice of a suitable θ value depends on specific features such as the Pareto
front geometry [36, 48, 49], the number of decision variables and the number of objectives.
More recently, some attempts have been made to adapt this parameter into MOEA/D [164].
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The Inverted Penalty Boundary Intersection (IPBI) [136] is an extension of PBI,
given by:

min gipbi(x|λ, f ′, θ) = θd2 − d1

where d1 =

∣∣∣∣f ′′(x) •
λ

‖λ‖

∣∣∣∣ and d2 =

∥∥∥∥f ′′(x)− d1
λ

‖λ‖

∥∥∥∥ ,
where f ′′ is defined as:

f ′′(x) := znad − f(x), (3.20)

and znad = (znad1 , . . . , znadm )T is the Nadir point, i.e., z∗i := max
{
fi(x) | x ∈ POS

}
. IPBI

aims to enhance the spread of solutions in objective space and to improve the performance
in many-objective problems [136]. As in PBI, θ handles the balance between d1 and d2.
However, a solution having a large d1 and a small d2 is considered as a better solution.
When θ = 0, the behavior of IPBI is similar to WS. In [136, 137], a set of different values
for θ were tested in MOEA/D for solving many-objective problems with diverse features.

Recently, Ishibuchi proposed two variations of the PBI model. The first variation is
called the Two-level Penalty Boundary Intersection (2LPBI) [76] given by:

min g2lpbi(x|λ, f ′, θ1, θ2) :=

{
d1 + θ1d2 if d2 ≤ d∗

d1 + θ1d
∗ + θ2 (d2 − d∗) if d2 > d∗,

(3.21)

where θ1 < θ2 and d∗ is a parameter to switch the penalty value between θ1 and θ2. If d2

is smaller than d∗, a small penalty value θ1 is used. If d2 is larger than d∗, a larger penalty
value θ2 is used for the amount of the violation: d2 − d∗. Its authors recommend to use:
θ1 = 0.1 and θ2 = 10.

The value of d∗ is specified by solutions in the current population as follows:

d∗ = α
1

H

1

m

∑
i

z∗i − zi, (3.22)

where α is a parameter, H is an integer parameter used for generating uniformly distributed
weight vectors in MOEA/D, z∗i and zi are the Nadir and ideal values of the ith objective in
the current population, respectively. In equation (3.22), the average width of the domain
of each objective function is divided by H to obtain a rough estimation for the distance
between adjacent solutions. The parameter α is used to examine the validity of the for-
mulation (3.22) through computational experiments with various values of α. The idea in
(3.21) is to use a small penalty value only when a solution is close to the reference line.

The second variation is the so-called Quadratic Penalty Boundary Intersection
(QPBI) [76] and is given by:

min gqpbi(x|λ, f ′, θ) := d1 + θd2
d2

d∗
, (3.23)

where d∗ is the same parameter as in (3.21), which is calculated by (3.22). The effect of
the penalty parameter θ is decreased by the factor (d2/d

∗) when d2 is smaller (i.e., d2 < d∗)
and increased by (d2/d

∗) when d2 is large (i.e., d2 > d∗). When d2 = d∗, this formulation
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is the same as the PBI function in (3.19). θ = 1 is recommended.
The value of d∗ in 2LPBI and QPBI is calculated using information of the current

population from the MOEA.
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Figure 3.5: (a) The PBI function with θ = 1.0, (b) the PBI2L model with the parameters
recommeded by its authors (θ1 = 0.1, θ2 = 10.0) and (c) the PBIQ with θ = 1.0. In the
three cases, the target direction is defined by λ1 = 0.3 and λ2 = 0.7

Figure 3.5 shows the effect on parallel coordinates for each of the PBI versions described.

3.4 Exponential Scalarizing Functions

The Weighted Product(WPR) [150, p. 9], also called product of powers, is defined as
follows:

min gwpr(x|λ, f ′) =
∏
i

(
f ′i(x)

)λi . (3.24)

This SF has been integrated with several ant colony optimization algorithms [3], and it has
also been applied to solve a network design problem [13]. However, this approach has not
been widely used with MOEAs. In Chapter 6, we couple this function into MOEA/D and
MOMBI-II to assess its performance.

The Exponential Weighted Criteria (EWC) [4] can deal with any Pareto front
shape, and is given by:

min gewc(x|λ, f ′, p) =
∑
i

(
ep λi − 1

)
ep f

′
i(x) (3.25)

A large value of p is required to achieve Pareto optimality, but this can lead to numerical
overflow [105]. In [18], EWC was used to solve a problem related to a voltage distribution
network. To the best of our knowledge, this scalarizing function has not been integrated
into any MOEA until now.

The Vector Angle Distance Scaling (VADS) [67] can discover solutions in concav-
ities that may appear as discontinuities in the Pareto front given by:

min gvads(x|λ, f ′, p) =

∥∥f ′(x)
∥∥(

λ
‖λ‖ •

f ′(x)

‖f ′(x)‖

)p . (3.26)
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Here, the numerator measures convergence, whereas the denominator measures the devia-
tion of the objective vector from the weight vector. Thus, the final solution should be lying
parallel to λ. Orthogonal vectors require special care. Small values of p hinder the search
of sharp concavities. Its authors recommend to use p = 100 [67]. This scalarizing function
is not compatible with any form of Pareto optimality. VADS has been implemented on an
MOEA in combination with CHE [67,68].

Regarding the parameter models, special care should be taken for a large value of p in
WCP, WPO, EWC, and VADS since numerical overflow might occur.

3.4.1 Augmented and hybridized Scalarizing Functions

The Conic Scalarization (CS) [89] is a variation of WS, where an extra term is included
for dealing with concave regions of the Pareto front, and is defined as:

min gcs(x|λ, f ′, α) =
∑
i

λif
′
i(x) + α

∑
i

∣∣f ′i(x)
∣∣. (3.27)

According to [90], CS can generate weakly Pareto optimal solutions if α ∈ [0, λi], λi > 0
for all i ∈ {1, . . . ,m} and there exists k ∈ {1, . . . ,m} such that λk > α. Few MOEAs have
adopted the CS function (e.g., [43]).

The Dynamic Interactive Decision Analysis and Support System (DIDASS)
[54] given by:

min gdidass(x|λ, f ′, β,Γ) = max
{
βmax

i
λi
∣∣f ′i(x)

∣∣,∑
i

λi
∣∣f ′i(x)

∣∣}+
∑
i

γi
∣∣f ′i(x)

∣∣ . (3.28)

The General Scalarizing Function (GSF) [36] is similar to ACHE, given by:

min ggsf (x|λ, f ′, α, β) = βmax
i

{
λi
∣∣f ′i(x)

∣∣}+ α
∑
i

λi
∣∣f ′i(x)

∣∣. (3.29)

β ≥ 0 and α ≥ 0. This scalarizing function covers the special cases of WS (β = 0, α = 1)
and CHE (β = 1, α = 0).

The Normalized Scalarizing Function (NSF) [36] is derived from GSF, given by:

min gnsf (x|λ, f ′, δ) = (1− δ) max
i

{
λi
∣∣f ′i(x)

∣∣}+ δ
∑
i

λi
∣∣f ′i(x)

∣∣, (3.30)

δ ∈ [0, 1].

In Table A.1, we summarize the SFs previously described. The column “support” in-
dicates if the SF is Pareto compliant (≺) or weakly Pareto-compliant (�), and if it can
generate solutions along convex (x), concave (c) or linear (l) Pareto fronts. The notation ||
means that the optimal objective vector y∗ is nearly parallel to the weight vector λ. The
dot product is symbolized as •, the absolute value of a real number is denoted by |·|, and
‖·‖ represents the magnitude of a vector. For all the scalarizing functions g(y;λ), y can be
one of the transformations in (3.3) or (3.4), except for IPBI that adopts (3.5). In all cases,
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their computational complexity is O(m).

In the next chapter, we present an overview of various parameter setting techniques
that have been applied to MOEAs. The first part presents statistical methods and tools
employed to adapt the MOEA parameters in an offline manner. On the other hand, the
second section examines different mechanisms to adapt parameters in an online manner.
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Chapter 4

Parameter Setting Techniques

One of the most significant challenges in the evolutionary computing field is to identify
the most appropriate parameter settings of a metaheuristic with the goal of solving a large
number of problem instances. The search for the best parameter values of an Evolutionary
Algorithm (EA) is called parameter setting or tuning [39]. This task could be done before
the execution of the algorithm (off-line) or during the execution itself (on-line).

The design process of an EA involves the choice of several components such as the
encoding, the population size or topology, the selection mechanism, the evolutionary op-
erators and their rates of use. We use the term configuration of a target algorithm when
these components are instantiated and properly tuned. Each parameter has an important
influence on the performance of an EA both in terms of its rate of convergence and on the
quality of the solutions obtained. In other words, EAs are sensitive to the value of their
parameters to improve their performance in a significant way.

Based on the taxonomy proposed by Eiben et al. in [38], this chapter describes two main
possibilities for dealing with the parameter setting problem: the offline parameter tuning
and the online parameter control strategies. The former refers to select a set of parameter
values which can be established by hand according to the user’s experience, by analogy or
applying experimental design methods. In these cases, the same set of parameters is used in
all the iterations of an EA. Alternatively, the second (the online parameter control) involves
the use of deterministic rules, adaptive or self-adaptive strategies whose goal is to modify
the parameter values during the evolutionary search process.

On the other hand, when a metaheuristic uses deterministic rules, its parameters are
changed over time, after a certain number of generations. Such rules do not consider any
feedback obtained from the search. On the other hand, adaptive methods use information
gathered from the evolutionary search process during a time window, through indicators

Figure 4.1: A taxonomy of parameter setting strategies.
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that monitor the performance of the EA. An example of adaptive control is the so-called 1
5

success rule proposed by Rechenberg [130] to modify the step-size of the evolution strategies.
Finally, in self-adaptive control, the parameter values are encoded within each individual
from the population, and evolved at the same time that the optimization problem is solved.
In Figure 4.1, we show a graphical representation of the aforementioned taxonomy.

Regardless of the parameter setting strategy adopted, it has to deal with the following
difficulties:

• The parameters are sensitive to variations in the problem’s features. That is, an
algorithmic configuration is able to solve one class of problems, but it does not work
with others.

• The parameters may be strongly correlated between them, which means that finding
appropriate parameter values requires to solve a combinatorial problem with very high
computational effort.

• To estimate the performance for an algorithmic configuration implicates to deal with
the noise generated by its stochastic procedures. This means that two independent
runs of a metaheuristic will produce different behavior and, consequently, different
results [131].

The tuning methods should deal with at least two types of parameters [63]:

1. Categorical or unordered parameters are those whose domains constitute a set of
discrete values, each one representing an option for the component of a metaheuristic.
For example, in MOEAs with continuous variable space, the crossover operators can be
of the following types: Simulated Binary (SBX), Differential Evolution (DE), Parent-
centric (PCX) or Unimodal Normal Distribution (UNDX).

2. Numerical parameters are those whose domains belong to IN or IR. In this case, it is
possible to define distance measures between any pair of values. This means that it is
necessary to determine the lower and upper bounds. Also, when the parameters are
in IR, it is necessary to define an accuracy level (number of decimal positions).

There is a particular class known as conditional parameters which are parameters that
are only active when some specific parameters are selected into the EA.

In single-objective optimization, some parameter setting techniques are based on fit-
ness measures or fitness landscape analysis. However, in Multi-Objective Optimization
Problems (MOPs), the design of these mechanisms is more complex due to the difficulty
to define quality measures for sets of solutions. In this thesis, we are interested in both
offline and online parameter settings techniques in the context of multi-objective evolutio-
nary algorithms (MOEAs). Additionally, we are interested in analyzing the impact of the
parameter values on the performance of an MOEA based on decomposition with the aim of
gaining a better understanding of the behavior and robustness of MOEAs when solving cer-
tain types of problems, thus enhancing their applicability. The following sections present an
overview of the most representative parameter settings methods that have been developed
for metaheuristics.
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4.1 Offline parameter tuning

Offline parameter tuning is computationally expensive because of the large number of con-
figurations to be tested. However, it is useful for deriving knowledge about the relationships
among parameters involved in an EA. Offline tuning can tackle the problem from two per-
spectives: 1) The specialization of algorithms (given an algorithm’s configuration, the aim is
to find a subset of optimization problems on which the algorithm obtains good results) and
2) the generalization of algorithms (the aim is to find an algorithmic configuration to solve
the major quantity of problems with different features [39]). Both approaches are related
to the so-called No Free Lunch (NFL) theorem which indicates that, under certain assump-
tions, no stochastic optimization algorithm can be superior to the others on all possible
classes of optimization problems [163].

The offline parameter tuning problem can be formalized as that of finding a 6-tuple
T = (A,P,C,O, ψ, bmax) where:

• A is a target algorithm to be tuned. In this thesis, we concentrate on decomposition-
based MOEAs;

• P is the set of parameters of A to be tuned. For instance, if A is an EA, then
the population size, the maximum number of generations, the crossover rate and the
mutation rate belong to P .

• C is the set of values for each parameter of P . An instance c ∈ C is called a configu-
ration of A;

• O is called a scenario and is a set of several problem instances (for example, {DTLZ1,
DTLZ3, DTLZ5, DTLZ7} from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite
[32] );

• ψ is a scalar fitness function used by T to assess the quality of a configuration e.g.,
hypervolume (HV) [179], Inverted Generational Distance (IGD) [22] or the R2 [58]
indicator.

• bmax is the maximum budget of function evaluations available to tune A on O;

• T is a single-objective hyperheuristic whose goal is to find the ‘best’ c ∈ C, based on
ψ, for tuning A on an scenario O with bmax function evaluations.

In recent years, several offline tuning methods or automatic algorithm configuration
tools have been designed to search the most appropriate configuration in the parameter
values of the stochastic search based algorithms. These methods can be classified into four
categories: Experimental design, model-based, sequential statistical testing and heuristic
optimization. The following sections describe the most representative techniques from each
category.

4.1.1 Experimental design

Several approaches based on statistical Design Of Experiments (DOE) such as the analysis
of variance (ANOVA), the use of confidence intervals, factorial design, fractional factorial
design, linear and nonlinear regression models have been adopted to find effective settings of
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the parameter values in an EA. These techniques have two goals: 1) to design an experiment
to collect appropriate data and 2) to analyze them using statistical methods to draw valid
and objective conclusions. Both topics are closely related because the method of analysis
depends directly on the design employed. Moreover, DOE techniques are used to build a
predictive model of the performance of a target algorithm over a range of tuning parameter
settings and a set of problem instances. For more details about these techniques, see [112]
and [29].

In [1], it was proposed an algorithm called CALIBRA that employs Taguchi’s method-
ology in a 2 level factorial design coupled with a local search procedure. In a factorial
design, the first step is to select the most influential parameters that affect the performance
of the target algorithm. Then, two or three critical values for these parameters are estab-
lished. CALIBRA was applied in six different algorithms, but this version was limited to
handle a maximum of five parameters. Algorithm 12 shows the iterative procedure used by
CALIBRA.

Algorithm 12: CALIBRA’s algorithm

1 CALIBRA (A, P , C, O)
Input : Metaheuristic and its parameters to tune and their critical values
Output: A set of appropriate parameter values

2 Initialization. Perform 2k experiments and determine the best and worst initial
combination of levels for each parameter.

3 while not termination criterion met do
4 Assign three levels for each parameter as the initial point for a local search.
5 while A local optima has not been reached do
6 Apply a Taguchi’s fractional factorial experimental design, using the

parameter levels from the previous iteration.
7 Use the results of the experiment to set the levels for the next iteration.

8 Update the list of solutions with the new local optimum found

Coy et al. [25] proposed an algorithm that combines the fractional factorial design and
the gradient descent method to find effective values for six tuning parameters on vehicle
routing problems. Given a small number of problems from the whole set, Coy’s algorithm
employs the two-level factorial design to produce parameter settings with a low and high-
quality. Then, the response surface methodology is applied over the measurements found
to interpolate and obtain a linear approximation that allows achieving effective parameter
settings for solving the whole problem set. The procedure in detail is presented in Algorithm
13.

Ridge and Kudenko [131] implemented a predictive model using a DOE approach and
the numerical optimization known as Nelder-Mead downhill simplex [125, p. 326]. This
proposal used the response surface methodology to tune the parameters involved in the ant
colony algorithm to solve the traveling salesman problem. The model was able to tune 9
numerical and 3 categorical parameters.
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Algorithm 13: Coy’s algorithm

1 Coy’algorithm (A, P , C, O)
Input : Metaheuristic and its parameters to tune.
Output: A set of appropriate parameter values.

2 Select a subset of problems to analyze from the entire set of problems.
3 Select the starting level of each parameter, i.e. the range over which each parameter

will be varied, an amount to change each parameter.
4 Generate a factorial experimental design.
5 for each problem in the analysis set do
6 Compute the parameter settings vector associated with the factorial experimental

design.
7 Perform five trials starting from the same five initial solutions for each parameter

settings vector calculated in the previous step.
8 Fit a linear model using the average distance from each set of five trial as the

dependent variable.
9 Find the path of steepest descent on the response surface obtained in the

previous step.
10 while not all of the statistically significant parameters have reached the limit of

the experimental region or a new minimum has not been found do
11 Compute the parameter vector associated with the path of steepest descent.
12 Perform five trails using the same initial solutions adopted in step 6 and

determine the average total length.

13 Combine the settings obtained to produce high-quality parameter values.
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4.1.2 Model-based

The most representative model-based technique is the Sequential Parameter Optimization
methodology developed by Bartz-Beielstein [7]. This methodology was divided into three
main phases: Experiment construction, parameter optimization, and the rejection or ac-
ceptance of the statistical hypothesis. In the first step, the experimenter defines exactly
what is to be studied and how the data are to be collected. The second phase includes the
design of experiments and the statistical modeling and prediction to employ. Here, we need
to define the next elements:

• an optimization problem and their constraints (for example, the maximum number of
function evaluations),

• an initialization and termination method,

• an algorithm, and its important factors,

• a measure to assess the performance

Finally, the third step refers to the rejection or acceptance of the statistical hypothesis
and to the interpretation of the results.

4.1.3 Sequential Statistical testing

The racing concept was introduced in 1997 [106] as a machine learning technique with the
goal of decreasing the computational cost to estimate the quality of a set of parameter
configurations. In this procedure, a set of candidate parameter configurations compete in a
race over a training set of problem instances. Here, the worst configurations are identified
and discarded using statistical evidence. These techniques are useful strategies when we try
to tune a large number of parameters. The main idea of a racing approach is to evaluate
the performance of a candidate configuration incrementally [122] allocating computational
resources only in the promising configurations instead of wasting computational time in the
worst configurations. In Algorithm 14, we can see the general steps involved in the race
method.

Algorithm 14: The general irace procedure

1 The general race procedure
Input : P , a set of candidate parameters, O, a set of problem instances.
Output: The best parameter configuration.

2 Create a race.
3 for each problem instance do
4 for each candidate parameter do
5 Create and execute run.

6 Remove worst candidates.

7 Return the best parameter configuration.

Birattari et al. [12] designed one of the first racing approaches known as F-race which
used the nonparametric Friedman’s two-way analysis of variance by ranks. In F-Race, the
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statistical test was based on the ranking of the candidate parameter configurations. F-race
aims to find evidence that at least one of the configurations is significantly different from
others. Otherwise, Friedman tests are applied newly to eliminate the candidate configura-
tions that are significantly worse than the best one. Iterated F-race (also known as irace)
was proposed in [6]. In this approach, at each iteration, a set of new candidate configura-
tions is built using a probability model; then, these configurations are evaluated to select the
best one via the race procedure. After that, the sampling distribution is updated towards
the best configurations. Algorithm 15 shows the steps used by irace.

Algorithm 15: The general irace procedure

1 irace procedure

2 while not termination criterion mets do
3 Generate a set of new configurations according to a particular distribution or

probability model.
4 Evaluate all candidates.
5 Select the best configurations using racing procedure.
6 Update the sampling distribution considering only the best configurations.

4.1.4 Heuristic optimization

In this section, we describe approaches based on metalevel optimization techniques that
work in a search space defined by the parameters involved in the target algorithm. Grefen-
stette [55] proposed one of the first approaches based on metalevel optimization that im-
plements a genetic algorithm to tune six parameters to solve single-objective optimization
problems.

The so-called method for Relevance Estimation and Value Calibration of EA parameters
(REVAC) proposed in [115] and [116] determines the most appropriate parameter values via
a probability density distribution with maximized Shannon entropy, using an Estimation of
Distribution Algorithm (EDA). This tool is able to determine the sensitivity of parameters
in order to establish the recommended ranges for the target EA.

Hutter et al. [69, 70] proposed the ParamILS method which is based on a steady-state
algorithm that uses an iterated local search to improve the performance of algorithmic
configurations. ParamILS requires an initial configuration and a set of possible values for
each tuning parameter (Θ ∈ θ). Algorithms 16 and 17 show the procedures employed by
ParamILS. The main loop consists of a solution perturbation to escape from local optima.
Then, a randomized local search procedure and an acceptance criterion are adopted to
decide whether to keep or reject a newly obtained candidate solution. ParamILS is very
sensitive to the initial value used. The use of different values generates different results.
For that reason, this tool is used to improve the best configuration previously known.

In this section, we describe in detail a tool called EVOCA [132]. We focus on this tool
because it was employed to tune decomposition-based MOEAs in the next chapter. EVOCA
consists of a steady-state EA able to work on categorical and numerical parameters at the
same time without requiring an in-depth knowledge of parameter tuning methods. EVOCA
has been successfully applied to both the design and calibration of a couple of different
metaheuristic algorithms such as: a multi-objective immune algorithm for solving ZDT and
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Algorithm 16: The paramILS procedure

1 ParamILS procedure ()
Input : Parameter configuration space Θ, neighborhood relation N .
Output: The best parameter configuration θ found.

