
CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL
INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACIÓN

Studies on Some Weak
Notions of Security

A dissertation submitted by

Sandra Díaz Santiago

For the degree of

Doctor of Computer Science

Advisor
Debrup Chakraborty Ph.D.

México, D. F. December, 2014

.

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL
INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACIÓN

Estudios sobre algunas Nociones
Débiles de Seguridad

Tesis que presenta

Sandra Díaz Santiago

para obtener el grado de

Doctor en Ciencias de la Computación

Director de Tesis:
Dr. Debrup Chakraborty

México, D. F. Diciembre, 2014

.

Abstract

In our modern world, security of the information has become a growing concern in our
society. Cryptography is one of the tools which has been extensively used to achieve
various security goals. In general, cryptographic tools are developed to achieve the
highest levels of security, and there are applications where if strong cryptography is
used in the usual way then it seriously compromises the efficiency and/or usability of
the system. In this thesis we explore two such practical problems where this is the
case. We explore the right security requirements for these applications and construct
some non-standard primitives which are weaker than the traditional schemes but still
provides adequate levels of security required for the application. The two problems that
we study in this thesis are: (1) How to protect communications against profilers and
(2) How to protect credit card numbers.

A profiling adversary is a computer program whose aim is to classify messages sent
and/or received by a user and classify them into some pre-defined classes. This classifi-
cation can reveal important information about the user, for example the user’s interests
and preferences. This information, though seems harmless, can severely compromise
the privacy of an individual. We argue that applying strong encryption to solve this
problem is not necessary to obtain security from profilers. We fix an exact security def-
inition for an encryption scheme to be secure against profilers. Further, we propose
several concrete schemes and prove that they achieve security in accordance to our
definition.

The second problem that we study in this thesis, is related with the financial world. With
the popularization of the paradigm of e-commerce it is now possible to buy products and
services using a credit card over the internet. Credit card numbers are typically stored
in the merchant environments for a variety of purposes. Credit card numbers are very
sensitive information, and a merchant who stores or uses credit card data is required to
take special security measures. One popular solution which provides security to credit
card information is called tokenization. In this paradigm instead of storing the credit
card number, it is substituted by another value called token, which apparently must not

i

reveal any information about the credit card number. To our knowledge there has been
no formal study of this useful paradigm from the cryptographic viewpoint. We aim to
fill this gap in this thesis. Our principal contributions in this problem are three security
definitions for tokenization systems and also several cryptographic constructions of to-
kenizers, which we analyze in light of our security definitions. Finally, we provide some
initial experimental data on the performance of our proposed tokenization procedures.

Resumen

En la actualidad, la seguridad de la información se ha convertido en un área cada vez
más importante para nuestra sociedad. La Criptografía es una de las herramientas que
ha sido ampliamente usada para satisfacer distintos servicios de seguridad. En general,
las herramientas criptográficas se desarrollan para tener el más alto nivel de seguridad
y existen aplicaciones donde ésta característica puede comprometer seriamente la efi-
ciencia y/o usabilidad del sistema. En esta tesis, analizamos dos problemas prácticos,
que caen en este caso. Hemos estudiado los requerimientos de seguridad apropiados
para estos problemas y también hemos construido algunas primitivas criptográficas no
estandarizadas, con una seguridad menor que la de los esquemas tradicionales, pero
que aún satisfacen un nivel adecuado de seguridad para la aplicación. Los dos prob-
lemas que estudiamos en esta tesis son: (1) cómo proteger las comunicaciones contra
adversarios clasificadores y (2) cómo proteger el número de una tarjeta de crédito.

Un adversario clasificador es un programa de cómputo, cuyo objetivo es separar los
mensajes enviados y/o recibidos por un usuario, en clases predefinidas. Esta clasifi-
cación puede revelar información importante de un usuario, por ejemplo sus intereses
o preferencias. En este contexto, es evidente que un adversario clasificador puede com-
prometer severamente la privacidad de una persona. Aquí argumentamos que aplicar
un algoritmo de cifrado, con un alto nivel de seguridad, es inadecuado para garantizar
la seguridad contra este tipo de adversarios. Por tal motivo, damos una definición de
seguridad conveniente para que un esquema de cifrado sea seguro contra adversarios
clasificadores. Asimismo proponemos varios esquemas y mostramos que satisfacen la
definición de seguridad dada.

El segundo problema que estudiamos en esta tesis, esta relacionado con el mundo fi-
nanciero. Debido a que el comercio electrónico se ha vuelto cada vez más popular, ahora
es posible comprar bienes y servicios en internet, usando una tarjeta de crédito. Cuando
lo hacemos, los datos de la tarjeta son almacenados en la base de datos del comercio
donde adquirimos estos bienes y servicios, con diversos propósitos. En este escenario
los datos de la tarjeta de crédito constituyen información vulnerable y los vendedores

iii

están obligados a protegerlos. Una solución para hacerlo, que se ha vuelto popular, es
un nuevo paradigma conocido en inglés como tokenization. Este paradigma propone
que en lugar de almacenar el número de tarjeta de crédito, éste sea sustituido por un
token, el cual es un valor alfanumérico, que aparentemente no proporciona informa-
ción alguna sobre el número de tarjeta de crédito. Hasta donde sabemos aún no se ha
llevado a cabo un análisis formal sobre la seguridad que ofrece este paradigma. Uno
de los objetivos de esta tesis es cubrir esta brecha. Nuestras principales contribuciones
para resolver este problema son: tres nociones de seguridad para este nuevo paradigma
y varias construcciones criptográficas para generar tokens, respaldadas con un análisis
de seguridad formal. Finalmente, se muestran los resultados de algunos experimentos
preliminares que se llevaron a cabo, para medir el desempeño de los procedimientos
propuestos.

Contents

1 Introduction 1

1.1 Problems Addressed . 2

1.2 Organization of this Document . 5

2 Preliminaries 9

2.1 General Notations . 9

2.2 Block Ciphers . 10

2.3 Pseudorandom Functions and Pseudorandom Permutations 10

2.3.1 Pseudorandom Functions . 11

2.3.2 Pseudorandom Permutation . 12

2.4 Symmetric Encryption . 13

2.4.1 Security of Symmetric Encryption Schemes 15

2.5 Proofs by Reduction . 17

2.6 Security of CTR . 18

2.7 Summary . 24

3 Profiling Adversaries 25

3.1 Motivation . 25

3.2 Preliminaries . 28

3.2.1 Indistinguishability in the Presence of an Eavesdropper 28

v

3.2.2 CAPTCHA . 29

3.2.3 Secret Sharing Schemes . 30

3.3 Profiling Adversaries . 31

3.3.1 PROF-EAV Security . 31

3.4 Encryption Protocol Secure Against Profiling Adversaries 32

3.4.1 Security of P . 33

3.5 A Practical Instantiation . 37

3.5.1 Security of P′ . 39

3.5.2 Discussions . 40

3.6 Analyzing the Golle and Farahat’s scheme 41

3.6.1 Slow Hash Functions . 41

3.6.2 Security of Protocol S . 42

3.6.3 More Considerations . 45

3.7 Concluding Remarks . 46

4 A PROF-EAV Secure Encryption Scheme 47

4.1 Preliminaries . 48

4.1.1 Message Authentication Code . 48

4.1.2 Chaffing and Winnowing . 49

4.1.3 Document Classification. 50

4.2 Chaffing and Winnowing Text in a Natural Language 52

4.2.1 Realizing AddChaff . 55

4.3 Security Analysis . 59

4.4 Some Experiments . 63

4.5 Final Remarks . 67

5 A Formal Treatment of Tokenization 69

5.1 A Brief History . 70

5.2 Tokenization Systems: Requirements and PCI DDS Guidelines 71

5.3 Additional Cryptographic Objects . 73

5.4 A Generic Syntax . 74

5.5 Security Notions . 76

5.6 Construction TKR1: Tokenization Using FPE 79

5.7 Construction TKR2: Tokenization Without Using FPE 81

5.8 Security of TKR2 and TKR2a . 85

5.9 Summary . 91

6 Practical instantiations of TKR2 and TKR2a 93

6.1 Notations . 93

6.2 Realizing RNT [k] . 94

6.2.1 Candidates for fk(): . 95

6.3 Realizing Ek(d, x) . 96

6.4 Experimental Results . 102

6.5 Discussions . 104

6.6 Summary . 106

7 Conclusions and Future Work 107

7.1 Summary of Contributions . 107

7.1.1 Securing Information from Profilers 107

7.1.2 Cryptographic Treatment of Tokenization 108

7.2 Future Work . 109

7.2.1 Profiling Adversaries . 109

7.2.2 Tokenization Systems . 110

7.3 Other Scenarios where Weak Notions of Security are Applicable 111

7.3.1 Deduplication . 111

7.3.2 Searchable Encryption . 113

Bibliography 116

Chapter 1

Introduction

Nowadays communication technologies have become an indispensable part of our lives.
Today we are able to transmit a huge amount of information around the world in sec-
onds. And with increased connectivity, the data that we own is scattered across several
servers which are physically located all over the world. In many cases this information
that we own and transmit is very sensitive and can become a target for different kinds of
malicious activities such as unauthorized access, use, modification, destruction, among
others. Thus, information security has become a major concern of today, not only for
organizations but also for common people. In addition, everyday new security threats
appear, this increases our paranoia and we look for solutions which offer the highest
level of security.

Cryptography offers several tools which can be used for providing important security
services such as privacy, authentication, non-repudiation, integrity, etc. Modern cryp-
tographic primitives sometimes come with provable guarantees of security. For such
a guarantee, given an application one needs to formally define the threat model and
thereof come up with a formal security definition for a cryptographic primitive or appli-
cation. Then the goal becomes to construct cryptographic schemes conform to the se-
curity definitions. The security of the scheme is argued by means of a “security proof”.
The proofs of security are based on well studied assumptions which are generally based
on hardness of some computational problems or the existence of certain mathematical
objects like one-way functions, pseudo-random permutations, etc.

Cryptographic security definitions for a given application generally assume a very pow-
erful adversary with a weak goal, thus, these definitions aim to provide the maximum
possible security. Given that we live in a paranoid world, such strong definitions are
popular and socially acceptable. The maximum possible security may give us a sense of

1

2 1.1 Problems Addressed

peace but in many day to day applications such levels of security may be an over-kill or
may lead to numerous problems related to usability and availability of a system. This
situation is well characterized by a quote of Andrew Odlyzko:

Even if we could build a secure system, it would be difficult, if not impossible,
to use. For example, a system where secretaries cannot commit “forgery”, sign
for their bosses, will not work in the real world.1

Though this statement is figurative, it does reveal a reality. Hence, in most practical
applications it is important to achieve the right security/usability tradeoff.

In this thesis we aim to study some security applications where some “weak” notions
of security are applicable. Although there are several scenarios, which require a weak
notion of security, in this thesis we study two problems: protecting communications
against profilers and encryption of credit card numbers. As we will see later, if we
apply standard strong cryptography in the usual way to solve these problems, then
we must deal with other issues. The main goal of this research is to provide suitable
security notions for these two scenarios, and to analyze these applications in light of
these notions.

In the next section we informally discuss about the two problems that we studied in this
work. In the last section we describe the contents of this thesis.

1.1 Problems Addressed

In this section we give a brief and informal account of the two basic problems that we
handle in the thesis.

Security against Profiling Adversaries

Every time we use the internet to write and send an email or post something in a so-
cial network or simply browse web-sites, we are revealing information about our pref-
erences and interests. This data can be extremely valuable to some entities such as
internet publishers, internet providers and government agencies among others. These
entities may use this kind of data for different purposes, such as, directed spamming,

1quoted from RJ Lipton’s blog at http://rjlipton.wordpress.com/2010/05/10/breaking-all-the-
security-rules/

Chapter 1. Introduction 3

displaying advertisement specific to user preferences or simply selling this data to ad-
vertisement companies. To obtain this information, there are computer programs that
quietly analyze an enormous amount of information about internet users and obtain
their profiles.

To formally define the problem, we assume that given a message space, an adversary
aims to map each message in the message space into certain classes of his interest.
Using this classification of messages the adversary can try to conclude which user is
associated with which class and this is expected to reveal information regarding the
profile of a given user. Thus, in the scenario of our interest we consider an adversary
that classifies messages into pre-defined classes. Such an adversary would be further
called as a profiler, and the goal is to design encryption schemes which are secure
against such profilers.

Using standard encryption which is secure in terms of indistinguishability against cho-
sen plaintext adversaries (IND-CPA secure)2 one can achieve the above mentioned goal.
But it is clear that here we are interested in an adversary whose goal is very different
compared to an IND-CPA adversary. Hence, it may be possible to relax the security of
the encryption scheme used for data where the threat comes only from profiling adver-
saries. Hence some of the interesting questions that can be asked in this context are the
following:

1. Can a weaker security definition be formulated for an encryption scheme which is
meant to be secure only against profiling adversaries?

2. Can one design an encryption scheme satisfying the above notion which would
be superior to existing strong encryption schemes in terms of efficiency and/or
usability?

3. Can a full protocol be developed in such a way that it relieves the user from the
requirement of key exchange or a public key infrastructure?

Fortunately, we were able to find positive answers to all these questions, and we provide
details of our solutions in Chapters 3 and 4.

2Informally an encryption scheme is considered to be IND-CPA secure if it is difficult for any computa-
tionally bounded adversary to distinguish between the ciphertexts produced from two different messages
of its choice. We discuss this notion formally in Chapter 2.

4 1.1 Problems Addressed

Small Domain Encryption and Tokenization

The second problem that we examine comes from the financial world. Today it is well
known that credit card numbers are sensitive information and the organizations that
process card payments must adopt security measures to protect this information. Al-
though the most obvious solution to this problem is encrypting this data using standard
encryption algorithms, there are some problems involved in doing so. Usually a credit
card number is 16 decimal digits long, if this is treated as a binary string it is about 53
bits long. This is much less than the block size of a typical block cipher (usually 128
bits). Thus, encrypting in this way not only increases the length of the original data, but
in fact transforms the data into a binary string which is not always possible to encode
as a number with a fixed number of decimal digits. Although there exist some block
ciphers with small block lengths, say 32 bits, 64 bits, etc. But, it is evident that none of
them fulfill the specific purpose here.

This problem has given rise to the interesting area of format preserving encryption (FPE).
Where the goal is to design encryption algorithms where the domain has an arbitrary
format, as in the example above the domain consists of all 16 digit decimal numbers,
and the ciphertext is also required to follow the same format. Additionally, the domain
can be arbitrarily small. Designing efficient format preserving encryption schemes from
available cryptographic primitives (say a block cipher) is surprisingly difficult. Though
there are some such schemes reported in the literature [8, 10, 14, 36, 53, 75], which use
some very interesting ideas, but none of them can be considered to be efficient enough
for practical purposes.

Another problem that arises in designing encryption schemes in small domain is re-
garding the provably secure bounds that can be proved for them. In general, for most
schemes, if the domain contains strings of size n, then the upper bound on the advan-
tage of an adversary3 is of the order of q2/2n, assuming that the adversary has seen
q ciphertexts produced by the scheme. Note that when n is of the order of 128, then
this bound is meaningful for any reasonable value of q, but when n becomes very small
this bound becomes vacuous. Though, recently there have been some schemes which
guarantee an adversarial upper bound of q/2n, but still in applications where multiple
ciphertexts are produced and n is small, this security bound is not sufficient. Thus the
field of format preserving encryption in the small domain is largely open, and some of
the important problems related to this topic are:

1. Designing FPE schemes for small domains with increased security guarantees.

3The advantage of an adversary can be informally seen as its success probability in breaking a scheme.
For details see Chapter 2 in Section 2.4.1.

Chapter 1. Introduction 5

2. Designing FPE schemes which are practically efficient.

3. Study the applications where FPE schemes are required and provide formal secu-
rity definitions and provably secure solutions for those applications.

In our work we have mostly addressed the last point by taking the application of en-
crypting credit card numbers. In the current days, organizations have adopted a new
solution which is called “tokenization”. Tokenization is a philosophy where instead of
storing credit card numbers, a token is stored. To our knowledge a cryptographic study
of tokenization systems has not appeared in the literature. We do an extensive and
formal study of tokenization in Chapters 5 and 6.

1.2 Organization of this Document

This thesis is divided into seven chapters which intend to explain the results that we
obtained throughout the research.

In Chapter 2 we discuss some preliminaries required to understand this work. We
start by describing some basic concepts of cryptography and the general notations used
throughout this document. Given that all our protocols and security notions are in
the symmetric cryptography setting, hence we provide definitions of some basic cryp-
tographic objects used in this setting. We also discuss some tools related to provable
security, which are extensively used to show the security of our protocols.

The first problem, that we study in this thesis, is the problem of securing communica-
tions from profiling adversaries. As discussed in Section 1.1, a profiling adversary is a
specific type of adversary who aims to classify messages sent or received by a user. To
our knowledge, the only previous solution to this problem, was proposed by Golle and
Farahat [35]. The work in [35] does not delve into the formal aspects of the problem,
they do not even formally define the security requirements for an encryption scheme to
be secure against profilers. Thus, our first step in Chapter 3, is to introduce a security
notion for encryption schemes meant to provide security against profiling adversaries.
We call this new security notion as PROF-EAV security. Next we develop a protocol,
which we prove to be secure against profilers in accordance to the proposed security
definition. There are several curious properties of this protocol. It neither requires a
key exchange nor a public key infrastructure. To achieve this, we encapsulate some
data required to generate the key in a CAPTCHA. A CAPTCHA is a mechanism to dif-
ferentiate between a human and a computer program. Nowadays this tool is amply

6 1.2 Organization of this Document

used in several applications, to prevent automated programs from using computing ser-
vices or collecting sensitive information. To our knowledge, CAPTCHAs have not been
previously used for encryption. The most common type of CAPTCHA is an image of a
distorted word, which is supposed to be easy to read for a human user, but very hard to
read for a computer program. However, this mechanism can fail, sometimes it happens
that a human user cannot solve a CAPTCHA. In our protocol if this occurs then the user
will be unable to recover the key. To remedy this situation we provide a variant to our
original protocol, which solves this problem to a large extent. Finally, in Chapter 3 we
also provide a formal analysis of the scheme proposed by Golle and Farahat in [35], ac-
cording to our security notion. Most parts of this chapter have been already published
in [23, 24].

In Chapter 4 we continue with the study of encryption schemes secure against profil-
ers. In this Chapter we focus on developing a new encryption scheme, which is secure
against profilers. Our scheme is inspired by a previous “encryption” scheme introduced
by Rivest [65], known as Chaffing and Winnowing (CW). These terms allude to a pro-
cedure used in agriculture, denominated “winnowing”, to separate the grain from the
chaff. The purpose of this encryption scheme is to achieve privacy without really en-
crypting the message. The basic idea is to hide the original message with garbage (or
chaff), such that a valid user would be able to filter (winnow) out the real message from
the chaff, but to an invalid user the message remains hidden. We use the idea of CW
to develop two encryption schemes whose main purpose is to deceive a profiler. Our
scheme works for messages in some natural language, and given a message our scheme
adds fake words in random positions of the message. The way we add these fake words
is designed to achieve the goal that a document classifier would be unable to know the
real class of the message given the chaffed message. Our scheme uses some novel tech-
niques from document classification. We also provide a preliminary theoretical analysis
and some experimental results for the proposed schemes.

In Chapters 5 and 6 we deal with the problem of encrypting credit card numbers. As
stated earlier, there are several practical issues which prevent encrypting credit card
numbers by using off the shelf encryption algorithms. A well accepted solution for
achieving security of credit card numbers is through the paradigm of tokenization. In
Chapter 5 we begin with a formal cryptographic study of tokenization systems, which
to our knowledge has not been done before. Firstly, we give a formal syntax, which en-
compasses all components of a typical tokenization system. Further, we propose three
different security notions for tokenizers. These three notions are meant for three differ-
ent practical threat scenarios. Finally, we propose three schemes to generate tokens and
analyze their security in light of our definitions. The proposed schemes are all designed
using generic, off the shelf cryptographic objects.

Chapter 1. Introduction 7

In Chapter 6 we focus on practical and efficient instantiations of the tokenizers proposed
in Chapter 5. We also provide some initial experimental performance data of the pro-
posed tokenizers in a practical tokenization environment. The contents of Chapters 5
and 6 have been previously published in [25, 26].

Finally in Chapter 7 we summarize our contributions and discuss some directions for im-
provements to our work. Furthermore, we discuss some other application areas where
weak notions of security are applicable but were not addressed in this thesis.

8 1.2 Organization of this Document

Chapter 2

Preliminaries

The main goal of this research is to develop adequate security notions and cryptographic
protocols for different scenarios, which we already described in the Introduction. Our
security notions and protocols have been developed in the setting of symmetric cryp-
tography. Thus in this Chapter we will explain the main concepts and techniques used
in this setting to reach our goals. Here we will talk about cryptographic objects such as
block ciphers, pseudorandom functions and pseudorandom permutations. We will also
discuss about the provable security paradigm, whose techniques have been extensively
used in this research.

2.1 General Notations

The set of all binary strings is denoted by {0, 1}∗ and the set of all n bit strings would
be denoted by {0, 1}n. For a binary string x, |x| will denote the length of x and for a
finite set A, #A will denote its cardinality. If X, Y are strings, X||Y will denote the
concatenation of X and Y . For a non-negative integer i < 2n, binn(i) would denote the

n-bit binary representation of i. For a finite set S, x $← S will denote x to be an element
selected uniformly at random from S.

In what follows, by an adversary we shall mean a probabilistic algorithm which outputs
an integer or a bit. A(x, y) ⇒ b, will denote the fact that an adversary A given inputs
x, y outputs a bit b. By AO ⇒ b we will mean an adversary A, has an access to an oracle
O and after interacting with its oracle O it outputs a bit b. In general an adversary
would have other sorts of interactions, maybe with other adversaries and/or algorithms
before it outputs, these interactions would be clear from the context.

9

10 2.2 Block Ciphers

2.2 Block Ciphers

Block ciphers are fundamental objects in modern cryptography. Using them it is pos-
sible to construct cryptographic protocols which provide confidentiality, integrity and
authentication. We define a block cipher as follows. LetM be the message space, let C
be the cipher space and let K be the key space. We define a block cipher as a function
E : K×M→ C, whereM = C = {0, 1}n and K = {0, 1}k, i.e., E takes as input a string
of length k and a string of length n and it returns a string of length n. In this context
n is called the block length and k the key length. For K ∈ K and M ∈ M, we will use
EK(M) instead of E(K,M). EK must be a permutation for all K ∈ K, in other words
EK must be a bijection from {0, 1}n to {0, 1}n, which means that for every C ∈ {0, 1}n
there is exactly one M ∈ {0, 1}n such that EK(M) = C. Naturally, EK has an inverse,
denoted by E−1

K . It is clear that E−1
K (EK(M)) = M and EK(E−1

K (C)) = C for all M ∈M
and C ∈ C. Both EK and E−1

K must be public and easy to compute.

2.3 Pseudorandom Functions and Pseudorandom Per-
mutations

In this section we will introduce two cryptographic objects, which will be helpful to
establish an abstract notion of security for block ciphers. These objects, namely pseu-
dorandom permutations and pseudorandom functions are fundamental primitives of
symmetric key cryptography. The discussions here closely follows [49].

Consider the map F : K × D → R where K,D,R (commonly called keys, domain and
range respectively) are all non-empty and K and R are finite. We view this map as
representing a family of functions F = {FK}K∈K, i.e., for each K ∈ K, FK is a function
from D to R defined as FK(X) = F (K,X). For every K ∈ K, we call FK to be an
instance of the family F .

Given a function family F where the sets keys, domain and range are not specified we
shall often write Keys(F), Dom(F), Range(F) to specify them.

Let F : K × D → R be a function family where D = R, and for every K ∈ K, let
FK : D → D be a bijection, then we say that F is a permutation family. So, if F is a
permutation family, then for every FK(·), we have a F−1

K (·), such that for all K ∈ K and
all X ∈ D, F−1

K (FK(X)) = X. Note that, because of the definition of a block cipher in
Section 2.2, a block-cipher is a permutation family.

Chapter 2. Preliminaries 11

We would be interested in probability distributions over a function family F , in particu-
lar we would often talk of sampling an instance at random from the family. By sampling
an instance f uniformly at random from F we would mean K

$← K and f = FK(), we

will denote this by f $← F .

Random Function. Let Func(D,R) be the set of all functions mapping D to R, if D =

{0, 1}m and R = {0, 1}n then Func(m,n) is the set of all functions that map from m bits
to n bits. Note, there are exactly 2n2m of these functions. i.e., #Func(m,n) = 2n2m . If D
andR are specified, then by a random function with domain D and rangeR we mean a
function sampled uniformly at random from Func(D,R). Hence by a random function,
we are not talking of the “randomness” of a specific function but we are talking of a
function sampled from a probability distribution (specifically, the uniform distribution)
over the set of all possible functions with a specified domain and range.

Random Permutations. Let Perm(D) be the set of all bijective maps from D to D. If
D = {0, 1}n, then we denote Perm(D) by Perm(n), the set of all permutations from
{0, 1}n to {0, 1}n. Similar to a random function, we define a random permutation with
domain D to be a function chosen uniformly at random from Perm(D).

2.3.1 Pseudorandom Functions

Informally a pseudorandom function (PRF) is a family of functions whose behavior is
computationally indistinguishable from a random function. Consider the function fam-
ily F = {FK}K∈K in the same way that we defined it in the previous section, and let

f
$← F and let ρ $← Func(D,R). If F is a PRF family then there should be no efficient

procedure to distinguish between f and ρ. To formalize this goal of distinguishing be-
tween a random instance of F and a random instance of Func(D,R), we introduce an
entity which we call as a PRF adversary. A PRF adversary is considered to be a proba-
bilistic algorithm whose goal is to distinguish between f and ρ, and if it can successfully
do so then we say that the adversary has broken the PRF property of F . The adversary
is not provided with the description of the functions but it has an oracle access to a func-
tion g which is either f or ρ and it needs to decide whether g = f . By an oracle access
we mean that for any x ∈ D of its choice, the adversary can obtain the value g(x) by
querying the oracle of g. The adversary has the ability to query its oracle g adaptively,
i.e., it may be that first it wishes to query its oracle on x1 and thus obtain g(x1), seeing
g(x1) it decides its next query x2 and so on. The adversary can query its oracle as long
as it wants and finally it outputs a bit, say it outputs a 1 if it thinks that its oracle is f
(a real instance from the family F) and a zero if it thinks its oracle is ρ (a random func-
tion). An adversary A interacting with an oracle O and outputting a 1 will be denoted

12 2.3 Pseudorandom Functions and Pseudorandom Permutations

by AO ⇒ 1.

The PRF advantage of an adversary A in distinguishing F from a random function is
defined as

Adv
prf
F (A) =

∣∣∣Pr
[
K

$← K : AF (K,.) ⇒ 1
]
− Pr

[
ρ

$← Func(D,R) : Aρ(.) ⇒ 1
]∣∣∣ . (2.1)

Hence the PRF advantage of the adversary A is computed as a difference between two
probabilities, the adversary A is required to distinguish between two situations, the first
situation is where A is given a uniformly chosen member of the family F (i.e., A has
oracle access to the procedure FK , where K $← K) and in the other A is given oracle
access to a uniformly chosen element of Func(D,R). If the adversary cannot tell apart
these two situations then we consider F to be a pseudorandom family. In other words F

is considered to be pseudorandom if for all efficient adversaries A, Adv
prf
F (A) is small.

In this definition we use efficient adversary with small advantage. We will never make
this more precise, and this is standard with the paradigm of “concrete security” where
a precise notion of efficiency and small advantage is never specified. What makes an
adversary efficient and its advantage small is left to be interpreted with respect to a
specific application where such an object would be used.

2.3.2 Pseudorandom Permutation

Let E : K×D → D be a family of functions such that for every K ∈ K, EK : D → D is a
bijection. Analogous to the definition of PRF advantage, we define the PRP advantage
of an adversary in distinguishing a random instance of the family E from a random
permutation π as

Adv
prp
E (A) =

∣∣∣Pr
[
K

$← K : AEK() ⇒ 1
]
− Pr

[
π

$← Perm(D) : Aπ() ⇒ 1
]∣∣∣ .

And, E is considered to be a pseudorandom permutation family if for all efficient ad-
versaries A, Adv

prp
E (A) is small.

As every member of a permutation family has an inverse, hence in case of permuta-
tions we can define a stronger notion of pseudorandomness. Here we assume that the
adversary is given two oracles one of the permutation and other of its inverse and the
adversary can adaptively query both oracles. As before, there are two possible sce-
narios, in the first scenario the adversary is provided with the oracles EK() and E−1

K ()

where K
$← K and in the other scenario the oracles π(), π−1() are provided where

π
$← Perm(D). And the goal of the adversary is to distinguish between these two scenar-

ios. We define the advantage of an adversary A in distinguishing a permutation family

Chapter 2. Preliminaries 13

E from a random permutation in the ±prp sense as

Adv
±prp
E (A) = Pr

[
K

$← K : AEK(),E−1
K () ⇒ 1

]
− Pr

[
π

$← Perm(D) : Aπ(),π−1() ⇒ 1
]
,

and if for all efficient adversaries A, Adv
±prp
E (A) is small then we say E is a strong

pseudorandom permutation (SPRP) family.

Security of Block Ciphers. As defined in Section 2.2, a block cipher is a permutation
family E : {0, 1}k × {0, 1}n → {0, 1}n. Of course any such permutation family cannot
be considered as a block cipher, as a block cipher should have some security properties
associated with it which any permutation family will not have. Defining security of a
block cipher is tricky (as this is true for all cryptographic primitives), if we consider
that a block cipher EK() is used to encrypt n bit strings then ideally given EK(X) one
should not be able to obtain any information regarding K or X, this property can be
achieved if EK(X) “looks random” to any computationally bounded adversary. In prac-
tice we consider a block cipher to be secure if it behaves like a strong pseudo-random
permutation.

Unfortunately for the block ciphers that are in use we are not able to prove that they
are really SPRPs. So we assume that a secure block-cipher is a SPRP, the assumption is
based on our long term inability to find an efficient algorithm which can distinguish a
block cipher from a random permutation. If such an algorithm is discovered then the
block cipher would be broken. It is worth mentioning here that one can construct PRFs,
PRPs and SPRPs based on other mathematical assumptions, in particular if we assume
that one way functions exist then we can construct PRFs, PRPs and SPRPs using one
way functions [32, 43], such constructions though theoretically are more appealing but
are much inefficient compared to the block ciphers in use.

