
Centro de Investigacion y de Estudios

Avanzados

del Instituto Politecnico Nacional

Unidad Zacatenco

Departamento de Computación

Estrategias Meméticas basadas en Técnicas de

Búsqueda Local sin Gradiente

Documento realizado por

Sergio Jesús Alvarado Garćıa

Como parte de los requerimientos para la obtención del grado de

Doctor en Ciencias en Computación

Supervisor: Dr. Oliver Schütze

Ciudad de México Junio 2017

Centro de Investigacion y de Estudios

Avanzados

del Instituto Politecnico Nacional

Unidad Zacatenco

Computer Science Department

Memetic Strategies based on Gradient-free Local

Search Techniques

A dissertation submitted by

Alvarado Garćıa Sergio Jesús

As the fulfillment of the requirement for the degree of

Doctor in Computer Science

Supervisor: Dr. Oliver Schütze

Mexico City June 2017

Agradecimientos

Quiero agradecer al CINVESTAV por dejarme ser parte de su comunidad, aśı como

por todos los apoyos he recibido para la finalización de mi doctorado.

A su vez, también agradezco al CONACyT por el apoyo en forma de beca para la

realización de este trabajo.

Agradezco a mi asesor el Dr. Oliver Schütze por toda la gúıa y el esfuerzo que me

brindó durante todos estos años.

Finalmente, quiero agradecer a mis revisores: el Dr. Carlos A. Coello Coello, el Dr.

Luis Gerardo De la Fraga, el Dr. Amilcar Meneses Viveros y el Dr. Saúl Zapotecas

Mart́ınez por tomarse el tiempo y la consideración de revisar este trabajo de tesis.

Resumen

En el mundo real existen problemas donde uno o más objetivos deben ser optimizados,

y los algoritmos meméticos son una de las técnicas más utilizadas para resolverlos.

Dichos algoritmos combinan un algoritmo evolutivo con técnicas de búsqueda local.

Desafortunadamente, un problema con los algoritmos meméticos, es que en ciertas

ocasiones la búsqueda local de los mismos requiere que se proporcione información

del gradiente del problema. Como una alternativa para lidiar con esta limitante pre-

sentamos en esta tesis tres diferentes técnicas de búsqueda local que no requieren que

dicha información sea dada: la Búsqueda Dirigida Discreta (DDS), la Aproximación

del Subespacio del Gradiente (GSA) y la Mutación Polinomial de Subespacios (SPM).

El método llamado Búsqueda Dirigida Discreta (DDS), es un método que puede

dirigir la búsqueda en cualquier dirección d ∈ Rk dada en el espacio de los objetivos.

El método DDS surge como una extensión sin gradiente del método de Búsqueda

Dirigida (DS), aunque, en lugar de construir una dirección utilizando la Jacobiana

de la función, el método DDS usa la información del vecindario. Tal información

ya se encuentra calculada en la población actual del algoritmo evolutivo. Utilizando

al DDS como método de búsqueda local se propuso un nuevo algoritmo memético,

con el cual, se realizaron diversas comparaciones con funciones de prueba del estado

del arte. Los resultados obtenidos muestran que el algoritmo memético basado en

el método DDS presenta mejores resultados cuando es comparado con el algoritmo

evolutivo usado como base; a su vez, presenta resultados similares en comparación

con el método DS.

El segundo método presentado en este trabajo es la Aproximación del Subespa-

cio del Gradiente (GSA). Dicho método posee dos diferentes versiones y cada una

de ellas depende del número de objetivos del problema que se esté resolviendo. La

primera versión del GSA se desarrolló para resolver problemas con un solo objetivo

que posean restricciones. En particular, utilizando dicha versión se implementó un

algoritmo memético que utiliza a la Evolución Diferencial (DE, por sus siglas en

inglés) y se realizaron experimentos utilizando este algoritmo. Los resultados arroja-

dos por los experimentos muestran que el algoritmo DE/GSA es capaz de ahorrar un

monto considerable de recursos (medidos en evaluaciones de las funciones objetivo)

en contraparte a los algoritmos con los que se realizó la comparación. La segunda

versión del GSA se desarrolló como una extensión del mismo para trabajar en el con-

texto de problemas multi-objetivo. Dos h́ıbridos se desarrollaron con esta versión: el

MOEA/D/GSA y el IG-NSGA-II/GSA. De igual manera, se desarrollaron diversos

experimentos, en los cuales, los valores de los indicadores obtenidos muestran una

mejora considerable en comparación con el algoritmo base usado para los algoritmos

meméticos utilizados.

Finalmente, el último método desarrollado fue la Mutación Polinomial de Sube-

spacios (SPM). Dicho método es capaz de manejar problemas multi-objetivo con

restricciones de desigualdad. En particular, la idea principal del operador SPM es el

moverse a lo largo de las restricciones activas del problema para aśı generar nuevas

soluciones a lo largo de las mismas. Los experimentos realizados con el operador SPM,

muestran que una mejora significativa (medida utilizando indicadores multi-objetivo

tales como el hipervolumen y ∆2) puede ser alcanzada cuando se realiza este tipo de

movimiento.

Abstract

In the real world there exist problems where one or more objectives have to be op-

timized. Memetic algorithms are currently one of the most widely used techniques

to solve such problems. Such kind of algorithms hybridize evolutionary algorithms

with local search procedures. One drawback of such algorithms is that some of the

local search procedures currently available require that explicit gradient information

is given. As an alternative to tackle such a problem we present three local search tech-

niques that do not require that explicit gradient information is given: the Discrete

Directed Search, the Gradient Subspace Approximation and the Subspace Polynomial

Mutation.

The Discrete Directed Search (DDS) is a method that steers the search in any

given direction d ∈ Rk provided in objective space. The DDS method is a gradient-

free realization of the Directed Search (DS) method. Instead of computing a direction

using the Jacobian, it utilizes the given information from neighboring solutions of the

current population. A new memetic algorithm using the DDS method as a local

search was proposed. Such a method was compared using several state-of-the-art test

functions. The results of such an experiments demonstrated that the memetic algo-

rithm based on the DDS local search have obtained competitive results in comparison

with the standalone algorithm and similar results in comparison to the original DS

algorithm.

The second method presented in this work is the Gradient Subspace Approxima-

tion (GSA). Two different versions of the GSA are proposed in this work according

to the number of objectives of the problem. The first version of the GSA is a method

to solve constrained single-objective problems. In particular, to find a solution of

a given optimization problem, a memetic algorithm using Differential Evolution was

proposed. The experiments of the DE/GSA showed that such an algorithm is capable

of saving a considerable amount of resources (measured in function calls) than the

algorithm with respect to which it is compared. A natural extension of the GSA is

the increment in the number of objective functions. In particular, a second approach

using the GSA method in the multi-objective context was proposed. Two different

memetic algorithms are hybridized using the GSA: the MOEA/D/GSA and the IG-

NSGA-II/GSA. The indicator values on such an algorithm showed a considerable

improvement in comparison with the standalone version of the algorithms.

Finally, the Subspace Polynomial Mutation (SPM) was proposed as a mechanism

to handle inequality constrained multi-objective problems. Considering a problem

where the Pareto Front is defined by one or more constraints, the SPM operator is

capable of computing a new candidate solution steering the search along the active

inequality constraints. In particular, the experiments showed that an improvement

was archieved in terms of multi-objective indicators (Hypervolume and ∆2) when

such kind of movement is performed.

Contents

Figures ii

Tables iv

Algorithms v

Contributions ix

1 Introduction 1

2 Background 5

2.1 Single Objective Optimization . 5

2.1.1 Basis concepts . 5

2.1.2 Optimality definitions . 7

2.1.3 Related Work . 10

2.2 Multi-objective Optimization . 21

2.2.1 Basic concepts . 22

2.2.2 Related work . 28

3 The Discrete Directed Search Method 41

3.1 Main Idea . 41

3.1.1 Influence of the value of r . 45

3.1.2 Standalone DDS . 49

3.2 Numerical Results . 50

3.2.1 Memetic MOEA/D . 50

3.2.2 Discussion of results . 53

4 The Gradient Subspace Approximation 57

4.1 Basic Idea . 58

4.2 GSA for Unconstrained SOPs . 61

i

ii CONTENTS

4.3 GSA for Constrained SOPs . 66

4.3.1 Equality constraints . 67

4.3.2 Inequality constraints . 70

4.4 GSA as Standalone Algorithm . 74

4.4.1 Computing the direction . 74

4.4.2 Correcting the step size . 77

4.4.3 GSA standalone algorithm . 84

4.5 GSA within DE . 87

4.5.1 Computing the neighborhood 87

4.5.2 Initial step size . 88

4.5.3 Balancing the operators . 89

4.6 Numerical Results . 93

4.6.1 Standalone algorithm . 94

4.6.2 GSA within DE . 98

4.7 Multi-objective GSA . 116

4.7.1 Applicability of GSA within MOEAs 116

4.7.2 Approximating the Jacobian 118

4.7.3 Computing a descent direction 118

4.7.4 Memetic algorithm . 120

4.7.5 Numerical Results . 125

5 Subspace Polynomial Mutation 135

5.1 Multi-objective Stochastic Local Search 135

5.1.1 MOSLS movement according to the position of x0 136

5.1.2 MOSLS with inequality constraints 140

5.1.3 Main idea of SPM . 146

5.1.4 NSGA-II/SPM . 150

5.1.5 Numerical results . 151

6 Conclusions and Future Work 163

Appendix A: Single objective problems definition I

Appendix B: Multi-objective unconstrained problems definition XIX

Appendix C: Multi-objective constrained problems definition XXVII

References XLIV

List of Figures

2.1 Example for local minima in non-smooth problems. 8

2.2 Example of backtracking for step size control 13

2.3 Basic idea of CG method. 15

2.4 Outline of a general local search procedure. 20

2.5 Example to demonstrate Pareto dominance 23

2.6 Example of a Pareto front and Pareto set 24

2.7 Example of ideal vector . 24

2.8 Descent half space for SOPs. 26

2.9 Example of cones for MOPs. 26

2.10 Example of hypervolume indicator . 27

2.11 Example of region defined by the goals of goal programming method. . . . 30

2.12 Example of the reference method . 32

2.13 Main idea of the Lara direction. 33

2.14 Basic idea of DS. 34

3.1 Example of neighborhood in a population-based algorithm. 42

3.2 Example of the r influence. 49

3.3 Pareto fronts obtained in the UF benchmark with 2 objectives. 54

3.4 Pareto fronts obtained in the UF benchmark with 3 objectives. 56

4.1 Example of the GSA subspace . 59

4.2 Results of neighboring experiments for SOPs. 60

4.3 Gradient projection with one active inequality constraint 72

4.4 Example of large step size . 81

4.5 Example of a function φ(t) . 82

4.6 Single run for academic problems experimentation 95

4.7 Averaged constraint values for the different DE variations at 5, 000

function calls. 102

iii

iv LIST OF FIGURES

4.8 Cont’d Averaged constraint values for the different DE variations at

5, 000 function calls. 103

4.9 Averaged constraint values for the different DE variations at 50, 000

function calls . 104

4.10 Cont’d Averaged constraint values for the different DE variations at

50, 000 function calls. 105

4.11 Averaged constraint values for the different DE variations at 500, 000

function calls . 106

4.12 Cont’d Averaged constraint values for the different DE variations at

500, 000 function calls. 107

4.13 Convergence plots for the different DE variations. 108

4.14 Convergence plots for the different DE variations. 109

4.15 Convergence plots for the different DE variations. 110

4.16 Results for neighborhood size for multi-objective GSA 117

4.17 Example of correction step for Lara direction 120

4.18 Results of the approximation using several values of r 126

4.19 Standalone GSA applied on a quadratic function 127

4.20 Pareto Fronts obtained for the ZDT problems by MOEA/D and MOEA/D/GSA.129

4.21 Pareto Fronts obtained by IG-NSGA-II and IG-NSGA-II/GSA for the

CF test problems. 133

5.1 Example for MOSLS randomly generated solutions 139

5.2 Example for MOSLS with linear inequality constraints 143

5.3 Example for MOSLS with box constraints 144

5.4 Example for MOSLS with general inequality constraints 147

5.5 Comparison of the SPM PF at 15, 000 function calls 156

5.6 Cont’d Comparison of the SPM PF at 15, 000 function calls 157

5.7 Comparison of the SPM PF at 50, 000 function calls 158

5.8 Cont’d Comparison of the SPM PF at 50, 000 function calls 159

5.9 Convergence plot of the variants of the NSGA-II 160

5.10 Cont’d Convergence plot of the variants of the NSGA-II 161

List of Tables

3.1 Parameters for the experiments on MOEA/D with the ZDT test prob-

lems. 52

3.2 Results on the ZDT benchmark for MOEA/D/(D)DS at 15, 000 func-

tion calls. 53

3.3 Parameters for the experiments on MOEA/D with the ZDT test prob-

lems. 53

3.4 Results on the CEC 09 benchmark for MOEA/D/(D)DS. 55

4.1 Results for standalone GSA on the 2-dimensional test problems . . . 95

4.2 Results for the second experiment using GSA as a standalone algorithm. 97

4.3 Solutions obtained by the different DE variants at 5,000 evaluations. . 99

4.4 Solutions obtained by the different DE variants at 50,000 evaluations. 100

4.5 Solutions obtained by the different DE variants at 500,000 evaluations. 101

4.6 Constraints violated by the different DE variants at 5,000 evaluations. 111

4.7 Constraints violated by the different DE variants at 50,000 evaluations. 112

4.8 Constraints violated by the different DE variants at 500,000 evaluations.113

4.9 Evaluations required by the different DE variants to obtain a fixed

quality level and percentage of saved resources. 114

4.10 Parameters for the MOEA/D/GSA algorithm. 128

4.11 Averaged indicator results for unconstrained problems 130

4.12 Parameters for the IG-NSGA-II/GSA algorithm. 131

4.13 Averaged indicator results for constrained problems 131

4.14 Averaged indicator results for the CF test problems 132

5.1 Parameters for the NSGA-II/SPM experiments 152

5.2 ∆2 results of NSGA− II/SPM for 15, 000 function calls. 154

5.3 ∆2 results of NSGA− II/SPM for 50, 000 function calls. 155

v

vi LIST OF TABLES

List of Algorithms

1 Generic line search procedure . 11

2 Pseudocode of steepest descent method for unconstrained SOPs . . . 14

3 Generic Evolutionary Algorithm . 18

4 Pseudocode of a generic memetic algorithm 20

5 Pseudocode of the crowding distance for NSGA-II 36

6 Pseudocode of the NSGA-II . 37

7 Pseudocode of the IG-NSGA-II . 37

8 Pseudocode of MOEA/D . 38

9 Standalone DDS method . 50

10 Hybrid MOEA/D (MOEA/D/DS and MOEA/D/DDS) 51

11 LS Procedure (gen, i) . 51

12 Pseudocode for unconstrained direction of the GSA. 76

13 GSA direction on infeasible solutions. 78

14 GSA direction on feasible solutions. 79

15 ν∗ = solveDirection(Ṽ , d̂, M̃ , p) . 80

16 ν∗p = projectDirection(ν∗, V, M̂) . 80

17 Pseudocode of the step size control for GSA 84

18 Pseudocode of the neighborhood structure of the GSA standalone al-

gorithm. 85

19 Pseudocode of the standalone GSA for SOP. 86

20 Pseudocode of the neighborhood structure for DE/GSA. 88

21 Pseudocode for computing the initial step size of DE/GSA. 89

22 Pseudocode for computing the DE/GSA step size. 90

23 Pseudocode of the participation ratio calculation. 92

24 Pseudocode of the memetic DE/GSA. 93

25 Pseudocode for computing the initial step size of multi-objective GSA. 121

26 Pseudocode of the participation ratio for MOEA/D/GSA. 123

27 Pseudocode of the memetic MOEA/D/GSA. 124

vii

viii LIST OF ALGORITHMS

28 Pseudocode for local search of IG-NSGA-II/GSA. 125

29 Pseudocode for computation of a candidate solution y ∈ N(x0) 138

30 Pseudocode for MOSLS with linear inequalities 141

31 Pseudocode for MOSLS with box constraints 142

32 Pseudocode for MOSLS with general inequality constraints 146

33 Pseudocode for computation of maximal step size tm 149

34 Pseudocode for orthonormal base of SPM with linear inequality con-

straints . 149

35 Pseudocode for orthonormal base of SPM with general inequality con-

straints . 150

36 Pseudocode for the SPM mutation operator 151

37 Pseudocode for offspring generation in NSGA-II 152

Contributions

Journal papers

• Oliver Schütze, Adanay Mart́ın, Adriana Lara, Sergio Alvarado, Eduardo Sali-

nas and Carlos A. Coello Coello, The directed search method for multi-objective

memetic algorithms, Computational Optimization and Applications, vol. 63,

no. 2, pp. 305-332, 2016.

• Oliver Schütze, Sergio Alvarado, Carlos Segura, Ricardo Landa, Gradient sub-

space approximation: a direct search method for memetic computing, Soft Com-

puting, to appear.

Conference papers

• Adriana Lara, Sergio Alvarado, Saul Salomon, Gideon Avigad, Carlos. A.

Coello and Oliver Schütze, The gradient free directed search method as local

search within multi-objective evolutionary algorithms, in EVOLVE - A Bridge

between Probability, Set Oriented Numerics, and Evolutionary Computation

(EVOLVE II), pp. 153-168, 2013.

• Sergio Alvarado, Adriana Lara, Victor Adrian Sosa Hernandez and Oliver Schütze,

An effective mutation operator to deal with multi-objective constrained prob-

lems: SPM, in 2016 13th International Conference on Electrical Engineering,

Computing Science and Automatic Control (CCE), pp. 1-6, Sept 2016.

Extended abstracts in international conferences

• Sergio Alvarado, Oliver Schütze, Carlos Segura, Ricardo Landa, DE/GSA: A

Memetic Algorithm based on Gradient Subspace Approximation. EVOLVE - A

ix

x CONTRIBUTIONS

Bridge between Probability, Set Oriented Numerics, and Evolutionary Compu-

tation 2014, Beijing, China.

Extended abstracts in national conferences

• Sergio Alvarado, Oliver Schütze, Carlos Segura, Ricardo Landa, Resolución

de problemas de optimización por medio de algoritmos meméticos basados en

búsquedas locales sin gradiente. V Congreso de la Sociedad Mexicana de Inves-

tigación de Operaciones 2016, Tamaulipas, México.

Chapter 1

Introduction

In real world applications there exist problems where it is necessary to find the opti-

mal parameters of the problem under study to archive some benefits (e.g. to reduce

the size of an engine in order to decrease the fuel consumption). Such kind of prob-

lems are called optimization problems (OP). Typically, it is not an easy task to find a

solution for a given OP and in some cases it becomes necessary to use different tech-

niques to solve it. Some of the widely used techniques to solve optimization problems

are the so-called memetic strategies.

Memetic strategies combine evolutionary algorithms with local search strategies

to solve optimization problems. Such techniques use the robustness of the evolution-

ary algorithms and the convergence rate of the local search strategies. One of the

drawbacks of memetic strategies, however, is the relatively high cost of their local

search procedures (in terms of function calls).

This work presents the implementation of several memetic strategies that can be

applied when there exists no complete information about the problem to be optimized.

In particular, we are targeting problems where no explicit gradient information is at

hand.

Problem

The scope of this work is to develop new memetic strategies to solve optimization

problems efficiently. In particular, we consider problems where the gradient informa-

tion is not at hand such that a gradient-free local search strategy is required. Also,

1

2

it is desirable that the new developed techniques can be competitive when they are

compared to the state-of-the-art.

Objective

• The main objective is to design memetic strategies for the effective numerical

treatment of optimization problems in cases in which the gradient information

is not explicitly given.

Particular objectives

• To design gradient-free numerical methods for the efficient treatment of opti-

mization problems.

• To couple the numerical methods with evolutionary strategies.

• To evaluate the new memetic strategies on some of the state-of-the-art problems.

Organization of the work

The organization of this thesis is as follows:

In Chapter 2, some basic concepts to understand the context of this work are

presented. This section includes the background for single objective optimization

problems and multi-objective optimization problems. The concepts and the state-of-

the-art mechanisms are described for each type of optimization problem.

Chapter 3 presents the formulation of the Directed Search method and its gradi-

ent free realization, the Discrete Directed Search. Such algorithms are local search

strategies that compute a search direction that steers the search by following a given

direction d ∈ Rk in objective space.

In Chapter 4, the Gradient Subspace Approximation (GSA) method is presented.

This method uses neighborhood information to construct descent direction for single

and multi objective problems.

Cinvestav Computer Science Department

Introduction 3

Chapter 5 presents a mutation operator for inequality constrained multi-objective

problems: the Subspace Polynomial Mutation.

Chapter 6 present the conclusions, the possible improvements and the future work

for the techniques that are presented in this work.

Cinvestav Computer Science Department

4

Cinvestav Computer Science Department

Chapter 2

Background

This section presents some of the basic concepts that are required to understand

the context of this work. First, the ideas related to single objective optimization

are explained. Next, some concepts and techniques used for the treatment of multi-

objective optimization are described.

2.1 Single Objective Optimization

Optimization is a process to minimize/maximize an objective of a given problem, e.g.

to minimize waste produced in a chemical process by reducing the percentage of used

water. These kind of problems where a single objective has to be optimized will be

referred to as a single objective optimization problem (SOP). In particular, there does

not exist a single algorithm that solves all kinds of optimization problems efficiently.

In most cases it is left to the user to select a suitable algorithm.

2.1.1 Basis concepts

Objective function

The objective is a function that measures the results of the process. In mathe-

matical notation, an objective is defined as follows:

f : Rn → R. (2.1)

5

6 Chapter 2

Decision variables

In terms of optimization, a decision variable, which is also called parameter, is a term

used to name a quantity that is modified in order to increase/decrease the objective

value, e.g. if the weight of a plane is reduced, the fuel consumption decreased.

Formally, the parameters are represented as column vectors constructed with n

variables:

x = (x1, x2, . . . , xn)T .

Constraints

Constraints can be considered as the limitations that a problem must fulfill. The

constraints force the process to remain in a stable state, e.g., the temperature of an

engine must remain under certain threshold such that it does not break. In particular,

there exist two types of constraints: equality and inequality constraints.

The inequality constraints force an optimization problem to remain within a given

threshold. A solution is considered feasible if its value accomplishes this condition.

Formally, inequality constraints are defined as:

gj(x) ≤ 0, j = 1, · · · , p. (2.2)

Equality constraints can be considered more difficult to accomplish. The com-

plexity of these constraints resides in the fact that a solution is considered feasible

only if its value is equal to zero. In mathematical notation, the equality constraints

are defined as:

hi(x) = 0, i = 1, · · · ,m. (2.3)

Gradient vector

A gradient is the derivative of a vectorial function. In mathematical terms, the

gradient is defined using the ∇ operator. If the function f is differentiable, the

gradient is defined as:

∇f(x) =

(
∂f(x)

∂x1

,
∂f(x)

∂x2

, · · · ,
∂f(x)

∂xn

)T

, (2.4)

Cinvestav Computer Science Department

Background 7

where
∂f(x)

∂xi
represents the i-th partial derivative of f at x.

2.1.2 Optimality definitions

Using the notation described above we are now in the position to define SOPs. In

terms of minimization, a SOP is mathematically defined as:

min
x∈Rn

f(x)

s.t. hi(x) = 0, i = 1, . . . , p,

gj(x) ≤ 0, j = 1, . . . ,m.

(2.5)

Here, we can define the feasible region Q of Equation (2.5) as follows:

Q = {x ∈ Rn : hi(x) = 0, i = 1, · · · ,m and gj(x) ≤ 0, j = 1, · · · , p}. (2.6)

Local and global minimizers

A feasible solution x∗ of problem (2.5) is considered a global minimizer if:

f(x∗) ≤ f(x), ∀x ∈ Q. (2.7)

On the contrary, a solution x∗ is a local minimizer if:

f(x∗) ≤ f(x),∀x ∈ N ∩Q, (2.8)

where N is a neighborhood of x∗.

Unconstrained optimal solution

In case that a given SOP does not possess constraints, it is possible to define a local

optimal solution of the problem using the gradient and Hessian information.

Theorem 1 ([Fermat, 1629]). Having a function f that is differentiable and contin-

uous at a point x∗ where x∗ is a local minimal then ∇f(x∗) = 0.

Cinvestav Computer Science Department

8 Chapter 2

A B C

x

f(x)

Figure 2.1: Example for local minima in non-smooth problems.

The condition proposed in Theorem 1 states that x∗ is a stationary point. A

stationary point is defined as a point where∇f(x∗) = 0. Unfortunately such condition

does not guarantee that a stationary point is always a local minimizer of a given SOP.

To characterize a minimal solution of an SOP it is necessary to introduce an extra

condition.

Theorem 2. Having a twice differentiable continuous function f and a local mini-

mizer x∗ then the Hessian matrix H(x∗) is possitive defined.

The two conditions proposed above are necessary conditions to demonstrate the

optimality of a local solution for smooth problems. A smooth problems is typically

defined for functions were the second order information exists and is continuous.

In case that the function is a non-smooth and even discontinuous, the optimality

condition can not be applied. However, if the functions consist on smooth pieces

separated by discontinuities it is possible to find the minimizer of each smooth piece

separately. For example, consider Figure 2.1, where we can obtain the local minima

for regions A and C. Unfortunately, we can not obtain such a value from region B.

Karush-Kuhn-Tucker conditions

The conditions proposed by Karush, Khun and Tucker ([Karush, 1939], [Kuhn

and Tucker, 1951]) are necessary conditions that determine if a solution x∗ of (2.5) is

Cinvestav Computer Science Department

Background 9

a local minimizer. The Karush-Kuhn-Tucker conditions (KKT) are described as:

∇L(x∗) = ∇f(x∗)−
p∑
j=1

µi∇gi(x∗)−
m∑
i=1

λi∇hi(x∗) = 0 (2.9a)

gj(x
∗) ≤ 0, j = 1, . . . , p (2.9b)

hi(x
∗) = 0, i = 1, · · · ,m
µi ≥ 0, i = 1, . . . ,m (2.9c)

λi ≥ 0 (2.9d)

µigi(x) = 0, i = 1, . . . ,m, (2.9e)

.

In case of an unconstrained SOP, the KKT-conditions of Equation (2.9) are refor-

mulated as:

∇L(x∗) = ∇f(x∗) = 0. (2.10)

Descent direction

Consider a vector ν ∈ Rn and a candidate solution x0. Such vector is called a descent

direction if it reduces the value of the objective function.That is, for a given sufficient

small step size t it holds that:

f(x0 + tν) < f(x0). (2.11)

In case that the function is differentiable. A descent direction can also be defined

as follows:

〈∇f(x0), ν〉 < 0, (2.12)

where 〈·, ·〉 represents the scalar product.

Such claim can be verified using the first order Taylor approximation:

f(x+ tν) = f(x) + tνT∇f(x) +O(t2). (2.13)

A direction ν is a descent direction if the angle θ between ν and ∇f(x) has

Cinvestav Computer Science Department

10 Chapter 2

cos θ < 0:

〈∇f(x0), ν〉 = ‖ν‖‖∇f(x)‖ < 0. (2.14)

2.1.3 Related Work

Mathematical Programming Techniques

As mentioned before there exist many techniques to find a solution of a given SOP.

One large class of these techniques is given by mathematical programming techniques.

These techniques use information such as the gradient to find an optimal solution of a

problem. In this section, some of the classical mathematical programming techniques

are described.

Line search

A line search strategy is an iterative method that aims to find a local optimal

value computing a descent direction of the objective function f . Each iteration of

this method is performed by a movement along a descent direction. To perform such

a movement this method requires a step size t ∈ R+. It is important to mention that

the choice of the step size is crucial since it is necessary that this step size sufficiently

decreases the value of f .

For example, given a descent direction ν at a point x of an unconstrained SOP,

the step size with the maximal decay can be obtained by solving the following one-

dimensional optimization problem:

min
t
f(x+ tν). (2.15)

Obtaining an exact solution of Equation (2.15) can be expensive in terms of com-

putational time. To save some of these resources it is possible to use inexact methods

to calculate t, which we discuss in the sequel.

Algorithm 1 presents the pseudocode of a line search technique.

Cinvestav Computer Science Department

Background 11

Algorithm 1 Generic line search procedure

Require: Initial solution x0

Ensure: Set of candidate solutions xk
1: Set k := 0
2: while Stopping criteria is not met do
3: Find descent direction νk ∈ Rn

4: Find suitable step size tk ∈ R+

5: Set xk+1 = xk + tkνk
6: k := k + 1
7: end while

Wolfe conditions

When a line search procedure is used it is necessary to calculate a step size with

a ‘sufficient’ improvement. The existence of the sufficient improvement is necessary

in order that the line search procedure converges to the optimal solution x∗. In some

cases a ‘too small’ step size value leads to a difficulty to reach the optimal value. The

Wolfe conditions were proposed in order to ensure the convergence to the optimal

solution.

Given a constant c1 ∈ (0, 1), the Armijo inequality ensures that a line search

procedure obtains an improvement based on the step size t and the directional derivate

value at direction ν. Having such consideration, the Armijo inequality is defined as:

f(x+ tν) ≤ f(x) + c1 tν
T∇f(x). (2.16)

Unfortunately the Armijo inequality is not enough to ensure a ‘good improvement’

on line search procedures. In this case, all sufficiently small values of t can accomplish

Equation (2.16). To avoid that too small step sizes are taken into consideration, a

new condition is incorporated into the formulation, the so called curvature condition.

Given a value c2 ∈ (c, 1), the curvature condition is defined as:

∇f(x+ tν)Tν ≥ c2∇f(x)Tν. (2.17)

The curvature condition ensures that the slope increases at the next point of the

iterative process. The Armijo inequality together with the curvature condition con-

stitute the so called Wolfe conditions.

Step size backtracking

Assume that the method is applied on a quadratic function. Having a matrix

Cinvestav Computer Science Department

12 Chapter 2

A ∈ Rn×n, a vector b ∈ Rn and c ∈ R, a quadratic function is defined as:

f(x) =
1

2
xTAx− bTx+ c, (2.18)

where A is symmetric and positive defined.

Now, assume that for a given initial step size t0 defined as:

t0 =
∇f(xk)

T∇f(xk)

∇f(xk)TA∇f(xk)
. (2.19)

and a direction ν the required decrease of function value is not accomplished. In such

cases, it becomes necessary to modify the value of t0 in order to reach certain level of

improvement. Define a function φ : R→ R such that:

φ(t) = f(x0 + tν), (2.20)

where the candidate solution x0 ∈ Rn and direction ν ∈ Rn are given values. Having

a value c ∈ R+ sufficiently ‘small’, the condition for the decrease is defined applying

the first equation of the Wolfe conditions:

φ(t) ≤ φ(0) + c1tφ
′(0). (2.21)

A critical mechanism of line search techniques resides in the step size control.

Let’s consider the example proposed in Figure 2.2. In such example, the initial step

size leads to a greater value of φ at the starting solution. The main idea of the back-

tracking is to use the information that has been already calculated to construct an

approximation of function φ. In the figure, it is presented the second order approxi-

mation and, based on that approximation, a new value for t is calculated.

After an iteration of a line search technique is applied with an initial step t0 such

that it does not accomplish Equation (2.21) it is possible to use the information at

hand to construct a better approximation of the optimal step size. Let’s consider the

three pieces of information φ(t0), φ(0) and φ′(0). Using such information it is possible

to construct a quadratic approximation of the function φ by interpolating the known

information:

φ1(t) =

(
φ(t0)− φ(0)− t0φ′(0)

t20

)
t2 + φ′(0)t+ φ(0). (2.22)

Using Equation (2.22) it is possible to obtain a new value t1 ∈ (0, t0) that accom-

Cinvestav Computer Science Department

Background 13

Φ(t)

t=0 t

f(x)

Φa(t)

t0t1t*

Figure 2.2: Example of backtracking for step size control

plishes the decrease conditions of the problem. In case that such conditions are not

met, the known information of the problem (i.e., φ(0), φ′(0), φ(t0) and φ(t1)) is used

to interpolate a polynomial of higher degree. Such function is defined as follows:

φ2(t) = at3 + bt2 + tφ′(0) + φ(0), (2.23)

where

(
a

b

)
=

1

t20t
2
1(t1 − t0)

(
t20 −t21
−t30 t31

)(
φ(t1)− φ(0)− φ′(0)t1

φ(t0)− φ(0)− φ′(0)t0

)
. (2.24)

In case that the step size t2, obtained as a solution of Equation (2.23), does not

accomplish the decrease conditions, a new polynomial can be computed incorporating

the new information and increasing the degree of the polynomial.

Steepest descent method

The steepest descent method [Debye, 1909] (also known as gradient descent method)

is a line search strategy which uses ν = −∇f(x) as its descent direction. This al-

gorithm has the advantage that it does not require second derivative information.

Unfortunately, this method presents a poor performance when the complexity of the

problem starts to increase.

The use of the negative of the gradient can be motivated from Taylor approxima-

Cinvestav Computer Science Department

14 Chapter 2

tion given by:

f(x+ tν) = f(x) + t · νT∇f(x) +
1

2
t2 · νT∇2f(x+ tν)ν +O(‖t‖2). (2.25)

In Equation (2.25), the rate of change of f is given by the linear coefficient of t

given by νT∇f(x). Thus, the maximal decrease using a normalized direction ν is the

solution of the minimization problem:

min
ν

νT∇f(x)

s.t. ‖ν‖ = 1
. (2.26)

Since νT∇f(x) = ‖ν‖ ‖∇f(x)‖ cos(θ) = ‖∇f(x)‖ cos(θ) , we know that the max-

imal decay is given by cos(θ) = −1. This statement implies that the solution of

Equation (2.26) is given by:

ν = − ∇f(x)

‖∇f(x)‖
. (2.27)

Algorithm 2 presents the steepest descent method for unconstrained SOPs.

Algorithm 2 Pseudocode of steepest descent method for unconstrained SOPs

Require: Initial solution x0

Ensure: Set of candidate solutions xk
1: Set k := 0
2: while ‖∇f(xk)‖2 ≥ tol do
3: Set νk := −∇f(xk)
4: Find suitable step size tk ∈ R+

5: Set xk+1 = xk + tkνk
6: k := k + 1
7: end while

Conjugate gradient method

The conjugate gradient method (CG) [Shewchuk, 1994, Fletcher and Reeves, 1964]

is a method obtained using the observations made on the steepest descent search pro-

cedure. The CG principle was defined in order to decrease the convergence rate of

the steepest descent method. In principle, the descent direction computed at each

iteration on the steepest descent method is orthogonal to the previous one. Because

of the computed direction, the convergence rate of the method is decreased. The main

Cinvestav Computer Science Department

Background 15

idea behind the CG idea is to move using the maximal step size at a given direction.

Let’s consider a set of orthogonal directions given by the unit vectors ei, i = 1, . . . , n.

Figure 2.3 presents such idea, starting from the candidate solution x0. The figure

shows the directions given by the steepest descent and the CG method. In the figure,

the steepest descent took several steps to reach the optimal solution x∗. Meanwhile,

the CG method only requires n steps (in the figure, n = 2).

Steepest method

CG method

x1x0

x* = x2

descent

Figure 2.3: Basic idea of CG method.

The CG method is designed to solve quadratic optimization problems of the form

of Equation (2.18). The main idea of this method is to replace the direction given

by the gradient descent method. For such purpose the CG method typically uses the

Gram-Schmidt process to construct the direction.

Direct Search Methods

A direct search method is an optimization technique that does not require informa-

tion about the gradient of the objective function. Instead, these methods typically

construct a descent direction using the information of a set of points in the neighbor-

hood of the current solution. The main advantage of the direct methods is that they

do not require that the problem is differentiable in order to work.

Nelder-Mead method

The method proposed in [Nelder and Mead, 1965] is a direct search method that

constructs a search direction by using a simplex of n + 1 vertices. Given the points

xi, i = 1, . . . , n + 1, the algorithm computes a new candidate solution improving the

worst solution of the simplex in each iteration. If the new solution is better than all

the solution in the simplex, the algorithm tries to improve even more the candidate

Cinvestav Computer Science Department

16 Chapter 2

solution. The steps that the Nelder-Mead method uses are the following: sort the

solutions and compute the centroid, reflection, expansion, contraction, and shrinkage.

In a fist step, the Nelder-Mead algorithm sorts the solutions according to the

function value. After the sorting process, the solutions are arranged such that:

f(x1) ≤ f(x2) ≤ . . . ≤ f(xn) ≤ f(xn+1). (2.28)

Using the sorted solutions it is possible to compute the centroid d:

d =
1

n

n∑
i=1

xi. (2.29)

Using the centroid d, the reflection step is performed in order to obtain a new

candidate solution xr. Given a step size t ∈ R+, the reflected solution xr is defined

as:

xr = d+ t · (d− xn+1). (2.30)

In case that f(xr) < f(x1), the expansion step is performed. Such step tries to

improve xr using again the centroid d but now with a larger step size. Given a step

size te > t, the expanded solution xe is calculated as follows:

xe = d+ te(d− xn+1). (2.31)

If the expanded solution is better than xr, a new simplex is constructed replacing

the point xn+1 with xe. In case that f(xe) > f(xr), the simplex is constructed by

replacing xn+1 with xr.

When the reflected solution is not good enough, i.e. f(xr) > f(xn), it is necessary

to perform a contraction step. The contraction step improves the reflected solution

by performing a search with a smaller step size. Given a step size tc ∈ (0, 0.5 · t], the

contracted solution xc is defined as follows:

xc =

d+ tc · (xr − d) if f(xr) < f(xn+1)

d+ tc · (d− xn+1) otherwise
(2.32)

Finally, the shrinkage step is used in case that an improved solution was not found

by any of the steps described above. Such step reduces the size of the simplex mod-

Cinvestav Computer Science Department

Background 17

ifying all the points. Thus, each solution xi, i = 2, . . . , n+ 1, is modified such that

xi := 0.5 · xi.

Pattern Search

The pattern search method proposed in [Hooke and Jeeves, 1961] is a direct search

method that predicts a descent direction using the information of the previous steps.

This algorithm is based on two kinds of movements: the exploratory movements and

the pattern movements.

The exploratory movements are performed in order to obtain information about

the neighborhood of the candidate solution xk. For each component of xk a search

using the canonical vectors is performed. Given a step size t, this search is performed

in two different ways. For example, if the canonical vector ei is used, to compute

a new candidate solution xe, a movement in the positive direction of the canonical

vector is performed, i.e. xe = xk + t · ei. In case that the function value f(xe) is

greater than f(xk), a movement using the negative direction of the canonical vector

is performed, i.e. xe = xk − t · ei. In case that a better point is found, the new

candidate solution is stored and the algorithm continues. The search through the

canonical vectors is repeated for each ei, i = 1, . . . , n. If no improvements are found

after all the canonical vectors were used, the new step size is set as tnew = 0.5 · t and

the search starts again.

Once the exploratory movements are finished, a pattern movement is used to

accelerate the process. Such a movement identifies a possible descent direction using

the new candidate solution xe obtained in the previous step. Thus, we can define a

pattern search direction as follows:

d = xe − xk. (2.33)

Following the direction d, the algorithm tries to find an improvement for xe. Using

direction d, the pattern candidate solution xp is computed:

xp = xe + d. (2.34)

The pattern search method has shown to be able to obtain good results when

solving SOPs. Unfortunately, one of the drawbacks of this algorithm is the cost

(in terms of function calls) of the exploratory movements. In the worst case, the

Cinvestav Computer Science Department

18 Chapter 2

exploratory movements use 2 · n function calls.

Evolutionary Strategies

Nowadays, bio-inspired heuristic algorithms are widely used to solve SOPs. One of

these bio-inspired heuristic are Evolutionary Algorithms. Evolutionary Algorithms

(EAs) are population-based algorithms that have their foundation in the evolution of

species (for more information on EAs, see e.g. [Schwefel, 1993], [Eiben et al., 2003]).

There is plenty of evidence that these stochastic methods are a good alternative to

solve problems where the gradient methods can not find a global solution. In general,

EAs are used to perform a global search in the domain. Unfortunately, one drawback

of EAs is that they yield low convergence rates.