2 Initialization.
3 θ0 ← default parameter configuration θ ∈ Θ.
4 for i← 1 . . . R do
5 θ ← random θ ∈ Θ.
6 if θ is better than θ0 then
7 θ0 ← θ.

8 θils ← IterativeFirstImprovement(θ0, N).
9 while not termination criterion mets do

10 θ ← θils.
11 Perturbation.
12 for i← 1 . . . s do
13 θ ← random θ′ ∈ N(θ)

14 LocalSearch
15 θ ← IterativeFirstImprovement(θ,N).
16 AcceptanceCriterion
17 if θ is better than θils then
18 θils ← θ.

19 with probability prestart θils ← random θ ∈ Θ.
20 returns the best θ found.

Algorithm 17: The paramILS procedure

1 Procedure IterativeFirstImprovement (Θ, N)
Input : Parameter configuration space Θ, neighborhood relation N .
Output: The best parameter configuration θ found.

2 repeat
3 θ′ ← θ.
4 for θ′′ ∈ N(θ′) in randomize order do
5 if θ′′ is better than θ′ then
6 θ ← θ′′.
7 break.

8 until θ′ == θ.
9 return θ.
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DTLZ problems [111], the multi-objective SMS-EMOA for solving the DTLZ and WFG
problems [108], component selection of MOEA/D and MOMBI-II for solving the Lamé
supersphere problems [124]. In the following, the EVOCA’s components are described.

Representation. The chromosome is represented by a string where each element cor-
responds to a parameter, and its value is taken within the parameter domain. Thus, the
string length is the number of parameters to be tuned.

Initial Population. The initial domains for categorical parameters as well as for
parameters belonging to discrete domains are directly their domains themselves. The po-
pulation size is computed considering the number of parameters to be tuned and their initial
domain sizes. The key idea is to include all the values allown for each parameter, in an
independent way, on the first population. This is, in most cases, possible for categorical
parameters and for parameters belonging to reduced discrete domains. In other cases, the
interval is divided according to their precision value. For instance, to tune a classical cross-
over probability, we can decide to include all values in {0.0, 0.1, . . . , 0.9, 1.0} on the initial
population. The size of the population is equal to the largest parameter domain restricted
by a maximum MP . Algorithm 18 shows the procedure.

Algorithm 18: Population initialization

1 Generate Initial Population (Pc, Pn, precisionn, IDS,MP )
Input : Categorical and numerical parameters, precision and initial domain sizes
Output: Initial population

2 for each parameter j do
3 Lj = List of parameter j values using IDSPj .

4 Population size = min{maxj=1,...,m+k{IDSPj},MP}.
5 for each gen j do
6 for each chromosome do
7 Take one value in a cyclic order from the list Lj

Operators. The algorithm uses two operators: a wheel-crossover operator that con-
structs one child from the whole population. It uses a roulette wheel procedure [50] to select
the value of the gene of each offspring, as shown in Algorithm 19. Thus, this operator is
focused on inheriting good parameter values among all the values that are available in the
population. The child generated replaces the worst individual on the current population.
The crossover procedure is performed at each iteration, thus it does not have an associated
probability. The mutation operator is a hill climbing first improvement procedure, which
takes a copy of the child generated by the crossover operator and tries to improve it by
modifying one of its parameter values as shown in Algorithm 20. The mutation operator is
always applied. When a numerical parameter is selected, it tries to randomly take a new
value within a continuous range that represents the parameter domain. In the example in
the above section, related to the crossover probability, the mutation operator considers its
interval from 0 to 1 as a continuous one. Thus, using mutation, the algorithm can include
a new value within this range, which has not been involved in the initial population. The
child generated by applying mutation replaces the second worst individual on the current
population, in case it obtains a better performance. At each iteration, at most two indi-
viduals are changed: One by the crossover operator, and the second one by the mutation
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operator. Thus, there are no probability values to be defined for these operators.

Algorithm 19: Crossover operator

1 Wheel-crossover (Population)
Input : Population
Output: Child

2 Construct roulette wheel using fitness of the Population.
3 for j ← 0 to n+ k do
4 Child[j] = Randomly select a gene value using roulette wheel.

Algorithm 20: Mutation operator

1 Mutation (Child)
Input : Child
Output: Mutated-Child

2 Mutated-Child=Child.
3 m = int rand(1,m+ k)
4 if Pj is real then
5 Mutated-Child[j] = float rand(dil, diu)

6 else
7 Mutated-Child[j] = int rand(dil, diu)

The Algorithm. EVOCA uses a Latin hypercube design instead of a uniform random
sampling for generating an initial population. Most of the well-known tuners require to make
decisions about how to discretize the domain of the numerical values to be used as input or
about the data range, as well as, the definition of many parameter values for themselves.
Moreover, their performance strongly depends on these set-up decisions. Therefore we
pay special attention to both the definition of the input data required by EVOCA, and
its initialization step. EVOCA includes a local search procedure used by the mutation
operator. Crossover allows the combination of the parameter values on the population and
is focused on the target algorithm performance. Algorithm 21 shows the procedure. In
our algorithm, the parameter R is used to define the number of seeds used for evaluating
the parameter configurations. Given the stochastic nature of the metaheuristics, a value
bigger than one for R is recommended in order to have more reliable information about
the algorithm’s behavior. Moreover, the parameter MP restricts the maximum population
size.

This thesis uses the EVOCA tool because it provides several advantages that are de-
scribed in Chapter 5.
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Algorithm 21: EVOCA

1 EVOCA (M, Pc, Pn, precisionn, D, MP , R)
Input : Metaheuristic and its parameters to tune, their domains and their precision
Output: Population

2 for j ← 0 to n+ k do
3 Compute IDS[j] from Dj .

4 Population = Generate Initial Population (Pc, Pn, precisionn, IDS, MP ).
5 Evaluate each configuration in Population on M using R random seeds.
6 while not termination criterion met do
7 New-Population = Population.
8 Child = Wheel-crossover(Population).
9 Evaluate Child on M using R random seeds.

10 Replace the worst chromosome by Child in New-Population.
11 Mutated-child = Mutation(Child).
12 Evaluate Mutated-child on M using R random seeds.
13 if Mutated-Child is better than child then
14 Replace the second worst chromosome by Mutated-child in New-Population.

15 Population=New-Population.

4.2 Online parameter control

Since the origins of evolutionary computing, several parameter control techniques have been
proposed to establish appropriate configurations at different stages of the search process.
[169] and [88] present comprehensive overviews of the trends and challenges for employing
parameter adaptation mechanisms in EAs. Both articles consider the following main aspects
that should be taken into account:

1. To define the adaptation objects. This means to define which components or parame-
ters from the EA will be adapted. For example, the evolutionary operators, population
structure or selection procedures.

2. The type of adaptation methods to employ. For instance, the use of deterministic
rules, co-evolution strategies or machine learning methods.

3. To determine which adaptation evidences will be used to feedback the adaptation
methods. Some examples are the fitness values or population distribution. Moreover,
the adaptive strategy can focus on a specific scope or level of change. That is, to
monitor evidence of changes in the population- or individual-level. In the case of
MOEAs, we can involve performance indicators.

The following sections describe proposals that adopt diverse adaptation methods to tune
low- and high-level components into MOEAs. We present a general overview of two classes
of adaptive strategies: those based on statistical rules and those based on machine learning
methods. Moreover, we focus on the use of adaptation techniques coupled to MOEAs based
on decomposition because this thesis provides techniques to adapt their scalarizing function
component.
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4.2.1 Adaptation in low- and high-level components of MOEAs

We can classify the parameters in MOEAs as low- and high-level components. The low-level
components refer to a specific parameter such as the population size, the stopping termina-
tion criteria, the percentage of use for the evolutionary operators or their model parameters
which commonly present a sensitivity influence in the performance of algorithms. For exam-
ple, the Differential Evolution (DE) operators involve the factors F and Cr for controlling
the mutation and crossover rates, respectively. Whereas the high-level components are de-
fined in a certain stage of the evolutionary algorithms and commonly include more than one
parameter. Examples of high-level components are the variation operators, the selection or
replacement mechanisms, the local search procedures, the techniques of archiving, or the
performance indicators to guide the search. Even, we can consider the parameter tuning
using whole algorithms; this is also known as the design of hyper-heuristics. This section
presents methods to control low and high-level components into MOEAs.

Online stopping termination criteria. Typically, the stopping termination criteria
for MOEAs are determined previously by establishing a maximum number of function eval-
uations or a desired performance indicator level. Nevertheless, the use of online stopping
criteria mechanisms can avoid wasting computational effort. Furthermore, they can be used
to determine the application of the local search procedures. Because the majority of MOPs
do not have available the gradient information and considering the stochastic nature of
MOEAs, in the last years, several online stopping criteria proposals have been developed.
Basically, the methods for convergence detection adopt the use of multiple performance in-
dicators and nonparametric statistics (with confidence intervals). Tobias Wagner et al. [158]
presented an analysis of several strategies of convergence detection using a formal taxon-
omy definition that compares aspects such as progress indicators and evidence gathering
processes. Guerrero et al. [56] proposed an online stopping criteria mechanism for MOEAs
combining three performance indicators: the hypervolume, the ε indicator and Mutual
Domination Rate (MDR), where at least 2 of them must generate a convergence value in
the Kalman filter to conclude that the stopping criterion has been reached. This proposal
was performed on the DTLZ test functions and different versions of algorithms such as
NSGA-II [31], SPEA2 [178] and PESA [24]. Roudenko and Schoenauer [133] introduced
a measure based on the density of the non-dominated solutions as online stopping criteria
for the NSGA-II algorithm. This method used the difference between the maximum and
minimum value of the crowding distance during several generations. The drawback of this
mechanism is the definition of the number of generations to detect stability.

The dynamic population size in MOEAs. The effectiveness and efficiency of evo-
lutionary algorithms also depend on selecting an appropriate population size at each gen-
eration. The main advantages of incorporating an adaptive population size method is that
it reduces the computational effort due to a large number of individuals and that it pre-
vents premature convergence. There are many proposals of this sort in single-objective
optimization but almost none in multiobjective optimization. Tan et al. [147] proposed
the incrementing multiobjective evolutionary algorithm (IMOEA), which adapts the popu-
lation size based on the distribution density discovered at each generation of the Pareto
front. IMOEA involves the next components:

• a predefined set of preferences,
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• the lower and upper bounds for the desired population size,

• the desired population size per unit volume, and

• a fuzzy boundary local perturbation procedure.

The population size is increased or decreased dynamically through a fuzzy local proce-
dure that perturbs the set of nondominated solutions according to the distribution density
in the discovered hyper-area and the desired population size. The preliminary results in-
dicated that is beneficial to initialize the process of evolution with small population size.
Then, this size can be adaptively increased or decreased in subregions of objective space via
the computation of a progress measure that considers the distance between the discovered
nondominated solutions and the Pareto optimal set.

Adaptation of multiple search operators. There exists diverse variation operators
whose efficiency strongly depends on the MOP’s characteristics. Vrugt and Robinson [157]
and Vrugt et al. [156] introduced an adaptive multi-operator hybrid called AMALGAM.
This proposal allocates resources dynamically to each search operator based on their in-
dividual performances. The first version of the AMALGAM for multi-objective optimiza-
tion employed simultaneously the NSGA-II, particle swarm optimization (PSO), adaptive
metropolis search (AMS), and differential evolution (DE). Each strategy has a probability
to generate offspring solutions, which is updated according to the ranking method used by
the fast nondominated sorting algorithm [31]. In 2015, Mashwani et al. [107] developed
an enhanced version of AMALGAM that combines DE, PSO, SBX, SPX, and the Pareto
archived evolution strategy (PAES [91]). This work introduced a new adaptive resource
allocation procedure based on a reward method that calculates the number of successful
solutions produced at every generation of the evolutionary process.

Adaptation techniques in various components. Toscano and Coello [149] pre-
sented the µGA2, one of the first proposals that adapts all its components automatically
in an online manner, which does not require any parameter fine-tuning. The µGA2 adopts
three micro-genetic algorithms (each of them with five individuals) associated with diffe-
rent crossover operators (SBX, two-point crossover and a crossover operator proposed by
its authors). The three micro-genetic algorithms are executed in parallel to monitor their
performance via the number of non-dominated solutions generated. The micro-genetic al-
gorithm with the worst performance replaces its crossover operator by the one with the
best performance. The µGA2 includes an adaptive grid and two population memories: one
which is replaceable and one which is not. The first one is not modified to provide diversity
to the algorithm while the second one is evolved during the search process. µGA2 modifies
the percentages of crossover and mutation through two phases: an exploration process that
uses a higher percentage of mutation than the crossover operator (50%) and an exploitation
process that decreases the percentage of mutation while the percentage of crossover is set
to 100%. Finally, µGA2 adopts an automatic stopping criterion reached when none of the
internal micro-GAs can improve the solutions previously attained.

David Hadka and Patrick Reed [57] designed the so-called Borg MOEA that employs
three different adaptive strategies:

1. The ε−progress measure to monitor the progression and stagnation of the algorithm.

CINVESTAV-IPN Computer Science Department



56 Parameter Setting Techniques

2. An adaptive tournament size to maintain elitist selection.

3. An auto-adaptive multi-operator recombination composed by SBX, DE, PCX, SPX,
Unimodal Normal Distribution crossover (UNDX), and Uniform Mutation (UM).

Borg adopts a similar mechanism as the AMALGAM algorithm [157]. Given K operators,
each operator has a probability of producing the next offspring. These probabilities are
updated by counting the number of solutions produced by each operator in the ε−box do-
minance archive [93].

In recent years, the concept of auto-configuration of MOEAs is related to the combina-
tion of high-level components in MOEAs to design automatically new algorithms. Bezerra
et al. [10] proposed the automatic component-wise design method for solving diverse scenar-
ios using the irace tool. This work combines the components of MOEA/D and SMS-EMOA.
In 2016, Bezerra et al. [9] used MOGA, NSGA-II, SPEA-2, IBEA, HypE and SMS-EMOA.
Both proposals adopt the following methodology:

• identify individual algorithmic components in different MOEAs that have the same
function.

• To adapt the design of MOEAs to their particular application scenario.

• To instantiate a larger number of MOEAs from the same algorithmic template.

• Evaluate each new algorithmic instance in a particular scenario.

• Obtain the most appropriate configurations.

Table 4.1 shows an example of the classification of common components.

Table 4.1: An example of the common components.

Component Parameters

Variation operators <SBX, PM, DE, SPX, CMX>
Selection mechanism <random, priority structure, tournament>
Replacement mechanism <neighborhood, entire population, resource a>
Scalarizing functions <WS, PBI, CHE, ASF, AASF>

4.2.2 Adaptation based on rules and statistics

Adaptation based on entropy measures. In adaptive parameter control for EAs, the
entropy-based measures are useful to discretize parameter value ranges. In this case, at
each iteration, the information gathered from the search process is classified into groups of
parameter values that were found to be successful or unsuccessful. In [2], entropy-based
clustering was used to identify the parameter ranges of an EA used to solve the quadratic as-
signment problem with constraints maps. In this work, given a set of parameters, p1, ..., pn,
where each parameter pi has vi1, ..., vim values that can be discrete numbers or intervals
of continuous numbers, parameter control based on entropy has the task of deriving the
optimal next value vij to optimize the influence of pi on the performance of the algorithm.
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The cross-entropy method employed for solving MOPs involves the estimation of param-
eters for a number of probability distributions. This method was used in [152] and [47]
where the general idea is twofold. Firstly, to cluster the nondominated solutions on the
Pareto front to adapt the probability distribution parameters. Secondly, the probability
distribution functions of the parameters are updated on the basis of a performance metric
on the generated sample, to produce a better sample at the next iteration.

The self-adaptive control techniques in EAs consist in encoding the parameter values
directly into the representation of an individual. These methods have been widely studied
in single-objective optimization [94, 142] but scarcely in MOPs. In 2015, Qiu et al. [128]
presented one of the most representative self-adaptive methods coupled to a Differential
Evolution-based MOEA to adapt the scaling factor (F ) in an objective-wise manner. This
proposal implemented independently the adaptive DE variants previously used in the tuning
methods applied in jDE [128], JADE [170], and DESAP [26]. This proposal was coupled to
NSGA-II and MOEA/D, following the next procedures:

1. The use of a ranking method for each individual using an estimation of groups.

2. A self-adaptative scheme, where each solution stores its corresponding successful F
values.

3. An estimation of the arithmetic mean to control parameter values associated with the
members in one estimation group.

The Covariance Matrix Adaptation (CMA) algorithm [118], [59] and its variants
[5], [14], have been widely used to control various aspects of the variation operators, mainly
the mutation step size in Evolution Strategies (ES), because the performance of ES depends
on a suitable choice of the internal strategy for parameter control. In these proposals, CMA-
ES is a technique that records the mutation step size values to monitor correlations at each
generation during the evolutionary search.

One of the first CMA-ES employed to solve MOPs was proposed by Igel in [71]. The
selection mechanism of this approach was based on nondominated sorting and the hyper-
volume contribution was used as a second sorting criterion coupled to an elitist variant of
the single-objective CMA-ES. Here, the main contribution was that the algorithm’s per-
formance is preserved when the search space of an MOP is affected by variants such as
translation, rotation, or rescaling, which is important to generalize the results obtained on
benchmark functions to real-world problems. This pioneering work has been taken as a
basis to develop other multi-objective CMA-ES variants, see for example [72] and [95].

Coevolutionary methods for parameter tuning use a procedure to generate new param-
eter values and incorporate them into the evolutionary process. Coevolutionary algorithms
can be seen as some sort of reinforcement learning approaches inspired on the inter-species
interactions. Based on this, a coevolutionary algorithm manages two or more popula-
tions that evolve simultaneously to solve a sequential decision problem. In other words,
coevolution occurs when the fitness function of one individual depends on that of other
individuals. There are at least two types of coevolutionary algorithms: competitive and
cooperative [169]. Both have the goal of improving the convergence towards the global op-
timum. A coevolutionary algorithm used as a high-level evolutionary method was presented
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in [141], where the use of multi-populations allows to implement different evolutionary op-
erations into a multi-objective immune algorithm.

4.2.3 Adaptation using machine learning techniques

Reinforcement Learning (RL) is a simulation-based method, which is suitable for op-
timization through online learning. RL is employed as the main part of the Adaptive
Optimization Algorithm [37].
In Evolutionary methods, RL can involve an agent in a certain environment and receive re-
ward or punishment for certain behavior [153]. The principal structure for RL is a Markov
Decision Process, where its basic elements include states, actions, and rewards. These
elements can be defined as follows:

• A state is constructed as values of a set of parameters attached to each objective
function.

• An action is considered as the direction for tuning a set of parameters related to each
objective function.

• The definition of reward refers to credit assignment according to the performance
reached by the parameter settings.

Definition 4.2.1 Mathematically, let a set S = {s1, ..., sN} be the state space of a finite
Markov chain and A = {a1, . . . , ar} the action set available. Each combination of starting
state si, an action choice ai ∈ Ai and next state sj has an associated transition probability
T (sj , si, ai) and reward R(si, ai). RL has the goal of learning a policy π, which maps each
state to an action so that the expected discounted reward is maximized.

In [153], two RL techniques: Q-learning and the SARSA algorithm [146] were employed
in a MOEA. The hypervolume indicator is adopted as an action selection strategy to decide
in an online manner between the use of two different scalarizing functions: a weighted sum
and Chebyshev functions.

The Fuzzy Logic Controller (FLC) is a technique that has been used as a tool to
control in an online manner the parameters in an EA. There exist many FLC proposals
in single-objective optimization [62] to control the evolutionary operator rates and popu-
lation size with the aim of avoiding premature convergence and improving the algorithm’s
performance. The steps needed to design an FLC for parameter settings in EAs are the
following:

1. To define the inputs and outputs. The first one refers to the performance measures
that describe the EA’s behavior, and the second indicates the values or changes in the
control parameters.

2. To determine a data base which includes the membership functions of the fuzzy sets
to specify the meaning of the linguistic terms.

3. To obtain a rule base to represent the expert’s knowledge. Here, we have two pos-
sibilities: using the experience of the experts in EAs or using an automatic learning
technique.
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[83] presented a proposal that combines FLC into the Multi-Objective Differential Evo-
lution (MODE) algorithm to tune the parameters such as the greediness and perturbation
factor involved in MODE. The performance measures used by the fuzzy membership func-
tion were population diversity and the percentage of the total number of generations that
have already passed.

The Self-Organizing Maps (SOM) [92] are a class of artificial neural networks which
have proven to be a valuable tool in analysis and visualization of high-dimensional data.
SOM is an unsupervised method which uses competitive and cooperative training for clus-
tering, and performs a nonlinear mapping from a high-dimensional input space onto a
two-dimensional grid. In [16], SOM was employed to learn from the evolutionary path to
adapt the mutation step size. That is, to focus on areas that had promising solutions in or-
der to speed up convergence. This approach approximates the Pareto front with a SOM, by
modifying its training algorithm. The topology of the SOM defines the selection of solutions.

The Adaptive Operator Selection (AOS), is a paradigm to select adaptively which
evolutionary operator should be applied at each instant of the search process. The AOS
procedure includes two main components:

1. The credit assignment scheme that refers to assessing the performance of each operator
based on the progress of its application in the target algorithm. The goal is to reward
the best ones.

2. The operator selection rule which is responsible for selecting from among the best
operators according to their rewards.