2.4 Symmetric Encryption

Historically, a primary goal of cryptography is to guarantee that two parties A and B

can communicate in such manner, that an unauthorized party would be unable to un-
derstand the information transmitted during communication. Although there are two
basic ways to achieve this goal, in this document we will focus on one of them, called
symmetric-key encryption. In this setting, A and B share some secret information in
advance called a key. Then to protect the message, a sender will use an encryption al-
gorithm, which receives as input the key and the message or plaintext. This encryption
algorithm will be used to “scramble” a plaintext, the output of this process, called ci-
phertext, will be sent to the receiver. To recover the plaintext, the receiver must decrypt

14 2.4 Symmetric Encryption

the ciphertext, using the key, previously shared with the sender. It is important to notice
that in this setting we use the same key to encrypt and decrypt and also that this key
allows to distinguish between authorized parties from those who are not. Now we will
formally describe a symmetric encryption scheme.

Definition 2.1. A symmetric encryption scheme is a triple of algorithms Π = (Gen,Enc,Dec),
which works as follows

• The key generation algorithm Gen selects a key K uniformly at random from the key
space K, we will denote this as K $← K. This key K is used by both algorithms Enc

and Dec, which means the sender and the receiver share a key.

• The encryption algorithm Enc, takes as input a plaintext M ∈ M and a key K

generated by Gen and returns a ciphertext C ∈ C. We usually denote this by C ←
EncK(M).

• The decryption algorithm Dec, takes as input a ciphertext C and a key K and returns
M . This operation is denoted by M ← DecK(C). A basic correctness requirement
for all symmetric encryption schemes is that for all possible keys K and all possible
messages M

DecK(EncK(M)) = M.

The above definition gives the basic syntax of a symmetric encryption scheme. There
can be different kinds of symmetric encryption schemes, which provide different kinds
of security services.

The symmetric key encryption schemes are usually built using symmetric primitives
like stream ciphers and block ciphers. Stream ciphers can be viewed as pseudorandom
generators which produces a stream of random bits using a (small) key as the seed and
the plaintext is suitably mixed with this random bit stream to produce the ciphertext.
Examples of stream ciphers are RC4, A5, SEAL [68], etc. Examples of block ciphers are
DES[55], AES[21], IDEA[47], etc.

Because block ciphers have proved to be more robust1 than stream ciphers, it is most
common to use them to construct symmetric encryption schemes. Hence we will focus
on this primitive.

1The number of attacks reported on stream ciphers far exceeds the number of attacks reported on any
block cipher.

Chapter 2. Preliminaries 15

2.4.1 Security of Symmetric Encryption Schemes

A fundamental question about symmetric encryption schemes is how to argue about
their security. Intuitively we would like to have encryption schemes which provide the
maximum security, i.e, we would like an ideal encryption, which would leak no infor-
mation at all. In the case of privacy we already have a definition called perfect security,
given by Shannon [73]. Perfect security asks that regardless of the computing power
available to the adversary, the ciphertext provides no information about the plaintext
beyond the apriori information the adversary had, prior to seeing the ciphertext. Unfor-
tunately, to achieve this level of security, we require that the key length be as long as the
length of the plaintext. This is not practical. Thus we must consider a different security
notion, where the adversary has a limited computing power. In other words, we will
consider a computational security approach. In this approach, to give a proper security
definition, we need to consider the power of the adversary and a description of what
means by breaking an encryption scheme. The power of the adversary is determined
by the type of information he/she could access (for example the ciphertext) and the
computational resources he/she has at his disposal. Here it is important to notice that
we make no assumptions about the adversary’s strategy. Since it would be impossible
to consider all possible strategies. An example of breaking a scheme, could be that the
adversary is able to learn partial information about the plaintext. An easier example
of breaking a scheme is related with the notion of indistinguishability. This notion con-
siders an adversary who chooses two messages of the same length. Then one of the
messages is encrypted and the ciphertext is given to adversary. If the adversary can
distinguish which message corresponds to the ciphertext, then the encryption scheme is
broken.

Now we provide a well established and heavily used security definition of encryption
schemes, which is called the IND-CPA security (read as indistinguishability against cho-
sen plaintext adversaries). To define the IND-CPA security for a symmetric encryption
scheme Π = (K, E ,D) we use a security game. A game describes the interactions be-
tween an adversary which tries to break the scheme in some sense and a challenger
who claims that the scheme is secure. The Exp-IND-CPA game described in Figure 2.1
depicts an interaction between a challenger and an adversary A.

In the game described in Figure 2.1, the challenger first randomly selects a key k from
the key space K and instantiates the encryption algorithm E . Later in step 2, it answers
to queries of A. The queries of A consist of valid messages from the message space, in
response to a query x, A receives Ek(x). A can ask as many queries as he/she wants
to his challenger. This step models a chosen plaintext adversary, who can see the ci-
phertexts corresponding to the messages of his choice. When A is satisfied with his/her

16 2.4 Symmetric Encryption

Experiment Exp-IND-CPAA

1. The challenger selects k $← K.
2. For each query x of A, the challenger returns Ek(x).
3. A selects two distinct messages m0,m1, such that |m0| = |m1|,

and gives them to the challenger.

4. The challenger selects b $← {0, 1} and gives Ek(mb) to A.
5. A returns a bit b′ to the challenger.
6. if b = b′ output 1
7. else output 0

Figure 2.1: The IND-CPA game depicting interaction between the challenger and the adversary
A

queries, he/she chooses two distinct messages m0,m1, such that |m0| = |m1| and sub-
mits them to the challenger. Then the challenger randomly chooses one of them and
gives to A the corresponding ciphertext. The task of A is to guess which message was
encrypted by the challenger. If A can correctly guess then the game outputs a 1 else
it outputs a zero. Note that in line 2 of the game, A can make several queries, this
is called as the query phase. In line 3, A makes a single query which we call as the
challenge query. When we say that an IND-CPA adversary A makes q queries, we mean
that it makes q − 1 queries in the query phase and one query in the challenge phase.

We define the IND-CPA advantage of A in breaking the scheme Π as

Adv
ind-cpa
Π (A) =

∣∣∣∣Pr[Exp-IND-CPAA ⇒ 1]− 1

2

∣∣∣∣ . (2.2)

As it is obvious, A can always guess the bit b with probability 1
2
. Thus, for Π to be secure

Adv
ind-cpa
Π should be “small” for all computationally bounded adversaries A.

The IND-CPA definition is a representative notion of security for a symmetric encryption
scheme. Another popular notion of security is called semantic security, (informally) a
scheme Π is said to be semantically secure if given the ciphertext, no computationally
bounded adversary can compute any function involving the plaintext. It can be shown
that the IND-CPA and semantic security are equivalent [43].

Chapter 2. Preliminaries 17

2.5 Proofs by Reduction

In modern cryptography, to design a new cryptographic protocol to solve a particular
problem, we basically follow three principles [43], which we describe next.

1. The first step in solving any cryptographic problem is the formulation of a rigorous
and precise definition of security.

2. When the security of a cryptographic construction relies on an unproven assump-
tion, this assumption must be precisely stated. Furthermore, the assumption
should be minimal as possible.

3. Cryptographic constructions should be accompanied by a rigorous proof of secu-
rity with respect to a definition formulated according to principle 1.

In Section 2.4.1 we amply discussed the first principle, i.e, how to define the security of
an encryption scheme. In this section, we will focus in the last two principles.

Once that we have a proper security definition, we need to prove that our cryptographic
protocol Π satisfies this security definition. For this purpose, we will follow the tech-
niques established by provable security. Provable security was proposed by Shafi Gold-
wasser and Silvio Micali in 1984 [34]. In this paradigm we construct a new protocol,
assuming the existence of secure atomic primitives. These atomic primitives must satisfy
certain security property and come from two sources: engineered constructs and math-
ematical problems. Block ciphers, which we discussed in Section 2.2, belong to the first
category. A good example of the second category is the well known RSA function.

After we have a security definition and given a cryptographic protocol Π based on some
specific atomic primitive, we are able to prove the security of our protocol. The security
proof consists of arguments that show that a scheme really has the properties speci-
fied in the security definition. In computational security it is almost never possible to
show that a scheme satisfies a security definition unconditionally. The security of Π is
proved based on the security assumptions on the atomic primitive. The proof technique
involves a reduction which shows that if the scheme is insecure then the primitive is
also insecure. Thus a security theorem is not an absolute statement and needs to be
interpreted carefully2.

2In the recent years there have been some criticisms to the paradigm of provable security and there
have been proposals that given the relative nature of a security theorem and its proof they should not be
called as security proofs but as reductionist arguments [45, 46].

18 2.6 Security of CTR

CTR.EK(IV,M)

1. Break M into n bit blocks M1,M2, . . .Mm;
2. W ← EK(IV);
3. for i← 1 to m
4. Ci ← EK(W ⊕ binn(i))⊕Mi;
5. end for
6. return (IV, C1||C2|| . . . ||Cm)

CTR.DK(IV, C)

1. Break C into n bit blocks C1, C2, . . . Cm;
2. W ← EK(IV)

3. for i← 1 to m
4. Mi ← EK(W ⊕ binn(i))⊕ Ci;
5. end for
6. return M1||M2|| . . . ||Mm

Figure 2.2: The counter (CTR) mode.

The reductionist argument used to prove security of a scheme involves computing prob-
abilities in certain probability spaces which involve randomness of the scheme and also
the randomness used by the adversary. Such computations become difficult if the ar-
guments are not well structured. A popular way of constructing such reductions is the
game playing technique or sequence of games. We have extensively used the game playing
technique to prove security of our proposals. The reader is referred to [74] and [9] for
detailed examples and discussions about the technique. In the next section we describe
the security of the CTR mode of operation, to illustrate some techniques involved in
proving security of a cryptographic scheme.

2.6 Security of CTR

Counter mode (commonly called as CTR) is a symmetric encryption scheme which uses
a block cipher as the underlying atomic primitive. A popular version of the CTR mode
is described in Figure 2.2. The key generation algorithm just selects an uniform random
key K from the key space K, and the encryption/decryption procedures uses a block
cipherE : K×{0, 1}n → {0, 1}n as shown in Figure 2.2. The message space is assumed to
contain all binary strings whose lengths are multiples of n (the block length of the block
cipher). The counter mode can be described without this restriction on the message
space also, but to maintain notational simplicity we describe the restricted version.

As can be seen from the description of Figure 2.2, the encryption algorithm takes in
two quantities, an initialization vector IV, and a message M . The syntax of a symmetric
encryption scheme in Definition 2.1, describes that the encryption algorithm takes as
input only a plaintext and the key, but CTR.Encrypt, takes in an additional initialization
vector (IV). There are also other encryption schemes where this additional input is

Chapter 2. Preliminaries 19

necessary. For security, it is required that for each call the IV should be unique. When
an initialization vector is used in such a way, it is called a nonce [67].

We want to prove that CTR mode is IND-CPA secure. Recall the IND-CPA security game
in Figure 2.1. Firstly, to define security of CTR, we need to do some subtle changes in the
game in Figure 2.1. For CTR, we will assume that the adversarial queries are of the form
(IV,m), i.e., the adversary chooses an IV message pair and seeks the encryption of the
chosen message using the chosen IV to his challenger. It is required that an IV is never
repeated in the adversarial query. Finally, in the challenge phase, the adversary provides
the pair (IV ∗,m0), (IV ∗,m1) to his challenger. It is required that IV ∗ be different from
any IV that the adversary has chosen before. The challenger provides the adversary
with the encryption of either m0 or m1 using the IV ∗, and the task of the adversary is
to guess which message was encrypted. The above description is just to incorporate an
IV in the IND-CPA game, this little syntactical change, does not change in any way the
spirit or purpose of the original IND-CPA definition.

As CTR is built over the atomic primitive EK(), to prove the security of CTR, we will
assume that the block cipher EK() is secure. More specifically, we will assume that EK()

is a pseudorandom function3. Thus, to show that CTR is secure, we will basically prove
that if CTR is not IND-CPA secure then there exists an adversary who can break the PRF
property of the underlying EK(), thus violating our assumption on EK(). We state this
formally in the next Theorem.

Theorem 2.1. [Security of CTR Mode] Let E : K × {0, 1}n → {0, 1}n be a function
family and let CTR = (K,CTR.E ,CTR.D) be the corresponding CTR symmetric encryption
algorithm as described in Figure 2.2. Let A be an arbitrary adversary attacking CTR in
the IND-CPA sense, who asks at most q queries, these totaling at most σ n bit blocks. Then
there exists an adversary B such that

Adv
ind-cpa
CTR (A) ≤ Adv

prf
E (B) +

σ2

2n
.

And if A runs in time at most t then B runs in time at most t′ = t+O(q) and asks at most
q′ = σ oracle queries.

Before we give the proof, it would be worthwhile to analyze a bit the statement of the
Theorem. The Theorem states that the IND-CPA advantage of an arbitrary adversary in

3In Section 2.3.2 we stated that the well accepted security notion for a block cipher is the notion of
a strong pseudorandom permutation. Note, that when a block cipher is used within the counter mode
an inverse call to it is never required. Thus for correctness of the mode it is not necessary that EK() be
invertible, thus it suffices to consider that EK() is a function. Hence we are able to prove that CTR is
secure by a weaker assumption on EK(), i.e., EK() is a PRF.

20 2.6 Security of CTR

Adversary BO
Whenever B gets a query (IV,M) from A
do the following until A stops querying
C ← EO(IV,M)

return (IV, C) to A
After A submits (IV ∗,M0), (IV ∗,M1)

do the following

b
$← {0, 1}

Cb ← EO(IV ∗,Mb)

return (IV ∗, Cb) to A
A returns a bit b′

If b = b′ then return 1 else 0

Figure 2.3: Adversary B for the proof of Theorem 2.1.

breaking CTR is upper bounded by the sum of σ2/2n and the PRF advantage of some
adversary B in breaking EK . If we assume that E is a PRF-family then for any adversary

B, Adv
prf
E (B), is bound to be small. Thus, if σ2 is negligibly small compared to 2n, then

the Theorem guarantees that any adversary will have a small IND-CPA advantage in
breaking CTR. Thus, the Theorem is a relative statement regarding the security of CTR.
It guarantees CTR to be IND-CPA secure if the following holds:

• E is a pseudorandom function family.

• σ2 is negligibly small compared to 2n. This condition basically says that CTR is
not secure, if an unlimited number of queries is asked by the adversary. Also, this
bound may be useful in deciding how many plaintexts are to be encrypted under
the same key.

Now we proceed to prove Theorem 2.1.

Proof. For convenience, we denote CTR.E by E . Let A be an adversary attacking E in
the IND-CPA sense. Now we will construct a PRF adversary B which will act as the
challenger for A in the IND-CPA game. We describe B in Figure 2.3. B being a PRF
adversary has access to an oracle O which can be either the block cipher EK(), for

K
$← K, or a function ρ $← Func(n, n).

Chapter 2. Preliminaries 21

In the description of B, EO(·) denotes the encryption function of CTR shown in Fig-
ure 2.2, where EK() is replaced by O. Note, O is the oracle of B. The goal of B is to
guess if O is EK() or a random function ρ. B tries to reach this goal, with the help of A.

Observe that if the oracle O is the block cipher EK , then B provides the exact environ-
ment of the IND-CPA game to A, and it is clear that

Pr
[
K

$← K : BEK(.) ⇒ 1
]

= Pr[Exp-IND-CPAA ⇒ 1]. (2.3)

Now, we would like to analyze the situation whereO is a random function. In particular
we want to find a bound on

Pr
[
ρ

$← Func(n, n) : Bρ(.) ⇒ 1
]
.

To do this, we use the technique of sequence of games. Consider the game G0 shown
in Figure 2.4. The game G0 includes a function Choose-ρ(), which acts as a random
function. It returns uniform random strings in {0, 1}n when it is invoked, but it returns
the same string if invoked twice on the same input. It does this by maintaining a table
ρ of outputs that it has already returned. Additionally in the set Dom, it maintains the
points on which it has been queried. The function sets the bad flag to true if it is queried
twice on the same input. The game G0 assumes that the ith query of the adversary is
a message containing ti n-bit blocks, and the challenge query contains messages of t
blocks.

The game G0 does the same as B does where the oracle of B is replaced by the function
Choose-ρ(). As Choose-ρ acts like a random function, hence it is immediate that

Pr[ρ
$← Func(n) : Bρ(·) ⇒ 1] = Pr[G0⇒ 1] (2.4)

Now, we do a small change in game G0, i.e., we remove the boxed entry in the function
Choose-ρ, we call this changed game as G1. Notice that games G1 and G0 are identical
until the flag bad is set to true, hence by the fundamental lemma of game playing [9]
we have

Pr[G0⇒ 1]− Pr[G1⇒ 1] ≤ Pr[G1 sets bad] (2.5)

Also in game G1, the function Choose-ρ, returns random strings for any input it gets,
thus A when interacts with G1 gets random strings of size of the queried plaintexts
as response to its queries. Note that the goal of A is to guess correctly which of the
messages M0 or M1 was encrypted in the challenge phase, and G1 outputs a 1, if A
makes a correct guess. As the responses that A gets in game G1 are independent of the

22 2.6 Security of CTR

Game G0 ,G1

function Choose-ρ(X)

Y
$← {0, 1}n;

if X ∈ Dom then
bad← true ; Y ← ρ[X] ;

else
ρ[X]← Y ; Dom← Dom ∪ {X};

end if
return Y ;

Initialization
bad← false;
Dom = ∅;

Query Phase
For a query (iv(i),m(i)) of A do the following

Parse m(i) as m(i)
1 ||m

(i)
2 || . . .m

(i)
ti ;

(we assume that m(i) contains ti blocks)
w(i) ← Choose-ρ(iv(i));
for s← 1 to ti,
µ← Choose-ρ(w(i) ⊕ binn(s));
z
(i)
s ← µ⊕m(i)

s ;
endfor
return (iv(i), z

(i)
1 ||z

(i)
2 || . . . ||z

(i)
s) to A;

Challenge Phase
When A submits (IV ∗,M0), (IV

∗,M1)

do the following:

b
$← {0, 1};

parse Mb as Mb1||Mb2|| · · · ||Mbt;
w∗ ← Choose-ρ(IV ∗);
for s← 1 to t,
z∗s ←Mbs⊕ Choose-ρ(w∗ ⊕ binn(s));

end for
return (IV ∗, z∗1 ||z∗2 || . . . ||z∗t) to A

Finalization phase
After A returns b′ do the following:

if b = b′, return 1;
else return 0;

Game G2

Initialization
bad← false;
Dom = ∅;
(We assume that Dom is a multiset)

Query Phase
For a query (iv(i),m(i)) of A, do the following

z(i)
$← {0, 1}|m(i)|;

return (iv(i), z(i)) to A;

Challenge Phase
When A submits (IV ∗,M0), (IV

∗,M1)

do the following:

b
$← {0, 1}; w∗ $← {0, 1}n;

z∗
$← {0, 1}|M0|;

return (IV ∗, z∗) to A;
Adjustment Phase

for i→ 1 to q − 1

Break m(i) into ti blocks m(i)
1 ||m

(i)
2 || . . .m

(i)
t ;

w(i) $← {0, 1}n;
Dom← Dom ∪ {iv(i)}
for s← 1 to ti

Dom← Dom ∪ {w(i) ⊕ s}
endfor

endfor
for s← 1 to t

Dom← Dom ∪ {w∗ ⊕ s}
endfor
if there is a collision in Dom then

bad← true

Finalization phase
After A returns b′ do the following:

if b = b′, return 1
else return 0

Figure 2.4: Games G0, G1, G2 used for the proof of Theorem 2.1.

queries it makes. Thus the only strategy that A can follow is to make a random guess.
Which results in

Pr[G1⇒ 1] = 1/2. (2.6)

Chapter 2. Preliminaries 23

Now, we do some small syntactic changes in the game G1 to obtain the game G2, also
shown in Figure 2.4. In game G2 the function Choose-ρ is no more used. Here random
strings are returned immediately as a response to a query of A. Thus, the responses
that A gets in the games G1 and G2 are identically distributed. The game assumes that
the adversary makes a total of q− 1 queries in the query phase, and after the query and
challenge phases are over, the game executes an adjustment phase. In the adjustment
phase appropriate values are inserted in the multiset Dom, note as Dom is a multiset
hence there can be several instances of the same element present here.

From the discussion above it is clear that G2 is just a different way to write G1, thus

Pr[G1⇒ 1] = Pr[G2⇒ 1], (2.7)

also
Pr[G1 sets bad] = Pr[G2 sets bad]. (2.8)

Thus, using equations (2.4), (2.5), (2.6), (2.7) and (2.8) we get

Pr[ρ
$← Func(n) : Bρ(·) ⇒ 1] = Pr[G0⇒ 1]

≤ Pr[G1⇒ 1] + Pr[G1 sets bad]

≤ Pr[G2⇒ 1] + Pr[G2 sets bad]

≤ 1

2
+ Pr[G2 sets bad] (2.9)

Now we need to bound Pr[G2 sets bad]. Let COLLD be the event that there is a collision
in the multiset Dom in game G2, then from the description of game G2, we have

Pr[G2 sets bad] = Pr[COLLD] (2.10)

Now we concentrate on finding an upper bound for Pr[COLLD]. The elements present
in Dom are given by

Dom = S1

⋃
S2

⋃
S3,

where,

S1 = {iv(1), iv(2), . . . , iv(q−1), IV ∗}

S2 =

q−1⋃
i=1

{w(i) ⊕ binn(1), w(i) ⊕ binn(2), . . . , w(i) ⊕ binn(ti)}

S3 = {w∗ ⊕ 1, w∗ ⊕ 1, . . . , w∗ ⊕ t}.

Note the sets S1, S2 and S3 are also multisets. Now it would be important to note the
following points:

24 2.7 Summary

1. #S1 = q, #S2 =
∑q−1

i=1 ti, #S3 = t. And as the total n bit blocks of queries that the
adversary makes is σ, hence σ = #S2 + #S3.

2. For x, y ∈ S1, Pr[x = y] = 0, as the elements in S1 are the IVs, which are never
repeated.

3. For x, y ∈ S2 ∪ S3, Pr[x = y] ≤ 1/2n. To see this, notice that each w(i) and also w∗

is a uniform random element in {0, 1}n.

4. For x ∈ S1 and y ∈ S2 ∪ S3, Pr[x = y] ≤ 1/2n, because of the same reason as the
point before.

Using the above information and the union bound, we have the probability of collision
in the multiset Dom as

Pr[COLLD] =
1

2n

(
σ

2

)
+
qσ

2n

=
σ(σ − 1)

2n+1
+
qσ

2n
=
σ2 − σ + 2qσ

2n+1

≤ 2σ2

2n+1
≤ σ2

2n
. (2.11)

Now, using equations (2.9), (2.10) and (2.11), we have

Pr[ρ
$← Func(n) : Bρ(·) ⇒ 1] ≤ 1

2
+
σ2

2n
. (2.12)

Finally, using equations (2.3), (2.12) and the definitions of PRF advantage of A and
IND-CPA advantage of B, we have the theorem.

2.7 Summary

Up to now we briefly discussed the basic concepts required to understand the rest of this
document. Cryptographic objects such as block ciphers, pseudorandom permutations,
and pseudorandom functions will appear often from now on. In the next Chapters
we will analyze several encryption schemes, which offer a solution to the problems of
profiling adversaries and tokenization. As we will see, the main tools to propose these
schemes and to analyze their security fall in the provable security paradigm. Here the
proofs by reduction, that we discussed previously, play a very important role.

Chapter 3

Profiling Adversaries

In this chapter we examine the problem of protecting communications against profil-
ing adversaries. To understand the importance of this problem, we start by describing
some scenarios where classifiers become a menace to privacy and discuss briefly about
previous work on the matter. As we will see, applying strong cryptography to solve
this problem is not the best solution. Instead we propose a weaker security notion,
which considers the specific properties of a profiling adversary. The rest of this chapter
is organized as follows. In Section 3.2 we describe basic concepts related to indistin-
guishability, CAPTCHA and secret sharing. In Section 3.3 we present a formal definition
of a profiling adversary and security against such adversaries. In Sections 3.4 and 3.5
we describe our protocols and argue regarding their security in terms of the security no-
tion given in Section 3.3. In Section 3.6, we revisit the scheme in [35], and give some
preliminary arguments regarding its security in accordance with our definitions and se-
curity notions. Finally in Section 3.7 we discuss about the limitations of our approach
and some future directions.

3.1 Motivation

Informally a spam email is an email which is not of interest to the receiver. Everyday
almost every one of us finds hundreds of such spam emails waiting in our in-boxes.
A spammer (who sends spam emails) generally has a business motive and most spam
emails try to advertise a product, a web-page or a service. If the spam emails can be
sent in a directed manner, i.e., if a spammer can send a specific advertisement to a user
who would be interested in it, then the motive of the spammer would be successful to a
large extent. Thus, one of the important objectives of a spammer would be to know the

25

26 3.1 Motivation

preferences or interests of the users to whom it is sending the un-solicited messages.

In today’s connected world we do a lot of communication through emails and it is not
un-realistic to assume that a collection of email messages which originate from a specific
user U carries information about the preferences and interests of U . Based on this
assumption a spammer can collect email information originating from different users
and based on these emails try to make a profile of each user (based on their preferences
or interests), and later use this profile for directed spamming.

Here we assume that given a message space an adversary aims to map each message
in the message space into certain classes of its interest. Using this classification of
messages the adversary can try to conclude which user is associated with which class
and this is expected to reveal information regarding the profile of a given user. Thus,
in the scenario of our interest we consider an adversary that classifies messages into
pre-defined classes. Such an adversary would be further called a profiler.

There may be other motives for user profiling in addition to directed spamming. Cur-
rently there has been a paradigm shift in the way products are advertised in the inter-
net. In one of the popular new paradigm of online behavioral advertising (OBA) [77],
internet advertising companies display advertisements specific to user preferences. This
requires profiling the users. To support this big business of internet advertising, inno-
vative techniques for user profiling have also developed. It is known that some internet
service providers perform a procedure called deep packet inspection on all traffic to de-
tect malware etc., but this technique has been used to generate user profiles from the
information contents of the packets received or sent by an user, and this information is
later sold to advertising companies [77]. This currently has led to many policy related
debates, and it has been asked whether such practices should be legally allowed [56].

In the context of emails, a solution to the problem of profiling attacks would be en-
crypting the communications so that the contents of the emails are not available to the
profiler. Or to make the communications anonymous so that given a message it would
not be possible for a profiler to trace the origin of the message. Here we try to solve the
following question: What would be the exact security requirements for an encryption
scheme which can protect the communication from profilers? Intuitively a cipher ob-
tained from a secure encryption algorithm should not reveal any information regarding
the plaintext which was used to produce the cipher. Hence, a secure encryption algo-
rithm should surely resist attacks by profilers. But, as the goal of a profiler is only to
classify the messages, it is possible that an encryption algorithm which provides secu-
rity in a weaker sense would be enough to resist profilers. We explore in this direction
and try to fix the appropriate security definition of an encryption scheme which would
provide security against profilers.

Chapter 3. Profiling Adversaries 27

Using any encryption scheme involves the complicated machinery of key exchange
(for symmetric encryption) or a public key infrastructure (for asymmetric encryption).
When the goal is just to protect information against profilers the heavy machinery of
key exchange or public key infrastructure may be unnecessary. Keeping in mind secu-
rity against profilers we propose a new protocol which does not require explicit key
exchange. To do this we use the notion of CAPTCHAs, which are programs that can
distinguish between humans and machines by automated Turing tests which are easy
for humans to pass but difficult for any machine. The use of CAPTCHAs makes our
protocol secure from non-human profilers, but the protocol is still vulnerable to human
adversaries. In the context that we see the activity of profiling, it would be only prof-
itable if a large number of users can be profiled and this goal seems to be infeasible if
human profilers are employed for the task.

To our knowledge the only prior work on the issue of securing email communication
from profilers have been reported by Golle and Farahat in [35]. In [35] it was pointed
out that an encryption scheme secure against profilers can be much weaker than normal
encryption algorithms, and thus using a normal encryption algorithm can be an overkill.
The solution in [35] hides the semantic of the plaintext by converting an English text
into another English text with the help of a key. In their protocol also they do not
need explicit key exchange or a public key infrastructure. The key is derived from
the email header by using a hash function with a specific property. The hash function
they use is a “slow one-way hash function”, which was first proposed in [30]. Such
hash functions are difficult to compute, i.e., may take a few seconds to get computed
and are hard to invert. This high computational cost for the hash function prevents a
profiler to derive the key for a large number of messages. Our method is fundamentally
different from [35] in its use of CAPTCHAs. Slow hash functions which were proposed
long ago have not seen much use, and its suitability is not well tested. But CAPTCHAs
are ubiquitous in today’s world and had been used successfully in diverse applications.
Also, our work presents a theoretical analysis of the problem, and provides the security
definitions which to our knowledge is new to the literature.

Golle and Farahat [35] did not give a security analysis of their proposed scheme. We
provide a formal security analysis of their scheme and we point out the exact assump-
tions required for the hash function used in their protocol. This analysis uses the security
definitions proposed in this work.

28 3.2 Preliminaries

3.2 Preliminaries

3.2.1 Indistinguishability in the Presence of an Eavesdropper

As we discussed in Section 2.4.1 security of encryption schemes is best defined in terms
of indistinguishability. Here we consider indistinguishability in presence of an eaves-
dropping adversary, which we call as IND-EAV security. As in the case of IND-CPA
notion, this security notion, is also defined with the help of an interaction between two
entities called an adversary and a challenger. It considers that an adversary chooses
a pair of plaintext messages and then ask for the encryption of those messages to the
challenger. The challenger provides the adversary with the encryption of one of the
messages chosen by the adversary. The adversary is considered to be successful if it can
correctly guess which message of its choice was encrypted. More formally, to define the
security of an encryption algorithm E : K ×M → C, we consider the interaction of an
adversary A with a challenger in the experiment below:

Experiment Exp-IND-EAVA

1. The challenger selects K uniformly at random from K.
2. The adversary A selects two messages m0,m1 ∈M, such that |m0| = |m1|.
3. The challenger selects a bit b uniformly at random from {0, 1}, and returns
c← EK(mb) to A.

4. The adversary A outputs a bit b′.
5. If b = b′ output 1 else output 0.

Definition 3.1. Let E : K×M→ C be an encryption scheme. The IND-EAV advantage of
an adversary A in breaking E is defined as

Advind-eav
E (A) =

∣∣∣∣Pr[Exp-IND-EAVA ⇒ 1]− 1

2

∣∣∣∣ .
Moreover, E is (ε, t)- IND-EAV secure if Advind-eav

E (A) ≤ ε, for all adversaries A running
for time at most t.

The IND-EAV security as defined above is used only for one time encryption and it is
different from the most used security notion for symmetric encryption which is indistin-
guishability under chosen plaintext attack (IND-CPA). Recall that in an IND-CPA attack
the adversary has the option of asking for the encryption of multiple pairs of messages
before he chooses the pair of messages for the challenge phase. IND-EAV notion is

Chapter 3. Profiling Adversaries 29

strictly weaker than the IND-CPA notion of security. All IND-CPA secure encryption
schemes are also IND-EAV secure.