EAs start the search with a randomly generated population. Next, the algorithm

performs a perturbation on the solutions of the population. Commonly, this per-

turbation is given by operators such as crossover and mutation. A selection process

takes place after the offspring is created. The selection process ensures that only

the ‘best individuals’ survive in each generation. The process continues until some

stopping criteria is met. The pseudocode in Algorithm 3 illustrates the main idea of

evolutionary algorithms.

Algorithm 3 Generic Evolutionary Algorithm

Require: Fitness function f
Ensure: Final population Pg

1: g := 1
2: Randomly initialize the population Pg with N individuals.
3: Evaluate the fitness of each individual in the population using the function f .
4: while Stopping criteria is not met do
5: Select the subpopulation P ′g from Pg
6: Apply crossover operator to P ′g → P ′′g
7: Apply mutation operator to P ′′g → P ′′′g
8: Evaluate the fitness of individuals on population P ′′′g
9: Select the best individuals from Pg ∪ P ′′′g and stored them in Pg+1

10: g := g + 1
11: end while
12: return Pg

Cinvestav Computer Science Department

Background 19

Memetic Algorithms

Memetic Algorithms (MAs) are strategies that hybridizes a population based method

with local search techniques.

The term memetic was proposed in [Dawkins, 1989]. Such term is used as the

“transmission unit” in the context of cultural evolution. Quoting Dawkins:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of

making pots or of building arches. Just as genes propagate themselves in the gene

pool by leaping from body to body via sperms or eggs, so memes propagate themselves

in the meme pool by leaping from brain to brain via a process which, in the broad

sense, can be called imitation.”

In terms of computational algorithms the idea of “memes” is used to denote the

improvement of particular individuals along with some mechanisms of global cooper-

ation and competition with other solutions in the population.

The main idea of MAs is to perform a local search improving an initial solution

by searching within its neighborhood. Once the local search finds the ”best” solution

in the neighborhood it replaces the original solution. Such process is repeated until

the local search can not find a solution in the neighborhood that improves the current

solution. Figure 2.4 presents the behavior of a local search technique. In the figure,

the solution obtained by the evolutionary algorithm is represented by a circle. The

local search is performed by testing several candidate solutions (represented by the

triangles) until an improved candidate solution is found (represented by the squares).

The search continues until the locally optimal local solution is found or a given budget

of function evaluations is spent.

Algorithm 4 presents a generic memetic algorithm. It is important to remark that

the local search can be applied in a different position in the algorithm according to

the structure of the EA and/or the optimization problem at hand.

Cinvestav Computer Science Department

20 Chapter 2

Initial solution

Current solution

Neighborhood

Locally optimal
solution

Figure 2.4: Outline of a general local search procedure.

Algorithm 4 Pseudocode of a generic memetic algorithm

Require: Fitness function f
Ensure: Final population Pg

1: g := 1
2: Randomly initialize the population Pg with N individuals.
3: Evaluate the fitness of each individual in the population using the function f .
4: while Stopping criteria is not met do
5: Select the subpopulation P ′g from Pg
6: Apply crossover operator to P ′g → P ′′g
7: Apply mutation operator to P ′′g → P ′′′g
8: Local Search in the neighborhood of P ′′g (P ′′g → PL

g)
9: Evaluate the fitness of individuals on population PL

g

10: Select best individuals from Pg ∪ PL
g and store them in Pg+1

11: g = g + 1
12: end while
13: return Pg

Differential Evolution

Differential Evolution (DE) is a population based algorithm proposed in [Storn

and Price, 1997b]. This method proposes a mutation operator that uses individuals

in the population to construct a direction. Such a direction is computed using the

difference vector of the selected individuals in the population. Given a candidate

solution xGi in the population at generation G, a new trial vector uG+1
i is computed

Cinvestav Computer Science Department

Background 21

as:

uG+1
i = xGi + F (xGr1 − xGr2), (2.35)

where r1, r2 ∈ {1, . . . , d} are randomly selected indexes in a population of N individ-

uals, which are mutually different, and F ∈ [0, 1].

DE proposes a crossover operator that uses as parents the candidate solution xGi
and the trial vector uG+1

i . The new candidate solution xG+1
i is constructed as follows:

xG+1
ij =

uG+1
ij if (rj ≤ CR) or j = I

xGij, otherwise
, j = 1, . . . , n, (2.36)

where r ∈ Rn is a vector whose entries are randomly calculated between [0, 1].

I ∈ {1, . . . , d} is a randomly generated integer to ensure that at least one compo-

nent of the trial vector survives and CR is the crossover probability given by the user.

The operators described above correspond to the DE/rand/1/bin version of the

algorithm (for more versions see [Storn and Price, 1997b]). The notation DE/x/y/z is

used to classify the different variations of the DE method. Such notation is described

as:

• x. This value represents that the candidate solution is selected at random.

• y. This value represents the number of difference vectors used.

• z. This value represents the type of crossover operator adopted.

2.2 Multi-objective Optimization

In the real world it is possible to find problems that require to optimize a certain

number of objectives at the same time. Thus, it is possible that the objectives are

in conflict. That is, optimizing one objective does not necessarily optimize the other

objectives. One of the main difference is that it does exist a single optimal solution

in this case. Instead, it is possible to find a set of optimal solutions. For example in

the design of a car one is (among many other objectives) interested in a high comfort

for the passengers and at the same time in a low production cost of the vehicle. This

leads to the bi-objective problem:

Cinvestav Computer Science Department

22 Chapter 2 (
maximize comfort

minimize cost

)
.

2.2.1 Basic concepts

Formal definition of a MOP

Instead of taking a single objective, a multi-objective optimization problem (MOP)

has k different objective functions that require to be optimized at the same time. For

the unconstrained case, a continuous MOP can be defined as:

min
x∈Rn

F (x) , (MOP)

where F is defined as the vector of objective functions such that :

F : Rn → Rk, (2.37)

F (x) = (f1(x), . . . , fk(x))T .

In case that we set k = 2 on Equation (MOP), we use the term bi-objective

problem (BOP) to name such kind of problem.

Pareto dominance

In a MOP the concept of optimal solutions is ambiguous. To compare solutions,

a concept of optimality for a MOP was originally proposed in [Edgeworth, 1881] and

later generalized in [Pareto, 1896]. This comparison is called Pareto dominance, (that

is also refered by some authors as Edgeworth-Pareto Optimality).

To compare two solutions of a MOP, the dominance relation described by Pareto

is defined as follows:

Given two points x, y ∈ Rn in decision space, x dominates y (x ≺ y) if fi(x) ≤
fi(y), i = 1, 2, ..., k and there exists an index j such that fj(x) < fj(y).

In Figure 2.5 we have the images of three points a, b, c ∈ Rn. The figure shows

that the value of f2(a) and f2(c) is the same, but the value f1(a) is less than f1(c),

so we can confirm that a ≺ c. In the same figure, b dominates c, but a and b do not

dominate each other. They are called mutually non-dominated solutions

Cinvestav Computer Science Department

Background 23

F(a) F(c)

F(b)

Figure 2.5: Example to demonstrate Pareto dominance

Pareto optimality

More generally, in a MOP it is possible that there exists a set of solutions such

that all elements of this set do not dominate each other. Hence, they are the ”best”

solutions that can be found. From this idea it is possible to present Pareto optimality.

Given two points x, y ∈ Rn, and a vector function F for MOPs a point x ∈ Rn is

called Pareto optimal if there does not exist a point y ∈ Rn that dominates x.

The set of all Pareto optimal solutions of a MOP is called the Pareto set (PS),

and can be formalized as:

PS = {x ∈ Rn| 6 ∃y ∈ Rn : y ≺ x} . (2.38)

Meanwhile, the image of the PS is called Pareto front (PF). Figure 2.6 presents a

bi-objective example of the PS and the PF.

Following the definition of Pareto optimality there exists another widely used

concept in multi-objective optimization: weakly Pareto optimality. Given a point

x ∈ Rn and its respective image F (x) ∈ Rk, we say that a point is weak Pareto

Cinvestav Computer Science Department

24 Chapter 2

PS

x1

x2

f1

f2

PF

Figure 2.6: Example of a Pareto front and Pareto set

optimal if there do not exist a point y ∈ Rn such that:

fi(y) < fi(x), i = 1, . . . , k. (2.39)

Ideal vector

Given a MOP, an ideal vector is a point that dominates the entire Pareto set.

Typically it is represented by a point that does not exist inside the solution set. If a

set of solution is given, each component of the ideal vector is equal to the minimum

objective value found in the entire set. Figure 2.7 presents an example of the ideal

vector denoted by Z.

PF

f1

f2

z

Figure 2.7: Example of ideal vector

Jacobian matrix

The Jacobian matrix denoted as J(x0) is the matrix formed by the first-order

Cinvestav Computer Science Department

Background 25

partial derivatives of (MOP). Such matrix is defined as:

J(x) =

(
∇f1(x)T

...∇fk(x)T

)
∈ Rk×n (2.40)

Descent cones

The concept of descent direction for SOPs is defined using the objective value.

Unfortunately, when we have k different objectives such a concept becomes more

difficult to explain. Given a candidate solution x0 there exist three different subspaces

for each of the objectives. The first subspace is defined as:

f−i := {x : fi(x) < f(x0)}, (2.41)

where fi is the i-th objective of function F . Equation (2.41) defines a subspace, where

for any candidate solution, the value of fi(x0) decreases. Analogously, we can define

a second subspace such that:

f+
i := {x : fi(x) > f(x0)}. (2.42)

Equation (2.42) defines the subspace where all the solutions increase the objective

value in comparison with fi(x0). Finally, we define the subspace where the objective

value is not changed according to fi(x0):

f=
i := {x : fi(x) = f(x0)}. (2.43)

Figure 2.8 presents a hypothetical example of the subspaces described above. To

exemplify this, lets consider that the dotted line represents the f= subspace. The

subspace to the right of f= represents the f−i subspace. Finally the subspace f+
i is

located to the left of f=.

Now, consider the intersection of all the subspaces where all the objectives decrease

their value:

C− := ∩ki=1f
−
i . (2.44)

The space defined by D− is named as descent cone. For any point x ∈ D− it holds

that:

F (x) ≺ F (x0). (2.45)

Figure 2.9 presents the main idea behind the descent cones. The hypothetical

Cinvestav Computer Science Department

26 Chapter 2

x*

x2

x1

f =

f -f +

Figure 2.8: Descent half space for SOPs.

example presents a bi-objective function to illustrate this concept. In the figure there

exist four possible combinations according to the objectives values. The figure also

presents three possible types of region: ascent,descent and diversity.

(f1
-,f2

-)

x0

(f1
-,f2

+)

(f1
+,f2

+)(f1
+,f2

-)

f1

f2

diversity

diversity

ascend

descend

Figure 2.9: Example of cones for MOPs.

Performance indicators

In order to compare two different sets of solutions of a given MOP, we typically use

Pareto dominance. Unfortunately, such comparison loses its relevance when the num-

Cinvestav Computer Science Department

Background 27

ber of objectives starts to increase. That is, when the number of objectives increases

the probability that the given solution sets are mutually non-dominated increases.

So, it becomes harder to determine which set is the ‘best’ between them. In order to

avoid such problem, a different approach to compare solution sets is proposed: the

use of performance indicators.

A performance indicator transforms a solution set into a scalar value. Hence, the

comparison between different set of points is reduced to compare the values obtained

by the indicators.

Hypervolume

The hypervolume is a performance indicator proposed in [Zitzler and Thiele, 1999].

This indicator uses a reference point r ∈ Rk to compute a scalar value for the entire

set. Given a set of points S in objective space, the hypervolume value is computed

by the union of the areas of the hypercubes formed by each non-dominated point

s ∈ S with respect to the reference point r. Figure 2.10 presents an example of the

hypervolume indicator for k = 2.

f1

f2

r

Figure 2.10: Example of hypervolume indicator

Generational Distance and Inverted Generational Distance

The Generational Distance (GD) proposed in [Van Veldhuizen, 1999] is an indi-

cator that measures the distance between a set of points A and a reference set R

(e.g., an approximation of the true PF). In mathematical notation, the GD indicator

Cinvestav Computer Science Department

28 Chapter 2

is computed as:

GD(A,R) =
1

|R|

(∑
r∈R

dist(r, A)p

) 1
p

, (2.46)

where dist(a,B) is the distance defined as:

dist(a,B) = inf
b∈B
‖a− b‖p. (2.47)

The GD indicator measures the distance from the reference set to the another.

Meanwhile, the Inverted Generational Distance (IGD) proposed in [Coello and Cortés,

2005] is computed in a similar way. However, the IGD indicator is measured from the

reference set to the set of solutions.

∆p indicator

The ∆p indicator proposed in [Schütze et al., 2012] measures the rate of conver-

gence of a solution set along with the distribution of the set of solutions. This method

uses a modified version of the GD and IGD indicators to work. Having the solution

set A and the reference set R, the modified version of the GD indicator is presented

as:

GDp(A,R) =

(
1

|R|
∑
r∈R

dist(r, A)p

) 1
p

, (2.48)

the modified IGD indicator is defined in a similar way:

IGDp(A,R) =

(
1

|A|
∑
a∈A

dist(a,R)p

) 1
p

. (2.49)

Using the modified versions of the indicator mentioned above, the ∆p indicator is

defined as:

∆p(A,R) = max(GDp(A,R), IGDp(A,R)) (2.50)

2.2.2 Related work

In this section we present some of the methods used to solve MOPs.

Cinvestav Computer Science Department

Background 29

Scalarization functions

The first approaches to solve MOPs were mostly based on converting the problem

into an auxiliary SOP. After the auxiliary SOP is constructed, numerical methods are

applied to find the optimal solution. Since the solution of a SOP consists typically

of one point, one application of the method will lead ideally to one Pareto optimal

solution. An approximation of the entire Pareto set can be obtained by solving a

clever sequence of SOPs (see e.g., [Miettinen, 2012]).

Mathematical programming techniques

There exist different mathematical programming techniques used to solve MOPs. The

first proposed techniques were based on a decomposition function that transform an

MOP into a SOP. But in recent years more specialized techniques have been pro-

posed in order to avoid the need of transforming the problem into an SOP. This

section presents some of the mathematical programming techniques used to solve an

MOP.

Weighted sum method

One of the oldest algorithms used to solve a MOP is the weighted sum method,

proposed in [Gass and Saaty, 1955], [Das and Dennis, 1997]. Such method aggregates

all objectives fi into one auxiliary objective Fw by considering a weighted sum of all

the fi’s. To be more precise, given weights wi, i = 1, ..., k, wi ≥ 0, and
∑k

i=1 wi = 1,

the auxiliary objective is defined as follows:

Fw(x) =
k∑
i=1

wifi(x). (2.51)

In general, it is not a trivial task to choose w, because it is not known a priori

which are the weights that lead us to one or another solution. A drawback of this

method is that it does not obtain certain solutions when it is applied on non-convex

MOPs.

The ε-constraint method

Another widely used method is the ε-constraint method ([Haimes et al., 1971]).

The main idea of this method is to optimize one objective while the other objectives

are transformed into constraints with a permissible error ε. Using this idea, a MOP

Cinvestav Computer Science Department

30 Chapter 2

can be replaced by:

min fi(x)

x ∈ Rn

fj(x) ≤ εj, j ∈ {1, · · · , k}\{i}
. (2.52)

This method is capable of finding several solutions of a MOP by using different values

of ε. Also, it is important to mention that this method can be used in non-convex

functions. The choice of the values of εj depends of the kind of problem at hand.

Goal Programming

The Goal Programming (GP) method uses the values proposed by the decision

makers in order to scalarize the MOP. To transform the MOP the GP method es-

tablishes several ‘goals’ proposed by the decision maker. Using such goals, an ac-

complishment level is defined according to the objectives values. In other words, the

GP method uses the goals to find the solutions of the MOPs that are bounded by

the goals. Given a set of p goals, the GP method introduces a positive deviation

pi, i = 1, . . . , k, and a negative deviation ni, i = 1, . . . , k, for each of the objective

functions. Such deviations measure the proximity of the function to the required

goal. Figure 2.11 presents an example where the deviations define the feasible region

of the goals.

f1

f2

g1 g2

g3

n1p1

n2

p2

n3

p3

Figure 2.11: Example of region defined by the goals of goal programming method.

Weighted metrics method

This method uses a reference point z ∈ Rk to transform a given MOP into an

Cinvestav Computer Science Department

Background 31

auxiliary SOP. The main idea behind this method is to minimize the distance between

the reference point z and the candidate solution. Besides, as the name indicates, there

exists a weight w related to each of the k objectives. The auxiliary function is defined

as:

M(fx, w, z) =

(
k∑
i=1

wi|fxi − zi|p

) 1
p

, (2.53)

where fx = F (x).

When the infinity norm is taken (i.e., p = ∞), the weighted metric is known as

the Tchebycheff scalarization function that is defined as:

T (fx, w, z) = max
i=1,...,k

wi|fxi − zi|, (2.54)

Normal Boundary Intersection method

The Normal Boundary Intersection method was proposed in [Das and Dennis,

1998]. The main idea of this method is to construct a Convex Hull of Local Minima

(CHIM). The CHIM is the convex hull of the local minima solutions (the local minima

solutions are the corners of the convex hull) . NBI method is based in the idea that the

intersection between a normal vector emanating from the CHIM and the boundary of

F has a high probability to be a Pareto optimal solution. In order to find a solution

set instead of a single solution, NBI uses a set of weights to distribute the normal

vectors along the CHIM. Unfortunately, even if the weight vectors are well distributed

that does not guarantee that the solution set preserves the distribution. Given an

ideal vector z∗ and a weight vector w, a solution of an MOP can be found by solving

the following auxiliary scalar function:

min
z∗∈Rk

gbi(x|w, z∗) = d

subject to z∗ − F (x) = dw

. (2.55)

Reference point methods

The reference point methods are interactive methods (i.e., methods that require

information from the decision maker). In particular, such kind of methods use ex-

pected values given by the decision maker that represent the expectation of the de-

Cinvestav Computer Science Department

32 Chapter 2

cision maker. If the reference points are changed several times and each time the

auxiliary scalarization is solved, it is possible to find several parts of the entire Pareto

set. Figure 2.12 presents an example of the reference point methods. In the example

two different reference points are given r1, r2 ∈ Rk. For each reference point, a single

solution of the Pareto front is obtained.

r1

x0

r2

f1

f2

F(PS)

Figure 2.12: Example of the reference method

Achievement Scalarization Function

The Achievement Scalarization Function (ASF) method is intimately related to

the weighted metrics described above. This method was introduced in [Wierzbicki,

1980]. ASF introduces the term aspiration levels in order to find a solution of a

MOP. Here, the aspiration levels refer to a vector defined by the decision maker

that contains certain desired levels for each objective function. An example of the

achievement functions is defined as:

s(f(x)) = max(wi(fi(x)− zi)), (2.56)

where wi is a weight associate with the objectives and z is the vector containing

the aspiration levels.

One important characteristic of ASF method is that it can generate weakly Pareto

solutions. Besides, if there exist a unique solution of the auxiliary function s such

solution is Pareto optimal.

Lara direction method

This method proposed in [López et al., 2010] constructs a descent direction for

MOPs. The idea behind the computation of this direction is related to the concept

Cinvestav Computer Science Department

Background 33

of the descent cones. For example, consider a bi-objective problem and a candidate

solution x0 is ‘far away’ from the PF, at this point the gradient of the two objectives

points almost in the same direction. Using such observation a movement in the

average of the two gradients can be a good alternative in order to move towards the

PF. Figure 2.13 presents the main idea of the method. In the figure, the half space

defined by the normal conformed by the gradient of the objectives conforms almost

a half space of the entire space. Furthermore, it is quite possible that the negative

normalized sum of the gradients lead the search towards the PF.

F(PS)

ν

f1

f2

-Δ
f2

-Δ
f1

Figure 2.13: Main idea of the Lara direction.

The descent direction of this method is defined follows:

ν = −
(
∇f1(x)

‖∇f1(x)‖2

+
∇f2(x)

‖∇f2(x)‖2

)
. (2.57)

Directed Search

The Directed Search (DS) is a method proposed in [Schütze et al., 2010]. Such

method uses a direction d ∈ Rk to compute a direction ν ∈ Rn that steers the search

into the given direction. Figure 2.14 illustrates the general idea of the DS method.

Figure 2.14.a, presents the image of several solutions that perform a movement in

the d-direction. Figure 2.14.b shows the same solutions in parameter space. These

solutions are computed using a set of directions ν ∈ Rn, which are given by the DS

method, to steer the search into direction d ∈ Rk.

Assuming a candidate solution x0 ∈ Rn where its Jacobian has full rank (rank(J(x0)) =

Cinvestav Computer Science Department

34 Chapter 2

f2

f1

x2

x1

d

F(x0)

x0

Figure 2.14: Basic idea of DS.

k), and a vector d ∈ Rk represents a desired search direction in objective space. A

search direction is sought such that for y0 := x0 + t · ν, where t ∈ R+ (t represents

the step size of a line search in direction ν). The direction ν can be found by solving

the set of equations given by:

lim
t↘0

fi(y0)− fi(x0)

t
= 〈∇fi(x0), ν〉 = di, i = 1, . . . , k. (2.58)

Using matrix notation, Equation (2.58) can be reformulated as:

J(x0)ν = d. (2.59)

Equation (2.59) shows that the search direction ν can be calculated by solving a

linear system of equations. Considering that typically the number of parameters is

(much) higher than the number of objectives for a given MOP, i.e., n� k, the system

of Equation (2.59) is (probably highly) underdetermined. This fact implies that its

solution is not unique.

Since Equation (2.59) has an infinite number of solutions, we suggest to take the

most greedy solution that is given by the following system:

ν+ := J(x0)+d, (2.60)

where J(x0)+ ∈ Rn×k denotes the pseudo inverse of J(x0). Notice that if the rank of

Cinvestav Computer Science Department

Background 35

the Jacobian is maximal the pseudo inverse is given by:

J+ = JT (JJT)−1. (2.61)

The solution ν+ obtained by Equation (2.60), is the one that satisfies Equation

(2.59) with the smallest Euclidean norm.

Evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) work in principle as the EAs for

the treatement of SOPs. The main difference between them is the selection pro-

cess. In general, the selection process in a MOEA uses Pareto dominance, or other

methods that uses a variation of this dominance (see [Deb, 2001], [Coello et al., 2007]).

Also, in recent years, the indicator-based selection techniques have become fash-

ionable. These techniques use an indicator that measures the quality of the entire

approximation of the Pareto front. Using this indicator, the comparison between two

individuals in the population is made by using an auxiliary scalar value, (see e.g.,

[Beume et al., 2007], [Schütze et al., 2016a], [Trautmann et al., 2013], [Gómez and

Coello, 2013], [Rudolph et al., 2016], [Zitzler and Künzli, 2004]).

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II is an algorithm proposed in [Deb et al., 2002a]. It presents two novel

ideas to improve the quality of the final solution set.

The non-dominated sort is the first mechanism used in the NSGA-II algorithm. It

sorts individuals according to Pareto dominance. A rank value is created according to

the number of individuals that dominates each solution, the non-dominated solutions

receive a rank equals to one, and the others obtain a rank value according to how

many subsets dominate them.

To preserve a good spreading of the final solution the NSGA-II uses a mecha-

nism called crowding distance. This distance measure the average size of the cuboid

formed with the points that enclose a solution i in the population. Algorithm 5

presents the pseudocode to compute the crowding distance of a population. In the

algorithm Pi → fx represents the fitness value of the i-th individual in the population.

Cinvestav Computer Science Department

36 Chapter 2

Algorithm 5 Pseudocode of the crowding distance for NSGA-II

Require: current population Pi
Ensure: vector of distance I

1: l := |Pi|
2: for i = 1, . . . , l do
3: Set Ii := 0
4: end for
5: for i = 1, . . . , k do
6: Sort the individuals according to the k-objective
7: I1 :=∞
8: Il :=∞
9: for j = 2, . . . , (l − 1) do

10: fx1 = P [j + 1]→ fx

11: fx2 = P [j − 1]→ fx

12: Ij = Ij + (fx1
i − fx2

i)
13: end for
14: end for

The main idea behind the NSGA-II is to use a selection that preserves the individ-

uals with the lowest rank value. When almost all the solutions exist in the first rank,

the algorithm selects the solutions with the highest value of the crowding distance.

Algorithm 6 provides the full pseudocode of NSGA-II.

IG-NSGA-II

The IG-NSGA-II proposed in [Liu et al., 2016b] is a memetic algorithm based on

the NSGA-II. The IG-NSGA-II uses a local search strategy based on [López et al.,

2010] (see Section 2.2.2) to improve its base evolutionary algorithm. Such direction

is constructed based on gradient information.

Next to the local search strategy, the IG-NSGA-II implements mechanisms based

on chaotic maps created to give a better distribution to the final solution set. The

first mechanism proposes to use the chaotic map to give a better distribution to the

initial population. The second mechanism proposed in this work computes a solu-

tion based on a chaotic map. The main purpose of the chaotic solution is to explore

other regions of the given problem. An indicator sd that measures the distribution of

the population is used to trigger the algorithm. When such an indicator is reduced

below a certain threshold, then the operator is applied. Algorithm 7 presents the

pseudocode of IG-NSGA-II.

Cinvestav Computer Science Department

Background 37

Algorithm 6 Pseudocode of the NSGA-II

Require: number of generations G, number of individuals N
Ensure: final population PG

1: Randomly generate the population P0

2: Calculates F (P0)
3: Apply genetic operators in P0 to generate Q0

4: i = 0
5: while i < G do
6: Set Ri = Pi ∪Qi

7: Calculate the rank value of Ri

8: Calculate the crowding distance of Ri

9: Select the N individuals with the lowest rank and highest crowding distance
(Pi).

10: Apply genetic operators in Pi to generate Qi

11: Set i = i+ 1
12: end while

Algorithm 7 Pseudocode of the IG-NSGA-II

Require: number of generations G, number of individuals N , frequency of local
search kl, threshold for chaotic operator εd

Ensure: final population PG
1: Randomly generate the population P0 using chaotic initialization
2: Calculates F (P0)
3: Apply genetic operators in P0 to generate Q0

4: i = 0
5: while i < G do
6: Set Ri = Pi ∪Qi

7: Calculate the rank value of Ri

8: Calculate the crowding distance of Ri

9: Select the N individuals with the lowest rank and higest crowding distance
(Pi).

10: Apply genetic operators in Pi to generate Qi

11: if mod(i, kl) == 0 then
12: Apply local search on Qi

13: end if
14: Calculate sd
15: if sd < εd then
16: Apply chaotic operator on Qi

17: end if
18: Set i = i+ 1
19: end while

Cinvestav Computer Science Department

38 Chapter 2

MOEA/D

MOEA/D is a stochastic method introduced in [Zhang and Li, 2006], which is

presented as an alternative to solve MOPs through the decomposition of the original

problem into N subproblems. The algorithm solves the N subproblems at the same

time by evolving a population of solutions. MOEA/D solves each subproblem only

using the information allocated in its neighborhood. The pseudocode of MOEA/D is

given in Algorithm 8.

The decomposition of the problem can be performed using three different methods:

the Tchebycheff decomposition, the PBI method and the weighted sum method.

Algorithm 8 Pseudocode of MOEA/D

Require: Function vector F , number of subproblems N , N weight vector λ1, · · · , λN ,
size of the neighborhood T

Ensure: Final population EP
1: Set EP = ∅
2: Find the T closest weight vectors of each vector.
3: Set B(i) = i1, · · · , iT , with the T closest vectors to λi.
4: Generate a N random vectors x1, · · · , xN .
5: Set FV i = F (xi).
6: Initialize z∗

7: while Stopping criteria is not met do
8: for i = 1, · · · , N do
9: Select xk, xl from B(i)

10: Generate y using genetic operators on xk and xl.
11: Apply an improvement to y and generate y′.
12: Update z∗

13: Update of Neighboring Solutions
14: Remove from EP the vectors dominated by F (y′).
15: Add y′ to EP .
16: end for
17: end while

Generalized Differential Evolution

This algorithms was proposed in [Kukkonen and Lampinen, 2006]. The main

idea behind this work is propose certain modifications to the method proposed in

[Storn and Price, 1997a]. In particular, it extends the selection mechanism such that

solutions with multiple objective can be compared. In order to work with constrained

optimization problems a modification to the original DE algorithms was proposed.

The proposed selection scheme takes into consideration the constraint values to decide

Cinvestav Computer Science Department

Background 39

which solutions survive. Let’s consider an individual xGi and its offspring uGi created

by the DE operators. It is assumed that for these two individuals the values for

the function F (x) and the value for its p constraints g(x) are given. Taking into

consideration such information, the surviving solution xG+1
i is given by:

xG+1
i =



uGi if ∃k ∈ {1, . . . , p} : gk(u
G
i) > 0 and ∀k ∈ {1, . . . , p} : gk(u

G
i) ≤ gk(x

G
i)

uGi if ∀k ∈ {1, . . . , p} : gk(u
G
i) ≤ 0 and ∃k ∈ {1, . . . , p} : gk(x

G
i) > 0

uGi if ∀k ∈ {1, . . . , p} : gk(u
G
i) ≤ 0 and ∀k ∈ {1, . . . , p} : gk(x

G
i) ≤ 0

and ∀k ∈{1, . . . , k} : fk(u
G
i) ≤ fk(x

G
i)

xGi otherwise

(2.62)

Cinvestav Computer Science Department

40 Chapter 2

Cinvestav Computer Science Department

Chapter 3

The Discrete Directed Search

Method

The Directed Search (DS) method [Lara et al., 2013], [Schütze et al., 2016b] steers

a candidate solution using a given vector d ∈ Rk in objective space. Unfortunately,

one drawback of this method is that it requires explicit gradient information. Such

requirement imposes a restriction for the method that can make it not eligible for

problems where gradient information is not at hand. One possible solution for this

problem is to use one of the several methods that exist in the state-of-the-art to ap-

proximate the gradient information. Unfortunately, in some cases such methods are

‘very expensive’ in terms of function calls.

In this section we propose the Discrete Directed Search (DDS) method. Such

method uses neighboring information to approximate the missing gradient informa-

tion. Besides, to illustrate its advantages we construct a multi-objective memetic

algorithm based on it. In particular, we propose a memetic based on the well-known

MOEA/D algorithm.

3.1 Main Idea

The DDS method is an extension for the original DS method. The main idea behind

the DDS method is to use the neighboring information to compute a direction ν ∈ Rn.

Such direction steers the search following a given direction d ∈ Rk in objective space.

The great advantage of the DDS is that its mechanism does not require that the

41

42 Chapter 3

gradient is explicitly given.

Figure 3.1 presents an example of the information that the DDS algorithm can

use. In particular, this figure presents several points in the neighborhood of a given

candidate solution x0 ∈ R2. The points are labeled as xi, i = 1, · · · , r. Besides

the xi points, it is possible to compute other information based on the neighboring

information. Using the information of the xi solutions it is possible to compute

the search directions νi, i = 1, . . . , r, which has as its starting point the candidate

solution x0. Consider that the function values F (xi), i = 1, . . . , r are given. Using

such information we can approximate the directional derivatives given as follows:

〈∇fi(x0), νj〉 =
fi(xj)− fi(x0)

‖xj − x0‖2

+O
(
‖xj − x0‖2

)
. (3.1)

x2

x1

x0
ν1

ν2

N(x0)

Figure 3.1: Example of neighborhood in a population-based algorithm.

Given an initial solution x0 ∈ Rn and r search directions νi ∈ Rn, i = 1, · · · , r, we

define the matrix F(x0) ∈ Rr×n as follows:

F(x0) = (〈∇fi(x0), νj〉)
i = 1, · · · , k
j = 1, · · · , r

, (3.2)

where each entry mij of the matrix F is defined by the directional derivative in

direction νj. Using the information described above we are in position to establish

the following proposition:

Proposition 1. Given νi ∈ Rn, i = 1, · · · , r, λ ∈ Rr and ν =
r∑
i=1

λiνi. Then it holds

Cinvestav Computer Science Department

The Discrete Directed Search Method 43

that:

J(x0)ν = F(x0)λ. (3.3)

Proof. The product of F(x0)λ is defined as follows:

F(x0)λ =


〈∇f1(x0), ν1〉 · · · 〈∇f1(x0), νr〉

...
...

...

〈∇fk(x0), ν1〉 · · · 〈∇fk(x0), νr〉




λ1

...

λr

. (3.4)

Meanwhile, the product J(x0)ν is defined as:

J(x0)ν = J(x0)

(
r∑
i=1

λiνi

)

=
r∑
i=1

λi

 ∇f1(x0)T

...

∇fk(x0)T

 νi

. (3.5)

Hence for the l-th component of both products it holds:

(F(x0)λ)I =
r∑
i=1

λi 〈∇fi(x0), νi〉 = (J(x0)ν)l , (3.6)

and the desired identity follows.

Using Equation (3.2), we can reformulate the linear system proposed in Equation

(2.59) as follows:

F(x0)λ = d. (3.7)

Now, if we obtain a solution λ obtained from Equation (3.7) we can compute a

direction ν as follows:

ν =
r∑
i=1

λiνi. (3.8)

The next step in our formulation is to demonstrate that Equation (3.7) has a

solution. Consider the following identity:

F(x0) = J(x0)V, (3.9)

Cinvestav Computer Science Department

44 Chapter 3

where V = (ν1, . . . , νr) ∈ Rn×r represents the matrix where each row is given by

a search direction νi.

Consider that the solution ν+ of Equation (2.59) has been computed. If one

proceeds the search in direction d in the same manner, this is identical to the numerical

solution of the following initial value problem:

x(0) = x0 ∈ Rn (3.10a)

ẋ(t) = ν+ (x(t)), t > 0 (3.10b)

.

If d is a ‘descent direction’ a numerical solution of Equation (3.10) can be viewed

as a particular hillclimber for MOPs. Hence, the endpoint x∗ of the solution curve of

Equation (3.10) does not necessarily have to be a Pareto point, but it is a boundary

point in objective space, i.e., F (x∗) ∈ ∂F (Rn) which means that the gradients of the

objectives in x are linear independent (and hence, that rank(J(x)) < k).

Now, consider that the candidate solution x0 is not a boundary point. Using such

assumption we say that J(x0) has full rank. Furthermore, using some principles from

linear algebra we are in position to propose that:

rank(J(x0)) = k ⇒ rank(F(x0)) = rank(V). (3.11)

Now, consider a case when x0 is an optimal point. In this case, we know that the

rank of the Jacobian matrix is not full, i.e., rank(J(x)) < k. Furthermore, using the

rank theorem of matrix multiplication we could state that rank(F(x)) < k regardless

of the choice of V .

The formulations described above indicate that it is possible that the rank of the

matrix F gives us a stopping criteria for the method. Numerically, if the candidate

solution x0 gets closer to its optimal value, the condition number κ2(F(x0)) will in-

crease. Thus, we can stop the algorithm when the condition number is above a given

threshold.

Due to the formulation, it make sense to choose the search directions orthogonal

to each other. This is motivated by the fact that κ2(JV) ≤ κ2(J(x)). Here, if

Cinvestav Computer Science Department

The Discrete Directed Search Method 45

we consider that r = n and the search directions are orthogonal to each other, a

straightforward calculation shows that:

V orthogonal⇒ κ2(F (x)) = κ2(J(x)). (3.12)

In that case, the condition number κ2(F (x)) can indeed be used as a stopping

criteria.

Now we present the formulation to compute a gradient-free realization. For the

computation of the missing information, i.e., the matrix F and the search vectors νi,

we use information in the neighborhood. Having the candidate solution x0 and its

x1, . . . , xr neighboring points, we can define the search directions νi, i = 1, . . . , r, as

follows:

ν̃i =
xi − x0

‖xi − x0‖2

, i = 1, · · · , r (3.13)

Analogously, we can approximate each entry of the matrix F(x) using the approx-

imation of the directional derivatives of Equation (3.2) :

mij = 〈∇fi(x0), νj〉 , i = 1, · · · , k, j = 1, · · · , r. (3.14)

One important thing to mention is that Equation (3.2) shows that the error de-

pends only on the Euclidean distance between the neighbors. Hence, if we assume

that the size of the neighborhood decreases, the error is not significant.

3.1.1 Influence of the value of r

As described above, the number of neighbors used to construct direction ν directly

affects the performance of the algorithm. For example, if a low value for r is used

the approximation could lead to a poor performance when a ν direction is computed.

From the formulation, it is shown that for an r > k the system of Equation (3.7) can

find a descent direction.

The ν direction is constructed is that such a way that it only exists in the subspace

formed by span{ν1, . . . , νr}. Consider the case where the νi directions are orthogonal.

If such kind of directions are used to construct the subspace, one could expect that

the span of the νi directions tends to the Rn space.

Cinvestav Computer Science Department

46 Chapter 3

To illustrate the above idea it is possible to rewrite the solution of (3.7) as follows:

ν(+)
r = V (J(x)V)+d. (3.15)

As the value of r increases the solution presented on Equation (3.15) becomes

closer to the solution of the original DS method ν+. To accomplish such proposition,

it becomes necessary that r = n and the νi search directions are chosen orthogonal

to each other. One way to demonstrate such statement is as follows:

Let v1, · · · , vn be an orthogonal basis of the Rn, where v1, · · · , vr are identical to

the column vectors of V . Further, let’s define a vector x ∈ Rn. Since {v1, · · · , vr} are

a basis of Rn, there exist scalars µ1, · · · , µn ∈ R such that x =
∑n

i=1 µivi. Then:

V V T =
r∑
i=1

viv
T
i

(
n∑
j=1

µivi

)

=
r∑
i=1

n∑
j=1

µj 〈vi, vj〉 =
r∑
i=1

µivi

. (3.16)

Here it holds that:

∥∥V V Tx− Ix
∥∥ =

∥∥∥∥∥
n∑

i=r+1

µivi

∥∥∥∥∥ . (3.17)

From Equation (3.17) it becomes clear that when r → n the value of the norm

decreases. In particular when r = n it holds that:

ν(+)
r = V F(x)+d = V V TJ(x)T

(
J(x)V V T

)−1
d

= J(x)T
(
J(x)J(x)T

)−1
d = J(x)+d = ν+

. (3.18)

Now we present an example of the formulations described above. Consider the

bi-objective problem described in [Schütze et al., 2011]:

F : R2 → R2

fi(x) = ‖x− ai‖2
2, i = 1, 2,

(3.19)

Cinvestav Computer Science Department

The Discrete Directed Search Method 47

where a1 = (1, . . . , 1)T , a2 = (−1, . . . ,−1)T ∈ Rn.

The Pareto set of Equation (3.19) is given by the line segment between a1 and a2

that is defined as follows:

PS = {x ∈ Rn : xi = 2α− 1, i = 1, . . . , k, α ∈ [0, 1]}. (3.20)

Besides, we consider that the value of r = 2 is given and the search directions are

defined by the canonical vectors ν1 := ei and ν2 := ej. Using these considerations we

can write the matrix F as follows:

F(x) =

(
x1 − 1 x2 − 1

x1 + 1 x2 + 1

)
. (3.21)

Now we try to find the set where the matrix F has not a unique solution, i.e.

matrix F has no full rank. In other words, we try to find the points where det(F) = 0.

The determinant of (3.21) is given by:

det(F) = 2(x1 − x2). (3.22)

We know that the system does not posses a solution when det(F) = 0. Such

condition is accomplished when x1 = x2. Let’s define the set B that contains such

points:

B := {x ∈ Rn : xi = xj}. (3.23)

Now, let’s consider a set that does not contain a boundary point in Rn. On this

set of points, the probability is one that for a randomly chosen point x ∈ Rn the

matrix F(x) has full rank. Furthermore, Equation (3.2) has a unique solution. To be

more precise, it is ν = λ1e1 + λ2e2, where

λ = F−1(x)d =
1

det(F(x))

(
x2 + 1 −x2 + 1

−x1 − 1 x2 − 1

)(
d1

d2

)

=
1

2(x1 − x2)

(
x2(d1 − d2) + d1 + d2

x1(d2 − d1)− d1 − d2

)
.

(3.24)

The above considerations show that already for r = k search directions νi, i =

Cinvestav Computer Science Department

48 Chapter 3

1, . . . , r, one can find a descent direction ν̃ by solving Equation (3.2).