In AOS techniques, a continuous observation of the performance of the operators is mon-
itored to balance exploration and exploitation actions during the search. The exploration
concept means to evaluate new solutions in a large search space. On the other hand, ex-
ploitation means to focus the search to promising regions where the global optimum could
be located. Formally, we have a set of k operators O = {o1, . . . , ok}, and a probability
distribution vector P (t) = {p1(t), . . . , pk(t)} (∀t : 0 ≤ pi(t) ≤ 1;

∑k
i=1 pi(t) = 1), with asso-

ciated expected values {µ1, . . . , µk} and variances {γ2
1 , . . . , γ

2
k}. The adaptive allocation rule

selects an operator to be executed in proportion to the probability values specified in P (t).
When an operator o is applied to the environment at time t, a reward Ro(t) is returned.
During the evolutionary process, the values of the operator probabilities are adapted follo-
wing learning rules according to the quality of the new solutions created by the operators.
Next, three types of AOS are briefly described:

• Probability Matching (PM), where each operator is selected by a roulette-wheel pro-
cess. In this technique, simple rules called classifiers are used to identify the variance-
sensitivity in the operator’s performance.

• The Adaptive Pursuit (AP) strategy proposed in the learning automata area has been
used to determine the operator’s quality. Given ∆t iterations of the target algorithm,
this rule modifies the operator’s probabilities in such a way that they match the
reward distribution. The AP algorithm increases the selection probability of the best
operator and decreases all other probabilities based on a learning rate in time t > 0.
This strategy is sensitive to changes in the reward distribution.
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• The bandit-based AOS is an upper confidence model that selects a strategy according
to some determinist rule based on Multi-Armed Bandit (MAB) algorithms as an al-
ternative to exploit the best operators. MAB is inspired on the next problem: given
a slot machine with n arms (bandits), a gambler has to collect as much money as
possible pulling these arms over many turns. This is a mathematical formalism used
to study the convergence properties of Reinforcement Learning with a single state.
MAB algorithms consist of two processes: the first is to assign a reward to a strategy
based on its recent performance in the search process. The second is the choice of the
best strategy based on these current reward values. In [17, 96, 176], there are several
models based on MAB algorithms such as the ε−greedy, Boltzmann exploration or
Upper Confidence Bound (UCB).

4.2.4 Parameter Adaptation in Decomposition-based algorithms

Our interest in this thesis is to incorporate adaptive strategies in MOEAs that use SFs as
their transformation function, following the guidelines employed for tuning the high-level
components and involving the MAB algorithms (only used in AOS). In this section, we
review adaptive techniques used to improve the performance of MOEA/D and then we
concentrate on works that only adapt the SF.

During the last few years, several enhanced MOEA/D versions have adopted adaptive
strategies to deal with more complicated MOPs. In this section, we describe the most rele-
vant proposals, and we focus on the related works that use either one or multiple Scalarizing
Functions (SFs) in their search process.

Zhang proposed the MOEA/D-DRA [172] with two crossover operators: Simplex Cross-
over (SPX) and Center of Mass Crossover (CMX). Every k generations, MOEA/D-DRA
monitors a relative decrease of the objectives for each subproblem and based on this, a
tournament selection strategy is employed.

Chiang and Lai proposed the MOEA/D-AMS [21] that improved MOEA/D-DE using
two strategies:

• a controlled selection of subproblems with the goal of identifying unsolved subproblems
to assign a computational effort on these, and

• an adaptive mating selection mechanism that considers the Euclidean distance be-
tween individuals in decision space instead of the distance between weight vectors.

Venske et al. [155] introduced an Adaptive Differential Evolution for Multiobjective
Problems (ADEMO/D) incorporating a pool of adaptive mutation strategies based on the
SaDE algorithm [127]. Each strategy is associated with a probability of use which is updated
based on its success and failure counters.

A recent approach called MOEA/D-GRA [175] presents an experimental study to show
the importance of resource allocation. In this work, two strategies were implemented to
assign a probability for each subproblem to be computed. It works as follows:

1. Offline Resource Allocation. The probability of use is computed according with the
number of function evaluations per subproblem using Equation (4.1).

poffi =
FE

i

maxj=1,...,N FE
j
. (4.1)
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where FE
i

denotes the average cost consumed by subproblem i.

2. Online Resource Allocation. Let xit and xit−∆T
denote the solutions of subproblem i

at generation t and the (t−∆T )th generation, respectively. ui is the utility function
as the relative improvement in the last ∆T generations.

ui =
gi(xit−∆T

)− gi(xit)
gi(xit−∆T

)
. (4.2)

The probability is assigned by:

poni =
ui + ε

maxj=1,...,N uj + ε
, (4.3)

where i = 1, ..., N , ε = 1.0× 10−50 is a small value to avoid dividing by zero.

In this work, the online resource allocation strategy was found to be the best option.

Zhao et al. [174] coupled MOEA/D with an Ensemble of Neighborhood Sizes, called
ENS-MOEA/D. This algorithm employs a Learning Period (LP ) which stores (during a
certain number of generations) a success probability associated with each Neighborhood
Size (NS) option. At the generation G > LP − 1, the probability of choosing the kth
(k = 1, 2, ...,K) NS is updated by:

pk,G =
Rk,G∑K
k=1Rk,G

, (4.4)

where

Rk,G =

∑G−1
g=G−LP FEs sucessk,g∑G−1

g=G−LP FEsk,g
+ ε, (4.5)

(k = 1, 2, ..,K;G > LP ) and Rk,G represents the proportion of improved solutions genera-
ted with the kth NS within the previous LP generations. FEs sucess is the number of
successful function evaluations.

The mechanisms based on Adaptive Operator Selection (AOS) have been promising
techniques for improving the performance of MOEA/D. AOS considers an upper confidence
model that selects the most suitable operator from a pool of options according to some
deterministic rules based on multi-armed bandit algorithms. Bandit-based AOS establish
mainly two processes: one is to assign a reward to a strategy based on its recent performance
(its record of fitness improvement rates) in the search process. The second is the choice
of the best strategy based on these current reward values. Li et al. [103] proposed an
adaptive mechanism to select a mutation operator from differential evolution versions based
on the multi-armed bandit. Qi et al. [126] proposed an adaptive mechanism to select two
components of MOEA/D: a candidate operator to generate offspring and a variation of the
neighborhood size for each subproblem. A bandit-based AOS is an upper confidence model
that selects a strategy according to some deterministic rule based on multi-armed bandit
algorithms.

Table 4.2 summarizes the general components employed by the enhanced MOEA/D
versions previously described. We can notice that these algorithms implemented adaptive
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strategies on their evolutionary operators, selection and replacement mechanisms, main-
taining fixed the SF procedure. This thesis focuses on adaptive techniques to select an
appropriate SF during the evolutionary search process of MOEA/D. Next, we present re-
lated work that adapts the SF component into the MOEA/D framework.
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Ishibuchi et al. [79, 80] presented some mechanisms to use several SFs simultaneously
in MOEA/D as an option to maintain diversity and to solve many-objective problems.
Ishibuchi et al. [79] presented an early work that combined the WS and CHE functions in
MOEA/D. At each generation, a selection strategy monitors if k or more solutions in the
neighborhood of an individual have the same objective vector. If that’s the case, then CHE
is adopted; otherwise, WS is adopted. In [80], two alternatives were proposed to combine
the WS and CHE functions. Given a set of uniformly distributed weight vectors, two
subpopulations focused on a particular SF. The second alternative is to assign, alternately,
one SF to each vector. Recently, Hernández and Coello [52] proposed a hyper-heuristic
where each individual in the population minimizes a different SF assigned by a heuristic
selection mechanism based on the quality indicator called s-energy with the purpose of
maintaining a uniform distribution of solutions. Here, seven different SFs were employed.

4.3 Summary

This chapter provided a general description of different parameter tuning techniques in the
context of multi-objective optimization. We can see that there are relatively few proposals
in this area, which was the main motivation for the research reported in this thesis. We have
provided here an overview of these proposals, as a way of positioning the work proposed in
this thesis.

Our contributions in this work are related to the implementation of offline and online
tuning for SFs. Chapter 5 proposes a methodology for offline tuning of decomposition-
based MOEAs with the goal of providing knowledge about the use of different SFs through
a characterization of MOPs according to the Pareto front and the number of objective
functions. Chapter 6 present two proposals: the first one uses a multi-armed bandit algo-
rithm to select the most suitable SF in different stages of the evolutionary search process
of MOEA/D-DRA. The second one adopts an online strategy to determine the resource
allocation in the use of several SFs based on the Chebyshev model.
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Chapter 5

Offline Parameter Tuning for
Scalarizing Functions

Scalarizing Functions (SFs) play a crucial role in multi-objective evolutionary algorithms
(MOEAs) based on decomposition and the R2 indicator. These algorithms have shown sca-
lability to any number of objectives while having a low computational cost. The performance
of MOEAs based on decomposition and R2 indicator, two key points should be considered:
1)the setting of the SF and 2)the generation or adaptation of weight vectors. Regarding
the choice of the weight vectors, several attempts have been proposed for adapting them
in order to get a high-quality approximation of the Pareto front (see for example [40,151]).
Several studies [36, 49, 75, 81, 124, 136, 137] have tried to provide guidelines to establish the
most suitable SFs concerning the characterization of a type of MOP. However, none of these
studies analyzes their ability to scale to any number of objectives. In fact, only three SFs
(the Weighted Sum, Chebyshev and Penalty Boundary Intersection function) have been
exhaustively researched so far [73,74,137], neglecting other approaches that may be able to
handle many-objective problems (i.e. problems with more than three objective functions).

This chapter proposes a general methodology of offline parameter tuning for MOEAs.
Then, we study weighted and unconstrained SFs which have been proposed not only within
evolutionary multi-objective optimization but also in the mathematical programming lit-
erature. Additionally, we investigate their scalability up to 10 objectives, solving different
test problems using the Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [171] and the Many-Objective Metaheuristic Based on the R2 Indicator II
(MOMBI-II) [61] frameworks. For this purpose, the best suited SFs and their model pa-
rameters are determined through our proposed experimental methodology in the following
three case studies:

1. To study the relationships between SFs and three basic Pareto front shapes (linear,
convex and concave).

2. To analyze the convergence and distribution reached by the Chebyshev functions on
various Pareto front geometries varying the number of objective functions.

3. To examine the behavior of the SFs in scenarios with more complex features such as
degenerated or multifrontal Pareto fronts and many-objective optimization problems.

Moreover, we present some modifications for estimating the performance of the algorith-
mic configurations in the EVOCA tool using diverse robustness measures taken from the
uncertainty handling area (see Section 5.3).
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5.1 Proposed experimental methodology

We propose a methodology for applying an offline parameter tuning process to evolutionary
multiobjective algorithms. It is an optimization strategy focused on setting the parameter
values of a target algorithm in order to reach its best performance. Our proposed method-
ology requires the definition of at least three stages as shown in Figure 5.1. In the following,
all steps involved in this methodology are described.

Stage 1 Stage 2 Stage 3

D
ef

in
ig

 a
 C

a
se

 S
tu

d
y

1. Definition and Design 2. Data Collection 3. Data Analysis

   1.1 Select the target algorithm

  1.2 Determine the parameter 
        space

1.3 Define a scenario  that
  includes   a set of MOPs

1.5 Choose a performance 
    Indicator

         2.2 Establish a maximum budget 
            for the parameter tuning tool

    2.3 Determine a function to 
        estimate the performance of 
       an algorithmic configuration

       1.4 Establish possible observations
         or formulate a hypothesis 

2.4 Execute an offline tuning 
   process

O
ff

li
n
e 

P
a
ra

m
et

er
 T

u
n

in
g
 M

et
h
o

d

P
ro

m
is

in
g
 a

lg
o

ri
th

m
ic

 c
o
n

fi
g

u
ra

ti
o

n
s        3.1 Obtain  statistically significant 

         solutions

       3.2 Make a comparison between 
      the tuned results and the baseline 
      algorithmic configuration 

3.3 Validate assumptions 
or hyphotesis

3.4 Make conclusions

     2.1 Select an offline parameter 
      Tuning method

Figure 5.1: Our experimental methodology for the offline tuning process

1. Definition and Design. In the first stage, the goal is to define all the components
related to the offline parameter tuning problem (the formal definition was explained
in Section 4.1 as a 6-tuple):

• Selection of the target algorithm, its parameters to be tuned and their respective
domains. A correct analysis of parameter space plays a key role in selecting an
appropriate parameter tuning method (e.g. one of the aforementioned in Chapter
4).

• Definition of scenarios by selecting MOPs of interest. Here, it is useful to apply a
classification of problems regarding particular characteristics. If we choose a set
of problems having common features, we can say that a specialized configuration
will be obtained to solve this type of problems. Otherwise, if we have a set of
instances with various features, the calibration process is more difficult according
to the No Free Lunch Theorem presented in Section 4.1.

• Formulating a hypothesis or establishing assumptions that are relevant to ex-
tract useful knowledge about the correlations between parameter values and the
characteristics of the MOPs. An example of this could be when we assume that
the decision variable space influences the selection of a suitable evolutionary
operator.
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• Multiobjective optimization requires to establish performance indicators to as-
sess the quality of the best solutions reached by the algorithmic configurations.
Depending on the performance indicator, different aspects are evaluated such
as convergence, uniform distribution, and coverage along the Pareto front. It is
important to determine what are the aspects that we are interested on.

2. Data collection. Once we established the knowledge of our interest, we can collect the
information, via the following steps:

• Select a correct parameter tuning method according to expected observations.
We need to consider the type and number of parameters to tune. For example,
if we expect to improve the baseline version of a target algorithm, or we want to
obtain more than one algorithmic configurations per scenario.

• Establishing a maximum budget requires to consider different aspects: a) the
number of function evaluations for the target MOEA, b) regarding the stochas-
tic nature in MOEAs, we need to establish the number of seeds to compute
descriptive statistics, and c) the budget of function evaluations available for the
offline parameter tuning tool.

• Determine a function to estimate the performance of the algorithmic configura-
tion. The calibration process typically computes the mean of R executions using
different random seeds. Moreover, it is possible to use other statistics like the
median or variance. Section 5.2.3 presents other alternatives to compute this
aggregating function.

3. Data analysis. From a set of promising algorithmic configurations, we need to filter out
the most significant one according to our hypothesis or assumptions. We recommend
to apply the following two optional steps:

• To obtain statistically significant solutions from a set of algorithmic configu-
rations using tests of nonparametric statistics such as Wilcoxon signed rank,
Kruskal-Wallis, Mann-Whitney, Spearman Rank Correlation or Friedman’s test.

• Many times, the goal of applying the offline parameter tuning is to improve a
baseline version previous proposed. If this is the case, we recommend making a
comparison between the algorithmic configurations obtained by the calibration
tool and the baseline version.

• To validate our assumptions or hypothesis, we need to make independent runs of
the algorithmic configurations with different random seeds. Then, we compute
the statistics of the performance indicators.

• Finally, we report the conclusions reached by the parameter tuning process.

We employ this methodology to perform an experimental study about the SFs adopted
by the MOEA/D and the MOMBI-II frameworks as follows.

5.1.1 Definition and design

We want to identify the following observations:
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• Firstly, to determine which are the SFs that are the most suitable for both the
MOEA/D and MOMBI-II frameworks on different scenarios defined by varying the
Pareto Front (PF) shapes and the number of objective functions.

• We want to verify if this robust set of SFs can significantly improve the performance
of the baseline versions of these MOEAs.

• Our main interest is to identify the SFs that can solve a wider variety of test instances,
or at least to know in which instances these SFs perform well.

All the experiments were implemented in the EMO Project framework 1 developed by
Hernández and Coello [51], which is implemented in C language. Table 5.1 shows the
parameters which adopted the same values in MOEA/D and MOMBI-II according to the
number of objective functions (m). The weight vectors were generated using the Simplex
Lattice Design (SLD) method described in [28] where H is a factor looking for a cardinality
analogous to the population size (popsize). The stopping criterion consisted of reaching
a maximum number of function evaluations of the MOP. The first study case used 50,000
evaluations. Other cases were fixed by the values presented in the column NFE. T is the
neighborhood size adopted by MOEA/D. We use the same number of weight vectors as
the population size. The number of decision variables is represented by n1 for the Lamé
Supersphere problems and DTLZ1, n2 for DTLZ3 and DTLZ3−1 and n3 for WFG(1, 2, 3).

Table 5.1: The parameters settings used by MOEA/D for each dimension m. The mark p
in column H means that the original set of weight vectors generated by SLD was pruned in
order to obtain the desirable population size.

m n1 n2 n3 H popsize NFE T

2 6 11 24 99 100 40,000 20
3 7 12 26 15 136 60,000 27
4 8 13 28 8 166 70,000 33
5 9 14 30 6p 180 80,000 36
6 10 15 32 5p 200 80,000 40
7 11 16 34 4 210 90,000 42
8 12 17 36 3, 4p 230 100,000 46
9 13 18 38 3, 4p 250 100,000 50
10 14 19 40 2, 3 266 110,000 53

For MOEA/D, the probability of Polynomial-based mutation and Simulated Binary
Crossover (SBX) were set to 1

n and 0.9 respectively; in both cases, the distribution index
was set to 20. The parameter values employed for MOMBI-II were: record = 5, tolerance
threshold = 1 × 10−3 and 0.5 for the variance threshold. The baseline version adopted
in MOEA/D was CHE for 2 objectives and PBI with θ = 5 for the remaining objectives
[82,171]. The baseline of MOMBI-II was ASF [61].

In summary, we used the next elements in our parameter tuning procedure:

• A : MOEA/D or MOMBI-II frameworks.

1Available at http://computacion.cs.cinvestav.mx/~rhernandez
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• P := {Weighted Compromise Programming (WCP), Weighted Sum (WS), Exponen-
tial Weighted Criteria (EWC), Weighted Power (WPO), Weighted Product (WPR),
Weighted Norm (WN), Chebyshev(CHE), Augmented CHE (ACHE), Modified CHE
(MCHE), Achievement Scalarizing Function (ASF), Augmented ASF (AASF), Penalty
Boundary Intersection (PBI), Inverted PBI (IPBI), Two-level PBI (2LPBI), Quadratic
PBI (QPBI), Conic Scalarization (CS), Vector Angle Distance Scaling (VADS), Ge-
neral Scalarizing Function(GSF), Normalized Scalarizing Function (NSF) and Dy-
namic Interactive Decision Analysis and Support System (DIDASS) }with their cor-
responding model parameter values defined in the ranges α ∈ [0, 10.0], p ∈ [0.1, 10.0],
t ∈ [1, 100], and θ ∈ [0.1, 50.0]}.

• O := DTLZ1, DTLZ3, DTLZ3−1 from the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite [66] and the Lamé Superspheres (LS) test problems [42] varying the parameter
γ = {0.3, 0.5, 1.0, 2.0, 4.0} with the goal of achieving diverse Pareto front shapes. We
classify our test MOPs in different scenarios according to their Pareto front geometry
and number of obejective functions.

• ψ := the normalized hypervolume (NHV), defined as:

NHV (A) :=
HV∏
i ri

, (5.1)

where HV (A, r) = L
(
∪µi=1 [A(i), r]

)
, is the hypervolume indicator [177]. L measures

convergence towards the PF and maximum spread through the union of hypercubes
formed by all non-dominated elements in A and a reference point r := (r1, . . . , rm)T .
A high NHV value is better.

We adopted the NHV performance indicator to make a fair comparison among the
problems predefined in each scenario. NHV requires to calculate the exact HV. For
the Lamé Superspheres problems, it was computed by the formulation given in [42]
and [148]. In the same manner, we consider that DTLZ1 has the same hypervolume to
Lamé with γ = 1.0 divided by two, DTLZ3 is equal to Lamé with γ = 2.0 and DTLZ3
convex is Lamé with γ = 0.5. For the WFG instances, the maximum hypervolume
was computed using a sampling of many Pareto optimal solutions.

5.1.2 Data collection

The EVOCA tool was selected as our offline parameter method because it offers the next
advantages:

1. It does not require additional specialized information to adapt any stochastic algo-
rithm.

2. It can deal with numerical, categorical and conditional parameters. The last type of
parameters was very important for the experimental design adopted in this thesis.

3. Regarding numerical parameters, EVOCA can include a zero value for tuned param-
eters. This is useful to identify the parameters that do not provide an improvement
in the target algorithm. In the next chapter, we show a case in which we adopt
scalarizing functions with model parameters equal to zero.
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4. We have had collaborative projects with EVOCA’s authors, which implies that we
can easily modify and adapt its source code as many times as required.

In EVOCA, an individual represents a calibration that involves one of the SFs described
in Chapter 3, and the set of all the model parameters. In order to achieve accurate results,
we consider that all the model parameters are real values.

The maximum budget (bmax :=) used by EVOCA is 10, 000 function evaluations and
ten seeds per test problem at each generation. The tuning process was independent for each
scenario.

5.1.3 Data Analysis

At the end of a tuning process, EVOCA returns a set of algorithmic configurations, cor-
responding to the best found. These configurations are executed 30 times independently.
Then, these are filtered using the Wilcoxon rank sum test (one-tailed) (with a confidence
level of 99%) and a ranking process for each configuration is applied. We compute a ranking
process by pairs, considering three possibilities: a) if a calibration significantly outperforms
another one, we add 1, b) if the calibration is outperformed by another one, we subtract -1,
c) otherwise this is a tie that does not affect the rank value.

Finally, the most significant configurations are compared with the baseline algorithm
applying the Wilcoxon test with a confidence interval of 99%.

Figure 5.2 shows the interaction among the components defined at the three stages of our
methodology. A target algorithm with its respective parameter space and a performance
indicator are inputs required for the EVOCA tool. The interaction between the target
MOEAs and EVOCA is established by a translator which interprets the performance of
algorithmic configurations. Finally, a statistical analysis is performed to the most promising
configurations.