A related notion of security is that of semantic security. Informally a symmetric en-
cryption scheme is called semantically secure if an adversary is unable to compute any
function on the plaintext given a ciphertext.

Definition 3.2. Let E : K×M→ C be an encryption scheme. E is called (ε, t)- SEM-EAV
secure, if for all functions f and for all adversaries running for time at most t∣∣∣Pr[A(EK(x))⇒ f(x)]−max

A′
Pr[A′(.)⇒ f(x)]

∣∣∣ ≤ ε (3.1)

where the running time of A′ is polynomially related to t, and x is chosen uniformly at
random fromM.

Note, in the above definition, by A′(.) we mean that the adversary is given no input,
i.e., A′ is trying to predict f(x) without seeing EK(x). And in the second term of Equa-
tion (3.1) the maximum is taken over all adversaries A′ which runs for time at most
poly(t), for some polynomial poly(). Thus, if E is SEM-EAV secure then no adversary
can do better in predicting f(x) from EK(x) than an adversary who does so without
seeing EK(x). It is well known that IND-EAV security implies SEM-EAV security (for
example see Claim 3.11 in [43]).

3.2.2 CAPTCHA

A CAPTCHA is a computer program designed to differentiate a human being from a com-
puter. The fundamental ideas for such a program were first proposed in an unpublished
paper [54] and then these ideas were formalized in [79], where the name CAPTCHA
was first proposed. CAPTCHA stands for Completely Automated Public Turing test to tell
Computers and Humans Apart. In fact, a CAPTCHA is a test which is easy to pass by a
human user but hard to pass by a machine. One of the most common CAPTCHAs are
distorted images of short strings. For a human it is generally very easy to recover the
original string from the distorted image, but it is difficult for state of the art character
recognition algorithms to recover the original string from the distorted image. Other
types of CAPTCHAs which depend on problems of speech recognition, object detection,
classification, etc. have also been developed.

Recently, CAPTCHAs have been used in many different scenarios for identification of
humans, like in chat rooms, online polls, etc. Also they can be used to prevent dictio-
nary attacks on the password based systems [61], and more recently for key establish-
ment [31].

30 3.2 Preliminaries

A CAPTCHA is a randomized algorithm G, which given an input string from a set of
strings STR produces the CAPTCHA G(x). A CAPTCHA G is called (α, β) secure, if for
any human or legitimate solver S

Pr[x
$← STR : S(G(x))⇒ x] ≥ α,

and for any efficient machine C

Pr[x
$← STR : C(G(x))⇒ x] ≤ β.

For a CAPTCHA to be secure it is required that there is a large gap between α and β. In
Section 3.4, we will propose an alternative security definition for CAPTCHAs.

3.2.3 Secret Sharing Schemes

A secret sharing scheme is a method designed to share a secret between a group of
participants. These schemes were first proposed by Shamir in 1979 [72]. Although
there have been improvements to these kind of schemes, here we will use the basic
construction due to Shamir. In a (u,w) threshold secret sharing scheme a secret K is
divided into w pieces called shares. These w shares are given to w participants. To
recover the secret, at least u of w shares, where u ≤ w, are required. And it is not
possible to recover the secret with less than u shares.

We describe the specific construction proposed by Shamir. To construct a (u,w) secret
sharing scheme we need a prime p ≥ w+1 and the operations take place in the field Zp.
The procedure for splitting a secret K into w parts is depicted in the algorithm below:

SHAREpu,w(K)

1. Choose w distinct, non-zero elements of Zp, denote them as xi, 1 ≤ i ≤ w.
2. Choose u− 1 elements of Zp independently at random. Denote them as
a1, . . . , au−1.

3. Let, a(x) = K +
u−1∑
j=1

ajx
j mod p, and yi = a(xi), 1 ≤ i ≤ w.

4. Output S = {(x1, y1), . . . , (xw, yw)} as the set of w shares.

The secret K can be easily recovered using any B ⊂ S such that |B| ≥ u, but if |B| < u

then K cannot be recovered. To see this, observe that the polynomial used in step 3 to

Chapter 3. Profiling Adversaries 31

compute the yi’s is a u− 1 degree polynomial. Thus using u pairs of the type (xi, yi) one
can generate u linear equations, each of the type yi = K + a1xi + · · · au−1x

u−1
i . Using

these equations the value of K can be found. It can be shown that this set of u equations
would always have a unique solution.

3.3 Profiling Adversaries

Let M be a message space and let P = {1, 2, . . . , k} be a set of labels for different
possible profiles. We assume that each message x in M can be labeled by a unique
j ∈ P. Thus, there exists a function f :M→ P, which assigns a label to each message
in the message space. In other words, we can assume that the message space can be
partitioned into disjoint subsets as M = M1 ∪ M2 ∪ · · · ∪ Mk and for every x ∈ M,
f(x) = i if and only if x ∈Mi.

We call f as the profiling function or a classifier. Thus, in this setting we are assuming
that each message in the message spaceM represents some profile, and messages inMi,
where 1 ≤ i ≤ k, correspond to the profile i. The function f is a classifier which given
a message can classify it into one of the profiles. We also assume that the function f is
efficiently computable for every x ∈ M, in particular, we assume that for any x ∈ M,
f(x) can be computed in time at most µ, where µ is a constant.

The function f is public, thus given x ∈ M any adversary can efficiently compute
f(x). We want to define security for an encryption scheme which is secure against
profiling adversaries, i.e., we want that when a message fromM is encrypted using the
encryption algorithm no efficient adversary would be able to profile it.

3.3.1 PROF-EAV Security

Here we propose a definition for encryption schemes secure against profiling adver-
saries.

Definition 3.3. [PROF-EAV security] Let M be a message space and let f : M → P
be a profiling function. Let E : M× K → C be an encryption algorithm. We define the
advantage of an adversary A in the PROF-EAV (read profiling under eavesdropping) sense
in breaking E as

Adv
prof-eav
E,f (A) = Pr[A(EK(x))⇒ f(x)]−max

A′
Pr[A′(.)⇒ f(x)],

32 3.4 Encryption Protocol Secure Against Profiling Adversaries

where K $← K, x $←M and A′ is an adversary whose running time is a polynomial of the
running time of A. An encryption algorithm E : M× K → C is called (ε, t) PROF-EAV
secure for a given profiling function f , if for all adversaries A running in time at most t,
Adv

prof-eav
E,f (A) ≤ ε.

In the definition above, we want to capture the notion that for a PROF-EAV secure
encryption scheme, an adversary A trying to find the profile of a message seeing its
cipher cannot do much better than the best adversary A′, who tries to guess the profile
without seeing the ciphertext.

This definition is in accordance with the definition of semantic security as discussed
in Section 3.2.1. Recall that an encryption scheme is called semantically secure if no
adversary can efficiently compute any function of the plaintext given its ciphertext. But
in the PROF-EAV definition we are interested only on a specific function f . Thus, PROF-
EAV security is strictly weaker than semantic security. Semantic security trivially implies
PROF-EAV security but PROF-EAV security does not imply IND-EAV security, we give a
concrete example to illustrate this.

Example 3.1. LetM = {0, 1}n = M1 ∪M2 be a message space, where

M1 = {x ∈M : first bit of x is 0},

and M2 = M \M1, and f be the profiling function such that f(x) = i iff x ∈ Mi. Let
Eone be an encryption scheme which uses a one bit key k (chosen uniformly from {0, 1})
and given a message x ∈ M it xors k with the first bit of x. It is easy to see that an
adversary trying to guess the profile of a message x given Eone

k (x) cannot do better than
with probability half, and this success probability can be achieved even without seeing the
ciphertext, as here |M1| = |M2|. Hence Eone is PROF-EAV secure, but trivially not secure in
the IND-EAV sense.

3.4 Encryption Protocol Secure Against Profiling Adver-
saries

In this section we describe a complete protocol which would be secure against profiling
adversaries. Our motivation is to prevent communications getting profiled in large scale
mechanically. The protocol is not secure from human adversaries, and we do not care
much about that as we hope that it would be economically infeasible to employ a human
for large scale profiling.

Chapter 3. Profiling Adversaries 33

Protocol P(x)

1. k $← STR;
2. k′ ← G(k);
3. K ← H(k);
4. c← EK(x);
5. return (c, k′)

E

H

G

K

k’

c

k

x
plaintext

string

ciphertext

CAPTCHA

Figure 3.1: The protocol P.

The protocol P consists of the following entities:

• The message spaceM, the cipher space C.

• The set of profiles P and the profiling function f associated withM.

• A set STR which consists of short strings over a specified alphabet.

• An encryption scheme E : K ×M→ C.

• A hash function H : STR→ K.

• A CAPTCHA generator G which takes inputs from STR.

Given a message x ∈ M, P produces a ciphertext as shown in Figure 3.1. In the
protocol as described in Figure 3.1, k, an element of STR is hashed to form the key
K and k is also converted into a CAPTCHA and transmitted along with the ciphertext.
The only input to P is the message and the key generation is embedded in the protocol.
It resembles the scenario of hybrid encryption [2], which consists of two mechanisms
called key encapsulation and data encapsulation where an encrypted version of the key
is also transmitted along with the cipher. For a human decryption is easy, as given a
ciphertext (c, k′) a human user can recover k from k′ by solving the CAPTCHA and thus
compute E−1

H(k)(c) to decipher.

3.4.1 Security of P

The security of a protocol P against profilers is defined in the same way as in Defini-
tion 3.3.

34 3.4 Encryption Protocol Secure Against Profiling Adversaries

Definition 3.4. [PROF security] The advantage of an adversary attacking protocol P is
defined as

Adv
prof
P,f (A) = Pr[A(P(x))⇒ f(x)]−max

A′
Pr[A′(.)⇒ f(x)],

where x $←M and A′ is an adversary whose running time is a polynomial of the running
time of A. Additionally P is called (ε, t) secure in the PROF sense if for all adversaries

running in time at most t, Adv
prof
P,f (A) < ε.

The above definition is different from Definition 3.3 by the fact that it does not mention
the key explicitly, as key generation is embedded in the protocol itself. To prove that P
is secure in the PROF sense we need an assumption regarding the CAPTCHA G and the
hash function H. We state this next.

Definition 3.5. [The Hash-Captcha Assumption] Let G be a CAPTCHA generator, let r
be a positive integer, let H : STR→ {0, 1}r be a hash function, and let A be an adversary.
We define the advantage of A in violating the Hash-Captcha assumption as

Advhc
G,H(A) = Pr[x

$← STR : A(G(x), H(x))⇒ 1]

−Pr[x
$← STR, z

$← {0, 1}r : A(G(x), z)⇒ 1].

Moreover, (G,H) is called (ε, t)-HC secure if for all adversaries A running in time at most
t, Advhc

G,H(A) ≤ ε.

This definition says that the pair formed by a CAPTCHA generator G and a hash func-
tion H is secure, if an adversary A is unable to distinguish between (G(x), H(x)), where
x is some string, and (G(x), z), where z is a random string. This security notion of a
CAPTCHA inspired by the notion of indistinguishability is quite different from the (α, β)

security notion as described in Section 3.2.2. Here the adversary has some more infor-
mation regarding x through the value H(x). If the adversary can efficiently solve the
CAPTCHA G then it can break (G,H) in the HC sense irrespective of the hash function.
Given the CAPTCHA is secure, i.e., no efficient adversary can find x from G(x) still an
adversary may be able to distinguish H(x) from a string randomly selected from the
range of H.

If we consider a keyed family of hash functions H = {H`}`∈L, such that for every ` ∈ L,
H` : D → R for some sets D and R. Then H is called an entropy smoothing family
if for any efficient adversary it is difficult to distinguish between (`,H`(x)) and (`, z),

Chapter 3. Profiling Adversaries 35

where `, x, z are selected uniformly at random from L, D and R respectively. An
entropy smoothing hash along with a secure CAPTCHA can resist HC attacks. Entropy
smoothing hashes can be constructed from universal hash functions using the left over
hash lemma [38], but the parameter sizes which would be required for such provable
guarantees can be prohibitive. We believe that using ad-hoc cryptographic hashes like
the ones from the SHA family can provide the same security. In our definition we do
not use a keyed family of hash functions, but such a family can be easily used in the
protocol P, and in that case the hash key will also be a part of the ciphertext.

With these discussions we are now ready to state the theorem about security of P.

Theorem 3.1. Let P be a protocol as in Figure 3.1 and let A be an adversary attacking P
in the PROF sense. Then there exist adversaries B and B′ such that

Adv
prof
P,f (A) ≤ Advhc

G,H(B) + Adv
prof-eav
E,f (B′).

And, if A runs for time t, both B and B′ run for time O(t).

Proof. Let A be an adversary attacking the protocol P in Figure 3.1. We construct an
adversary B attacking the hash-captcha (G,H), using A as follows.

Adversary B(G(k), z)

1. x $←M;
2. Send (Ez(x), G(k)) to A;
3. A returns j;
4. if f(x) = j;
5. return 1;
6. else return 0;

As B is an adversary attacking the hash-captcha assumption, hence there are two pos-
sibilities regarding the input (G(k), z) of B, z can either be H(k) or a uniform random
element in K, and the goal of B is to distinguish between these two possibilities.

Considering the first possibility that z is H(k), the way the adversary B is defined, A
gets a valid encryption of the message x (which is a random element in the message
space) according to the protocol P. Hence we have

Pr[k
$← K : B(G(k), H(k))⇒ 1]

= Pr[k
$← K, x $←M : A(EH(k)(x), G(k))⇒ f(x)]

= Pr[x
$←M : A(P(x))⇒ f(x)]. (3.2)

36 3.4 Encryption Protocol Secure Against Profiling Adversaries

Similarly, for the second possibility, i.e., when the input z to B is an element chosen
uniformly at random from K, we have

Pr[k,K
$← K : B(G(k), K)⇒ 1]

= Pr[x
$←M : A(EK(x), G(k))⇒ f(x)]. (3.3)

In Equation (3.3), k and K are chosen independently uniformly at random from K.
Thus, the adversary A has as input EK(x) and G(k), where k is independent of K, thus
G(k) carries no information about K. Hence A cannot do better than some PROF-EAV
adversary B′ who has only EK(x) as its input, and runs for same time as that of A. Thus

Pr[x
$←M : A(EK(x), G(k))⇒ f(x)]

≤ Pr[x
$←M : B′(EK(x))⇒ f(x)] (3.4)

From definition of PROF-EAV advantage of B′ we have

Pr[x
$←M : B′(EK(x))⇒ f(x)]

= Adv
prof-eav
E,f (B′) + max

A′
Pr[A′(.)⇒ f(x)] (3.5)

Thus, using Equations (3.3), (3.4) and (3.5) we have

Pr[k,K
$← K : B(G(k), K)⇒ 1]

≤ Adv
prof-eav
E,f (B′) + max

A′
Pr[A′(.)⇒ f(x)] (3.6)

Finally, from Equations (3.2) and (3.6) and Definitions 3.5 and 3.4 we have

Adv
prof
P,f (A) ≤ Advhc

G,H(B) + Adv
prof-eav
E,f (B′),

as desired. Also if A runs for time t, then B′ runs for time t and B runs for time t+ c for
some small constant c.

Some remarks about security of P: We defined the security of the protocol P for only
a fixed profiling function f , but note that we can modify the definition for any arbitrary
function f which would give us a security definition equivalent to SEM-EAV (discussed
in Section 3.2.1). If the encryption algorithm E used within the protocol is SEM-EAV
secure then using the same proof we can obtain SEM-EAV security for P.

Chapter 3. Profiling Adversaries 37

Protocol P′(x)

1. k $← STR;
2. k′ ← ENCD(k, 0);

3. {(x1, k
′
1), . . . , (xw, k

′
w)} ← SHAREpu,w(k′);

4. for i = 1 to w;
5. (ki, λi)← ENCD−1(k′i);
6. ci ← G(ki);
7. end for
8. K ← H(k);
9. C ← EK(x);
10. return [C, {(x1, c1, λ1), . . . , (xw, cw, λw)}]

Figure 3.2: The protocol P′ which uses a secret-sharing scheme.

3.5 A Practical Instantiation

A very common problem using CAPTCHAs is that sometimes even humans may fail to
solve them. As in the protocol P if a human user fails to solve the CAPTCHA then he
will not be able to decipher and there is no way to repeat the test (as it is done in nor-
mal CAPTCHA usage), hence this stands as a serious weakness of the proposed protocol
P. A solution to this problem can be attempted by providing some redundancy in the
CAPTCHAs so that a valid user can have more chance in solving the CAPTCHA. As a so-
lution we propose that the initial string k chosen by the protocol is broken into w shares
such that with u or more of the shares would be enough to generate k. These w shares
are converted into CAPTCHAs and sent along with the ciphertext. To incorporate this
idea we changed the initial protocol P to P′. The protocol P′ is a specific instantiation,
thus before we describe the protocol we fix some details of its components, in particular
for P′ we would require an encoding mechanism ENCD which we discuss first.

Let AL = {A,B, . . . , Z} ∪ {a, b, . . . , z} ∪ {0, 1, . . . , 9} ∪ {+, /}, thus making |AL| = 64.
We define an arbitrary (but fixed) bijection ρ : AL → {0, 1, . . . , 63}, and for any σ ∈ AL

and n ≥ 6, binn(σ) will denote the n bit binary representation of ρ(σ). Note that for
all σ ∈ AL, at most 6 bits are required to represent ρ(σ). If ψ is a binary string, then
let toInt(ψ) be the positive integer corresponding to ψ, similarly for a positive integer
v < 2n, toBinn(v) denotes the n bit binary representation of v. We fix a positive integer
m and let STR be the set of all m character strings over the alphabet AL. Let p be the
smallest prime greater than 26m and let d = p− 26m. Let ENCD : STR×{0, 1, ..., d} → Zp
be defined as follows

38 3.5 A Practical Instantiation

k

x , c , λ)(

ω

ω

ω ω ω

ENCD
−1

G

1

1

k’

k

x
1

, c
1

, λ
1

)(

−1
ENCD

E

H

K

SHARE

plaintext

k
string

x

p u w

ENCD
k’

. . .

. . .

. . .

ciphertext
C

G

k’

Figure 3.3: Diagram of Protocol P′.

ENCD(s, λ)
1. Parse s as σ0||σ1|| . . . ||σm, where each σi ∈ AL;
2. ψ ← bin6(σ0)|| . . . ||bin6(σm);
3. v ← toInt(ψ);
4. return v + λ;

And let ENCD−1 : Zp → STR× {0, 1, . . . , d} be defined as

ENCD−1(y)

1. if y ≥ 26m,
2. λ← y − 26m + 1;
3. y ← 26m − 1;
4. else λ← 0;
5. z ← toBin6m(y);
6. Parse z as z0||z1|| . . . ||zm, where |zi| = 6;
7. s← ρ−1(toInt(z0))|| . . . ||ρ−1(toInt(zm));
8. return (s, λ);

The modified protocol P′ is shown in Figure 3.2. It uses the encoding function ENCD
and the secret sharing scheme as depicted in Section 3.2.3. For P′ we assume that STR

Chapter 3. Profiling Adversaries 39

contains all m character strings over the alphabet AL, and p is the smallest prime greater
than 26m, these can be considered the fixed and public parameters for P′. The encoding
mechanism is specifically designed to convert a string in STR to an element in Zp so
that Shamir’s secret sharing can be suitably used.

To decrypt a cipher produced by P′ a human user must solve at least some u of w
CAPTCHAs. Using these u solutions together with xi, k can be recovered. A specific rec-
ommendation for SHARE can be Shamir (2,5)-threshold scheme. Thus the user would
have much flexibility on solving the CAPTCHAs.

3.5.1 Security of P′

The security of P′ can be easily proved in the sense of Definition 3.4 in a similar way
as we prove Theorem 3.1 if we make a new assumption regarding the CAPTCHA as
follows:

Definition 3.6. [The Hash-MultiCaptcha (HMC) Assumption] Let G be a CAPTCHA
generator, let r be a number, let H : STR → {0, 1}r be a hash function, and let A be
an adversary. Also, let x = g(x1, . . . xw) be such that if at least u out of w of x1, . . . , xw
are known then x can be recovered. We define the advantage of A in violating the Hash-
MultiCaptcha assumption as

Advhmc
G,H (A) = Pr[A(G(x1), . . . G(xw), H(x))⇒ 1]

−Pr[z
$← {0, 1}r : A(G(x1), . . . G(xw), z)⇒ 1].

where x $← STR. Moreover, (G,H) is called (ε, t)-HMC secure if for all adversaries A
running in time at most t, Advhmc

G,H (A) ≤ ε.

As in the definition of Hash-Captcha assumption, in this definition if the adversary can
efficiently solve at least u of w CAPTCHAs, then it can break (G,H) in the HMC sense
irrespective of the hash function. If this assumption is true, then we can show the
security of protocol P′ just as we did for protocol P.

A CAPTCHA is an example of a weakly-verifiable puzzle [16], since a legitimate solver
S may not be able to verify the correctness of its answer. For this kind of puzzles, it
has been proved [37] that if it is difficult for an attacker to solve a weakly-verifiable
puzzle P, then trying to solve multiple instances of a puzzle in parallel is harder. Most
recently, Jutla found a better bound to show how hard it is for an attacker to solve
multiple instances of weakly-verifiable puzzles [41]. The next theorem is based on the

40 3.5 A Practical Instantiation

main theorem proposed by Jutla, but it has been adapted to CAPTCHAs, which are of
our interest in this work.

Theorem 3.2. Let G be a CAPTCHA generator which is (α, β) secure. Let k ∈ N, δ = 1−β
and γ (0 < γ < 1) be arbitrary. Let A be an arbitrary polynomial time adversary, which
is given as input k CAPTCHAs (G(x1), . . . , G(xk)) and outputs a set X of solutions of the k
CAPTCHAs. If InCorr(X) denotes the number of incorrect solutions in X, then

Pr[InCorr(X) < (1− γ)δk] < e−(1−γ)γ2δk/2

This theorem establishes that for any adversary if the probability of failure in solving
a CAPTCHA is at least δ, then the probability of failing on less than (1 − γ)δk out of k
puzzles, is at most e−(1−γ)γ2δk/2.

Based on this fact, it may be possible to show that for any arbitrary adversary A at-
tacking the HMC assumption, there exists a HC adversary B such that Advhmc

G,H (A) <

Advhc
G,H(B). This would imply that the HC assumption implies the HMC assumption.

But, for now we are not sure whether such a result holds.

3.5.2 Discussions

• About the encryption scheme: Till now we have not given details about the
encryption scheme to be used in the protocol. We only mentioned that we require
our encryption scheme to be PROF-EAV secure and any IND-EAV secure encryption
scheme can provide such security. Thus most symmetric encryption schemes which
are usually in use like CBC mode, counter mode etc. (which provide security in
the IND-CPA sense) can be used for the encryption function E in P′. A more
efficient scheme which provides security only in the PROF-EAV sense would be
much interesting, we would like to explore in this direction.

• Key sizes: Another important thing to consider is that the effective size of a key
for the protocol is dictated by the parameter m, i.e., the size of each string in STR.
This value cannot be made arbitrarily large as solving big CAPTCHAs for human
beings may be tiresome, a usual CAPTCHA length is five to eight characters. If
we use eight character strings from the alphabet AL then the effective size of
the key space would be 248. Increasing the alphabet size is also not feasible as
we need un-ambiguous printable characters to make CAPTCHAs. Thus, the key
space is not sufficiently large for a modern cryptographic application, but for the
application which we have in mind this may be sufficient, as we do not expect that

Chapter 3. Profiling Adversaries 41

a profiler would be ready to use so much computational resource for profiling a
single message.

• Usability: Given that our main goal is securing email communications, our pro-
tocol P has a main drawback: a user must solve two CAPTCHAs for each message
in the mailbox to read them. This could be tedious even for a small number of
emails. We will discuss some alternatives in Chapter 7. These alternatives still use
CAPTCHAs, but now the user is required to solve more than one CAPTCHA, only
if he is unable to solve the CAPTCHA in his first attempt.

3.6 Analyzing the Golle and Farahat’s scheme

As we mentioned in the Introduction, a previous work on the issue of securing email
communication from profilers was proposed by Golle and Farahat [35]. The basic idea
behind their proposal is to hash the header of an email message to generate the key,
and further use the key to encrypt the payload of the message. They require that the
encryption algorithm should be resistant to profiling attacks. In addition, they assume
some properties of the hash function for assuring security of the scheme. In particular
they mention that the hash function used for deriving the key should be a slow one-
way hash function. They argued that the security of the scheme relies on the high
computational cost for the hash function and on (some weak) privacy of the encryption
scheme. Though it is not clear, why the property of one-wayness of the hash is important
in this context. They claimed that though their scheme do not satisfy the semantic
security notion, but it would provide adequate security for the application. No proper
security analysis of the scheme is done in the paper. In this section we apply the security
notions that we previously defined to establish the security of the Golle and Farahat’s
scheme.

In Figure 3.4 we show a slightly different version of Golle and Farahat’s scheme. Here
instead of using the header to derive the key we are considering a random string (line
1). We assume that H : STR → K, and E an encryption scheme with key space K and
message spaceM. Now we proceed to analyze it.

3.6.1 Slow Hash Functions

Slow hash functions have been previously used to protect passwords. The main pur-
pose of this kind of hash functions is preventing off-line attacks, where a list of pass-
word hashes is stolen and the attacker tries to guess the password by testing all possible

42 3.6 Analyzing the Golle and Farahat’s scheme

Protocol S(x)

1. s $← STR;
2. K ← H(s);
3. c← EK(x);
4. return (c, s)

Figure 3.4: Protocol proposed by Golle and Farahat to protect email communications

candidates and verifying if the result matches. If a hash function is slow enough, then
guessing a password would be harder, since an attacker must try many candidates and
the cost of doing this will be high. Usually a slow one-way hash function can be con-
structed by iterating cryptographic hashes (such as SHA1) multiple times. There have
been some interesting proposals like bcrypt [63] and scrypt [60] which are designed to
achieve the slow-ness goal. Moreover, these functions can be tuned to achieve various
degrees of slowness as desired. More recently another interesting option to construct
slow hash functions appeared which spends computing cycles to solve other computa-
tional problems [29]. All these proposals can be suitably used in the context of the
protocol S.

3.6.2 Security of Protocol S

It is to be noted that the hash function H used in S is public, hence any adversary can
derive the key from the ciphertext and hence decrypt the message. The type of security
that is expected from the protocol S is a bit different from that expected from usual
encryption schemes. A profiling adversary would be successful if it can profile “many”
messages, in particular we can think that for the activity of profiling to be economically
profitable an adversary has to profile at least N different messages in a day (where N
can be in the order of millions).

The main argument in [35] was to choose such a hash function which is “slow”. Suppose
the evaluation of one hash requires 5 seconds, then an adversary would not be able to
profile more than 17280 messages in a day. Whereas for a normal user, this “slow”-ness
of the hash function does not have a significant effect, as (s)he would need to decrypt
far less than say 100 messages in a day.

It is obvious that the security of the scheme S critically depends on the time an adversary
spends to break the scheme. Restricting the running time of the adversary is always

Chapter 3. Profiling Adversaries 43

essential in any cryptographic scheme which is not information theoretically secure, for
example in all the previous security definitions we talked of (ε, t)-secure schemes. In
the definitions that we would use to argue about the security of S, the running time
restriction would be of central importance, hence for convenience we define a time
restricted adversary as follows.

Definition 3.7. [T -restricted adversary] A T -restricted adversary is an adversary which
runs for time at most T .

Next we formalize the notion of a “slow hash function”.

Definition 3.8. [T -slow hash function] Let H : STR → {0, 1}` be a hash function. If
the time required to compute H(x) for every x ∈ STR is at least T then we say that H is a
T -slow hash function.

For S to be secure, we need the hash function to be “well behaved” in some sense in
addition to being slow. The specific property that we would require is that given x,
there should be no other feasible way to predict H(x) other than computing the value
of H(x). We formalize this notion in the following definition.

Definition 3.9. [(ε, T)-indistinguishable hash function] Let H : STR → {0, 1}` be a
T -slow hash function, let A be a T -restricted adversary, and y

$← {0, 1}`. We define the
advantage of A in distinguishing (x, y) from (x,H(x)) as

Advind
H (A) = Pr[x

$← STR : A(x,H(x))⇒ 1)]

−Pr[x
$← STR, y

$← {0, 1}` : A(x, y)⇒ 1].

H is (ε, T)-indistinguishable if for all T -restricted adversaries A, Advind
H (A) ≤ ε.

With this we are ready to establish the security of protocol S in the PROF sense (see
Definition 3.4) as we did with protocols P and P′.

Theorem 3.3. Let S be a protocol as in Figure 3.4. Let us assume that for all x ∈ M to
compute Ek(x) one requires a constant time tc, and recall that computing f(x) for every
x ∈M requires µ time. If H is (ε1, T + tc+µ)-indistinguishable, and E is (ε2, t)-PROF-EAV
secure, then S is (ε1 + ε2, T)-PROF secure, where T ≤ t.

Proof. To prove the Theorem we will construct a (T+tc+µ)-restricted adversary B which
breaks the hash function H in the indistinguishability sense by using a T -restricted
adversary A which attacks S. Subsequently we show that

Adv
prof
S,f (A) ≤ Advind

H (B) + Adv
prof-eav
E,f (B′),

44 3.6 Analyzing the Golle and Farahat’s scheme

where B′ is a t restricted adversary. This asserts the Theorem.

Let A be an adversary attacking the protocol S in Figure 3.4. We construct an adversary
B attacking the hash H, using A as follows.

Adversary B(s, k)

1. x $←M;
2. Send (Ek(x), s) to A;
3. A returns j;
4. if f(x) = j;
5. return 1;
6. else return 0;

As B is an adversary attacking the indistinguishability of the hash function, it receives
as input a pair (s, k), hence there are two possibilities regarding the input (s, k) of B,
k can either be H(s) or a uniform random element in {0, 1}`, and the goal of B is to
distinguish between these two possibilities.