Next, we perform a discussion on the relation between ν
(r)
+ and ν+ for non-

boundary points x. In particular, we consider that the search directions νi’s are

orthonormal: it is

ν+ = J+(x)d = J(x)T (J(x)J(x)T)−1d (3.25)

and

λ = F(x)+d = V TJ(x)T (J(x)V V TJ(x)T)−1d

= V TJ(x)T (J(x)J(x)T)−1d = V Tν+

(3.26)

and hence

ν
(r)
+ =

r∑
i=1

λiνi =
r∑
i=1

〈νi, ν+〉νi (3.27)

For instance, when choosing νi = eji , Equation (3.27) gets simplified:

ν
(r)
+ =

r∑
i=1

ν+,jieji , (3.28)

i.e., ν
(r)
+ has only r entries which are identical to the corresponding entries of ν+.

In both cases ν
(r)
+ gets closer to ν+ increasing and for r = n it is ν

(r)
+ = ν+.

Finally, we propose an experiment to show the influence of r into the DDS method.

Let’s consider the problem described in Equation (3.19). In this experiment we use

the value of n = 10. Using the following starting point:

x0 =


1

−1
...

1

−1

 ∈ R10. (3.29)

Cinvestav Computer Science Department

The Discrete Directed Search Method 49

Besides the Jacobian matrix of the candidate solution x0 is given by

J(x0) =

(
0 −4 . . . 0 −4

4 0 . . . 4 0

)
∈ R2×10 (3.30)

If we consider that the search directions are given by the canonical vectors, i.e.,

ν1 = e1, . . . , νr = er. Our experiment uses different values of r ∈ {2, 4, 6, 8, 10} and

compares the results. In this experiment a direction d = 1
2√2

(−1,−1)T and a step

size t0 are considered. Figure 3.2 shows the results obtained on this experiment.

From the figure one can observe that, as expected, when the value of r increases, the

new candidate solution presents a better improvement. In particular, when r = 10,

the new image of the candidate solution reaches the solution obtained via the DS

algorithm.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

f1

f 2

Pareto Front
DS
r=2
r=4
r=6
r=8
r=10

Figure 3.2: Example of the r influence.

3.1.2 Standalone DDS

Using all the formulations above we are in position to define the standalone algorithm

for the DDS method. Algorithm 9 presents such realization. The algorithm requires

that a candidate solution x0 along with the xi, i = 1, . . . , r points are given. Besides,

the function values of the given points are also required. That is, F (x0) and F (xi), i =

1, . . . , r, respectively.

Cinvestav Computer Science Department

50 Chapter 3

Algorithm 9 Standalone DDS method

Require: Candidate solution x0, Neighboring points xi, Function value F (x0),
Neighboring function values F (xi)

Ensure: New candidate solution xnew
1: Compute matrix F as in Equation (3.4)
2: Compute ν solving the Equation (3.7)
3: Compute t0 ∈ R+

4: Set xnew = x0 + t0ν
5: return xnew

3.2 Numerical Results

In this section we perform some experiments in order to demonstrate the effectiveness

of the DS method. In particular, a comparison between the standalone MOEA/D al-

gorithm [Zhang and Li, 2006] and two different memetic algorithm is performed. The

first memetic algorithm uses the DS as its local search procedure. Next, a second

memetic coupled with the DDS method is used.

3.2.1 Memetic MOEA/D

As mentioned above, MOEA/D uses a decomposition approach to convert a MOP

into a certain number of scalar optimization subproblems. For each scalar subprob-

lem it uses a weight vector λi. In particular, such weights can be used as a steering

direction for the DDS algorithm. Algorithm 10 describes the coupling of DDS (or

DS) and MOEA/D. In particular, we use the code described in [Zhang et al., 2009a].

The notation regarding MOEA/D procedures and parameters is taken from [Zhang

and Li, 2006].

We performed a comparison experiment to illustrate the improvement obtained

by the memetic algorithm in comparison with its standalone version. In the first

set of experiments we used the modified version of the ZDT benchmark presented in

[Shukla, 2007]. We use these functions since they are differentiable along their entire

domain. Table 3.1 presents the parameters used by the algorithms.

Cinvestav Computer Science Department

The Discrete Directed Search Method 51

Algorithm 10 Hybrid MOEA/D (MOEA/D/DS and MOEA/D/DDS)

1: Set the weight vectors λi and the neighborhoods B(i) = {i1, . . . , iT} for each
decomposed problem (λi1 , . . . , λiT are the T closest weight vectors to λi).

2: Set up an initial population P0 = {x1, . . . , xN}.
3: Initialize the reference point z, EP = ∅, gen = 1.
4: repeat
5: for i = 1, . . . , N do
6: Select two indices k, l from B(i) and generate, using genetic operators, a new

solution yi from xk and xl.
7: Improving stage: use yi to replace xi and its corresponding xj, j ∈ B(i),

regarding the corresponding scalar problem to λi.
8: Apply the LS procedure to yi. (Algorithm 5)
9: Update the reference point z.

10: Remove from EP all the vectors dominated by yi, and add it to EP if no
vectors in EP dominate yi.

11: end for
12: gen = gen+ 1.
13: until Stopping criteria is satisfied
14:

15: return EP.

Algorithm 11 LS Procedure (gen, i)

1: if Startls ≤ gen then
2: if mod(gen, kls) == 0 and mod(i, hls) == 0 then
3: if Tls has not been reached then
4: Apply, up to Dls times, the LS (DS/DDS) procedure to yi in order to get

y′i
5: Set yi ← y′i.
6: end if
7: end if
8: end if
9:

10: return yi

Cinvestav Computer Science Department

52 Chapter 3

Table 3.1: Parameters for the experiments on MOEA/D with the ZDT test problems.

Parameter Value
Population size 50

Neighborhood size T 10
Crossover probability 0.95
Mutation probability 1/n

Initial step size t0 1
Frequency of generations kls 20

Number of neighbors for (D)DS r 7
Number of steps for the (D)DS Dls 3

In this experiment the local search is applied over all the individuals in the popu-

lation. To avoid that the solution set loses diversity we restrict that local search to be

applied until certain limit of function evaluations. For ZDT1-3 the limit is set as 500

function calls. For ZDT4 the limit is extended to 1, 000 function calls. Furthermore,

in order to obtain good quality neighbors, DDS is only applied after generation 10.

A statistical study was performed to compare the algorithms. For this study we

performed 30 independent runs and measured the average and standard deviation of

the results using state-of-the-art indicators. In particular, two indicators were used

in the experiments: ∆2 [Schütze et al., 2012] and the hypervolume indicator [Zitzler

et al., 2000a]. Table 3.2 presents the statistical results obtained on these series of

experiments. Here, MOEA/D is abbreviated as MD. From these results it is possible

to conclude that the memetic version that uses the DDS method as its local search

engine obtained a better approximation in comparison with the standalone algorithm.

Besides, the memetic algorithm that uses DDS obtained competitive results when it

is compared against the MOEA/D/DS. It is important to mention that the latest re-

sults can be considered to be a great advantage since DDS does not require gradient

information.

A second series of experiments was performed in order to demonstrate the con-

tribution offered by the DDS operator over more complex test problems. In these

experiments we measured the performance of the algorithms using the set of test

problems of the CEC09 competition suite [Zhang et al., 2008]. Such problems are

referred to as UFs. In a similar way that in the ZDT benchmark, the local search is

applied after generation 10 and is not applied anymore until 15, 000 function calls had

been reached. Again, local search is applied over all the individuals in the population.

Cinvestav Computer Science Department

The Discrete Directed Search Method 53

Table 3.2: Results on the ZDT benchmark for MOEA/D/(D)DS at 15, 000 function
calls.

∆2 Hypervolume
Problem MD MD/DDS MD/DS MD MD/DDS MD/DS

ZDT 1 0.52723 0.47869 0.41636 114.6688 115.8445 116.6319
(std.dev) (0.19902) (0.22428) (0.22606) (1.5695) (1.7952) (1.8084)

ZDT 2 0.91824 0.74658 0.66601 110.4825 112.1839 113.0544
(std.dev) (0.42883) (0.4998) (0.49617) (3.2805) (3.9638) (4.0418)

ZDT 3 0.81688 0.77392 0.71203 119.552 120.4113 121.2138
(std.dev) (0.25095) (0.25119) (0.27828) (2.6732) (2.7322) (2.8983)

ZDT 4 7.6429 7.4658 7.5273 40.2909 42.1296 41.5298
(std.dev) (2.813) (2.8661) (2.8202) (30.3759) (30.8694) (30.4259)

Table 3.3 presents the parameters used in the experiments. The stopping criteria for

the algorithms is set as 50,000 function calls.

Table 3.3: Parameters for the experiments on MOEA/D with the ZDT test problems.

Parameter Value
Population size 120

Neighborhood size T 60
Crossover probability 0.95
Mutation probability 1/n

Initial step size t0 1
Frequency of generations kls 10

Number of neighbors for (D)DS r 7
Number of steps for the (D)DS Dls 3

Finally, the most representative results in problems with 2 objectives are pre-

sented in Figure 3.3. Results for three objectives are presented in Figure 3.4. In the

figures it is possible to observe the runs where MOEA/D/DDS presented a significant

improvement with respect to the other algorithms. In case of UF5 and UF10, the

three algorithms were unable to reach the Pareto front.

3.2.2 Discussion of results

The results obtained by MOEA/D/DDS show the effectiveness of the DDS method.

In particular, the experiments show that DDS is able to improves the convergence

Cinvestav Computer Science Department

54 Chapter 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

(a) UF1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

(b) UF2

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

(c) UF3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

(d) UF4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f1

f 2

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

(e) UF5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f1

f 2

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

(f) UF7

Figure 3.3: Pareto fronts obtained in the UF benchmark with 2 objectives.

Cinvestav Computer Science Department

The Discrete Directed Search Method 55

Table 3.4: Results on the CEC 09 benchmark for MOEA/D/(D)DS.

∆2 Hypervolume
Problem MD MD/DDS MD/DS MD MD/DDS MD/DS

UF1 0.0355 0.0167 0.0198 0.9663 0.9789 0.9763
(std.dev.) (0.0015) (0.0008) (0.0005) (0.0018) (0.0013) (0.0011)

UF2 0.0277 0.0280 0.0243 0.9722 0.9731 0.9784
(std.dev.) (0.00178) (0.0025) (0.0015) (0.0020) (0.0022) (0.0015)

UF3 0.0925 0.0668 0.0798 0.9124 0.9170 0.9192
(std.dev.) (0.0034) (0.0024) (0.0023) (0.0055) (0.0034) (0.0033)

UF4 0.0878 0.0822 0.0797 0.9186 0.9261 0.9266
(std.dev.) (0.0006) (0.0004) (0.0077) (0.0008) (0.0006) (0.0095)

UF5 0.8261 1.1005 0.9493 0.7672 0.7047 0.7198
(std.dev.) (0.0166) (0.02086) (0.0197) (0.0050) (0.0047) (0.0053)

UF6 0.2918 0.2417 0.2527 0.8325 0.8537 0.8505
(std.dev.) (0.0158) (0.0115) (0.0140) (0.0073) (0.0060) (0.0064)

UF7 0.0258 0.0148 0.0137 0.9703 0.9844 0.9854
(std.dev.) (0.0035) (0.0005) (0.0005) (0.0041) (0.0063) (0.0066)

UF8 0.2441 0.1230 0.1967 0.9494 0.96642 0.9529
(std.dev.) (0.1326) (0.0674) (0.1349) (0.0185) (0.0086) (0.0181)

UF9 0.3385 0.2652 0.3535 0.9644 0.9760 0.9800
(std.dev.) (0.1004) (0.0877) (0.1337) (0.0198) (0.0228) (0.2072)

UF10 2.5567 2.3465 2.9263 0.0543 0.0807 0.0537
(std.dev.) (0.3437) (0.3277) (0.2498) (0.0390) (0.0666) (0.0343)

rate of the base algorithm. Moreover, such performance is competitive when it is

compare with respect to MOEA/D/DS. Such property, clearly illustrate that the aim

of the DDS algorithm has been accomplished. The ν directions computed by the

DDS method steer the search in a similar direction that the directions computed by

the DS method.

The DDS method obtained better results when it is compared using the proposed

indicators. In particular, it is important to mention that it only presents a significant

loss in UF2. Unfortunately there exist one drawback for the DDS method. The re-

quired number of individuals to compute an approximation depends on the number

of parameters. That is, for any given value of n, DDS requires a number of r ≈ 0.4n

individuals. Such restriction limits the method in terms of its applicability. For ex-

ample, consider a problem with a large number of parameters, i.e., n > 50. For such

problem, we require approximately 20 individuals to compute matrix F . Using such

Cinvestav Computer Science Department

56 Chapter 3

0

0.5

1

1.5

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ff2

f 3

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

f1

(a) UF8

0
1

2
3

4
5

6 0

1

2

3

4

5

0

1

2

3

4

5

6

7

ff1

f 3

Pareto Front
MOEA/D
MOEA/D/DS
MOEA/D/DDS

f2

(b) UF10

Figure 3.4: Pareto fronts obtained in the UF benchmark with 3 objectives.

number of individuals it is quite possible that the numerical stability of the method

is compromised.

A second point to be considered is how to balance the local search and the evo-

lutionary algorithm. The memetic strategy proposed in this section applies the local

search after a fixed number of generations on a fixed number of individuals. This can

be described as an initial approach. Unfortunately, such balancing mechanism can

be inefficient according to the problem on which it is applied. It is desirable that if

we detect that DDS is generating good candidate solutions the probability of being

applied increases. But, if DDS does not improve performance we need to reduce the

budget of the function calls that the local search can spend.

Finally, we require a better correction method for the step size t0. That is, we

need to find a mechanism that corrects the new candidate solution to the descent

cone with the lowest number of function calls. For MOEA/D/DDS, after a new

candidate solution is computed with initial step size t0 = 0.1 we reduce its value such

that t0 = 0.1 t0 until a non dominated solution is found.

Cinvestav Computer Science Department

Chapter 4

The Gradient Subspace

Approximation

Among all the state-of-the-art algorithms, memetic strategies have shown to be ef-

fective techniques to solve optimization problems. Memetic strategies hybridize a

local search strategy with an evolutionary algorithm. In some of the local search pro-

cedures it is quite common to use gradient information. Unfortunately, there exist

optimization problems where the gradient information is not explicitly given. If one

needs to apply a method that uses gradient information, an alternative is to approx-

imate such information. However, in some cases the cost in terms of function calls of

approximation methods can be expensive. An example is the gradient approximation

methods (e.g. see [Nocedal and Wright, 2006]) where the cost is linear and propor-

tional to the dimension n of the decision space. In this case, when the number of

parameters increases, the number of required function calls increases as well.

A possible alternative to avoid gradient dependence is to use direct search meth-

ods. Such methods explore several directions and compute a descent direction using

them (e.g., [Zapotecas-Martnez and Coello, 2016]). Unfortunately, such techniques

in principle also require at least n additional function calls for one local search move.

This also classifies direct search techniques as expensive techniques.

Gradient Subspace Approximation (GSA) is a method that saves the extra func-

tion calls that other local search strategies require. In order to decrease the cost of

the procedure, GSA computes an approximation of the gradient information using

information that is already given. In particular, such information is obtained from

the population of a given evolutionary algorithm. To save function calls the approxi-

57

58 Chapter 4

mation is only computed for the subspace that is implicitly defined by the given data

out of the population.

Another advantage of the GSA method is that both inequality and equality con-

straints can be incorporated directly into its computation. Thus, it gives us the

opportunity to solve also constrained SOPs.

In this chapter we present the realization and application of the GSA method to

solve optimization problems. The first part of the chapter presents the GSA method

in the context of scalar optimization. A second approach extends the method in order

to the context of MOPs.

4.1 Basic Idea

Let’s consider a population-based algorithm. Such algorithm has certain information

that is calculated at each generation (e.g., the function value of each individual). The

main idea behind GSA is to compute a gradient approximation that in principle does

not require additional function calls. But, the information comes out of the popula-

tion.

Given a candidate solution x0 ∈ Rn as well as r neighboring points xi ∈ N(x0),

a set of different search directions can be calculated. Now, lets consider that we can

obtain νi, i = 1, . . . , r, as in Equation (3.13). Using such information, the aim of GSA

is to compute an approximation of the gradient within:

W := span{ν1, . . . , νr}, (4.1)

which is the subspace spanned by given search directions νi, i = 1, . . . , r.

For example lets consider the case presented in Figure 4.1. Starting with the can-

didate solution x0 we can construct the two search direction along with xa and xb.

Now, let’s consider that x∗ represents the optimal value of the problem. From the

figure it is clear that there exist several directions in the subspace between νa and νb.

But the direction ν is the direction with the most decay of the function. The aim of

the GSA is to give a mathematical formulation to compute the descent direction ν.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 59

x1

x2
xa

x*

x2

xb

νa

νbν

Figure 4.1: Example of the GSA subspace

The idea of GSA is to use it coupled along with set-based heuristics. In this

way, it is possible to take advantage on each generation of the information com-

puted by the heuristic procedures. Now, we proceed to give an example to measure

the amount of neighboring information existing inside the current population of the

adopted evolutionary algorithm. Here, we propose to use a population P generated

by the Differential Evolution (DE) algorithm to conduct our experiment. N denotes

the number of individuals in the population. Besides, in our experiment we labeled x0

to the best individual found in population P . As a first step we compute the 2-norm

of ‖xi−x0‖2, xi ∈ P \x0. Given a δ ∈ R, the neighborhood of the solution x0 is given

by:

N(x0) = {xi|xi ∈ P \ x0 and ‖xi − x0‖2 ≤ δ} . (4.2)

Figure 4.2 shows the results of our experiment. We measured the number of

neighboring solutions r = |N(x0)| of the best found individual on each generation

of the algorithm. For this purpose, we take the DE/rand/bin variation. The fig-

ure presents the averaged results over 20 independent runs. The plots present the

averaged number of neighboring solutions obtained on each generation. The experi-

ments present the results using two different state-of-the-art-functions: Rosenbrock’s

[Rosenbrock, 1960] function on the left and Ackley’s [Ackley, 1987] function (both are

multi-modal) on the right. The number of parameters is set to n = 10 and several

values of δ ∈ {0.05, 0.1, 0.2, 0.3, 0.4} have been adopted.

The results of these experiments show that for different optimization functions it

Cinvestav Computer Science Department

60 Chapter 4

0 50 100 150 200 250 300 350 400 450 5000

10

20

30

40

50

60

70

80

90

100

No. of generations

r

δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.3
δ = 0.4

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

No. of generations

r

δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.3
δ = 0.4

Figure 4.2: Results of neighboring experiments for SOPs.

is possible to obtain sufficient neighboring information. As stated above, such infor-

mation is of particular interest when GSA is applied. As we observe, after a certain

number of generations, the number of neighbors reaches more than 20 percent of the

number of individuals. As the number of neighbors increases, the amount of infor-

mation that can be incorporated into GSA also increases.

The idea to approximate the gradient and use it as a descent direction has already

been studied. For example, it is possible to approximate the gradient using the finite

difference (FD) method (e.g., [Nocedal and Wright, 2006]). In comparison, GSA also

uses a technique that approximates the gradient, but GSA accepts in principle sam-

ples in all directions. Thus, GSA is more suited for population-based algorithms since

neighboring individuals are typically not aligned in coordinate directions. Besides,

if we compare both methods, GSA requires in principle, a lower number of function

calls to compute an approximation in comparison with the FD method.

A similar idea can be found in [Brown and Smith, 2005a], where the authors use

a technique to approximate the Jacobian of the objective map of a multi-objective

optimization problem. The authors of [Brown and Smith, 2005a], however, restrict

themselves on the unconstrained case and give no discussion on details such as step

size control and integration into global search heuristics.

The resulting GSA standalone algorithm can be described as a variant of the

Cinvestav Computer Science Department

The Gradient Subspace Approximation 61

pattern search method ([Hooke and Jeeves, 1961]). Both algorithms use information

within the neighborhood. But, the pattern search method samples new points in or-

der to construct a descent direction. Meanwhile, GSA instead of sampling around the

neighborhood computes the search direction based on them. If we compare both al-

gorithms in terms of choosing sampling points we can claim that GSA is more flexible.

The use of pattern search inside a memetic algorithm is not a novel idea. For ex-

ample, in [Zapotecas Mart́ınez and Coello, 2012] it was used in the context of memetic

multi-objective optimization and in [Bao et al., 2013] it was used for the parameter

tuning of support vector machines. In those instances, it could be of interest to ap-

ply GSA as the local searcher engine and analyze the behavior of such algorithm in

comparison with the pattern search technique.

In Figure 4.1 we present the main idea behind the GSA method. There, the νi

search directions are plotted. But, it is important to mention that there exists more

information that can be subtracted from the population P , e.g., the function value

for the individuals.

4.2 GSA for Unconstrained SOPs

From now on we will proceed with the mathematical formulations to compute the

approximation through the GSA method. Assume that a SOP as the one presented

in Equation (2.5) is given. Besides, let’s consider that we are solving an unconstrained

problem, i.e., the number of equality and inequality constraints are equal to zero. For

the given SOP, the most greedy search direction at a point x0 ∈ Rn is given by:

g(x0) := − ∇f(x0)

‖∇f(x0)‖2

∈ Rn. (4.3)

g(x0) can be expressed as the solution of the following SOP:

min
ν∈Rn

〈∇f(x0), ν〉

s.t. ‖ν‖2
2 = 1

. (4.4)

Furthermore, we consider that we are given search directions ν1, . . . , νr ∈ Rn,

Cinvestav Computer Science Department

62 Chapter 4

r ≤ n. Define a matrix V as follows:

V = (ν1, . . . , νr) ∈ Rn×r, (4.5)

where each column of matrix V represents one of the search directions. Until now,

we claimed that it is possible to construct a descent direction ν in the subspace

constructed using the search directions. That is, there exists a vector λ ∈ Rr such

that:

ν =
r∑
i=1

λiνi = V λ. (4.6)

If we incorporate the information presented in Equation (4.6) into the system

of Equation (4.4), the most greedy search direction ν ∈ span{ν1, . . . , νr}, can be

computed by solving the following problem:

min
λ∈Rr

(
〈∇f(x0),

r∑
i=1

λiνi〉

)
=

(
r∑
i=1

λi〈∇f(x0), νi〉

)

s.t.

∥∥∥∥∥
r∑
i=1

λiνi

∥∥∥∥∥
2

2

− 1 = λTV TV λ− 1 = 0.

(4.7)

Consider that λ∗ ∈ Rr is a solution of (4.7), then we set

ν∗ :=
r∑
i=1

λ∗i νi = V λ∗ (4.8)

as its associated search direction.

The next step to compute the approximation of the GSA is to find the solution

of Equation (4.7). First, let’s define the KKT system of (4.7) as follows:

∇λL(λ, µ) =

 〈∇f(x0), ν1〉
...

〈∇f(x0), νr〉

+ 2µV TV λ = 0 (4.9)

h(λ) = λTV TV λ− 1 = 0. (4.10)

Since Equation (4.10) is considered only for normalization, if we remove it, the

Cinvestav Computer Science Department

The Gradient Subspace Approximation 63

system can be redefined as the following normal equation system:

V TV λ = −V T∇f(x0). (4.11)

Proposition 2. Let ν1, . . . , νr ∈ Rn, r ≤ n, be linearly independent and

λ̃∗ := −(V TV)−1V T∇f(x0). (4.12)

Then

λ∗ :=
λ̃∗

‖V λ∗‖2
2

(4.13)

is the unique solution of (4.7), and thus,

ν∗ =
−1

‖V λ∗‖2
2

V (V TV)−1V T∇f(x0) (4.14)

is the most greedy search direction in span{νi, . . . , νr}.

Proof. Follows by the above discussion. We set 2µ = ‖V λ∗‖2
2. Next, we apply

Equations (4.12) and (4.13) onto the Lagrangian of Equation (4.10):

∇λL(λ∗,
‖V λ∗‖2

2

2
) = V T∇f(x0) + ‖V λ∗‖2

2V
TV

(
−(V TV)−1V T∇f(x0)

‖V λ∗‖2
2

)
= 0. (4.15)

Performing the mathematical operations in Equation (4.15):

∇λL(λ∗,
‖V λ∗‖2

2

2
) = V T∇f(x0)− V T∇f(x0) = 0. (4.16)

Equation (4.16) states that the solution λ∗ is indeed a solution of Equation (4.7).

To determine if λ∗ is a minimum we proceed to compute the Hessian matrix. Such a

matrix is given by:

∇2
λλL(λ, µ) = V TV. (4.17)

From Equation (4.17) it is clear that for any value of λ the Hessian matrix is

always positive definite. Using both statements (from Equations (4.16) and (4.17))

we found that our proposition is correct.

It is important to mention that the solution of the system of Equation (4.7)

Cinvestav Computer Science Department

64 Chapter 4

presents several properties that have to be analyzed. Such properties can be enumer-

ated as follows:

• Let’s define a function fα(λ) such that:

fα(λ) :=
r∑
i=1

λi〈∇f(x0), νi〉. (4.18)

If λ∗ is a solution of (4.7) then fα(λ∗) ≤ 0.

To see this, λ̃ := −λ∗ is also feasible and it holds f(λ̃) = −f(λ∗) < 0.

Thus, if there exists a direction νi, i ∈ {1, . . . , r}, such that 〈∇f(x0), νi〉 6= 0,

then f(λ∗) < 0, and hence, the related direction ν∗ is a descent direction.

Further, note that for a randomly chosen direction νi ∈ Rn the probability that

〈∇f(x0), νi〉 = 0 is zero. Hence, the probability is one to obtain a descent

direction via (4.7) using randomly chosen directions.

• If more search directions are incorporated into the system of Equation (4.7)

the resulting search direction becomes better, i.e., a more greedy direction is

computed. To be more precise, let λ∗r be the solution of (4.7) using the direc-

tions ν1, . . . , νr, and λ∗r+l be the solution of (4.7) where the search directions

ν1, . . . , νr, νr+1, . . . , νr+l are used, then f(λ∗r+l) ≤ f(λ∗r). For r = n and if the

νi’s are linearly independent, then ν∗ coincides with g.

• Since we are solving a normal system of equations, the numerics of the problem

needs to be analyzed. In particular, let’s analyze the condition number of

Equation (4.11). In order to find a solution of such system it is necessary that the

condition number of V TV does not increase. In Equation (4.11), if the rank of

V is maximal it holds that κ2(V TV) = κ(V)2. That is, if the rank of the matrix

V starts to increase and the system will become numerically unstable. In order

to avoid such instability, a process to check the search directions incorporated

into V has to be considered. Hence, when choosing the νi search directions, the

condition number of V must be computed. In particular, directions that point

nearly in the same direction have to be avoided.

• As a result of the previous observation, the orthogonal directions are preferred

for the construction of matrix V . In that case, we obtain

ν∗ =
−1

‖λ∗‖2
2

V V T∇f(x0), (4.19)

Cinvestav Computer Science Department

The Gradient Subspace Approximation 65

i.e., the orthogonal projection of ∇f(x0) onto span{ν1, . . . , νr}. Hence, ν∗ can

be seen as the best approximation of the most greedy search direction g in the

subspace span{ν1, . . . , νr}.

As we claimed above we use the information given by a population within an evo-

lutionary algorithm to compute the missing information. The first piece of missing

information are the search directions computed. Hence, we can obtain such informa-

tion using Equation (3.13).

Having xi, i = 1, . . . , r solutions in the neighborhood N(x0), first we need to define

a matrix Ṽ ∈ Rr×n as:

Ṽ = (ν̃i, . . . , ν̃r), (4.20)

where each column vector of matrix Ṽ can be obtained by Equation (3.13).

The second piece of information that can be obtained is an approximation of the

directional derivatives. Assume that beside the xi points, we also have their function

value f(xi). Then, it is possible to approximate the directional derivatives for each

of the search directions as follows:

〈∇fi(x0), νj〉 =
f(xi)− f(x0)

‖xi − x0‖2

+O(‖xi − x0‖), i = 1, · · · , r. (4.21)

Performing the proper substitution onto (4.7), we start our computations by solv-

ing:

min
λ∈Rr

(
r∑
i=1

λi〈∇f(x0), νi〉

)
s.t. λT Ṽ T Ṽ λ− 1 = 0

. (4.22)

Now, in order to remove the gradient dependency we define a vector d̃ ∈ Rr as

follows:

da =

 〈∇f(x0), ν1〉
...

〈∇f(x0), νr〉

 . (4.23)

Cinvestav Computer Science Department

66 Chapter 4

Instead of using the exact gradient information to compute the vector da, we use

the approximation of Equation (4.21). Hence, we can perform our computation using

a vector d̃ ≈ da. Substituting the vector d̃ in Equation (4.22) the SOP can be modified

as follows:

min
λ∈Rr

λ̃T d̃

s.t. λ̃T Ṽ T Ṽ λ̃− 1 = 0
. (4.24)

Following a similar procedure as the one used to obtain λ̃∗, we found that the

solution of Equation (4.24) is given by:

Ṽ T Ṽ λ̃ = −d̃. (4.25)

If λ̂∗ is a solution of Equation (4.25), the most greedy search direction can be

approximated as follows:

ν̃∗ =
−1

‖Ṽ λ̂∗‖2
2

Ṽ (Ṽ T Ṽ)−1d̃. (4.26)

A particular solution that can be obtained solving Equation (4.25) occurs when

coordinate directions are chosen, i.e.,

xi = x0 + tieji , i = 1, . . . , r, (4.27)

where ej denotes the j-th unit vector, we compute for the ji-th entry of ν̃∗ (without

normalization)

ν̃∗ji =
f(x0 + tieji)− f(x0)

|ti|
. (4.28)

That is, for xi = x0 + tiei, i = 1, . . . , n, the search direction coincides with the result

of the forward difference method.

4.3 GSA for Constrained SOPs

As mentioned before, the incorporation of constraints into the formulation of the GSA

is a straight-forward procedure. In the following section we present the mechanisms

to incorporate constraints into the realization of the GSA method.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 67

4.3.1 Equality constraints

Let’s start by taking a SOP with only equality constraints. That is, consider the

SOP of Equation (2.5) and set m = 0. Performing such reformulation, the SOP to

be solved is defined as follows:

min
x∈Rn

f(x)

s.t. hi(x) = 0, i = 1, . . . , p
. (4.29)

In order to apply the GSA method we consider that each constraint hi : Rn → R

is differentiable. In the unconstrained GSA formulation we were only concerned with

finding the most greedy direction. But in this case, now we are also concerned on

how the equality constraints are involved into the GSA formulation. Consider that

we try to find a direction that presents the maximal decay of f , we transform the

Problem (4.29) as follows:

min
ν∈Rn

〈∇f(x0), ν〉

s.t. ‖ν‖2
2 = 1

〈∇hi(x), ν〉 = 0, i = 1, . . . , p.

(4.30)

Furthermore, it is important to consider that we are looking for a descent direction

that exists in the subspace created by the search directions νi, i = 1, . . . , r. To

perform such modification we proceed in a similar way that for the unconstrained

case. That is, we introduce a vector λ ∈ Rr used to combine the νi search directions.

Applying the λ vector into Equation (4.30) the SOPs can be rewritten as follows:

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λTV TV λ− 1 = 0
r∑
i=1

λi〈∇hj(x0), νi〉 = 0, j = 1, . . . , p

(4.31)

Now that we define the SOP for equality constrained problems we proceed to

Cinvestav Computer Science Department

68 Chapter 4

compute its solution. First, we define a matrix H ∈ Rp×n as:

H :=

 ∇h1(x0)T

...

∇hp(x0)T

 . (4.32)

Using the KKT system of Equation (4.31) reads as:

V T∇f(x0) + 2µ0V
TV λ+ (HV)Tµ = 0 (4.33)

HV λ = 0 (4.34)

λTV TV λ− 1 = 0. (4.35)

Once again we can apply the same ‘normalization trick’ as for (4.11). Hence,

removing the normalization term we can transform the Equation (4.35) into: V TV HTV T

HV 0

 λ

µ

 =

 −V T∇f(x0)

0

 (4.36)

Proposition 3. Let ν1, . . . , νr ∈ Rn be linearly independent where p ≤ r ≤ n, let

rank(H) = p, and λ̃∗

µ̃∗

 =

 V TV HTV T

HV 0

−1 −V T∇f(x0)

0

 , (4.37)

then

λ∗ :=
λ̃∗

‖V λ∗‖2
2

(4.38)

is the unique solution of (4.31), and thus

ν∗ =
−1

‖V λ∗‖2
2

V (V TV)−1V T∇f(x0) (4.39)

is the most greedy search direction in span{νi, . . . , νr}.

Proof. To show that the matrix in (4.37) is regular, let y ∈ Rr and z ∈ Rp such that V TV HTV T

HV 0

 y

z

 = 0 (4.40)

Cinvestav Computer Science Department

The Gradient Subspace Approximation 69

It follows that HV y = 0 and hence that

0 =

 y

z

T  V TV HTV T

HV 0

 y

z

 = yV TV y (4.41)

Thus, it is y = 0 since V TV is positive definite. Further, by (4.40) it follows that

V THT z = 0. Since V T ∈ Rn×r has rank r ≥ p, it follows that V THT has rank p.

This implies that also z = 0, and thus, that the matrix in (4.37) is regular.

Now that it has been demonstrated that λ∗ is a solution of Equation (4.37) the

next step is to demonstrate that such value is a minimum. First, we can compute the

Hessian of the Lagrangian as follows:

∇2
λλL(λ, µ) = 2µ0V

TV. (4.42)

If we substitute the value of µ0 with ‖
∑r

i=1 λ̃
∗
i νi‖2

2 the equation of the Hessian is

transformed into:

∇2
λλL(λ, µ) = V TV, (4.43)

where for any value of λ, the matrix is positive definite (which implies that the solution

is always a minimum).

Again, our computations assumed that certain pieces of information were given at

the start of the process. Using Equations (4.21) and (3.13) we can approximate some

of the missing information, i.e., the directional derivatives and the search directions,

respectively. But such information is not enough to completely remove the gradient

information requirement. Here, the approximation of the directional derivatives of

the equality constraints is also required. To perform such approximation, assume

that x0, the points x1, . . . , xr along with their respective constraint values: h(x0) and

h(x1), . . . , h(xr) are given. In principle such information is taken from the population-

based algorithm. Analogously to Equation (4.21) we can compute an approximation

for each directional derivative 〈∇hj(x0), νi〉, i = 1, . . . , r, j = 1, . . . , p as follows:

〈∇hj(x0), νi〉 ≈ mji =
hj(xi)− hj(x0)

‖xi − x0‖2

. (4.44)

If we remember that the system proposed in Equation (4.37) uses derivative in-

Cinvestav Computer Science Department

70 Chapter 4

formation (the matrix HV is defined using the gradients), such matrix can be defined

in the following form:

HV =

 〈∇h1(x0), ν1〉 . . . 〈∇h1(x0), νr〉
...

...

〈∇hp(x0), ν1〉 . . . 〈∇hp(x0), νr〉

 ∈ Rp×r. (4.45)

Now, we are in position to compute an approximation for the matrix HV instead.

Defining a matrix M̃ ∈ Rp×r where each entry is computed by Equation (4.44):

HV ≈ M̃ :=

 m11 . . . m1r

...
...

mp1 . . . mpr

 . (4.46)

Using the approximation matrix M̃ we can transform Equation (4.37) as follows: Ṽ T Ṽ M̃T

M̃ 0

 λ

µ

 =

 −d
0

 . (4.47)

The solution of Equation (4.47) gives the gradient-free realization to compute the

most greedy direction of an SOP with only equality constraints.

4.3.2 Inequality constraints

In our previous formulation we incorporated equality constraints into GSA. The next

step of the realization of the algorithm is to incorporate inequality constraints. Hence,

we start with the system described in Equation (4.7). Consider that there exist m

inequality constraints in the SOP. Let l ≤ m be the number of active constraints,

thus the problem can be reformulated as:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , l.
(4.48)

Departing from the SOP of Equation (4.48), we start the realization of the GSA

method with inequality constraints. Performing the proper modifications to Equation

(4.4) we assume that the most greedy search direction can be found by solving the

Cinvestav Computer Science Department

The Gradient Subspace Approximation 71

following problem:

min
ν∈Rn

〈∇f(x0), ν〉

s.t. ‖ν‖2
2 = 1

〈∇gi(x), ν〉 ≤ 0, i = 1, . . . , l

. (4.49)

As in the previous realizations of the GSA, we consider that the direction ν exists

in a subspace created by the search directions νi, i = 1, . . . , r. As in previous formu-

lations, we incorporate a value λ into our system in order to create the most greedy

direction. Thus, the optimization problem can be reformulated as

min
λ∈Rr

r∑
i=1

λi〈∇f(x0), νi〉

s.t. λTV TV λ− 1 = 0
r∑
i=1

λi〈∇gj(x0), νi〉 ≤ 0, j = 1, . . . , l.

(4.50)

There exist different methods to numerically solve the system of Problem (4.50).

For example, the system can be solved numerically by using active set methods (e.g.,

[Nocedal and Wright, 2006]) together with the results obtained on equality con-

strained problems. Another possibility to find a solution to (4.50) can be obtained

using a gradient projection method. In particular, we use the gradient projection

method to handle inequality constraints.

We start our formulation considering a problem with only one active inequality

constraint (i.e., l = 1) (later the realization is going to be extended for the general

case). The projection method performs an orthogonal projection of the search di-

rection ν∗, which is the solution of the unconstrained SOP (Equation 4.7), to the

orthogonal space of ∇g(x0). Figure 4.3 presents an example on how the projection of

the direction ν∗ occurs. To calculate such projection, we propose to compute a QR

decomposition of ∇g(x0), i.e.,

∇g(x0) = QR = (q1, . . . , qn)R. (4.51)

The vectors q2, . . . , qn obtained in Equation (4.51) build an orthonormal basis of

Cinvestav Computer Science Department

72 Chapter 4

Figure 4.3: Gradient projection with one active inequality constraint

∇g(x0)⊥. Defining Qg = (q2, . . . , qn), the projected vector is hence given by:

νnew = QgQ
T
g ν
∗. (4.52)

In the previous formulation we considered that the gradient information was

given. But, as in the previous formulation for the GSA method we will formulate

the gradient-free realization of the method. Here, we consider a different method to

calculate an orthonormal basis. Define a matrix M ∈ R1×r as follows:

M := ∇g(x0)TV = (〈∇g(x0), ν1〉, . . . , 〈∇g(x0), νr〉). (4.53)

Thus, if a vector w is in the kernel of M this is equivalent to having V w to be

orthogonal to ∇g(x0). Hence, we can compute the matrix:

K = (k1, . . . , kr−1) ∈ Rr×(r−1), (4.54)

where its column vectors build an orthonormal basis of the kernel of M . If the search

directions νi, i = 1, . . . , r are orthogonal, then also the vectors V k1, . . . , V kr−1 are

orthogonal. Such vectors are the column vectors of V K ∈ Rn×(r−1). Hence, the

projected vector to the kernel of M is given by:

ν̃new = V K(V K)Tν∗ = V KKTV Tν∗ (4.55)

To extend the projection method to a general value of l we proceed to define a

Cinvestav Computer Science Department

The Gradient Subspace Approximation 73

matrix G ∈ Rl×r as follows:

G :=

 ∇g1(x0)T

...

∇gl(x0)T

 . (4.56)

Using the matrix of Equation (4.56) now let’s define a matrix M̂ ∈ Rl×r con-

structed using the directional derivatives information of the active inequality con-

straints:

M̂ := GV =

 〈∇g1(x0), ν1〉 . . . 〈∇g1(x0), νr〉
...

...