Figure 5.2: Offline tuning parameter process.

The next section explains three case studies that employ our methodology and the
components previously indicated.
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5.2 Case Studies

5.2.1 Performance of the Scalarizing Functions according to Pareto front
shapes

In the first case study, our main interest was to analyze the behavior of fifteen SFs (WCP,
WS, EWC, WPO, WPR, WN, CHE, ACHE, MCHE, ASF, AASF, PBI, IPBI, CS and
VADS) and their model parameters to solve three basic Pareto front shapes. Moreover,
we are interested in analyzing their scalability with respect to the number of objective
functions.

Figure 5.3 gives an example to illustrate the effect of the parameter sensitivity in SFs. We
present boxplots that show the behavior of the AASF and PBI functions on the MOEA/D
framework with the same parameters settings. We compute the normalized hypervolume on
30 independent runs for solving the DTLZ1, DTLZ2, and DTLZ2−1. We can see that the
model parameters (α for AASF and θ for PBI) are very sensitive. Therefore, one parameter
value can be appropriate to a particular Pareto front shape but can work poorly for others.
This effect occurs in the same way if we vary the MOP’s dimensionality.

We selected the Lamé Superspheres test problems [42] since they encompass the three
basic Pareto front geometries (linear, convex and concave) that can challenge SFs. More-
over, this benchmark is scalable to any number of variables and objective functions. Hence,
we tested them for 2, 3, 5, 7 and 10 objectives (m). We fixed the parameter γ ∈ {0.5, 1.0, 2.0}
to achieve Pareto fronts with convex, linear and concave geometries, respectively. Only uni-
modal problems were considered since we aimed to determine if the SFs can handle different
shapes of the Pareto front for multi- and many-objective problems. Thus, adding difficulties
in the MOPs would introduce noise to the selection process of an MOEA. We designed the
following scenarios:

• Six scenarios that considered all the combinations of the cartesian product between
the Pareto front geometries, given by γ ∈ {0.5, 1.0, 2.0}, and the {multi, many} cases.
The “multi” case groups 2 and 3 objectives, whereas the “many” considers 5, 7 and
10 objectives.

• A global scenario which includes all the previous combinations.

The best-ranked calibrations obtained via the filter process that uses Wilcoxon test are
presented in Table 5.2.

Table 5.2: EVOCA’s recommendation for each possible scenario. In every calibration, it is
shown the scalarization function and its model parameter (in parentheses).

γ
MOEA/D MOMBI-II

Multi-objective Many-objective Multi-objective Many-objective

0.5 AASF (0.8001) EWC (7.6)
EWC (8.6)

CHE
AASF (1.0)

1.0
PBI (15.1)

AASF (0.3001) PBI (21.4123) AASF (0.3001)
PBI (20.5639)

2.0
PBI (2.6)

PBI (2.6) PBI (2.4026)
VADS (5.6)

PBI (7.6)
VADS (8.6) VADS (2.1)

Global
ASF AASF (0.0501)
CHE CHE

AASF (0.2423) ASF
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Figure 5.3: Examples of parameter sensitivity for the AASF and PBI functions. Figures a)
and b) show the normalized hypervolume indicator for linear (DTLZ1), concave (DTLZ3)
and concave (DTLZ3−1) Pareto fronts.
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To summarize the results, in the multi-objective case more than one calibration was
obtained, but in the many-objective case, we found only one recommended SF. EVOCA
found that 6 of the 15 SF (EWC, CHE, ASF, AASF, PBI, and VADS) had an outstanding
performance in the particular scenarios that we studied. In the global scenario, EVOCA
determined that CHE, ASF, and AASF had the best results, emphasizing that ASF forms
part of the original version of MOMBI-II, while CHE is used by MOEA/D for 2 objectives.
Furthermore, the best options to solve problems with convex shape (γ = 0.5) were AASF,
EWC, and CHE. For linear shapes (γ = 1.0) PBI and AASF. For concave shapes (γ = 2.0)
the best choices were PBI and VADS. Finally, the tuning process obtained a greater accuracy
for the corresponding model parameters than that provided by the values recommended in
the literature.

For all scenarios, our experimental results are shown in Tables 5.3, 5.4 and 5.5. Here, the
best value between the calibrated versions and the baseline MOEA is shown in grayscale. A
line above the median ( · ) implies that the calibrated version outperformed in a significantly
better way the baseline algorithm. Conversely, a line under the median ( · ) means that
the calibrated version was significantly outperformed. In the multi-objective scenarios of
Table 5.3, we can observe a clear performance improvement over the calibrated versions for
MOEA/D with 2 objectives and MOMBI-II with 2 and 3 objectives. Only the version of
MOMBI-II using EWC (8.6) was outperformed by the baseline MOMBI-II. In the particular
case of MOEA/D, the major gains were achieved for the convex MOPs, and the best suited
SFs were AASF (0.8001) and PBI (15.1, 20.5639, 2.6, 7.6). In MOMBI-II, the major gains
were in the convex MOPs and the remaining problems with 3 objectives. The best SFs for
this optimizer were EWC (8.6), AASF (1.0) and PBI (21.4123, 2.4026). As can be noticed,
AASF worked very well for both MOEAs in the convex problems, while PBI performed best
in the linear and concave problems. However, this SF is sensitive to its parameter value.

Table 5.3: Median (×10−1) and standard deviation of the normalized hypervolume indicator on the multi-
objective scenarios.

γ
MOEA/D MOMBI-II

Config.
m

Config.
m

2 3 2 3

0.5

Baseline 9.570400 5.0e-07 9.906204 3.4e-04 Baseline 9.570404 6.0e-07 9.917509 1.2e-04

AASF (0.8001) 9.573699 4.5e-08 9.974616 1.2e-05 EWC (8.6) 9.575178 5.4e-08 9.902034 6.8e-04

AASF (1.0) 9.573940 9.4e-08 9.975483 1.3e-05

1.0

Baseline 8.737370 8.2e-08 9.744895 2.5e-07 Baseline 8.737369 8.0e-08 9.636011 6.3e-04

PBI (15.1) 8.737374 4.5e-08 9.744894 7.0e-07 PBI (21.4123) 8.737374 4.5e-07 9.744881 1.8e-06

PBI (20.5639) 8.737374 3.0e-07 9.744894 1.0e-06

2.0

Baseline 8.025324 1.3e-07 9.277872 1.6e-06 Baseline 8.025323 9.6e-08 9.209490 1.0e-03

PBI (2.6) 8.025325 1.7e-07 9.277875 1.1e-06 PBI (2.4026) 8.025325 1.1e-07 9.277874 1.0e-06

PBI (7.6) 8.025326 5.1e-07 9.277867 1.4e-06

VADS (8.6) 8.025324 1.4e-06 9.277872 1.5e-06

In the many-objective scenarios of Table 5.4, we can notice a clear performance im-
provement over the calibrated versions of both optimizers. In MOEA/D, there were only 2
ties for the concave problems, and the major gains were in the convex MOPs. The best SFs
for MOEA/D were: EWC (7.6), AASF (0.3001) and PBI (2.6). In MOMBI-II, the major
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gains were in 5 and 7 objectives. The best SFs for this optimizer were CHE, AASF (0.3001)
and VADS (5.6, 2.1). In both optimizers, AASF (0.3001) worked very well on the linear
problems.

Table 5.4: Median (×10−1) and standard deviation of the normalized hypervolume indicator on the
many-objective scenarios.

γ Config.
m

5 7 10

MOEA/D

0.5
Baseline 9.961741 8.0e-04 9.908978 1.4e-03 9.831210 1.1e-03

EWC (7.6) 9.999756 6.1e-08 9.999988 1.8e-08 9.999985 1.1e-16

1.0
Baseline 9.989021 2.1e-07 9.999387 1.9e-06 9.999864 1.5e-05

AASF (0.3001) 9.989041 5.7e-07 9.999427 3.8e-07 9.999990 5.9e-07

2.0
Baseline 9.904560 2.3e-06 9.986141 4.5e-06 9.999186 4.2e-06

PBI (2.6) 9.904578 1.8e-06 9.986145 5.4e-06 9.999160 3.8e-06

MOMBI-II

0.5
Baseline 9.970399 3.9e-04 9.987786 3.3e-04 9.991083 2.8e-04

CHE 9.999357 3.2e-06 9.999964 1.5e-06 9.999942 4.1e-06

1.0
Baseline 9.937457 9.2e-04 9.977353 8.9e-04 9.993752 4.5e-04

AASF (0.3001) 9.989052 5.6e-07 9.999427 4.8e-08 9.999991 0.0e+0

2.0

Baseline 9.884399 3.9e-04 9.976128 2.2e-04 9.995263 1.5e-04

VADS (5.6) 9.904381 6.7e-06 9.985715 1.9e-05 9.998632 1.7e-05

VADS (2.1) 9.904350 8.6e-06 9.985683 2.4e-05 9.998591 2.0e-05

In the global scenario of Table 5.5 a different pattern is observed. In the case of
MOEA/D, ASF and CHE worked very well in the convex problems from 3 up to 10 objec-
tives. However, they worsened their behavior in the linear and concave MOPs. Similarly,
AASF (0.2423) performed well in the convex problems and the linear problems for 5, 7 and
10 objectives. However, its performance deteriorated in the concave MOPs. On the other
hand, for MOMBI-II, the 2 SFs were complementary to each other. For example, for 2
objectives, CHE was competitive with respect to the baseline version, while in the concave
problems for 3 to 10 objectives AASF (0.0501) performed best.

These results suggest that no SF can solve effectively all the problems. Instead, there
is a subset of them that can tackle in an effective manner some specific problems.
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Table 5.5: Median (×10−1) and standard deviation of the normalized hypervolume indicator on the global
scenario.

γ Config.
m

2 3 5 7 10

MOEA/D

0.5

Baseline 9.570400 5.0e-07 9.906204 3.4e-04 9.961741 8.0e-04 9.908978 1.4e-03 9.831210 1.1e-03

ASF 9.570399 3.2e-07 9.917019 1.5e-04 9.971177 5.7e-04 9.987843 2.6e-04 9.994325 2.8e-04

CHE 9.570400 5.0e-07 9.953880 2.6e-06 9.999339 1.6e-06 9.999972 5.5e-06 9.999967 6.3e-06

AASF (0.2423) 9.571983 1.9e-07 9.966615 7.4e-05 9.995188 5.0e-05 9.997490 4.8e-05 9.998646 5.4e-05

1.0

Baseline 8.737370 8.2e-08 9.744895 2.5e-07 9.989021 2.1e-07 9.999387 1.9e-06 9.999864 1.5e-05

ASF 8.737369 7.2e-08 9.638966 6.2e-04 9.914455 7.2e-04 9.963243 8.9e-04 9.988689 4.1e-04

CHE 8.737370 8.2e-08 9.689283 1.8e-05 9.967928 2.4e-05 9.983080 4.6e-04 9.932911 2.2e-03

AASF (0.2423) 8.668011 1.3e-06 9.720175 4.1e-05 9.989038 2.8e-07 9.999426 2.8e-07 9.999991 4.9e-07

2.0

Baseline 8.025324 1.3e-07 9.277872 1.6e-06 9.904560 2.3e-06 9.986141 4.5e-06 9.999186 4.2e-06

ASF 8.025323 1.0e-07 9.207519 7.9e-04 9.870073 6.6e-04 9.970228 5.6e-04 9.985247 1.6e-03

CHE 8.025324 1.3e-07 9.228448 5.7e-05 9.854362 1.3e-05 9.807065 2.3e-03 9.561658 6.5e-03

AASF (0.2423) 7.876793 2.0e-06 9.152424 2.5e-03 9.847468 2.3e-03 9.969067 5.6e-04 9.996733 1.3e-04

MOMBI-II

0.5

Baseline 9.570404 6.0e-07 9.917509 1.2e-04 9.970399 3.9e-04 9.987786 3.3e-04 9.991083 2.8e-04

CHE 9.570404 6.2e-07 9.953905 3.6e-06 9.999357 3.2e-06 9.999964 1.5e-06 9.999942 4.1e-06

AASF (0.0501) 9.570326 4.4e-07 9.924333 2.7e-04 9.979430 3.4e-04 9.989421 2.1e-04 9.993698 2.2e-04

1.0

Baseline 8.737369 8.0e-08 9.636011 6.3e-04 9.937457 9.2e-04 9.977353 8.9e-04 9.993752 4.5e-04

CHE 8.737369 7.2e-08 9.689161 1.2e-05 9.968534 1.1e-04 9.984665 6.2e-04 9.931828 2.4e-03

AASF (0.0501) 8.732288 1.2e-05 9.744887 6.7e-07 9.989033 2.2e-07 9.999427 1.8e-08 9.999991 0.0e+0

2.0

Baseline 8.025323 9.6e-08 9.209490 1.0e-03 9.884399 3.9e-04 9.976128 2.2e-04 9.995263 1.5e-04

CHE 8.025323 9.6e-08 9.229191 1.5e-04 9.855497 7.7e-04 9.851832 2.2e-03 9.563050 6.3e-03

AASF (0.0501) 8.003164 2.5e-05 9.269135 1.0e-04 9.898159 1.1e-04 9.985653 1.7e-05 9.999221 5.8e-06

5.2.2 Scalability of the Scalarizing Functions on different scenarios

We designed this case study as an extension of the first one with the aim of accomplishing
the following goals:

• Identify the most suitable SFs to deal with complicated MOPs that involve character-
istics such as disconnected, mixed2, degenerated Pareto front shapes or multifrontal
difficulty.

• Perform a study of scalability including scenarios in which one test problem is adopted
with a different number of objective functions.

• Determine if there exists a significant improvement in the use of reciprocal SF3 or not.

• Explore the performance of alternative SFs which have not been used in the MOEA/D
framework (CS, EWC, VADS, GSF, NSF, DIDASS).

• Find configurations of SFs that outperform the baseline version of MOEA/D.

2Pareto front with convex and concave regions.
3i.e. 1

λ
, where λ is a weight vector.
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76 Offline Parameter Tuning for Scalarizing Functions

This study case considers 32 variants of SFs: WCP, rWCP, WS, rWS, rEWC, EWC,
WPO, rWPO, WPR, rWPR, WN, rWN, CHE, ACHE, rACHE, MCHE, rMCHE, ASF,
AASF, PBI, QPBI, 2LPBI, CS, rCS, VADS, rVADS, GSF, rGSF, NSF, rNSF, DIDASS,
rDIDASS4 which are tuned for solving scenarios built by selecting test function from three
different benchmarks: the Lamé Supersphere functions, the Deb-Thiele-Laumanns-Zitzler
(DTLZ) [32] and the Walking-Fish-Group (WFG) test suites [66]. These MOPs were clas-
sified based on their Pareto front geometry in the following scenarios:

• Convex: DTLZ3−1, Lamé Supersphere functions with γ = 0.3 and γ = 0.5.

• Linear: DTLZ1 and Lamé Supersphere functions with γ = 1.0.

• Concave: DTLZ3, Lamé Supersphere functions with γ = 2.0, γ = 4.0.

• Mixed: WFG1 and WFG2.

• Degenerated5 : WFG3.

We separate two subsets of MOPs considering the number of objectives: multi-objective
case as m = {2, 3}, and the many-objective case using m = {4, 5, 6, 7, 8, 9, 10}. We de-
fine ten scenarios combining the {covex, concave, linear, mixed and degenerated} Pareto
front shapes versus the {multi and many} cases. Additionally, we include the global case
that involves all test problems with the goal of finding out if there are robust SFs. The
performance indicator used by offline tuning was the normalized hypervolume (NHV).

Table 5.6 summarizes the best results obtained for each scenario. Following the same
nomenclature used in the previous case study, the best value between the calibrated versions
and the baseline MOEA is shown in grayscale. A line above ( · ) implies that the calibrated
version outperformed in a significantly better way the baseline algorithm. Conversely, a
line under ( · ) means that the calibrated version was significantly outperformed. In general
10 of the 32 SFs were selected by the EVOCA tool as the most suitable in the predefined
scenarios. The ASF and EWC functions have the most repetitions, emphasizing that the
EWC function is appropriate in complicated Pareto front geometries (degenerated and
mixed cases) and it was also the best option for the global scenario. However, the p value
for EWC is sensitive to the type of problems being solved.

Tables 5.7 and 5.8 show the results for multi- and many-objective optimization, re-
spectively. In the first case, the EVOCA’s recommendations only outperform the baseline
version in at least 20% of the cases. Besides, other recommendations are competitive in
the majority of cases. Thus in multi-objective optimization (2 and 3 objectives), we can
find a variety of SFs that are suitable for the MOEA/D framework. EVOCA was able to
find similar values with respect to the baseline version in a multi-linear scenario (PBI with
θ = 5.1).

On the other hand, in the many-objective scenarios we can highlight the next observa-
tions:

• Many-concave: the baseline version outperforms all the configurations proposed by
EVOCA. One alternative for finding a better configuration is to increase the number
of function evaluations for EVOCA for this scenario. But this would not allow a fair
comparison with other scenarios.

4The prefix r used in the acronym refers to the reciprocal version of the SF.
5The degenerated subset refers to MOPs with m− 1 dimensionality in their Pareto front.
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Table 5.6: EVOCA’s recommendation according to the hypervolume indicator.

Scenario multi many

concave
ASF ASF

WCP p = 10 rNSF (a) α = 0.3

convex
ASF

ASF rACHE α = 2.0468

degenerated
GSF α = 1.5, β = 6.5 EWC (a) p = 9.1

rEWC p = 8.1 EWC (b) p = 4.6

linear
rACHE α = 6.0001 2LPBI α = 3.4, θ1 = 37, θ2 = 20.2

PBI θ = 5.1 EWC p = 0.6

mixed rACHE α = 0.0001
EWC p = 6.1

EWC p = 4.1

global EWC p = 6.1 AASF α = 7.5001

• Many-convex: Both EVOCA’s recommendations, ASF and rACHE functions out-
perform the baseline version in more than 90% of cases. According to the results, we
conclude that ASF is scalable in MOPs with a convex Pareto front.

• Many-degenerated: EWC with two ρ values (9.1 and 4.6) outperforms the baseline
version, and both cases are scalable for any number of objectives. The best results
were obtained by EWC with ρ = 9.1

• Many-linear: the 2LPBI function outperforms the baseline version only when using
from 6 to 10 objectives.

• Many-mixed: EWC outperforms the baseline version in all problem instances into
the many-mixed scenario. The same configuration (EWC with p = 6.1) was obtained
in the global scenario. Therefore, we can say that this configuration is scalable.
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Table 5.7: Median and standard deviation of the normalized hypervolume indicator on the multi-
objective scenarios.

MOEA/D

Problem Config.
Objectives

2 3

multi-concave

LAME γ 2.0

Baseline 9.969345e-01 1.8e-07 9.877527e-01 5.3e-05

ASF 9.969346e-01 2.6e-07 9.853744e-01 1.1e-03

WCP (p 10) 9.966721e-01 7.6e-06 9.866191e-01 1.5e-04

LAME γ 4.0

Baseline 9.966626e-01 3.2e-05 9.914845e-01 9.1e-05

ASF 9.966620e-01 3.2e-05 9.889950e-01 9.7e-04

WCP (p 10) 9.960594e-01 2.1e-06 9.895413e-01 1.8e-05

DTLZ3

Baseline 9.944036e-01 1.7e-03 9.871988e-01 7.7e-04

ASF 9.935713e-01 4.4e-03 9.884571e-01 1.1e-03

WCP (p 10) 9.940339e-01 2.0e-03 9.868133e-01 6.6e-04

multi-convex

LAME γ 0.3
Baseline 9.980796e-01 5.6e-07 9.996877e-01 6.2e-07

ASF 9.980796e-01 7.2e-07 9.981039e-01 1.2e-05

LAME γ 0.5
Baseline 9.969164e-01 3.0e-07 9.968244e-01 4.0e-06

ASF 9.969163e-01 5.6e-07 9.929787e-01 1.5e-04

DTLZ3 Baseline 9.493454e-01 2.7e-03 9.914186e-01 4.4e-04

CONVEX ASF 9.492604e-01 6.7e-03 9.904018e-01 8.5e-04

multi-degenerate

WFG3

Baseline 9.816058e-01 8.5e-03 9.691653e-01 7.8e-03

GSF (α 1.5 β 6.5) 9.707367e-01 7.6e-03 9.556639e-01 5.5e-03

rEWC (p 8.1) 9.746220e-01 1.2e-02 8.662606e-01 9.8e-03

multi-linear

LAME γ 1.0

Baseline 9.985565e-01 1.1e-07 9.893772e-01 1.8e-05

rACHE (α 6.0001) 9.985565e-01 7.3e-08 9.840810e-01 6.9e-04

PBI (θ 5.1) 9.985570e-01 1.6e-07 9.947087e-01 1.9e-07

DTLZ1

Baseline 9.983356e-01 5.0e-05 9.986995e-01 1.6e-05

rACHE (α 6.0001) 9.983484e-01 3.9e-05 9.955623e-01 6.0e-04

PBI (θ 5.1) 9.982488e-01 1.9e-04 9.993214e-01 2.7e-05

multi-mixed

WFG1

Baseline 5.201770e-01 2.4e-02 5.421981e-01 1.3e-02

rACHE (α 0.0001) 5.436472e-01 2.5e-02 5.504687e-01 1.6e-02

EWC (p 4.1) 4.974010e-01 1.6e-02 5.157478e-01 1.6e-02

WFG2

Baseline 9.182027e-01 2.9e-02 9.701562e-01 9.3e-03

rACHE (α 0.0001) 9.118927e-01 4.7e-02 9.798285e-01 9.2e-03

EWC (p 4.1) 9.009642e-01 4.0e-02 9.907056e-01 6.6e-03
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80 Offline Parameter Tuning for Scalarizing Functions

The results in a so-called global scenario (see Table 5.9) confirm that there does not
exist a single configuration that optimizes the 11 MOPs at the same time. However, the
two configurations EWC (p = 6.1) and AASF (α = 7.5001) outperform the MOEA/D
baseline in more than 55% of the cases. We can observe a certain degree of conflict among
the characteristics of the problems WFG1 and WFG2. This means that one configuration
is better for WFG1 but not for WG2 and viceversa. This requires an additional analysis
of the MOP’s characteristics. AASF with α = 7.5001 outperforms EWC with p = 6.1 in
multifrontal problems such as DTLZ1 and DTLZ3 (convex). According to our results, there
is evidence that the reciprocal versions of SF such as the ASF, AASF and ACHE-1 present
the best performance in most cases.
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5.2.3 Studying the effect of convergence and distribution of the Aug-
mented Chebyshev functions

The Chebyshev (CHE) functions have interesting mathematical properties that allow them
to properly handle MOPs with diverse Pareto front shapes and any number of objectives.
Moreover, the augmented CHE functions are useful to avoid the generation of weak Pareto
solutions. However, they require the definition of a parameter value which is very sensitive
and plays an important role in their performance. This section focuses on a comparative
study of five variants of weighted SFs based on the CHE model that includes the next
procedures: 1) a sensitivity analysis testing different parameter values. We compute the
Spearman’s correlation to determine a monotonic relationship between the performance
indicator value and the variant of CHE function coupled to MOEA/D, 2) a parameter
tuning scheme (proposed in Section 5.1) to determine the best ranges that improve the
convergence and distribution of solutions along the Pareto front. Additionally, we also
investigate their scalability up to 10 objectives and provide guidelines to apply the CHE
functions in an online adaptive algorithm.