Considering the first possibility that k is H(s), the way the adversary B is defined, A
gets a valid encryption of the message x (which is a random element in the message
space) according to the protocol S. Hence we have

Pr[s
$← STR: B(s,H(s))⇒ 1] = Pr[s

$← STR, x $←M : A(EH(s)(x), s)⇒ f(x)]

= Pr[x
$←M : A(S(x))⇒ f(x)]. (3.7)

Similarly, for the second possibility, i.e., when the input k to B is an element chosen
uniformly at random from {0, 1}`, we have

Pr[s
$← STR , k

$← {0, 1}` : B(s, k)⇒ 1] = Pr[x
$←M : A(Ek(x), s)⇒ f(x)].(3.8)

In Equation (3.8), s and k are not related at all, since s is chosen independently at
random from STR and k is chosen independently uniformly at random from {0, 1}`.
Thus, the adversary A has as input EK(x) and s, where s is independent of k, thus k
cannot be derived from s. Hence A cannot do better than some PROF-EAV adversary B′
who has only Ek(x) as its input, and runs for same time as that of A, which must be less
than T . Thus

Chapter 3. Profiling Adversaries 45

Pr[x
$←M : A(Ek(x), s)⇒ f(x)] ≤ Pr[x

$←M : B′(Ek(x))⇒ f(x)] (3.9)

From definition of PROF-EAV advantage of B′ we have

Pr[x
$←M : B′(EK(x))⇒ f(x)]

= Adv
prof-eav
E,f (B′) + max

A′
Pr[A′(.)⇒ f(x)], (3.10)

for any t restricted adversary for E. Thus, using Equations (3.8), (3.9) and (3.10) we
have

Pr[s
$← STR , k

$← {0, 1}` : B(s, k)⇒ 1]

≤ Adv
prof-eav
E,f (B′) + max

A′
Pr[A′(.)⇒ f(x)] (3.11)

Finally, from Equations (3.7) and (3.11) and Definitions 3.4 and 3.9 we have

Adv
prof
S,f (A) ≤ Advind

H (B) + Adv
prof-eav
E,f (B′),

as desired.

3.6.3 More Considerations

In a real scenario, a profiler will see a large amount of messages and will try to profile
them. The restriction that we want to put on an adversary is that (s)he should not be
able to profile more than N∗ messages in time less than Γ, where the values of N∗ and
Γ would be decided based on the application.

If A be a Γ restricted sequential adversary, and NProfAΓ be a random variable denoting
the number of messages profiled correctly by A within time Γ. It is desirable that for all
sequential adversaries A, Pr[NProfAΓ ≥ N∗] ≤ δ, for some small constant δ.

It is easy to see that the following result holds.

Proposition 3.1. Let S be a (ε, T) PROF secure scheme, and let Γ be a number. Then, for
any Γ restricted sequential adversary A

Pr

[
NProfAΓ ≥

Γ

T

]
≤ ε.

46 3.7 Concluding Remarks

Thus, assuming a sequential adversary and adjusting the slowness of the hash function
H, one can obtain the desired security objective out of S.

We assume a sequential adversary, which may not be realistic. As an adversary may try
to profile several messages in the same time. But, an adversary using more parallelism
uses more computation power in terms of amount of hardware used, etc. Thus, instead
of restricting the adversary on computation time, one can put a restriction on the total
computation cost, and based on this cost metric it is possible to develop a security model
where the restriction on sequential adversaries can be removed.

3.7 Concluding Remarks

We have done a theoretical analysis of profiling adversaries and ultimately described
a protocol which is secure against profiling adversaries. Our protocol does not require
any key exchange or public key infrastructure and uses CAPTCHAs and secret sharing
schemes in a novel way. We also applied our definitions and methodologies to analyze
security of an existing scheme.

Encryption may not be the only way to protect a user from profilers. As profilers can
use many different techniques which cannot be stopped using encryption. For example
it is possible to track the web usage of a specific user and profile him on that basis.
Here (probably) encryption has no role to play, or at least cannot be used in the way
we propose in our protocol. Anonymity is probably the correct direction to explore in
solving such problems. Also, as user profiling is a big business, and some think that
the free content in the web is only possible due to online advertisements, so putting a
total end to user profiling may not be desirable. So there have been current attempts
to develop systems which would allow targeted advertisements without compromising
user security [77]. These issues are not covered in our current work.

As we said previously, here we did not mention anything about the encryption scheme
which is secure in the PROF-EAV sense, in the next chapter we propose a cryptographic
construction that can be useful against profilers.

Chapter 4

A PROF-EAV Secure Encryption Scheme

In the previous Chapter we mentioned that the main purpose of a profiling adversary
is to classify messages into some pre-defined profiles. We also proposed two complete
protocols which achieve PROF security. These protocols require a PROF-EAV secure
encryption scheme. In this chapter we aim to construct a PROF-EAV secure encryption
scheme, which can successfully fool classifiers. The scheme that we propose here is
very different from existing encryption schemes. We can see this if we consider two
facts: first our protocol will only encrypt text messages and second we are not really
"encrypting" in the usual way. We first give an intuitive overview of the idea behind our
construction.

A spam filter is a tool which can classify an email into two classes, namely, spam and
non-spam. Most modern email services are equipped with such a tool, and with the
current technology spam filters perform reasonably good. However, these tools are not
perfect and one of the most important objectives of spammers is to design techniques
such that they can fool a spam filter, i.e., the sent message would not be classified as
a spam. To illustrate this situation let us consider how a popular method to combat
spam works and how a spammer can sneak it. A popular method to detect spam is
Bayesian filtering, which ranks words according to the probability of appearing in a
spam message. Those words that appear in a spam message, will have a high score and
those words that occur in a legitimate email will have a low score. When the system
receives an email, it breaks it into words (which already had a score), using this the
system computes a score for the whole email message. If the email has more spam
words than legitimate words, then it will be classified as spam.

A traditional technique, which has been heavily used by spammers, consists of adding
extra words to the original message. These extra words usually do not appear in spam

47

48 4.1 Preliminaries

messages. For example, it is common to see emails which have two distinct parts, where
the first part advertises Viagra but it ends with a passage from Shakespeare. A human
receiver of the message generally has no problem to understand the intent of the sender,
but an automated tool like a spam filter may get easily deceived by such a message.
Informally, the technique is used to conceal the original message within garbage, so
that a specific objective is met. The objective is to fool a machine (a computer program)
which tries to make some sense of the message but to convey the message to a human.

Rivest in [65] proposed a scheme called Chaffing and Winnowing (CW) for secure com-
munication. CW also uses the idea of hiding a message within garbage. We build on
the basic idea of CW in several ways, and we propose two concrete encryption schemes
Ψ1 and Ψ2. Moreover, we prove them to be PROF-EAV secure under some assumptions.
Both Ψ1 and Ψ2 are restricted in the sense that their message space consists of text in
some natural language. To build Ψ1 and Ψ2 we extensively use some ideas of document
classification, we know of no encryption scheme which has been developed using ideas
from document classification.

In what follows, in Section 4.1 we discuss the basic syntax of message authentication
codes, the basic idea of chaffing and winnowing as proposed in [65] and some ideas
of document classification. In Section 4.2 we discuss two schemes Ψ1 and Ψ2, which
are built on the original scheme proposed by Rivest. In Section 4.3 we present some
preliminary theoretical analysis involving the schemes Ψ1 and Ψ2. Finally in Section 4.4
we present some experiments.

4.1 Preliminaries

Before introducing our PROF-EAV scheme, we will describe the Chaffing and Winnowing
scheme proposed by Rivest. This scheme uses a cryptographic mechanism known as
a message authentication code (MAC), which provides authentication to the messages,
in the private key setting. We also describe some important concepts of document
classification, that we employ to develop our scheme.

4.1.1 Message Authentication Code

A message authentication code (MAC) is a cryptographic object, whose main purpose
is to detect whether a message has been modified by an adversary. For this purpose,
authorized parties must share a secret key K in advance, this key must remain unknown

Chapter 4. A PROF-EAV Secure Encryption Scheme 49

to the adversary. If two users wish to communicate in an authenticated way, they must
perform the following steps. To send a message M to the receiver, the sender must
compute a tag based on the message and the shared key K, this is done using a tag-
generation algorithm. The pair composed of the message and the tag, (M, tag) is sent to
the receiver. Then the receiver must verify that the tag is valid on the message M . To
do this, a verification algorithm is used, which takes as input the key K, the message M
and the tag, the output indicates whether the given tag is valid or not.

Formally, a message authentication code (or MAC) is a tuple of algorithms (Gen, Mac,
Vrfy), such that

• The key-generation algorithm Gen takes as input the security parameter 1n and
outputs a key K from a pre-defined key space K.

• The tag-generation algorithm Mac takes as input a key K ∈ K and a message
M ∈ {0, 1}∗ and outputs a tag.

• The verification algorithm Vrfy takes as input a key K, a message M ∈ {0, 1}∗ and
a tag. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.

Generally the verification algorithm also uses the tag generation algorithm, i.e.,
on receiving (M, tag), it computes tag′ = MacK(M) and if tag = tag′ then it returns
a 1 else returns a 0.

The most popular MAC is HMAC [5], but exist others like CBC-MAC [40], and UMAC [12].

4.1.2 Chaffing and Winnowing

Chaffing and Winnowing (CW) is an interesting scheme which was proposed by Rivest
in [65] to secure communications over a public channel. The basic idea is the following:
Suppose we have a message M = w1||w2|| . . . ||wm, where each |wi| = n bits , from M

we create a new message M ′, by adding random n-bit blocks in random positions of
the original message M , i.e., we obtain M ′ = w′1||w′2|| . . . ||w′m′, where m′ > m, and for
each i ∈ {1, 2, . . . ,m′}, either w′i = wj for some j ∈ {1, 2, . . . ,m}, or it is a random
n-bit string. For convenience, we distinguish the two possibilities, we would say that
ty(w′i) = 0 if w′i is a random n-bit string, and say ty(w′i) = 1 otherwise. In addition to
M ′, the scheme creates tag = t1||t2|| . . . ||tm′, where, ti = MacK(wi), if ty(w′i) = 1 and
otherwise ti is a random string. The pair (M ′, tag) is sent to the receiver. If the receiver
shares the key K with the sender, then it checks if MacK(wi) = ti, if this is the case then
wi is retained and if MacK(wi) 6= ti, then wi is discarded. Thus the receiver with the

50 4.1 Preliminaries

knowledge of the secret key can recover the original message M from (M ′, tag) with
high probability.

The procedure for creating M ′ from M is called as Chaffing, and the reverse procedure
of recovering the message by removing the chaff is called Winnowing. These terms
are derived from the ancient procedure of “winnowing the chaff from the grain”. Rivest
in [65] discusses several interesting properties of this scheme. He argues that CW falls
in the borderline of encryption and steganography, as in the procedure no encryption
of the original data is performed, what is done is to hide the message within the chaff.
And a valid receiver can extract the message from the chaff. He also argued that this
procedure may find use in secret communication in scenarios where encryption is not
allowed by law. There have been a few further studies on CW, which includes [4, 18].

Bellare and Boldyreva in [4], analyze the security of this scheme, and they proved that
when n = 1, i.e., if we divide the message in blocks of one bit, the scheme is IND-CPA
secure, but it is inefficient. Also, they proposed a modification to this scheme to make
it efficient and IND-CPA secure. For this reason, we do not consider to use it against
profiling adversaries, which as we have discussed require a more adequate notion of
security.

4.1.3 Document Classification.

The problem of document classification or document categorization is as follows: given a
set of classes and a document, determine in which class the given document belongs.
Document classification is an active research area and has many applications in different
domains such as email spam filtering, sentiment detection, information retrieval, among
others.

Let X be the set of all possible documents of interest, called as the document space.
And let C = {c1, c2, . . . cj} be a fixed set of j classes, also called categories or labels. Let
L be the set of labeled documents, i.e., documents from X whose classes are known.
We call L as the training set. The problem of designing a document classifier is to find
a function γ : X → C , such that γ can predict with high accuracy the class of all
documents present in X . Note, that the training set L is a very small subset of X ,
and the information in L is used to design γ. The procedure of designing γ from L is
commonly known as a learning algorithm.

There is a variety of learning algorithms which can be applied for document classifica-
tion, for example, Naive-Bayes classifier, Support Vector Machines, k-nearest neighbor
algorithm, decision tree, etc. [28, 50]. For this work we use two of them: Naive-Bayes

Chapter 4. A PROF-EAV Secure Encryption Scheme 51

classifier and k-nearest neighbor. Now we will briefly describe the main characteristics
of these two algorithms.

Naive-Bayes Classifier. The Naive-Bayes algorithm is a probabilistic method based on
the Bayes Theorem. In this algorithm we make several assumptions. First of all, we
assume a very simple representation of a document, which is considered as a sequence
of n words or terms. That is to say, the model considers that a document is generated
by repeatedly drawing one word out of a bag of words. It is assumed that each word w
has a different probability of occurrence for a document in each class, thus we can talk
of the class conditional probability of occurrence of a word w in a certain document in
class c ∈ C , we denote this probability by p(w|c). Moreover, it is assumed that each class
c ∈ C has a certain probability of occurrence called the apriori probability of class c,
this is denoted by p(c). If we assume that for all possible words w and all classes c ∈ C ,
the probabilities p(c) and p(w|c) are known, then we can come up with a decision rule
to decide in which class a document belongs. Let a document d contain n distinct words
w1, w2, . . . , wn. For every c ∈ C , we define

p(d|c) =
n∏
i=1

p(wi|c). (4.1)

This definition of the class conditional probability of a document d uses the assumption
that each word w is conditionally independent, given the class c. This is called the naive
Bayes assumption. Then by using the Bayes Theorem we have

p(c|d) =
p(c)p(d|c)∑

c∈C

p(d|c)p(c)
. (4.2)

Finally given the document d the class c∗ of d is predicted using the maximum a posteriori
(MAP) estimate, i.e.,

c∗ = arg max
c∈C

p(c|d). (4.3)

The probabilities p(c) and p(w|c) are generally not known, and hence they are estimated
from the training set L. The estimate of p(c), denoted by p̂(c) is obtained by

p̂(c) =
Nc

N
,

where N is the total number of documents in the training set L, and Nc is the number
of documents in L which belongs to the class c. The conditional probabilities p(w|c) is
estimated as

p̂(w|c) =
T (c, w)∑

w′∈Voc
T (c, w′)

,

52 4.2 Chaffing and Winnowing Text in a Natural Language

where Voc is the vocabulary, i.e., the set of all possible words and T (c, w) is the number
of occurrences of the word w in training documents from class c. Note the denominator
is the number of occurrences of all the words in the vocabulary for a class c. These
estimates can be plugged in Eq. (4.3) to predict the class of a document.

k-Nearest Neighbor (kNN) Classifier. In this model, we use a different approach to
represent a document. Let there be N words w1, w2, . . . , wN in the vocabulary V , we
represent a document d as a vector ~V (d) of N dimensions, where the ith component is
the number of times the word wi occurs in the document. Thus we can see a set of docu-
ments as a set of vectors in a vector space. Hence if we take the vector representation of
those documents, which belong to the same class, we will find that they are neighbors
in a region of the vector space. Thus we can divide the vector space in regions, where
each region corresponds to a class.

To measure the similarity between two documents d1 and d2, we compute the cosine sim-
ilarity of their respective vector representations ~V (d1) and ~V (d2). The cosine similarity
is defined as sim(d1, d2) =

~V (d1)·~V (d2)

||~V (d1)||||~V (d2)||
where ~V (d1) · ~V (d2) denotes the dot product of

~V (d1) and ~V (d2), and ||~V (d)|| is the Euclidean norm. We must remember that the dot
product between two vectors ~x and ~y is defined as ~x · ~y =

∑m
i=1 xiyi and the Euclidean

norm of a vector ~x is defined as
√∑m

i=1 x
2
i .

To classify a new document d, using kNN algorithm, we proceed as follows. Once that
we have the vector representation of d, denoted as ~V (d), we compute the similarity of
~V (d) with vector representations of all documents in L, using the cosine similarity. Then
we select the k nearest neighbors of ~V (d) in L and assign document d the majority class
of its k closest neighbors. Generally k is a user chosen parameter.

4.2 Chaffing and Winnowing Text in a Natural Language

Let Voc be the vocabulary of any language, i.e. a set of words in any language. We
consider a message M to be a finite sequence of words in Voc. We will denote a message
by M = 〈w1, w2, . . . , wm〉, where w1, · · · , wm ∈ Voc and are not necessarily distinct. By
length of a message we will mean the number of words in it and denote it by `(M). By
M [i] we will denote the ith word in M , where 1 ≤ i ≤ `(M). A sub-sequence of M is the
message Z with zero or more words left out from M . Formally, if M = 〈w1, w2, . . . , wm〉,
be a message then Z = 〈z1, z2, . . . , zk〉 is a subsequence of M if there exists a strictly
increasing sequence i1, i2, . . . , ik of indices of words in M such that for all 1 ≤ j ≤ k,
wij = zj. We will write Z E M to denote that Z is a subsequence of M , and if Z E

Chapter 4. A PROF-EAV Secure Encryption Scheme 53

Ψ1.ChaffK(M)

1. M ′ ← AddChaff(M,n) ;
2. S ← Sub(M ′,M) ;
3. for i = 1 to `(M ′);
4. if i ∈ S,
5. idx[i]← MACK(bin(M ′[i]));

6. else idx[i] $← {0, 1}τ ;
7. end if
8. end for
9. return (M ′, idx);

Ψ1.WinnowK(M ′, idx)
1. j ← 1 ;
2. for i = 1 to `(M ′),
3. if MACK(bin(M ′[i])) = idx[i]
4. M [j]←M ′[i];
5. j ← j + 1;
6. end if
7. end for
8. return M

Figure 4.1: Ψ1: Chaffing procedure proposed by Rivest.

M , then Sub(M,Z) will denote the set of indices of the words in M which forms the
sequence Z. We give an example to illustrate these concepts.

Example 4.1. Consider the following messages

M ′′ = 〈books, dogs, rice, are, usually, useful, bark〉
M ′ = 〈books, are, useful〉
M = 〈dogs, usually, bark〉

If we fix an order of the words in M ′′, then `(M ′′) = 7 and `(M ′) = `(M) = 3. Both M

and M ′ are subsequences of M ′′, i.e., M ′ E M ′′ and M E M ′′. Moreover, Sub(M ′′,M ′) =

{1, 4, 6} and Sub(M ′′,M) = {2, 5, 7}.

Formally a CW procedure is a tuple of algorithms Ψ = (Gen,Chaff,Winnow). Gen is
the key generation algorithm, which generates a key from the finite key space K. We
will always assume that Gen outputs a uniform random element in K. The procedure
Chaff takes in a key generated by Gen and a message M ∈ Voc∗ and outputs a pair
(M ′, idx) ∈ Voc∗ × {0, 1}∗, such that M is a subsequence of M ′. We call M ′ the chaffed
message and idx as the index. The index idx helps the winnowing procedure to recover
the original message from the chaffed one. The winnowing procedure Winnow undo the
chaffing. It takes in a key K ∈ K and the pair (M ′, idx) ∈ Voc∗ × {0, 1}∗, and outputs
M ∈ Voc∗.

For a given CW procedure Ψ = (Gen,Chaff,Winnow) we define the error of Ψ as

errΨ = 1− Pr[K
$← K : WinnowK(ChaffK(M)) = M]. (4.4)

54 4.2 Chaffing and Winnowing Text in a Natural Language

Thus for a CW procedure Ψ to be useful it is required that errΨ is small.

We describe two CW procedures Ψ1 and Ψ2 in Figures 4.1 and 4.2. The description
in the figures does not specify the function AddChaff. In both cases, for n > `(M),
AddChaff(M,n) expands M by adding random words to it in random positions and cre-
ates M ′, such that `(M ′) = n and M E M ′. We will discuss specific considerations in
the design of AddChaff later in Section 4.2.1.

Ψ1 is basically the method proposed by Rivest [65], when applied to the present sit-
uation. Besides adding random words to the message, the chaffing procedure in Ψ1

creates the index idx. The index contains n = `(M ′) entries, and each entry idx[i] is
a τ bit string, where τ is the output size of the message authentication code MAC. If
i ∈ Sub(M ′,M) then idx[i] contains the message authentication code corresponding to
the word M ′[i], otherwise idx[i] is a uniform random τ bit string. The corresponding
winnowing procedure computes the tags for each word in M ′ and matches them with
the tags in idx. If the tag for a specific word in M ′ matches, then that word is retained,
otherwise it is discarded.

In Figure 4.2 we propose a new CW procedure. Ψ2 is different from Ψ1 by the fact that
it uses an encryption scheme EK instead of the message authentication code MAC. Ψ2

creates a string L which acts as an index for the returned message M ′. We denote the
ith bit of L by Li. Li = 1 signifies that the word M ′[i] is a real word of the message and
Li = 0 means that M ′[i] is a fake word. The encryption of L along with M ′ is returned
by Ψ2.ChaffK. The corresponding winnowing procedure can use the key to obtain L,
and using the information in L can remove the chaff from M ′ to obtain M .

There are some interesting differences in terms of both functionality and efficiency be-
tween the two CW procedures Ψ1 and Ψ2, we discuss some relevant issues next. For the
discussion we assume that the original message M contains m words, and α additional
words are added to obtain M ′, i.e, `(M ′) = n = m+ α.

1. Efficiency: Irrespective of the AddChaff procedure, in Ψ1, n message authentica-
tion codes are required to be computed, whereas in Ψ2 a message of length n

is to be encrypted. The exact efficiency comparison between these two options
would depend on the specific choice of the message authentication code and the
encryption algorithm, but for any practical choice, Ψ2 would be more efficient
than Ψ1.

2. Length Expansion: The length expansion in Ψ1 would depend on the size of the
tag produced by the message authentication code. If the MAC algorithm produces
tags of τ bits then the size of idx would be nτ bits, where as in case of Ψ2 the
length of idx would be just n bits.

Chapter 4. A PROF-EAV Secure Encryption Scheme 55

Ψ2.ChaffK(M)

1. M ′ ← AddChaff(M) ;
2. S ← Sub(M ′,M) ;
3. for i = 1 to `(M ′);
4. if i ∈ S,
5. Li ← 1;
6. else Li ← 0 ;
7. end if
8. end for
9. idx← EK(L)

10.return (M ′, idx);

Ψ2.WinnowK(M ′, idx)
1. L← E−1

K (idx) ;
2. j ← 1;
3. for i = 1 to `(M ′),
4. if Li = 1

5. M [j]←M ′[i];
6. j ← j + 1;
7. end if
8. end for
9. return M

Figure 4.2: Ψ2: A new chaffing procedure using encryption.

3. Error in Winnowing: Assuming that the MAC is a random function, for Ψ1 we
will have errΨ1 ≤ n/2τ . But, in case of Ψ2, errΨ2 = 0.

4.2.1 Realizing AddChaff

Our main goal is to design the chaffing procedure in such a manner that it can fool
a classifier. While designing AddChaff we use some tools and techniques for classifier
design.

We assume that Voc is a finite set of words and the message space M ⊆ Voc∗. Let
P = {1, 2, . . . , k} be the set of class labels or profiles, and let f : M → P, be the
profiling function or the classifier which induces a k-partition on the message spaceM.
In other words we can sayM = ∪ki=1Mi, whereMi∩Mj = ∅ for all i 6= j, and x ∈Mi,
iff f(x) = i.

In all practical classification tasks, the real partition of the message space (i.e., the
function f) is generally not known. What is known is the class labels of a finite number
of messages inM. Let COR ⊂ M, be the set of messages inM whose class labels are
known, and we define L = {(x, f(x)) : x ∈ COR}. The set COR is called the corpus and
L the training set.

A classifier is generally designed using L, and we call such a classifier as f ∗L. Note, that
f ∗L is not the actual function f , but a “good” approximation of f . We will assume that

56 4.2 Chaffing and Winnowing Text in a Natural Language

a user knows L, and has access to a “good” classifier f ∗L designed by some technique
which is not of interest to us.

Now, we introduce some additional notations, which will help in the exposition that
follows. For i ∈ P, let Ci = {x ∈ COR : f(x) = i}, i.e., Ci contains the messages in COR

which belongs to class i. For w ∈ Voc and x ∈ COR define cntx(w) as the number of
times the word w occurs in the message x. For each w ∈ Voc and i ∈ P, define

p(w, i) =

∑
x∈Ci

cntx(w)∑
x∈Ci

`(x)
(4.5)

p′(w, i) =

∑
x∈COR\Ci

cntx(w)∑
x∈COR\Ci

`(x)
(4.6)

OR(w, i) = p(w, i) log
p(w, i)

p′(w, i)
. (4.7)

The quantity OR(w, i) is called the odds ratio of the word w in class i. This has been used
as a measure of how important the word w is for class i, thus if OR(w, i) is big it means
that a message which has high occurrence of the word w has a high “likelihood” of
belonging to class i. In the literature [52] there are several variants of the definition of
odds ratio but they are all small variants of the definition that we describe in Eq. (4.7).

Based on the corpus COR, and the odds ratio, we want to find the most significant words
in each class i ∈ P. Let Wi be the set containing the distinct words in the messages in
Ci, and W = ∪ki=1Wi. For i ∈ P and p ≤ |Wi|, let Sigpi be the p words in Wi with the
highest OR(·, i) values. With these definitions and notations we are now ready to specify
some procedures for AddChaff.

The heart of each method contains the procedure Basic(M,S, n, prob), which is de-
scribed in Figure 4.3. The procedure Basic takes as input a message M , a finite set
S ⊂ W, a positive integer n > `(M) and a discrete probability distribution prob on the
set S.

Basic returns a chaffed message M of size n. The procedure involves in expanding
M by inserting n − `(M) words in random positions, and each of these new words is
drawn from the given set S following the given probability distribution prob. Various
procedures of adding chaff can be derived using the procedure Basic by varying the
set S and the probability distribution prob. We describe some interesting variants in
Figure 4.4.

Our first chaffing procedure AddChaff1, is perhaps the most naive way to corrupt a

Chapter 4. A PROF-EAV Secure Encryption Scheme 57

Basic(M,n, S, prob)

1. n′ ← n− `(M) ;
2. M ′ be a sequence of length n;
3. for i = 1 to `(M ′),
4. M ′[i]← NULL
5. end for
6. I be a set of n′ elements sampled uniformly

without replacement from {1, . . . , n};
7. for each i ∈ I
8. Sample a word w from S

according to the distribution prob;
9. M ′[i]← w;
10. end for
11. j ← 1;

12. for i← 1 to `(M),
13. while M ′[j] 6= NULL,
14. j ← j + 1;
15. M ′[j]←M [i];
16. end for
17. return M ′

Figure 4.3: The basic procedure for adding chaff

message M . Here we take S as W, the set of all the words in the k different classes.
For the rest of the procedures we assume that we have a classifier f ∗L and we use it to
classify a message M . Then we choose a word uniformly at random from set S.

In procedure AddChaff2, first we classify the message M , using f ∗L, let us call c the class
of M . Then we construct the set S as the union of the significant words in other classes
c′ different from c. Finally we set prob as the uniform distribution on S.

In procedure AddChaff3, just as before we compute c by using f ∗L. In the second step we
choose a class j 6= c uniformly at random from P. In set S we put the most significant
words in class j. Here we also set prob as the uniform distribution on S.

Procedure AddChaff4, is the same as AddChaff3, the only difference is the way we set the
probability distribution prob. For s ∈ S set prob(s) as OR(s,j)∑

w∈S OR(w,j)
. Note that prob(s) is a

discrete probability distribution on S as
∑
s∈S

prob(s) = 1 and for all s ∈ S, 0 ≤ prob(s) ≤

58 4.2 Chaffing and Winnowing Text in a Natural Language

AddChaff1(M,n)

1. S ←W;
2. for each s ∈ S,
3. prob(s)← 1/|S|;
4. end for
5. M ′ ← Basic(M,n, S, prob);
6. return M ′;

AddChaff2(M,n)

1. c← f ∗L(M);
2. S ←

⋃
i∈P\{c}

Sigpi ;

3. for each s ∈ S,
4. prob(s)← 1/|S|;
5. end for
6. M ′ ← Basic(M,n, S, prob);
7. return M ′;

AddChaff3(M,n)

1. c← f ∗L(M);

2. j $← P \ {c};
3. S ← Sigpj ;
4. for each s ∈ S,
5. prob(s)← 1/|S|;
6. end for
7. M ′ ← Basic(M,n, S, prob);
8. return M ′;

AddChaff4(M,n)

1. c← f ∗L(M);

2. j $← P \ {c};
3. S ← Sigpj ;
4. for each s ∈ S,
5. prob(s)← OR(s,j)∑

w∈S OR(w,j)
;

6. end for
7. M ′ ← Basic(M,n, S, prob);
8. return M ′;

Figure 4.4: Different chaffing procedures.

1. Moreover a word s ∈ S will have more probability assigned to it if its odds ratio
in belonging to class c is high. Thus this distribution when used to add chaff would
guarantee that more significant words in class j are added more frequently as chaff.

Both AddChaff3 and AddChaff4 try to add chaff in a directed manner, i.e, they try to
add words specific to a class different from the class where the message really belongs.
These two procedures can also be modified by allowing the user to choose a class instead
of randomly selecting a class. This may allow the user to try to add chaff in such a way
that the message gets classified to a class of his choice. We present some experiments
to evaluate the performance of these procedures on a real corpus in Section 4.4. In the
next section we provide a preliminary analysis of Ψ1 and Ψ2.

Chapter 4. A PROF-EAV Secure Encryption Scheme 59

4.3 Security Analysis

Here we provide a preliminary analysis of the schemes which we already described.

Theorem 4.1. Ψ1 and Ψ2 are not IND-CPA secure.

Proof. Let LongSubSeq(A,B) be the longest common subsequence of two messages A
andB. Note that we consider bothA andB as a sequence of words. If n = max{`(A), `(B)},
then LongSubSeq(A,B) can be found inO(n3) time by using dynamic programming [19].

Consider an adversary who chooses two messages M0 and M1, such that `(M0) = `(M1)

and M0, M1 contains distinct words. The adversary submits these two messages to the
challenger. The challenger returns C = Ψ1.ChaffK(Mb) where b $← {0, 1} and K

$← K,
and b and K are unknown to the adversary. The goal of the adversary is to predict the
bit b, i.e., to guess whether the ciphertext C corresponds to the message M0 or M1.

The adversary parses C as (idx,M ′), and if LongSubSeq(M0,M
′) = M0, the adversary

outputs 0 otherwise it outputs a 1.

If C corresponds to the message M0 then the adversary is successful with probability 1.
On the other hand, if C corresponds to M1 then the adversary outputs a zero only if M0

is the longest common subsequence of M ′ and M0, which can only happen if M0 is a
subsequence of the chaffed sequence of words. The exact probability of this happening
would depend on the details of the AddChaff procedure, but in any case this probability
would be sufficiently low.

The same argument holds for the procedure Ψ2.

We want to prove that the schemes Ψ1 and Ψ2 are PROF-EAV secure. To do this we
need an additional assumption on the AddChaff procedure.

Definition 4.1. A scheme for adding chaff AddChaff is called (1 − ε)-fooling, if for all
classifiers f ∗

Pr[M
$←M : f ∗(AddChaff(M)) = f(M)] ≤ ε

The probability is taken over the random choice of M and the randomness in AddChaff.

Assuming that the procedure AddChaff is (1 − ε)-fooling we can prove some interesting
properties of Ψ1 and Ψ2 as follows.