〈∇gl(x0), ν1〉 . . . 〈∇gl(x0), νr〉

 . (4.57)

Once we have defined the matrix M̂ , we proceed to construct the projection of

the direction ν∗. The first step in such computation is to obtain an orthonormal basis

K ∈ Rr×(r−l) of the kernel of M . Using such basis we proceed to compute a QR

decomposition as follows:

V K = QR = (q1, . . . , qr−m, . . . , qn)R. (4.58)

Now that we obtained the matrix Q we are in position to perform the projection

of the direction ν∗. Our next step is to define a matrix O ∈ Rn×(r−l) using the column

vectors of Q as follows:

O := (q1, . . . , qr−l) (4.59)

The next step is to compute the projected direction ν∗p . Such direction can be

computed as follows:

ν∗p := OOTν∗. (4.60)

Finally, the last step of the realization is to remove the gradient information

requirement. Similar to the previous formulation of the GSA we proceed to ap-

proximate the derivative information. Hence, consider that the following pieces of

information are given: a candidate solution x0, the value of its active constraints

gj(x0), j = 1, . . . , l, its neighboring solutions xi, i = 1 . . . , r, and the information of

the active inequality constraints of the neighbors, i.e. gj(xi), i = 0, . . . , r, j = 1, . . . , l.

Besides, we can easily obtain the matrix V using Equation (3.13). Finally, we can

Cinvestav Computer Science Department

74 Chapter 4

compute an approximation of any of the directional derivatives as follows:

m̄ji = 〈∇gj(x0), νi〉 :=
gj(xi)− gj(x0)

‖xi − x0‖2

, (4.61)

where i ∈ {1 . . . r} and j ∈ {1 . . . l}.

Hence, instead of directly using matrix M̂ we can instead use an approximation

of it. Define a matrix M̄ ∈ Rl×r as follows:

M̂ ≈ M̄ =

 m̄11 . . . m̄1r

...
...

m̄l1 . . . m̄lr

 . (4.62)

Thus, we can perform the computation of the orthonormal basis K̄ ∈ Rr×(r−l) of

the kernel M̄ . Next, we proceed to compute the QR decomposition such that:

V K̄ = QR = (q1, . . . , qr−m, . . . , qn)R. (4.63)

Finally once we have obtained the basis Q we can obtain the projected direction

ν∗p using Equation (4.60).

4.4 GSA as Standalone Algorithm

In the previous section we describe several formulations to construct a descent direc-

tion using the GSA method. Such formulations will help us to describe an algorithm

for the standalone GSA method. This section presents all the elements required by

the GSA method to define such algorithm.

4.4.1 Computing the direction

The first important step is to unify all the ideas to compute a descent direction.

That is, we present the algorithms to compute a descent direction for any given dif-

ferentiable SOP. From here on we will consider that there exists a method N =

computeNeighborhood(x0). Such method, as its name indicates, returns the neigh-

boring information from a given candidate solution x0. The information that can

accessed using the neighborhood is the following:

Cinvestav Computer Science Department

The Gradient Subspace Approximation 75

• N → xi. It refers to the parameter vector of the i-th neighbor.

• N → fi. It refers to the function value of the i-th neighbor.

• N → hi. It refers to the function vector that contains the values of equality

constraints of the i-th neighbor.

• N → gi. It refers to the function vector that contains the values of inequality

constraints of the i-th neighbor.

For now, we consider that the neighboring procedure is given and we will not enter

into its details. It will be defined later on since its definition depends on how the

GSA is used: as a standalone algorithm or inside an evolutionary algorithm.

Our first study case is how to compute a descent direction for unconstrained

problems. Algorithm (12) presents the pseudocode to compute the direction ν∗ of a

candidate solution. In the algorithm, rN is defines the neighborhood size. Meanwhile

r refers to the parameter described in the GSA procedure. It is important to remem-

ber that we must provide certain stability to the system in numerical terms. So, we

propose to use a threshold δ in order to control the condition number of matrix V .

In case that we need to solve a constrained SOP there exist two different cases

of study for the candidate solution x0: the solution is feasible or the solution is not

feasible. In case that the solution is not a feasible one, it is desirable to compute

a direction that steer the search into the feasible region. In order to compute such

direction we propose to apply a penalty function along with the GSA method. Given a

candidate solution along with its constraint values (both types of them: equality and

inequality constraint values). The penalty function P(x, g(x), h(x)) ∈ R is defined as

follows:

P(x, g(x), h(x)) = f(x) + Cp

l∑
i=1

max (0, gi(x)) + Cp

p∑
j=1

hj(x)2, (4.64)

where gi(x0), i = 1, . . . ,m are the inequality constraints. Meanwhile, hj(x0), j =

1, . . . , p represents the equality constraint values. The function uses a constant

Cp = 103 to compute the penalty value.

Cinvestav Computer Science Department

76 Chapter 4

Algorithm 12 Pseudocode for unconstrained direction of the GSA.

Require: Initial point x0, f0 = f(x0), GSA neighborhood size r, threshold δ
Ensure: Direction ν̃∗

1: Set N := computeNeighborhood(x0)
2: Set rN := |N |
3: V := ∅
4: d̃ := 0 ∈ Rr

5: j := 0
6: for i = 1, . . . , rN do
7: Set xa := N → xi
8: Set fa := N → fi
9: Compute νa := xa−x0

‖xa−x0‖2
10: Add νa to V as the column at the (j + 1)-th position
11: if cond(V) ≥ δ then
12: Remove column at the (j + 1)-th position of V
13: else
14: Compute d̃j+1 := fa−f0

‖xa−x0‖2
15: Set j := j + 1
16: if j ≥ r then
17: break
18: end if
19: end if
20: end for
21: if j ≤ r then
22: return 0 ∈ Rn

23: else
24: Compute the solution λ̂∗ of Equation (4.25)
25: Compute ν̃∗ using Equation (4.26)
26: return ν̃∗

27: end if

Using the penalty function described in Equation (4.64) we propose to modify the

GSA method to use it. That is, we define a vector p̄ ∈ Rr as follows:

p̄ =

 p̄1

...

p̄r

 , (4.65)

where each vector entry p̄i is given by:

p̄i =
P (xi, g(xi), h(xi))− P (x0, g(x0), h(x0))

‖xi − x0‖2

, i ∈ {1, . . . , r}. (4.66)

Cinvestav Computer Science Department

The Gradient Subspace Approximation 77

Now we are in position to define an algorithm that computes a direction to steer

the candidate solution into a feasible region. Algorithm (13) presents the computa-

tion of the search direction using Equation (4.66). Using the penalty function we take

the system of Equation (4.25) an reformulate it as follows:

Ṽ T Ṽ λ̂ = −p̄. (4.67)

Finally, the GSA direction can be obtained as follows:

ν̄∗ = Ṽ λ̂. (4.68)

The last direction to be computed is the one for constrained SOPs when a feasible

point is given. To obtain such a direction, we start with the direction for equality

constraint problems and if there exist inequality constraints we proceed to correct back

the direction. Algorithm 16 presents the realization of the GSA constrained direction.

In the algorithm, l refers to the number of active constraints of x0. To compute

the indexes of the inequality constraints elements we propose the indexActive(g(x0))

procedure. Such function return the indexes I such that:

I = {i|i ∈ {1, . . . ,m} ∪ gi(x0) ≤ 0 ∪ |gi(x0)| ≤ ε}, (4.69)

where ε is a threshold used to detect the active inequality constraints. In our case we

set ε = 10−5.

4.4.2 Correcting the step size

Now that we defined the computations for GSA directions, the next step is to de-

fine the step size control algorithm. Typically, The GSA is used inside a line search

technique. Such technique uses any of the computed directions described above. Un-

fortunately, the line search techniques require extra parameters to be defined, e.g.

the initial step size t0. Moreover, the exist some cases when a backtracking step

is required in order to find the optimal value. Consider the example of Figure 4.4

where xi represents the actual candidate solution, x∗ represents the optimal value

and xi+1 = xi + t0ν. On the figure there exist three different regions: A, B and

C. We assume that for any three points a ∈ A, b ∈ B and c ∈ C it holds that

f(a) < f(b) < f(c). The example shows that even when we use a descent direction

Cinvestav Computer Science Department

78 Chapter 4

Algorithm 13 GSA direction on infeasible solutions.

Require: Initial point x0, f0 = f(x0), g0 = g(x0), h0 = h(x0), GSA neighborhood
size r, threshold δ

Ensure: Direction ν̄∗

1: Compute p0 = P(x0, g0, h0)
2: Set N := computeNeighborhood(x0)
3: Set rN := |N |
4: V := ∅
5: p̄ := 0 ∈ Rr

6: j := 0
7: for i = 1, . . . , rN do
8: Set xa := N → xi
9: Set fa := N → fi

10: Set ga := N → gi
11: Set ha := N → hi
12: Compute pa = P(xa, ga, ha)
13: Compute νa := xa−x0

‖xa−x0‖2
14: Add νa to V as the column at the (j + 1)-th position
15: if cond(V) ≥ δ then
16: Remove column at the (j + 1)-th position of V
17: else
18: Compute p̂a = pa−p0

‖xa−x0‖2
19: Set the (j + 1)-th entry of vector p̄ as p̂a
20: Set j := j + 1
21: if j ≥ r then
22: break
23: end if
24: end if
25: end for
26: if j ≤ r then
27: return 0 ∈ Rn

28: else
29: Solve Ṽ T Ṽ λ̂ = −p̄
30: Compute ν̄∗ as in Equation (4.68)
31: return ν̄∗

32: end if

(it leads the search into region A) we do not find a solution such that f(i+1) < f(xi).

Unfortunately, since we take a large value for t0, we reached the C region and the

function value increased.

The problem described above is just a rough example on how the size of the step

Cinvestav Computer Science Department

The Gradient Subspace Approximation 79

Algorithm 14 GSA direction on feasible solutions.

Require: Initial point x0, f0 = f(x0), g0 = g(x0), h0 = h(x0), GSA neighborhood
size r, threshold δ

Ensure: Direction ν̃∗

1: Set N := computeNeighborhood(x0)
2: Set rN := |N |
3: V := ∅, M̃ := ∅, M̂ := ∅
4: d̂P := 0 ∈ Rr

5: I = indexActive(g0)
6: p = |h0|
7: ḡ0 = obtainActiveConstraints(g0, I)
8: l = |I|
9: j := 0

10: for i = 1, . . . , rN do
11: Set xa := N → xi
12: Set fa := N → fi
13: if l > 0 then
14: ga = obtainActiveConstraints(N → gi, I)
15: end if
16: Compute νa := xa−x0

‖xa−x0‖2
17: Add νa to V as the column at the (j + 1)-th position
18: if cond(V) ≥ δ then
19: Remove column at the (j + 1)-th position of V
20: else
21: Compute d̂j+1 := fa−f0

‖xa−x0‖2
22: if l > 0 then
23: Compute m̄ := ga−ḡ0

‖xa−x0‖2 ∈ Rl

24: Set m̄ as the (j + 1)-th column of M̂
25: end if
26: if p > 0 then
27: Compute m := ha−h0

‖xa−x0‖2 ∈ Rp

28: Set m as the (j + 1)-th column of M̃
29: end if
30: Set j := j + 1
31: if j ≥ r then
32: break
33: end if
34: end if
35: end for
36: if j ≤ r then
37: return 0 ∈ Rn

38: else
39: Compute ν∗ = solveDirection(V, d̂, M̃ , p)

40: Compute ν∗p = projectDirection(ν∗, V, M̂)
41: return ν∗p
42: end if

Cinvestav Computer Science Department

80 Chapter 4

Algorithm 15 ν∗ = solveDirection(Ṽ , d̂, M̃ , p)

Require: Approximation vector d̂, Neighborhood matrix Ṽ , Equality approxima-
tions M̃ , number of equality constraints p

Ensure: Direction ν∗

1: if p > 0 then
2: Compute λ̃ as in Equation (4.47)
3: else
4: Compute λ̃ as in Equation (4.25)
5: end if
6: Compute ν∗ = Ṽ λ̃
7: return ν∗

Algorithm 16 ν∗p = projectDirection(ν∗, V, M̂)

Require: Direction ν∗, Neighbor matrix Ṽ , Inequality approximations M̂ , Number
of active inequality constraints l

Ensure: Projected direction nu∗p
1: if l == 0 then
2: return ν∗

3: else
4: Compute orthonormal basis V K of matrix M̂
5: Compute QR decomposition of V K
6: Compute O matrix as in Equation (4.59)
7: Compute projected direction nu∗p as in Equation (4.60)
8: return ν∗p
9: end if

affects the search. In this section we will describe the algorithm to adjust the value

of t such that we find a new point that improves the candidate solution. Our formu-

lation for the step size is based in the Wolfe conditions [Wolfe, 1969]. Considering

that we are given a descent direction ν and a candidate solution x0 we can define a

function φ(t) : R→ R as follows:

φ(t) = f(x0 + tν). (4.70)

The Wolfe conditions propose that a value of t must accomplishes a ‘sufficient

decrease condition’. The decrease condition can be defined as follows:

φ(t) ≤ φ(0) + c1tφ
′(0), (4.71)

Cinvestav Computer Science Department

The Gradient Subspace Approximation 81

x1

x2

xi
xi+1

x*
A

B

C

Figure 4.4: Example of large step size

where c1 = 10−4 and φ′(0) = ∇f(x0)Tν. Now, let’s consider the problem presented in

Figure 4.4 the original step size t0 lead us to increase the function value, which clearly

violates the Wolfe conditions, if we assume that it is possible to plot the function of

(4.78) for such problem. Then, we possibly obtain a plot similar to Figure 4.5.

Using the three pieces of given information (φ(0) = f(x0), φ(t0) = f(x0 + t0ν)

and φ′(0) it is possible to construct a quadratic approximation of function φ(t). Such

approximation is given by:

φq(t) =
φ(t0)− φ(0)− t0φ′(0)

t20
t2 + φ′(0)t+ φ(0). (4.72)

The step size that gives the minimal of the quadratic approximation of Equation

(4.72) is given by:

t1 =
φ′(0)t20

(φ(t0)− φ(0)− t0φ′(0))
. (4.73)

Unfortunately, the new step size described in Equation (4.73) requires the gradient

information. In this case, we can use the computations of the GSA to approximate

the value of φ′(0). Considering the gradient approximation given by the GSA, a step

Cinvestav Computer Science Department

82 Chapter 4

t = 0 t = t0 t

Φ

Figure 4.5: Example of a function φ(t)

size t̃1 using such approximation can be obtained as:

t̃1 =
t20 (Ṽ λ̃)Tν(

φ(t0)− φ(0)− t0 (Ṽ λ̃)Tν
) . (4.74)

If the value t̃1 does not accomplish the Wolfe conditions we can incorporate the

new information to the system an compute a cubic approximation of the function

φ(t). Such approximation is given by:

φc(t) = a t3 + b t2 + (Ṽ λ̃)Tν t+ φ(0), (4.75)

where a and b are given by:

(
a

b

)
=

1

t20t̃1
2
(t̃1 − t0)

(
t20 −t̃1

2

−t30 t̃1
3

)(
φ(t̃1)− φ(0)− (Ṽ λ̃)Tνt̃1

φ(t0)− φ(0)− (Ṽ λ̃)Tνt0

)
. (4.76)

The minimum of Equation (4.75) is defined as:

t2 =
−b+

√
b2 − 3a(Ṽ λ̃)Tν

3a
(4.77)

In GSA formulations we propose different realizations to compute directions: one

for the unconstrained case and two for the constrained case. Unfortunately, some

Cinvestav Computer Science Department

The Gradient Subspace Approximation 83

modifications to the step size are required in order to handle constrained problems.

If we consider a constrained SOP, we can apply the penalty function proposed in

Equation (4.66) to compute the step size control. Incorporating the penalty function

we obtain a function φP (t) : R→ R defined as follows:

φP (t) = f(x+ tν) + Cp

l∑
i=1

max (0, gi(x+ tν)) + Cp

p∑
j=1

hj(x+ tν)2, (4.78)

where Cp, g and h are defined as in Equation (4.64).

Using GSA formulations to compute directions for non feasible solutions we are in

position to modify the quadratic approximation used in step size control. Moreover,

the minimum of such approximation can be obtained by applying (4.78) into the

formulation of t1:

t̄1 =
t20 (Ṽ λ̂)Tν(

φ(t0)− φ(0)− t0 (Ṽ λ̂)Tν
) . (4.79)

Applying a similar substitution into the coefficient computations for cubic approx-

imation given in Equation (4.75) they can be estimated as:

(
ā

b̄

)
=

1

t20t̄1
2(t̄1 − t0)

(
t20 −t̄12

−t30 t̄1
3

)(
φ(t̄1)− φ(0)− (Ṽ λ̂)Tνt̄1

φ(t0)− φ(0)− (Ṽ λ̂)Tνt0

)
, (4.80)

hence the step size that gives the minimum for the approximation can be obtained

as:

t̄2 =
−b̄+

√
b̄2 − 3ā(Ṽ λ̂)Tν

3ā
. (4.81)

Finally, Algorithm 17 presents the pseudocode for the computation of the step

size. The algorithm computes a step size that accomplishes the Wolfe conditions and

returns it.

Cinvestav Computer Science Department

84 Chapter 4

Algorithm 17 Pseudocode of the step size control for GSA

Require: Candidate solution x0, Direction ν, Initial step size t0, Number of inequal-
ity constraints m, Number of equality constraints p, Neighbor matrix Ṽ

Ensure: Optimal step size tnew
1: if p > 0 or m > 0 then
2: Compute λ̂ from Equation (4.67)
3: if φ(t0) ≤ φ(0) + c1 t0 (Ṽ λ̂)Tν then
4: Set tnew := t0
5: else
6: Compute t̄1 from Equation (4.79)
7: if φ(t̄1) ≤ φ(0) + c1 t̄1 (Ṽ λ̂)Tν then
8: tnew := t̄1
9: else

10: Compute t̄2 from Equation (4.81)
11: Set tnew := t̄2
12: end if
13: end if
14: else
15: Compute λ̃ from Equation (4.25)
16: if φ(t0) ≤ φ(0) + c1 t0 (Ṽ λ̃)Tν then
17: Set tnew := t0
18: else
19: Compute t1 from Equation (4.73)
20: if φ(t1) ≤ φ(0) + c1 t1 (Ṽ λ̃)Tν then
21: tnew := t1
22: else
23: Compute t2 from Equation (4.74)
24: tnew := t2
25: end if
26: end if
27: end if
28: return tnew

4.4.3 GSA standalone algorithm

After we perform one iteration of the GSA method it is possible that a feasible so-

lution becomes an infeasible one. So, in order to correct such a solution we need a

procedure to return the solution to the feasible region. Consider that if the solution

is in the infeasible region we need to minimize the value of the constraints. Hence,

in order to correct our solution we propose to use the penalty function described in

Equation (4.64) to minimize such constraint violation. But one modification is re-

Cinvestav Computer Science Department

The Gradient Subspace Approximation 85

quired on such equation: we change the value of c1 = 102. Next, we construct a GSA

direction using the penalty function following the procedure described in Section 4.4.1.

As mentioned above the computation of a neighborhood is an important step to

compute any GSA direction. In particular, the standalone version of the GSA requires

that such neighborhood is computed since we do not have any population to obtain

such information. To compute the neighborhood we propose to construct orthogonal

neighbors by performing the procedure of Algorithm (18). In the algorithm, the value

of εN is set as 1e− 3 and qi represents the i-th column of matrix Q.

Algorithm 18 Pseudocode of the neighborhood structure of the GSA standalone
algorithm.

Require: Initial point x(0), Neighborhood size r
Ensure: Neighborhood structure N

1: Set N = ∅
2: Compute a random solution xr ∈ Rn

3: Compute the decomposition QR = xr
4: for i = 1, . . . , r do
5: Set xa = x0 + εN qi
6: Set N → xi := xa
7: Set N → fi = f(xa)
8: Set N → gi = g(xa)
9: Set N → hi = h(xa)

10: end for

Finally, with all the considerations described above we are in the position to define

the standalone algorithm for the GSA method. Algorithm 19 presents the pseudocode

of such a procedure.

Cinvestav Computer Science Department

86 Chapter 4

Algorithm 19 Pseudocode of the standalone GSA for SOP.

Require: Initial point x(0), Initial step size t0, GSA neighborhood size r
Ensure: Sequence x(k) of candidate solutions, Step size t

1: Compute f0 = f(x0)
2: Compute g0 = g(x0)
3: Compute h0 = h(x0)
4: Set k := 1
5: Set xa = x0

6: while Stopping condition is not met do
7: Compute N using Algorithm 18
8: if |g0| > 0 or |h0| > 0 then
9: if xa is feasible then

10: Compute ν using Algorithm 13
11: else
12: Compute ν using Algorithm 16
13: end if
14: else
15: Compute ν using Algorithm 12
16: end if
17: Compute step size 17
18: Set xnew := xa + t ν
19: if xnew is infeasible then
20: while xnew is infeasible do
21: Compute ν using Algorithm 13
22: Set xnew := xnew + t ν
23: end while
24: Set xa := xnew
25: Set xk := xnew
26: end if
27: Set k := k + 1
28: end while

Cinvestav Computer Science Department

The Gradient Subspace Approximation 87

4.5 GSA within DE

The next step for GSA is to define the algorithms to construct the memetic strategy.

In particular, we are interested in constructing a memetic algorithm where we propose

to use the Differential Evolution [Storn and Price, 1995] as a base algorithm. In this

section we define the necessary mechanisms to compute the memetic strategy: we

called it DE/GSA.

4.5.1 Computing the neighborhood

As done with the standalone algorithm, it is necessary to compute the neighboring

information used by the GSA. Consider a population P i, where such population is

observed at the i-th generation. Also, let’s consider that we can obtain the following

information from such population:

• P i → xj represents the parameter vector for the j-th individual in the popula-

tion.

• P i → f j represents the function value for the j-th individual in the population.

• P i → hj represents the equality constraints vector for the j-th individual in the

population.

• P i → gj represents the inequality constraints vector for the j-th individual in

the population.

Consider that we have a candidate solution x0 where GSA needs to be applied.

The first step to compute the neighborhood N is to remove all the possible copies

of x0 that exist in P i. To perform such procedure we consider that for copies of the

candidate solution it holds that ‖x0 − P i → xj‖2 = 0, j = 1, . . . |P i|. Using such

property we can define a new population P̄ i as follows:

P̄ i =
{
p̄|p̄ ∈ P i ∪ ‖x0 − p̄→ xj‖2 > 0

}
. (4.82)

Now, let’s assume that we sort the population P̄ i such that for each element in

p̄ ∈ P̄ i it holds that ‖x0 − p̄1‖2 ≤ . . . ≤ ‖x0 − ¯pM‖2, where M = |P̄ i|. Using the

sorted population we can construct our neighborhood as described in Algorithm 20.

In the algorithm we use the parameter τ that defines the neighborhood size (do not

confuse such parameter with the parameter r of the GSA).

Cinvestav Computer Science Department

88 Chapter 4

Algorithm 20 Pseudocode of the neighborhood structure for DE/GSA.

Require: Neighborhood size τ , Sorted population P̄ i

Ensure: Neighborhood structure N
1: Set N = ∅
2: Set M = |P̄ i|
3: for j = 1, . . . ,M do
4: Set N → xj = P̄ i → xj

5: Set N → fj = P̄ i → f j

6: Set N → gj = P̄ i → gj

7: Set N → hj = P̄ i → hj

8: if i ≥ τ then
9: break

10: end if
11: end for
12: return N

4.5.2 Initial step size

One of the challenges for the effective realization of line search techniques is the proper

computation of the initial step size. A large value of the initial step size can lead us

to increase the cost of the technique (the correction step will require more function

calls). But a small step size can lead the algorithm to meaningless improvements, e.g.,

the Wolfe conditions are not accomplished. In this section, we describe a mechanism

to tackle this problem combining the information of previous iterations in the line

search and the information of the population.

Consider a given individual in population P . From such individual we can ob-

tain a value P → tj (j represents that the j individual is used). The parameter t

represents the step size for such individual. The value of such parameter has been

previously saved for the individual. That is, assume that at the i− th generation we

computed the step size using Algorithm 17. After performing the line search we can

set P → tj := t, where t is the step size obtained from Algorithm 17. Hence, for any

generation k > i we already have a value stored for P → tj.

Unfortunately, there exists one case that has to be considered: the initialization of

the value P → tj. To initialize all the values of t we propose the following approach.

Consider that we have an individual p̂ ∈ P , for such individual we computed its

neighboring information using Algorithm 20. Given a candidate solution x0 := p̂→ x

and its M neighbors we can compute a matrix D ∈ Rn×M as follows:

Cinvestav Computer Science Department

The Gradient Subspace Approximation 89

D =
(
|x0 − x1|, . . . , |x0 − xM|

)
, (4.83)

where | · | : Rn → Rn computes the absolute value of each given vector and xj = N →
xj, j = 1, . . . ,M. Hence, an initial step size can be computed using Algorithm 21.

Algorithm 21 Pseudocode for computing the initial step size of DE/GSA.

Require: Neighborhood matrix D
Ensure: Step size t

1: Set t :=∞
2: for i = 1, . . . , n do
3: Set ta := 0 ∈ R
4: for j = 1, . . . ,M do
5: Set ta := ta +Dij

6: end for
7: Set ta := ta

M
8: if ta < t then
9: t := ta

10: end if
11: end for

Algorithm 21 defines an initialization for the step size. However, the same algo-

rithm can be used to reset the step size at some point. For example, consider that for

some reason the memetic algorithm archived a local optimal solution. In this case,

the step size stored in the population has decreased. Unfortunately, the decrement of

the stored step size presents a problem since the line search improvement is directly

related to such parameter. To avoid such a problem we introduce a parameter β

that randomly re-initializes a step size according to Algorithm 21. Finally, using all

the mechanisms described above we are in position to introduce Algorithm 22. This

algorithm computes the step size at the i-th generation for the j-th individual in the

population.

4.5.3 Balancing the operators

One of the main problems that arise when using a memetic algorithm is to implement

a balance between the local search and the evolutionary operators. In particular, for

the DE/GSA we propose to apply the procedure given in [LaTorre, 2009, LaTorre

Cinvestav Computer Science Department

90 Chapter 4

Algorithm 22 Pseudocode for computing the DE/GSA step size.

Require: Population P i, Individual index j , Neighborhood size τ , β
Ensure: Step size t

1: Set x0 := P i → xj

2: Set t := P i → tj

3: Compute a random value qr ∈ [0, 1]
4: if t = ∅ or qr ≤ β then
5: Compute x0 neighborhood N using Algorithm 20
6: Compute D as in Equation (4.83)
7: Compute t using Algorithm 21
8: end if
9: return t

et al., 2011]. To implement such a procedure, we assume that the evolutionary op-

erators of DE and the ones from GSA are two separated techniques. The procedure

that balances such techniques is called mos. This procedure measures at each gen-

eration the improvement archived for each technique involved in the creation of new

candidate solutions. In particular, we propose certain modifications to mos such that

it handles constrained problems.

As we stated above, we consider that the GSA and DE operators are two different

components of the same algorithm. In each generation, GSA generates an offspring

population named OGSA. Analogously, the individuals created by the DE operators

define the offspring population named ODE. Using a similar nomenclature as the one

defined for other mechanisms we can define:

• OGSA → xj, ODE → xj represents the parameter vectors for the j-th individual

in the GSA population and the DE population respectively.

• OGSA → f j, ODE → f j represents the function values for the j-th individual in

the GSA population and the DE population respectively.

• OGSA → hj, ODE → hj represents the equality constraints vectors for the j-th

individual in the GSA population and the DE population respectively.

• OGSA → gj, ODE → gj represents the inequality constraints vectors for the j-th

individual in the GSA population and the DE population respectively.

The mos algorithm uses a quality term to measure the improvement given by each

operator. Unfortunately, such a procedure was only developed for unconstrained

Cinvestav Computer Science Department

The Gradient Subspace Approximation 91

problems. Hence, we propose to use Equation (4.64) to modify the quality term

proposed in mos. Consider that we have an individual at the i-th generation from

any offspring population O∗ (the ∗ represents that it could be either OGSA or ODE).

Moreover, we can obtain several values from such individual: xi := O∗ → xj, f i :=

O∗ → f j, hi := O∗ → hj and gi := O∗ → gj. Right after we apply the operators

we can obtain the values for the new individual: xi+1, f i+1, hi+1 and gi+1. Using all

these values we can defined the quality term of the j-th individual as follows:

quality(xi, f i, hi, gi, xi+1, f i+1, hi+1, gi+1) =

∥∥∥∥P(xi+1, f i+1, hi+1, gi+1)− P(xi, f i, hi, gi)

P(xi+1, f i+1, hi+1, gi+1)

∥∥∥∥ . (4.84)

Define two vectors qGSA ∈ R|OGSA| and qDE ∈ R|ODE | where each entry of such

vectors can be computed using Equation (4.84). After the offspring populations have

been created we also obtained the vectors qGSA and qDE. Using vector qGSA we

compute the quality of the population created by the GSA method as follows:

QGSA =

∑|qGSA|
i=1 qGSAi

|qGSA|
. (4.85)

Analogously, we can compute the quality for the DE method:

QDE =

∑|qDE |
i=1 qDEi
|qDE|

. (4.86)

Once the quality of the offspring of each method is computed we proceed to com-

pute the so called participation ratios. Algorithm 23 presents the mechanism to

compute such participation ratios for each technique (RGSA and RDE). The partici-

pation ratios define the percentage of resources to be used for each technique. Here,

we use two parameters to control the computation of the participation ratios: Rc and

R−. Rc controls the velocity of adaptation and R− defines a lower bound limit for

the participation ratios.

Cinvestav Computer Science Department

92 Chapter 4

Algorithm 23 Pseudocode of the participation ratio calculation.

Require: Initial participation ratios RGSA, RDE, Technique qualities QGSA, QDE,
Rc, R−

Ensure: Participation ratios R̄GSA, R̄DE

1: if QGSA > QDE then

2: ra := Rc

(
QGSA−QDE

QGSA

)
RGSA.

3: if (RDE − ra) < R− then
4: ra := RDE −R−.
5: end if
6: Set R̄GSA := RGSA + ra.
7: Set R̄DE := RDE − ra.
8: else if QDE > QGSA then

9: ra := Rc

(
QDE−QGSA

QDE

)
RDE.

10: if (RGSA − ra) < R− then
11: ra := RGSA −R−.
12: end if
13: Set R̄DE := RDE + ra.
14: Set R̄GSA := RGSA − ra.
15: else
16: Set R̄GSA := RGSA.
17: Set R̄DE := RDE.
18: end if

Finally, Algorithm 24 presents the realization of the memetic GSA. At the begin-

ning of the algorithm the participation ratios of both algorithms are set with the same

probability. Besides, we propose to use values R− = 0.1 and Rc = 0.05. We have to

take into consideration that in some cases it is possible that some individuals are not

taking into consideration to create an offspring. That is, since we are rounding off

the offspring population size it is possible that in some cases N 6= |OGSA| + |ODE|.
In such case, we split the difference dN := N−(|OGSA|+ |ODE|) using bdNc and ddNe.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 93

Algorithm 24 Pseudocode of the memetic DE/GSA.

1: Randomly create initial population P0.
2: Set RDE := RGSA := 0.5.
3: Set i := 0.
4: while Stopping criteria is not met do
5: Set NGSA := bN RGSAc
6: Set NDE := bN RDEc
7: Compute dN := N − (NGSA +NDE)
8: if dN > 0 then
9: Set NGSA := NGSA + bdNc

10: Set NDE := NDE + ddNe
11: end if
12: Randomly select NDE individuals from Pi to create ODE

13: Randomly select NGSA individuals from Pi to create OGSA

14: Set qDE := 0 ∈ RNDE

15: for j = 1, . . . , NDE do
16: Compute crossover and mutation on ODE → xj

17: Compute qDEj using Equation (4.84)
18: end for
19: Compute QDE using Equation (4.86)
20: Set qGSA := 0 ∈ RNGSA

21: for j = 1, . . . , NGSA do
22: Compute neighborhood of OGSA → xj

23: Compute initial step size t0 using Algorithm 21
24: Compute new candidate solution xj+1 and corrected step size t using Algo-

rithm 19
25: Store the step size t on P
26: Compute qGSAj using Equation (4.84)
27: end for
28: Compute QGSA using Equation (4.85)
29: Update participation ratios RDE, RGSA using Algorithm 23
30: Set Pi+1 := ODE ∪OGSA

31: Set i := i+ 1
32: end while

4.6 Numerical Results

In this section, we present a set of experiments to illustrate the performance of

the GSA method. We performed several experiments using the standalone and the

memetic version of the GSA. For the standalone algorithm, we performed a com-

parison between GSA, Pattern Search [Hooke and Jeeves, 1961], and Nelder-Mead

Cinvestav Computer Science Department

94 Chapter 4

algorithms [Nelder and Mead, 1965]. To compare the memetic strategy, we used the

set of functions proposed for the CEC’06 contest on constrained optimization [Liang

et al., 2006] (for reference see Appendix A).

4.6.1 Standalone algorithm

We start our experiments for standalone GSA using two academic problems defined

by Equations (4.87) and (4.88).

min
∑2

i=1 x
2
i

s.t. −11 ≤ x1 ≤ 7

2 ≤ x2 ≤ 10

. (4.87)

min
∑2

i=1 x
2
i

s.t. x1 + x2 ≥ 1
. (4.88)

To perform an experiment we randomly generate an initial solution x0 and we

apply the three different methods: GSA, Pattern Search and Nelder-Mead. For the

GSA method we use Algorithm 19 to compute the candidate solutions. This algo-

rithm was implemented using MATLAB 1. In this experiment we set the parameter

r = 2. We perform a comparison using the MATLAB versions of the pattern search

and the Nelder-Mead algorithm. Since there is no constrained version of the Nelder-

Mead algorithm in MATLAB, we propose to use the unconstrained version along with

the penalty function defined in Equation (4.64).

We performed 1, 000 independent runs for each algorithm and we averaged the

number of function calls required for each algorithm. We previously computed the

optimal solution on each problem x∗. The stopping criteria for each alggorithm is

defined using the error term:

ε = ‖x∗ − xi‖ ≤ 5e− 3, (4.89)

where xi is the candidate solution at the i-th iteration. Table 4.1 present the averaged

results for the proposed algorithms. As we observed the GSA saves a considerable

amount of function calls in comparison with the other two algorithms.

Figure 4.6 presents a single run to illustrate the results obtained for the three

1MATLAB c©is a software property of MathWorks R©

Cinvestav Computer Science Department

The Gradient Subspace Approximation 95

Table 4.1: Results for standalone GSA on the 2-dimensional test problems

Problem Algorithm Function calls

(4.87)
Pattern Search 263.7
Nelder Mead with Penalty Function 147.5
GSA 35.3

(4.88)
Pattern Search 302.4
Nelder Mead with Penalty Function 161.7
GSA 38.4

-2 -1 0 1 2 3 4 5 6 7
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x 2

Pattern Search

Penalty

GSA

x(0)

x1

x*
g(x) = 0

(a) Equation (4.87)

-1 0 1 2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

1

1.5

x1

x 2

Pattern Search
Penalty
GSA

x(0)

x*

g(x) = 0

(b) Equation (4.88)

Figure 4.6: Single run for academic problems experimentation

algorithms. From the figure it is clear that GSA saves a considerable amount of re-

sources by reaching the optimal value x∗ in less steps than its competitors.

To extend the previous experiments we used a set of test problems that have a

higher number of parameters. The test functions are defined in Equations (4.90) to

(4.94).

min
∑10

i=0 x
2
i

s.t.− 1 ≤ x1 ≤ 7

2 ≤ x2 ≤ 10

1 ≤ x3 ≤ 9

(4.90)

Cinvestav Computer Science Department

96 Chapter 4

min
∑10

i=0 x
2
i

s.t.x1 + x2 + x3 ≥ 1

(4.91)

min
∑10

i=0 x
2
i

s.t.
∑10

i=1 xi ≥ 1

(4.92)

min
∑10

i=0 x
2
i

s.t.
∑10

i=1 xi = 1

(4.93)

min
∑10

i=0 x
2
i

s.t.(x1 + 1)2 +
∑10

i=2 x
2
i = 4

. (4.94)

Table 4.2 shows the results obtained by the algorithms using the equations de-

scribed above. The values are averaged over 1,000 independent runs coming from

different feasible starting points. The setup parameters for this experiment are the

same that in the previous one except that we modify the value r = 5. As expected,

the GSA standalone algorithm required about one order of magnitude less function

evaluations to reach its goal. We observe that in some cases some of the algorithms do

not archive the goal. So we set a maximal number of function calls for each algorithm

at 10, 000. In case that an algorithm does not reach the expected error ε the run is

considered invalid and is denoted by a “−” symbol.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 97

Table 4.2: Results for the second experiment using GSA as a standalone algorithm.

Problem Algorithm Function calls

(4.90)
Pattern Search 4218.9
Nelder Mead with Penalty Function 1285.9
GSA 377.7

(4.91)
Pattern Search 3461.5
Nelder Mead with Penalty Function 1558.3
GSA 339.8

(4.92)
Pattern Search 4015.8
Nelder Mead with Penalty Function -
GSA 310.3

(4.93)
Pattern Search 3818.3
Nelder Mead with Penalty Function -
GSA 271.0

(4.94)
Pattern Search -
Nelder Mead with Penalty Function -
GSA 1277.8

Cinvestav Computer Science Department

98 Chapter 4

4.6.2 GSA within DE

The next step for our experiments is to compare the memetic strategy that couples

the DE and GSA methods as a search technique. Such experiments were performed

using the set of functions proposed for the competition at the 2006 IEEE Congress

on Evolutionary Computation [Liang et al., 2006].

We performed a comparison between DE (rand/1/bin version) as a standalone al-

gorithm, and the GSA/DE method and we defined a second memetic algorithm that

uses the LS1 method [Tseng and Chen, 2008] as a local search engine. The results

are presented using two sets of experiments.

To handle constraints we considered as our base algorithm the variant of DE pro-

posed in [Kukkonen and Lampinen, 2006]. The parameters for the DE algorithm are

defined as recommended by the authors. Specifically, NP , F and CR were set to 100,

0.8 and 0.95, respectively.

First Set of Experiments

In this first set of experiments we aim to analyze the convergence of each algorithm

at different stages of the run. The first stage is measured when the algorithm reached

5, 000 function evaluations. We call it as the short term stage. The second stage

measures the algorithms at 50, 000 function calls. This is called the medium term

stage. Finally, the algorithms are compared in a long term stage, i.e., after 500, 000

function evaluations.

The algorithm’s performance is measured using a set of statistical comparisons.

For each problem, the experiment was repeated 30 times. Similar guidelines to the one

applied in [Durillo et al., 2010] were considered. Specifically, the following tests were

applied, assuming a significance level of 5%. First, a Shapiro-Wilk test was performed

to check whether or not the values of the results followed a Gaussian distribution. If

so, the Levene test was used to check for the homogeneity of the variances. If samples

had equal variance, an anova test was done; if not, a Welch test was performed.

Tables 4.3, 4.4 and 4.5 present several statistical values computed using the error

Cinvestav Computer Science Department

The Gradient Subspace Approximation 99

Table 4.3: Solutions obtained by the different DE variants at 5,000 evaluations.

Problem
Median Average

DE DE/GSA DE/LS1 DE DE/GSA DE/LS1
g1 4.88e+00 5.39e+00 5.55e+00 4.76e+00 5.15e+00 5.62e+00
g2 4.81e-01 4.92e-01 3.48e-01 4.74e-01 4.87e-01 3.49e-01
g3 1.00e+00 8.96e-01 1.00e+00 9.92e-01 8.80e-01 9.93e-01
g4 6.90e+01 4.41e+01 1.25e+02 7.46e+01 4.54e+01 1.19e+02
g5 8.87e+01 6.73e-02 1.82e+02 2.30e+02 1.30e+00 3.11e+02
g6 2.16e+02 3.75e+01 3.62e+02 2.12e+02 5.11e+01 3.67e+02
g7 1.53e+02 2.00e+02 1.66e+02 1.73e+02 2.22e+02 1.82e+02
g8 2.82e-08 7.70e-12 6.83e-07 7.22e-08 3.55e-11 1.85e-06
g9 1.55e+02 1.59e+02 6.93e+01 1.55e+02 1.70e+02 6.90e+01
g10 4.74e+03 4.71e+03 4.64e+03 4.75e+03 4.72e+03 4.61e+03
g11 1.04e-01 1.30e-03 6.60e-02 9.48e-02 1.94e-02 9.86e-02
g13 9.25e-01 8.79e-01 8.01e-01 1.25e+00 1.02e+00 7.10e-01
g14 5.50e+00 3.60e+00 5.08e+00 5.76e+00 3.87e+00 5.92e+00
g15 1.76e+00 4.73e-04 1.65e+00 1.94e+00 2.03e-03 2.26e+00
g16 1.11e-01 1.59e-01 1.64e-01 1.21e-01 1.65e-01 1.72e-01
g17 2.45e+02 8.90e+01 2.39e+02 2.62e+02 1.05e+02 2.83e+02
g18 8.40e-01 6.88e-01 6.04e-01 9.85e-01 7.81e-01 6.87e-01
g19 4.30e+02 2.51e+02 5.24e+02 4.17e+02 2.62e+02 5.12e+02
g20 6.95e+00 8.10e+00 3.42e+00 7.03e+00 8.09e+00 3.65e+00
g21 6.37e+02 5.85e+02 5.13e+02 5.93e+02 5.54e+02 4.96e+02
g22 1.25e+04 9.28e+03 8.12e+03 9.72e+03 1.07e+04 8.94e+03
g23 4.00e+02 4.55e+02 2.94e+02 3.92e+02 4.53e+02 4.04e+02
g24 2.01e-03 1.49e-04 6.61e-03 2.41e-03 2.43e-04 6.98e-03

terms. Such error term can be computed as follows:

εf := f(xbest)− f(x∗), (4.95)

where xbest represents the best individual at the generation and x∗ is the best known

solution in the state-of-the art. The tables present the results for the short term,

middle term and long term respectively. On such tables, the blue values represent

the algorithm with the best individual. The quantities are only denoted if they ac-

complish all the statistical test described above. In those cases where the differences

were not statistically significant, the solution is presented in a regular format.