Sensitivity Analysis

We compute the sensitivity degree of the model parameter for the augmented CHE func-
tions (see equations 3.13, 3.14, 3.16, 3.17 and 3.18 in Chapter 3) testing 10 different values of
α = {0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 10.0} onDTLZ1, DTLZ3 andDTLZ3(−1)6

which have linear, convex and concave Pareto front shapes. These test problems were
adopted with 3, 5, 7 and 10 objectives using the MOEA/D framework. Appendix B shows
Tables C.1 and C.4 with the results corresponding to the 30 independent runs performed
for HV. The reference point used in all problems was set to (3, 3, . . . , 3)T . The best per-
formance indicator for each augmented CHE function is shown in boldface and the best
global value found are highlighted with a gray tone.

For a better understanding of the effect of the α value, we compute the Spearman cor-
relation coefficient (ρ). This method is a nonparametric statistical technique that aims to
establish the relationship between two variables. In our case, these variables are set by
different α values and a performance measure. The coefficient ρ is set in the range [−1,+1].
When the absolute ρ value is close to 1, it indicates a monotonic relation. Otherwise,
a near-zero value suggests no association. We executed 30 independent runs to compute
descriptive statistics of the Spearman’s correlation for the HV and IGD+ indicators con-
cerning a specific Pareto front geometry. Table 5.10 shows these results. When the absolute
ρ value is greater than 0.5 is highlighted with a gray tone. In general, we can say that the
HV results do not show big differences among the augmented CHE functions. Regarding
scalability in objective space, we can identify the CHE functions with a monotonic relation.
These cases are: DTLZ1 with RMCHE and α = 0.0001 is the best option in all dimensions.
DTLZ3 with ACHE (with α < 1), RCHE (α = 0.1 in 3,5 and 7 objectives or α = 0.01 in
10 objectives) RMCHE (α < 1.0). DTLZ3−1 with ACHE (α = 0.01 with m = 3, 5, 10 and
α = 0.1 with 7 objectives), RCHE (α = 0.1 with m = 3, 5, 7 and α = 0.01 in 10 objectives)
and RMCHE (α < 1.0). Although RACHE is the reciprocal version of ACHE, both obtain
similar results with the same α values. However, RACHE has a more significant number
of successes than the other variants. We can observe cases where the α value increases

6This is a projection of DTLZ3 function to generate a Pareto front with a convex shape.
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while the HV value decreases. This occurs in the ACHE function solving DTLZ1 with 10
objectives and DTLZ3 with 7 objectives.

On the other hand, Table 5.10 shows in almost all cases significant differences regarding
the IGD+ indicator. The following CHE functions present a high correlation in the IGD+
indicator. DTLZ1 with ACHE (α > 1.0) and AASF (α ≤ 0.01), DTLZ3 with ACHE,
RACHE, RMCHE and AASF, DTLZ3−1 with ACHE, RACHE and RMCHE. In all cases,
the best HV value is obtained using α ≤ 0.1. We can observe that the IGD+ value is
improved in several cases where the α value increases or decreases. For example: ACHE
in DTLZ1 with m = {5, 7, 10}, RACHE in DTLZ1 with m = {5, 7, 10}, AASF in DTLZ1
with m = {7, 10} and RMCHE in DTLZ3−1 with 10 objectives.

Table 5.10: Descriptive statistics of Spearman correlation coefficients (ρ) with respect to
the HV indicator on DTLZ1, DTLZ3 and DTLZ3−1.

MOP Stats
HV IGD+

ACHE RACHE MCHE RMCHE AASF ACHE RACHE MCHE RMCHE AASF
min -0.7697 -0.7939 0.0749 -0.9515 -0.9483 -0.9515 -0.8667 -0.7091 -0.8303 0.9515
max 0.2128 -0.1636 0.4369 -0.7455 0.5222 -0.8545 0.9273 0.1273 0.9758 0.9879

DTLZ1 mean -0.2483 -0.5030 0.2138 -0.8697 -0.2062 -0.9152 -0.0182 -0.1667 0.1061 0.9697
med -0.2182 -0.5273 0.1716 -0.8909 -0.1993 -0.9273 -0.0667 -0.0424 0.1394 0.9697
std 0.3701 0.2543 0.1413 0.0801 0.7285 0.0364 0.8234 0.3207 0.7296 0.0136
min -0.8788 -0.9394 -0.503 -0.9515 -0.7212 0.8424 0.8424 -0.3697 0.8909 0.4667
max -0.8424 -0.6606 0.6 -0.8545 -0.4424 0.9273 0.9394 0.8545 0.9758 0.697

DTLZ3 mean -0.8697 -0.8455 0.0727 -0.8970 -0.5515 0.8879 0.8879 0.2273 0.9303 0.6030
med -0.8788 -0.8909 0.097 -0.8909 -0.5212 0.8909 0.8848 0.2121 0.9273 0.6242
std 0.0157 0.1099 0.4608 0.0359 0.1134 0.0313 0.0347 0.4372 0.0347 0.0880
min -0.9515 -0.9515 -0.7576 -0.9879 0.0303 0.8788 0.7818 -0.5273 0.6485 -0.7576
max -0.9273 -0.8545 -0.0667 -0.9273 0.3576 0.9273 0.8909 0.3576 0.9879 0.8667

DTLZ3−1 mean -0.9455 -0.8939 -0.4364 -0.9485 0.1848 0.9030 0.8455 0.0727 0.8606 0.1939
med -0.9515 -0.8848 -0.4606 -0.9394 0.1758 0.9030 0.8545 0.2303 0.9030 0.3333
std 0.0105 0.0357 0.2485 0.0248 0.1269 0.0192 0.0432 0.3505 0.1284 0.6706

To illustrate the effect of the distribution of the optimal solutions, Table 5.11 shows
figures with the three basic Pareto fronts shapes (linear, concave and convex). Here, a
small α value can achieve a better distribution. When we use the range 0.0001 < α < 0.1,
the solutions are distributed in the extreme and the knee of the Pareto front. This effect
increases the HV values. However, for values close to 1.0, the augmented CHE function
cannot correctly generate Pareto optimal solutions (this is more evident in concave Pareto
front shapes).

Parameter tuning process

We use the same scenarios of the previous case study: convex, linear, concave, mixed and
degenerated in multi- and many-objective cases.

The quality of a Pareto front approximation obtained by a particular configuration is
assessed independently using two different performance indicators: the normalized hyper-
volume indicator and the modified Inverted Generational Distance (IGD+) [75]. A random
sampling of Pareto optimal points establishes the reference set used by the IGD+ indicator.

The parameter α was set in the range [0.0001, 10.0] according to the guidelines provided
in the specialized literature.

The best-ranked calibrations are presented in Table 5.12. The most commonly recom-
mended α value (0.0001) in the specialized literature is highlighted with a gray tone. We
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Table 5.11: Effect of the model parameter of the augmented CHE functions.

α = 0.0001 α = 0.1 α = 1.0

AASF, DTLZ1

RACHE, DTLZ3

MCHE, DTLZ3−1

can observe that 24% of EVOCA’s recommendations according to the HV indicator and
50% according to the IGD+ indicator correspond to α = 0.0001. Next, we mention the most
relevant observations in the results obtained by EVOCA. ACHE and RACHE improve its
performance in both indicators (HV and IGD+) with α values greater than 3 in multi- and
many-objective optimization problems. In MOPs with a concave Pareto front, the majority
of augmented CHE functions improve HV and IGD+ with values near to or equal to 0.0001,
except for RACHE and AASF in the HV indicator. In the case of MOPs with convex and
mixed Pareto fronts, AASF prefers a large value concerning others. RACHE recommends
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α values greater than 0.5 in degenerated Pareto fronts for multi- and many-objective pro-
blems. Here, the set of values recommendations reported is more diverse than in other
cases.

Table 5.12: EVOCA’s recommendations according to the HV and IGD+ indicators.

Dim shape
HV IGD+

ACHE RACHE MCHE RMCHE AASF ACHE RACHE MCHE RMCHE AASF

m
u

lt
i-

ca
se

l 3.3335 6.7491 1.0001 0.0001 1.5868 3.3335 6.5001 0.0001 0.0001 0.0001
c 0.0001 1.0001 0.0001 0.0001 0.8784 0.0001 0.0001 0.0001 0.0001 0.0001
x 0.5534 1.0001 0.5534 1.0001 9.6872 0.0001 0.0001 0.0001 0.0596 9.5357
m 0.0001 0.5001 0.1343 0.0001 0.2312 0.0224 0.0547 0.0224 0.0001 0.0288
d 0.5001 1.7368 0.0253 0.0253 1.0001 0.2774 2.8820 0.3514 0.2312 0.0001

m
a
n
y
-c

a
se l 7.5001 9.2402 0.5001 0.5001 0.5001 7.5001 1.5868 0.3565 0.0001 0.0001

c 0.0001 2.0001 0.0001 0.0001 0.7567 0.0001 0.0547 0.0001 0.0001 0.0001
x 0.5402 0.3545 0.5402 0.5402 9.8990 0.0001 0.0001 0.0090 0.0001 10.000
m 0.0143 0.0143 0.3565 0.3565 2.5357 0.0001 0.0090 0.0001 0.0001 4.5001
d 0.0001 0.5534 0.4174 0.0001 0.0001 0.2774 9.0001 0.2895 0.2312 0.1392

We compute both HV and IGD+, for each test problem using EVOCA’s recommenda-
tions. Tables C.7, C.8, C.9 and C.10 show the mean and standard deviation corresponding
to 30 independent runs. Also, we applied the Wilcoxon rank test with a 99% of confidence
to corroborate that the best SF found is statistically significant. The symbol (↑) means that
the CHE SF was outperformed by the best option highlighted with a gray tone. Conversely,
a (↓) symbol means that the difference between the best option and another CHE model is
not significant. We count only the best significant indicator values per each SF and compute
a percentage of success. Table 5.13 shows bar plots to compare the SF’s performance per
scenario and the global cases that consider all the test problem instances. For the whole set
of test problems (11 functions and 6 different dimensions), the most promising SFs consid-
ering the HV indicator are AASF, CHE and RMCHE with a 37.88%, 27.27% and 16.66%
of statistically significant values, respectively. While the IGD+ indicator presents a wider
variety of options being the best: AASF(19.7%), ASF(18.18%), RACHE and MCHE (both
13.64%). Considering the HV indicator, the best options for linear Pareto front shapes are
the CHE and AASF models in multi- and many-objective problems, respectively. CHE is
better than ASF in concave shapes but in the mixed cases, ASF outperforms CHE. MCHE
properly solves WFG3, which has a degenerated Pareto front in multi-objective problems.
ACHE and MCHE work better for many-objective problems. Regarding the IGD+ indi-
cator, any EVOCA’s recommendations can solve more than 50% of the test instances per
scenario. The most promising function to improve the diversity in the many-objective case
is MCHE for convex shapes, while AASF can properly handle mixed shapes.
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Table 5.13: Percentage of success regarding the performance indicators.

HV indicator in the multi-case scenario HV indicator in the many-case scenario

IGD+ indicator in the multi-case scenario IGD+ indicator in the many-case scenario

5.3 Robustness measure in Offline parameter tuning

The offline parameter tuning applied to MOEAs has the goal of finding the best algorithmic
configuration that successfully solves a large number of MOPs. According to The No Free
Lunch Theorem [163], no stochastic search algorithm can have the best performance in
all classes of optimization problems. However, it is possible to find an appropriate set of
parameters of an algorithm for solving a particular class of problems. For that sake, we need
to study how to estimate the aggregate quality function for an algorithmic configuration
assessed on a set of optimization problems. In MOEAs, each parameter has a significant
influence on their performance such as its rate of convergence and on the quality of the
solutions obtained. Offline parameter tuning is subject to uncertainty according to two
aspects: 1) the stochastic procedures involved in MOEAs, 2) the optimal configuration for
an MOEA optimizing a set of problem instances at the same time.

The goal of this section is to study robustness measures used in the area of uncertainty
[8,45] to compute the performance of an algorithmic configuration used in the offline tuning
methods. Our main contribution is to provide a set of guidelines on the use of robustness
measures for solving multi-objective optimization problems (MOPs).

The typical goal in optimization is to identify optimal solutions. In the case of parameter
settings, we want to optimize the configuration c ∈ C of an MOEA on a scenario O. As
defined in the previous chapter, O contains several problems o1..k to be optimized in their
turn. However, the optimal configuration for solving one problem oi can be poor for another
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problem oj of one scenarioO. Thus, the additional challenge is to have a set of configurations
that have a ‘good’ performance in a set of scenarios. The main issue is how to define this
performance. To do so, we propose to use robustness measures, by incorporating some
of the concepts of robust optimization [53], to solve the offline parameter tuning problem
represented by Equation (5.2).

max
c∈C,o∈O

ψA(c, o). (5.2)

In order to do this, we substitute the nominal objective for a robust measure that aggregates
on the results from the different problems measured by scalar fitness function ψ. The robust
measures that we use in this work are the following:

• Mean: it is one of the most commonly used in the literature. With this measure,
we would be looking for the configuration that works best in the mean of the cases.
However, this measure is not appropiate when results contain outliers since an outlier
value has a significant impact on the mean value itself.

• Median: it is quite useful since it removes outliers. However, removing outliers would
mean that we are not interested in all cases but rather in most of them. Thus, using
this measure would mean that we are interested in the configuration that works well
for most scenarios but it could fail completely in the others.

• Worst case: in this case, the fitness would be represented by the worst result in
the given scenario. This would optimize over worst cases and thus ensure that the
configuration would work at least with that quality. However, this measure can be
over-conservative, since the worst case could never happen in practice.

Each of those measures has some advantages and drawbacks. The decision to use them
should include the preference of the decision maker as well as the aim of the algorithm that
we are tuning.

Moreover, since the MOEA has uncertainty itself (the same configuration can give di-
fferent quality), it is also required to treat it in the same form as for the scenario. We first
approximate the fitness for the MOEA and afterwards for the scenario. Namely, we com-
bine: mean-mean, median-median, best-worst, mean-worst, median-worst and worst-worst.
We make an emphasis on the worst-case since we are aiming for one configuration that
works in all problem instances.

Our two particular goals for these experiments are: 1) to verify which measures are
the most useful in three scenarios characterized according to the Pareto front geometry,
and 2) to identify the most robust configurations when scaling up the number of objective
functions in a MOP.

We use the next elements in the offline parameter tuning process:

• MOEA/D framework.

• P := {CHE,ASF,AASF,EWC, V ADS,PBI} with their corresponding model pa-
rameter values defined in the ranges α ∈ [0, 10.0], p ∈ [0.1, 10.0], t ∈ [1, 100], and
θ ∈ [0.1, 50.0].

• Scenarios:
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Table 5.14: EVOCA’s recommendation for different scenarios using 3,5,7 objectives

Robustness Geometry
measures Convex Concave Linear
mean-mean AASF (α = 5.3727) VADS (p = 11.9) PBI (θ = 15.9)

median-median EWC (p = 7.2) PBI (θ = 8.2) PBI (θ = 10.4)
best-worst CHE PBI (θ = 2.6) AASF (α = 0.0469)

worst-worst AASF (α = 1.5305) VADS (p = 6.3) PBI (θ = 4.2)
mean-worst AASF (α = 0.6977) VADS (p = 11.9) PBI (θ = 8.4)

median-worst AASF (α = 1.4065) VADS (p = 12.1) PBI (θ = 11.3)

1. convex = {DTLZ3−1, LS (γ = 0.3), LS (γ = 0.5)}
2. linear = {DTLZ1, LS (γ = 1.0)}
3. concave = {DTLZ3, LS (γ = 2.0), LS (γ = 4.0)}

We tested this approach for m = 3, 5, 7 objectives.

• ψ := the normalized hypervolume (NHV).

The general results reached on this section are presented in Table 5.14 that shows the
SFs obtained by EVOCA for each of the approaches in the different scenarios related to the
Pareto front shapes. It is interesting to see that the approaches select not only different
parameters for the scalarizing function but also different functions in several cases. This is
an interesting result since it shows the impact of changing the robustness measure that is
adopted. For all scenarios, the experimental results are shown in Table 5.15. In gray, we
show the best result among the different robustness measures. An arrow upwards indicates
that the approach is outperformed in a significant way by the baseline algorithm (EVOCA
with mean-mean). An arrow downwards means that the baseline algorithm outperforms
the robustness measure. Furthermore, Figures C.1, C.2 and C.3 show the box plots for
the different scenarios using the hypervolume indicator without applying a normalization
process. Marks a, b, c, d, e, f correspond to each robustness measures presented in Table
5.15. We can see in Figure C.1 that EVOCA’s recommendation for a convex scenario out-
performs the baseline version only in Lamé supersphere with α = 0.3 and α = 0.5 using
median-median and best-worst measures. But in multifrontal MOPs median-median fails
and other measures obtain similar results. This is because the median statistics discard the
outlier results. Figure C.2 shows the linear scenario, where there is an evident tendency:
the best-worst measure outperforms the baseline version in MOPs with more than 3 objec-
tives. Finally, we obtain similar results in Figure C.3, where the EVOCA’s recommendation
improve the baseline version only in unimodal MOPs.

From the results, it is possible to observe that the best-worst approach, is capable of
outperforming the base algorithm in most cases when the problems are unimodal. A similar
case occurs with the median. However, for the multi-modal problems we can observe a
deterioration of the quality of the results. This suggests that such problems should be in a
different scenario and have their own configuration to find good solutions.

Also, we can notice that the configurations found work well while increasing the number
of objectives. Further, we can observe that the different robustness measures outperform
the baseline algorithm in most of the problems (aside from the multi-modal problems). This
suggests that alternative measures to treat uncertainty can have a positive impact while
searching for configurations for a set of scenarios.
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5.4 Summary

In this chapter, we presented our experimental methodology for parameter tuning with
the goal of determining the weighted and unconstrained SFs that are the most suitable
for the MOEA/D and the MOMBI-II frameworks. For this purpose, we designed several
test scenarios considering different Pareto front shapes and objectives. We used the tuning
tool EVOCA to determine the best calibration for each of these scenarios. In almost all
cases, EVOCA recommendations outperform the baseline version of these MOEAs. Our
most important conclusion is that no unique scalarizing function performs best in all the
scenarios but a set of them, regarding the normalized hypervolume indicator. In general,
we obtained good results with AASF, PBI, EWC, and VADS. These SFs deserve further
research attention.

We examined the choice of an SF based on the Chebyshev model in MOEA/D with the
aim of characterizing test problems via their Pareto front shape and number of objective
functions. Good results were obtained from the AASF over various settings of test problems.
Regarding the specification of the α parameter in the augmented CHE functions, we derived
the following interesting observations:

• We identified a correlation between the increase of the α value and the distribution
of optimal solution for the augmented SF. This relation depends on the Pareto front
geometry.

• The EVOCA framework found that a small α value is useful for concave Pareto fronts
in almost all augmented CHE functions. However, some large values work better for
solving linear, convex and degenerated Pareto front shapes.

• Regarding the IGD+ indicator, the seven CHE functions have a similar performance,
and none of them is better than the others.

• One of the most promising versions of the CHE function is AASF which is able to
improve both the HV and IGD+ values.

In the next chapter, we study and design adaptive models that combine various SFs
regarding the most promising results presented here. We propose an adaptive strategy for
the α value in the SFs based on the CHE model. Also, we propose a co-evolutionary scheme
to adapt the weight vectors, according to the performance reached by the PBI function.
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Chapter 6

Adaptive Strategies for Scalarizing
Functions

In decomposition based MOEAs, we can examine three different spaces: 1) decision variable
space, 2) objective function space, and 3) weight vector space. In this chapter, we focus
our interest in the last two to adopt adaptive strategies in an online manner to select an
appropriate Scalarizing Function (SF) during the evolutionary search process of MOEA/D
with the goal of improving the quality of Pareto optimal solutions in multi- and many-
objective optimization problems (MOPs and MaOPs).