Theorem 4.2. In Ψ1, if AddChaff is (1−ε)-fooling and MacK() is a pseudorandom function,
then Ψ1 is PROF-EAV secure. In other words, let A be a PROF-EAV adversary attacking

60 4.3 Security Analysis

Adversary BO

1. M $←M;

2. M ′ ← AddChaff(M,n) ;
3. S ← Sub(M ′,M) ;
4. for i = 1 to `(M ′);
5. if i ∈ S,
6. idx[i]← O(M ′[i]);

7. else idx[i] $← {0, 1}τ ;
8. end if
9. end for
10. Send (M ′, idx) to A
11.A returns j
12.if j = f(M) return 1;
13.else return 0;

Figure 4.5: Adversary B used for the proof of Theorem 4.2

Ψ1, then there exists a PRF adversary B, such that

Adv
prof-eav
Ψ1,f

(A) ≤ Adv
prf
MAC(B) + ε.

Proof. Let A be an arbitrary adversary attacking the protocol Ψ1. We construct a PRF
adversary B attacking the MacK() as shown in Figure 4.5.

Note that B being a PRF adversary has as its oracle O a random function or MacK(),

where K $← K, and B is required to distinguish between these two situations. Moreover,
it is clear from the description of B, that if its oracle is MacK() then it behaves like the
procedure Ψ1 as described in Figure 4.1, thus

p1 = Pr[K
$← K : BMACK() ⇒ 1]

= Pr[M
$←M, K

$← K : A(Ψ1.ChaffK(M))⇒ f(M)]

≥ Pr[M
$←M, K

$← K : A(Ψ1.ChaffK(M))⇒ f(M)]−max
A′

Pr[A′(.)⇒ f(x)]

≥ Adv
prof-eav
Ψ1,f

(A). (4.8)

Chapter 4. A PROF-EAV Secure Encryption Scheme 61

On the other hand, if the oracle O is a random function in Func(M, {0, 1}τ) then

p2 = Pr[ρ
$← Func(M, {0, 1}τ) : Bρ() ⇒ 1] (4.9)

= Pr[M
$←M : A(AddChaff(M))⇒ f(M)] (4.10)

≤ ε. (4.11)

The transition from Eq. (4.9) to Eq. (4.10) is due to the fact that, when the oracle of B
is a random function then the whole idx is a random string which has no relationship
with the message. Hence the idx obtained by A is of no use, hence for A it is same as
interacting with just AddChaff. The transition from Eq. (4.10) to Eq. (4.11) is due to the
the assumption that AddChaff is (1− ε)-fooling.

Now, using the definition of the PRF advantage of B and the equations (4.8) and (4.11),
we have

Adv
prf
MAC(B) = p1 − p2

≥ Adv
prof-eav
Ψ1,f

(A)− ε.

Hence the Theorem follows.

Theorem 4.3. In Ψ2, if AddChaff is (1− ε)-fooling and EK() is IND-EAV secure, then Ψ2

is PROF-EAV secure. In other words if A is an arbitrary PROF-EAV adversary attacking
Ψ2, then there exists an IND-EAV adversary B, such that

Adv
prof-eav
Ψ2,f

(A) ≤ 2Advind-eav
E (B) + ε.

Proof. The proof is similar to the proof of Theorem 4.2 above. Let A be an arbitrary
adversary attacking the protocol Ψ2. We construct an adversary B attacking the EK in
the IND-EAV sense, as shown in Figure 4.6.

The adversary B selects a message M randomly from M and adds chaff to it. It then
creates two indices L0 and L1, where L0 is the real index for the messageM as in Ψ2 and
L1 is a random string of same length as L0. B submits L0 and L1 to its challenger and
receives idx as a response. Note that according to the IND-EAV game, the challenger
selects a bit b uniformly at random, and idx = EK(Lb). After receiving idx from the
challenger, B sends (M ′, idx) to A. A guesses the profile of the message M as j. If j
corresponds to the real profile of M then B outputs a 1 otherwise B outputs a 0.

62 4.3 Security Analysis

Adversary B
1. M $←M;

2. M ′ ← AddChaff(M);
3. S ← Sub(M ′,M) ;
4. for i = 1 to `(M ′);
5. if i ∈ S,
6. L0[i]← 1;
7. else L0[i]← 0 ;
8. end if
9. end for

10.L1
$← {0, 1}`(M ′);

11. Send (L0, L1) to the challenger.
12. The challenger returns idx.
13. Send (M ′, idx) to A;
14.A returns j;
15. if j = f(M) return 1;
16. else return 0;

Figure 4.6: The adversary B used in the proof of Theorem 4.3

Hence, we have,

Pr[Exp-IND-EAVB ⇒ 1] = Pr[Exp-IND-EAVB ⇒ 1|b = 0] Pr[b = 0] +

Pr[Exp-IND-EAVB ⇒ 1|b 6= 0] Pr[b 6= 0] (4.12)

=
1

2
(p0 + p1), (4.13)

where p0 = Pr[Exp-IND-EAVB ⇒ 1|b = 0] and p1 = Pr[Exp-IND-EAVB ⇒ 1|b = 1]. If
the encrypted message was L0 then A gets the pair (M ′, idx), which is a valid output of
Ψ2.ChaffK , thus we have

p0 = Pr[M
$←M, K

$← K : A(Ψ2.ChaffK(M))⇒ f(M)] (4.14)

Otherwise, i.e., if b = 1, then idx has no relation with the chaffed message M ′, and it is

Chapter 4. A PROF-EAV Secure Encryption Scheme 63

of no use to A. Hence,

p1 = Pr[M
$←M : A(AddChaff(M))⇒ f(M)]

≤ ε. (4.15)

The last inequality is due to the fact that AddChaff is (1− ε)-fooling.

Now let,
p2 = max

A′
Pr[A′(.)⇒ f(x)]. (4.16)

Thus using the definition of PROF-EAV security of of Ψ2, and Eq. (4.14), we have

Adv
prof-eav
Ψ2,f

(A) = p0 − p2. (4.17)

Finally, using the definition of IND-EAV advantage of B and equations (4.13), (4.14),
(4.15) and (4.17) we have

Advind-eav
E (B) =

1

2
− Pr[Exp-IND-EAVB ⇒ 1]

=
1

2
− 1

2
(p0 + p1)

≥ p2

2
− 1

2
(p0 + p1)

=
1

2
(p2 − p0)− p1

2

≥ 1

2
Adv

prof-eav
Ψ2,f

(A)− ε

2

as desired.

Remark. The validity of Theorems 4.3 and 4.2 highly depends on AddChaff being (1−ε)-
fooling. This is a strong and not a well studied assumption. Some preliminary ex-
periments presented in Section 4.4, suggest that the AddChaff procedures described in
Section 4.2 do fool some classifiers, but still they are not optimal, as we will see, still
there are a small percentage of messages which are correctly classified. Although The-
orems 4.3, 4.2 are mathematically correct, we must notice that we are considering an
encryption scheme EK which is IND-EAV secure. We believe that this level of security is
still very strong if we are considering a profiling adversary.

4.4 Some Experiments

In this section we present some experiments to test the effectiveness of our proposed
methods for adding chaff. For the experiments we use a tool called Rainbow which is

64 4.4 Some Experiments

provided within a library called Bow (or libbow). This library was created by Andrew
McCallum [51], it was intended for writing statistical text-processing programs. In par-
ticular we use libbow 20020213-10 in amd64, which is a distribution for Ubuntu. Rainbow
is a program that does document classification. We use two classification methods, pro-
vided within this library: Naive-Bayes and K-nearest neighbor.

Also we use the 20_newsgroup data set, which is a collection of 20,000 newsgroup
documents, partitioned in 20 different classes.

We proceeded as follows. We used 80% of the documents in the corpus as the training
set and used the remaining 20% for testing. Using the training set, we estimated the
required probabilities for the Naive-Bayes classifier, and thus we designed a classifier
for the 20_newsgroup data, further we will call this classifier as fng

nb . We also designed
a kNN classifier with the same training set and we denote this classifier as fng

knn. From
the test set we chose those documents which were correctly classified by our designed
classifier fng

nb . There were 3269 documents in the test set which got correctly classified.
We used only these documents for our experiments, for ease of reference, we will further
denote this set of documents by D.

The goal of the experiments was to test the performance of the AddChaff procedures
depicted in Figure 4.4. The following protocol was followed for the experiments.

1. We added chaff to the documents in D using each of the procedures in Figure 4.4
and we tried to classify these transformed documents using fng

nb (an also fng
knn, in

some cases), and measured the classification accuracy, which we computed as the
percentage of the number of documents correctly classified. As each of the pro-
posed AddChaff procedures are randomized, hence we repeated each experiment
100 times, and we report the mean, the minimum, maximum and the standard
deviation of the classification accuracy over these 100 repetitions. Note that a low
classification accuracy signifies high performance for the AddChaff procedure.

2. The AddChaff procedures takes in a parameter n, which represents the length of
the output document. If n is bigger then relatively more chaff has been added,
thus the performance of an AddChaff procedure would depend on n. We tried
different values of n in our experiments. For a message M , let n = (λ + 1)`(M),
from this expression we can see that λ indicates how much increases the length of
the original message. For most experiments, we report results by varying λ from
1 to 4. For example, a value of λ = 1 implies that we will add as many words
as there are in the original text, i.e., the length of the ciphertext will be twice the
length of the plaintext.

3. The procedures AddChaff2, AddChaff3 and AddChaff4 uses the set Sigpj , which de-

Chapter 4. A PROF-EAV Secure Encryption Scheme 65

notes the p most significant words in class j. Thus, p is a user defined parameter.
We report results for p = 100, 500.

4. The procedures AddChaff2, AddChaff3 and AddChaff4 also uses a classifier f ∗L in
their description, we used fng

nb as the classifier in all cases.

We report the results in Figure 4.7, we discuss and analyze these results below.

1. Table 4.7(a) reports the classification accuracy when the documents in D were
corrupted using AddChaff1, and classified using fng

nb . The results show a high clas-
sification accuracy. As expected, if we increase λ, then the accuracy goes down,
but even with λ = 4 the classification accuracy is above 60%, which is not in gen-
eral acceptable. This shows that AddChaff1 is probably not a good method to add
chaff.

2. Tables 4.7(b) and 4.7(c) show the results when AddChaff2 was used to add chaff
and the classifier used was fng

nb . As AddChaff2 uses the set Sigpj , thus we used
two values of p for our experiments. Tables 4.7(b) shows the results for p = 100

and 4.7(c) shows the same when p = 500. The results are much better than in
case of AddChaff1, for λ = 4, a classification accuracy of around 16% is achieved
which seems to be reasonable. The results are significantly better when p = 100

compared to when p = 500. An intuitive justification of this can be that higher the
value of p, there are more words in to the set S, from which the words for chaffing
are chosen, thus for a higher value of p the set S contains more words which are
not “so important” for representing the specific class.

3. The results of using AddChaff3 are shown in the Tables 4.7(d), 4.7(e), 4.7(f) and
4.7(g).

• Table 4.7(d) shows the results by using fng
nb and p = 100.

• Table 4.7(e) shows the results by using fng
nb and p = 500.

• Table 4.7(f) shows the results by using fng
knn and p = 100.

• Finally, Table 4.7(g) shows the results by using fng
nb and p = 500.

These results are quite encouraging and it shows that AddChaff3 does a good job in
fooling a classifier. Guided by these encouraging results we also tried with λ = 0.5,
i.e., when the quantity of added chaff is just half the size of the original document.
With λ = 0.5 the results are not that good. It is also to be noted that when we
use kNN as the classifier (Tables 4.7(f) and 4.7(g)) the performance degrades, as
the chaff is added based on a Naive-Bayes classifier. But still the results with kNN
classifier are within acceptable limits.

66 4.4 Some Experiments

λ Mean Min Max STD
1 96.55 96.24 96.88, 0.12
2 93.41 92.99 93.94 0.18
3 84.29 83.60 85.01 0.27
4 67.76 66.96 68.8 0.33

(a)

λ Mean Min Max STD
1 84.01 83.27 84.92 0.34
2 52.92 51.61 54.24 0.51
3 29.85 28.79 30.87 0.42
4 16.54 15.57 17.43 0.40

(b)

λ Mean Min Max STD
1 89.53 88.89 90.30 0.29
2 66.69 65.52 67.85 0.50
3 44.40 43.22 45.46 0.47
4 28.39 27.13 29.37 0.47

(c)

λ Mean Min Max STD
1 0.36 0.21 0.55 0.07
2 0.12 0.12 0.21 0.01
3 0.12 0.12 0.15 0.0
4 0.12 0.12 0.12 0.0

0.5 9.06 8.14 9.79 0.37
(d)

λ Mean Min Max STD
1 0.97 0.67 1.28 0.12
2 0.13 0.12 0.21 0.02
3 0.12 0.12 0.12 0.0
4 0.12 0.12 0.12 0.0

0.5 24.29 23.19 25.70 0.53
(e)

λ Mean Min Max STD
1 9.48 8.66 10.31 0.36
2 5.17 4.28 5.97 0.33
3 3.47 2.88 4.22 0.25
4 2.65 2.05 3.09 0.23

0.5 16.69 13.91 21.35 2.33
(f)

λ Mean Min Max STD
1 18.29 17.16 19.36 0.41
2 12.65 11.56 13.95 0.41
3 9.48 8.53 10.43 0.40
4 4.40 0.92 8.41 3.16

0.5 20.73 19.76 21.78 0.38
(g)

λ Mean Min Max STD
1 0.36 0.21 0.52 0.07
2 0.13 0.12 0.15 0.01
3 0.12 0.12 0.12 0.00
4 0.12 0.12 0.12 0.00

0.5 10.00 9.15 11.20 0.35
(h)

λ Mean Min Max STD
1 7.86 7.13 8.84 0.29
2 3.40 2.60 3.88 0.25
3 1.96 1.56 2.45 0.21
4 1.24 0.92 1.65 0.15

0.5 15.55 12.97 21.35 2.98
(i)

Figure 4.7: a) Exp1:AddChaff1, Naive-Bayes. b) Exp2: AddChaff1, Naive-Bayes, p = 100. c)
Exp2: AddChaff1, Naive-Bayes, p = 500. d) Exp3: AddChaff3, Naive-Bayes, p = 100. e) Exp3:
AddChaff3, Naive-Bayes, p = 500. f) Exp3: AddChaff3, kNN, p = 100. g) Exp3: AddChaff3, kNN,
p = 500. h) Exp4: AddChaff4, Naive-Bayes, p = 500. i) Exp4: AddChaff4, kNN, p = 500. A value
of λ = 0.5 means that the length of the ciphertext is 1.5 the length of the plaintext.

Chapter 4. A PROF-EAV Secure Encryption Scheme 67

4. Tables 4.7(h) and 4.7(i) shows the results of AddChaff4 with the Naive-Bayes and
kNN classifiers respectively. In both cases p = 500 is used, with p = 100 marginally
better results are obtained. These results show almost the same characteristics as
the previous one, but they are marginally better in all cases.

Based on the reported results, we can summarize some of the characteristics and rec-
ommendations for the proposed methods to add chaff:

1. Comparative performance: AddChaff1 performs the worst and AddChaff4 per-
forms the best. The performance of all schemes except AddChaff1 for reasonable
values of λ seems to be acceptable.

2. The role of λ: The experiments support our intuition that a higher value of λ,
gives better performance. But, with a higher value of λ there is more expansion
in the message which would imply more bandwidth requirements for communi-
cation and more computational costs. Hence a proper tradeoff for the value of λ
is needed. The experiments demonstrate that λ > 2 can be a suitable choice for
AddChaff2 and AddChaff3.

3. Role of p: The smaller the value of p, better performance is obtained. But a very
small value of p would affect the variability of the cipher, as only a few extra words
would be repeatedly added as chaff, which may allow other techniques to remove
the chaff. For reasonably sized messages, p = 500 seems to be a good choice in
terms of both classification accuracy and ciphertext variability.

4.5 Final Remarks

We studied the CW scheme and based on this we proposed two constructions which are
good candidates for an encryption scheme secure in the PROF-EAV sense. We would
like to note certain specific characteristics of the constructions here.

1. The schemes Ψ1 and Ψ2 are very different from existing encryption schemes, as
here the message goes in clear hidden within the chaff. Thus, it provides a very
weak form of security but their security seems to be enough against profilers.

2. We live in an era of large scale surveillance which is performed by corporations
for their business goals, and even by government agencies for different purposes.
Such surveillance compromises privacy of every individual. Government agencies

68 4.5 Final Remarks

may be sometimes interested to know more about individuals who communicate
through encrypted messages. If usual strong encryption is used for day to day
communication (say through emails), it is easy to detect whether the messages
are encrypted. In the proposed schemes it may be difficult to detect encryption,
as the message consists of valid words in a natural language. This may find use in
certain scenarios.

3. The experimental results show that the schemes Ψ1 and Ψ2 cannot fool a classifier
%100 of time. This should not be seen as a weakness, as if most of the messages
sent by a user cannot be correctly classified then a profiling adversary would fail
to build a meaningful profile. To see this, consider a user U , who always sends
messages of a specific class c. If for example, only one of nine messages sent by
U are classified by the adversary as belonging to c, and other then the adversary
would not have enough information to profile U into a specific class.

4. One drawback of our scheme is that, it results in expansion of the messages. The
experiments suggest that the best option is to use the procedure AddChaff4 for
adding chaff. With this procedure, if the amount of chaff added is same as the
size of the message, then a reasonable level of security can be achieved. Assuming
an average email to be of size 75Kb, this would approximately make the chaffed
message 150 Kb long. In addition to the chaffed message the ciphertext would
include an index. The index size in case of Ψ2 is minimal. Recall, that if Ψ2 is
used then the index only occupies k bits, where k is the number of words in the
message. The number of words in a message of size 75Kb would be much less than
75Kb, thus the size of the index would be negligible compared to the message size.
In addition, if the protocol P′ is used, then according to our recommendation, five
CAPTCHAs are required to be sent. Assuming the average size of each CAPTCHA
to be 15Kb, then the size of the whole ciphertext would be 225 KB (150 + 5× 15).
Thus the length expansion is tolerable.

5. The theoretical analysis, that we provide in Section 4.3, shows that the security of
Ψ2 depends on the IND-EAV security of the encryption algorithm E. It would be
more desirable to show the PROF-EAV security of Ψ2 using a less stringent security
requirement on E. We wish to take up this problem in the near future.

Chapter 5

A Formal Treatment of Tokenization

There are some scenarios where the messages that we want to encrypt have a small
length. This is the case of credit card numbers. A typical credit card number consists of
sixteen (or less) decimal digits, if this is treated as a binary string, is about 53 bits long.
This is much less than the block size of a typical block cipher (say AES). Thus, direct
application of a block cipher to encrypt would result in a considerable length expansion,
and it would not be possible to encode the cipher into sixteen decimal digits. If we wish
to avoid this length expansion, then we must consider a cipher E : K×M→M where
M = {0, 1}n where n = 53, this means that the size of our domain is 253, this size is so
small that it is a difficult problem to find such an encryption scheme which also has a
good security bound. This problem is known as the small domain encryption problem.

The general problem was named by Voltage Security as format preserving encryption
(FPE), which refers to an encryption algorithm which preserves the format of the mes-
sage [8]. Formally, if we consider X to be a message space which contains strings from
an arbitrary alphabet satisfying certain format, D and K be finite sets called the tweak
space and key space respectively, then a format preserving encryption scheme is for-
mally defined to be a function FP : K × D × X → X , such that for every d ∈ D and
K ∈ K, FPK(d, ·) : X → X is a permutation. And FP should provide security as that of a
tweakable strong pseudorandom permutation (SPRP). Designing such schemes for arbi-
trary X is a challenging and interesting problem. In particular given a SPRP on {0, 1}n,
designing a SPRP for a message space {0, 1}t, where t < n is difficult. There have been
some interesting solutions to this problem, but none of them can be considered to be
efficient [8, 10, 14, 36, 53, 75].

More recently, an alternative method to protect credit card numbers has been proposed.
This method is called tokenization. As the name suggests it is implemented using tokens.

69

70 5.1 A Brief History

Tokens are numbers which replace credit card numbers but are unrelated to them. To
our knowledge a formal cryptographic analysis of the problem has not been done till
now. In this Chapter we study tokenization from a cryptographic viewpoint. We pro-
pose security notions according to different threat models and analyze the adequacy of
these notions in practical scenarios. We also propose some constructions of tokenization
systems and prove their security.

5.1 A Brief History

In our digital age, credit cards have become a popular payment instrument. With in-
creasing popularity of business through internet, every business requires to maintain
credit card information of its clients in some form. Credit card data theft is considered
to be one of the most serious threats to any business. Such a breach not only amounts
to a serious financial loss to the business but also a critical damage to the “brand image”
of the company in question.

The Payment Card Industry Security Standard Council (PCI SSC), which was founded
by the major payment card brands, is an organization responsible for the development
and deployment of various best practices in ensuring security of credit card data. In
particular PCI SSC has developed a standard called the PCI Data Security Standard (PCI
DSS) [58] which specifies security mechanisms required to secure payment card data.
PCI DSS dictates that organizations, which process card payments, must protect card-
holder data when they store, transmit and process them. In summary it mandates that
the credit card number must remain unreadable anywhere it is stored, and it proposes
to use “strong cryptography” as a possible solution. The actual requirements specified
by PCI DSS are elaborate and complex. To obtain PCI compliance, a merchant needs
to provide documentation on the usage and security policies regarding all sensitive in-
formation stored in its environment. PCI compliance is considered to be necessary for
any business to acquire the confidence of its customers, moreover a business which has
suffered theft of sensitive information while not being compliant can be subject to hefty
amounts of fines from the government in some countries.

Traditionally credit card numbers have been used as a primary identifier in many busi-
ness processes in the merchant sites. We quote from a document by Securosis [71]:

As the standard reference key, credit card numbers are stored in billing, order
management, shipping, customer care, business intelligence, and even fraud
detection systems. Large retail organizations typically store credit card data in
every critical business processing system.

Chapter 5. A Formal Treatment of Tokenization 71

Thus, in merchant sites, credit card numbers are scattered across their environment.
This makes it very difficult for a merchant to formulate security policies and provide
necessary documentation to obtain PCI compliance.

But, in most systems where credit card numbers are stored, the data itself is not re-
quired, and the system would function as well as before if the credit card numbers are
replaced by some other information which would “look like” credit card numbers. This
observation has lead to a paradigm shift in the way security of credit card numbers are
viewed: instead of securing sensitive data wherever it is present it is easier to remove
sensitive data from where it is not required. This basic paradigm has been implemented
using tokens. Tokens are numbers which represent credit cards but are unrelated to the
real credit card numbers.

There have been numerous industry white papers and similar documents which try to
popularize tokenization and discuss about the possible solutions to the tokenization
problem [69, 70, 71, 78]. PCI SSC has also formulated its guidelines regarding tok-
enization [59]. Voltage Security [78] has provided a solution where a credit card num-
ber encrypted by a FPE scheme can act as a token. To the best of our knowledge, this
is the only solution to the tokenization problem with known cryptographic guarantees.
But to our knowledge, there does not exist a formal security model for tokenization.
It has even been contested that a token which is an encryption of the credit card data
may not be considered as a safe token as there exists a possibility that the token can
be inverted to get the original data [71]. But it is not clear what basic cryptographic
objects should be used and in what way, to achieve the goals of tokenization.

5.2 Tokenization Systems: Requirements and PCI DDS
Guidelines

The basic architecture of a tokenization system is described in Fig 5.1. In the diagram
we show three separate environments: the merchant site, the tokenization system and
the card issuer. The basic data objects of interest are the primary account number
(PAN), which is basically the credit card number and the token which represents the
PAN. A customer communicates with the merchant environment through the “point
of sale”, where the customer provides its PAN. The merchant sends the PAN to the
tokenizer and gets back the corresponding token. The merchant may store the token in
its environment. At the request of the merchant the tokenizer can detokenize a token
and send the corresponding PAN to the card issuer for payments.

72 5.2 Tokenization Systems: Requirements and PCI DDS Guidelines

Point of

T
o

k
en

iz
at

io
n

 S
y

st
em

PAN

Server

M
er

ch
an

t
E

n
v

ir
o

n
m

en
t Sale

Application Token

Card
Vault

Encrypted Channel

Tokenizer/

Detokenizer

PAN & Token

Issuer

Figure 5.1: Architecture of the tokenization system

We show the tokenization system to be separated from the merchant environment, this
is true in most situations today, as the merchants receive the service of tokenization
from a third party. But it is also possible that the merchant itself implements its tok-
enization solution, and in that case, the tokenization system is a part of the merchant
environment.

As described in [59], a tokenization system has the following components:

1. A method for token generation: A process to create a token corresponding to
a primary account number (PAN). In [59] there is no specific recommendation
regarding how this process should be implemented. Some of the mentioned op-
tions are encryption functions, cryptographic hash functions and random number
generators.

2. A token mapping procedure: It refers to the method used to associate a token
with a PAN. Such a method would allow the system to recover a PAN, given a
token.

3. Card Vault: It is a repository which usually will store pairs of PANs and tokens and
maybe some other information required for the token mapping. Since it may con-
tain PANs, it must be specially protected according to the PCI DSS requirements.

4. Cryptographic Key Management: This module is a set of mechanisms to create,
use, manage, store and protect keys used for the protection of PAN data and also
data involved in token generation.

Chapter 5. A Formal Treatment of Tokenization 73

The PCI guidelines for tokenization are quite vague (this has been pointed out before in
many places including [70]), and it is difficult to make out what properties tokens and
tokenization systems should posses for functionality and security. We state two basic
requirements for tokens and tokenization systems. We assume that tokenization is pro-
vided as a service, thus multiple merchants utilize the same system for their tokenization
needs.

1. Format Preserving: The token should have the same format as that of the PANs,
so that the stored PANs can be easily replaced by the tokens in the merchant
environment. It has been said that in some scenarios it may be important that
the tokens can be easily distinguished from that of the PANs. For example, most
credit card numbers have a Luhn checksum [39] of zero. One can make tokens
containing same number of digits as that of the PAN but the Luhn checksum should
be 1. Such a distinguishing criteria may make audits easier.

2. Uniqueness: The token generation method should be deterministic. As stated be-
fore, the application software in the merchant side uses the PAN for indexing, thus
the tokens for a specific PAN should be unique, i.e., if the same PAN is tokenized
twice by the same merchant then the same token should be obtained. Moreover,
in a specific merchant environment two different PANs should be represented by
different tokens.

5.3 Additional Cryptographic Objects

In this Section we introduce two additional cryptographic objects, which we did not
describe previously. These cryptographic objects, namely tweakable enciphering schemes
(TES) and deterministic encryption that we describe here, are important components in
our constructions.

TWEAKABLE ENCIPHERING SCHEME (TES). A tweakable enciphering scheme is a block
cipher mode of operation. As we mentioned in Chapter 2, a block cipher let us encrypt
messages which have a bit length smaller than block length of the block cipher. To solve
this inconvenience, we use a mode of operation, which is a procedure that allows us
to encrypt messages of arbitrary length. A TES is generally constructed using a block
cipher as the basic primitive. It also use a special value, called a tweak. The purpose
of this tweak is to break the determinism inherent in a block cipher. This mechanism is
useful in different scenarios such as disk encryption. Now we give a formal definition
of a TES.

74 5.4 A Generic Syntax

Let E be a function E : K×T×M→Mwhere K is the key space, T is the tweak set, and
M is the message space and for every K ∈ K and T ∈ T we have that E(K,T, ·) = ETK(·)
is a length preserving permutation. We define the p̃rp advantage of an adversary A as

Adv
p̃rp
E (A) =

∣∣∣Pr[K
$← K : AEK(·,·) ⇒ 1]− Pr[π

$← PermT(n) : Aπ(·,·) ⇒ 1]
∣∣∣ ,

where PermT(M) is the set of length preserving tweak indexed permutations onM. If
the message spaceM = {0, 1}n, then E is called a tweakable block cipher.

DETERMINISTIC CPA SECURE ENCRYPTION. An encryption scheme which produces the
same ciphertext whenever we give it as input the same plaintext and key, is called a
deterministic encryption scheme.

Let E : K× T×M→ C be a deterministic encryption scheme with key space K, tweak
space T, message space M and cipher space C. We define the DET-CPA advantage of
any adversary A, which does not repeat any query as

Adv
det-cpa
E (A) =

∣∣∣Pr[K
$← K : AEK(·,·) ⇒ 1]− Pr[A$(·,·) ⇒ 1]

∣∣∣ ,
where $(., .) is an oracle, which on input (d, x) ∈ T×M returns a random string of the
size of the cipher-text of x.

5.4 A Generic Syntax

A tokenization system has the following components:

1. X , a finite set of primary account numbers or PAN’s. X contains strings from a
suitable alphabet with a specific format.

2. T , a finite set of tokens. T also contains strings from a suitable alphabet with a
specific format. It may be the case that T = X .

3. D, a finite set of associated data. The associated data can be any data related to
the business process1.

1In our view, irrespective of other possible identifiers, the associated data should contain an identifier
of the merchant. Thus if d, d′ ∈ D are two associated data related to two different merchants, it should
be that d 6= d′. For our notion of correctness this requirement for the associated data would be required.

Chapter 5. A Formal Treatment of Tokenization 75

4. CV, the card-vault. The card-vault is a repository where PAN’s and tokens are
stored, which may have a special structure for the ease of implementation of the
token mapping procedure. In our syntax we shall use the CV to represent a state
of the tokenization system. Whenever a new PAN is tokenized, possibly both the
PAN and the generated token are stored in the CV, along with some additional
data. Disregarding the structure of the CV, we consider that “basic” elements of
CV comes from a set C.

5. K, a key generation algorithm. A tokenization system may require multiple keys,
all these keys are generated through the key generation algorithm.

6. TKR, the tokenizer. It is the procedure responsible for generating tokens from
the PANs. We consider the tokenizer receives as input: the CV as a state, a key
K generated by K, some associated data d which comes from a set D, and a
PAN x ∈ X . An invocation of TKR outputs a token t and also changes the CV.
Thus, other than t, TKR also produces an element from C which is used to update
the CV. We use the square brackets to denote this interaction. We formally see
TKR as a function TKR[CV] : K × X × D → T × C. For convenience, we shall
implicitly assume the interaction of TKR with CV, and we will use TKR

(1)
K (x, d)

and TKR
(2)
K (x, d) to denote the two outputs (in T and C, respectively) of TKR.

7. DTKR, the detokenizer which inverts a token to a PAN. As in case of tokenizer,
we denote a detokenizer as a function DTKR[CV] : K × T × D → X ∪ {⊥}.
For detokenization also, we shall implicitly assume its interaction with CV and for
K ∈ K, d ∈ D and t ∈ T , we shall write DTKRK(t, d) instead of DTKR[CV](K, t, d).

A tokenization procedure TKRK should satisfy the following:

• For every x ∈ X , d ∈ D and K ∈ K, DTKRK(TKR
(1)
K (x, d), d) = x.

• For every d ∈ D, and x, x′ ∈ X , such that x 6= x′, TKR
(1)
K (x, d) 6= TKR

(1)
K (x′, d).