Unfortunately, presenting only the error terms for constrained problems is not

enough information to compare the results. The second piece of information that has

Cinvestav Computer Science Department

100 Chapter 4

Table 4.4: Solutions obtained by the different DE variants at 50,000 evaluations.

Problem
Median Average

DE DE/GSA DE/LS1 DE DE/GSA DE/LS1
g1 3.57e-03 6.59e-04 2.14e-02 3.90e-03 6.73e-04 2.29e-02
g2 3.16e-01 3.24e-01 1.71e-01 3.13e-01 3.28e-01 1.69e-01
g3 9.81e-01 6.46e-01 8.16e-01 9.52e-01 6.05e-01 8.00e-01
g4 1.01e-08 2.71e-10 1.16e-07 1.36e-08 4.39e-10 2.06e-07
g5 8.78e+01 8.67e-04 1.32e+02 1.24e+02 1.54e-01 1.73e+02
g6 1.64e-11 1.64e-11 1.64e-11 1.64e-11 1.64e-11 1.64e-11
g7 2.38e+00 1.04e-01 1.59e+00 2.49e+00 1.29e-01 1.63e+00
g8 4.16e-17 4.16e-17 3.47e-17 3.61e-17 3.56e-17 3.47e-17
g9 1.87e-02 7.90e-04 2.91e-02 1.82e-02 9.28e-04 3.04e-02
g10 4.95e+03 4.95e+03 4.95e+03 4.95e+03 4.95e+03 4.95e+03
g11 0 0 0 0 0 0
g13 9.46e-01 8.55e-01 2.11e-02 9.37e-01 7.60e-01 2.39e-02
g14 4.98e+00 7.53e-03 5.22e+00 5.03e+00 2.40e-02 5.18e+00
g15 1.46e-01 4.65e-05 9.97e-01 6.56e-01 2.09e-04 1.56e+00
g16 1.87e-06 5.75e-06 7.76e-06 2.31e-06 5.91e-06 7.83e-06
g17 9.60e+01 1.22e+01 9.64e+01 8.97e+01 2.50e+01 1.00e+02
g18 7.55e-02 9.16e-03 4.17e-02 7.66e-02 1.06e-02 4.23e-02
g19 1.85e+01 1.47e+01 2.47e+01 1.81e+01 1.41e+01 2.43e+01
g20 9.88e-01 9.67e-01 9.87e-01 9.86e-01 9.74e-01 9.95e-01
g21 1.33e+02 1.31e+02 1.49e+02 1.21e+02 1.43e+02 2.12e+02
g22 1.15e+04 5.71e+03 1.01e+04 1.15e+04 7.30e+03 9.95e+03
g23 3.95e+02 1.77e+02 4.00e+02 4.51e+02 1.83e+02 5.09e+02
g24 3.29e-14 3.29e-14 3.29e-14 3.29e-14 3.29e-14 3.29e-14

to be considered is concerned about the constraints of the problem. We present such

a information on Tables 4.6, 4.7 and 4.8. On each table the average and the me-

dian number of violated constraints are presented. On each problem, a column that

represents the original number of constraint that the problem is set. The inequality

constraints are represented by the letter E. Analogously, the inequality constraints

are represented by the letter I.

As an additional tool to understand the constraints we present Figures 4.7 to 4.11.

On such plots we present the averaged constraint values where the best solution is

infeasible. To present the data in a clever way we only present the plots with at least

one violated constraint. To present the constraints in an uniform way we transform

Cinvestav Computer Science Department

The Gradient Subspace Approximation 101

Table 4.5: Solutions obtained by the different DE variants at 500,000 evaluations.

Problem
Median Average

DE DE/GSA DE/LS1 DE DE/GSA DE/LS1
g1 0 0 0 0 0 0
g2 1.38e-02 2.28e-02 1.38e-01 1.53e-02 2.82e-02 1.39e-01
g3 8.44e-01 4.31e-01 8.16e-01 8.21e-01 4.07e-01 7.97e-01
g4 3.64e-12 3.64e-12 3.64e-12 3.64e-12 3.64e-12 3.64e-12
g5 1.82e-12 1.82e-12 1.82e-12 7.22e-05 1.82e-12 1.06e+00
g6 1.64e-11 1.64e-11 1.64e-11 1.64e-11 1.64e-11 1.64e-11
g7 2.84e-05 7.49e-09 3.15e-02 2.98e-05 2.39e-08 3.86e-02
g8 2.78e-17 2.78e-17 2.78e-17 2.78e-17 2.78e-17 2.78e-17
g9 1.14e-13 1.14e-13 1.14e-13 1.21e-13 1.52e-13 1.63e-13
g10 4.95e+03 4.95e+03 4.95e+03 4.95e+03 4.95e+03 4.95e+03
g11 0 0 0 0 0 0
g13 4.07e-01 3.85e-01 2.11e-02 4.05e-01 3.25e-01 2.39e-02
g14 1.51e-07 7.11e-13 1.27e-04 1.69e-07 6.17e-13 2.13e-04
g15 1.14e-13 1.14e-13 1.14e-13 1.14e-13 1.14e-13 1.14e-13
g16 3.77e-15 3.77e-15 3.77e-15 3.77e-15 3.77e-15 3.77e-15
g17 7.68e+01 2.99e+00 8.83e+01 5.37e+01 1.29e+01 7.04e+01
g18 3.75e-05 8.28e-05 1.64e-05 4.28e-05 1.07e-04 3.17e-05
g19 7.43e+00 7.42e+00 1.31e+01 7.44e+00 7.42e+00 1.22e+01
g20 1.00e+00 1.01e+00 9.79e-01 1.00e+00 1.01e+00 9.77e-01
g21 1.31e+02 6.55e+01 1.31e+02 8.73e+01 6.55e+01 8.30e+01
g22 1.10e+04 6.56e+03 3.76e+03 1.04e+04 6.67e+03 3.44e+03
g23 1.09e+00 5.00e+00 1.26e+02 3.10e+01 1.03e+01 1.08e+02
g24 3.29e-14 3.29e-14 3.29e-14 3.29e-14 3.29e-14 3.29e-14

each equality constraint into an inequality constraint such that:

gE = |h(x)| − εE, (4.96)

where εE = 1e− 4.

Finally, Figures 4.13 to 4.15 present the converge plots of each algorithm. To

construct such plot we use the penalty function described in Equation (4.64). The

plots show the averaged penalty value for each of the test functions. In the plots,

a dotted line represents the function values of infeasible solutions. Meanwhile, a

continuous line represents a feasible solution.

Cinvestav Computer Science Department

102 Chapter 4

gE1(x) gE2(x) gE3(x) g1(x) g2(x)
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(a) g5

gE1(x) gE2(x) gE3(x)
10

−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(b) g14

gE1(x) gE2(x)
10

−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(c) g15

gE1(x) gE2(x) gE3(x) gE4(x)
10

−3

10
−2

10
−1

10
0

10
1

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(d) g17

g1(x) g2(x) g3(x) g4(x) g5(x) g6(x) g7(x) g8(x) g9(x)g10(x)g11(x)g12(x)g13(x)
10

−2

10
−1

10
0

10
1

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(e) g18

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) g1(x)
10

−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(f) g21

Figure 4.7: Averaged constraint values for the different DE variations at 5, 000 func-
tion calls.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 103

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) gE6(x) gE7(x) gE8(x) g1(x) g2(x) g3(x) g4(x) g5(x) g6(x)
10

−2

10
−1

10
0

10
1

10
2

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(a) g20

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) gE6(x) gE7(x) gE8(x) gE9(x) gE10(x) gE11(x) gE12(x) gE13(x) gE14(x) gE15(x) gE16(x) gE17(x) gE18(x) gE19(x) g1(x)
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(b) g22

gE1(x) gE2(x) gE3(x) gE4(x) g1(x) g2(x)
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(c) g23

Figure 4.8: Cont’d Averaged constraint values for the different DE variations at 5, 000
function calls.

Cinvestav Computer Science Department

104 Chapter 4

gE1(x) gE2(x) gE3(x) g1(x) g2(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(a) g5

gE1(x) gE2(x) gE3(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(b) g14

gE1(x) gE2(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(c) g15

gE1(x) gE2(x) gE3(x) gE4(x)
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(d) g17

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) g1(x)
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(e) g21

gE1(x) gE2(x) gE3(x) gE4(x) g1(x) g2(x)
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(f) g23

Figure 4.9: Averaged constraint values for the different DE variations at 50, 000
function calls

Cinvestav Computer Science Department

The Gradient Subspace Approximation 105

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) gE6(x) gE7(x) gE8(x) g1(x) g2(x) g3(x) g4(x) g5(x) g6(x)
10

−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(a) g20

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) gE6(x) gE7(x) gE8(x) gE9(x) gE10(x) gE11(x) gE12(x) gE13(x) gE14(x) gE15(x) gE16(x) gE17(x) gE18(x) gE19(x) g1(x)
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(b) g22

Figure 4.10: Cont’d Averaged constraint values for the different DE variations at
50, 000 function calls.

Cinvestav Computer Science Department

106 Chapter 4

gE1(x) gE2(x) gE3(x) g1(x) g2(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(a) g5

gE1(x) gE2(x) gE3(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(b) g14

gE1(x) gE2(x)
10

−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(c) g15

gE1(x) gE2(x) gE3(x) gE4(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(d) g17

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) g1(x)
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(e) g21

gE1(x) gE2(x) gE3(x) gE4(x) g1(x) g2(x)
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(f) g23

Figure 4.11: Averaged constraint values for the different DE variations at 500, 000
function calls

Cinvestav Computer Science Department

The Gradient Subspace Approximation 107

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) gE6(x) gE7(x) gE8(x) g1(x) g2(x) g3(x) g4(x) g5(x) g6(x)
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(a) g20

gE1(x) gE2(x) gE3(x) gE4(x) gE5(x) gE6(x) gE7(x) gE8(x) gE9(x) gE10(x) gE11(x) gE12(x) gE13(x) gE14(x) gE15(x) gE16(x) gE17(x) gE18(x) gE19(x) g1(x)
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Constraints

V
a
lu
e

DE

DE/GSA

DE/LS1

(b) g22

Figure 4.12: Cont’d Averaged constraint values for the different DE variations at
500, 000 function calls.

Cinvestav Computer Science Department

108 Chapter 4

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−15

10
−10

10
−5

10
0

10
5

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(a) g1

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(b) g2

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(c) g3

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(d) g4

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
2

10
3

10
4

10
5

10
6

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(e) g6

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(f) g7

Figure 4.13: Convergence plots for the different DE variations.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 109

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(a) g8

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(b) g9

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
1

10
2

10
3

10
4

10
5

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(c) g10

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(d) g11

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(e) g13

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(f) g14

Figure 4.14: Convergence plots for the different DE variations.

Cinvestav Computer Science Department

110 Chapter 4

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(a) g15

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(b) g16

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(c) g17

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(d) g18

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
0

10
1

10
2

10
3

10
4

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(e) g19

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
1

10
2

10
3

Function calls

p
(x

)

DE

DE/GSA

DE/LS1

(f) g20

Figure 4.15: Convergence plots for the different DE variations.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 111

Table 4.6: Constraints violated by the different DE variants at 5,000 evaluations.

Problem
Constraints

Median Average
DE DE/GSA DE/LS1 DE DE/GSA DE/LS1

E I E I E I E I E I E I E I
g1 0 9 0 0 0 0 0 0 0 0 0 0 0 0
g2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g4 0 6 0 0 0 0 0 0 0 0 0 0 0 0
g5 3 2 3 0 0 0 3 0 3 0 0 0 3 0.1
g6 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g7 0 8 0 0 0 0 0 0 0 0 0 0 0 0
g8 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g9 0 4 0 0 0 0 0 0 0 0 0 0 0 0
g10 0 6 0 0 0 0 0 0 0 0 0 0 0 0
g11 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g13 3 0 3 0 0 0 3 0 2.9 0 0.3 0 2.7 0
g14 3 0 3 0 0 0 3 0 2.9 0 0 0 2.9 0
g15 2 0 1 0 0 0 2 0 1.5 0 0 0 1.8 0
g16 0 38 0 0 0 0 0 0 0 0 0 0 0 0
g17 4 0 4 0 0 0 4 0 4 0 2.0 0 4 0
g18 0 13 0 9 0 3 0 5 0 8 0 3.7 0 4.9
g19 0 5 0 0 0 0 0 0 0 0 0 0 0 0
g20 14 6 7 6 7 6 8 6 6.8 6 6.6 6 7 6
g21 5 1 5 0 5 0 5 0 4.6 0 4.6 0 4.8 0
g22 19 1 19 0 19 0 19 0 19 0.2 19 0.2 19 0.2
g23 4 2 3 2 0 0 4 1 3.7 1.0 0.1 0.1 3.9 0.9
g24 0 2 0 0 0 0 0 0 0 0 0 0 0 0

Second Set of Experiments: Saving Resources

A second experiment that measures the benefits of the GSA as local search strat-

egy was performed. We tried to conduct an experiment to analyze the amount of

resources, which are measured in function calls, that were saved by our approach.

Run-length distributions show the relationship between success ratios and number

of evaluations, where the success ratio is defined as the probability of achieving a

certain quality level. To establish a quality level, in each problem we consider the

highest median obtained by any of the three models considered in 500,000 function

evaluations.

Table 4.9 presents the number of evaluations required for each of the models to

Cinvestav Computer Science Department

112 Chapter 4

Table 4.7: Constraints violated by the different DE variants at 50,000 evaluations.

Problem
Constraints

Median Average
DE DE/GSA DE/LS1 DE DE/GSA DE/LS1

E I E I E I E I E I E I E I
g1 0 9 0 0 0 0 0 0 0 0 0 0 0 0
g2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g4 0 6 0 0 0 0 0 0 0 0 0 0 0 0
g5 3 2 0 0 0 0 0 0 0 0 0 0 0 0
g6 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g7 0 8 0 0 0 0 0 0 0 0 0 0 0 0
g8 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g9 0 4 0 0 0 0 0 0 0 0 0 0 0 0
g10 0 6 0 0 0 0 0 0 0 0 0 0 0 0
g11 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g13 3 0 0 0 0 0 0 0 0.1 0 0 0 0 0
g14 3 0 0 0 0 0 0 0 0 0 0 0 0 0
g15 2 0 0 0 0 0 0 0 0 0 0 0 0 0
g16 0 38 0 0 0 0 0 0 0 0 0 0 0 0
g17 4 0 3 0 0 0 4 0 2.6 0 0 0 3.4 0
g18 0 13 0 0 0 0 0 0 0 0 0 0 0 0
g19 0 5 0 0 0 0 0 0 0 0 0 0 0 0
g20 14 6 6 6 5 6 6 6 5.4 6 4.9 6 5.9 6
g21 5 1 0 0 0 0 0 0 0 0 0 0 0 0
g22 19 1 19 0 19 1 19 0 19.0 0.1 19 0.4 19 0.2
g23 4 2 2 0 0 0 0 0 1.1 0 0 0 1.5 0.1
g24 0 2 0 0 0 0 0 0 0 0 0 0 0 0

attain a success ratio equal to 50%.

Discussion of the results

In these experiments we performed several tests to show the correctness of the GSA

method. In particular, we applied the method in two different ways: as a standalone

algorithm and within a memetic algorithm.

In the first case we artificially generated the individuals of the neighborhood. Us-

ing such information we compute several steps for the GSA. To illustrate the aim of

the GSA we compare it against two directed search method. From such comparison

we obtained that the GSA saved a considerable amount of resources measured in

Cinvestav Computer Science Department

The Gradient Subspace Approximation 113

Table 4.8: Constraints violated by the different DE variants at 500,000 evaluations.

Problem
Constraints

Median Average
DE DE/GSA DE/LS1 DE DE/GSA DE/LS1

E I E I E I E I E I E I E I
g1 0 9 0 0 0 0 0 0 0 0 0 0 0 0
g2 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g3 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g4 0 6 0 0 0 0 0 0 0 0 0 0 0 0
g5 3 2 0 0 0 0 0 0 0 0 0 0 0 0
g6 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g7 0 8 0 0 0 0 0 0 0 0 0 0 0 0
g8 0 2 0 0 0 0 0 0 0 0 0 0 0 0
g9 0 4 0 0 0 0 0 0 0 0 0 0 0 0
g10 0 6 0 0 0 0 0 0 0 0 0 0 0 0
g11 1 0 0 0 0 0 0 0 0 0 0 0 0 0
g13 3 0 0 0 0 0 0 0 0 0 0 0 0 0
g14 3 0 0 0 0 0 0 0 0 0 0.4 0 0 0
g15 2 0 0 0 0 0 0 0 0 0 0 0 0 0
g16 0 38 0 0 0 0 0 0 0 0 0 0 0 0
g17 4 0 0 0 0 0 0 0 0 0 0 0 0 0
g18 0 13 0 0 0 0 0 0 0 0 0 0 0 0
g19 0 5 0 0 0 0 0 0 0 0 0 0 0 0
g20 14 6 0 6 0 6 3 6 0.1 6 0 6 1.9 6
g21 5 1 0 0 0 0 0 0 0 0 0 0 0 0
g22 19 1 19 0 19 0 19 0 19 0.2 19 0 18.9 0
g23 4 2 0 0 0 0 0 0 0 0 0 0 0 0
g24 0 2 0 0 0 0 0 0 0 0 0 0 0 0

function calls. Thus, GSA can obtain a solution with a similar error using approxi-

mately 10% of the budget of the other two algorithms.

The second set of experiments measure a memetic algorithm that uses GSA as

a local search engine called DE/GSA. For such algorithm we obtained promising re-

sults when it was compared against the standalone DE and with another local search

engine, LS1. The test was performed using the CEC’06 constrained functions. In

the first set of results the GSA method obtained significant results in eight functions

at the medium term. The best results were obtained in the problems with equality

constraint. By such result we can confirm the effectiveness of GSA for those types

of problems. The effectiveness of the GSA method on equality constraints is given

Cinvestav Computer Science Department

114 Chapter 4

Table 4.9: Evaluations required by the different DE variants to obtain a fixed quality
level and percentage of saved resources.

DE DE-LS1 DE/GSA
Eval. Eval. Saved (%) Eval. Saved (%)

g01 221250 281738 -27.33 274679 -24.18
g02 223200 438630 -96.51 185456 16.91
g03 378600 34205 90.96 7862 97.92
g04 66900 74409 -11.22 63274 5.42
g05 343000 417438 -21.70 143974 58.02
g06 35650 39905 -11.93 39424 -10.58
g07 188550 469315 -148.90 60750 67.78
g08 56550 49020 13.31 55824 1.28
g09 290400 343752 -18.37 235126 19.03
g10 32450 37468 -15.46 9062 72.07
g11 37700 42292 -12.18 32702 13.25
g13 494550 25001 94.94 265106 46.39
g14 327350 496336 -51.62 101196 69.08
g15 134700 222260 -65.00 98313 27.01
g16 147500 164214 -11.33 246482 -67.10
g17 226900 364715 -60.73 10194 95.50
g18 440850 96543 78.10 480413 -8.97
g19 75450 482225 -539.13 58110 22.98
g20 162550 143728 11.57 58079 64.27
g21 485950 497234 -2.32 286394 41.06
g22 256400 482546 -88.20 55090 78.51
g23 110300 366143 -231.95 133544 -21.07
g24 33150 36641 -10.53 43808 -32.15

HC-10 454200 77384 82.96 206230 54.59
HC-20 489900 106768 78.20 89969 81.63

by two different factors: the computation of the direction and the correction step.

Incorporating a linearization of the equality constraints into the computation of the

direction create a descent direction that moves along the constraints. Meanwhile, the

correction step adjust a candidate solution if it becomes infeasible. Such mechanisms

improve the convergence rate of the memetic algorithm.

Besides, if we compare the results at long term, we can confirm that DE/GSA also

has the capability to the same solutions that the DE method. Using such a result we

can also state that the balancing mechanism does not affect the convergence of the

memetic algorithm.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 115

Finally, the table of saved resources shows the potential of GSA in this regards. In

particular, we could observe functions where our method helps to save a considerable

amount of resources. In some cases such savings exceed the 90%. With such results

we can claim that GSA has shown that it can improve an evolutionary algorithm by

accelerating its convergence rate.

The different mechanism proposed for the memetic DE/GSA method helped con-

vergence. But, we believe that the results can be improved by using a more sophisti-

cated method for constraint handling and for the movement to the optimal solution

of an infeasible solution. For example, consider the interior point methods [Nocedal

and Wright, 2006]. Using such type of procedure we can improve the results when we

are in a feasible region defined by inequality constraints.

Besides, it is possible to improve the penalty function by using more sophisticated

methods, e.g. [Fletcher, 1975],[Olsen, 1994] and [Liu et al., 2016a].

Cinvestav Computer Science Department

116 Chapter 4

4.7 Multi-objective GSA

The GSA method has shown to be a powerful tool for solving SOPs. Hence, we

propose to extend such a method to the multi-objective context. In this section, we

discuss the realization and application of GSA to such a context. As the first step,

we analyze the applicability of the method for MOPs. That is, we discuss if there

exists a minimal number of individuals in the neighborhood of a candidate solution

such that GSA can be applied. Next, we present the mechanisms required for GSA

to handle several objectives. Finally, we present the application as a local search tool

within memetic strategies. In particular, we apply the GSA along with two different

state-of-the-art algorithms: MOEA/D [Zhang and Li, 2006] and IG-NSGA-II [Liu

et al., 2016b].

4.7.1 Applicability of GSA within MOEAs

As discussed above the neighborhood selection of the GSA is one of the crucial studies

of the method. In particular, when we applied such a method for SOPs we empiri-

cally showed that the number of neighboring individuals for a candidate solution x0

increases when the algorithm starts to converge. By such property, the size of the

neighborhood is small enough such that there exist sufficient samples around any

candidate solution x0. In MOPs, a whole solution set needs to be computed. Thus,

not all the individuals in the population group around the same solution. Hence, it

becomes necessary to demonstrate that there exists a certain number of neighbors

around any candidate solution in the population to apply the GSA method.

In order to demonstrate the proposition described above we apply a similar ex-

periment that the one for the single-objective GSA. That is, we compute the number

of candidate solutions that exists around a given candidate solution x0. For such

an experiment, we obtained different populations through MOEA/D [Zhang and Li,

2006] using four different MOPs: CONV, ZDT1 [Zitzler et al., 2000b], Kursawe [Kur-

sawe, 1990] and DTLZ3 [Deb et al., 2002b] with three objectives (for the problem

formulation please refer to Appendix B). For each MOP we compute the averaged

number of neighboring solutions for a individual p ∈ P . To measure the number of

neighbors of individual p we use the 2-norm such that the neighborhood is defined as:

Nδ(p0) := {p ∈ P \ {p0} : ‖p− p0‖2 ≤ δ}. (4.97)

Cinvestav Computer Science Department

The Gradient Subspace Approximation 117

Generations

N
o.

 N
ei

gh
bo

rs

δ = 0.25
δ = 0.5
δ = 1

70

60

50

40

30

20

10

00 50 100 150 200 250 300

(a) CONV

Generations

90

100

N
o.

 N
ei

gh
bo

rs

δ = 0.25
δ = 0.5
δ = 1

80

70

60

50

40

30

20

10

00 50 100 150 200 250 300

(b) ZDT1

Generations

45

50

N
o.

 N
ei

gh
bo

rs

δ = 0.25
δ = 0.5
δ = 1

40

35

30

25

20

15

10

5

00 50 100 150 200 250 300

(c) Kursawe

Generations

90

100

N
o.

 N
ei

gh
bo

rs

80

70

60

50

40

30

20

10

00 50 100 150 200 250 300

δ = 0.25
δ = 0.5
δ = 1

(d) DTLZ3

Figure 4.16: Results for neighborhood size for multi-objective GSA

Once we defined the neighborhood we are in position to measure the number of

neighbors as |Nδ(p0)|. For our experiments we used three different values of δ: 0.25,

0.5 and 1. Figure 4.16 presents the averaged results for the numbers of neighboring

solutions with a population size N = 100. The figures shows the computations for 30

independent runs on each of the test functions.

From the results it is clear that we can obtain a ‘good’ number of neighboring

solutions at early stages of MOEA/D, e.g., after 50 generations. Such results show

that it is possible to obtain the information that the GSA requires in order to approx-

imate the gradient. Hence, we can apply a method to construct the neighborhood for

a candidate solution as in the single-objective GSA. Such procedure will be defined

according to the MOEA to be used as a base algorithm for the memetic strategy:

MOEA/D or IG-NSGA-II.

Cinvestav Computer Science Department

118 Chapter 4

4.7.2 Approximating the Jacobian

GSA approximates the gradient information of a SOP. But, it becomes necessary to

extend this process in order to compute the Jacobian matrix J(x0) ∈ Rk×n. Assume

a MOP as in Equation (MOP) along with a candidate solution x0 and r search

directions νr, . . . , νr ∈ Rn. Thus, the r search directions form the subspace:

S := span{ν1, . . . , νr}. (4.98)

Hence, we can give a gradient approximation for the subspace S. That is, every

gradient ∇fi(x0) of the Jacobian matrix can be computed using the GSA method as

follows:

g̃i(x0) = V (V TV)−1V T∇fi(x0) ∈ Rn, (4.99)

where i = 1, . . . , k.

Considering the Jacobian matrix defined as in Equation (2.40) and the approxi-

mation given by (4.99), the GSA approximation can be computed as:

J̃(x0) =

 g̃1(x0)T

...

g̃k(x0)T

 = J(x0)TV (V TV)−1V T . (4.100)

Finally, we proceed to define the gradient-free realization of the procedure above.

Consider the matrix F̄ ∈ Rk×r defined as follows:

F̄ = J(x0)V

 〈∇f1, ν1〉 . . . 〈∇f1, νr〉
...

...

〈∇fk, ν1〉 . . . 〈∇fk, νr〉

 , (4.101)

where each entry F̄ij of such matrix can be computed using Equation (3.14).

4.7.3 Computing a descent direction

One of the main differences between the single-objective approach and the multi-

objective one is how to compute the descent direction. In this work we consider two

Cinvestav Computer Science Department

The Gradient Subspace Approximation 119

different approaches to compute such a direction according to the base algorithm. In

case of MOEA/D we propose to use the scalarization function in order to compute

the descent direction. On the other side, to apply the GSA into the IG-NSGA-II we

use the concept of descent direction proposed in [Schütze et al., 2011].

Descent direction using a scalarization function

A descent direction can be computed taking advantage of the scalarization function

used within MOEA/D. In particular, we are interested in the scalarization function

described in Equation (2.54) for unconstrained MOPs. Using such a scalar function

we can redefine the computation of the descent direction for the GSA approach.

Consider a candidate solution x0, a set of r neighboring points xi, . . . , xr ∈ Rn along

with r search directions ν1, . . . , νr. Using the search directions, we define a vector

T ∈ Rr where each entry can be obtained by:

Ti =
T (f(xi), w, z)− T (f(x0), w, z)

‖xi − x0‖2

, (4.102)

where w is the weight vector and z is the ideal point.

If we consider that the Tchebycheff scalarization function is applied in the context

of the gradient-free GSA we can rewrite Equation (4.25) as follows:

Ṽ T Ṽ λT = −T . (4.103)

Considering that λ∗T is a solution of Equation (4.103), then, the most greedy

direction can be computed as:

ν̃∗T =
−1

‖Ṽ λ∗T ‖2
2

Ṽ (Ṽ Tλ∗T)−1T . (4.104)

Descent direction using Lara direction

Our second approach computes a descent direction combining Lara’s descent direction

[Schütze et al., 2011] and the approximation given in Equation (4.100):

νL =

(
g̃1

‖g̃1‖
+

g̃2

‖g̃2‖

)
∈ Rn, (4.105)

Cinvestav Computer Science Department

120 Chapter 4

Q

νP
~

x0

νL
~

g1~

g1~|| ||2

g1~

g1~|| ||2

Figure 4.17: Example of correction step for Lara direction

where g̃1 and g̃2 represent the row vectors of the matrix J̃(x0).

Unfortunately, Equation (4.105) can only be applied for unconstrained MOPs. In

order to avoid such a restriction we extend the direction to handle inequality con-

strained problems. For such a purpose we use the gradient projection method of the

GSA. Hence, we propose to compute the direction νL and correct it if needed. For

example, Figure 4.17 presents a hypothetical example of the correction step. On such

example Lara’s direction points into the infeasible region (denoted by dotted lines)

and the correction step computes the new direction ν̃p.

If we consider that there exist l inequality constraints, we define matrix M̂ as in

Equation (4.62). Next, we construct the projection of the direction by computing

matrix V K̄ as in Equation (4.63). Finally, the desired projected direction is given

by:

ν̃p = V K̄(V K̄)TνL. (4.106)

4.7.4 Memetic algorithm

As mentioned above in order to show the effectiveness of GSA for MOPs, we propose

two memetic algorithms using different base algorithms. The first one, MOEA/D/GSA,

is based on MOEA/D and is designed for the treatment of unconstrained MOPs. The

second approach is based on IG-NSGA-II to solve inequality constrained MOPs. In

this section, we describe the algorithms and present the necessary mechanism for the

Cinvestav Computer Science Department

The Gradient Subspace Approximation 121

memetic realization.

Computing the initial step size

As mentioned above, one of the main challenges for the GSA realization is the com-

putation of the initial step size. If we remember given a candidate solution x0 we

compute the new candidate solution as:

xnew = x0 + t0 ν. (4.107)

In this case, we need to compute the initial step size. For such purpose, we propose

to take advantage of a given neighborhood structure (the computation of such struc-

ture will be described later on). Given a neighborhood structure N such as the one

proposed in Section 4.5.1, the initial step size t0 can be computed using Algorithm 25.

Algorithm 25 Pseudocode for computing the initial step size of multi-objective GSA.

Require: Candidate solution x0, Neighborhood N
Ensure: Initial step size t0

1: Set rN := |N |
2: Set n := |x0|
3: Set t0 := 0
4: for i = 1, . . . , rN do
5: Set y := N → xi

6: for j = 1, . . . , n do
7: Set t0 := t0 + |x0

j − yj|
8: end for
9: end for

10: Set t0 := t0
n rN

11: return t0

MOEA/D/GSA

The first memetic algorithm to be defined is the one that uses MOEA/D as its base

algorithm. One of the great advantages of such an algorithm is that it uses a scalariza-

tion function within its mechanism. Such property gives us an opportunity to apply

several of the mechanisms that have been proposed for the single-objective version of

GSA.

Cinvestav Computer Science Department

122 Chapter 4

MOEA/D computes a neighborhood structure according to its weight vectors wi.

Thus, we could use such a structure for the computations of GSA.

As mentioned before, one of the crucial mechanisms for the memetic algorithm is

the balancing of the shared resources, i.e. the distribution of the function calls for the

local search and the stochastic operators. Since we have the MOEA/D scalar function,

we are in the position to use the procedure described in [LaTorre, 2009, LaTorre et al.,

2011]. For such a procedure we need to compute the quality term q of each of the

techniques (GSA and MOEA/D). Consider a solution xi and its offspring xi+1 along

with their images: F (xi) and F (xi+1) respectively. The quality term according to the

Tchebycheff function can be obtained as follows:

q∗ =
T (F (xi+1), w, z)− T (F (xi+1), w, z)

T (F (xi+1), w, z)
, (4.108)

where q∗ refers to the quality of either of the techniques (qGSA or qMD for MOEA/D,

respectively).

Using a notation similar to Section 4.5.3 we named as OMD to the offspring sub-

population created using the MOEA/D procedures. The quality of OMD can be

computed as:

QMD =

∑|qMD|
i=1 qMD

i

|qMD|
. (4.109)

For the quality of the GSA subpopulation OMD, we proceed analogously as in

Equation (4.85).

Once we have computed the quality term we proceed to define the algorithm that

computes the participation ratios for each technique(RGSA and RMD). Algorithm 26

presents the pseudocode to compute such ratios. On the algorithm, we propose to

use values of R− = 0.1 and Rc = 0.05.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 123

Algorithm 26 Pseudocode of the participation ratio for MOEA/D/GSA.

Require: Initial participation ratios RGSA, RMD, Technique qualities QGSA, QMD,
Rc, R−

Ensure: Participation ratios R̄GSA, R̄MD

1: if QGSA > QMD then

2: ra := Rc

(
QGSA−QMD

QGSA

)
RGSA.

3: if (RMD − ra) < R− then
4: ra := RMD −R−.
5: end if
6: Set R̄GSA := RGSA + ra.
7: Set R̄MD := RMD − ra.
8: else if QMD > QGSA then

9: ra := Rc

(
QMD−QGSA

QMD

)
RMD.

10: if (RGSA − ra) < R− then
11: ra := RGSA −R−.
12: end if
13: Set R̄MD := RMD + ra.
14: Set R̄GSA := RGSA − ra.
15: else
16: Set R̄GSA := RGSA.
17: Set R̄MD := RMD.
18: end if

Finally, Algorithm 27 presents the realization of the memetic GSA. In the algo-

rithm, N represents the number of subproblems for MOEA/D.

Cinvestav Computer Science Department

124 Chapter 4

Algorithm 27 Pseudocode of the memetic MOEA/D/GSA.

1: Initializes the N weight vectors
2: Randomly create initial subproblem population P0.
3: Compute ideal point z
4: Set RMD := RGSA := 0.5.
5: Set i := 0.
6: while Stopping criteria is not met do
7: Set NGSA := bN RGSAc
8: Set NMD := bN RMDc
9: Compute dN := N − (NGSA +NMD)

10: if dN > 0 then
11: Set NGSA := NGSA + bdNc
12: Set NMD := NMD + ddNe
13: end if
14: Randomly select NMD individuals from Pi to create OMD

15: Randomly select NGSA individuals from Pi to create OGSA

16: Set qMD := 0 ∈ RNMD

17: for j = 1, . . . , NMD do
18: Compute crossover and mutation on OMD → xj

19: Compute qMD
j using Equation (4.84)

20: end for
21: Compute QMD using Equation (4.109)
22: Set qGSA := 0 ∈ RNGSA

23: for j = 1, . . . , NGSA do
24: Set x := OGSA → xj

25: Compute neighborhood of x
26: Compute initial step size t0 using Algorithm 25
27: Compute ν as in Equation (4.104)
28: Set xa := x+ tν
29: Compute qGSAj using Equation (4.84)
30: end for
31: Compute QGSA using Equation (4.85)
32: Update participation ratios RMD, RGSA using Algorithm 26
33: Update the MOEA/D subproblems population Pi+1 using OMD and OGSA

34: Update ideal point z
35: Set i := i+ 1
36: end while

IG-NSGA-II/GSA

In order to handle constrained MOPs we present our next realization: the IG-NSGA-

II/GSA. In this particular method, we change the procedure to apply the local search

Cinvestav Computer Science Department

The Gradient Subspace Approximation 125

strategy. In particular, we propose to apply the local search using two different pa-

rameters: φG and φI . The φG value is used to control at which generation the local

search is applied (for our method we set the value as 10). The second parameter φI

gives us a probability that defines if an individual is affected by the local search or

not. For the memetic algorithm we set φI = 0.1.

For the construction of our method we refer to Algorithm 7. In particular, we

modify only the mechanism that defines how the local search is applied. The first

step to define is the computation of the neighborhood structure. Given a candidate

solution x0 we compute its neighborhood structure as in Algorithm 20.

Algorithm 28 present the local search application. For such method we need to

know what is the actual generation so we introduce the parameter IG that give us

such value. Besides, we use the function mod that computes the module of a number.

Finally, we use the modified Lara’s direction procedure proposed in Equation (4.105).

Also, if needed, we compute the projection of such direction.

Algorithm 28 Pseudocode for local search of IG-NSGA-II/GSA.

Require: Candidate solution x0, Neighborhood structure N , Generation number IG
Ensure: New candidate solution xnew

1: if mod(phiG, IG) = 0 then
2: Compute random value u ∈ [0, 1]
3: if u ≤ φI then
4: Compute ν using Equation (4.105)
5: Compute the number of active inequality constraints l
6: if l > 0 then
7: Project ν using Equation (4.106)
8: end if
9: Compute initial step size t0 using Algorithm 25

10: Set xnew := x0 + t0ν
11: end if
12: end if

4.7.5 Numerical Results

In this section, we present several experiments to show the effectiveness of GSA as

an effective tool within multi-objective memetic algorithms. We performed three

different experiments to illustrate the performance of GSA on MOPs. The first ex-

Cinvestav Computer Science Department

126 Chapter 4

periment tests the standalone GSA used along with Lara’s direction. The second

experiment presents the results for MOEA/D/GSA with unconstrained MOPs. Fi-

nally, we present the results of the memetic IG-NSGA-II/GSA.

GSA with Lara’s direction

First, we investigate the influence of the parameter r in the construction of the

GSA direction. As an example we consider the unconstrained convex bi-objective

problem given by Equation (3.19) with n = 10, a1 = (1, . . . , 1)T ∈ Rn and a2 =

(−1, . . . ,−1)T ∈ Rn.

For the experiment, we generated a random candidate solution x0. Next, we com-

pute several candidate solutions using different values of r to compute the descent

direction. To compute any of the new candidate solutions we fix the step size values

t = 1. Figure 4.18 presents the result of our experiment.The y0 value represents the

image of the original candidate solution. Meanwhile, the y1 value indicates the can-

didate solution generated using the exact gradient information. From the figure, it is

visible that we obtain an improvement for the computation of the ν direction as the

number of neighbors increases.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

f1

f 2

Pareto Front
y0

r=3
r=5
r=7
y1

Figure 4.18: Results of the approximation using several values of r

Since the consideration of one step has no significance, we consider an entire

trajectory of solutions starting with x0 using r = 5. In Figure 4.19, a sequence of 15

Cinvestav Computer Science Department

The Gradient Subspace Approximation 127

iterations is shown. As it can be seen, the iterations come close to the Pareto front.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

f
1

f 2

PF
GSA

F(x0)

Figure 4.19: Standalone GSA applied on a quadratic function

As already mentioned above, more theoretical investigations are required to fully

understand our proposed GSA-based local search engine which we, however have to

leave to future research. In the following we focus on the effect of the GSA-based

local search engine within memetic multi-objective evolutionary algorithms.

MOEA/D/GSA

For this experiment we use the original version of the MOEA/D algorithm as it was

presented in [Zhang and Li, 2006]. A comparison using two different state-of-the-art

indicators is performed. The ∆2 indicator [Schütze et al., 2012] and the hypervolume

indicator [Zitzler and Thiele, 1999] were selected for the comparison. We propose

to compare the algorithms (the standalone and the memetic version) after they have

spent a certain number of function calls. We performed our comparison when the

algorithms reached 30, 000 function evaluations for the problems with two objectives

and 50, 000 evaluations for k = 3. We stress out that MOEA/D is not explicitly

aiming at one of any existing performance indicators. Instead, it measures the success

via improvements in the scalarization functions. Hence, along with the two state-of-

the-art indicators, we propose a specialized indicator that measuares the averaged

scalar value of the whole population (and thus, in a sense the overall success of the

Cinvestav Computer Science Department

128 Chapter 4

MOEA/D variants). Such an indicator can be defined as follows:

W (P) =
N∑
i

T (F (xi), wi, z), (4.110)

where xi ∈ P is the best individual for the i-th subproblem.