The objective and the weight vector spaces are defined in IRm, where m is the number
of functions involved in the original MOP (see Equation (2.1)). The weight vector space is
composed by a set of convex vectors defined in an m−simplex (see Chapter 3) to establish
the search directions for each scalar subproblem. Methods based on low discrepancy se-
quences or the Simplex Lattice Design (SLD) [123] are usually employed to generate weight
vectors with a uniform distribution around this m−dimensional space. However, a uniform
distribution on weight vector space does not guarantee obtaining a uniform distribution in
the approximation of Pareto solutions because it depends on several issues, in cases such as
the following:

• MOPs with complicated Pareto front geometries such as mixed shapes (i.e. linear,
convex or concave subregions in the same Pareto front), disconnected regions or de-
generated fronts (see Figures 6.1 and 6.2).

• In Many-objective Optimization Problems (MaOPs) (m > 3) is complicated to obtain
a good population diversity. A visualization tool such as the parallel coordinates plot
can give us a general idea about the distribution of the Pareto front solutions (see
Figure 6.3).

• The use of non-reciprocal scalarizing functions generates candidate solutions in diffe-
rent locations of the target directions. For example, the Chebyshev (CHE) function
generates solutions in the extremes and the knee of the Pareto front, see Table 3.1.

• The augmented scalarizing functions such as AASF, MCHE or RASF (see Chapter 5)
involve model parameters that form angles between target directions and the generated
candidate solutions (see Figures 6.4 and 6.5).

Therefore, MOEAs strongly depends on the choice of the Scalarizing Function (SF).
Methods such as the Modified Weighted Chebyshev (MCHE), Penalty Boundary Intersec-
tion (PBI) and Augmented Achievement Scalarizing Function (AASF) have been found to
be very effective for achieving both convergence to the true Pareto front and a uniform
distribution of solutions along it. However, the choice of an appropriate model parameter is
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92 Adaptive Strategies for Scalarizing Functions

required for these SFs. In this chapter, we want to combine the strengths and compensate
for the weaknesses of different SFs by employing an online method. Our proposed approach
uses collaborative subpopulations to establish the best model parameter for each MOP. We
also investigate the scalability of our proposed approach using up to 10 objectives, adopting
several benchmark problems. Our preliminary results give rise to some interesting obser-
vations regarding the way in which different SFs are combined and adapted during the
evolutionary process of MOEA/D.

Figure 6.1: Mixed Pareto
front shape.

Figure 6.2: Disconnected
Pareto front shape.

Figure 6.3: Parallel co-
ordinates plot in a 7-
objective MOP.
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Figure 6.4: The CHE
function in a bi-objective
MOP.
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Figure 6.5: The MCHE
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MOP.
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Figure 6.6: The AASF
function in a bi-objective
MOP.

6.1 Analysis of Convergence Speed in Scalarizing Functions

In the original MOEA/D all subproblems are treated equally assigning the same SF and
model parameter value. However, recent studies such as [21], [175], and [87] have shown
that some parts of the PF in a MOP can be more difficult to approximate than others.
These works have employed dynamic resource allocation strategies to assign different com-
putational resources to each subproblem. In this section, we present experiments to analyze
how the convergence speed can vary for each subproblem depending on the SF and its pa-
rameter model. We tested diverse SFs and their model parameters to establish guidelines
that allow us to combine more than one SFs during the search process of an MOEA and
we can reduce the computational cost required to solve the original MOP.

We employed the Differential Evolution (DE) algorithm in its rand/1/bin version to
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6.1. Analysis of Convergence Speed in Scalarizing Functions 93

optimize each scalar subproblem in an independent manner. Given a set of uniform weight
vector generated via the SLD method, the DE algorithm optimizes the following equation:

minimize g(f(x);λ), (6.1)

where g is a SF, f represents the original MOP, x is the vector of decision variables and λ
is a weight vector that establishes a target direction.

We evaluated the minimum number of evaluation functions required to converge to the
true Pareto optimal solutions corresponding to each subproblem. We tested the SFs based
on the Chebyshev model, Penalty Boundary Intersection (PBI) and Weighted Norm (WN)
functions wiht the following parameter values:

• ACHE, RACHE, AASF, MCHE, RMCHE with
α ∈ {0, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 10.0}

• PBI with θ = {0.1, 1.0, 2.0, 5.0, 10.0, 50.0} and

• WN with p = {0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 100.0}

We tested DTLZ1, DTLZ3 and DTLZ3−1 which have linear, concave and convex
Pareto front shapes, respectively. We adopted 2, 3, and 5 objectives. The number of weight
vectors was 100, 120 and 210 for each dimension.

Figures 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 show the convergence plots of the most relevant
results. In these figures, we can see that ACHE and MCHE are very sensitive to their
model parameter. In these cases the most efficient α values are very small. Also, in convex
and concave Pareto shapes (DTLZ3 and DTLZ3−1), when α ≥ 1.0, the convergence speed
drastically decreases. Appendix C describes the remainder of the experiments.

Figure 6.7: ACHE in DTLZ1 with 5 ob-
jectives.

Figure 6.8: MCHE in DTLZ1 with 5 ob-
jectives.
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94 Adaptive Strategies for Scalarizing Functions

Figure 6.9: ACHE in DTLZ3 with 5 ob-
jectives.

Figure 6.10: MCHE in DTLZ3 with 5 ob-
jectives.

Figure 6.11: ACHE in DTLZ3−1 with 5
objectives.

Figure 6.12: MCHE in DTLZ3−1 with 5
objectives.

The results presented in this section show the importance of combining several parameter
values or even more than one SF. This is particularly useful in cases where the MOPs present
complicated Pareto front geometries, such as mixed or disconnected shapes.

6.2 Collaborative and adaptive strategy of different Scalari-
zing Functions

In this section, we propose a strategy based on collaborative populations combining di-
fferent SFs and model parameter values via an adaptive operator selection based on the
Multi-Objective Multi-Armed Bandit (MOMAB) technique, which consists on the follo-
wing definition:

Definition 6.2.1 Given n slot machines called “arms” with random rewards, the goals of
MOMAB are:

• to maximize the returned reward,
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• to minimize the regreat of pulling suboptimal arms and

• to identify the set of optimal arms

In our case, we associate the term arm to a parameter setting in an MOEA, whereas
the reward concept corresponds to the performance quality reached by this configuration.
The bandit problem is formally equivalent to a one-state Markov decision process as an
extension of Markov chains, where there are actions and rewards [17, 176]. This problem
is also called exploration and exploitation trade-off, where our interest is to identify how
many times to play each machine and in which order to play them. When a machine is
played we require to establish a reward from a specific probability distribution. In other
words, MOMAB is a useful adaptive allocation strategy to map states and actions to obtain
a maximum reward [96].

Some MOEA/D improvements [103, 119] have employed MOMAB techniques as an
Adaptive Operator Selection (AOS) mechanism to select the most suitable operator from a
pool of options according to some determinist rule based on multi-armed bandit algorithms.
Bandit-based AOS establish two tasks: 1) to determine a reward for each operator via its
record of fitness improvement rates, and 2) to select an operator for being used according
to the current reward value. For more details see Chapter 4.

The aim of this section is to adopt a MOMAB strategy, only used in evolutionary oper-
ators, to select an appropriate SF during the evolutionary search process of MOEA/D. Our
proposed approach uses collaborative subpopulations to establish the best model parameter
for each MOP. We also investigate the scalability of our proposed approach using up to 10
objectives, adopting several benchmark problems.

6.2.1 Our proposed approach

Next, we define some guidelines to combine more than one SF simultaneously, using an
adaptive strategy selection and collaborative subpopulations. As indicated before, the me-
chanism adopted is a bandit-based AOS algorithm coupled to MOEA/D-DRA [170]. We
analyze the effect that our proposed approach has on the performance of MOEA/D-DRA
when solving MOPs with up to 10 objectives and complicated Pareto front shapes.

Pool of Strategies

As mentioned in Section 6, the CHE and ASF methods find optimal solutions in opposite
target directions. Based on this and our prior experience, only the SFs with similar target
directions will be combined simultaneously. Otherwise, the algorithm can not generate
well-distributed solutions along the Pareto front. We propose the next pool of strategies for
combining multiple SFs:

• S1 = {ACHE,MCHE,WN},

• S2 = {AASF,MASF, PBI},

The model parameters were suggested based on the values proposed by different authors:

• α = {0.0, 0.0001, 0.001, 0.01, 0.5},

• p = {0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 100.0},
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• θ = {0.1, 1.0, 2.0, 5.0, 10.0, 50.0}

These values consider three special cases: α = 0 to include the ASF method, p = 1 for
the WS function and p = 100 which is similar to the CHE function. Thus, |S1| = 17 and
|S2| = 16 is the number of different configurations of SFs.

Collaborative populations

We pre-defined a set of uniformly distributed weight vectors using the simplex lattice design
technique [139], to maintain a good diversity in MOEA/D-DRA. These weight vectors are
divided into k subsets used by a subpopulation which optimizes one of the types of SF
selected from a pool of options (S1 or S2). Each weight vector is assigned alternately to
each subpopulation in the same manner as was mentioned in [80] (single grid implementation
technique).

Our proposed approach uses a MOMAB method for deciding which SF should be em-
ployed at a time point in MOEA/D-DRA to solve different MOPs. Figure 6.13 shows the
general idea of our proposal. Here, we can see an example where two subpopulations A and
B are associated to the PBI (θ = 1.0) and AASF (α = 0.1) functions. These options were
taken from a pool of strategies previously established.

Figure 6.13: A general scheme of our proposed approach.

6.2.2 Adaptive strategy selection

As we can see in Section 6, the performance of a decomposition-based algorithm strongly
depends on the selection of its SF. Some types of SF are more beneficial for a particular
Pareto front shape or a certain number of objectives. We employ a MOMAB technique
to select the most appropriate SF for each subproblem in a decomposition-based MOEA.
Here, MOMAB considers two main aspects: to assign a credit value to each operator and
to select one operator based on its historical performance. In our case, we used the term
“operator” to refer to a SF and its model parameter. We adopted MOEA/D-DRA coupled
to AOS based on the fitness improvement rates (FIR) [103], which is computed by each
subproblem i at time t, as defined by equation (6.2).
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FIRi,t =
g(xi|λi, z∗, f ′)− g(y|λi, z∗, f ′)

g(xi|λi, z∗, f ′)
, (6.2)

where xi is the current solution and y is its generated offspring solution after applying the
genetic operators. Function g is a specific SF selected from a pool of strategies. The aim of
the FIR technique is to deal with the largest ranges of raw fitness values at different stages
of the evolutionary search process [103]. We used a sliding window with a fixed size W and
a first-in, first-out (FIFO) queue structure in order to store the FIR values of the recently
used SF and its model parameter.

The reward value assigned to each strategy i is given by:

FRRi,t =
Decayi∑k
j=1Decayj

, (6.3)

where Decayi = Dranki × Ri, D ∈ [0, 1] is a decaying factor to increase the probability
of selecting the best strategies, ranki is the rank assigned to each strategy (in descending
order) and Ri (or reward) is the sum of all FIR values for each strategy i in the current
sliding window.

We select the best SF using equation (6.4).

Si = arg max

 Rk,t∑k
i=1Ri

+ C ×

√
2×

ln(
∑m

j=1 ηj)

ηi

 , (6.4)

where C is a weight factor to control the trade-off between exploration and exploration. ηi
is the number of times that the strategy i was used.

6.2.3 Collaborative and adaptive strategies coupled to MOEA/D-DRA

MOEA/D with Dynamical Resource Allocation (MOEA/D-DRA) [170] is an improved ver-
sion of MOEA/D [171], which was the winning algorithm in the CEC 2009 MOEA contest.
MOEA/D-DRA incorporates a mechanism to compute the relative decrease of fitness im-
provement for each subproblem in order to assign computational effort according to the
obtained benefits.

Next, we describe how to couple the adaptive strategy selection to MOEA/D-DRA. The
first step is an initialization process. Then, we split the weight vectors into each subpop-
ulation in order to assign a type of SF. Next, we use the adaptive strategy selection and
associate one scalarizing function to each subpopulation in order to assign a different type
of SF to each of them. At each generation, we monitor the FIR value for each subprob-
lem of each subpopulation. Next, a dynamical resource allocation mechanism used in the
original MOEA/D-DRA is applied. After that, a generation of new solutions via Differen-
tial Evolution and Polynomial-based mutation is employed. Finally, we update the reward
subpopulation based on the FIR and Algorithm 23, while Algorithm 24 illustrates in more
detail the steps described before.

Experimental settings

We divide our experiments in two parts. The first is focused on variations of the Pareto
front geometry and the number of objectives using some MOPs defined in the Deb-Thiele-
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Algorithm 22: Our proposed bandit-based operator selection mechanism

Input: P : A pool of scalarizing functions
Output: Snew: The new selected strategy

1 if There are scalarizing functions that have not been selected in P then
2 Si = one scalarizing function, which is selected randomly from the pool of

strategies

3 else
4 for Si ∈ P do
5 Update Si using Equation (6.4)

6 Snew ← select the best strategy
7 return Snew

Algorithm 23: Credit assignment algorithm

Input: D: decay factor
Output: R: List of k reward values

1 Initialization:
2 for i← 1 to k do
3 Initialize each R[i] = 0

4 k = slidingWindow.length for i← 1 to k do
5 s = slidingWindow.GetIndexOp(i)
6 FIR = slidingWindow.GetFIR(i)
7 R[s] = R[s] + FRR
8 for j ← 1 to s do
9 Update FRRj,t using Equation (6.3)

10 Rank R in descending order
11 return R

Laumanns-Zitzler (DTLZ) test suite [66]: DTLZ1 for linear, DTLZ3 for non-convex, DTLZ5
for degenerate and DTLZ7 for mixed Pareto front geometries. Additionally, we transformed
DTLZ3 so that it had a convex shape. To test the scalability of our proposal, each problem
was tried with 2,3,5,7 and 10 objectives. For the second set of experiments, we adopted
complicated MOPs presented in the CEC 2009 contest. For a fair comparison, we used the
same MOEA/D-DRA parameters in all the MOP instances. The neighborhood size T was
set to 20% of the population size (p size). The crossover and mutation parameters were set
as: F = 0.5, Cr = 1. For the DTLZ test problems, H = {99, 14, 6, 4, 3} was used by the sim-
plex lattice design method. The population size was set to: pops = {100, 120, 210, 210, 220}
for m = {2, 3, 5, 7, 10}. The number of objective function evaluations was set to 40,000 for
m = 2 and m = 3 and it was 50,000 for all the other cases. In the case of the UF test
functions (i.e., those from the CEC 2009 contest), we adopted a population size of 600 for
m = 2 and of 1000 for m = 3. The number of function evaluations was set to 300,000.

The parameters for the adaptive strategy selection were set as suggested in [103]. We
used the decay factor D = 1.0 and a factor to control the exploitation and the exploration of
C = 5.0 and W = 0.5× p size.
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Algorithm 24: MOEA/D-DRA-MSF

Input: A stopping criterion, ns: number of subpopulations, pop size: population size, {λ1, . . . , λN}:
A well-distributed set of weight vectors, pool: A pre-defined pool of strategies

Output: Pareto front estimation
1 Step 1. Initialization
2 Ep ← ∅
3 Compute the Euclidean distance between any two weighted vectors and then work out the T closest

weighted vectors to each weighted vector.
4 Generate an initial set of subpopulations Pi = {x1, . . . xN/ns}.
5 Evaluate individuals in the initial subpopulations.
6 Set the ideal point z∗i = arg min{fi(x)}.
7 while the stopping criterion is not satisfied do
8 Step 2. Adaptive Strategy selection.
9 Select ns scalarizing functions g and model parameter from the pool of strategies, using

Algorithm 22
10 Associate one scalarizing function to each subpopulation, according to the partition strategy.
11 for each subpopulation do
12 Set gen = 0 and πi = 1 for all i = 1, . . . , N .
13 Selection of subproblems for searching: the indexes of the subproblems whose objectives

correspond to the MOP’s individual objectives fi are selected to form the initial I. By using
a 10-tournament selection strategy based on πi, select other [N

5
]m indexes and add them to

I.
14 for each i ∈ I, do do
15 Step 3. Selection of Mating/Update Range:
16 Uniformly randomly generate a number rand in the range (0, 1).
17 Then set

18 P =

{
B(i) if rand < δ,

{1, . . . N} otherwise

19 Step 4 Reproduction: Set r1 = i and randomly select two indexes r2 and r3 from P ,
and then generate a solution y from xr1, xr2 and xr3 by a Differential Evolution (DE)
operator, and then perform mutation on y.

20 Step 5. Update.
21 Update z∗:
22 Update subproblem i, g(x : λ, z∗, f ′)
23 Update Neighboring Solutions
24 for j ∈ B(i) do
25 if g(y′|λj , z∗, f ′) ≤ g(x|λj , z∗, f ′) then
26 compute FIR based on equation (6.2)
27 set xj = y′

28 Step 6. Update Reward registry.
29 Update credit assignment using Algorithm 23
30 gen = gen+ 1.
31 If gen is a multiple of 50, then compute ∆i, the relative decrease of the objective for

each subproblem i during the last 50 generations, update

πi =

{
1 if ∆i > 0.001,

(0.95 + 0.05) ∗ ∆i
0.001

πi otherwise

32 P ← non-dominated solutions from the population
33 return P

We performed 30 independent runs for each MOEA and problem instance. For compar-
ing our results, we adopted the hypervolume indicator (HV) [179] to assess both conver-
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gence and maximum spread. We established the following reference points: (1, 1, . . . 1)T for
DTLZ1, (7, 7, . . . 7)T for DTLZ3 and DTLZ3 convex,
(4, 4, . . . 4)T for DTLZ5, (21, 21, . . . 21)T for DTLZ7. (2.0, . . . , 2.0)T for all the CEC 2009
test problems (UF1-10).

Discussion of results

In this subsection, we compare our proposed approach using multiple SFs (considering the
two pools of strategies previously discussed) with respect to the original MOEA/D-DRA
adopting only one SF (in our experiments, we used CHE, ASF, WN (p = 2) and PBI
(θ = 5) ). Table 6.1 presents the hypervolume indicator for each DTLZ test problem. The
best values are highlighted with a darker gray tone and the second best with a lighter tone.
We applied the Wilcoxon rank sum test with a 95% of confidence level to corroborate that
the best result found is statistically significant with respect to the others. The symbol
(↑) means that the best case (algorithmic configuration per problem) outperformed another
algorithm in a significantly better way. The symbol (↓) indicates that the difference between
the best option and another algorithm is not significant.

We analyzed the results according to each proposed strategy (i.e., S1 and S2). In
the same way, AASF, MAASF and PBI outperformed MOEA/D-DRA with ASF. One
interesting observation is that the main improvements were obtained in the many-objective
problems. For two objectives, the results were very similar among themselves. However,
with 3 or more objectives there were some significant differences, especially in the seven- and
ten-objective MOPs. We can notice that the standard deviation values increase when the
MOP has multimodality such as in dtlz1, dtlz3 and dtlz3 convex. In general, the strategy
S1 is better than S2 in the DTLZ test problems adopted.

In a second experiment, we compare our proposal with respect to state-of-the-art MOEAs
such as the original version of MOEA/D-DRA [172], and with respect to MOEA/D-DRA-
MAB [103] which used the same multi-armed bandit algorithm but applied to a pool
of Differential Evolution operators. Moreover, we also compared results with respect to
ADEMO/D [155] which includes a learning period strategy to select from a pool of DE
operators.1

For assessing performance, we computed the IGD+ [77] and HV indicators (see Ta-
ble 6.2), then we applied the Wilcoxon test in the same manner as done in our previous
experiments. In almost all cases, MOEA/D-DRA with multiple SFs outperformed the other
approaches with respect to which it was compared, but the most evident improvement was
observed in UF5, UF6 and UF10 in both indicators (HV and IGD+).