The second criteria focuses on a weak form of uniqueness. We want that two different
PANs with the same associated data should produce different tokens, we do not disallow
the case where two different PANs with different associated data have the same tokens.
This requirement is clear if we consider the associated data d to be an identifier for
a merchant. We do not want that a single merchant obtains the same token for two
different PANs, but we do not care if two different merchants obtain the same token for
two different PANs.

76 5.5 Security Notions

Experiment Exp-IND-TKRA

1. The challenger selects K $← K
2. Q← ∅.
3. for each query (x, d) ∈ X ×D of A,
4. the challenger computes

t← TKR
(1)
K (x, d),

and returns t to A.
5. Q← Q ∪ {(x, d)}
6. until A stops querying
7. A selects (x0, d0), (x1, d1) ∈ (X ×D) \Q

and sends them to the challenger

8. The challenger selects a bit b $← {0, 1}
and returns t← TKR

(1)
K (xb, db) to A.

9. The adversary A outputs a bit b′.
10.If b = b′ output 1 else output 0.

Experiment Exp-IND-TKR-CVA

1. The challenger selects K $← K
2. Q← ∅.
3. for each query (x, d) ∈ X ×D of A,
4. the challenger computes

(t, c)← TKRK(x, d),
and returns (t, c) to A.

5. Q← Q ∪ {(x, d)}
6. until A stops querying
7. A selects (x0, d0), (x1, d1) ∈ (X ×D) \Q

and sends them to the challenger

8. The challenger selects a bit b $← {0, 1}
and returns (t, c)← TKRK(xb, db) to A.

9. The adversary A outputs a bit b′.
10.If b = b′ output 1 else output 0.

Experiment Exp-IND-TKR-KEYA

1. The challenger selects K $← K
2. Q← ∅.
3. for each query (x, d) ∈ X ×D of A,
4. the challenger computes

t← TKR
(1)
K (x, d), and returns t to A.

5. Q← Q ∪ {(x, d)}
6. until A stops querying
7. A selects (x0, d0), (x1, d1) ∈ (X ×D) \Q and sends them to the challenger

8. The challenger selects a bit b $← {0, 1} and returns t← TKR
(1)
K (xb, db) and K to A.

9. The adversary A outputs a bit b′.
10.If b = b′ output 1 else output 0.

Figure 5.2: Experiments used in the security definitions: IND-TKR, IND-TKR-CV and IND-TKR-
KEY

5.5 Security Notions

We define three different security notions, which consider three different attack scenar-
ios:

1. IND-TKR: Tokens are only public. This represents the most realistic scenario where
an adversary has access to the tokens only, and the card-vault data remains in-
accessible.

Chapter 5. A Formal Treatment of Tokenization 77

2. IND-TKR-CV : The tokens and the contents of the card-vault are public. This
represents an extreme scenario where the adversary gets access to the card-vault
data also.

3. IND-TKR-KEY : This represents another extreme scenario where the tokens and
the keys are public.

We formally define the above three security notions based on the notion of indistin-
guishability, as it is usually done for encryption schemes. Three experiments corre-
sponding to the three attack scenarios discussed above are described in Figure 5.2.
Each experiment represents an interaction between a challenger and an adversary A.
The challenger can be seen as the tokenization system, which in the beginning selects
a random key from the key space and instantiates the tokenizer with the selected key.
Then (in lines 3 to 6 of the experiments), the challenger responds to the queries of the
adversary A. The adversary A in each case queries with (x, d) ∈ X × D, i.e., it asks for
the outputs of the tokenizer for pairs of PAN and associated data of its choice. Finally,
A submits two pairs of PANs and associated data to the challenger. The challenger se-
lects one of the pairs uniformly at random and provides A with the tokenizer output
for the selected pair. The task of A is to tell which pair was selected by the challenger.
If A can correctly guess the selection of the challenger then the experiment outputs a
1 otherwise it outputs a 0. This setting is very similar to the way in which security of
encryption schemes are defined for a chosen plaintext adversary.

The three experiments differ in what the adversary gets to see. In experiment Exp-IND-
TKRA, A, in response to its queries gets only the tokens and in Exp-IND-TKR-CVA it gets
both the tokens and the data that is stored in the card-vault. In Exp-IND-TKR-KEYA,
A gets the tokens corresponding to its queries, and the challenger reveals the key to A
after the query phase.

Definition 5.1. Let TKR[CV] : K×X ×D → T ×C be a tokenizer. Then the advantage of
an adversary A in the sense of IND-TKR, IND-TKR-CV and IND-TKR-KEY are defined as

Advind-tkr
TKR (A) =

∣∣∣∣Pr[Exp-IND-TKR
A ⇒ 1]− 1

2

∣∣∣∣ ,
Advind-tkr-cv

TKR (A) =

∣∣∣∣Pr[Exp-IND-TKR-CV
A ⇒ 1]− 1

2

∣∣∣∣ ,
Adv

ind-tkr-key
TKR (A) =

∣∣∣∣Pr[Exp-IND-TKR-KEY
A ⇒ 1]− 1

2

∣∣∣∣ ,
respectively.

78 5.5 Security Notions

From the definitions, it is obvious that IND-TKR-CV =⇒ IND-TKR and IND-TKR-KEY=⇒IND-
TKR, but IND-TKR 6=⇒ IND-TKR-CV and IND-TKR 6=⇒IND-TKR-KEY. Thus IND-TKR-
CV and IND-TKR-KEY are strictly stronger than IND-TKR.

ADEQUACY OF THE NOTIONS. We discuss some of the characteristics and limitations of
the proposed definitions next.

1. IND-TKR refers to the basic security requirement for tokens. It adheres to the in-
formal security notion for tokens as stated in the PCI DSS guideline for tokeniza-
tion. It models the fact that tokens and PANs are un-linkable in a computational
sense, if the key and card-vault are kept secret. Thus, if a merchant adopts a
tokenization scheme provided by a third party, which is secure in the IND-TKR
sense then this will probably relieve it from PCI compliance. As in this case the
merchant does not own the card-vault or the keys, and the burden of security
involved with the keys and the card-vault lies with the provider who offers the
tokenization service.

2. The IND-TKR-CV is a stronger notion. If a tokenization system achieves this secu-
rity, then it implies that tokens and PANs are un-linkable even with the knowledge
of the card-vault. This in turn implies that the contents of the card-vault are not
useful (in a computational sense) to derive a relation between PANs and tokens.
Thus, it provides security both to the tokenization service provider and the mer-
chant who uses this service.

3. IND-TKR-KEY is a stronger form of the IND-TKR notion. Some public documents
like [71] have been stressed that encryption is not a good option for tokenization,
as in theory there exists the possibility that a token can be inverted to obtain the
PAN. If tokens are generated using a “secure” encryption scheme, then it is infeasi-
ble for any “reasonably efficient” adversary to invert the token without the knowl-
edge of the key. But, this computational guarantee does not seem to be enough for
users. The IND-TKR-KEY definition aims to model this paranoid situation, where
linking the PANs with tokens becomes infeasible even with the knowledge of the
key. Note in IND-TKR-KEY we still assume that the card-vault is inaccessible to an
adversary.

4. All the definitions follow the style of a chosen plaintext attack. The definitions may
be made stronger by giving the adversary additional power of obtaining PANs cor-
responding to tokens of its choice. But in this application, we think such stronger
notions are not applicable.

Chapter 5. A Formal Treatment of Tokenization 79

TKR1k(x, d)

1. t← FPk(d, x);
2. return (t,NULL)

DTKR1k(t, d)

1. x← FP−1
k (d, t);

2. return x

Figure 5.3: The TKR1 tokenization scheme using a format preserving encryption scheme FP.

In the following two sections we discuss two class of constructions for tokenizers. The
first construction TKR1, is the trivial way to do tokenization using FPE. The other con-
structions (TKR2 and a variant TKR2a) presented in Section 5.7 are very different. For
the later constructions our main aim is to by-pass the use of FPE schemes and use
standard cryptographic schemes along with some encoding mechanism to achieve both
security and the format requirements for arbitrarily formatted PANs/tokens.

5.6 Construction TKR1: Tokenization Using FPE

The construction TKR1 is described in Figure 5.3. TKR1 uses an FPE scheme FP :

K ×D ×X → T in an obvious way to generate tokens, assuming that T = X .

For security we assume that FPk() is a tweakable pseudorandom permutation with a
tweak spaceD and message space T . Note, that this scheme does not utilize a card-vault
and thus is stateless. The scheme is secure both in terms of IND-TKR and IND-TKR-CV.
We formally state the security in the following theorem.

Theorem 5.1. 1. Let Ψ = TKR1 be defined as in Figure 5.3, and A be an adversary
attacking Ψ in the IND-TKR sense. Then there exists a p̃rp adversary B such that

Advind-tkr
Ψ (A) ≤ Adv

p̃rp
FP (B),

where B uses almost the same resources as of A.

2. Let Ψ = TKR1 be defined as in Figure 5.3, and A be an adversary attacking Ψ in the
IND-TKR-CV sense. Then there exists a p̃rp adversary B (which uses almost the same
resources as of A) such that

Advind-tkr-cv
Ψ (A) ≤ Adv

p̃rp
FP (B).

Proof. We only prove the first claim in the theorem, the second claim directly follows
from the first, as in the construction TKR1, there is no card-vault, thus an IND-TKR-CV

80 5.6 Construction TKR1: Tokenization Using FPE

Adversary BO(.,.)

Whenever B gets a query (x, d) from A
do the following until A stops querying
ti ← O(x, d);
return (t,NULL) to A

After A submits (m0, d0), (m1, d1)

do the following

b
$← {0, 1};

t∗ ← O(mb, db)

return (t∗,NULL) to A;
A returns a bit b′;
if b = b′,

return 1;
else return 0;

Figure 5.4: Adversary B for the proof of Theorem 5.1

adversary for TKR1 do not have any additional information compared to an IND-TKR
adversary.

To prove the first claim, we construct a p̃rp adversary B which runs an arbitrary ad-
versary A who attacks TKR1. B being a p̃rp adversary has access to an oracle O(., .),
which is either the real tweakable permutation FPk(., .) for a randomly chosen key k, or
a random permutation chosen uniformly at random from the set of all tweak index per-
mutations from T to T . B with its oracle provides the environment to A and simulates
the experiment EXP-IND-TKRATKR1 as shown in Figure 5.4.

We assume without loss of generality that A does not repeat queries, as A knows that
TKR1 is a deterministic scheme, hence it does not gain anything by repeating a query.

It is easy to see that if the oracle O(., .) of B is FPk(., .), then BO provides the perfect
environment for A as in EXP-IND-TKRATKR1. Hence,

Pr[k
$← K : BFPk(.,.) ⇒ 1] = Pr[EXP-IND-TKRATKR1 ⇒ 1]. (5.1)

Also,

Pr[π
$← PermD(T) : Bπ(.,.) ⇒ 1] ≤ 1

2
, (5.2)

as, whenO(., .) is a uniform random tweakable permutation on T , for each of its queries

Chapter 5. A Formal Treatment of Tokenization 81

TKR2k(x, d)

1. S1 ← SrchCV(2, x);
2. S2 ← SrchCV(3, d);
3. S ← S1 ∩ S2;
4. if S = ∅
5. t← RNT [k]();
6. c← (t, x, d);
7. InsertCV(c);
8. else let tup ∈ S
9. t← tup(1)

10. c← (t, x, d)

11. end if
12.return (t, c)

DTKR2k(t, d)

1. S1 ← SrchCV(1, t);
2. S2 ← SrchCV(3, d);
3. S ← S1 ∩ S2;
4. if S = ∅
5. return ⊥ ;
6. else let tup ∈ S
7. x← tup(2);
8. end if
9. return x

Figure 5.5: The TKR2 tokenization scheme using a random number generator RNT ().

A gets uniform random elements in T , thus b′ which A outputs is independent of b
which is selected by B.

Hence from equations (5.1) and (5.2), we have

Adv
p̃rp
FP (B) ≥ Pr[EXP-IND-TKRATKR1 ⇒ 1]− 1

2
,

and hence
Advind-tkr

TKR1 (A) ≤ Adv
p̃rp
FP (B),

as desired.

This scheme can be instantiated using any format preserving encryption scheme as de-
scribed in [8, 10, 14, 36, 53, 75].

5.7 Construction TKR2: Tokenization Without Using FPE

Here we propose a class of constructions which avoids the use of format preserving
encryption. Instead of a permutation on T which we use for the previous construction,
we assume a primitive RNT (), which when invoked (ideally) outputs a uniform random
element in T . This primitive can be keyed, which we will denote by RNT [k](), where
k is a uniform random element of a pre-defined finite key space K. RNT () can also

82 5.7 Construction TKR2: Tokenization Without Using FPE

(x , d)

(4916 7835 9683 8314, 001)

1234 1234 1234 1234
t

X (PAN)T (token) d

4539 9213 8170 4039

4485 3933 0601 8784

5678 5678 5678 5678

002

1234 1234 1234 1234

1234 1234 1234 1234

001

001

4916 7835 9683 8314

VAULTCARD

(a)

t ε CV?

RN [k]()

Generator
Random Number

X (PAN)T (token) d

1234 1234 1234 1234 4916 7835 9683 8314 001

5678 5678 5678 5678 4539 9213 8170 4039 001

0021234 1234 1234 1234 4485 3933 0601 8784

t

YES

NO

(t,x,d)
VAULTCARD

(b)

Figure 5.6: a) Step 1: b) Step2

be realized by using a keyed cryptographic primitive fk, such instantiations would be
more specifically denoted by RNT [fk](). We define the RND advantage of an adversary
A attacking RNT () as

Advrnd
RN (A) =

∣∣∣Pr[k
$← K : ARNT [k]() ⇒ 1]− Pr[A$T () ⇒ 1]

∣∣∣ . (5.3)

Where $T () is an oracle which returns uniform random strings from T . The task of
a RND adversary A is to distinguish between RNT [k]() and its ideal counterpart when
oracle access to these schemes are given to A.

We describe a generic scheme for tokenization in Figure 5.5, which we call as TKR2

that uses RNT (). For the description we consider that the card-vault CV is a collection
of tuples, where each tuple has 3 components (x1, x2, x3), where x1, x2, x3 are the token,
the PAN and associated data respectively. For a tuple tup = (x1, x2, x3), we would use
tup(i) to denote xi. Given a card-vault CV we also assume procedures to search for tuples
in the CV. SrchCV(i, x) returns those tuples tup in CV such that tup(i) = x. If S be a set
of tuples, then by S(i) we will denote the set of the ith components of the tuples in S.

As it is evident from the description in Figure 5.5, the detokenization operation is made
possible through the data stored in the card-vault, and the detokenization is just a search
procedure. Also, the determinism is assured by search.

Correctness: A limitation of the TKR2 scheme is that it may violate the property of
uniqueness. It is not guaranteed that TKR2k(x, d) 6= TKR2k(x

′, d′) when (x, d) 6= (x′, d′).

Chapter 5. A Formal Treatment of Tokenization 83

TKR2k(x, d)

1. S1 ← SrchCV(2, x);
2. S2 ← SrchCV(3, d);
3. S ← S1 ∩ S2;
4. if S = ∅
5. t← RNT [k]();
6. if t ∈ S(1)

2 go to 4;
7. c← (t, x, d);
8. InsertCV(c);
9. else let tup ∈ S
10. t← tup(1)

11. c← (t, x, d)

12. end if
13.return (t, c)

Figure 5.7: Modified TKR2 to ensure uniqueness

As discussed before, for practical purposes a weak form of uniqueness is required, i.e.,
for x 6= x′, for any d ∈ D, TKR2(x, d) 6= TKR2(x′, d). This requirement stems from the
fact that a specific merchant with associated data d, may use the tokens as a primary
key in his databases. Thus if d 6= d′, it can be tolerated that TKR2(x, d) = TKR2(x′, d′),
for any x, x′ ∈ X .

Let us assume that RNT () behaves ideally. If q unique tokens have been already gener-
ated with a specific associated data d, the probability that the (q+ 1)th token (generated
with associated data d) is equal to any of the q previously generated tokens is given by
q/#T . Thus, this probability of collision increases with the number of tokens already
generated. If the total number of tokens generated by the tokenizer for a specific asso-
ciated data is much smaller than the size of the token space (which will be the case in
a practical scenario) this probability of collision would be insignificant2. But, still the
uniqueness can be guaranteed by an additional search as shown in Figure 5.7. Where
RNT () is repeatedly invoked unless a token different from one already produced is ob-
tained. Following the previous discussion, if q is small compared to #T , the expected
number of repetitions required until a unique token is obtained would be small.

2According to [17] the total number of credit cards in 2012 from the four primary credit card net-
works (i.e. VISA, MasterCard, American Express, and Discover) was 546 millions (≈ 230). This can be
considered as a reasonable upper bound for q. Assuming credit card numbers to be of 16 decimal digits,
#T = 1016 ≈ 253. These numbers leads to a collision probability of 1/223 which is insignificant.

84 5.7 Construction TKR2: Tokenization Without Using FPE

TKR2ak1,k2(x, d)

1. z ← Ek1(d, a||x);
2. S ← SrchCV(2, z);
3. if S = ∅,
4. do
5. t← RNT [k2]();
6. t′ ← Ek1(d, b||t);
7. while SrchCV(1, t′) 6= ∅;
8. c← (t′, z);
9. InsertCV(c);
10. else let tup ∈ S
11. t′′ ← tup(1)

12. t′ ← E−1
k1

(d, t′)

13. c← tup;
14. parse t′ as b||t;
15. end if
16. return (t, c)

DTKR2ak2(t, d)

1. t′ ← Ek1(d, b||t);
2. S ← SrchCV(1, t′);
3. if S = ∅
4. return ⊥;
5. else let tup ∈ S
6. z ← tup(2);
7. x′ ← E−1

k1
(d, z);

8. parse x′ as a||x;
9. end if
10. return x

Figure 5.8: The TKR2a tokenization scheme.

The detokenization corresponding to the modified tokenization scheme described in
Figure 5.7 remains the same as described in Figure 5.5.

We formally specify the security of TKR2 later in Section 5.8, but it is easy to see that
TKR2 is not secure in the IND-TKR-CV sense, as in the card-vault the PANs are stored
in clear, hence if the card-vault is revealed then no security remains. This can be fixed
by encrypting the tokens in the card-vault. To achieve security in terms of IND-TKR-CV,
any CPA secure encryption can be used to encrypt the PANs stored in the card-vault.
Note that for the encrypted PAN to be stored in the card-vault the format preserving
requirement is not required. We modify TKR2 to TKR2a to achieve this. We discuss the
details of TKR2 next.

Modifying TKR2 to TKR2a: For this modification, the structure of the card-vault is a
bit different than for TKR2. In this case, each tuple contains two components. The
first being the encryption of the token and the second being the encryption of the PAN.
We additionally use a deterministic CPA secure encryption (supporting associated data)
scheme E : K × D ×M → C, with key space K, tweak (associated data) space D and
message space M. We assume that T = X = AL∗, where AL is an arbitrary alphabet,

Chapter 5. A Formal Treatment of Tokenization 85

k1
E
−1

t

t’

001

d

1234 1234 1234 1234

RT16YiB1AM9ks3H1Yz/Df

k1
E

4916 7835 9683 8314

PAN

001
d

tAq572/hr+UEF+ZV2SukK

t’ z

N/uxbvvTvdLraSE112tt03

Etxl53VLg1IJJKh6y/pg+BA

tAq572/hr+UEF+ZV2SukKRT16YiB1AM9ks3H1Yz/Df

hQIO6Egc4+xxxu410BCKe

XT87$+?0kRp?/VQ960M

VAULTCARD

(a)

ε CV?t’k1E

RN [k]()

Generator

Random Number
NO

YES

(t’,z)t t’

d

t’ z

N/uxbvvTvdLraSE112tt03

Etxl53VLg1IJJKh6y/pg+BA

RT16YiB1AM9ks3H1Yz/Df tAq572/hr+UEF+ZV2SukK

hQIO6Egc4+xxxu410BCKe

Xji846oa#0FG/fg123KP!)

VAULTCARD

(b)

Figure 5.9: a) Step 1: b) Step2

such that #AL ≥ 2. We fix a, b ∈ AL and define the message spaceM of E to be

M = {a||x : x ∈ X}
⋃
{b||t : t ∈ T } .

Note that a and b are public quantities. The cipher space C can be arbitrary, i.e., it is
not required that C = X , as the ciphers here would not be tokens but would be stored
in the card-vault. We assume that D,C ⊆ {0, 1}∗.

The tokenization scheme TKR2a described in Figure 5.8 uses the objects described
above. The main difference with TKR2 is that pairs of token and PAN are stored in
the card-vault in the encrypted form. An important characteristic of the way the en-
cryption is applied is that the inputs are differently encoded in case of a token and a
PAN. This ensures that even if a PAN and a token are the same, they produce different
ciphertexts.

5.8 Security of TKR2 and TKR2a

The following three theorems specify the security of TKR2 and TKR2a.

Theorem 5.2. Let Ψ ∈ {TKR2,TKR2a} and let A be an adversary attacking Ψ in the IND-
TKR sense. Then there exists a RND adversary B (which uses almost the same resources as
of A) such that

Advind-tkr
Ψ (A) ≤ Advrnd

RN (B)

Proof. Note that the token generation algorithm for both TKR2 and TKR2a are the same,

86 5.8 Security of TKR2 and TKR2a

the only difference between the two procedures is the structure and content of the card-
vault. Hence the proof of security in IND-TKR sense for both TKR2 and TKR2a are same,
as in case of IND-TKR security the adversary does not have access to the contents of the
card-vault.

The structure of the proof is same as the proof of Theorem 5.1. We assume an arbitrary
adversary A which attacks TKR2 in IND-TKR sense, and we construct a RND adversary
B which attacks RNT [k] using A.

B has an oracle O, which is either RNT [k] for a random key, or $T (), which on each
invocation returns a random element in T .

B responds to queries ofA as follows. First B initiates with an empty card-vault and then
B performs the query phase, which in fact is the procedure TKR2k in Figure 5.7. Only
when a call to RNT [k]() is required, it is replaced by a call to its oracle O. After A stops
querying and outputs the challenge pair (m0, d0), (m1, d1), B selects a bit b uniformly at
random from {0, 1} and provides A with t computed by following TKR2k() (the call to
RNT [k]() replaced by a call to O). Finally A outputs a bit b′, and if b = b′, then B outputs
1 else outputs a 0. Note that the challenge pair (m0, d0), (m1, d1), is different from any
previous query of A.

From the above description it is clear that if the oracle O(., .) of B is RNT [k](), then B is
performing experiment EXP-IND-TKRATKR2. Hence

Pr[k
$← K : BRNT [k]() ⇒ 1] = Pr[EXP-IND-TKRATKR2 ⇒ 1]. (5.4)

Otherwise, i.e. if the oracle O(., .) of B is $T () then,

Pr[B$T () ⇒ 1] ≤ 1

2
. (5.5)

As in this case the output that B provides to A is independent of (m0, d0), (m1, d1).

From equations (5.4), (5.5) we have,

Advrnd
RN (B) ≥ Pr[EXP-IND-TKRATKR2 ⇒ 1]− 1

2
,

and from the definition of IND-TKR advantage of A it follows

Advind-tkr
TKR2 (A) ≤ Advrnd

RN (B).

Theorem 5.3. Let Ψ = TKR2a and let A be an adversary attacking Ψ in the IND-TKR
sense. Then there exist adversaries B and B′ (which use almost the same resources as of A)

Chapter 5. A Formal Treatment of Tokenization 87

such that

Advind-tkr-cv
Ψ (A) ≤ Advrnd

RN (B) + Adv
det-cpa
E (B′) +

(q + 1)2

2s+1

where s is the size of the shortest element in the cipher space of E.

Proof. For this proof we use the sequence of games. The three games EXPA0 , EXPA1
and EXPA2 are described in Figure 5.10. Each game depicts the interaction of an IND-
TKR-CV adversary with a tokenization procedure. In all the three games we assume that
the adversary A does not repeat a query in the query phase, and the queries presented
in the challenge phase are also distinct from the queries made in the query phase. Also,
to keep things simple in terms of notations, without loss of generality we assume that
the ciphertext space C of the encryption algorithm E contains strings of length s. The
proof can be made to work without this restriction. We describe the three different
games briefly next:

1. In game EXPA0 , A interacts with TKR2a, instantiated by RNT [k2]() and Ek1(·, ·),
where k1 and k2 are chosen uniformly at random from the respective key spaces
K1 and K2. The game is designed with the assumption that, A does not repeat a
query.

2. Game EXPA1 is almost same as the game EXPA0 . The differences are as follows:

• Here the encryption scheme Ek1(·, ·), is no more used. Instead, each call
to Ek1(·, ·) is responded by a random string from C. To maintain the same
behaviour of Ek1, a set Ran1 is maintained to keep track of the values already
returned as output, and it is ensured that the same value is not returned for
two different inputs.

• In the game EXPA0 , in lines 11 to 14 and 53 to 56 it is ensured that a distinct
token t is returned for each distinct (x, d). This is done by a search in the card-
vault (see lines 14 and 56), as the card-vault contains encryption of the token
t with associated data d. As in the game EXPA1 , a real encryption scheme
is not used, so this search is not possible. Hence a set Tok is maintained
which contains pairs of tokens and associated data (t, d) and the uniqueness
of tokens is ensured using this set Tok.

3. Game EXPA2 is obtained from game EXPA1 by replacing RNT [k2]() by a procedure
which on each invocation returns a random element in T . This game also used
the sets Ran1 and Tok to ensure injectivity and the uniqueness of the tokens.

88 5.8 Security of TKR2 and TKR2a

Game EXPA0

Initialization:
01. CV← NULL;

02. k1
$← K1;

03. k2
$← K2;

Query Phase
Respond to a query (x, d)

by A as follows
10. z ← Ek1(x, d);
11. do
12. t← RNT [k2]();
13. t′ ← Ek1(d, b||t);
14. while SrchCV(1, t′) 6= ∅;
15. c← (t′, z);
16. InsertCV(c);
17. return (t, c) to A

Challenge Phase
After A submits (x0, d0), (x1, d1)

do the following:

51. b
$← {0, 1};

52. z ← Ek1(xb, db);
53. do
54. t← RNT [k2]();
55. t′ ← Ek1(d, b||t);
56. while SrchCV(1, t′) 6= ∅;
57. c← (t′, z);
58. return (t, c) to A

Finalization Phase
After A outputs the bit b′

do the following:
80. if b = b′ output 1
81. else output 0

Game EXPA1

Initialization:
01. CV← NULL;
02. k2 ← K2;
03. Ran1 ← ∅
04. Tok← ∅

Query Phase
Respond to a query (x, d)

by A as follows

10. z
$← C \ Ran1;

11. Ran1 ← Ran1 ∪ {z};
12. do, t← RNT [k2]();
13. while Tok ∩ {(t, d)} 6= ∅;
14. Tok← Tok ∪ {(t, d)};
15. t′

$← C \ Ran1;
16. Ran1 ← Ran1 ∪ {t′};
17. c← (t′, z);
18. InsertCV(c);
19. return (t, c) to A

Challenge Phase
After A submits (x0, d0), (x1, d1)

do the following:

51. b
$← {0, 1};

52. z
$← C \ Ran1;

53. Ran1 ← Ran1 ∪ {z};
54. do t← RNT [k2]();
55. while Tok ∩ {(t, db)} 6= ∅;
56. Tok← Tok ∪ {(t, db)};
57. t′

$← C \ Ran1;
58. Ran1 ← Ran1 ∪ {t′};
59. c← (t′, z);
60. return (t, c) to A

Finalization Phase
After A outputs the bit b′

do the following:
80. if b = b′ output 1
81. else output 0

Game EXPA2

Initialization:
01. CV← NULL;
02. Ran1 ← ∅
03. Tok← ∅

Query Phase
Respond to a query (x, d)

by A as follows:

10. z
$← C \ Ran1;

11. Ran1 ← Ran1 ∪ {z};
12. do t $← T ;
13. while Tok ∩ {(t, d)} 6= ∅;
14. Tok← Tok ∪ {(t, d)};
15. t′

$← C \ Ran1;
16. Ran1 ← Ran1 ∪ {t′};
17. c← (t′, z);
18. InsertCV(c);
19. return (t, c) to A

Challenge Phase
After A submits (x0, d0), (x1, d1)

do the following:

51. b
$← {0, 1};

52. z
$← C \ Ran1;

53. Ran1 ← Ran1 ∪ {z};
54. do, t $← T ;
55. while Tok ∩ {(t, db)} 6= ∅;
56. Tok← Tok ∪ {(t, db)};
57. t′

$← C \ Ran1;
58. Ran1 ← Ran1 ∪ {t′};
59. c← (t′, z);
60. return (t, c) to A

Finalization Phase
After A outputs the bit b′

do the following:
80. if b = b′ output 1
81. else output 0

Figure 5.10: The three games used to prove Theorem 5.3

Chapter 5. A Formal Treatment of Tokenization 89

It is easy to see that EXPA0 is a restatement of the experiment Exp-IND-TKR-CVA in
Figure 5.2. Hence,

Pr[Exp-IND-TKR-CVA ⇒ 1] = Pr[EXPA0 ⇒ 1]. (5.6)

Also we make the following claims:

Claim 5.1. There exists a DET-CPA adversary B for E such that

Pr[EXPA0 ⇒ 1]− Pr[EXPA1 ⇒ 1] ≤ Adv
det-cpa
E (B) +

(q + 1)2

2s

Proof. To prove this claim we construct a DET-CPA adversary B which has access to
an oracle O. This oracle is either the encryption scheme Ek1 for a random key k1 or
$(·, ·) which on input (x, d) returns random strings of length s. B has the objective
of distinguishing between these two scenarios. B runs A in the following way. First
B initiates with an empty card-vault and selects a random key k2 from K2, and also
initializes a multi-set Dom to empty. Then, it answers queries of A according to the
procedure TKR2a (shown in Figure 5.8). To answer the queries, whenever a call to the
encryption scheme Ek1 is required, it is replaced by a call to its oracle O. B also stores
each output it gets from its oracle O in the set Dom. Note, as A does not repeat any
query, hence all queries made by B to its oracle is distinct. After A stops querying and
outputs a challenge pair (x0, d0), (x1, d1), B selects a bit uniformly at random from {0, 1}
and provides A with the pair (t, c). For responding to A’s challenge, B makes another
call to O and the output of O for this call is also inserted in Dom. Finally A outputs a bit
b′. Now, B checks if there is a collision in Dom, i.e., if O ever returned two same values
for two distinct queries. If there is a collision in Dom, then B outputs 0. On the other
hand, if there is no collision in Dom and b = b′ then B outputs 1, otherwise it outputs a
0.

From the description above, we can easily see that if the oracle of B is the encryption
scheme Ek1(·, ·), then there is never a collision in Dom as Ek2(·, ·) is injective, and in this
scenario B is providing the exact environment of the game EXPA0 , i.e.