To confirm that the GSA method can really improve a memetic algorithm it be-

comes necessary to make a comparison on different test functions. In particular, for

this memetic strategy we selected two of the state-of-the-art benchmark suites. The

first selected set of functions is the ZDT benchmark functions proposed in [Zitzler

et al., 2000b]. For the second part of the experiments we use the DTLZ benchmark

for k = 3 [Deb et al., 2002b].

Table 4.10 presents the parameters used for each of these benchmarks.

Table 4.10: Parameters for the MOEA/D/GSA algorithm.

Parameter Description
Value

ZDT DTLZ
ηc Distribution index for crossover 20
ηm Distribution index for mutation 20
pc Crossover probability 0.95
pm Mutation probability 1/n
N Number of subproblems 100 300
k Number of objectives 2 3
r Number of neighbors for GSA 5

Gmax Maximum participation GSA 0.2

We performed a statistical analysis of the algorithms. To create such study, we

performed 30 independent runs on each test problem. Table 4.11 presents the aver-

aged values for the indicators. The Nadir points used to compute the hypervolume

indicator are (11, 11)T ∈ R2 and (5, 5, 5)T ∈ R3. For the new indicator W , the novel

hybrid outperforms its base algorithm significantly in 11 out of the 12 cases.

Figure 4.20 presents the PF for the best individual on each of the ZDT problems.

Here, it is possible to observe that in most cases, the GSA helps the algorithm to

achieve a ‘better’ approximation of the entire Pareto Front.

Cinvestav Computer Science Department

The Gradient Subspace Approximation 129

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2
PF
MOEA/D
MOEA/D/GSA

(a) ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(b) ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(c) ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(d) ZDT4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

PF
MOEA/D
MOEA/D/GSA

(e) ZDT6

Figure 4.20: Pareto Fronts obtained for the ZDT problems by MOEA/D and
MOEA/D/GSA.

Cinvestav Computer Science Department

130 Chapter 4

Table 4.11: Averaged indicator results for unconstrained problems

Function
Hypervolume ∆2 W (x)

MOEA/D MOEA/D/GSA MOEA/D MOEA/D/GSA MOEA/D MOEA/D/GSA
ZDT1 24.2531 24.5305 0.8066 0.5015 16.0381 13.7135

(St. Dev.) (0.2278) (0.0433) (0.3926) (0.1375) (1.5135) (0.1881)
ZDT2 22.1539 24.0682 4.2378 0.6025 40.2538 20.0983

(St. Dev.) (1.7131) (0.0702) (3.9923) (0.1714) (12.7199) (0.1391)
ZDT3 27.6687 27.6976 0.3903 0.4213 30.6727 31.1881

(St. Dev.) (0.3988) (0.1476) (0.1812) (0.1484) (2.7405) (0.7829)
ZDT4 23.1709 24.1375 2.3827 0.9671 24.9274 16.1069

(St. Dev.) (0.5267) (0.2766) (1.1386) (0.4930) (3.0761) (1.2013)
ZDT6 22.5058 22.8532 1.5651 0.7226 29.8828 24.0028

(St. Dev.) (0.1151) (0.0921) (0.7848) (0.1022) (0.3314) (0.3410)
DTLZ1 120.8728 120.8730 0.0123 0.0094 8.2649 8.2592

(St. Dev.) (0.0007) (0.0005) (0.0117) (0.0084) (0.0103) (0.0064)
DTLZ2 120.2100 120.2100 0.0695 0.0694 21.5236 21.5234

(St. Dev.) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001)
DTLZ3 120.1706 120.1600 0.3464 0.2913 28.7256 22.0747

(St. Dev.) (0.0233) (0.0399) (0.2708) (0.2183) (10.7103) (0.2694)
DTLZ4 119.2377 120.2100 0.8813 0.0616 28.6428 21.5237

(St. Dev.) (3.0711) (0.0003) (2.5885) (0.0006) (13.1820) (0.0003)
DTLZ5 1,319.0190 1,318.9923 0.4415 0.4374 47.3239 47.3158

(St. Dev.) (0.0484) (0.1619) (0.0087) (0.0108) (0.0141) (0.0010)
DTLZ6 1,307.9325 1,309.7949 72.8745 60.4012 67.3016 64.3943

(St. Dev.) (1.5831) (1.1897) (9.5533) (7.5192) (2.3840) (1.7276)
DTLZ7 992.4941 992.2704 11.8537 19.6412 325.7372 269.0209

(St. Dev.) (0.1976) (0.1150) (0.5595) (0.6125) (0.0969) (0.0107)

IG-NSGA-II

The next set of experiments were designed in order to show that the GSA can be

used to handle constrained problems. Since we are replacing the local search method

of the IG-NSGA-II we adopted all the parameters from such algorithm. First, we

consider some of the test problems presented in [Coello et al., 2007]. The definitions

of such functions can be found in Appendix C. The maximization problems presented

on the definitions were transformed into minimization problems. The constraints of

the problems were also transformed into the form g(x) ≤ 0. We stress out that all

constraints are relatively easy in the sense that the feasible set is not of a highly

complex structure. Table 4.12 presents the values for the parameters for the memetic

algorithm.

The results obtained in Table 4.13 show that GSA can improve the results in

most of the test problems according to the ∆2 indicator. Table 4.13 also presents

the number of function evaluations used as our stopping criterion. Moreover, the

table also presents the Nadir point used to compute the hypervolume indicator. It

is important to mention that some indicator values obtained by GSA significantly

outperformed the standalone algorithm.

Taking these results into consideration, now we are in position to confirm the

efficiency of GSA when it is used within a memetic strategy. As a last experiment

we used the constrained CF test functions proposed in [Zhang et al., 2009b]. Such

constraints can considered to be complex. We performed a similar comparison as

in the previous method. We measured ∆2 and the hypervolume at certain stage of

Cinvestav Computer Science Department

The Gradient Subspace Approximation 131

Table 4.12: Parameters for the IG-NSGA-II/GSA algorithm.

Parameter Description Value
ηc Distribution index

for crossover
20

ηm Distribution index
for mutation

20

γ1 Crossover probabil-
ity

0.9

γ2 Mutation probabil-
ity

1/n

N Number of individ-
uals

100

r Number of neigh-
bors for GSA

5

γ3 Frequency of the lo-
cal search

3

Table 4.13: Averaged indicator results for constrained problems

Function Hypervolume ∆2 Max Eval.
IG-NSGA-II IG-NSGA-II/GSA IG-NSGA-II IG-NSGA-II/GSA (Nadir point)

Belegundu 212.8721 213.1354 1.6844 1.5900 3,000
(std. dev.) (0.3205) (0.2261) (0.1587) (0.1030) (12,12)

Binh(2) 10,294.0037 10,300.6309 0.7047 0.6172 3,000
(std. dev.) (17.2207) (9.8055) (0.2812) (0.1667) (250,50)

Binh(4) 705.4772 728.7873 0.8863 0.5061 30,000
(std. dev.) (12.2397) (8.0167) (0.1915) (0.1239) (5,7,5)
Obayashi 22.0321 21.9269 0.8084 0.7792 20,000

(std. dev.) (0.7574) (0.7103) (0.2869) (0.2772) (5,5)
Osyczka 59.8672 59.5651 3.2946 2.3881 20,000

(std. dev.) (1.4790) (1.7873) (1.9568) (1.4040) (30,30)
Osyczka(2) 12,780.7978 13,701.1984 47.8491 30.8044 30,000
(std. dev.) (42.6364) (11.0854) (4.3380) (1.0707) (0,85)

Srinivas 212.8191 213.1927 1.4871 1.3925 3000
(std. dev.) (0.3723) (0.0714) (0.2364) (0.1769) (250,50)

Tamaki 124.3239 124.3054 0.1353 0.1515 10,000
(std. dev.) (0.0363) (0.0252) (0.0252) (0.0366) (5,5,5)

Tanaka 22.9022 24.9672 0.0672 0.0468 10,000
(std. dev.) (0.7516) (0.0249) (0.0472) (0.0100) (5,5)
Viennet(4) 190.2843 191.6098 0.1015 0.0978 10,000
(std. dev.) (0.6212) (0.4552) (0.0048) (0.0060) (8,-10,30)

Cinvestav Computer Science Department

132 Chapter 4

the evolution (i.e. at 30, 000 and 50, 000 function evaluations). For the experiments

we set the nadir point for hypervolume as (5, 5)T ∈ R2 and (5, 5, 5)T ∈ R3. Table

4.14 presents the averaged results measured by the proposed indicators. The results

are obtained taking into consideration only the feasible solutions obtained by the

algorithms. By such reason CF10 is not in the statistical results since none of the

algorithms obtained feasible solutions.

Table 4.14: Averaged indicator results for the CF test problems

Function Hypervolume ∆2

IG-NSGA-II IG-NSGA-II/GSA IG-NSGA-II IG-NSGA-II/GSA
CF1 22.6991 22.7063 0.3488 0.2809

(St. Dev.) (0.0108) (0.0160) (0.1134) (0.0457)
CF2 23.9966 24.1846 3.7094 2.6267

(St. Dev.) (0.2304) (0.1409) (0.8217) (1.1457)
CF3 21.7779 21.9743 8.8626 8.6404

(St. Dev.) (0.7876) (0.8831) (1.3550) (1.7076)
CF4 22.5691 22.9710 4.0301 3.4467

(St. Dev.) (0.6465) (0.5158) (0.8088) (0.7596)
CF5 20.8112 20.6415 10.0656 11.6749

(St. Dev.) (1.0878) (1.1346) (2.1827) (3.3711)
CF6 23.6467 24.0427 3.6043 1.7815

(St. Dev.) (0.4994) (0.2493) (1.8984) (0.5572)
CF7 20.9140 21.3019 16.1164 13.6514

(St. Dev.) (0.6613) (0.9006) (5.2138) (6.0834)
CF8 153.2641 154.5096 55.8651 47.8166

(St. Dev.) (3.3233) (3.2633) (7.8279) (10.3452)
CF9 123.3425 123.6872 15.1201 14.6615

(St. Dev.) (0.7494) (0.3098) (2.8301) (1.9893)

Figure 4.21 presents some of the Pareto Fronts obtained by the algorithms on the

CF test suite.

Discussion of the results

In this section, we have discussed the applicability of the GSA in the context of

multi-objective optimization. The GSA utilizes existing neighborhood information

from a given candidate solution and approximates the best approximation of the

gradient within the subspace of the decision variable space. Thus the computation

of the search direction via GSA comes ideally for free for population based search

algorithms such as evolutionary algorithms. Here, we have discussed the GSA for

the case that multiple objectives have to be considered concurrently. To this end, we

have

Cinvestav Computer Science Department

The Gradient Subspace Approximation 133

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f2

f 1

PF
IG-NSGA-II
IG-NSGA-II/GSA

(a) CF1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(b) CF2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.4

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

1.2

(c) CF3

0 0.2 0.4 0.6 0.8 1 1.2 1.40.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(d) CF4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(e) CF5

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

1.2

1.4

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

(f) CF6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

PF
IG-NSGA-II
IG-NSGA-II/GSA

1

(g) CF7

Figure 4.21: Pareto Fronts obtained by IG-NSGA-II and IG-NSGA-II/GSA for the
CF test problems.

Cinvestav Computer Science Department

134 Chapter 4

• empirically shown that the existing neighborhood information within popula-

tions of multi-objective evolutionary algorithms is sufficient for the application

of GSA,

• discussed how to approximate the Jacobian matrix at a given candidate solution

x0 via GSA,

• discussed how to adapt Lara’s search direction in case inequality constraints are

at hand and how to choose the step size control,

• proposed two particular GSA-based memetic algorithms,

• presented numerical results on some selected benchmark problems. In both

cases, the application of the local search which comes basically for free in terms

of additional function calls significantly improved the performance of the base

algorithm.

Interpreting the results we can confirm that GSA can be coupled with some state-

of-the-art algorithms to improve its convergence rate. In this work, we present several

mechanisms to couple the algorithms. But, there exists some more work to do. For

example, for the case when we do not use a scalarization function we need to improve

the balancing mechanisms. For example, we can extend the balancing mechanisms

presented in [LaTorre et al., 2011] for such purpose. Finally, the local search procedure

requires more specializad constraint handling mechanism. For example, we can pro-

ceed by adapting the interior method points to use GSA as an approximation method.

Cinvestav Computer Science Department

Chapter 5

Subspace Polynomial Mutation

In most state-of-the-art MOEAs the solution of a constrained MOP is obtained only

based on selection mechanisms. Such mechanisms consider the constraint violation

to decide which solutions survive to the next generation of the algorithm. In this

context there are few MOEAs that incorporate specialized mechanisms to generate

an offspring for constrained MOPs. Moreover, in some cases the use of the same evo-

lutionary operators for unconstrained and constrained problems is quite common. In

this chapter, we propose an specialized mutation operator that handles constrained

problems. The Subspace Polynomial Mutation (SPM) [Alvarado et al., 2016] is an

operator that generates a new candidate solution performing an exploratory move-

ment along the active constraints of the problem.

SPM is an operator that modifies the state-of-the-art polynomial mutation (PBX)

proposed in [Deb and Goyal, 1996]. The main idea of SPM is to extend the PBX

method in order to incorporate movements along the constraints into its mechanism.

To present the realization of such operator we analyze some of the ideas on which such

operator is based on. The first idea used by SPM is the Multi-objective Stochastic

Local Search (MOSLS) presented in [Schütze et al., 2016].

5.1 Multi-objective Stochastic Local Search

The MOSLS method presents the relation that exists between a stochastic sampling

in a neighborhood of a candidate solution and its movement towards and along the

Pareto front. Such movements can be described using sampling around the neighbor-

hood of the candidate solution x0 ∈ Rn. According to the samples we can describe

135

136 Chapter 5

the expected movement of a search direction according to the position of F (x0) in

the objective space. The positions described in this work are proposed in [Brown and

Smith, 2005b]. Consider that there exist three different positions for a given candi-

date solution; the first one is when F (x0) is ‘far away’ from the PF. A second position

is defined when F (x0) is ‘near’ to the PF. Finally, the last position ‘in between’,i.e.,

when the objective value F (x0) is not far neither near to the PF on unconstrained

MOPs.

5.1.1 MOSLS movement according to the position of x0

Consider a search direction ν ∈ Rn and the Jacobian of the candidate solution

J(x0) ∈ Rk×n. Using such information we are in the position to analyze the relation

between ν and the movement in the objective space given by J(x0)ν. As described

above, such movement possesses a relation according to the existing distance between

F (x0) and the PF.

F (x0) is ‘far away’ from PF

As described in [Brown and Smith, 2005b] when a solution is sufficiently ‘far away’

from the PF it has been observed that typically the gradient of x0 points into the

same direction. That is, given a vector µ̄ ∈ Rk where µ̄i > 0 it holds that:

∇fi(x0) = µ̄i∇f1(x0), i = 1, . . . , k, (5.1)

where µ̄i represents the i-th entry of vector µ̄.

Using such property we can describe the movement given by a search direction ν

as follows:

J(x0)ν =

 ∇f1(x0)T

...

∇fk(x0)T

 ν =

 µ̄1∇f1(x0)Tν
...

µ̄k∇f1(x0)Tν

 = ∇f1(x0)Tνµ̄. (5.2)

In this case, the dimension of the kernel of J(x0) is k − 1. Given such property

the probability is equal to one that J(x0)ν 6= 0 . Such statement indicates that for

a randomly generated search direction ν one always obtains a movement in the µ̄

Cinvestav Computer Science Department

Subspace Polynomial Mutation 137

direction. Since we have selected a vector µ̄ where each of the entries are greater that

zero, the ν vector generates either a dominated or a dominating solution. Assume

that we compute a dominated candidate solution y such that:

y = x0 + tν, (5.3)

where t ∈ R+. In this case, we can compute a descent direction as follows:

ν̃ =
x0 − y
‖x0 − y‖2

. (5.4)

F (x0) is ‘near’ to PF

The second stage to be analyzed is the one where the candidate solution is close to

the set of KKT solutions. Consider that for x0 there exists a vector α ∈ Rk such

that
∑k

i=1 αi = 1, where αi > 0, i = 1, . . . , k and J(x0)Tα = 0. Applying the same

analysis as above we proceed to describe the movement in objective space given by

the search direction ν:

〈J(x0)ν, α〉 = 〈ν, J(x0)Tα〉 = 0. (5.5)

Equation (5.5) specifies that for a given search direction ν the an orthogonal move-

ment with respect to α is performed. Hence, the movement is also orthogonal to the

linearized PF because α is also orthogonal to such linearization. As we stated above,

the rank of J(x0) of a KKT point is k − 1. Such statement confirms that we can

expect with a probability one a movement along the linearized PF.

F (x0) is ‘in between’

The final location to be analyzed is the one where the image of the candidate solu-

tion is on neither of both cases described above. At this position, the movements

performed by ν can not be described as toward the PF or orthogonal to it. Instead,

given a direction d ∈ Rk there exist a (n− k) dimensional subspace S(d) ⊂ Rn such

that for any ν it holds that:

J(x0)ν = d. (5.6)

Cinvestav Computer Science Department

138 Chapter 5

Example

To illustrate the statements described above, we present an example for the three

different positions of F (x0). Thus, we propose to use the function described in Equa-

tion (3.19). In particular, for this experiment we propose the values: n = 2, k = 2

and the vectors a1 = (1, 1)T and a2 = (−1,−1)T . The different positions for x0 are

described using three different points: the far away point using x1
0 = (30,−30)T , the

in between point as x2
0 = (1, 1)T and the near point as x3

0 = (0, 0)T . For each of the

points, we generate 100 new points in the neighborhood N(x0) such that:

xi = x0 + tν, i = 1, . . . , 100, (5.7)

where t is randomly computed such that t ∈ (0, δ], where δ is a given value that

defines the size of the neighborhood. Using the value of δ, the neighborhood N(x0)

can be defined as follows:

N(x0) = {x ∈ Rn : ‖x0 − x‖ ≤ δ}. (5.8)

The values of δ are set according to the position of F (x0): δ = 2.5 for the far away

case and δ = 0.25 for the in between and the near cases. Algorithm 29 presents the

computation of a solution in N(x0).

Algorithm 29 Pseudocode for computation of a candidate solution y ∈ N(x0)

Require: Candidate solution x0 , Neighborhood size δ
Ensure: Neighboring solution y

1: Compute a random vector ν ∈ Rn

2: Set ν := ν
‖ν‖

3: Compute a random value for t ∈ (0, δ]
4: Set y := x0 + t ν
5: return y

Figure 5.1 presents the results of the computations described above. The Pareto

set and the Pareto front are shown for each of the positions of x0. As expected, in

case that F (x0) is far away from the PF, the randomly generated solutions are either

dominating or dominated by x0. Analogously, when a candidate solution is near to

the PF it is shown that the new candidate solutions in the neighborhood of x0 are

generated along the linearized PF. Furthermore, if x0 is in between, the generated

solutions can exist in all the possible directions around F (x0).

Cinvestav Computer Science Department

Subspace Polynomial Mutation 139

−5 0 5 10 15 20 25 30 35
−35

−30

−25

−20

−15

−10

−5

0

5

x
1

x 2

xi

x0

PS

(a) Parameter space for far away position

0 500 1000 1500 2000
−200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

f
1

f 2

F(xi)

F(x0)

PF

(b) Objective space for far away position

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

xi

x0

PS

(c) Parameter space for in between position

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

f
1

f 2

F(xi)

F(x0)

PF

(d) Objective space for in between position

−1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x 2

xi

x0

PS

(e) Parameter space for near position

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

f
1

f 2

F(xi)

F(x0)

PF

(f) Objective space for near position

Figure 5.1: Example for MOSLS randomly generated solutions

Cinvestav Computer Science Department

140 Chapter 5

5.1.2 MOSLS with inequality constraints

The next step to be considered is the incorporation of constraints within MOSLS.

In particular, the SPM realization only considers inequality constraints so we define

the MOSLS for such kind of problems. The first step for the constrained MOSLS

realization is to consider a given MOP that is defined with only inequality constraints

as follows:

minx F (x)

s.t. gi(x) ≤ 0
. (5.9)

Consider a KKT point x∗ of Equation (5.9) where there exist l active constraints.

Define a matrix Ḡ ∈ Rl×n as follows:

Ḡ :=

 ∇g1(x∗)T

...

∇gl(x∗)T

 . (5.10)

Considering a vector λ ∈ Rl and a vector α ∈ Rk such that
∑k

i=1 αi = 1, i =

1, . . . , k and αi ≥ 0 we can define the Lagrangian of the point x∗ as follows:

k∑
i=0

αi∇f(x∗) +
l∑

j=0

λj∇g(x∗) = J(x∗)Tα +GTλ = 0. (5.11)

Now, assume that a vector ν ∈ Rn is given such that:

Gv = 0. (5.12)

Using Equation (5.12) we are in position to claim that if we perform a movement

along ν it holds that such movement is also along the linearization of the PF :

〈J(x∗)ν, α〉 = 〈ν, J(x∗)Tα〉 = −〈ν,GTλ〉 = −〈Gν, λ〉 = 0. (5.13)

To compute an orthogonal movement along the constraints, we need to find the

kernel vectors of G. Such computations are divided on two different cases: when the

problem has only linear inequality constraints and in the general case, i.e. for a non-

linear g(x).

Cinvestav Computer Science Department

Subspace Polynomial Mutation 141

Linear Inequality Constraints

The first case computes the kernel for a problem where the constraints are defined as:

gi(x) = aTi x− bi, i = 1, . . . , l, (5.14)

where x ∈ Rn and bi ∈ R. Thus, the gradient of each of the constraint is defined as

follows:

∇gi(x) = ai, i = 1, . . . , l. (5.15)

We start the computation of the kernel by defining a matrix A ∈ Rn×l as follows:

A = (a1, . . . , al). (5.16)

The next step is to obtain a vector ν orthogonal to all ai. For this task, we propose

to compute a QR decomposition of matrix A such that:

A = QR = (q1, . . . , ql, ql+1, . . . , qn)R. (5.17)

By construction, ai ∈ span{q1, . . . , ql} and the orthonormal basis of the kernel

can be computed using a matrix Q̄ = (ql+1, . . . , qn). Algorithm 30 presents the pseu-

docode to compute direction ν ∈ span{ql+1, . . . , qn}. The algorithm uses a random

vector ν̄ ∈ Rn−l such that for each entry of the vector it holds that ν̄i ∈ (0, 1).

Algorithm 30 Pseudocode for MOSLS with linear inequalities

Require: Candidate solution x0 , Neighborhood size δ
Ensure: Neighboring solution y

1: Compute a random vector ν̄
2: Compute matrix A as in Equation (5.16)
3: Compute QR decomposition of A
4: Set Q̄ := (ql+1, . . . , qn)
5: Compute ν := Q̄ ν̄
6: Set ν := ν

‖ν‖
7: Compute a random value for t ∈ (0, δ]
8: Set y := x0 + t ν
9: return y

Cinvestav Computer Science Department

142 Chapter 5

One special case occurs when the constraints are defined as box constraints. In

this case, each constraint is defined in the form:

gi(x) = ±xj − bi ≤ 0, i = 1, . . . , l, (5.18)

where xj is the j-th component of x and bi ∈ R. Analogously, the gradient of the

constraints is as follows:

∇gi(x) = ±ej, i = 1, . . . , l, (5.19)

where ej represent the j-th canonical vector. Defining the indexes:

I = {1, . . . , n} \ {j1, . . . , jl}, (5.20)

where jl is the index of the canonical vector for the l-th gradient obtained using

Equation (5.19). Hence, we can compute a neighboring solution of x0 using Algorithm

31.

Algorithm 31 Pseudocode for MOSLS with box constraints

Require: Candidate solution x0 , Neighborhood size δ
Ensure: Neighboring solution y

1: Compute a random solution ȳ using Algorithm 29
2: Compute I as in Equation (5.20)
3: Set y := x0

4: for i = 1, . . . , n do
5: if i 6∈ I then
6: yi := ȳi
7: end if
8: end for
9: return y

To illustrate the effectiveness of the MOSLS we propose the following example.

Assume a MOP as the one defined in Equation (3.19). But, we add the following

inequality constraint to the problem:

g1(x) =
1

3
x1 − x2 + 0.1 ≤ 0. (5.21)

For such a problem we set the values n = 2, k = 2, a1 = (1, 1)T and a2 =

(−1,−1)T . Thus, we generate 100 points using Algorithm 31. The candidate solution

is proposed as x0 = (−0.07, 0.0767)T along with a δ = 0.25. Figure 5.2 presents

the results of applying MOSLS on linear inequality constrained problems. On such

Cinvestav Computer Science Department

Subspace Polynomial Mutation 143

−1.5 −1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x
2

PS

x
i

x
0

(a) Parameter space

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

f
1

f 2

PF

F(x
i
)

F(x
0
)

(b) Objective space

Figure 5.2: Example for MOSLS with linear inequality constraints

figure the PS and the PF show the correctness of the method. As expected, MOSLS

generates points along the constraint and such points are also part of the PF.

Analogously, we apply the MOSLS method to box constrained problems. For such

experiment, we use again the problem defined in Equation (3.19). Besides, for our

purposes we consider the values n = 2, k = 2, a1 = (1, 1)T and a2 = (−1,−1)T .

Finally, we add the following box constraint to the problem:

g1(x) = −x2 ≤ 0. (5.22)

Given a x0 = (−0.4, 0)T as the initial candidate solution we generate 100 solutions

using Algorithm 31. In the computation we define a value for δ = 0.25. Figure 5.3

presents the PS and the PF obtained by the method. From Figure 5.3 it is clear that

the the new candidates solutions are also distributed along the constraint.

General Inequality Constraints

The next step for the realization of MOSLS is to describe the procedure to handle

general inequality constraints. Assume that we are given search directions νi, i =

1, . . . , r, along with the directional derivatives for such directions:

〈∇gj(x0), νi〉, i = 1, . . . , r, j = 1, . . . , l. (5.23)

Cinvestav Computer Science Department

144 Chapter 5

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

x
1

x
2

PS

x
i

x
0

(a) Parameter space

0 1 2 3 4 5
1

2

3

4

5

6

7

8

f
1

f 2

PF

F(x
i
)

F(x
0
)

(b) Objective space

Figure 5.3: Example for MOSLS with box constraints

Given a randomly generated vector σ ∈ Rr we are interested in search directions

ν within the subspace span{ν1, . . . , νr}, such that:

〈∇gj(x0), νi〉 = 〈∇gj(x0),
r∑
i=1

σiνi〉 =
r∑
i=1

σi〈∇gj(x0), νi〉 = 0, i = 1, . . . , l, j = 1, . . . , r.

(5.24)

Define a matrix V ∈ Rn×r as follows:

V = (ν1, . . . , νr), (5.25)

and the matrix multiplication GV as:

GV =

 〈∇g1(x0), ν1〉 . . . 〈∇g1(x0), νr〉
...

...

〈∇gl(x0), ν1〉 . . . 〈∇gl(x0), νr〉

 . (5.26)

Using the definition for GV we are now in the position to compute an orthonormal

basis. Next, we compute a search direction ν in the subspace of νi, i = 1, . . . , r.

Assuming that r > l it holds that:

GV σ = 0. (5.27)

Hence, we are interested in the computation of the kernel of GV. Using the QR

Cinvestav Computer Science Department

Subspace Polynomial Mutation 145

factorization we can compute the orthonormal basis:

(GV)T = QR = (q1, . . . , ql, ql+1, qn)R. (5.28)

After we compute the QR decomposition of matrix GV we can define a matrix

Q̃ = (ql+1, . . . , qn) ∈ Rn×(r−l), (5.29)

such that the new search direction is defined as:

ν = Q̃σ. (5.30)

In the formulation described above we assumed that certain pieces of information

were given, such as the νi search directions and the values of the directional deriva-

tives. As we previously did with other methods we can approximate such information

using neighboring points of x0. Given xi, i = 1, . . . , r, we approximate the search

directions using Equation (3.13). Analogously, if we have the constraint values of

the xi points we can approximate the directional derivatives of Equation (5.26) using

Equation (4.61).

Algorithm 32 presents the pseudocode to compute a search direction ν using the

mechanism described above. In principle, such realization is more expensive in com-

parison with the linear inequalities algorithm. Such cost increases since we need to

compute several points and their constraints values before constructing the ν direc-

tion. The algorithm uses the same neighborhood structure as the one presented in

Section 4.4.1. In the algorithm, r ∈ N represents the number of search direction to be

considered in the computation. Meanwhile, δ ∈ R is a numerical value that defines

the maximal 2-norm of any individual in the neighborhood.

We introduce an example to illustrate the effectiveness of the method. Consider

the bi-objective problem of Equation (3.19) with n = 2, k = 2, a1 = (1, 1)T and

a2 = (−1,−1)T . Now, we add a constraint to the problem in the form:

g1(x) = −x2
1 + x2 + 1 ≤ 0. (5.31)

For the problem described above we generate 100 points in the neighborhood us-

ing two different candidate solutions: x1 = (0.20534,−0.95659)T and x2 = (−0.90317,

−0.18197)T . For each candidate solution we apply the method described in Algorithm

Cinvestav Computer Science Department

146 Chapter 5

Algorithm 32 Pseudocode for MOSLS with general inequality constraints

Require: Candidate solution x0 , Neighborhood N of x0, Neighborhood size δ
Ensure: Neighboring solution y

1: Set GV := ∅
2: for i = 1, . . . , r do
3: Set xa := N → xi

4: Set g0 := g(x0) ∈ Rm

5: Set ga = N → gi

6: Set j := 1
7: for s = 1, . . . ,m do
8: if g0

s is active then

9: Compute m̃ = gas−g0
s

‖xa−x0‖2
10: Set the entry of GVij as m
11: Set j := j + 1
12: end if
13: end for
14: end for
15: Compute QR decomposition of GV
16: Compute matrix Q̃ as in Equation (5.29)
17: Compute a random vector σ
18: Compute ν as in Equation (5.30)
19: Set ν := ν

‖ν‖
20: Compute a random value for t ∈ (0, δ]
21: Set y := x0 + t ν
22: return y

32. For this purpose, we set the value of δ = 0.1. Figure 5.4 presents the neighboring

solutions generated this way. From such figures it is visible that the solutions are

generated in the linearization of the constraint. Hence, if the value δ increases the

generated neighboring solution gets far away from the constraint and, therefore, a

correction step would be desirable.

5.1.3 Main idea of SPM

As mentioned above SPM is a modified version of the PBX mutation operator. The

main idea of SPM is to use all the properties observed by MOSLS to perform a move-

ment along the active constraints. Such movement, in principle, generates a new

feasible candidate solution that belongs to the PF (or at least it’s close enough to it).

The application of the new mutation operator can lead to generate solutions along

Cinvestav Computer Science Department

Subspace Polynomial Mutation 147

−1 −0.5 0 0.5 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x
1

x
2

PS

x
i

x
0

(a) Parameter space for x1

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1

f 2

PF

F(x
i
)

F(x
0
)

(b) Objective space for F (x1)

−1 −0.5 0 0.5 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

x
1

x
2

PS

x
i

x
0

(c) Parameter space for x2

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1

f 2

PF

F(x
i
)

F(x
0
)

(d) Objective space for F (x2)

Figure 5.4: Example for MOSLS with general inequality constraints

Cinvestav Computer Science Department

148 Chapter 5

the PF, which, in consequence, gives us a better approximation of the PF.

First, we will describe the PBX mutation operator as in [Deb and Goyal, 1996].

PBX mutates each component of the candidate solution using a polynomial probabil-

ity distribution. For each entry of the candidate solution xi, i = 1, . . . , n, a random

value u ∈ (0, 1) is generated. Next, a perturbation factor δ is computed using a

distribution index nm:

δq =

(2u+ (1− 2u)(1− δ)nm+1)
1

nm+1 − 1, u ≤ 0.5

1− ((2(1− u) + 2(u− 0.5)(1− δ)nm+1)
1

nm+1 , u > 0.5
, (5.32)

where δ uses the upper bound xu and the lower bound xl of the i-th entry of x into

its computation:

δ =
max((xi − xl), (xi − xu))

xu − xl
. (5.33)

Finally, each entry of the mutated vector can be computed as follows:

yi = xi + δq(x
u − xl). (5.34)

Opposite to the PBX operator, the SPM method uses a direction ν that pertur-

bates the candidate solution x, but using the idea of the PBX we incorporate the

boundaries of the variables into the computation. Such realization ensures that the

new candidate solution generated by the SPM operator remains in the feasible sub-

space. Hence, consider that a ν 6= 0 ∈ Rn is given. Then, the new mutated vector y

is computed as y = x + tν. Algorithm 33 presents the computation of the tm value.

Such value is used as the upper limit for t such that t ∈ (0, tm). The algorithm

incorporates the boundary limits of the variables into the procedure. We introduced

a parameter γ = 0.1 such that it controls the maximal value of the step size tm.

We proceed to define how the ν search direction is computed. Thus, we use the

computations presented on MOSLS to generate such a vector. In this case, we are

solving a MOP with only inequality constraints and the candidate solution x0 has

l active constraints. In particular, we are concerned in the computation of the or-

thonormal base O. To compute such a base we divide the computation into the same

cases as for MOSLS: we consider that we either (i) have only linear inequality con-

Cinvestav Computer Science Department

Subspace Polynomial Mutation 149

Algorithm 33 Pseudocode for computation of maximal step size tm
Require: Candidate solution x , Search direction ν, Step size control value tm
Ensure: Maximal step size tm

1: Set t :=∞
2: for i = 1, . . . , n do
3: if νi > 0 then
4: Compute ta := xu−νi

νi
5: else if νi < 0 then
6: Compute ta := νi−xl

νi
7: else
8: Set ta :=∞
9: end if

10: if ta < t then
11: Set tm := ta
12: end if
13: end for
14: return tm

straints or (ii) the general case.

Algorithm 34 presents the pseudocode to compute the orthonormal base for linear

inequality constraints.

Algorithm 34 Pseudocode for orthonormal base of SPM with linear inequality con-
straints
Require: Candidate solution x0

Ensure: Orthonormal base O
1: Compute matrix A as in Equation (5.16)
2: Compute QR decomposition of A
3: Set O := (ql+1, . . . , qn)
4: return O

The second stage of the SPM realization consists in computing the orthonormal

base for general inequality constraints. Algorithm 35 presents the pseudocode to

compute such a basis.

Finally, using the orthonormal basis described in the algorithms we are in position

to define the SPM mutation operator. Algorithm 36 presents the pseudocode for such

an operator. In the algorithm, we compute the orthonormal basis for each type of

inequality constraints. Thus, if we have information about the problem and also we

Cinvestav Computer Science Department

150 Chapter 5

Algorithm 35 Pseudocode for orthonormal base of SPM with general inequality
constraints
Require: Candidate solution x0 , Neighborhood N of x0

Ensure: Orthonormal base O
1: Set GV := ∅
2: for i = 1, . . . , r do
3: Set xa := N → xi

4: Set g0 := g(x0) ∈ Rm

5: Set ga = N → gi

6: Set j := 1
7: for s = 1, . . . ,m do
8: if g0

s is active then

9: Compute m̃ = gas−g0
s

‖xa−x0‖2
10: Set the entry of GVij as m
11: Set j := j + 1
12: end if
13: end for
14: end for
15: Compute QR decomposition of GV
16: Compute matrix O := (ql+1, . . . , qn)
17: return O

know that the problem only has linear inequality constraints, we compute the basis as

in Algorithm 34. But, if we do not have information of the problem or the inequality

constraints are not linear we proceed to compute the basis O as in Algorithm 35.

In the algorithm, vectors oi, i = 1, . . . , (n − l) representing the column vector of the

orthonormal basis O are introduced.

5.1.4 NSGA-II/SPM

In order to illustrate the effectiveness of the new mutation operator it is necessary to

couple it with some state-of-the-art MOEA. In particular, as a first approach for the

operator, we have selected the NSGA-II [Deb et al., 2002a] as our base algorithm. We

selected this algorithm because the NSGA-II already incorporates a selection mech-

anism to handle constrained problems. The modifications are only performed over

the offspring creation algorithm of the NSGA-II. In particular, the modifications of

the algorithm only affect the mutation operators. Other components of the offspring

generation algorithm remain intact (e.g., it adopts Simulated Binary Crossover (SBX)

[Deb and Goyal, 1996]). Algorithm 37 presents the pseudocode of the offspring gen-

Cinvestav Computer Science Department

Subspace Polynomial Mutation 151

Algorithm 36 Pseudocode for the SPM mutation operator

Require: Candidate solution x0 , Neighborhood N of x0

Ensure: Mutated vector y
1: Compute g0 := g(x0)
2: if Active constraints from g0 are linear then
3: Compute O using Algorithm 34
4: else
5: Compute O using Algorithm 35
6: end if
7: Set ν := 0 ∈ Rn

8: for i = 1, . . . , (n− l) do
9: Compute random value u ∈ (0, 1)

10: if u ≤ 0.5 then
11: ν := ν + o1

12: else
13: ν := ν − o1

14: end if
15: end for
16: Set ν := ν

‖ν‖
17: Compute maximal step size tm using Algorithm (33)
18: Compute random value of t ∈ (0, tm]
19: Compute y := x0 + tν
20: return y

eration for the NSGA-II/SPM. Opposite to the PBX mutation, the application of the

SPM does not depends on a mutation probability pm. Instead, the SPM is applied

on ‘useful’ moments. That is, the SPM operator is only applied when we detect that

there exists at least one active constraint. In this case, we consider that a constraint

its active when its value its above certain threshold ε = −1e− 7. After we detect at

least one active constraint, there exists a probability of 0.5 that the SPM operator

generate a new mutated vector. Given the neighborhood structure requirement of the

SPM, we compute such information using Algorithm 37.

5.1.5 Numerical results

Finally, to illustrate the advantages of the SPM operator we perform several exper-

iments comparing NSGA-II/SPM with respect to NSGA-II. Table 5.1 presents the

parameters used for such experiments.

Cinvestav Computer Science Department

152 Chapter 5

Algorithm 37 Pseudocode for offspring generation in NSGA-II

Require: Candidate solution x
Ensure: Children solution y

1: Generate yc using SBX crossover
2: if there exists an active constraint on x0 then
3: Generate a random value u ∈ (0, 1)
4: if u ≤ pm then
5: Generate y using SPM
6: else
7: Set y := yc

8: end if
9: else

10: Generate a random value u ∈ (0, 1)
11: if u ≤ pm then
12: Generate y using PBX mutation
13: else
14: Set y := yc

15: end if
16: end if
17: return y

Table 5.1: Parameters for the NSGA-II/SPM experiments

Parameter Value
Population size N 100

Crossover probability pc 0.95
Mutation probability pm 0.01

Distribution index for crossover nx 20
Distribution index for mutation nm 20

r min(l, 5)
δ 0.1

The comparison of the algorithms is performed using the ∆2 indicator proposed

in [Schütze et al., 2012]. The performance of the algorithms is measured adopting

several state-of-the-art constrained problems: Belegundu, Binh(1-4), Obayashi, Osy-

czka(2), Srinivas, Tanaka and Tamaki (for the definition please refer to Appendix

C). Besides, to show the effectiveness of the method on linear inequality constrained

problems we modified the state-of-the-art ZDT benchmark [Zitzler et al., 2000a]. For

the benchmark functions we added a single linear inequality constraint defined as

follows:

Cinvestav Computer Science Department

Subspace Polynomial Mutation 153

g1(x) = −x1 − x2 + 1.0 ≤ 0. (5.35)

The modified problems will be referred to as ZDT − C . The results for all the

problems are obtained using 30 independent runs. Next, a comparison is performed

using the ∆2 values of the algorithms in two different convergence stages: ‘middle‘

term and ‘long’ term. The middle term is measured when the algorithms reach 15, 000

function calls. Analogously, the long term is define as the stage when the algorithm

has spent 50, 000 function calls. At each stage, we consider all the individuals in the

population. Next, we remove the infeasible solutions along with the dominated ones.