1The source code for these algorithms was obtained from https://coda-group.github.io/publications.html
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102 Adaptive Strategies for Scalarizing Functions

Table 6.2: Statistical results for strategies S1 and S2. We show the mean and the standard
deviations (in parentheses)

MOP MOEA/D-DRA MOEA/D-DRA-MAB ADEMO/D MOEA/D-DRA-MSF1 MOEA/D-DRA-MSF2
Hypervolume indicator

UF1 ↑3.5847(0.0587) ↓3.4397(0.0895) ↑3.5791(0.0373) 3.6611(0.0015) ↑3.6335(0.0204)
UF2 ↑3.6026(0.0344) ↑3.5965(0.0193) ↑3.6325(0.0137) 3.6532(0.0112) ↓3.6396(0.0346)
UF3 ↑3.4353(0.1568) ↑3.2093(0.1340) 3.4164(0.1265) 3.6551(0.0259) ↑3.3769(0.0696)
UF4 ↑3.1783(0.0135) ↑3.1978(0.0107) ↓3.2337(0.0126) ↑3.2566(0.0101) 3.2878(0.0030)
UF5 ↑0.7428(0.8705) ↑1.7446(0.2659) ↑1.8762(0.2609) ↑2.7135(0.3376) 3.0424(0.1003)
UF6 ↑2.5232(0.2259) ↑2.6236(0.2125) ↑2.7444(0.1814) ↑2.8315(0.4389) 3.1201(0.1323)
UF7 ↑3.4408(0.0391) ↑3.2580(0.3566) ↑3.3883(0.2606) 3.4870(0.0316) ↑3.4850(0.0194)
UF8 ↑6.9568(0.3853) ↑6.9779(0.3591) ↓7.3229(0.0242) 7.4003(0.0226) ↑7.3145(0.0017)
UF9 ↑6.9542(0.3346) ↑7.2106(0.2974) ↓7.2993(0.2163) ↓7.3362(0.2213) 7.6577(0.0348)
UF10 ↑0.7238(1.0449) ↑4.4226(0.7018) ↑4.7172(0.9373) ↑4.0287(0.6905) 6.1128(0.1576)

IGD+ indicator
UF1 ↑0.0389(0.0291) ↑0.0392(0.0126) ↑0.0142(0.0033) 0.0013(0.0001) ↑0.0063(0.0023)
UF2 ↑0.0271(0.0131) ↑0.0077(0.0011) ↑0.0035(0.0006) 0.0034(0.0012) ↑0.0040(0.0028)
UF3 ↑0.1476(0.0986) ↑0.0712(0.0240) ↑0.0531(0.0256) 0.0037(0.0051) ↑0.0500(0.0092)
UF4 ↑0.0559(0.0045) ↑0.0449(0.0015) ↑0.0333(0.0014) ↑0.0271(0.0019) 0.0172(0.0003)
UF5 ↑1.2284(0.4610) ↑0.5648(0.1253) ↑0.5132(0.1058) ↓0.2564(0.1017) 0.2167(0.0385)
UF6 ↑0.4302(0.1407) ↑0.1466(0.0741) 0.1211(0.0413) ↑0.1686(0.1105) ↑0.1428(0.0717)
UF7 ↑0.0217(0.0152) ↑0.0603(0.0836) ↑0.0293(0.0638) 0.0019(0.0018) ↑0.0044(0.0011)
UF8 ↑0.0693(0.0258) ↓0.0690(0.0213) ↑0.0348(0.0098) 0.0115(0.0108) ↑0.0526(0.0004)
UF9 ↑0.2455(0.0462) ↑0.2217(0.0637) ↑0.2098(0.0494) ↑0.2123(0.0487) 0.1372(0.0048)
UF10 ↑1.7270(0.7275) ↑0.2542(0.0528) ↓0.2394(0.0724) ↑0.2571(0.0757) 0.1544(0.0288)

6.3 Summary

In this chapter, we have presented a comparative study to determine some guidelines to
combine, in a simultaneous way, several scalarizing functions. One of our most important
contributions is that we have identified that the pool of scalarizing functions should establish
the same target directions in order to generate well-distributed (i.e., uniform) solutions
along the Pareto front. Also, we noticed that the appropriate parameters settings depend
directly on the number of objectives and on the Pareto front geometry. We claim that the
bandit-based AOS adopted in our proposed approach is a good option to detect appropriate
parameters settings in SFs, while requiring a lower computational effort than the use of
static parameter tuning strategies (offline tuning methods).
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Chapter 7

Conclusions and Future Work

This thesis presented the importance of the use of Scalarizing Functions (SF) in the Multi-
Objective Evolutionary Algorithms (MOEAs) based on decomposition and the R2 indicator
to transform the original Multi-Objective Optimization Problem (MOP) into several single
objective problems with the aim of maintaining a good balance between convergence and
diversity of the Pareto optimal solutions.

We studied different families of weighted and unconstrained SFs, providing an analysis
of their mathematical properties such as: 1) if an SF is Pareto compliant or weakly Pareto-
compliant, 2) if it can generate solutions in convex, concave and linear Pareto fronts, 3) its
ability to scale up to any number of objectives, 4) its convergence speed and capability to
provide a uniform distribution when tackling different Pareto front shapes. Moreover, we
presented the use of these SFs in state-of-the-art MOEAs such as MOEA/D, MOMBI-II and
MOEA/D-DRA. We can remark that some SFs proposed in the mathematical programming
area and scarcely employed in MOEAs show an interesting behavior to solve MOPs. For
example, the Exponential Weighted Criteria (EWC), the Vector Angle Distance Scaling
(VADS) and the Dynamic Interactive Decision Analysis Support System (DIDASS) obtained
competitive results with respect to the Penalty Boundary Intersection (PBI) function and
with respect to a SF based on the Chebyshev model both of which are commonly employed
in decomposition based-MOEAs.

On the other hand, this thesis presented a classification of different parameter tuning and
parameter control methodologies to configure MOEAs. We contrasted their advantages and
disadvantages depending on different cases of applicability, for instance, their adaptation in
low- and high-level components of MOEAs.

The main contributions of this thesis are divided into two aspects: 1) the design of a
novel methodology of offline parameter tuning for MOEAs and its applicability to configure
SFs and, 2) the use of adaptive strategies to combine diverse SFs in the same MOEA. In
the following, we describe the main conclusions related to these contributions:

• Our parameter tuning methodology defines three general steps, remarking for each
one, some important recommendations as follows:

1. The first step requires to formulate a correct definition of assumptions or hy-
potheses related to the correlations between parameter settings and the best
performance in MOEAs in order to establish the observations we are interested
on. At the same time, we need to define a class of problems to tackle, the space
of parameter components to configure and the quality indicator used to assess
the MOEA’s performance.

2. The second step defines the form of collecting the data for our observations. Here,
the selected tuning tool and its configuration play an important role, because,
considering the stochastic nature of MOEAs, we require to establish the minimum
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104 Conclusions and Future Work

budget for the number of executions of the target MOEAs. In addition, we should
consider the robustness measures and nonparametric statistical analysis to obtain
confidence results to guarantee that a configuration is better than another one.

3. The third step is related to statistical analysis to obtain the most promising
configurations. Here, we can validate our initial assumptions or hypotheses, or
otherwise, we should reformulate our analysis in the previous steps. However,
the last option is costly, and, therefore, it is recommended to try to extract all
obtained knowledge from the statistical results.

• We applied our offline parameter tuning methodology to identify which SFs are more
appropriate for solving specific test problems, concluding that the results depend on
the type to goal to be reached, i.e., the design of experiments can focus on generalizing
or specializing the algorithmic configuration. In the first case, we can observe a certain
degree of conflict among the characteristics of different types of MOPs, and therefore,
there is no unique SF that performs best in all problems at the same time. On the
other hand, the level of specialization of an algorithmic configuration depends on
selecting MOPs with similar features, for instance, the Pareto front geometry or the
number of objective functions. In such cases, we can obtain appropriate SFs that
solve a particular type of MOP.

• We employed our parameter tuning methodology to configure only the Chebyshev
SFs. Here, some interesting observations were derived: 1) we found diverse values
that had never been used in the literature, 2) in the case of the augmented Chebyshev
functions, we identified parameter sensitivity when the α value is directly correlated
to the obtained distribution of Pareto optimal solutions.

• Based on the knowledge gathered from the offline parameter tuning, we can estab-
lish guidelines to combine several scalarizing functions. Here, the most important
conclusions are the following:

1. The most robust SFs in tackling diverse Pareto front geometries and a different
number of objective functions are: Chebyshev SFs, PBI, EWC, VADS, and the
Weighted Norm SF. In all these SFs, we should configure their parameter model
because there exists a correlation between the MOP’s characterization (i.e. the
Pareto front geometry or the number of objective functions) and the value of the
parameter model.

2. MOPs with complicated Pareto fronts (i.e., MOPs with mixed or disconnected
subregions, and degenerate shapes), require to combine more than one configu-
ration of an SF or even different SFs.

3. The pool of SFs that can be combined should have the same target directions
with the aim of exploring all the search space around of Pareto front.

4. We claim that the Multi-Objective Multi-Armed Bandit techniques adopted in
our proposed approach is a good option to detect appropriate parameters set-
tings in SFs, while requiring a lower computational effort than the use of static
parameter tuning strategies (i.e., offline tuning methods). Moreover using this
approach, we were able to outperform state-of-the-art MOEAs, mainly in MOPs
with complicated Pareto fronts.
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7.1 Future work

As part of our future work, we are interested in studying the following topics:

1. To explore other types of SFs regarding taxonomy presented in Figure 3.1. We want
to establish guidelines to create new Pareto compliant SFs able to generate optimal
solutions in different Pareto front shapes. To obtain theoretical and experimental
foundations to speed up convergence towards different regions of the Pareto front.

2. To employ the parameter tuning techniques (in online and offline manner) revised
in Chapter 4 to tune various MOEA’s components at the same time (for example:
the evolutionary operators, the selection mechanism, the termination criterion, or
their combination), with the aim of deriving significant knowledge to understand the
correlation among parameters.

3. To explore other adaptive techniques based on the multi-armed bandit model or on
learning period strategies and to compare them.

4. To study the relationship between the weight vectors and the corresponding SFs to
adapt in online manner the distribution of weight vectors and improve the converge
and uniformity along the Pareto front.

5. To combine the offline and online parameter tuning methods in the same algorithm.
This means that we would like to gather as much knowledge as possible about a MOP
and the parameter space in an MOEA and then use it to train online adaptive algo-
rithms. In this sense, we can use the machine learning techniques used in classification
problems to optimize the parameters of an MOEA.
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Appendix A

Contour lines of Scalarizing
Functions

This appendix presents plots of contour lines to explain the behavior of the weighted and
unconstrained Scalarizing Functions (SFs) studied in this thesis. In general, these SFs
minimize some distance metric between a candidate optimal solution and a reference point
using a target direction (weight vector), which is a representation of order that defines the
relative importance of the objective functions in a Multiobjective Optimization Problem
(MOP).The contour lines is a graphical technique for representing the manner of each SF
directs the search in a bidimensional MOP.

Table A.1 summarize all SFs studied in this thesis. Moreover, we include the mathema-
tical definition, the range of values for parameter models and the Pareto front geometries
(represented by x: convex, c: concave and l: linear) that each SF can be solved.

Figures A.1 and A.1 show the intersection between contour lines and three basic Pareto
fronts shapes. In all cases, we used the same target direction λ = (0.65, 0.35). The biggest
non-filled shapes (circle, triangle, and square) denote the obtained optimal solutions for each
of the Pareto-front shapes. We can see that the functions such as WCP, LS, WN, CHE,
ACHE, MCHE, CS, GSF, NSF and DIDASS attain incongruent optimal solutions respect to
the target directions. It means that these solutions are located in different positions respect
to target directions. The WS, WPR and CS functions cannot solve linear and concave
Pareto fronts. Even if we vary the weight vector value, all solutions are located in the
extremes of the Pareto front. On the other, the ASF, AASF, PBI, IPBI, 2LPBI, QPBI and
VADS functions can solve the three Pareto front shapes tested. Furthermore, the optimal
solutions are located in the same target direction.
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Table A.1: Summary of weighted and unconstrained scalarizing functions.

Acronym Full Name Minimize g(y;λ) := Support
Model

Reference
Parameters

weighted ∑
i (λiyi)

p x, c, l
WCP compromise ≺ p ∈ (1,∞) [168]

programming
WS weighted sum

∑
i λiyi x ≺ - [166]

LS least squares
√∑

i λi|yi|
2 x, c, l

- [109, p. 97]≺

EWC
exponential ∑

i

(
ep λi − 1

)
ep yi

x, c, l
p ∈ [1,∞) [4]weighted ≺

criteria

WPO weighted power
∑
i λi (yi)

p x, c, l
p ∈ [1,∞) [100]≺

WPR
weighted ∏

i (yi)
λi - [150, p. 9]

product

WN weighted norm
(∑

i λi|yi|
p
) 1

p x, c, l
p ∈ [1,∞) [168]≺

CHE Chebyshev maxi
{
λi|yi|

} x, c, l
- [85]�

ACHE
augmented

maxi
{
λi|yi|

}
+ α

∑
i|yi|

x, c, l
α ∈ [0.001, 0.01] [144]

Chebyshev ≺

MCHE
modified

maxi

{
λi

(
|yi|+ α

∑
i|yi|

)} x, c, l small
[86]

Chebyshev ≺ α > 0

ASF
achievement

max
{
yi
λi

} x, c, l
[162]scalarizing � || -

function

AASF
augmented

max
{
yi
λi

}
+ α

∑
i
yi
λi

x, c, l small
[109, p. 111]

ASF ≺ || α > 0
penalty d1 + θd2,

x, c, l
θ ∈ (0,∞)

PBI boundary where d1 :=
∣∣∣y • λ

‖λ‖

∣∣∣ || suggested
[171]

intersection and d2 :=
∥∥∥y − d1

λ
‖λ‖

∥∥∥ θ = 5

IPBI
inverted

θd2 − d1,
x, c, l

PBI
where d1 and d2 are || θ ∈ (0,∞) [136]

the same as PBI

2LPBI
two-level

d1 + θ1d2 if d2 ≤ d∗, θ1 < θ2

[76]
d1 + θ1d∗ + θ2 (d2 − d∗) x, c, l suggested

PBI
otherwise, where d1 and d2 || θ1 = 0.1

are the same as PBI θ2 = 10

QPBI
quadratic

d1 + θd2
d2
d∗ ,

x, c, l
suggested

[76]
PBI

where d1 and d2 are || θ = 1
the same as PBI

CS
conic ∑

i λiyi + α
∑
i|yi| x α ∈ [0, λi] [89]

scalarization

VADS
vector angle ‖y‖(

λ
‖λ‖

•
y
‖y‖

)p x, c, l
p > 0

[67]distance || suggested
scaling p = 100

GSF
general

βmaxi
{
λi|yi|

}
β ≥ 0

scalarizing
+α

∑
i λi|yi|

x, c, l
α ≥ 0

[36]
function

NSF
normalized

(1− δ) maxi
{
λi|yi|

}
x, c, l δ ∈ [0, 1] [36]scalarizing

+δ
∑
i λi|yi|function

DIDASS

dynamic
max

{
βmaxi λi|yi|,

x, c, l [54]
interactive ∑

i λi|yi|
} β ∈ [0, 1]

decision ana-
lysis and su-

+
∑
i γi|yi|

γi ∈ [0, 1]
pport system
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Figure A.1: Contour lines of the scalarizing functions for the weight vector λ = (0.65, 0.35).
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Figure A.2: Contour lines of the scalarizing functions for the weight vector λ = (0.65, 0.35)
(continuation).

CINVESTAV-IPN Computer Science Department



Appendix B

Test Suites Adopted

In this Appendix, we present the test suites of multi-objective optimization problems
(MOPs) used in the experiments performed in this thesis. We describe the mathemati-
cal definition for real-valued and unconstrained MOPs which are commonly employed in
the specialized literature such as the Deb-Thiele-Laumanns-Zitzler (DTLZ) [32], the Walk-
ing Fish Group (WFG) [66] and the CEC 2009 Special Session and Competition MOPs
(UF) [173]. These test suites are categorized by different properties such as bias, multi-
modality, non-separability and the Pareto front shapes (convex, concave, disconnected,
degenerate and mixed). DTLZ and WFG are scalable in the number of decision variables
and objective functions. The UF test suite considers a class of more complex problems with
two and three objective functions.

Without loss of generality, a MOP is defined as follows:

minimize f(x) =
[
f1(x), f2(x), . . . , fm(x)

]T
(B.1)

subject to x ∈ S

where S is the feasible space of solutions and x = [x1, x2, . . . , xn]T ∈ S is the vector of
decision variables. The number of objectives is represented by m.

In MOPs, the aim is to find the set of optimal solutions known as the Pareto optimal
set (see Chapter 2). For the DTLZ, WFG and UF test suites, the exact location of the
Pareto optimal sets is known.

B.1 Deb-Thiele-Laumanns-Zitzler Test Suite

The Deb-Thiele-Laumanns-Zitzler (DTLZ) test suite [32] includes seven unconstrained
MOPs which are scalable to any number of decision variables and objectives. This test
suite include characteristics such as nonseparable problems, deceptive problems, a degen-
erate problem, a mixed shape Pareto front problem, problems scalable in the number
of position related parameters, and problems with dependencies between position- and
distance-related parameters. DTLZ considers that the total number of decision variables
is given by n = m + k − 1, where k is the number of distance parameters. These dis-
tance parameters are defined as y = [xm, xm+1, . . . , xn]T considering the decision vector
x = [x1, . . . , xm−1, xm, . . . , xn]T In [32], the following k-values are recommended: 5 for
DTLZ1, 10 for DTLZ2-6, and 20 for DTLZ7.

The following sections present the mathematical definition of each of the DTLZ test
problems.
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B.1.1 DTLZ1

This MOP is separable and multimodal and is defined as follows:

Minimize

f1(x) = 0.5(1 + g(y))
m−1∏
i=1

xi,

fj=2:m−1(x) = 0.5(1 + g(y))(1− xm−j+1)

m−j∏
i=1

xi,

fm(x) = 0.5(1 + g(y))(1− x1).

Where

g(y) = 100

k +

k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))

 .

(B.2)

Its Pareto optimal front is linear and all objective function values lie on the linear hyper-
plane

∑m
i=1 fi = 0.5.

B.1.2 DTLZ2

This problem is separable and unimodal and is defined as follows:

Minimize

f1(x) = (1 + g(y))

m−1∏
i=1

cos

(
xiπ

2

)
,

fj=2:m−1(x) = (1 + g(y))

m−j∏
i=1

cos

(
xiπ

2

) sin

(
xm−j+1π

2

)
,

fm(x) = (1 + g(y)) sin

(
x1π

2

)
.

Where

g(y) =

k∑
i=1

(yi − 0.5)2.

(B.3)

The Pareto optimal solutions are produced when y = (0.5, 0.5, . . . )T and all objective
functions values must satisfy that

∑m
i=1(fi)

2 = 1. Its Pareto front shape is concave.
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B.1.3 DTLZ3

This problem is similar to DTLZ2 but includes multifrontal difficulty. Its definition is given
as follows:

Minimize

f1(x) = (1 + g(y))
m−1∏
i=1

cos

(
xiπ

2

)

fj=2:m−1(x) = (1 + g(y))

m−j∏
i=1

cos

(
xiπ

2

) sin

(
xm−j+1π

2

)

fm(x) = (1 + g(y)) sin

(
x1π

2

)
Where

g(y) = 100

k +
k∑
i=1

(yi − 0.5)2 − cos(20π(yi − 05))



(B.4)

The Pareto optimal front corresponds to y = (0.5, 0.5, . . . )T .

B.1.4 DTLZ4

This problem is concave, separable and unimodal, and it is defined as follows:

Minimize

f1(x) = (1 + g(y))

m−1∏
i=1

cos

(
xαi π

2

)

fj=2:m−1(x) = (1 + g(y))

m−j∏
i=1

cos

(
xαi π

2

) sin

(
xαm−j+1π

2

)

fm(x) = (1 + g(y)) sin

(
xα1π

2

)
Where

g(y) = 100

k +
k∑
i=1

(yi − 0.5)2


(B.5)

The parameters α = 100 is suggested by its authors.
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B.1.5 DTLZ5

This problem is unimodal and degenerated and its mathematical definition is:

Minimize

f1(x) = (1 + g(y))
m−1∏
i=1

cos

(
θiπ

2

)

fj=2:m−1(x) = (1 + g(y))

m−j∏
i=1

cos

(
θiπ

2

) sin

(
θm−j+1π

2

)

fm(x) = (1 + g(y)) sin

(
θ1π

2

)
Where

θi =

{
xi if i = 1

1+2g(y)
2(1+g(y))xi ∀i ∈ {2, 3, . . . ,m− 1}

g(y) =

k∑
i=1

(yi − 0.5)2

(B.6)

The Pareto optimal front corresponds to y = (0.5, . . . , 0.5)T .
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B.1.6 DTLZ6

This problem is unimodal and degenerated and is a modified version of DTLZ5. Its mathe-
matical definition is:

Minimize

f1(x) = (1 + g(y))
m−1∏
i=1

cos

(
θiπ

2

)

fj=2:m−1(x) = (1 + g(y))

m−j∏
i=1

cos

(
θiπ

2

) sin

(
θm−j+1π

2

)

fm(x) = (1 + g(y)) sin

(
θ1π

2

)
Where

θi =

{
xi if i = 1

1+2g(y)
2(1+g(y))xi ∀i ∈ {2, 3, . . . ,m− 1}

g(y) =

k∑
i=1

y0.1
i

(B.7)

The Pareto optimal front is located at y = (0, . . . , 0)T .

B.1.7 DTLZ7

This problem has a disconnected Pareto front shape and is defined as follows:

Minimize

fj=1:m−1(x) = xj

fm(x) = (1 + g(y))

m− m−1∑
i=1

(
fi

1 + g(y)
(1 + sin(3πfi))

)
Where

g(y) = 1 +
9

k

k∑
i=1

yi

(B.8)

The Pareto optimal solutions correspond to y = (0, . . . , 0)T .
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B.2 The Walking Fish Group (WFG) Test Suite (WFG)

Huband et al. [66] proposed the Walking-Fish-Group (WFG) test suite. This test suite
suggests nine multi-objective test problems scalable with respect to the number of variables
and objectives. The number of decision variables (xi) is given by n = k + l, where k ∈
{m− 1, 2(m− 1), 3(m− 1), . . . } is the position related-parameter, l is the distance-related
parameter and it should be satisfied that n ≤ m. All xi ∈ x have the domain [0, 1].
The vector x is derived from a vector of parameters z ∈ Rn. The domain of all zi ∈ z
is [0, 2i]. These problems include diverse Pareto front shapes and characteristics such as
bias, multi-modality, and non-separability which vary their degree of difficulty via a set of
transformation functions, which map parameters with domain [0, 1] onto the range [0, 2i].

In the following, we describe this test suite.