Pr[k1
$← K1 : BEK(·,·) ⇒ 1] ≤ Pr[EXPA0 ⇒ 1]. (5.7)

On the other hand, if the oracle of B is $(·, ·), then B is providing the environment of
EXPA1 , given that there is no collision in Dom. If COLL be the event that there is a
collision in Dom, then we have,

Pr[B$(·,·) ⇒ 0] = Pr[(B$(·,·) ⇒ 0) ∧ (COLL ∨ COLL)]

= Pr[(B$(·,·) ⇒ 0) ∧ COLL] + Pr[(B$(·,·) ⇒ 0) ∧ COLL)]

= Pr[(B$(·,·) ⇒ 0)|COLL] Pr[COLL] + Pr[(B$(·,·) ⇒ 0)|COLL] Pr[COLL]

≥ Pr[EXPA1 ⇒ 0](1− Pr[COLL]).

90 5.8 Security of TKR2 and TKR2a

Thus

Pr[B$(·,·) ⇒ 1] ≤ Pr[EXPA1 ⇒ 1] + Pr[EXPA1 ⇒ 0] Pr[COLL]

≤ Pr[EXPA1 ⇒ 1] + Pr[COLL] (5.8)

Now from equations (5.7) and (5.8), and the definition of DET-CPA advantage of B, we
have

Adv
det-cpa
E (B) ≥ Pr[EXPA0 ⇒ 1]− Pr[EXPA1 ⇒ 1]− Pr[COLL].

As, A asks q queries in the query phase, hence Dom has q + 1 elements in it, and each
element is a uniform random element in C, and each element in C is s bits long. Hence,

Pr[COLL] =

(
q + 1

2

)
1

2s
≤ (q + 1)2

2s+1
.

This completes the proof of the claim.

Claim 5.2. There exists a RND adversary B′ such that

Pr[EXPA1 ⇒ 1]− Pr[EXPA2 ⇒ 1] ≤ Advrnd
RNT (B′)

Proof. The proof of this claim is an easy reduction. Again we have an adversary A
attacking TKR2a and we must construct a RND adversary B′, which runs A. B′ has
access to an oracle O, that could be either RNT [k2]() or $T , which on each invocation it
returns a random element in T . As in Claim 5.1, adversary B′ do an initialization and
a query phase, but now when a call to RNT [k]() is required, it is substituted by a call to
the oracle O. Now we can see that

Pr[k
$← K : B′RN

T [k]() ⇒ 1] = Pr[EXPA1 ⇒ 1] (5.9)

in the case that the oracle of B is RNT [k](), otherwise i.e., if O is $T then

Pr[B′$
T () ⇒ 1] ≤ Pr[EXPA2 ⇒ 1] (5.10)

Again from equations (5.9) and (5.10), the claim follows.

Claim 5.3. For any arbitrary adversary A

Pr[EXPA2 ⇒ 1] =
1

2

Proof. In game EXPA2 , in the query phase A receives q tuples (t, c) where t and c are
distinct random elements in T and C, respectively. Finally in the challenge phase it
receives (t, c) which is independent of (x0, d0), (x1, d1). Hence, A cannot only guess the
bit b with probability more than 1

2
.

Chapter 5. A Formal Treatment of Tokenization 91

Thus, from Claims 5.1, 5.2,

Pr[EXPA0 ⇒ 1]− Pr[EXPA2 ⇒ 1] ≤ Adv
det-cpa
E (B) + Advrnd

RNT (B′) +
(q + 1)2

2s+1
(5.11)

Using equation (5.6) and claim 5.3,

Pr[Exp-IND-TKR-CVA ⇒ 1]− 1

2
≤ Adv

det-cpa
E (B) + Advrnd

RNT (B′) +
(q + 1)2

2s+1
. (5.12)

Finally, we have

Advind-tkr-cv
Ψ (A) ≤ Advrnd

RN (B) + Adv
det-cpa
E (B′) +

(q + 1)2

2s+1
,

as desired.

Theorem 5.4. Let Ψ ∈ {TKR2[TR],TKR2a[TR]} and A be an arbitrary adversary attack-
ing Ψ in the IND-TKR-KEY sense. Then

Adv
ind-tkr-key
Ψ (A) = 0

5.9 Summary

We studied the problem of tokenization from a cryptographic viewpoint. We proposed
a syntax for the problem and also formulated three different security definitions. These
new definitions may help in analyzing existing tokenization systems. We also proposed
three constructions for tokenization: TKR1, TKR2 and TKR2a. The constructions TKR2
and TKR2a are particularly interesting, as they demonstrate that tokenization can be
achieved without the use of format preserving encryption. We analyzed all the construc-
tions in light of our security definitions and we proved their security. The constructions
TKR2 and TKR2a make use of a primitive RNT [k] and an encryption scheme E. In the
next Chapter we will explain how to instantiate them.

92 5.9 Summary

Chapter 6

Practical instantiations of TKR2 and
TKR2a

In the previous Chapter we started the study of tokenization systems. We stated three
security notions for these systems and we also proposed three constructions, TKR1,
TKR2 and TKR2a. The last two constructions use a primitive denoted as RNT [k], which
ideally generates a token uniformly at random. In particular TKR2a encrypts the infor-
mation in the card-vault, with a deterministic CPA secure encryption scheme, denoted
as E. In this Chapter we will describe how to implement these two primitives using
specific cryptographic objects. We also prove the security of RNT [k] and E, when they
are instantiated with specific cryptographic objects. Finally, we will present the results
that we obtained by implementing TKR2 and TKR2a, when the primitive RNT [k] is in-
stantiated using a block cipher.

6.1 Notations

In this Section we introduce additional notation which will be used throughout this
Chapter. Let AL be an arbitrary alphabet, and let Y ∈ AL∗ be a string over this alphabet,
by |Y |AL we will denote the number of characters in the string Y . If AL = {0, 1}, and
X is a string over AL, then we will use |X| to denote the length of X in bits. If A is
a finite set, then #A will denote the cardinality of A. For A ∈ {0, 1}∗, formatn(X) =

X1||X2|| . . . ||Xm, where |Xi| = n, for 1 ≤ i ≤ m− 1 and 0 ≤ |Xm| < n. If X ∈ {0, 1}∗ is
such that |X| ≥ `, then take`(X) will denote the ` most significant bits of X. For a non
negative integer i ≤ 2n − 1, binn(i) will denote the n bit binary representation of i, and
for any n-bit string X, toInt(X) will denote the integer represented by the string X.

93

94 6.2 Realizing RNT [k]

6.2 Realizing RNT [k]

The heart of the procedures TKR2 and TKR2a is the keyed primitive RNT [k], which can
be realized by standard cryptographic objects. We discuss here a specific realization
which uses a pseudorandom function f : K × ZN → {0, 1}L, where L and N are suffi-
ciently “large”, the exact requirements for N and L will become clear later. We call the
construction RN[fk]() and it is shown in Figure 6.1.

For the construction shown in Figure 6.1, we assume that T contains strings of fixed
length µ from an arbitrary alphabet AL. Let #AL = `, and λ = dlg `e. Let σ : AL →
{0, 1, 2, . . . , ` − 1} be a fixed bijection. The variable cnt can be considered as a state of
the algorithm and it maintains its values across invocations. The basic idea behind the

RN[fk]()

1. X ← fk(cnt);
2. X1||X2|| . . . ||Xm ← formatλ(X);
3. Y ← ε; (empty string)
4. i← 1;
5. while |Y |AL 6= µ,
6. if toInt(Xi) < `,
7. Y ← Y ||σ−1(toInt(Xi));
8. i← i+ 1;
9. end while
10.cnt← cnt+ 1;
11.return Y ;

Figure 6.1: Construction of RN() using a pseudorandom function fk().

algorithm is to generate a “long” binary string using fk(cnt) and divide the string into
blocks of λ bits. If the integer corresponding to a block is less than ` then it is accepted
otherwise it is discarded. The accepted blocks are encoded as elements in AL.

Choosing L and N : Let us define, p = Pr[y
$← {0, 1}λ : toInt(y) < `] = `

2λ
> 1

2
. Thus, if

we assume that the output of fk() is uniformly distributed then an Xi passes the test in
line 6 (of Figure 6.1) with probability p. Thus the expected number of times the while
loop will run is at most 2µ. Thus, L = 3µλ, will be sufficient for all practical purposes.

Note that each invocation of RN[fk]() increases the value of cnt by 1. Thus the value of

Chapter 6. Practical instantiations of TKR2 and TKR2a 95

N should be a conservative upper bound on the number of times RN[fk]() needs to be
invoked. N = 280 − 1, should be sufficient for all practical purposes.

If fk is a PRF then RNT [fk] is secure in the RND sense. We formally state this security
property in the following theorem.

Theorem 6.1. Let A be an arbitrary adversary attacking RN[fk] (as described in Fig-
ure 6.1) in the RND sense. Then there exists a PRF adversary B (which uses almost the
same resources as of A) such that

Advrnd
RN[fk]()(A) ≤ Adv

prf
fk

(B). (6.1)

This theorem asserts that as long as fk() is a PRF, the construction achieves the desired
security in the RND sense.

6.2.1 Candidates for fk():

fk() can be instantiated through standard symmetric key primitives. We discuss three
options below:

1. Stream cipher: Modern stream ciphers, such as those in the eStream [66] portfolio,
take as input a short secret keyK and a short initialization vector (IV) and produce
a “long” and random looking string of bits. Let SCK : {0, 1}` → {0, 1}L be a stream
cipher with IV , i.e., for every choice of K from a certain pre-defined key space
K, SCK maps an `-bit IV to an output string of length L bits. The basic idea
of security is that for a uniform random K and for distinct inputs IV1, . . . , IVq,
the strings SCK(IV1), . . . , SCK(IVq) should appear to be independent and uniform
random to an adversary. This is formalized by requiring a stream cipher to be a
PRF. See [11] for further discussion on this issue. Thus, a stream cipher with the
above security guarantees can be used to instantiate fk.

2. Block cipher: A block cipher E : K×{0, 1}n → {0, 1}n can also be used to construct
fk as follows.

fk(cnt)

1. m← dL/ne;
2. Y ← binn(cnt);
3. W ← Ek(Y);
4. Z ← Ek(W)||Ek(W ⊕ binn(1))|| · · ·

· · · ||Ek(W ⊕ binn(m− 1));
5. return takeL(Z)

96 6.3 Realizing Ek(d, x)

E1K(d, x)

1. z1 ← pad1(x) ;
2. z2 ← pad2(d) ;
3. z ← EK(z1||z2);
4. return z

E1−1
K (d, z)

1. y ← E−1
K (z) ;

2. z1 ← taken1(y) ;
3. x← pad−1

1 (z1);
4. return x

E2K(d, x)

1. z1 ← padX (x) ;
2. z2 ← padD(d) ;
3. z ← EK(z1 ⊕ EK(z2));
4. return z

E2−1
K (d, z)

1. y ← E−1
K (z) ;

2. z2 ← padD(d) ;
3. x← y ⊕ EK(z2);
4. return x

Figure 6.2: The two instantiations of EK .

The above construction is same as the counter mode of operation, and if Ek is
assumed to be a PRF then fk as constructed above is also a PRF, in particular it is
easy to verify that the following holds

Proposition 6.1. Let B be an arbitrary PRF adversary attacking fk() who asks at
most q queries, then one can construct a PRF adversary B′ for EK() such that, B′ asks
at most mq queries and

Adv
prf
f (B) ≤ Adv

prf
E (B′) +

m2q2

2n
.

3. True random number generator: We end this discussion with another possible in-
teresting instantiation of RN(). The specific construction that we depicted in Fig-
ure 6.1 basically uses a stream of random bits generated through a pseudorandom
function. Currently there has been a lot of interest in designing physical true ran-
dom number generators [42, 44, 76]. Such generators harvests entropy from its
“environment” and generates random streams with some post processing. It has
been claimed that such generators are “true random number generators” (TRNG).
Such a generator can be used to design RN() as in Figure 6.1 by replacing fk()

with a TRNG, and by selecting suitable blocks from the generated stream accord-
ing to the format requirements of T . As a TRNG is key-less, thus this would lead
to a key-less construction of RN, we call such an instantiation as RN[TR]. As such a
generator gives us “true randomness”, hence for any adversary A, Advrnd

RN[TR] = 0.

From now onwards, where it is necessary, we will denote TKR2 instantiated with RN[fk]

and RN[TR] by TKR2[fk] and TKR2[TR] respectively. Similar convention would be fol-
lowed for TKR2a.

6.3 Realizing Ek(d, x)

As discussed previously, Ek(·, ·) is used to encrypt the PAN, and the encryption is stored
in the card-vault within the tokenization system. We do not require this encryption to be

Chapter 6. Practical instantiations of TKR2 and TKR2a 97

format preserving. Here we discuss two instantiations of E using a secure block cipher
E. If the block length of E is n, then both the proposed constructions have {0, 1}n as
their cipher space, and X and D as their message space and tweak space, respectively.
For the constructions we assume some restrictions on X and D, but these restrictions
would be satisfied in most practical scenarios.

Let E : K × {0, 1}n → {0, 1}n be a block cipher. As we defined before, let X contain
strings of fixed length µ from an arbitrary alphabet AL where #AL = ` and λ = dlg `e.
Let #D = `1 and λ1 = dlg `1e. Let n1 and n2 be positive integers such that n1 ≥ µλ,
n2 ≥ λ1 and n1 + n2 = n. Note that for practical choice of AL, D, µ and n, such n1, n2

can be selected. Let padX : X → {0, 1}n, padD : D → {0, 1}n, pad1 : ALµ → {0, 1}n1 and
pad2 : D → {0, 1}n2 be injective functions.

The two different proposed instantiations of E are shown in Figure 6.2. Both the con-
structions uses a block cipher with a block length of n, and the padding functions de-
fined above. In E1, the message x and the associated data d are suitably formatted to
a n bit string and this formatted string is encrypted using the block cipher. E2 is same
as the construction of a tweakable block cipher proposed in [48]. If EK is a secure
block cipher in the PRF sense then both E1K and E2K are det-cpa secure, we state this
formally next.

Proposition 6.2. Let A be an arbitrary det-cpa adversary attacking E1, who asks at most
q queries, never repeats a query, and runs for time at most T , then there exists a PRF
adversary B such that

Adv
det-cpa
E1 (A) ≤ Adv

prf
E (B),

and B also asks exactly q queries and runs for time O(T).

Proof. To prove this proposition, we construct a PRF adversary B (shown in Fig. 6.3)
which runs an arbitrary adversary A who attacks the encryption scheme E1 in the det-
cpa sense. B being a PRF adversary has access to an oracle O which can be either be
the block cipher Ek or a function ρ, chosen uniformly at random from Func(n).

We can easily see that if the oracle of B is the block cipher Ek then

Pr[k
$← K : BEk(·) ⇒ 1] = Pr[k

$← K : AE1(·,·) ⇒ 1]. (6.2)

As A never repeats a query, so if the oracle of B is a random function ρ, then for each
query A gets a uniform random n bit string as a response. Thus,

Pr[ρ
$← Func(n) : Bρ(·) ⇒ 1] = Pr[A$(·,·) ⇒ 1] (6.3)

98 6.3 Realizing Ek(d, x)

Adversary BO(.)

Whenever B gets a query (d, x) from A
do the following until A stops querying
z1 ← pad1(x) ;
z2 ← pad2(d) ;
z ← O(z1||z2);
return (z) to A

A returns a bit b to B;
return b;

Figure 6.3: Adversary B for the proof of Proposition 6.2.

Thus from the equations above, and the definition of the det-cpa advantage of A and
the PRF advantage of B, we obtain

Adv
det-cpa
E1 (A) = Adv

prf
E (B).

Proposition 6.3. Let A be an arbitrary det-cpa adversary attacking E2, who asks at most
q queries, never repeats a query, and runs for time at most T , then there exists a PRF
adversary B such that

Adv
det-cpa
E2 (A) ≤ Adv

prf
E (B) +

2q2

2n
,

and B also asks exactly q queries and runs for time O(T).

Proof. As in the proof of Proposition 6.2, we construct a PRF adversary B (shown in
Fig. 6.4) which runs an arbitrary adversary A who attacks the encryption scheme E2.
Adversary B has access to an oracle O which can be either a secure block cipher Ek or
a pseudorandom function ρ, chosen uniformly at random from Func(n).

We can easily see that if the oracle of B is the block cipher Ek then

Pr[k
$← K : BEk(·) ⇒ 1] = Pr[k

$← K : AE2(·,·) ⇒ 1] (6.4)

To analyze the situation when the oracle of B is a random function, we consider the
game G0 shown in Figure 6.5. The game G0 describes a function Choose-ρ(), which
acts as a random function. It returns uniform random strings in {0, 1}n when it is

Chapter 6. Practical instantiations of TKR2 and TKR2a 99

Adversary BO(.)

Whenever B gets a query (d, x) from A
do the following until A stops querying
z1 ← padX (x) ;
z2 ← padD(d) ;
z ← O(z1 ⊕O(z2));
return z to A

A returns a bit b to B;
return b;

Figure 6.4: Adversary B for the proof of Proposition 6.3.

invoked, but it returns the same string if invoked twice on the same input. It does this
by maintaining a table ρ of outputs that it has already returned. Additionally in the set
Dom, it maintains the points on which it has been queried. The function sets the bad
flag to true if it is queried twice on the same input.

As Choose-ρ acts like a random function, hence it is immediate that

Pr[ρ
$← Func(n) : Bρ(·) ⇒ 1] = Pr[AG0 ⇒ 1] (6.5)

Now, we do a small change in game G0, i.e., we remove the boxed entry in the function
Choose-ρ, we call this changed game as G1. Notice that games G1 and G0 are identical
until the flag bad is set to true, hence we have

Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1] ≤ Pr[AG1 sets bad] (6.6)

Also in game G1, the function Choose-ρ, returns random strings for any input it gets,
thus A when interacts with G1 gets random strings in {0, 1}n in response to its queries.
Hence,

Pr[A$(·,·) ⇒ 1] = Pr[AG1 ⇒ 1]. (6.7)

Now, we do some small syntactic changes in the game G1 to obtain the game G2,
also shown in Figure 6.5. Game G2 is only syntactically different from G1. In G2

random strings are returned immediately as a response to a query of A, and later in the
finalization phase appropriate values are inserted in the multiset Dom, note as Dom is a
multiset hence there can be several instances of the same element present here.

100 6.3 Realizing Ek(d, x)

Game G0 ,G1

function Choose-ρ(X)

Y
$← {0, 1}n;

if X ∈ Dom then
bad← true
Y ← ρ[X]

else
ρ[X]← Y

Dom← Dom ∪ {X}
end if
return Y

Initialization
bad← false;
Dom = ∅;

Query Phase
For a query (d(i), x(i)) of A do the following

z
(i)
1 ← padX (x

(i)) ;
z

(i)
2 ← padD(d

(i)) ;
if z(i)

2 = z
(j)
2 for some j < i then µ(i) ← µ(j)

else µ(i) ← Choose-ρ(z(i)
2)

end if
λ(i) ← z

(i)
1 ⊕ µ(i)

z(i) ← Choose-ρ(λ(i))

return z

Game G2

Query Phase
For a query (d(i), x(i)) of A,
do the following

z(i) $← {0, 1}n

return z(i)

Finalization
for i← 1 to q

z
(i)
1 ← padX (x

(i)) ;
z

(i)
2 ← padD(d

(i)) ;
if z(i)

2 = z
(j)
2 for j < i then

µ(i) ← µ(j)

else

µ(i) $← {0, 1}n

Dom← Dom ∪ {z(i)
2 }

end if
λ(i) ← z

(i)
1 ⊕ µ(i)

Dom← Dom ∪ {λ(i)}
endfor

if there is a collision in Dom then
bad← true

Figure 6.5: Games G0, G1, G2 used for the proof of Proposition 6.3.

As, there is no way that A can distinguish between G1 and G2, hence

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1], (6.8)

also

Pr[AG1 sets bad] = Pr[AG2 sets bad]. (6.9)

Chapter 6. Practical instantiations of TKR2 and TKR2a 101

Thus, using equations (6.5), (6.6), (6.7), (6.8) and (6.9) we get

Pr[ρ
$← Func(n) : Bρ(·) ⇒ 1] = Pr[AG0 ⇒ 1]

≤ Pr[AG1 ⇒ 1] + Pr[AG1 sets bad]

≤ Pr[AG2 ⇒ 1] + Pr[AG2 sets bad]

≤ Pr[A$(·,·) ⇒ 1] + Pr[AG2 sets bad] (6.10)

Let COLLD be the event that there is a collision in the multiset Dom in game G2, then
from the description of game G2, we have

Pr[AG2 sets bad] = Pr[COLLD]

Now we concentrate on finding an upper bound for Pr[COLLD]. The elements present
in Dom are d’s and λ’s. Let Dom = Qd ∪ Qλ, where Qd ⊆ {d(i) : 1 ≤ i ≤ q}, and
Qλ = {λ(i) = z(i) ⊕ µ(i)|1 ≤ i ≤ q}.

Note, that the way the game G2 is designed, all elements in Qd are distinct, thus there
can be no collision among two elements in Qd. Additionally we claim the following

Claim 6.1. For 1 ≤ i, j ≤ q, i 6= j, Pr[λ(i) = λ(j)] ≤ 1/2n.

Proof. We have two cases to consider:
Case 1. If d(i) = d(j), then x(i) 6= x(j), as A does not repeat any query. This makes
z(i) 6= z(j). According to the game G2, if d(i) = d(j), then µ(i) = µ(j). Thus we have
λ(i) 6= λ(j). Thus, making Pr[λ(i) = λ(j)] = 0.
Case 2. If d(i) 6= d(j), then µ(i) and µ(j) are uniform and independent random elements
in {0, 1}n, thus making

Pr[λ(i) = λ(j)] = Pr[z
(i)
1 ⊕ µ(i) = z

(j)
1 ⊕ µ(j)] =

1

2n
.

Claim 6.2. For any d ∈ Qd and any λ ∈ Qλ, Pr[λ = d] ≤ 1/2n.

Proof. Any λ ∈ Qλ is a uniform random string in {0, 1}n, and is independent of any
d ∈ Qd.

Now, as #Qd ≤ q and #Qλ = q, using Claims 6.1, 6.2 and the union bound, we have

Pr[COLLD] ≤ 1

2n

(
q

2

)
+
q2

2n
<

2q2

2n
.

Now, using the definition of det-cpa advantage of A and equations (6.4) and (6.10), we
have the proposition.

102 6.4 Experimental Results

The above propositions suggests that E1 has a better security bound compared to E2,
and for E2 two block cipher calls are required for each encryption, whereas only a single
block cipher call is required for E1. The formatting requirements are more stringent for
E1, where as E2 can be applied to any message space X and tweak space D, where
#X ≤ 2n and #D ≤ 2n.

6.4 Experimental Results

We performed some preliminary experiments to determine the efficiency and functional-
ities of the proposed constructions in a practical environment. All experiments reported
used the following computing resources:

CPU: Four-core i5-2400 Intel processor (3.1GHz).

OS: Ubuntu 12.04.4 LTS.

DataBase: PostgreSQL 9.2.6

Compiler: gcc 4.7.3

We implemented both TKR2[fk] and TKR2a[fk], instantiated with RN[fk] (described in
Figure 6.1), where fk was instantiated with block cipher based construction described
in Section 6.2.1.

We implemented the card-vault in a PostgresSQL database. For TKR2 we considered the
card-vault to be a relation with three attributes: the token (TKN), the associated data
(ASD) and the PAN. For this construction the primary key is composed by the token
and the associated data. For TKR2a we considered the card-vault to be a relation with
two attributes EPAN and ETKN, representing the encrypted PAN and token respectively.
We encrypt these data using the construction E1 described in Section 6.3. In this case
ETKN was considered as the primary key.

For implementation of fk() we used AES with 128 bit key, and the implementation was
done by using the new Intel AES-NI instruction set, which provides a very efficient and
secure implementation of the AES. We assumed that X contains strings of 16 characters
where each character is a decimal digit, and T = X . Thus, in accordance to our nota-
tions introduced before, we had µ = 16, AL = {0, 1 . . . , 9}, thus λ = dlg(#AL)e = 4, and
X = T = ALµ.

Chapter 6. Practical instantiations of TKR2 and TKR2a 103

Experiment Time(ms)
TRK2 TKR2a

Run1 0.19 0.26

Run2a 0.30 0.37
Run2b 0.83 0.96
Run2c 1.27 1.30
Run2d 1.49 1.52
Run2e 1.69 1.98

Table 6.1: Summary of the experimental results: The descriptions of Run1, Run2a,· · · Run2e
are provided in the text.

The reported times are based on an −O3 optimized code. The time was measured by
first measuring the number of cycles necessary for a specific operation using the rdtsc

instruction. This cycle counts we converted to real time using the processor frequency.

We summarize our experiments and the results below:

1. The first experiment was to verify how many block cipher calls are necessary for
each call of fk() and the efficiency of RNT [fk]. In Section 5.7, we discussed that
if the range of fk is {0, 1}L, then L ≤ 3λµ would be sufficient. Note, that the
number of block cipher calls required for each invocation of fk is m = dL/λe. We
made 1,000,000 independent calls to fk, and in all cases, in each call we required
at most two block cipher calls. In fact in only 5% of the cases two calls were
necessary. In all others only one call was sufficient. The average time required for
each invocation of RNT [fk] was 0.1 microseconds.

2. The second experiment was to see if TKR2 implemented without the unique-
ness test (as described in Figure 5.5) would be sufficient. Again, we generated
1,000,000 tokens using TKR2 and they were all unique. Thus, in a practical sce-
nario, where the card-vault would be stored in a database, the uniqueness test (as
included in the description in Figure 5.7) is not required to be explicitly included.
Once a token is generated and when the system tries to insert it in the database,
if the uniqueness condition is violated then the database would generate an error
message, and then the process may be repeated until a unique token is generated.

3. Finally we measured efficiency of the tokenization procedures TKR2 and TKR2a.
In Table 6.1 we summarize the results, which are described as below:

• Run1 denotes the average time required to generate one token, including the

104 6.5 Discussions

IND-TKR IND-TKR-CV IND-TKR-KEY

TKR1
√ √

TKR2[fk]
√

TKR2[TR]
√ √

TKR2a[fk,E]
√ √

TKR2a[TR,E]
√ √ √

Table 6.2: Summary of Security

insertion in the card-vault. But here primary keys in the card-vault relations
are not specified, i.e., this run does not do any uniqueness test. The average
is computed over 1,000,000 tokens.

• Run2 denotes the scenario where the primary keys are specified, i.e., the
database checks for the uniqueness. As it is obvious, in this case the time
required to tokenize (including the insertions in the card-vault) would in-
crease with the current size of the card-vault. To measure this difference we
divided this run into five different runs which we call Run2a, Run2b,· · · ,
Run2e. For Run2a we started with an empty card-vault, and generated
1,000,000 tokens. In Run2b we started with a card-vault already contain-
ing 1,000,000 tokens, and we generated 1,000,000 more tokens. Similarly,
in runs Run2c, Run2d and Run2e, we started with a card-vault containing
2,000,000; 3,000,000 and 4,000,000 tokens, respectively. In each run we
generated 1,000,000 more tokens. The Table 6.1 shows the average time
required for generating one token for each scenario.

The basic component for both TKR2 and TKR2a is the procedure RNT , as mentioned, a
call to RNT , costs only 0.1 micro seconds. But the times reported in Table 6.1 (which are
in milliseconds) are more realistic, and it shows that the database insertions dominate
the cost of tokenization. Thus, further optimization in this regard may be possible. But,
still our experimental results confirm that the schemes proposed in this work can be
implemented and used in a real tokenization environment.

6.5 Discussions

SECURITY. The security properties of the various schemes as stated in the previous
security theorems are summarized in Table 6.2. The security theorems in all cases are
to be interpreted carefully. We note down some relevant issues below.

Chapter 6. Practical instantiations of TKR2 and TKR2a 105

In TKR1 the security is gained from the security of the format preserving encryption.
The scheme FP used in TKR1 is required to be a tweakable pseudorandom permuta-
tion with the message/cipher space T and the tweak space D. It is important to note
that various instantiations of FP can give different security guarantees. Most of the
known FPE schemes can only ensure security (in provable terms) when the number of
queries made by an adversary is highly restricted. For example, the security claim of the
scheme based on Feistel networks discussed in [13] becomes vacuous when the number
of queries exceeds 2#T /4, whereas the scheme in [53] can tolerate up to 2#T −ε queries
where ε is inversely related to the number of rounds in the construction. Some recent
constructions in [36, 64] achieve much better bounds, specially in [64] almost #T
queries can be tolerated for the bound to be meaningful. As #T can be much smaller
than the typical domain of a block cipher (2n, for n = 128), thus the exact security
guarantees are important in this context. Note, that for a typical scenario we consider
credit card numbers of sixteen decimal digits then #T ≈ 253.

In the construction of TKR2 and TKR2a the security bounds are better. If RN[fk] is
instantiated as in Figure 6.1, and in turn fk is constructed using a block cipher, then
using Proposition 6.1 and Theorem 5.2, for any IND-TKR adversary A who asks at most
q queries, we have

Advind-tkr
Ψ (A) ≤ m2q2

2n
+ εq,

where Ψ ∈ {TKR2,TKR2a} and εq is the maximum PRF advantage of any adversary
(who asks at most q queries) in attacking the block cipher E. Note that, n is the block
length of the block cipher used to construct fk. And m depends on #T , as per the
description of the block cipher based construction in Section 6.2.1, m = L/n, and we
discussed that it would be enough if we take L = 3µλ, where µ is the length of each
token where the tokens are treated as strings in AL and λ = dlg #ALe. Thus, the security
bound is less sensitive on #T . The bound only becomes vacuous when mq is of the
order of 2n/2. A similar bound holds for Advind-tkr-cv

TKR2a[fk] (A), when a block cipher based
construction for fk is used.

The IND-TKR-KEY definition is meant to model the property of independence of the
tokens with the keys, and this represents a quite strong notion of security. The construc-
tions TKR2[fk] and TKR2a[fk] do not achieve this security. But TKR2[TR] and TKR2a[TR]

achieve security in the IND-TKR-KEY sense as here we are assuming an instantiation by
a “true” random number generator.

EFFICIENCY. The efficiency of TKR1 depends on the efficiency of the FP scheme. As
discussed there are various ways to instantiate FP with varying amount of security and
efficiency. Also, most schemes with provable guarantees are far inefficient than standard
block ciphers.

106 6.6 Summary

The efficiency of TKR2 and TKR2a would be dominated by the search procedure. Asymp-
totically, if #T = N , then tokenization and detokenization would take O(lgN) time.
But the hidden constant would depend on how efficiently the search has been imple-
mented and how powerful the machine is (mainly in terms of memory).