After we filter out the solutions, we compute the ∆2 values such that they can be

used to perform statistical comparisons between the algorithms. Tables 5.2 and 5.3

present the averaged results obtained for each algorithm. The tables present sev-

eral statistical values such as the average, mean, the minimal value and the maximal

value obtained for each problem. Besides, we performed the Wilcoxon rank sum test

to define if there exists a significant improvement given by SPM. The results of the

Wilcoxon test are presented using the P -value column. The winner for each value is

highlighted only if the results are statistical significant. That is, a value of p ≤ 0.05

is obtained.

To illustrate the results obtained by the tables above we present the PF of the

best run for each problem. Figures 5.5 to 5.8 present the obtained PF of the best run

at each stage of the algorithms (15, 000 and 50, 000 respectively). Only the function

where there exists a significant winner are presented.

Finally, Figures 5.9 to 5.10 present the averaged convergence plots of the ∆2 value

for each of the problems described above.

Discussion of the results

The results demonstrate that SPM is a promisory method, in particular, if we con-

sider the problems where linear inequality constraints are given. In such a case, the

computational cost to compute ν is dramatically reduced. Such advantage can be

easily visualized in the results obtained on the ZDT-C benchmark. For such prob-

lems the results show a significant improvement of the NSGA-II algorithm in four out

Cinvestav Computer Science Department

154 Chapter 5

Problem Parameter
Algorithm

P-value
NSGA-II NSGA-II / SPM

ZDT1-C

Average 0.027649 0.007403

0.000183
Max 0.096856 0.007826
Min 0.010161 0.007107
Std. Dev. 0.025584 0.000238

ZDT2-C

Average 0.061387 0.007642

0.000143
Max 0.258192 0.008269
Min 0.013764 0.007294
Std. Dev. 0.079515 0.000302

ZDT3-C

Average 0.040732 0.013064

0.001315
Max 0.062510 0.013961
Min 0.013163 0.011953
Std. Dev. 0.022034 0.000672

ZDT4-C

Average 1.403286 1.431395

0.909722
Max 2.582335 2.877414
Min 0.285733 0.839480
Std. Dev. 0.902602 0.686087

ZDT6-C

Average 0.464149 0.060621

0.000183
Max 1.039935 0.110679
Min 0.175954 0.036111
Std. Dev. 0.264507 0.026668

Binh(2)

Average 5.336551 5.336919

1.000000
Max 5.357580 5.366246
Min 5.312041 5.308829
Std. Dev. 0.014709 0.019269

Binh(4)

Average 3.141843 0.223570

0.000769
Max 9.384341 0.585141
Min 0.190107 0.165311
Std. Dev. 3.105293 0.128207

Obayashi

Average 0.041570 0.006829

0.000183
Max 0.063213 0.007239
Min 0.029827 0.006410
Std. Dev. 0.011323 0.000254

Osyczka(2)

Average 48.017675 13.245735

0.014019
Max 103.558534 75.732281
Min 3.157917 1.501807
Std. Dev. 39.196448 23.992073

Srinivas

Average 1.546977 1.534552

0.623176
Max 1.692464 1.764385
Min 1.436139 1.383971
Std. Dev. 0.090367 0.114916

Tanaka

Average 0.058619 0.006182

0.000183
Max 0.090148 0.006537
Min 0.027259 0.005670
Std. Dev. 0.019901 0.000269

Tamaki

Average 0.293233 0.109924

0.000183
Max 1.528184 0.117326
Min 0.121339 0.102847
Std. Dev. 0.434693 0.004131

Table 5.2: ∆2 results of NSGA− II/SPM for 15, 000 function calls.

Cinvestav Computer Science Department

Subspace Polynomial Mutation 155

Problem Parameter
Algorithm

P-value
NSGA-II NSGA-II / SPM

ZDT1-C

Average 0.016852 0.007450

0.000183
Max 0.035176 0.007910
Min 0.009376 0.006841
Std. Dev. 0.009244 0.000327

ZDT2-C

Average 0.011455 0.007540

0.000173
Max 0.018135 0.008517
Min 0.008988 0.006813
Std. Dev. 0.002654 0.000531

ZDT3-C

Average 0.032820 0.013384

0.011330
Max 0.060173 0.014210
Min 0.012957 0.012605
Std. Dev. 0.022977 0.000560

ZDT4-C

Average 0.212473 0.073799

0.472676
Max 1.708808 0.312584
Min 0.010483 0.010676
Std. Dev. 0.534402 0.098566

ZDT6-C

Average 0.128530 0.040937

0.000769
Max 0.362475 0.097499
Min 0.075981 0.030011
Std. Dev. 0.085411 0.020288

Binh(2)

Average 5.342034 5.345931

0.791337
Max 5.382925 5.393762
Min 5.302956 5.310413
Std. Dev. 0.026971 0.030965

Binh(4)

Average 2.444430 0.180125

0.011330
Max 9.860060 0.208120
Min 0.167861 0.156663
Std. Dev. 3.284948 0.016583

Obayashi

Average 0.026787 0.007400

0.000183
Max 0.056089 0.007699
Min 0.012673 0.007011
Std. Dev. 0.014353 0.000211

Osyczka(2)

Average 64.474206 12.355404

0.064022
Max 162.504424 76.659919
Min 1.494405 1.396753
Std. Dev. 62.590117 23.982527

Srinivas

Average 1.554161 1.576505

0.623176
Max 1.877404 1.884739
Min 1.386098 1.417530
Std. Dev. 0.158957 0.153774

Tanaka

Average 0.016200 0.006440

0.000183
Max 0.028136 0.007060
Min 0.009353 0.005995
Std. Dev. 0.005729 0.000354

Tamaki

Average 0.257510 0.108770

0.011330
Max 1.528184 0.113186
Min 0.104842 0.101753
Std. Dev. 0.446527 0.004243

Table 5.3: ∆2 results of NSGA− II/SPM for 50, 000 function calls.

Cinvestav Computer Science Department

156 Chapter 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(a) ZDT1-C

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(b) ZDT2-C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(c) ZDT3-C

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(d) ZDT6-C

−6

−4

−2

0
−2

0
2

4
6

8

−12

−10

−8

−6

−4

−2

0

f
2

f
1

f 3

PF

NSGA−II

NSGA−II/SPM

(e) Binh(4)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(f) Obayashi

Figure 5.5: Comparison of the SPM PF at 15, 000 function calls

Cinvestav Computer Science Department

Subspace Polynomial Mutation 157

0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(a) Srinivas

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(b) Tanaka

0

1

2

0 0.5 1
1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f
2

f 3

PF

NSGA−II

NSGA−II/SPM

(c) Tamaki

Figure 5.6: Cont’d Comparison of the SPM PF at 15, 000 function calls

Cinvestav Computer Science Department

158 Chapter 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(a) ZDT1-C

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(b) ZDT2-C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1

1.5

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(c) ZDT3-C

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(d) ZDT6-C

−6

−4

−2

0
−2 0 2 4 6 8

−12

−10

−8

−6

−4

−2

0

f
2

f
1

f 3

PF

NSGA−II

NSGA−II/SPM

(e) Binh(4)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(f) Obayashi

Figure 5.7: Comparison of the SPM PF at 50, 000 function calls

Cinvestav Computer Science Department

Subspace Polynomial Mutation 159

0 50 100 150 200 250
−250

−200

−150

−100

−50

0

50

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(a) Srinivas

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

PF

NSGA−II

NSGA−II/SPM

(b) Tanaka

0

1

20 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f
2

f 3

PF

NSGA−II

NSGA−II/SPM

(c) Tamaki

Figure 5.8: Cont’d Comparison of the SPM PF at 50, 000 function calls

Cinvestav Computer Science Department

160 Chapter 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(a) ZDT1-C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(b) ZDT2-C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−2

10
−1

10
0

10
1

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(c) ZDT3-C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(d) ZDT6-C

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
0

10
1

10
2

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(e) Binh(2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−1

10
0

10
1

10
2

10
3

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(f) Binh(4)

Figure 5.9: Convergence plot of the variants of the NSGA-II

Cinvestav Computer Science Department

Subspace Polynomial Mutation 161

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−3

10
−2

10
−1

10
0

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(a) Obayashi

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
1

10
2

10
3

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(b) Osyczka(2)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
0

10
1

10
2

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(c) Srinivas

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−3

10
−2

10
−1

10
0

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(d) Tanaka

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−1

10
0

10
1

10
2

Function calls

∆
p

NSGA−II

NSGA−II/SPM

(e) Tamaki

Figure 5.10: Cont’d Convergence plot of the variants of the NSGA-II

Cinvestav Computer Science Department

162 Chapter 5

of five problems.

The second type of problems used for this set of experiments where the ones with

nonlinear inequality constraints. The statistical results show that the SPM opera-

tor does not lose on any of the adopted problems. Unfortunately, we expected that

the number of significant winnings by the method was greater. Considering that the

information required for the computation of direction ν comes for ‘free’ one could

expect a great advantage of the operator. Unfortunately, there existed several points

that modified the performance of the SPM. The first point to think about is the size

of the δ value. In our computations, we fixed its value but the experiments showed

that the values of δ require a mechanism to adapt it according to each problem.

The second point to be considered is how to detect the moment when the SPM

has to be applied. If we remember the formulation of the SPM, we considered that a

movement along a constraint leads us to a movement along the PF. Unfortunately, in

practice, it is possible that this is not correct. For example, consider the Tanaka where

the NSGA-II/SPM presents a great advantage over the NSGA-II. In such a problem

the constraint defines the PF so the original proposition of the SPM is accomplished.

But, there exist problems where the PF is not defined by the constraints. For such

reasons, it is necessary to improve the detection mechanism of solutions where SPM

needs to be applied.

To this end, the results obtained in these experiments show the advantage of ap-

plying the SPM operator. Using SPM, we accelerated the convergence rate in 5 of the

test problem adopted. Moreover, in principle such improvement comes with no ad-

ditional cost in terms of function calls. Finally, if we perform specialization changes

(such as a correction step or the ones described above) to the operator it is quite

possible that we can obtain an improvement of the statistical results obtained in this

set of experiments.

Cinvestav Computer Science Department

Chapter 6

Conclusions and Future Work

In this thesis we described three different methods: the Discrete Directed Search,

the Gradient Subspace Approximation algorithm and the Subspace Polynomial Mu-

tation operator. These three algorithms presented several advantages when they were

coupled with evolutionary algorithms. Such advantages included the increase of the

convergence rate of its base evolutionary strategies. Furthermore, none of these three

methods requires gradient information. Instead, they use information from the neigh-

borhood of the given population to compute a new candidate solution.

Discrete Directed Search

The Discrete Directed Search (as the original Directed Search) is a method that uses

a given direction d ∈ Rk to steer the search in objective space. DDS is a modification

of the DS method which is gradient-free. DDS does not calculate an approximation

of the gradient, instead, it computes an alternative direction ν using neighborhood

information. Using such kind of information, DDS does not require any extra func-

tion calls to compute a search direction ν. This feature makes it a perfect candidate

for coupling it with population-based strategies such as evolutionary algorithms.

According to the experiments, one of the decisions that highly affects the DDS

method is the proper choice of r. It was shown that when more information was

incorporated into the matrix F , a more greedy step was obtained as a result. Un-

fortunately, the experiments also showed that if the number of individuals increased,

it is possible that the system of equations becomes unstable. Another drawback of

DDS is that it required approximately 0.4 ·n neighbors in order to construct a ‘good’

163

164

approximation of the search direction ν, where n is the dimensionality of the domain.

We used the DDS method to construct a memetic algorithm with MOEA/D as

our base algorithm. We performed a comparison between MOEA/D and two memetic

algorithms. Such a comparison was performed using the Hypervolume and the ∆2

indicators. The results showed that the memetic algorithms presented better results

in comparison with the standalone approach. It is important to mention that we

obtained competitive results in comparison with those obtained by the DS method.

This illustrates the promising applicability of the DDS method for a problems where

DS can not be applied due to the lack of gradient information.

As part of the future work for the DDS method, it is necessary to find a special-

ized step size control. In the experiments, the step size control consisted in a method

that reduced the step size of the new computed solution until a non dominated one

is found. Such condition caused that in some cases even when the direction ν steered

the search in the d direction, the value of t gave a poor improvement of the candidate

solution. Hence, it finds a value of t such that the maximal decay in direction d is

desirable.

Another possible improvement for the MOEA/D/DDS is to find a more suitable

technique that balances the resources between the local search and the evolutionary

strategy. The balancing mechanism proposed in this work only applies the local search

to a certain number of individuals on certain specific generations. It is clear that such

mechanism is not optimal. An improvement in the balance mechanism could lead to

the increase of the quality of the computed solutions. For example, if the mechanism

detects that a good candidate solution is generated it can decide if the local search

is applied more often.

Gradient Subspace Approximation

The GSA method was presented as a local search technique that uses the informa-

tion of a population-based strategy to find a descent direction. Using this type of

information, GSA tries to reduce the consumption of resources (in terms of function

evaluations) that other local search operators have.

Cinvestav Computer Science Department

Conclusions and Future Work 165

One of the features of GSA is that, for this approach, it is not so important how

many neighbors exist around the candidate solution. In fact, in some cases even when

the number of neighboring solutions is low, it is possible to find the most greedy di-

rection only for the subspace constructed by these solutions. But if more neighboring

solutions are incorporated, the size of the subspace increases, and, as a consequence,

a more greedy direction can be obtain.

Another advantage of GSA is that it includes a formulation to handle equality

and inequality constraints. Such realization avoids the need of an extra constraint

handling technique. For the case of equality constrained problems, GSA constructs a

direction using a linear approximation of the constraint such that the search direction

moves along such approximation. For inequality constraints, GSA proposes to correct

the direction such that it moves along the constraints.

The first experiments with GSA compared the algorithm with other local search

strategies: pattern search and the Nelder-Mead algorithm. In these experiments, GSA

yielded faster convergence rates in comparison with the other algorithms. This can be

explained because when constraints were found, the other algorithms kept searching

in all directions. But at such condition, GSA started the predictor-corrector step to

move along the active constraints.

Using the mos mechanism along with GSA, we constructed a memetic algorithm

using Differential Evolution as our base algorithm. The comparison was performed

using three different algorithms: DE, DE/GSA and DE/LS1. The results showed an

improvement in terms of convergence rate. The GSA/DE algorithm presented better

results than the other two algorithms in 13 out of 23 instances of the problems.

Beside, GSA can save a considerable number of function evaluations. The exper-

iments showed that in some of the problems, the percentage of function calls needed

to reach the same quality level of solutions decreases up to 90 percent. On the other

hand, the cases where the two other algorithms (DE and DE/LS1) spend less re-

sources that the GSA were not so common.

We also proposed an extension of GSA to handle MOPs. The multi-objective

GSA included two different techniques to compute a descent direction. The first ap-

proach used a scalarization function. Meanwhile, the second mechanism used Lara’s

Cinvestav Computer Science Department

166

direction along with the approximations of gradient information given by GSA.

An experiment with the GSA was performed using two different multi-objective

memetic algorithms: MOEA/D/GSA and IG-NSGA-II. On such an experiment we

presented several comparison between the base algorithms and their memetic ver-

sions. The results showed that GSA improved the indicator results on the given test

functions. In particular, we improved a 9 out of 11 of the unconstrained test problems

and 16 out of 20 of the constraint test problems.

The future work proposed for the GSA algorithm is based on observations that

were obtained during the experiments. The first possible improvement consists in

the modification of the correction step. For some problems, solutions with large im-

provements were discarded because the constraints become infeasible by a certain

threshold. If a good correction step is incorporated into the method it is possible

that such solutions can be corrected. If the solution is returned to the feasible region,

it is possible that such solution survives the selection process. By surviving, the re-

combination of these solutions can accelerate the convergence rate.

Another point of improvement consists in the mechanisms used for computing

the initial step size. For some candidate solutions, if a large step size is taken, an

overcost in the correction step can be triggered. The initial step size of this work

was computed using the distance between the neighboring solution and the candidate

solution, but in the state-of-the-art there exist several techniques that can improve

such an idea.

Finally, we need the multi-objective version of the GSA for MOPs. For exam-

ple, we suggest to test with some other scalarization functions. Moreover, we can

incorporate a more sophisticate mechanism for the treatment of the MOPs. Besides,

another future work is the improvement of the constraint handling techniques. The

first improvement to be expected in such context is a mechanism to incorporate also

equality constraints into multi-objective GSA. Besides, a different constraint-handling

technique can be used, e.g., interior point methods to obtain a better convergence rate.

Cinvestav Computer Science Department

Conclusions and Future Work 167

Subspace Polynomial Mutation

SPM is a mutation operator proposed for MOEAs to handle inequality constrained

MOPs. A memetic algorithm was constructed using the NSGA-II method. An ex-

periment was proposed to demonstrate the performance of the novel operator. The

results showed that SPM improved the indicator results in comparison with the stan-

dalone NSGA-II. In particular, the gap between the two algorithms is clear when a

problem contains only linear inequality constraints. For such kind of functions the

results obtained a significant improvement in 4 out of 5 functions.

The second part of the experiments was performed using non-linear inequality

constraints. For such kind of functions the results were promising. If some other

specialized mechanism are introduced it is possible that it improves such results. The

great advantage obtained in the experiments with the SPM operator is that it can

steer the search along the border of the feasible set defined by the constraints. Besides,

the computations of the SPM operator do not require explicitly gradient information.

Another advantages is that any computation performed by the PSM operator

comes with no additional cost in terms of function calls. That is, all mechanism use

information of the neighborhood of the candidate solution. Thus, our method can

easily replace any other mutation operator of an existing MOEA.

As mentioned above, the SPM method requires several changes to improve its

mechanisms. One of the most important changes that can be applied is the incor-

poration of a step size control mechanism. In the algorithm described in this work,

the step size was proposed as a fixed value. But such value must be reduced as the

algorithm starts to converge to the PF or increased if the solution requires it.

The second possible modification for the SPM is to improve the mechanism that

controls the application of the operator. The actual mechanism applies SPM when

it detects that there exists at least one active constraint. To improve the mechanism

one can apply a mechanism that measures the performance of the SPM operator and

such mechanism decides if the SPM has to be applied or not.

The SPM operator only incorporates inequality constraints. Until now, we can

solve an equality constrained problem by transforming the constraints into inequal-

Cinvestav Computer Science Department

168

ity ones. But as future work it is necessary to incorporate the equality constraints

directly into the constraint mechanism of the SPM such that this transformation is

no longer required.

Cinvestav Computer Science Department

Appendix A: Single objective

problems definition

Constrained problems

CEC 2006 contest for real parameter constrained optimization

In this Appendix we present the function definition for the 24 optimization problems

for the 2006 contest on real constrained optimization [Liang et al., 2006].

g01

Minimize:

f(x) = 5
4∑
i=1

xi − 5
4∑
i=1

x2
i −

13∑
i=5

xi, (6.1)

subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

, (6.2)

I

II

where the bound are 0 ≤ xi ≤ 1, i = 1, . . . , 9, 0 ≤ xi ≤ 100, i = 10, 11, 12 and

0 ≤ x13 ≤ 1. The global minimum is f(x∗) = −15.

g02

Minimize:

f(x) = −

∣∣∣∣∣
∑n

i=1 cos4(xi)− 2
∏n

i=1 cos2(xi)√∑n
i=1 i x

2
i

∣∣∣∣∣ (6.3)

subject to:

g1(x) = 0.75−
n∏
i=1

xi ≤ 0

g2(x) =
n∑
i=1

xi − 7.5n ≤ 0

, (6.4)

where n = 20 and 0 ≤ xi ≤ 10, i = 1, . . . , n. The best value found so far is

f(x) = −0.80361910412559.

g03

Minimize:

f(x) = −(
√

(n)n)
n∏
i=1

xi (6.5)

subject to:

h1(x) =
n∑
i=1

x2
i − 1 = 0, (6.6)

where n = 10 and 0 ≤ xi ≤ 1, i = 1, . . . , n. The global minimum is is f(x∗) =

−1.00050010001000.

Cinvestav Computer Science Department

A: Single objective problems definition III

g04

Minimize:

f(x) = 5.3578547x2
3 + 0.8356891x1 x5 + 37.293239x1 − 40792.141, (6.7)

subject to:

g1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5

g3(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110

g4(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x23 + 90

g5(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25

g6(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

,

(6.8)

where 78 ≤ x1 ≤ 102, 33 ≤ x1 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5 . The global minimum

is f(x∗) = −3.066553867178332e4.

g05

Minimize:

f(x) = 3x1 + 0.000001x3
1 + 2x2 +

0.000002

3
x3

2, (6.9)

subject to:

g1(x) = −x4 + x3 − 0.55 ≤ 0

g2(x) = −x3 + x4 − 0.55 ≤ 0

h1(x) = 1000sin(−x3 − 0.25) + 1000sin(−x4 − 0.25) + 894.8− x1 = 0

h2(x) = 1000sin(x3 − 0.25) + 1000sin(x3 − x4 − 0.25) + 894.8− x2 = 0

h3(x) = 1000sin(x4 − 0.25) + 1000sin(x4 − x3 − 0.25) + 1294.8 = 0

, (6.10)

where 0 ≤ x1 ≤ 1200, 0 ≤ x21200 and −0.55 ≤ x3, x4 ≤ 0.55 . The best value found

so far is f(x) = 5126.4967140071.

Cinvestav Computer Science Department

IV

g06

Minimize:

f(x) = (x1 − 10)3 + (x2 − 20)3 (6.11)

subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = −(x1 − 6)2 − (x2 − 5)2 − 82.81 ≤ 0
, (6.12)

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The global minimum is f(x∗) =

−6961.81387558015.

g07

Minimize:

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 72) + 45

, (6.13)

subject to:

g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

, (6.14)

where the bound are 0 ≤ xi ≤ 1, i = 1, . . . , 9, 0 ≤ xi ≤ 100, i = 10, 11, 12 and

0 ≤ x13 ≤ 1. The global minimum is f(x∗) = 24.30620906818.

Cinvestav Computer Science Department

A: Single objective problems definition V

g08

Minimize:

f(x) = −sin3(2πx1)sin(2πx2)

x3
1(x1 + x2)

, (6.15)

subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 3)2 ≤ 0
, (6.16)

where 0 ≤ x1, x2 ≤ 10. The best value found so far is f(x) = −0.0958250414180359..

g09

Minimize:

f(x) = (x1−10)2+5(x2−12)2+4x3+3(x4−11)+10x6
5+7x2

6+x4
7−4∗x6x7−10x6−8x7

(6.17)

subject to:

g1(x) = −127 + 2x2
1 + 3x2

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

, (6.18)

where−10 ≤ xi ≤ 10, i = 1, . . . , 7. The global minimum is f(x∗) = 680.630057374402.

g10

Minimize:

f(x) = x1 + x2 + x3, (6.19)

Cinvestav Computer Science Department

VI

subject to:

g1(x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(x) = −1 + 0.01(x8 − x5) ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

, (6.20)

where the bound are 100 ≤ x1 ≤ 10000, 10 ≤ xi ≤ 1000, i = 4, . . . , 8. The global

minimum is f(x∗) = 7049.24802052867.

g11

Minimize:

f(x) = x2
1 + (x2 − 1)2 (6.21)

subject to:

h(x) = x2 − x2
1 = 0, (6.22)

where −1 ≤ x1, x2 ≤ 1. The global minimum is f(x) = 0.7499.

g12

Minimize:

f(x) = −100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100
, (6.23)

subject to:

g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0, (6.24)

Cinvestav Computer Science Department

A: Single objective problems definition VII

where 0 ≤ xi ≤ 10, i = 1, . . . , 10, p, q, r = 1, . . . , 9. The global minimum is f(x∗) =

−1.

g13

Minimize:

f(x) = ex1x2x3x4x5 , (6.25)

subject to:

h1(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0

h2(x) = x2x3 − 5x4x5 = 0

h3(x) = x3
1 + x3

2 + 1 = 0

, (6.26)

where −2.3 ≤ x1, x2 ≤ 2.3 and −3.2 ≤ xi ≤ 3.2, i = 3, 4, 5. The global minimum is

f(x∗) = 0.053941514041898.

g14

Minimize:

f(x) =
10∑
i=1

xi

(
ci ln

xi∑1
j=1 0xj

)
, (6.27)

subject to:

h1(x) = x1 + 2x2 + +2x3 + x6 + x10− 2 = 0

h2(x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(x) = x3 + x7 + x8 + 2x9 + x10− 1 = 0

, (6.28)

where 0 ≤ xi ≤ 10, i = 1, . . . , 10, and c1 = −6.089, c2 = −17.164, c3 = −34.054,

c4 = −5.914, c5 = −24.721, c6 = −14.986, c7 = −24.1, c8 = −10.708, c9 = −26.662,

c10 = −22.179. The global minimum is f(x∗) = −47.7648884594915.

Cinvestav Computer Science Department

VIII

g15

Minimize:

f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3, (6.29)

subject to:

h1(x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2(x) = 8x1 + 14x2 + 7x3 − 56 = 0
, (6.30)

where 0 ≤ xi ≤ 10, i = 1, . . . , 3. The best known solution is f(x∗) = 961.715022289961.

g16

Minimize:

f(x) = 0.000117y14 + 0.1365 + 0.00002358y13 + 0.000001502y16 + 0.0321y12

+ 0.004324y5 + 0.0001
c15

c16
+ 37.48

y2

c12
− 0.0000005843y17

, (6.31)

Cinvestav Computer Science Department

A: Single objective problems definition IX

subject to:

g1(x) =
0.28

0.72
y5 − y4 ≤ 0

g2(x) = x3 − 1.5x2 ≤ 0

g3(x) = 3496
y12

c12

− 21 ≤ 0

g4(x) = 110.6 + y1 −
62212

c17

≤ 0

g5(x) = 213.1− y1 ≤ 0

g6(x) = y1 − 405.23 ≤ 0

g7(x) = 17.505− y2 ≤ 0

g8(x) = y2 − 1053.6667 ≤ 0

g9(x) = 11.275− y3 ≤ 0

g10(x) = y3 − 35.03 ≤ 0

g11(x) = 214.228− y4 ≤ 0

g12(x) = y4 − 665.585 ≤ 0

g13(x) = 7.458− y5 ≤ 0

g14(x) = y5 − 584.463 ≤ 0

g15(x) = 0.961− y6 ≤ 0

g16(x) = y6 − 265.916 ≤ 0

g17(x) = 1.612− y7 ≤ 0

g18(x) = y7 − 7.046 ≤ 0

g19(x) = 0.146− y8 ≤ 0

g20(x) = y8 − 0.222 ≤ 0

g21(x) = 107.99− y9 ≤ 0

g22(x) = y9 − 273.366 ≤ 0

g23(x) = 922.693− y10 ≤ 0

g24(x) = y10 − 1286.105 ≤ 0

g25(x) = 926.832− y11 ≤ 0

g26(x) = y11 − 1444.046 ≤ 0

, (6.32)

Cinvestav Computer Science Department

X

g27(x) = 18.766− y12 ≤ 0

g28(x) = y12 − 537.141 ≤ 0

g29(x) = 1072.163− y13 ≤ 0

g30(x) = y13 − 3247.039 ≤ 0

g31(x) = 8961.448− y14 ≤ 0

g32(x) = y14 − 26844.086 ≤ 0

g33(x) = 0.063− y15 ≤ 0

g34(x) = y15 − 0.386 ≤ 0

g35(x) = 71084.33− y16 ≤ 0

g36(x) = −140000 + y16 ≤ 0

g37(x) = 2802713− y17 ≤ 0

g38(x) = y17 − 12146108 ≤ 0

,

where

y1 = x2 + x3 + 41.6

c1 = 0.024x4 − 4.62

y2 =
12.5

c1

+ 12

c2 = 0.0003535x2
1 + 0.5311x1 + 0.08705y2x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 =
c2

c3

y4 = 19y3

c4 = 0.04782(x1 − y3) +
0.1956(x1 − y3)2

x2

+ 0.6376y4 + 1.594y3

c5 = 100x2

c6 = x1 − y3 − y4

c7 = 0.950− c4

c5

y5 = c6c7

y6 = x1 − y5 − y4 − y3

, (6.33)

Cinvestav Computer Science Department

A: Single objective problems definition XI

c8 = (y5 + y4)0.995

y7 =
c8

y1

y8 =
c8

3798

c9 = y7 −
0.0663y7

y8

− 0.3153

y9 =
96.82

c9

+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.580y3

c10 =
12.3

752.3

c11 = (1.75y2)(0.995x1)

c12 = 0.995y10 + 1998

y12 = c10x1 +
c11

c12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 +
146312

y9 + x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095

y15 =
y13

c13

y16 = 148000− 331000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531y11 +
c14

c12

c15 =
y13

y15

− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5

,

and the bounds are 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88, 0 ≤ x3 ≤ 134.75,

193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤ 84.1988. The best known value is f(x∗) =

−1.90515525853479.

Cinvestav Computer Science Department

XII

g17

Minimize:

f(x) = f1(x1) + f2(x2), (6.34)

where

f1(x1) =

30x1 0 ≤ x1 < 300

31x1 300 ≤ x1 < 400

f2(x2) =


28x2 0 ≤ x2 < 100

29x2 100 ≤ x2 < 200

30x2 200 ≤ x2 < 1000

, (6.35)

subject to:

h1(x) = −x1 + 300− x3x4

131.078
cos(1.48477− x6) +

0.90798x2
3

131.078
cos(1.47588) = 0

h2(x) = −x2 −
x3x4

131.078
cos(1.48477 + x6) +

0.90798x2
4

131.078
cos(1.47588) = 0

h3(x) = −x5 −
x3x4

131.078
sin(1.48477 + x6) +

0.90798x2
4

131.078
sin(1.47588) = 0

h4(x) = 200− x3x4

131.078
sin(1.48477 + x6) +

0.90798x2
3

131.078
sin(1.47588) = 0

,

(6.36)

where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤ 420,

−1000 ≤ x5 ≤ 1000 and 0 ≤ x6 ≤ 0.5236. The best known solution is f(x∗) =

8853.53967480648.

g18

Minimize:

f(x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7), (6.37)

Cinvestav Computer Science Department

A: Single objective problems definition XIII

subject to:

g1(x) = x2
3 + x2

4 − 1 ≤ 0

g2(x) =x2
9 − 1 ≤ 0

g3(x) = x2
5 + x2

6 − 1 ≤ 0

g4(x) = x2
1 + (x2 − x9)2 − 1 ≤ 0

g5(x) = (x1 − x5)2 + (x2 − x6)2 − 1 ≤ 0

g6(x) = (x1 − x7)2 + (x2 − x8)2 − 1 ≤ 0

g7(x) = (x3 − x5)2 + (x4 − x6)2 − 1 ≤ 0

g8(x) = (x3 − x7)2 + (x4 − x8)2 − 1 ≤ 0

g9(x) = x2
7 + (x8 − x9)2 − 1 ≤ 0

g10(x) = x2x3 − x1x4 ≤ 0

g11(x) = −x3x9 ≤ 0

g12(x) = x5x9 ≤ 0

g13(x) = x6x7 − x5x8 ≤ 0

, (6.38)

where the bound are 100 − 10 ≤ xi ≤ 10, i = 1, . . . , 9 and 0 ≤ x9 ≤ 20. The global

minimum is f(x∗) = −0.866025403784439.

g19

Minimize:

f(x) =
5∑
j=1

5∑
i=1

cijx(10+j) +
5∑
j=1

djx
3
(10+j) −

10∑
i=1

bixi, (6.39)

subject to:

gj(x) = −2
5∑
i=1

cijx(10+j) − ej +
10∑
j=1

aijxi ≤ 0, j = 1, . . . , 5, (6.40)

where b = (−40,−2,−0.25,−4,−4,−1,−40,−60, 5, 1)T and the remaining data is on

6.1. The best known solution is f(x∗) = 32.6555929502463.

Cinvestav Computer Science Department

XIV

Table 6.1: Parameters for g19

j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1

g20

Minimize:

f(x) =
24∑
i=1

aixi, (6.41)

Cinvestav Computer Science Department

A: Single objective problems definition XV

subject to:

gi(x) =
(xi + x(i+12))∑24

j=1 xj + ei
≤ 0, i = 1, 2, 3

gi(x) =
(x(i+3) + x(i+15))∑24

j=1 xj + ei
≤ 0, i = 4, 5, 6

hi(x) =
x(i+12)

b(i+12)

∑24
j=1

xj
bj

= 0, i = 1, . . . , 12

h13(x) =
24∑
i=1

xi − 1 = 0

h14(x) =
12∑
i=1

xi
di

+ k
24∑
i=13

xi
bi
− 1.671 = 0

, (6.42)

where k = (0.7320)(530)(14.7
40

) and the remaining data is on 6.2.

g21

Minimize:

f(x) = x1, (6.43)

subject to:

g1(x) = −x1 + 35x0.6
2 + 35x0.6

3 ≤ 0

h1(x) = −300x3 + 7500x5 − 7500x6 − 25x4x5 + 25x4x6 + x3x4 = 0

h2(x) = 100x2 + 155.365x4 + 2500x7 − x2x4 − 25x4x7 − 15536.5 = 0

h3(x) = −x5 − ln(x4 + 900) = 0

h4(x) = −x6 + ln(x4 + 300) = 0

h5(x) = −x7 + ln(−2x4 + 700) = 0

, (6.44)

where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2, x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤
x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4 and 4.5 ≤ x7 ≤ 6.25. The best known solution is f(x) =

193.724510070035.

Cinvestav Computer Science Department

XVI

Table 6.2: Parameters for g20

i ai bi ci d1 e1

1 0.0693 44.094 123.7 31.244 0.1
2 0.0577 58.12 31.7 36.12 0.3
3 0.05 58.12 45.7 34.784 0.4
4 0.2 137.4 14.7 92.7 0.3
5 0.26 120.9 84.7 82.7 0.6
6 0.55 170.9 27.7 91.6 0.3
7 0.06 62.501 49.7 56.708
8 0.1 84.94 7.1 82.7
9 0.12 133.425 2.1 80.8
10 0.18 82.507 17.7 64.517
11 0.1 46.07 0.85 49.4
12 0.09 60.097 0.64 49.1
13 0.0693 44.094
14 0.0577 58.12
15 0.05 58.12
16 0.2 137.4
17 0.26 120.9
18 0.55 170.9
19 0.06 62.501
20 0.1 84.94
21 0.12 133.425
22 0.18 82.507
23 0.1 46.07
24 0.09 60.097

Cinvestav Computer Science Department

A: Single objective problems definition XVII

g22

Minimize:

f(x) = x1, (6.45)

subject to:

g1(x) = −x1 + x0
2.6 + x3 + x4 ≤ 0

h1(x) = x5 − 100000x8 + 1× 107 = 0

h2(x) = x6 + 100000x8 − 100000x9 = 0

h3(x) = x7 + 100000x9 − 5× 107 = 0

h4(x) = x5 + 100000x10 − 3.3× 107 = 0

h5(x) = x6 + 100000x11 − 4.4× 107 = 0

h6(x) = x7 + 100000x12 − 6.6× 107 = 0

h7(x) = x5 − 120x2x13 = 0

h8(x) = x6 − 80x3x14 = 0

h9(x) = x7 − 40x4x15 = 0

h10(x) = x8 − x11 + x16 = 0

h11(x) = x9 − x12 + x17 = 0

h12(x) = −x18 + ln(x10− 100) = 0

h13(x) = −x19 + ln(−x8 + 300) = 0

h14(x) = −x20 + ln(x16) = 0

h15(x) = −x21 + ln(−x9 + 400) = 0

h16(x) = −x22 + ln(x17) = 0

h17(x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0

h18(x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0

h19(x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0

, (6.46)

where the bounds are 0 ≤ x1 ≤ 20000, 0 ≤ x2, x3, x4 ≤ 1×106 , 0 ≤ x5, x6, x7 ≤ 4×107

, 100 ≤ x8 ≤ 299.99, 100 ≤ x9 ≤ 399.99, 100.01 ≤ x10 ≤ 300, 100 ≤ x11 ≤ 400, 100 ≤
x12 ≤ 600, 0 ≤ x13, x14, x15 ≤ 500, 0.01 ≤ x16 ≤ 300, 0.01 ≤ x17 ≤ 400, −4.7 ≤

Cinvestav Computer Science Department

XVIII

x18, x19, x20, x21, x22 ≤ 6.25. The best known solution is f(x) = 236.430975504001.

g23

Minimize:

f(x) = −9x5 − 15x8 + 6x1 + 16x2 − 10(x6 + x7), (6.47)

subject to:

g1(x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g2(x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

h1(x) = x1 + x2 − x3 − x4 = 0

h2(x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(x) = x3 + x6 − x5 = 0

h4(x) = x4 + x7 − x8 = 0

, (6.48)

where the bounds are 0 ≤ x1, x2, x6 ≤ 300, 0 ≤ x3, x5, x7 ≤ 100, 0 ≤ x4, x8 ≤ 200 and

0.01 ≤ x9 ≤ 0.03. The best known solution is f(x) = −400.055099999999584.

g24

Minimize:

f(x) = −x1 − x2, (6.49)

subject to:

g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x2 − 2 ≤ 0

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0

, (6.50)

where the bounds are 0 ≤ x1 ≤ 3 and 0 ≤ x2 ≤ 4. The global minimum is f(x) =

−5.50801327159536.

Cinvestav Computer Science Department

Appendix B: Multi-objective

unconstrained problems definition

Unconstrained problems

Zitzler-Deb-Thiele (ZDT) benchmark

The test problems were original proposed in [Zitzler et al., 2000b].

ZDT1

Minimize:

f1(x) = x1

f2(x) = g(x)

(
1−

√
f1(x)

g(x)

)
, (6.51)

where

g(x) = 1 +
9

n− 1

n∑
i=2

xi, (6.52)

and n = 30. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i = 1, . . . , 30.

XIX

XX

ZDT2

Minimize:

f1(x) = x1

f2(x) = g(x)

(
1−

(
f1(x)

g(x)

)2
)
, (6.53)

where

g(x) = 1 +
9

n− 1

n∑
i=2

xi, (6.54)

and n = 30. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i = 1, . . . , 30.

ZDT3

Minimize:

f1(x) = x1

f2(x) = 1−

√
f1(x)

g(x)
−
(
f1(x)

g(x)

)
sin(10πf1(x))

, (6.55)

where

g(x) = 1 +
9

n− 1

n∑
i=2

xi (6.56)

and n = 30. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i = 1, . . . , 30.

ZDT4

Minimize:

f1(x) = x1

f2(x) = 1− g(x)

(
f1(x)

g(x)

)2, (6.57)

Cinvestav Computer Science Department

B: Multi-objective unconstrained problems definition XXI

where

g(x) = 1 + 10(n− 1) +
n∑
i=2

(x2
i − 10cos(4πxi)) (6.58)

and n = 10. The boundaries for the variables are defined as −5 ≤ xi ≤ 5, i =

1, . . . , 10.

ZDT6

Minimize:

f1(x) = 1−
(
e−4x1

)
sin(6πx1)

f2(x) = 1− g(x)

(
f1(x)

g(x)

)2 , (6.59)

where

g(x) = 1 + 9

(∑n
i=2 xi
n− 1

)0.25

, (6.60)

and n = 10. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i = 1, . . . , 10.

Deb-Thiele-Laummans-Zitzler (DTLZ) benchmark

These test problems were originally proposed in [Deb et al., 2002b].