B.2.1 WFG1

WFG1 is separable and unimodal, but it has a polynomial and flat region. It is strongly
biased toward small values of the variables. Its definition is given as:

Given

z = {z1, . . . , zk, zk+1, . . . , zn}
(B.9)

Minimize

f1(x) = xm + 2

m−1∏
i=1

(
1− cos

(
xiπ

2

))

fj=2:m−1(x) = xm + 2j

m−j∏
i=1

(
1− cos

(
xiπ

2

))(1− sin

(
xm−j+1π

2

))

fm(x) = xm + 2m

1− x1 −
cos
(

10πx1
2

)
10π


Where

xi=1:m−1 = r sum

(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)},

{
2(i− 1)k

(m− 1)
+ 1, . . . ,

2ik

(m− 1)

})
xm = r sum

(
{yk+1, . . . , yn}, {2(k + 1), . . . , 2n}

)
yi=1:n = b poly(y′i, 0.02)

y′i=1:k = y′′i

y′i=k+1:n = b flat(y′′i , 0.8, 0.75, 0.85)

y′′i=1:k =
zi
2i

y′′i=k+1:n = s linear

(
zi
2i
, 0.35

)
(B.10)
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B.2.2 WFG2

This problem is non-separable and multimodal and its Pareto optimal front shape is dis-
connected. It is defined as follows:

Minimize

f1(x) = xm + 2
m−1∏
i=1

(
1− cos

(
xiπ

2

))

fj=2:m−1(x) = xm + 2j

m−j∏
i=1

(
1− cos

(
xiπ

2

))(1− sin

(
xm−j+1π

2

))

fm(x) = xm + 2m
(

1− x1 cos2(5x1π)
)

Where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yk+l/2}, {1, . . . , 1}

)
y′i=1:k = y′i

y′i=k+1:k+l/2 = r nonsep({y′k+2(i−k)−1, y
′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear

(
zi
2i
, 0.35

)
(B.11)
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B.2.3 WFG3

This problem is non-separable but unimodal with a linear and degenerate Pareto front
shape. It is given by the following expression:

Minimize

f1(x) = xm + 2
m−1∏
i=1

(xi)

fj=2:m−1(x) = xm + 2j

m−j∏
i=1

xi

 (1− xm−j+1)

fm(x) = xm + 2m(1− x1)

Where xi=1 = ui

xi=2:m−1 = xm(ui − 0.5) + 0.5

xm = r sum
(
{yk+1, . . . , yk+l/2}, {1, . . . , 1}

)
ui = r sum

(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
y′i=1:k = y′i

y′i=k+1:k+l/2 = r nonsep({y′k+2(i−k)−1, y
′
k+2(i−k)}, 2)

y′i=1:k =
zi
2i

y′i=k+1:n = s linear

(
zi
2i
, 0.35

)

(B.12)

B.2.4 WFG4

WFG4 is separable, but highly multimodal. Its Pareto front shape is concave. It is defined
as follows:

Minimize

f1(x) = xm + 2

m−1∏
i=1

sin
(
xiπ/2

)
fj=2:m−1(x) = xm + 2j

m−j∏
i=1

sin(xiπ/2)

 cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{yk+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yn}, {1, . . . , 1}

)
yi=1:n = s multi

(
zi
2i
, 30, 10, 0.35

)

(B.13)
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B.2.5 WFG5

This problem is deceptive, separable, and its Pareto front shape is concave. It is defined as
follows:

Minimize

f1(x) = xm + 2

m−1∏
i=1

sin
(
xiπ/2

)
fj=2:m−1(x) = xm + 2j

m−j∏
i=1

sin(xiπ/2)

 cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{yk+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yn}, {1, . . . , 1}

)
yi=1:n = s decept

(
zi
2i
, 0.35, 0.001, 0.05

)

(B.14)

B.2.6 WFG6

This problem is deceptive, separable, and has a concave Pareto front shape. It is defined
by the following expression:

Minimize

f1(x) = xm + 2

m−1∏
i=1

sin
(
xiπ/2

)
fj=2:m−1(x) = xm + 2j

m−j∏
i=1

sin(xiπ/2)

 cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r nonsep
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r nonsep

(
{yk+1, . . . , yn}, l

)
yi=1:k =

zi
2i

yi=k+1:n = s decept

(
zi
2i
, 0.35

)

(B.15)
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B.2.7 WFG7

This problem is separable and unimodal, with a concave Pareto optimal front. It is defined
as follows:

Minimize

f1(x) = xm + 2
m−1∏
i=1

sin
(
xiπ/2

)
fj=2:m−1(x) = xm + 2j

m−j∏
i=1

sin(xiπ/2)

 cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yn}, {1, . . . , 1}

)
yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

y′i=1:k = b param(zi/(2i), r sum({zi+1/(2(i+ 1)), . . . , zn/2n},

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

yi=k+1:n =
zi
2i

(B.16)
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B.2.8 WFG8

This problem has a parameter-dependent bias, and is non-separable and unimodal. Its
Pareto front shape is concave. It is defined as follows:

Minimize

f1(x) = xm + 2
m−1∏
i=1

sin
(
xiπ/2

)
fj=2:m−1(x) = xm + 2j

m−j∏
i=1

sin(xiπ/2)

 cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r sum
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, {1, . . . , 1}

)
xm = r sum

(
{yk+1, . . . , yn}, {1, . . . , 1}

)
yi=1:k = y′i

yi=k+1:n = s linear(y′i, 0.35)

yi=1:k =
zi
2i

y′i=k+1:n = b param(zi/(2i), r sum({z1/2, . . . , zi−1/(2(i− 1))},

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

(B.17)
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B.2.9 WFG9

WFG9 is non-separable, multimodal, deceptive, and has a parameter-dependent bias. Its
Pareto front shape is concave, but in the edge of the shape is flat. This problem is defined
as:

Minimize

f1(x) = xm + 2
m−1∏
i=1

sin
(
xiπ/2

)
fj=2:m−1(x) = xm + 2j

m−j∏
i=1

sin(xiπ/2)

 cos(xm−j+1π/2)

fm(x) = xm + 2m cos(x1π/2)

Where

xi=1:m−1 = r nonsep
(
{y(i−1)k/(m−1)+1, . . . , yik/(m−1)}, k/(m− 1)

)
xm = r nonsep

(
{yk+1, . . . , yn}, l

)
yi=1:k = s decept(y′i, 0.35, 0.001, 0.05)

yi=k+1:n = s multi(y′i, 30, 95, 0.35)

y′i=1:n−1 = b param(zi/(2i), r sum({zi+1/(2(i− 1), . . . , zn/2n)},

{1, . . . , 1}), 0.98

49.98
, 0.02, 50)

y′n =
zn
2n

(B.18)
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B.3 The CEC 2009 Special Session and Competition Test
Suite

The problems defined at the special session on multi-objective optimization held at the 2001
IEEE Congress on Evolutionary Computation (CEC’2009) [173] includes 10 MOPs with two
and three objective functions. In general, these problems have similar difficulties related to
real-world problems. Moreover, the set of Pareto solutions in the decision variable space
presents a complicated distribution.

B.3.1 UF1

This problem has two objectives and a convex Pareto front shape. It is given by the following
expression:

f1 = x1 +
2

|J1|
∑
j∈J1

[xj − sin(6πx1 +
jπ

n
)]2

f2 = 1−
√
x1 +

2

|J2|
∑
j∈J2

[xj − sin(6πx1 +
jπ

n
)]2

(B.19)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n} The search
space is [0, 1]× [−1, 1]n−1

B.3.2 UF2

This problem has two objectives and a convex Pareto front shape. It is defined as follows:

f1 = x1 +
2

|J1|
∑
j∈J1

y2
j

f2 = 1−
√
x1 +

2

|J2|
∑
j∈J2

y2
j

(B.20)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n} and

yj =

{
xj − [0.3x2

1cos(24πx1 + 4jπ
n ) + 0.6x1]cos(6πx1 + jπ

n )j ∈ J1,

xj − [0.3x2
1cos(24πx1 + 4jπ

n ) + 0.6x1]sin(6πx1 + jπ
n )j ∈ J2

The search space is [0, 1]× [−1, 1]n−1
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B.3.3 UF3

This problem has two objectives and a convex Pareto front shape. It is given by the following
expression:

f1 = x1 +
2

|J1|
(4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos(
20yjπ√

j
) + 2)

f2 = 1−
√
x1 +

2

|J2|
(4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos(
20yjπ√

j
) + 2)

(B.21)

where J1 and J2 are the same of those of F1, and yj = xj −x
0.5(1.0+

3(j−2)
n−2

)

1 , j = 2, . . . , n.
The search space is [0, 1]n

B.3.4 UF4

This problem has two objectives and concave Pareto front shape. It is defined as follows:

f1 = x1 +
2

|J1|
∑
j∈J1

h(yj)

f2 = 1− x2
1 +

2

|J2|
∑
j∈J2

h(yj)

(B.22)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n}, yj =

xj − sin(6πx1 + jπ
n ), j = 2, . . . , n and h(t) = |t|

1+e2|t|
. Its search space [0, 1]× [−2, 2]n−1

B.3.5 UF5

This problem has two objectives with a linear and disconnected Pareto front shape. It is
given by the following expression:

f1 = x1 + (
1

2N
+ ε)|sin(2Nπx1)|+ 2

|J1|
∑
j∈J1

h(yj)

f2 = 1− x1 + (
1

2N
+ ε)|sin(2Nπx1)|+ 2

|J2|
∑
j∈J2

h(yj)

(B.23)

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}. N is
an integer, ε > 0, yj = xj − sin(6πx1 + jπ

n ), j = 2, . . . , n and h(t) = 2t2cos(4πt) + 1. The
search space [0, 1]× [−1, 1]n−1
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B.3.6 UF6

This problem has two objectives with a linear and disconnected Pareto front shape. It is
defined as follows:

f1 = x1 + max{0, 2(
1

2N
+ ε)sin(2Nπx1)}+

2

|J1|
(4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos(
20yjπ√

j
) + 2)

f2 = 1− x1 + max{0, 2(
1

2N
+ ε)sin(2Nπx1)}+

2

|J2|
(4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos(
20yjπ√

j
) + 2)

(B.24)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n}, and
yj = xj − sin(6πx1 + jπ

n ), j = 2, . . . , n. The search space [0, 1]× [−1, 1]n−1

B.3.7 UF7

This problem has two objectives with a linear Pareto front shape. It is given by the following
expression:

f1 = 5
√
x1 +

2

|J1|
∑
j∈J1

y2
j

f2 = 1− 5
√
x1 +

2

|J2|
∑
j∈J2

y2
j

(B.25)

where J1 = {j|j is odd and 2 ≤ j ≤ n}, J2 = {j|j is even and 2 ≤ j ≤ n}, and
yj = xj − sin(6πx1 + jπ

n ), j = 2, . . . , n. The search space is [0, 1]× [−1, 1]n−1.

B.3.8 UF8

This problem has three objectives and a concave Pareto front shape. It is given by the
following expression:

f1 = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
j∈J1

(xj − 2x2sin(2πx1 +
jπ

n
))2

f2 = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
j∈J2

(xj − 2x2sin(2πx1 +
jπ

n
))2

f3 = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(xj − 2x2sin(2πx1 +
jπ

n
))2

(B.26)

where
J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}. The search space is [0, 1]2 × [−2, 2]n−2.
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B.3.9 UF9

This problem has three objectives with a linear and disconnected Pareto front shape. It is
defined as follows:

f1 = 0.5[max{0, (1 + ε)(1− 4(2x1 − 1)2)}+ 2x1]x2 +
2

|J1|
∑
j∈J1

(xj − 2x2sin(2πx1 +
jπ

n
))2

f2 = 0.5[max{0, (1 + ε)(1− 4(2x1 − 1)2)} − 2x1 + 2]x2 +
2

|J2|
∑
j∈J2

(xj − 2x2sin(2πx1 +
jπ

n
))2

f3 = 1− x2 +
2

|J3|
∑
j∈J3

(xj − 2x2sin(2πx1 +
jπ

n
))2

(B.27)

where
J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} and ε = 0.1, (ε can take any other positive
values). The search space is [0, 1]2 × [−2, 2]n−2.

B.3.10 UF10

This problem has three objectives and a concave Pareto front shape. It is given by the
following expression:

f1 = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
j∈J1

[4y2
j − cos(8πyj) + 1]

f2 = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
j∈J2

[4y2
j − cos(8πyj) + 1]

f3 = sin(0.5x1π) +
2

|J3|
∑
j∈J3

[4y2
j − cos(8πyj) + 1]

(B.28)

where
J1 = {j|3 ≤ j ≤ n, and j − 1 is a multiplication of 3},
J2 = {j|3 ≤ j ≤ n, and j − 2 is a multiplication of 3},
J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3}, and yj = xj − 2x2sin(2πx1 + jπ

n ),
j = 3, . . . , n. The search space is [0, 1]2 × [−2, 2]n−2.



Appendix C

Additional results of Offline
Parameter Tuning experiments

In this Appendix, we present figures and tables related to Chapter 5 for the case study
regarding the effect of convergence and distribution of several scalarizing functions based
on the Augmented Chebyshev model.

Tables C.1, C.2 and C.3 present the mean hypervolume indicator values of 30 indepen-
dent runs on DTLZ1, DTLZ3 and DTLZ3−1 with 3, 5, 7 and 10 objectives. Whereas
tables C.4, C.5 and C.6 show the inverted generational distance for the same experiment.

Tables C.7, C.8, C.9 and C.10 show the mean and standard deviation corresponding to
the EVOCA’s recommendations for 2, 3, 4, 6, 8 and 10 objective functions.

Finally, Figures C.1, C.2 and C.3 show the box plots for the different scenarios using
the hypervolume indicator without applying a normalization process. Marks a, b, c, d, e,
f correspond to each robustness measure: mean-mean, median-median, best-worst, mean-
worst, median-worst and worst-worst.
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Figure C.1: Scenario with convex geometry and 3, 5, 7 objectives
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Figure C.2: Scenario with linear geometry and 3, 5, 7 objectives
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Figure C.3: Scenario with concave geometry and 3, 5, 7 objectives
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Appendix D

Convergence Speed Caused by the
Scalarizing Functions based on the

Chebyshev Model

In this Appendix, we present figures that correspond the case study regarding the effect
on convergence speed of the Scalarizing Functions based on the Chebyshev model such as
the Penalty Boundary Intersection (PBI) and the Weighted Norm (WN) functions. This
material complements the results presented in Chapter 6

Figures D.11 to D.63 show the convergence plots for different scenarios. We ran tests
on DTLZ1, DTLZ3 and DTLZ3−1 which have linear, concave and convex Pareto front
shapes, respectively. We adopted 2, 3, and 5 objectives. The number of weight vectors was
100, 120 and 210 for each dimension. The parameter values employed were the following:

• ACHE, RACHE, AASF, MCHE, RMCHE with
α ∈ {0, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 10.0}

• PBI with θ = {0.1, 1.0, 2.0, 5.0, 10.0, 50.0} and

• WN with p = {0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 100.0}

Figure D.1: AASF in
DTLZ1 with 2 objectives.

Figure D.2: AASF in
DTLZ1 with 3 objectives.

Figure D.3: AASF in
DTLZ1 with 5 objectives.
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Figure D.4: AASF in
DTLZ3 with 2 objectives.

Figure D.5: AASF in
DTLZ3 with 3 objectives.

Figure D.6: AASF in
DTLZ3 with 5 objectives.

Figure D.7: AASF in
DTLZ3 convex with 2 ob-
jectives.

Figure D.8: AASF in
DTLZ3 convex with 3 ob-
jectives.

Figure D.9: AASF in
DTLZ3 convex with 5 ob-
jectives.

Figure D.10: ACHE in
DTLZ1 with 2 objectives.

Figure D.11: ACHE in
DTLZ1 with 3 objectives.

Figure D.12: ACHE in
DTLZ1 with 5 objectives.

Figure D.13: ACHE in
DTLZ3 with 2 objectives.

Figure D.14: ACHE in
DTLZ3 with 3 objectives.

Figure D.15: ACHE in
DTLZ3 with 5 objectives.
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Figure D.16: ACHE in
DTLZ3 convex with 2 ob-
jectives.

Figure D.17: ACHE in
DTLZ3 convex with 3 ob-
jectives.

Figure D.18: ACHE in
DTLZ3 convex with 5 ob-
jectives.

Figure D.19: RACHE in
DTLZ1 with 2 objectives.

Figure D.20: RACHE in
DTLZ1 with 3 objectives.

Figure D.21: RACHE in
DTLZ1 with 5 objectives.

Figure D.22: RACHE in
DTLZ3 with 2 objectives.

Figure D.23: RACHE in
DTLZ3 with 3 objectives.

Figure D.24: RACHE in
DTLZ3 with 5 objectives.
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Figure D.25: RACHE in
DTLZ3 convex with 2 ob-
jectives.

Figure D.26: RACHE in
DTLZ3 convex with 3 ob-
jectives.

Figure D.27: RACHE in
DTLZ3 convex with 5 ob-
jectives.

Figure D.28: MCHE in
DTLZ1 with 2 objectives.

Figure D.29: MCHE in
DTLZ1 with 3 objectives.

Figure D.30: MCHE in
DTLZ1 with 5 objectives.

Figure D.31: MCHE in
DTLZ3 with 2 objectives.

Figure D.32: MCHE in
DTLZ3 with 3 objectives.

Figure D.33: MCHE in
DTLZ3 with 5 objectives.
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Figure D.34: MCHE in
DTLZ3 convex with 2 ob-
jectives.

Figure D.35: MCHE in
DTLZ3 convex with 3 ob-
jectives.

Figure D.36: MCHE in
DTLZ3 convex with 5 ob-
jectives.

Figure D.37: RMCHE in
DTLZ1 with 2 objectives.

Figure D.38: RMCHE in
DTLZ1 with 3 objectives.

Figure D.39: RMCHE in
DTLZ1 with 5 objectives.

Figure D.40: RMCHE in
DTLZ3 with 2 objectives.

Figure D.41: RMCHE in
DTLZ3 with 3 objectives.

Figure D.42: RMCHE in
DTLZ3 with 5 objectives.
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Figure D.43: RMCHE in
DTLZ3 convex with 2 ob-
jectives.

Figure D.44: RMCHE in
DTLZ3 convex with 3 ob-
jectives.

Figure D.45: RMCHE in
DTLZ3 convex with 5 ob-
jectives.

Figure D.46: PBI in
DTLZ1 with 2 objectives.

Figure D.47: PBI in
DTLZ1 with 3 objectives.

Figure D.48: PBI in
DTLZ1 with 5 objectives.

Figure D.49: PBI in
DTLZ3 with 2 objectives.

Figure D.50: PBI in
DTLZ3 with 3 objectives.

Figure D.51: PBI in
DTLZ3 with 5 objectives.
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Figure D.52: PBI in
DTLZ3 convex with 2 ob-
jectives.

Figure D.53: PBI in
DTLZ3 convex with 3 ob-
jectives.

Figure D.54: PBI in
DTLZ3 convex with 5 ob-
jectives.

Figure D.55: WN in
DTLZ1 with 2 objectives.

Figure D.56: WN in
DTLZ1 with 3 objectives.

Figure D.57: WN in
DTLZ1 with 5 objectives.

Figure D.58: WN in
DTLZ3 with 2 objectives.

Figure D.59: WN in
DTLZ3 with 3 objectives.

Figure D.60: WN in
DTLZ3 with 5 objectives.
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Figure D.61: WN in
DTLZ3 convex with 2 ob-
jectives.

Figure D.62: WN in
DTLZ3 convex with 3 ob-
jectives.

Figure D.63: WN in
DTLZ3 convex with 5 ob-
jectives.
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[27] Dächert, K., Gorski, J., and Klamroth, K. An Augmented Weighted Tcheby-
cheff Method with Adaptively Chosen Parameters for Discrete Bicriteria Optimization
Problems. Computers & Operation Research 39, 12 (Dec. 2012), 2929–2943.

[28] Das, I., and Dennis, J. E. Normal-Boundary Intersection: A New Method for
Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems.
SIAM Journal on Optimization 8, 3 (1998), 631–657.

[29] Dean Angela, Voss Daniel, D. D. Design and Analysis of Experiments, 2nd ed.
2017 ed. Springer International Publishing, 2017.

[30] Deb, K., and Agrawal, R. B. Simulated Binary Crossover for Continuous Search
Space. Tech. rep., Indian Institute of Technology, 1994.

[31] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary
Computation 6, 2 (April 2002), 182–197.

[32] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. Scalable Test Problems for
Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimiza-
tion. Theoretical Advances and Applications, A. Abraham, L. Jain, and R. Goldberg,
Eds. Springer, USA, 2005, pp. 105–145.

[33] Deb K., M. K. A Review of Nadir Point Estimation Procedures Using Evolutio-
nary Approaches: A Tale of Dimensionality Reduction. Tech. Rep. KanGAL Report
2008004, Indian Institute of Technology, 2008.

[34] Dellino, G., Fedele, M., and Meloni, C. Dynamic Objectives Aggregation Me-
thods for Evolutionary Portfolio Optimisation. A Computational Study. International
Journal of Bio-Inspired Computation 4, 4 (jul 2012), 258–270.

CINVESTAV-IPN Computer Science Department



154 Bibliography

[35] Derbel, B., Brockhoff, D., and Liefooghe, A. Force-Based Cooperative Search
Directions in Evolutionary Multi-objective Optimization. In Evolutionary Multi-
Criterion Optimization, 7th International Conference, EMO 2013, R. C. Purshouse,
P. J. Fleming, C. M. Fonseca, S. Greco, and J. Shaw, Eds., vol. 7811. Lecture Notes
in Computer Sciences, Sheffield, UK, March 19-22 2013, pp. 383–397.

[36] Derbel, B., Brockhoff, D., Liefooghe, A., and Verel, S. On the Impact
of Multiobjective Scalarizing Functions. In Parallel Problem Solving from Nature –
PPSN XIII: 13th International Conference, Ljubljana, Slovenia, September 13-17,
2014. Proceedings, T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith, Eds.
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