6.6 Summary

As we mentioned in the previous Chapter, in the guidelines of the PCI SSC, regarding
the tokenization paradigm, it is not clear which is the best way to generate the tokens.
These guidelines neither explain which cryptographic objects should be used nor how
to use them. Here we answered these questions. We showed how to instantiate RNT [k]

using specific cryptographic objects, to generate the tokens. We also proposed two ways
to implement the encryption scheme E to protect the data in the card-vault. In addition
we also analyzed the security of these instantiations. Finally, seeing the results that we
obtained in our experiments, we have shown the feasibility of our constructions.

Chapter 7

Conclusions and Future Work

The results that we described in the previous chapters constitute an effort to formu-
late suitable security notions for two different practical scenarios. We have not only
proposed new notions of security, but also novel encryption schemes suitable for the
applications, which are secure in the sense of the proposed notions of security. As it is
always the case, these encryption schemes can be improved in different ways. In the
following paragraphs, we provide a summary of the contributions of this thesis. Also we
point out some limitations of the proposed schemes and highlight some directions by
which the schemes can be improved. The trust of this thesis was to study some notions
of security which may be applicable to some practical security problems. We addressed
two application areas, namely the problem of profiling adversaries and the problem of
encrypting credit card numbers. Needless to say there are many other scenarios where
a strong encryption scheme reduces the usability. We discuss some application areas
which we do not consider in this thesis but we plan to study in the near future.

7.1 Summary of Contributions

Given that we analyzed two different scenarios: protecting communications against
profilers and the study of the tokenization paradigm, we will also describe our contri-
butions in two parts.

7.1.1 Securing Information from Profilers

1. We studied the exact requirements for an encryption algorithm to be secure only
against profilers and gave a precise notion of security for such schemes. We called

107

108 7.1 Summary of Contributions

this as the PROF-EAV (security against eavesdropping profilers) notion of secu-
rity. This definition follows the paradigm of concrete provable security but is
completely new. Moreover, we were able to show that the PROF-EAV security is
strictly weaker than the more popular IND-CPA security notion.

2. We proposed a full protocol for secure communication against non-human profil-
ing adversaries. Our protocol neither requires a key exchange nor a public key
infrastructure. The main components of this protocol are a PROF-EAV secure en-
cryption scheme, a CAPTCHA puzzle generator and a secret sharing scheme. We
were able to prove security of the protocol with mild assumptions on the en-
cryption scheme and the CAPTCHA generator. Among other things, our protocol
demonstrates a novel security application for CAPTCHAs which were traditionally
used only to differentiate humans from machines.

3. The proposed protocol uses a PROF-EAV secure encryption scheme, and as PROF-
EAV security is weaker than IND-CPA security, hence any traditional encryption
scheme which provides IND-CPA security can be used in the protocol. But, it would
be more interesting to construct a PROF-EAV encryption scheme. We achieved this
by using a less known scheme by Rivest which is known as Chaffing and Winnowing
(CW) [65]. Our scheme uses some novel ideas of document classification, and we
experimentally demonstrated that the scheme can really fool classifiers (profilers).
We also provided a preliminary theoretical analysis of our scheme.

7.1.2 Cryptographic Treatment of Tokenization

Tokenization systems are currently in use, but a formal cryptographic study of such
systems does not exist in the current literature. We initiated a study in this direction,
and contributed in the following ways:

1. We formally fixed a general syntax for tokenization systems and specified the re-
quirements for its various components.

2. We formally defined security of tokenization systems and formulated three dif-
ferent security notions called IND-TKR, IND-TKR-CV, and IND-TKR-KEY. These
three definitions are based on three different realistic threat models. We amply
discussed the adequacy of these new notions of security in practical scenarios.

3. We introduced some constructions of tokenization systems, and proved their se-
curity in the proposed security models. We proposed three generic constructions

Chapter 7. Conclusions and Future Work 109

namely TKR1, TKR2 and TKR2a and discussed how these constructions can be in-
stantiated with available cryptographic primitives. TKR1 is a construction which
just uses a format preserving encryption to generate tokens. TKR2 and TKR2a
are similar but both are very different from TKR1. In the constructions TKR2 and
TKR2a we demonstrate how the problem of tokenization can be solved both se-
curely and efficiently without using format preserving encryption. Both TKR2 and
TKR2a use off the shelf cryptographic primitives, in particular we showed how
to instantiate them using ordinary block ciphers, stream ciphers supporting ini-
tialization vectors (IV) and physical random number generators. We also proved
security of our constructions in the proposed security models.

7.2 Future Work

Here we note down some ways in which the proposed schemes can be improved and
extended, and we also point out some other application areas where weak security
notions are applicable.

7.2.1 Profiling Adversaries

In Chapter 3, we proposed the protocol P′ which uses multiple CAPTCHAs and thus
gives the user multiple chances to recover the key. This functionality is important, as
a human user may sometimes fail to solve a CAPTCHA. Actually, we recommended
a specific instantiation of P′, where a human has to solve 2 out of 5 CAPTCHAs to
decrypt a message. However this solution, though correct, is inconvenient. Imagine
a user who needs to read a large quantity of emails in a single day, he has to solve
two CAPCHAs per email that he reads. A better solution would be that the user solves
only one CAPTCHA, and only if the user fails, then the system automatically generates
another CAPTCHA and so on. This is in line with the normal usage of CAPTCHAs
and may be a bit more convenient than our solution in P′. The basic idea involved in
implementing this functionality, would be to have multiple CAPTCHAs, each of whose
solution can be mapped to a single key K. We give some initial ideas in this direction
next.

One option is using the roots of the equation xr ≡ a mod n, where a is some represen-
tation of k in our protocol P. We can convert the values of the roots xi into a CAPTCHA,
then if we assume that the equation has r roots, there are r possible values that generate
the same value a. A possibility is that r = 2, then we have the equation x2 ≡ a mod n,

110 7.2 Future Work

where n is the product of two distinct prime numbers p and q, i.e. n = pq. We already
know that this equation has four possible solutions, and it is possible to choose p, q and
a in such a way that these solutions are distinct. Then each of these four square roots xi,
where 1 ≤ i ≤ 4, can be converted (via some encoding) into a CAPTCHA. The receiver
must solve the CAPTCHA, convert it into the original value xi and compute x2

i mod n to
obtain a. If the receiver fails to solve the first CAPTCHA, still he would have three more
chances.

Another option is to consider an error-correcting code. Error-correcting codes are used
to detect and correct the errors that occur in a communication channel. Depending on
the type of code that is used, it is possible to detect and correct a specific number of
errors. Let us consider a linear code. In a linear code if we consider a message m as a
binary string of length `, then we can transform it into a code word m′ of n bits, where
n > `. Thus we will have a set of 2` code words. The n − ` denominated redundancy
bits help us to detect possible errors in the communication. Now let us explain how we
can apply a linear code to solve our problem. If we consider the string k in our protocol
P, we can convert it into a code word k′ of length n by applying a linear code. Then we
can add some error ei to k′, and thus obtain si = k′ + ei, 1 ≤ i ≤ r. These si can be
used to generate the CAPTCHAs. The receiver must solve the CAPTCHA, and decode si
to obtain k and use this k as input to the hash function to generate the encryption key
K. Again if a user fails in solving a CAPTCHA, the system can offer r − 1 other options.
Here r depends on the number distinct errors the code can tolerate. Naturally, we still
need to determine the specific code that we can apply.

As we mentioned in Chapter 3, another important issue with our protocol, which uses
CAPTCHA, is the key length. The size of the key space is around 248, which is not so
convenient. It would be interesting to find a mechanism that let us increase the size of
key space.

7.2.2 Tokenization Systems

The security notions of tokenization systems that we propose in Chapter 5 does not take
into account a malicious tokenizer. Consider a scenario, where a merchant receives
a token from a tokenizer and later the tokenizer denies to detokenize the token by
saying that this token was not generated by it. Our security notions do not consider
this scenario. But the definitions can be strengthened to incorporate security against
such malicious tokenizers. A secure tokenization system which can provide such kind
of security may have to use a digital signature in a suitable way. We plan to explore this
option in near future.

Chapter 7. Conclusions and Future Work 111

The novelty of our tokenization systems is that they by-pass the need for format pre-
serving encryption. Format preserving encryption or, specifically the problem of “small
domain encryption” is largely open. None of the few solutions available in the literature
are efficient, and most have an unacceptable security bound. In the near future we want
to take up this problem to design encryption schemes for small messages which are effi-
cient and provides acceptable security in provable terms. There is an increased need for
such encryption schemes. As there are many identifiers similar to credit card numbers,
for example social security numbers, patient identification numbers, etc. which need to
be encrypted.

7.3 Other Scenarios where Weak Notions of Security are
Applicable

In this thesis we discussed just two practical scenarios where the security usability trade-
off is important, but there are many more problems of practical interest where strong
cryptography cannot be directly applied. In this section we discuss two such scenarios.

7.3.1 Deduplication

Recently applications such as Dropbox, Google Drive, Bitcasa among others, have gained
popularity. Not only big companies but common users have started to store their infor-
mation in the cloud. These applications offer remote backup services to their users.
An important issue for the companies that offer these services is how to save storage
space and network bandwidth. Privacy aware users generally encrypt the information
that they upload to a cloud, this can lead to an increase in the amount of storage re-
quired in the servers. We explain it with an example: Consider that a user A created
a video M and shared it with another user B. Both A and B uploaded the video M

to a cloud server which provides the service of storage. To maintain confidentiality of
the data, both A and B encrypted the video M before uploading it to the cloud. As A
and B would have different encryption keys, hence the encryption of the same message
M , would be different and there would be no way for the server to know that the two
things that it got from the two users A and B correspond to the same message. Secure
deduplication is an encryption procedure that enables the server to detect duplicates of
the same information and thus it stores only one copy of a message. It is obvious that
the main aim of deduplication is to save storage space at the server side at the cost of
sacrificing some security.

112 7.3 Other Scenarios where Weak Notions of Security are Applicable

A first solution to this problem came from Douceur et. al [27] who proposed a crypto-
graphic scheme to avoid duplicating files, this cryptographic scheme is called convergent
encryption, and it works as follows. The first time that a user wants to upload an en-
crypted file M , he gets the key from the message K ← H(M), where H is a public hash
function. Then using this key K and a deterministic symmetric encryption scheme E,
he enciphers M as C ← EK(M). It is important to note that E must be deterministic,
to obtain the same ciphertext for equal messages. This property makes possible to de-
tect duplicates, even when they are encrypted. Finally a tag, T of the ciphertext C is
computed as T = H(C) and it is sent to the server. This tag is an index, used to store
the encrypted file C and also it determines if an encrypted file has been already stored.
When a second user wants to upload the same file, the user needs to perform the same
steps already explained above, and when he sends the tag T to the server, it will know
whether the file M has already been uploaded by some other user.

Recently a formal cryptographic study of deduplication systems was initiated in [7],
where strict security definitions for deduplication schemes were proposed. After this,
several schemes were proposed [1, 6, 22]. Unfortunately some of the solutions, pro-
posed in these papers, require a complicated machinery, which is not adequate given
the practicality of the problem. Some other schemes make an attempt to reduce the
computation involved but they introduce security problems. For example, let us con-
sider the following variation in the original scheme. Instead of calculating the tag T

from the ciphertext, it is computed as T = H(K). This introduces a security problem
called duplicate faking attack. In this attack, an adversary A chooses two different mes-
sages M and M ′, derives the key K = H(M) and C ′ = EK(M ′) and T = H(K). When
a second user wants to store the file M , he does the following K = H(M), C = EK(M)

and T = H(K). Since the server determines if a file is duplicated by seeing only the
tag T , the server will not store the file of the second user. Later, when this second user
tries to recover his file, he will obtain M ′ 6= M . We believe that to solve this problem, it
would be better to develop a scheme to compute the ciphertext and the tag in one pass.

Another interesting problem in secure deduplication is related with the deduplication of
files which are not equal but similar. A preliminary solution is based on error-correcting
codes, see [22]. However we have the intuition that other mechanisms such as locality-
preserving hashing (LSH) [3] can be employed to this problem. A hash function of this
kind works as follows, if two points p and q in a plane are neighbours, then the proba-
bility that h(p) = h(q) is high, where the neighbourhood is determined by the distance
between these two points. If we could find a way to transform two files or documents
into points and determine a measure to establish the similarity of the documents, then
it will be possible to establish that they are similar. Once that we do this, then we can
encrypt only the difference between the two files, and instead of storing the whole file,

Chapter 7. Conclusions and Future Work 113

we just need to store this difference.

7.3.2 Searchable Encryption

Searchable encryption denotes the set of the encryption schemes which allows several
kinds of searches within encrypted data. The two goals of this kind of encryption are
contradictory, as a good encryption scheme should destroy all structure present in the
data and make it look random, whereas the more structured the data is more efficient
search on it can be performed. Thus, it is evident that a weak notion of security for such
encryption schemes is required. There have been some theoretical work describing the
proper security notion for such encryption schemes, for example see [20, 33]. Also
there is a variety of applications where such schemes can be useful. We discuss two
application areas:

1. Encrypting Outsourced Databases: With the advent of cloud computing, many
corporations outsource their databases to third party server. In most cases the
data owner would not like to reveal the data to the server but at the same time
he would want the server to answer the specific queries that he poses on the
outsourced data. This, is a classic example where searchable encryption may be
applied. There have been many works to date to address this problem [62], but
still this problem is largely open as the proposed schemes have many limitations
concerning both security and functionality.

2. Encrypted Email Search: Nowadays it is very common that we use a web mail
service. As a part of this service we can make searches through our emails by
keywords and dates, but how can we be sure that the search results are correct?
Given that the web email service lets us maintain a huge number of emails, it is
difficult for a user to know if the search results are correct. This, problem falls
in the domain of authentication. An initial solution to this problem has been
proposed in [57]. Their protocol allows a user to verify that the list of messages
in the search results is correct, but it does not allow to verify if the emails that
are not queried are still present at the email server. The problem becomes more
interesting and complex if we consider that the emails are encrypted.

These problems and the application areas fall directly within the scope of our work, and
we aim to study them in near future.

114 7.3 Other Scenarios where Weak Notions of Security are Applicable

Publications of the Author Related to the Thesis

1. S. Díaz-Santiago and D. Chakraborty. On Securing Communications from Profil-
ers. In P. Samarati, W. Lou and J. Zhou, editors, SECRYPT 2012-Proceedings of
the International Conference on Security and Cryptography, Rome, Italy, 24-27 July,
2012, SECRYPT is part of ICETE-The International Joint Conference on e-Business
and Telecommunications, pages 154-162. SciTePress, 2012.

2. S. Díaz-Santiago and D. Chakraborty. Encryption Schemes Secure against Profiling
Adversaries. In M.S. Obaidat and J. Filipe, editors, E-Business and Telecommunica-
tions, volume 455 of Communications in Computer and Information Science, pages
172-191. Springer Berlin Heidelberg, 2014.

3. S. Díaz-Santiago, L. M. Rodríguez-Henríquez and D. Chakraborty. A Cryptographic
Study of Tokenization Systems. In M. S. Obaidat, A. Holzinger and P. Sama-
rati, editors, SECRYPT 2014-Proceedings of the 11th International Conference on
Security and Cryptography, Vienna, Austria, 28-30 August, 2014, pages 393-398.
SciTePress, 2014.

4. S. Díaz-Santiago, L. M. Rodríguez-Henríquez and D. Chakraborty. A Cryptographic
Study of Tokenization Systems. IACR Cryptology ePrint Archive, 2014:602, 2014.

Bibliography

[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and G. Segev. Message-locked
encryption for lock-dependent messages. In Canetti and Garay [15], pages 374–
391.

[2] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In D. Naccache, editor, CT-RSA, volume 2020 of Lecture
Notes in Computer Science, pages 143–158. Springer, 2001.

[3] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

[4] M. Bellare and A. Boldyreva. The security of chaffing and winnowing. In
T. Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer Sci-
ence, pages 517–530. Springer, 2000.

[5] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message au-
thentication. In N. Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Com-
puter Science, pages 1–15. Springer, 1996.

[6] M. Bellare, S. Keelveedhi, and T. Ristenpart. Dupless: Server-aided encryption for
deduplicated storage. IACR Cryptology ePrint Archive, 2013:429, 2013.

[7] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and se-
cure deduplication. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, vol-
ume 7881 of Lecture Notes in Computer Science, pages 296–312. Springer, 2013.

[8] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers. Format-preserving encryp-
tion. In M. J. Jacobson Jr., V. Rijmen, and R. Safavi-Naini, editors, Selected Areas in
Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 295–312.
Springer, 2009.

117

118 BIBLIOGRAPHY

[9] M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In S. Vaudenay, editor, EUROCRYPT, volume
4004 of Lecture Notes in Computer Science, pages 409–426. Springer, 2006.

[10] M. Bellare, P. Rogaway, and T. Spies. The FFX mode of operation for format-
preserving encryption. NIST submission, February 2010. http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf.

[11] C. Berbain and H. Gilbert. On the security of IV dependent stream ciphers. In
A. Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages
254–273. Springer, 2007.

[12] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. Umac: Fast and
secure message authentication. In M. J. Wiener, editor, CRYPTO, volume 1666 of
Lecture Notes in Computer Science, pages 216–233. Springer, 1999.

[13] J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In B. Preneel,
editor, CT-RSA, volume 2271 of Lecture Notes in Computer Science, pages 114–130.
Springer, 2002.

[14] E. Brier, T. Peyrin, and J. Stern. BPS: a format-preserving encryption pro-
posal. NIST submission, 2010. Available at http://csrc.nist.gov/groups/ST/
toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf.

[15] R. Canetti and J. A. Garay, editors. Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Pro-
ceedings, Part I, volume 8042 of Lecture Notes in Computer Science. Springer, 2013.

[16] R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In J. Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science,
pages 17–33. Springer, 2005.

[17] CardHub. Number of credit cards and credit card holders, 2012. Available at
http://www.cardhub.com/edu/number-of-credit-cards/.

[18] R. Clayton and G. Danezis. Chaffinch: Confidentiality in the face of legal threats.
In F. A. P. Petitcolas, editor, Information Hiding, volume 2578 of Lecture Notes in
Computer Science, pages 70–86. Springer, 2002.

[19] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001.

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://www.cardhub.com/edu/number-of-credit-cards/

BIBLIOGRAPHY 119

[20] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: Improved definitions and efficient constructions. Journal of Computer
Security, 19(5):895–934, 2011.

[21] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002.

[22] G. I. Davida and Y. Frankel. Efficient encryption and storage of close distance
messages with applications to cloud storage. In D. Naccache, editor, Cryptography
and Security, volume 6805 of Lecture Notes in Computer Science, pages 465–473.
Springer, 2012.

[23] S. Diaz-Santiago and D. Chakraborty. On securing communication from profilers.
In P. Samarati, W. Lou, and J. Zhou, editors, SECRYPT 2012 - Proceedings of the
International Conference on Security and Cryptography, Rome, Italy, 24-27 July,
2012, SECRYPT is part of ICETE - The International Joint Conference on e-Business
and Telecommunications, pages 154–162. SciTePress, 2012.

[24] S. Diaz-Santiago and D. Chakraborty. Encryption schemes secure against profiling
adversaries. In M. S. Obaidat and J. Filipe, editors, E-Business and Telecommunica-
tions, volume 455 of Communications in Computer and Information Science, pages
172–191. Springer Berlin Heidelberg, 2014.

[25] S. Diaz-Santiago, L. M. Rodriguez-Henriquez, and D. Chakraborty. A cryptographic
study of tokenization systems. IACR Cryptology ePrint Archive, 2014:602, 2014.

[26] S. Diaz-Santiago, L. M. Rodriguez-Henriquez, and D. Chakraborty. A cryptographic
study on tokenization systems. In M. S. Obaidat, A. Holzinger, and P. Samarati,
editors, SECRYPT 2014 - Proceedings of the 11th International Conference on Se-
curity and Cryptography, Vienna, Austria, 28-30 August, 2014, pages 393–398.
SciTePress, 2014.

[27] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming
space from duplicate files in a serverless distributed file system. In ICDCS, pages
617–624, 2002.

[28] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000.

[29] M. Dürmuth. Useful password hashing: how to waste computing cycles with style.
In M. E. Zurko, K. Beznosov, T. Whalen, and T. Longstaff, editors, NSPW, pages
31–40. ACM, 2013.

120 BIBLIOGRAPHY

[30] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In E. F.
Brickell, editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages
139–147. Springer, 1992.

[31] S. Dziembowski. How to pair with a human. In J. A. Garay and R. D. Prisco,
editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 200–218.
Springer, 2010.

[32] O. Goldreich. The Foundations of Cryptography - Volume 1, Basic Applications.
Cambridge University Press, 2001.

[33] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How
to run turing machines on encrypted data. In R. Canetti and J. A. Garay, editors,
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 536–553. Springer, 2013.

[34] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[35] P. Golle and A. Farahat. Defending email communication against profiling attacks.
In V. Atluri, P. F. Syverson, and S. D. C. di Vimercati, editors, WPES, pages 39–40.
ACM, 2004.

[36] V. T. Hoang, B. Morris, and P. Rogaway. An enciphering scheme based on a card
shuffle. In R. Safavi-Naini and R. Canetti, editors, CRYPTO, volume 7417 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2012.

[37] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product theo-
rems. J. Cryptology, 22(1):75–92, 2009.

[38] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North Car-
olina, USA, 30 October - 1 November 1989, pages 248–253. IEEE Computer Society,
1989.

[39] ISO/IEC 7812-1. Identification cards-identification of issuers-part 1: Numbering
system, 2006.

[40] ISO/IEC 9797:1989. Data cryptographic techniques-Data integrity mechanism using
a cryptographic check function employing a block cipher algorithm, 1989.

BIBLIOGRAPHY 121

[41] C. S. Jutla. Almost optimal bounds for direct product threshold theorem. In
D. Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science,
pages 37–51. Springer, 2010.

[42] S. P. Karanam. Tiny true random number generator. Master’s thesis, George Mason
University, Department of Electrical and Computer Engineering, 2006.

[43] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman & Hall/
CRC, 2008.

[44] W. Killmann and W. Schindler. A design for a physical RNG with robust entropy
estimators. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop, Washington, D.C.,
USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in Computer
Science, pages 146–163. Springer, 2008.

[45] N. Koblitz and A. Menezes. Another Look at "Provable Security". II. IACR Cryptol-
ogy ePrint Archive, 2006:229, 2006.

[46] N. Koblitz and A. Menezes. Another Look at "Provable Security". J. Cryptology,
20(1):3–37, 2007.

[47] X. Lai and J. L. Massey. A proposal for a new block encryption standard. In
EUROCRYPT, pages 389–404, 1990.

[48] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable block ciphers. In M. Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 31–46.
Springer, 2002.

[49] C. Mancillas-López. Studies on Disk Encryption. PhD thesis, CINVESTAV-IPN, 2013.

[50] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008.

[51] A. K. McCallum. Bow: A toolkit for statistical language modeling, text retrieval,
classification and clustering, 1996. http://www.cs.cmu.edu/~mccallum/bow.

[52] D. Mladenic and M. Grobelnik. Feature selection for unbalanced class distribution
and naive bayes. In I. Bratko and S. Dzeroski, editors, Proceedings of the Sixteenth
International Conference on Machine Learning (ICML 1999), Bled, Slovenia, June
27 - 30, 1999, pages 258–267. Morgan Kaufmann, 1999.

[53] B. Morris, P. Rogaway, and T. Stegers. How to encipher messages on a small
domain. In S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer
Science, pages 286–302. Springer, 2009.

http://www.cs.cmu.edu/~mccallum/bow

122 BIBLIOGRAPHY

[54] M. Naor. Verification of a human in the loop or identification via the turing test,
1997. http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.pdf.

[55] NIST. Data Encryption Standard. Federal Information Processing Standard (FIPS)
46-3, 1999.

[56] NYT. Congress begins deep packet inspection of internet providers,
2009. Available at: http://bits.blogs.nytimes.com/2009/04/24/
congress-begins-deep-packet-inspection-of-internet-providers/.

[57] O. Ohrimenko, H. Reynolds, and R. Tamassia. Authenticating email search results.
In A. Jøsang, P. Samarati, and M. Petrocchi, editors, Security and Trust Manage-
ment - 8th International Workshop, STM 2012, Pisa, Italy, September 13-14, 2012,
Revised Selected Papers, volume 7783 of Lecture Notes in Computer Science, pages
225–240. Springer, 2012.

[58] PCI Security Standards Council. Payment card industry data security stan-
dard version 1.2, 2008. Available at https://www.pcisecuritystandards.org/
security_standards/pci_dss.shtml.

[59] PCI Security Standards Council. Information supplement: PCI DSS tokeniza-
tion guidelines, 2011. Available at https://www.pcisecuritystandards.org/
documents/Tokenization_Guidelines_Info_Supplement.pdf.

[60] C. Percival. Stronger key derivation via sequential memory-hard function. BSD-
Can’09, pages 1-19, 2009.

[61] B. Pinkas and T. Sander. Securing passwords against dictionary attacks. In
V. Atluri, editor, ACM Conference on Computer and Communications Security, pages
161–170. ACM, 2002.

[62] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: pro-
cessing queries on an encrypted database. Commun. ACM, 55(9):103–111, 2012.

[63] N. Provos and D. Mazières. A future-adaptable password scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91. USENIX, 1999.

[64] T. Ristenpart and S. Yilek. The mix-and-cut shuffle: Small-domain encryption
secure against n queries. In Canetti and Garay [15], pages 392–409.

[65] R. L. Rivest. Chaffing and winnowing: Confidentiality without encryption, 1998.
http://people.csail.mit.edu/rivest/Chaffing.txt.

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.pdf
http://bits.blogs.nytimes.com/2009/04/24/congress-begins-deep-packet-inspection-of-internet-providers/
http://bits.blogs.nytimes.com/2009/04/24/congress-begins-deep-packet-inspection-of-internet-providers/
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf
https://www.pcisecuritystandards.org/documents/Tokenization_Guidelines_Info_Supplement.pdf
http://people.csail.mit.edu/rivest/Chaffing.txt

BIBLIOGRAPHY 123

[66] M. J. B. Robshaw and O. Billet, editors. New Stream Cipher Designs - The eSTREAM
Finalists, volume 4986 of Lecture Notes in Computer Science. Springer, 2008.

[67] P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and W. Meier, ed-
itors, Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, In-
dia, February 5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer
Science, pages 348–359. Springer, 2004.

[68] P. Rogaway and D. Coppersmith. A software-optimized encryption algorithm. J.
Cryptology, 11(4):273–287, 1998.

[69] RSA White paper. Tokenization: What next after PCI, 2012. Available at http://
www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm.
pdf.

[70] Securosis White Paper. Tokenization guidance: How to reduce PCI com-
pliance costs, 2011. Available at http://gateway.elavon.com/documents/
Tokenization_Guidelines_White_Paper.pdf.

[71] Securosis White Paper. Tokenization vs. encryption: Options for compli-
ance, 2011. Available at https://securosis.com/research/publication/
tokenization-vs.-encryption-options-for-compliance.

[72] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[73] C. Shannon. Communication theory of secrecy systems. Bell System Technical
Journal, Vol 28, pp. 656âĂŞ715, Oktober 1949.

[74] V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, 2004:332, 2004.

[75] E. Stefanov and E. Shi. Fastprp: Fast pseudo-random permutations for small do-
mains. IACR Cryptology ePrint Archive, 2012:254, 2012.

[76] B. Sunar, W. J. Martin, and D. R. Stinson. A provably secure true random num-
ber generator with built-in tolerance to active attacks. IEEE Trans. Computers,
56(1):109–119, 2007.

[77] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. Privacy pre-
serving targeted advertising. In Proceedings of annual network and distributed sys-
tems security symposium, 2010. http://www.isoc.org/isoc/conferences/ndss/
10/pdf/05.pdf.

http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm.pdf
http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm.pdf
http://www.emc.com/collateral/white-papers/h11918-wp-tokenization-rsa-dpm.pdf
http://gateway.elavon.com/documents/Tokenization_Guidelines_White_Paper.pdf
http://gateway.elavon.com/documents/Tokenization_Guidelines_White_Paper.pdf
https://securosis.com/research/publication/tokenization-vs.-encryption-options-for-compliance
https://securosis.com/research/publication/tokenization-vs.-encryption-options-for-compliance
http://www.isoc.org/isoc/conferences/ndss/10/pdf/05.pdf
http://www.isoc.org/isoc/conferences/ndss/10/pdf/05.pdf

124 BIBLIOGRAPHY

[78] Voltage Security White paper. Payment security solution - processor edition,
2012. Available at http://www.voltage.com/wp-content/uploads/Voltage_
White_Paper_SecureData_PaymentsProcessorEdition.pdf.

[79] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using hard AI
problems for security. In E. Biham, editor, EUROCRYPT, volume 2656 of Lecture
Notes in Computer Science, pages 294–311. Springer, 2003.

http://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_PaymentsProcessorEdition.pdf
http://www.voltage.com/wp-content/uploads/Voltage_White_Paper_SecureData_PaymentsProcessorEdition.pdf

	Introduction
	Problems Addressed
	Organization of this Document

	Preliminaries
	General Notations
	Block Ciphers
	Pseudorandom Functions and Pseudorandom Permutations
	Pseudorandom Functions
	Pseudorandom Permutation

	Symmetric Encryption
	Security of Symmetric Encryption Schemes

	Proofs by Reduction
	Security of CTR
	Summary

	 Profiling Adversaries
	Motivation
	Preliminaries
	Indistinguishability in the Presence of an Eavesdropper
	CAPTCHA
	Secret Sharing Schemes

	Profiling Adversaries
	PROF-EAV Security

	Encryption Protocol Secure Against Profiling Adversaries
	 Security of P

	 A Practical Instantiation
	Security of P
	Discussions

	Analyzing the Golle and Farahat's scheme
	Slow Hash Functions
	Security of Protocol S
	More Considerations

	Concluding Remarks

	 A PROF-EAV Secure Encryption Scheme
	Preliminaries
	Message Authentication Code
	Chaffing and Winnowing
	Document Classification.

	Chaffing and Winnowing Text in a Natural Language
	 Realizing AddChaff

	 Security Analysis
	Some Experiments
	Final Remarks

	A Formal Treatment of Tokenization
	A Brief History
	Tokenization Systems: Requirements and PCI DDS Guidelines
	Additional Cryptographic Objects
	A Generic Syntax
	Security Notions
	Construction TKR1: Tokenization Using FPE
	Construction TKR2: Tokenization Without Using FPE
	Security of TKR2 and TKR2a
	Summary

	Practical instantiations of TKR2 and TKR2a
	Notations
	Realizing RNT[k]
	Candidates for fk():

	 Realizing Ek(d,x)
	Experimental Results
	Discussions
	Summary

	Conclusions and Future Work
	Summary of Contributions
	 Securing Information from Profilers
	 Cryptographic Treatment of Tokenization

	Future Work
	Profiling Adversaries
	Tokenization Systems

	Other Scenarios where Weak Notions of Security are Applicable
	Deduplication
	Searchable Encryption

	Bibliography