DTLZ1

Minimize:

f1(x) =
1

2
x1(1 + g(x))

f2(x) =
1

2
(1− x1)(1 + g(x))

, (6.61)

where

g(x) = 100

(
5 +

n∑
i=2

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
, (6.62)

Cinvestav Computer Science Department

XXII

n = 7 and k = 2. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

DTLZ2

Minimize:

f1(x) = (1 + g(x))cos
(x1π

2

)
f2(x) = (1 + g(x))sin

(x1π

2

), (6.63)

where

g(x) =
n∑
i=2

(xi − 0.5), (6.64)

n = 11 and k = 2. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

DTLZ3

Minimize:

f1(x) = (1 + g(x))cos
(x1π

2

)
f2(x) = (1 + g(x))sin

(x1π

2

), (6.65)

where

g(x) = 100

(
10 +

n∑
i=2

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

))
(6.66)

n = 11 and k = 2. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

Cinvestav Computer Science Department

B: Multi-objective unconstrained problems definition XXIII

DTLZ4

Minimize:

f1(x) = (1 + g(x))cos

(
x100

1 π

2

)
f2(x) = (1 + g(x))sin

(
x100

1 π

2

), (6.67)

where

g(x) =
n∑
i=2

(xi − 0.5) (6.68)

n = 11 and k = 2. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

DTLZ5

Minimize:

f1(x) = (1 + g(x))cos
(x1π

2

)
cos

((
π

4(1 + g(x))

)
(1 + 2x2g(x))

)
f2(x) = (1 + g(x))cos

(x1π

2

)
sin

((
π

4(1 + g(x))

)
(1 + 2x2g(x))

)
f3(x) = (1 + g(x))sin

(x1π

2

) , (6.69)

where

g(x) =
n∑
i=3

(xi − 0.5)2 (6.70)

n = 10 and k = 3. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

Cinvestav Computer Science Department

XXIV

DTLZ6

Minimize:

f1(x) = (1 + g(x))cos
(x1π

2

)
cos

((
π

4(1 + g(x))

)
(1 + 2x2g(x))

)
f2(x) = (1 + g(x))cos

(x1π

2

)
sin

((
π

4(1 + g(x))

)
(1 + 2x2g(x))

)
f3(x) = (1 + g(x))sin

(x1π

2

) , (6.71)

where

g(x) =
n∑
i=3

(xi − 0.5)0.1 (6.72)

n = 12 and k = 3. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

DTLZ7

Minimize:

f1(x) = x1

f2(x) = x2

f3(x) = (1 + g(x))h(x)

, (6.73)

where

g(x) = 1 +
9

8

n∑
i=3

xi, (6.74)

h(x) = k −
∑k−1

i=1 (xisin (1 + 3πxi))

1 + g(x)
(6.75)

n = 10 and k = 3. The boundaries for the variables are defined as 0 ≤ xi ≤ 1, i =

1, . . . , 10.

Cinvestav Computer Science Department

B: Multi-objective unconstrained problems definition XXV

Other multi-objective test problems

CONV

Minimize:

f1(x) = (x1 − 1)4 + (x2 − 1)2

f2(x) = (x1 − 1)2 + (x2 − 1)2
, (6.76)

where n = 2 and k = 2. The boundaries for the variables are defined as −5 ≤ xi ≤
5, i = 1, 2.

Kursawe [Kursawe, 1990]

Minimize:

f1(x) =
2∑
i=1

(
−10e−0.2

√
x2
i +x2

i+1

)
f2(x) =

3∑
i=1

(
|xi|0.8 + 5sin

(
x3
i

)) , (6.77)

where n = 3 and k = 2. The boundaries for the variables are defined as −5 ≤ xi ≤
5, i = 1, 2.

Cinvestav Computer Science Department

XXVI

Cinvestav Computer Science Department

Appendix C: Multi-objective

constrained problems definition

Constrained problems

CEC 2009 contest

These test problems were originally proposed in [Zhang et al., 2008].

UF1

Minimize:

f1(x) = x1 +
2

|J1|
∑
j∈J1

(xj − sin(6πx1 +
jπ

n
))2

f2(x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

(xj − sin(6πx1 +
jπ

n
))2

, (6.78)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n} and

n = 30. The variable bounds are 0 ≤ x1 ≤ 1 and −1 ≤ xi ≤ 2, i = 1, . . . , n.

UF2

Minimize:

f1(x) = x1 +
2

|J1|
∑
j∈J1

y2
j

f2(x) = 1−
√
x1 +

2

|J2|
y2
j

, (6.79)

XXVII

XXVIII

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30

and

yj =

xj − (0.3x2
1cos(24πx1 + 4jπ

n
) + 0.6x1)cos(6πx1 + jπ

n
), j ∈ J1

xj − (0.3x2
1cos(24πx1 + 4jπ

n
) + 0.6x1)sin(6πx1 + jπ

n
), j ∈ J2

(6.80)

The variable bounds are 0 ≤ x1 ≤ 1 and −1 ≤ xi ≤ 1, i = 2, . . . , n.

UF3

Minimize:

f1(x) = x1 +
2

|J1|

(
4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j
+ 2

))

f2(x) = 1−
√
x1 +

2

|J2|

(
4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j
+ 2

)), (6.81)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30

and

yj = xj − x
0.5(1+

3(j−2)
n−2)

1 , j = 2, . . . , n (6.82)

The variable bounds are 0 ≤ xi ≤ 1, i = 1, . . . , n.

UF4

Minimize:

f1(x) = x1 +
2

|J1|
∑
j∈J1

h(yj)

f2(x) = 1− x2
1 +

2

|J2|
∑
j∈J2

h(yj)
, (6.83)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30,

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, . . . , n, (6.84)

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XXIX

and

h(t) =
|t|

|+ e2|t| . (6.85)

The variable bounds are 0 ≤ x1 ≤ 1 and −2 ≤ xi ≤ 2, i = 2, . . . , n.

UF5

Minimize:

f1(x) = x1 +

(
1

2N
+ ε

)
|sin(2Nπx1)|+ 2

|J1|
∑
j∈J1

h(yj)

f2(x) = 1− x1 +

(
1

2N
+ ε

)
|sin(2Nπx1)|+ 2

|J2|
∑
j∈J2

h(yj)

, (6.86)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30,

N = 10, ε = 0.1

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, . . . , n, (6.87)

and

h(t) = 2t2 − cos(4πt) + 1. (6.88)

The variable bounds are 0 ≤ x1 ≤ 1 and −1 ≤ xi ≤ 1, i = 2, . . . , n.

UF6

Minimize:

f1(x) = x1 +max(0, 2

(
1

2N
+ ε

)
sin(2Nπx1)) +

2

|J1|

(
4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j
+ 2

))

f2(x) = 1− x1 +max(0, 2

(
1

2N
+ ε

)
sin(2Nπx1)) +

2

|J2|

(
4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j
+ 2

)), (6.89)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30,

N = 2, ε = 0.1 and

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, . . . , n, (6.90)

Cinvestav Computer Science Department

XXX

The variable bounds are 0 ≤ x1 ≤ 1 and −1 ≤ xi ≤ 1, i = 2, . . . , n.

UF7

Minimize:

f1(x) = 5
√
x1 +

2

|J1|
∑
j∈J1

y2
j

f2(x) = 1− 5
√
x1 +

2

|J2|
∑
j∈J2

y2
j

, (6.91)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30,

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, . . . , n, (6.92)

and

h(t) =
|t|

|+ e2|t| . (6.93)

The variable bounds are 0 ≤ x1 ≤ 1 and −1 ≤ xi ≤ 1, i = 2, . . . , n.

UF8

Minimize:

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
j∈J1

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f2(x) = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
j∈J2

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f3(x) = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

, (6.94)

where J1 = {j : 3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j : 3 ≤ j ≤
n, and j−2 is a multiplication of 3}, J3 = {j : 3 ≤ j ≤ n, and j is a multiplication of 3}
and n = 30. The variable bounds are 0 ≤ x1 ≤ 1 and −2 ≤ xi ≤ 2, i = 2, . . . , n.

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XXXI

UF9

Minimize:

f1(x) = 0.5
(
max

(
0, (1 + ε)(| − 4(2x1 − 1)2)

)
+ 2x1

)
x2 +

2

|J1|
∑
j∈J1

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f2(x) = 0.5
(
max

(
0, (1 + ε)(| − 4(2x1 − 1)2)

)
+ 2x1

)
x2 +

2

|J2|
∑
j∈J2

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f3(x) = 1− x2 +
2

|J3|
∑
j∈J3

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

, (6.95)

where J1 = {j : 3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j : 3 ≤ j ≤
n, and j−2 is a multiplication of 3}, J3 = {j : 3 ≤ j ≤ n, and j is a multiplication of 3}
and n = 30. The variable bounds are 0 ≤ x1 ≤ 1 and −2 ≤ xi ≤ 2, i = 2, . . . , n.

UF10

Minimize:

f1(x) = cos(0.5πx1)cos(0.5πx2) +
2

|J1|
∑
j∈J1

(4yj − cos(8πyj) + 1)

f2(x) = cos(0.5πx1)sin(0.5πx2) +
2

|J2|
∑
j∈J2

(4yj − cos(8πyj) + 1)

f3(x) = sin(0.5πx1) +
2

|J3|
∑
j∈J3

(4yj − cos(8πyj) + 1)

, (6.96)

where J1 = {j : 3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j : 3 ≤ j ≤
n, and j−2 is a multiplication of 3}, J3 = {j : 3 ≤ j ≤ n, and j is a multiplication of 3},
n = 30 and

yj = xj − 2x2sin

(
2πx1 +

jπ

n

)
, 3, . . . , n. (6.97)

The variable bounds are 0 ≤ x1 ≤ 1 and −2 ≤ xi ≤ 2, i = 2, . . . , n.

Cinvestav Computer Science Department

XXXII

Constrained problems

CEC 2009 constest

These test problems were originally proposed in [Zhang et al., 2008].

CF1

Minimize:

f1(x) = x1 +
2

|J1|
∑
j∈J1

(
xj − x

0.5(1+
3(j−2)
n−2)

1

)2

f2(x) = 1− x1 +
2

|J1|
∑
j∈J1

(
xj − x

0.5(1+
3(j−2)
n−2)

1

)2
, (6.98)

subject to:

g(x) = f1(x) + f2(x)− a |sin (Nπ(f1(x)− f2(x) + 1)− 1)| ≥ 0, (6.99)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 30,

N = 10 and a = 1. The variable bounds are 0 ≤ xi ≤ 1, i = 1, . . . , n.

CF2

Minimize:

f1(x) = x1 +
2

|J1|
∑
j∈J1

(
xj − sin

(
6πx1 +

jπ

n

))2

f2(x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

(
xj − cos

(
6πx1 +

jπ

n

))2
, (6.100)

subject to:

g(x) =
t(x)

1 + e4|t| ≥ 0, (6.101)

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XXXIII

where

t(x) = f2(x) +
√
f1(x)− a sin

(
Nπ(

√
f1(x)− f2(x) + 1)− 1,

)
, (6.102)

J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 10,

N = 2 and a = 1. The variable bounds are 0 ≤ x1 ≤ 1, −1 ≤ xi ≤ 1, i = 2, . . . , n.

CF3

Minimize:

f1(x) = x1 +
2

|J1|

(
4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

)

f2(x) = 1− x2
1 +

2

|J2|

(
4
∑
j∈J2

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2

), (6.103)

where

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, . . . , n, (6.104)

subject to:

g(x) = f2(x) + f1(x)2 −−a sin
(
Nπ(f1(x)2 − f2(x) + 1)− 1

)
≥ 0, (6.105)

where J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n}, n = 10,

N = 2 and a = 1. The variable bounds are 0 ≤ x1 ≤ 1, −2 ≤ xi ≤ 2, i = 2, . . . , n.

CF4

Minimize:

f1(x) = x1 +
∑
j∈J1

hj(yj)

f2(x) = 1− x1 +
∑
j∈J2

hj(yj)
, (6.106)

Cinvestav Computer Science Department

XXXIV

where

yj = xj − sin

(
6πx1 +

jπ

n

)
, j = 2, . . . , n, (6.107)

h2(t) =
{
|t| if t < 3

2

(
1−

√
2

2

)
0.125 + (t− 1)2, otherwise (6.108)

and

hj(t) = t2, j = 3, . . . , n (6.109)

Subject to:

g(x) =
s(x)

1 + e4|s(x)| ≥ 0, (6.110)

where

s(x) = x2 − sin

(
6πx1 +

jπ

n

)
− 0.5x1 + 0.25, (6.111)

J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n} and n = 10.

The variable bounds are 0 ≤ x1 ≤ 1, −2 ≤ xi ≤ 2, i = 2, . . . , n.

CF5

Minimize:

f1(x) = x1 +
∑
j∈J1

hj(yj)

f2(x) = 1− x1 +
∑
j∈J2

hj(yj)
, (6.112)

where

yj =
{
xj − 0.8x1cos

(
6πx1 + jπ

n

)
, if j ∈ J1xj − 0.8x1sin

(
6πx1 + jπ

n

)
, if j ∈ J2

(6.113)

h2(t) =
{
|t| if t < 3

2

(
1−

√
2

2

)
0.125 + (t− 1)2, otherwise (6.114)

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XXXV

and

hj(t) = 2t2 − cos(4πt) + 1, j = 3, . . . , n (6.115)

Subject to:

g(x) = x2 − 0.8x1sin

(
6πx1 +

2π

n

)
− 0.5x1 + 0.25 ≥ 0, (6.116)

J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n} and n = 10.

The variable bounds are 0 ≤ x1 ≤ 1, −2 ≤ xi ≤ 2, i = 2, . . . , n.

CF6

Minimize:

f1(x) = x1 +
∑
j∈J1

y2
j

f2(x) = (1− x1)2 +
∑
j∈J2

y2
j

, (6.117)

where

yj =

xj − 0.8x1cos
(
6πx1 + jπ

n

)
, if j ∈ J1

xj − 0.8x1sin
(
6πx1 + jπ

n

)
, if j ∈ J2

(6.118)

Subject to:

g1(x) = x2 − 0.8x1sin

(
6πx1 +

2π

n

)
− sign

(
0.5(1− x1)− (1− x1)2

)√
|0.5(1− x1)− (1− x1)2| ≥ 0

g2(x) = x4 − 0.8x1sin

(
6πx1 +

4π

n

)
− sign

(
0.25
√

1− x1 − 0.5(1− x1)
)√
|0.25

√
1− x1 − 0.5(1− x1)| ≥ 0

, (6.119)

J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n} and n = 10.

The variable bounds are 0 ≤ x1 ≤ 1, −2 ≤ xi ≤ 2, i = 2, . . . , n.

Cinvestav Computer Science Department

XXXVI

CF7

Minimize:

f1(x) = x1 +
∑
j∈J1

hj(yj)

f2(x) = (1− x1)2 +
∑
j∈J2

hj(yj)
, (6.120)

where

yj =

xj − cos
(
6πx1 + jπ

n

)
, if j ∈ J1

xj − sin
(
6πx1 + jπ

n

)
, if j ∈ J2

(6.121)

h2(t) = h4(t) = t2, (6.122)

and

hj(t) = 2t2 − cos(4πt) + 1, i = 3, 5, 6 . . . , n. (6.123)

Subject to:

g1(x) = x2 − x1sin

(
6πx1 +

2π

n

)
− sign

(
0.5(1− x1)− (1− x1)2

)√
|0.5(1− x1)− (1− x1)2| ≥ 0

g2(x) = x4 − x1sin

(
6πx1 +

4π

n

)
− sign

(
0.25
√

1− x1 − 0.5(1− x1)
)√
|0.25

√
1− x1 − 0.5(1− x1)| ≥ 0

, (6.124)

J1 = {j : j is odd and 2 ≤ j ≤ n}, J2 = {j : j is even and 2 ≤ j ≤ n} and n = 10.

The variable bounds are 0 ≤ x1 ≤ 1, −2 ≤ xi ≤ 2, i = 2, . . . , n.

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XXXVII

CF8

Minimize:

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
j∈J1

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f2(x) = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
j∈J2

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f3(x) = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

, (6.125)

subject to:

g1(x) =
f1(x)2 + f2(x)2

1− f3(x)2
− a sin

(
Nπ

(
f1(x)2 + f2(x)2

1− f3(x)2
+ 1

))
− 1 ≥ 0, (6.126)

where J1 = {j : 3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j : 3 ≤ j ≤
n, and j−2 is a multiplication of 3}, J3 = {j : 3 ≤ j ≤ n, and j is a multiplication of 3},
n = 30, N = 2 and a = 4. The variable bounds are 0 ≤ x1, x2 ≤ 1 and −4 ≤ xi ≤
4, i = 3, . . . , n.

CF9

Minimize:

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
j∈J1

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f2(x) = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
j∈J2

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

f3(x) = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(
xj − 2x2sin

(
2πx1 +

jπ

n

))2

, (6.127)

subject to:

g1(x) =
f1(x)2 + f2(x)2

1− f3(x)2
− a sin

(
Nπ

(
f1(x)2 + f2(x)2

1− f3(x)2
+ 1

))
− 1 ≥ 0, (6.128)

Cinvestav Computer Science Department

XXXVIII

where J1 = {j : 3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j : 3 ≤ j ≤
n, and j−2 is a multiplication of 3}, J3 = {j : 3 ≤ j ≤ n, and j is a multiplication of 3},
n = 30, N = 2 and a = 3. The variable bounds are 0 ≤ x1, x2 ≤ 1 and −4 ≤ xi ≤
4, i = 3, . . . , n.

CF10

Minimize:

f1(x) = cos(0.5x1π)cos(0.5x2π) +
2

|J1|
∑
j∈J1

(
4y2

j − cos(8πyj) + 1
)

f2(x) = cos(0.5x1π)sin(0.5x2π) +
2

|J2|
∑
j∈J2

(
4y2

j − cos(8πyj) + 1
)

f3(x) = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(
4y2

j − cos(8πyj) + 1
)

, (6.129)

where

yj(x) = xj − 2x2sin

(
2πx1 +

jπ

n

)
. (6.130)

Subject to:

g1(x) =
f1(x)2 + f2(x)2

1− f3(x)2
− a sin

(
Nπ

(
f1(x)2 + f2(x)2

1− f3(x)2
+ 1

))
− 1 ≥ 0, (6.131)

where J1 = {j : 3 ≤ j ≤ n, and j − 1 is a multiplication of 3}, J2 = {j : 3 ≤ j ≤
n, and j−2 is a multiplication of 3}, J3 = {j : 3 ≤ j ≤ n, and j is a multiplication of 3},
n = 30, N = 2 and a = 1. The variable bounds are 0 ≤ x1, x2 ≤ 1 and −4 ≤ xi ≤
4, i = 3, . . . , n.

Other constrained multi-objective problems

These test problems were taken from [Coello et al., 2007].

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XXXIX

Belegundu

Minimize:

f1(x) = −x1 + x2 − 1 ≤ 0

f2(x) = x1 + x2 − 7 ≤ 0
, (6.132)

subject to:

−x1 + x2 − 1 ≤ 0

x1 + x2 − 7 ≤ 0

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

, (6.133)

where n = 2.

Binh(2)

Minimize:

f1(x) = 4x2
1 + 4x2

2

f2(x) = (x1 − 5)2 + (x2 − 5)2
, (6.134)

subject to:

(x1 − 5)2 + x2
2 − 25 ≤ 0

−(x1 − 8)2 − (x2 + 3)3 + 7.7 ≤ 0

0 ≤ x1 ≤ 5

0 ≤ x2 ≤ 3

, (6.135)

where n = 2.

Cinvestav Computer Science Department

XL

Binh(4)

Minimize:

f1(x) = 1.5− x1(1− x2)

f2(x) = 2.25− x1(1− x2
2)
, (6.136)

subject to:

−x2
1 − (x2 − 0.5)2 + 9 ≤ 0

(x1 − 1)2 + (x2 − 0.5)2 − 6.25 ≤ 0

−10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

, (6.137)

where n = 2.

Obayashi

Maximize:

f1(x) = x1

f2(x) = x2

, (6.138)

subject to:

x2
1 + x2

2 ≤ 1

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

, (6.139)

where n = 2.

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XLI

Osyczka

Maximize:

f1(x) = x1 + x2
2

f2(x) = x2
1 + x2

, (6.140)

subject to:

12− x1 − x2 ≥ 0

x2
1 + 10x1 − x2

2 + 16x2 − 80 ≥ 0

2 ≤ x1 ≤ 7

5 ≤ x2 ≤ 10

, (6.141)

where n = 6.

Osyczka(2)

Minimize:

f1(x) = x1 + x2
2

f2(x) = x2
1 + x2

, (6.142)

subject to:

x1 + x2 − 2 ≥ 0

6− x1 − x2 ≥ 0

2− x2 + x1 ≥ 0

2− x1 + 3x2 ≥ 0

4− (x3 − 3)2 − x4 ≥ 0

(x5 − 3)3 + x6 − 4 ≥ 0

0 ≤ x1, x2, x6 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

, (6.143)

Cinvestav Computer Science Department

XLII

where n = 6.

Srinivas

Minimize:

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2

f2(x) = 9x1 − (x2 − 1)2
, (6.144)

subject to:

x2
1 + x2

2 − 225 ≤ 0

x1 − 3x2 + 10 ≤ 0

−20 ≤ x1, x2 ≤ 20

, (6.145)

where n = 2.

Tamaki

Maximize:

f1(x) = x1

f2(x) = x2

f3(x) = x3

, (6.146)

subject to:

x2
1 + x2

2 + x3 ≤ 1

x1, x2, x3 ≥ 0
, (6.147)

where n = 2.

Cinvestav Computer Science Department

B: Multi-objective constrained problems definition XLIII

Tanaka

Minimize:

f1(x) = x1

f2(x) = x2

, (6.148)

subject to:

−x2
1 − x2

2 + 1 + 0.1cos

(
16 arctan(

x1

x2

)

)
≤ 0

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

0 < x1, x2 ≤ π

, (6.149)

where n = 2.

Viennet(4)

Minimize:

f1(x) =
(x1 − 2)2

2
+

(x2 + 1)2

13
+ 3

f2(x) =
(x1 + x2 − 3)2

175
+

(2x2 − x1)2

17
− 13

f3(x) =
(3x1 − 2x2 + 4)2

8
+

(x1 − x2 + 1)2

27
+ 15

, (6.150)

subject to:

−4x1 − x2 + 4 ≥ 0

x1 + 1 ≥ 0

x2 − x1 + 2 ≥ 0

−4 ≤ x1, x2 ≤ 4

, (6.151)

where n = 2.

Cinvestav Computer Science Department

XLIV

Cinvestav Computer Science Department

Bibliography

[Ackley, 1987] D.H. Ackley, An empirical study of bit vector function optimization,

Genetic algorithms and simulated annealing, vol. 1, pp. 170–204, Pitman, Lon-

don, 1987.

[Alvarado et al., 2016] S. Alvarado, A. Lara, V. Sosa and O. Schütze, An effective

mutation operator to deal with multi-objective constrained problems: SPM, in

2016 13th International Conference on Electrical Engineering, Computing Sci-

ence and Automatic Control (CCE), pp. 1–6, Sept 2016.

[Bao et al., 2013] Y. Bao, Z. Hu and T. Xiong, A PSO and Pattern Search based

Memetic Algorithm for SVMs Parameters Optimization, Neurocomputing, Else-

vier, 2013.

[Beume et al., 2007] N. Beume, B. Naujoks and M. Emmerich, Sms-emoa: Multiob-

jective selection based on dominated hypervolume, European Journal of Opera-

tional Research, vol. 181, no. 3, pp. 1653–1669, Elsevier, 2007.

[Brown and Smith, 2005a] M. Brown and R.E. Smith, Directed multi-objective opti-

misation, International Journal of Computers, Systems and Signals, vol. 6, no. 1,

pp. 3–17, 2005a.

[Brown and Smith, 2005b] M. Brown and R.E. Smith, Directed multi-objective op-

timization, International Journal of Computers, Systems, and Signals, vol. 6,

no. 1, pp. 3–17, IEE, 2005b.

[Coello et al., 2007] C.A. Coello, G.B. Lamont and D.A.V. Veldhuizen, Evolutionary

Algorithms for Solving Multi-Objective Problems, 2nd Edition, Springer, USA,

2007.

[Coello and Cortés, 2005] C.A.C. Coello and N.C. Cortés, Solving multiobjective op-

timization problems using an artificial immune system, Genetic Programming

and Evolvable Machines, vol. 6, no. 2, pp. 163–190, Springer, 2005.

XLV

XLVI BIBLIOGRAPHY

[Das and Dennis, 1997] I. Das and J.E. Dennis, A closer look at drawbacks of min-

imizing weighted sums of objectives for pareto set generation in multicriteria

optimization problems, Structural optimization, vol. 14, no. 1, pp. 63–69, 1997,

ISSN 1615-1488.

[Das and Dennis, 1998] I. Das and J.E. Dennis, Normal-Boundary Intersection: A

New Method for Generating the Pareto Surface in Nonlinear Multicriteria Opti-

mization Problems, SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657,

August 1998.

[Dawkins, 1989] R. Dawkins, The Selfish Gene, Popular Science, Oxford University

Press, 1989, ISBN 9780192860927.

[Deb, 2001] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms,

1st Edition, John Wiley and Sons, USA, 2001.

[Deb and Goyal, 1996] K. Deb and M. Goyal, A combined genetic adaptive search

(geneas) for engineering design, Computer Science and informatics, vol. 26, pp.

30–45, Citeseer, 1996.

[Deb et al., 2002a] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and eli-

tist multiobjective optimization genetic algorithm: NSGA-II, IEEE Transactions

on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002a.

[Deb et al., 2002b] K. Deb, L. Thiele, M. Laumanns and E. Zitzler, Scalable Multi-

Objective Optimization Test Problems, in Congress on Evolutionary Computa-

tion (CEC 2002), pp. 825–830, 2002b.

[Debye, 1909] P. Debye, Näherungsformeln für die zylinderfunktionen für große werte

des arguments und unbeschränkt veränderliche werte des index, Mathematische

Annalen, vol. 67, no. 4, pp. 535–558, Springer, 1909.

[Durillo et al., 2010] J. Durillo, A. Nebro, C.A.C. Coello, J. Garcia-Nieto, F. Luna

and E. Alba, A study of multiobjective metaheuristics when solving parameter

scalable problems, IEEE Trans. Evol. Comput., vol. 14, no. 4, pp. 618–635, Aug

2010.

[Edgeworth, 1881] F.Y. Edgeworth, Mathematical Psychics; An Essay on the Appli-

cation of Mathematics to the Moral Sciences, P. Keagan, England, 1881.

Cinvestav Computer Science Department

BIBLIOGRAPHY XLVII

[Eiben et al., 2003] A.E. Eiben, J.E. Smith et al., Introduction to evolutionary com-

puting, vol. 53, Springer, 2003.

[Fermat, 1629] P.D. Fermat, Fermat theorem for stationary points, 1629.

[Fletcher, 1975] R. Fletcher, An ideal penalty function for constrained optimization,

IMA Journal of Applied Mathematics, vol. 15, no. 3, pp. 319–342, IMA, 1975.

[Fletcher and Reeves, 1964] R. Fletcher and C.M. Reeves, Function minimization by

conjugate gradients, The computer journal, vol. 7, no. 2, pp. 149–154, Br Com-

puter Soc, 1964.

[Gass and Saaty, 1955] S.I. Gass and T.L. Saaty, Parametric objective function (part

2)-generalization, Journal of the Operations Research Society of America, vol. 3,

no. 4, pp. 395–401, INFORMS, 1955.

[Gómez and Coello, 2013] R.H. Gómez and C.A.C. Coello, MOMBI: A new meta-

heuristic for many-objective optimization based on the r2 indicator, in 2013

IEEE Congress on Evolutionary Computation, pp. 2488–2495, IEEE, 2013.

[Haimes et al., 1971] Y.Y. Haimes, L. Ladson and D.A. Wismer, On a bicriterion

formulation of the problems of integrated system identification and system op-

timization, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-1,

no. 3, pp. 296–297, July 1971, ISSN 0018-9472, doi:10.1109/TSMC.1971.4308298.

[Hooke and Jeeves, 1961] R. Hooke and T.A. Jeeves, “Direct Search” Solution of Nu-

merical and Statistical Problems, J. ACM, vol. 8, no. 2, pp. 212–229, ACM, New

York, NY, USA, Apr. 1961, ISSN 0004-5411.

[Karush, 1939] W. Karush, Minima of Functions of Several Variables with Inequalities

as Side Constraints, Master’s thesis, Department of Mathematics, University of

Chicago, 1939.

[Kuhn and Tucker, 1951] H.W. Kuhn and A.W. Tucker, Nonlinear programming, in

Proceedings of the 2nd Berkley Symposium on Mathematical Statics and Proba-

bility, University of California Press, 1951.

[Kukkonen and Lampinen, 2006] S. Kukkonen and J. Lampinen, Constrained real-

parameter optimization with generalized differential evolution, in Evolutionary

Computation, 2006. CEC 2006. IEEE Congress on, pp. 207–214, IEEE, 2006.

Cinvestav Computer Science Department

XLVIII BIBLIOGRAPHY

[Kursawe, 1990] F. Kursawe, A variant of evolution strategies for vector optimization,

in International Conference on Parallel Problem Solving from Nature, pp. 193–

197, Springer, 1990.

[Lara et al., 2013] A. Lara, S. Alvarado, S. Salomon, G. Avigad, C.A. Coello and O.

Schütze, The gradient free directed search method as local search within multi-

objective evolutionary algorithms, in EVOLVE - A Bridge between Probability,

Set Oriented Numerics, and Evolutionary Computation (EVOLVE II), pp. 153–

168, 2013.

[LaTorre, 2009] A. LaTorre, A framework for hybrid dynamic evolutionary algo-

rithms: multiple offspring sampling (MOS), Ph.D. thesis, Informatica, 2009.

[LaTorre et al., 2011] A. LaTorre, S. Muelas and J.M. Pea, A mos-based dynamic

memetic differential evolution algorithm for continuous optimization: a scalabil-

ity test, Soft Computing, vol. 15, no. 11, pp. 2187–2199, Springer-Verlag, 2011.

[Liang et al., 2006] J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N.

Suganthan, C.A.C. Coello and K. Deb, Problem definitions and evaluation crite-

ria for the cec 2006 special session on constrained real-parameter optimization, ,

Nanyang Technological University, Singapore, March 2006.

[Liu et al., 2016a] J. Liu, K.L. Teo, X. Wang and C. Wu, An exact penalty function-

based differential search algorithm for constrained global optimization, Soft Com-

puting, vol. 20, no. 4, pp. 1305–1313, Springer, 2016a.

[Liu et al., 2016b] T. Liu, X. Gao and Q. Yuan, An improved gradient-based NSGA-

II algorithm by a new chaotic map model, Soft Computing, pp. 1–15, Springer,

2016b.

[López et al., 2010] A.L. López, C.A.C. Coello and O. Schütze, A painless gradient-

assisted multi-objective memetic mechanism for solving continuous bi-objective

optimization problems, in IEEE congress on evolutionary computation, pp. 1–8,

IEEE, 2010.

[Miettinen, 2012] K. Miettinen, Nonlinear multiobjective optimization, vol. 12,

Springer Science & Business Media, 2012.

[Nelder and Mead, 1965] J.A. Nelder and R. Mead, A simplex method for function

minimization, The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.

Cinvestav Computer Science Department

BIBLIOGRAPHY XLIX

[Nocedal and Wright, 2006] J. Nocedal and S. Wright, Numerical Optimization,

Springer Series in Operations Research and Financial Engineering, Springer,

2006.

[Olsen, 1994] A.L. Olsen, Penalty functions and the knapsack problem, in Evolution-

ary Computation, 1994. IEEE World Congress on Computational Intelligence.,

Proceedings of the First IEEE Conference on, pp. 554–558, IEEE, 1994.

[Pareto, 1896] V. Pareto, Cours DEconomie Politique, F. Rouge, Switzerland, 1896.

[Rosenbrock, 1960] H. Rosenbrock, An automatic method for finding the greatest or

least value of a function, The Computer Journal, vol. 3, no. 3, pp. 175–184, Br

Computer Soc, 1960.

[Rudolph et al., 2016] G. Rudolph, O. Schütze, C. Grimme, C. Domı́nguez-Medina

and H. Trautmann, Optimal averaged hausdorff archives for bi-objective prob-

lems: theoretical and numerical results, Computational Optimization and Appli-

cations, vol. 64, no. 2, pp. 589–618, Springer, 2016.

[Schütze et al., 2012] O. Schütze, X. Esquivel, A. Lara and C.A. Coello, Using

the Averaged Hausdorff Distance as a Performance Measure in Evolutionary

Multiobjective Optimization, IEEE Transactions on Evolutionary Computation,

vol. 16, no. 4, pp. 504–522, Aug 2012, ISSN 1089-778X, doi:10.1109/TEVC.2011.

2161872.

[Schütze et al., 2016] O. Schütze, V.A.S. Hernández, S.J.A. Garćıa and A. Lara, On

the choice of neighborhood sampling in evolutionary multi-objective optimiza-

tion, 2016.

[Schütze et al., 2016a] O. Schütze, V.A.S. Hernández, H. Trautmann and G.

Rudolph, The hypervolume based directed search method for multi-objective

optimization problems, Journal of Heuristics, pp. 1–28, Springer, 2016a.

[Schütze et al., 2010] O. Schütze, A. Lara and C.A. Coello, The directed search

method for unconstrained multi-objective optimization problems, TR-OS-2010-

01, CINVESTAV, January 2010.

[Schütze et al., 2011] O. Schütze, A. Lara and C.A. Coello, On the influence of the

Number of objectives on the hardness of a multiobjective optimization problem,

IEEE Transactions on Evolutionary Computation, vol. 15, no. 4, pp. 444–455,

August 2011.

Cinvestav Computer Science Department

L BIBLIOGRAPHY

[Schütze et al., 2016b] O. Schütze, A. Mart́ın, A. Lara, S. Alvarado, E. Salinas and

C.A.C. Coello, The directed search method for multi-objective memetic algo-

rithms, Computational Optimization and Applications, vol. 63, no. 2, pp. 305–

332, 2016b, ISSN 1573-2894, doi:10.1007/s10589-015-9774-0.

[Schwefel, 1993] H.P.P. Schwefel, Evolution and optimum seeking: the sixth genera-

tion, John Wiley & Sons, Inc., 1993.

[Shewchuk, 1994] J.R. Shewchuk, An introduction to the conjugate gradient method

without the agonizing pain, 1994.

[Shukla, 2007] P.K. Shukla, Evolutionary Multi-Criterion Optimization: 4th Interna-

tional Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007. Proceed-

ings, chap. On Gradient Based Local Search Methods in Unconstrained Evolu-

tionary Multi-objective Optimization, pp. 96–110, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007.

[Storn and Price, 1995] R. Storn and K. Price, Differential evolution-a simple and

efficient adaptive scheme for global optimization over continuous spaces, vol. 3,

ICSI Berkeley, 1995.

[Storn and Price, 1997a] R. Storn and K. Price, Differential evolution a simple and

efficient heuristic for global optimization over continuous spaces, J. of Global

Optimization, vol. 11, no. 4, pp. 341–359, Kluwer Academic Publishers, Hingham,

MA, USA, Dec. 1997a, ISSN 0925-5001.

[Storn and Price, 1997b] R. Storn and K. Price, Differential evolution–a simple and

efficient heuristic for global optimization over continuous spaces, Journal of global

optimization, vol. 11, no. 4, pp. 341–359, Springer, 1997b.

[Trautmann et al., 2013] H. Trautmann, T. Wagner and D. Brockhoff, Learning and

Intelligent Optimization: 7th International Conference, LION 7, Catania, Italy,

January 7-11, 2013, Revised Selected Papers, chap. R2-EMOA: Focused Multi-

objective Search Using R2-Indicator-Based Selection, pp. 70–74, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013, ISBN 978-3-642-44973-4.

[Tseng and Chen, 2008] L.Y. Tseng and C. Chen, Multiple trajectory search for large

scale global optimization, in Evolutionary Computation, 2008. CEC 2008. (IEEE

World Congress on Computational Intelligence). IEEE Congress on, pp. 3052–

3059, June 2008.

Cinvestav Computer Science Department

BIBLIOGRAPHY LI

[Van Veldhuizen, 1999] D.A. Van Veldhuizen, Multiobjective evolutionary algo-

rithms: classifications, analyses, and new innovations, , DTIC Document, 1999.

[Wierzbicki, 1980] A.P. Wierzbicki, The use of reference objectives in multiobjective

optimization, in Multiple criteria decision making theory and application, pp.

468–486, Springer, 1980.

[Wolfe, 1969] P. Wolfe, Convergence conditions for ascent methods, SIAM review,

vol. 11, no. 2, pp. 226–235, SIAM, 1969.

[Zapotecas Mart́ınez and Coello, 2012] S. Zapotecas Mart́ınez and C.A.C. Coello, A

Direct Local Search Mechanism for Decomposition-based Multi-Objective Evo-

lutionary Algorithms, in 2012 IEEE Congress on Evolutionary Computation

(CEC’2012), IEEE Press, pp. 3431–3438, Brisbane, Australia, June 2012.

[Zapotecas-Martnez and Coello, 2016] S. Zapotecas-Martnez and C.A.C. Coello,

Monss: A multi-objective nonlinear simplex search approach, Engineering Opti-

mization, vol. 48, no. 1, pp. 16–38, 2016, doi:10.1080/0305215X.2014.992889.

[Zhang et al., 2009a] Q. Zhang, W. Liu and H. Li, The performance of a new ver-

sion of MOEA/D on CEC09 unconstrained MOP test instances, in Evolutionary

Computation, 2009. CEC’09. IEEE Congress on, pp. 203–208, IEEE, 2009a.

[Zhang and Li, 2006] Q. Zhang and H. Li, A multi-objective evolutionary algorithm

based on decomposition, , University of Essex, May 2006.

[Zhang et al., 2008] Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu and S.

Tiwari, Multiobjective optimization test instances for the cec 2009 special ses-

sion and competition, University of Essex, Colchester, UK and Nanyang tech-

nological University, Singapore, special session on performance assessment of

multi-objective optimization algorithms, technical report, vol. 264, 2008.

[Zhang et al., 2009b] Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu and S.

Tiwari, Multiobjective optimization Test Instances for the CEC 2009 Special Ses-

sion and Competition, CES-487, University of Essex and Nanyang Technological

University, April 2009b.

[Zitzler et al., 2000a] E. Zitzler, K. Deb and L. Thiele, Comparison of multiobjective

evolutionary algorithms: Empirical results, Evolutionary computation, vol. 8,

no. 2, pp. 173–195, MIT Press, 2000a.

Cinvestav Computer Science Department

LII BIBLIOGRAPHY

[Zitzler et al., 2000b] E. Zitzler, K. Deb and L. Thiele, Comparison of Multiobjective

Evolutionary Algorithms: Empirical Results, Evolutionary Computation, vol. 8,

no. 2, pp. 173–195, 2000b.

[Zitzler and Künzli, 2004] E. Zitzler and S. Künzli, Indicator-based selection in mul-

tiobjective search, in International Conference on Parallel Problem Solving from

Nature, pp. 832–842, Springer, 2004.

[Zitzler and Thiele, 1999] E. Zitzler and L. Thiele, Multiobjective evolutionary al-

gorithms: a comparative case study and the strength Pareto approach, IEEE

transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, IEEE,

1999.

Cinvestav Computer Science Department

	Figures
	Tables
	Algorithms
	Contributions
	Introduction
	Background
	Single Objective Optimization
	Basis concepts
	Optimality definitions
	Related Work

	Multi-objective Optimization
	Basic concepts
	Related work

	The Discrete Directed Search Method
	Main Idea
	Influence of the value of r
	Standalone DDS

	Numerical Results
	Memetic MOEA/D
	Discussion of results

	The Gradient Subspace Approximation
	Basic Idea
	GSA for Unconstrained SOPs
	GSA for Constrained SOPs
	Equality constraints
	Inequality constraints

	GSA as Standalone Algorithm
	Computing the direction
	Correcting the step size
	GSA standalone algorithm

	GSA within DE
	Computing the neighborhood
	Initial step size
	Balancing the operators

	Numerical Results
	Standalone algorithm
	GSA within DE

	Multi-objective GSA
	Applicability of GSA within MOEAs
	Approximating the Jacobian
	Computing a descent direction
	Memetic algorithm
	Numerical Results

	Subspace Polynomial Mutation
	Multi-objective Stochastic Local Search
	MOSLS movement according to the position of x0
	MOSLS with inequality constraints
	Main idea of SPM
	NSGA-II/SPM
	Numerical results

	Conclusions and Future Work
	Appendix A: Single objective problems definition
	Appendix B: Multi-objective unconstrained problems definition
	Appendix C: Multi-objective constrained problems definition
	References

