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Abstract

Portable computing devices have increased a lot both in numbers and varieties in the
past few years. These devices provides the convenience of performing several tasks
even when the user in �on the go�. This mobility has also given rise to new issues
in data security. In this thesis we focus on the security of portable memory devices,
which are ubiquitous. Because of their small size and portability, there is a high risk
of them getting lost, which means the stored data gets compromised.

There are encryption enabled memory devices, which are already available in the
market. In these devices, the encryption facility comes along with the speci�c memory,
and thus, such memories are more expensive. Here we plan the solution through a
di�erent approach: we aim to design a generic device, which would be capable of
enabling encryption in any USB memory device. This means, the encryption device
can be attached to any ordinary USB memory. We call our device as the Middleman,
and present its complete design and implementation.

MiddleMan acts as an interface between a USB memory and a host computer.
Externally, it has two USB ports; a host computer and an USB memory can be
attached to any of these two ports. There is an encryption algorithm built in within
MiddleMan. All bulk data transfers from the host to the memory gets encrypted when
it goes through theMiddleMan. Transfers from the memory to the host gets decrypted.
This ensures that the data stored in the memory is always encrypted. Internally, the
MiddleMan has a functionality of both as an USB device and also as a host. To the
memory device, it poses itself as a host, and in turn to the host, it poses like a device,
this enables transparent communication to the user of the USB memory. MiddleMan

uses a low cost tweakable enciphering scheme as the encryption algorithm, thus it
guarantees stronger security than most commercially available encryption enabled
USB memories.

This work also includes a prototype implementation of the MiddleMan. As a proof
of concept, we implement the full functionality of the MiddleMan in a Spartan 3E
FPGA board. For the purpose of this implementation, we also required to enhance
the USB support provided by the board. To do this we designed a special extension
for the Spartan 3E board, which we call S3USB. This device extends the functionality
of the bare board in several respects and can be of independent interest.

We tested the prototype in various computing platforms and found it to work
satisfactorily. We also did some controlled performance tests and found it to be
e�cient. The slowdown that take place in the MiddleMan is within acceptable limits
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in a typical usage scenario.



Resumen

Los dispositivos de cómputo pórtatil se han incrementado mucho en cuanto a número
y variedad desde hace algunos años. Estos dispositivos nos ofrecen una forma conve-
niente de realizar varias tareas incluso cuando el usuario va �sobre la marcha�. Esta
mobilidad tambien ha generado un incremento las cuestiones referentes a la seguridad
de datos. En esta tesis nos enfocamos en la seguridad de los dispositivos de memoria
portátiles, los cuales son ubicuos. Debido a su pequeño tamaño y portabilidad, existe
in alto riezgo de que se extravíen, lo que signi�ca que los datos almacenados son
comprometidos.

Existen dispositivos de memoria con capacidades de cifrado, los cuales se encuen-
tran disponibles en el mercado. En estos dispositivos, el cifrado se encuentra adentro
del dispositivo, lo cual incrementa su costo. Aquí hemos planeado una solución por
medio de un enfoque diferente: nosotros nos concentramos en el diseño de un dis-
positivo genérico, el cual pueda ser capaz de cifrar cualquier memoria USB. Nosotros
hemos llamado a este dispositivo MiddleMan, además presentamos su completo diseño
e implementación.

MiddleMan actúa como una interface entre una memoria USB y una computadora
huésped. Posee dos puertos externos; una computadora huésped y una memoria USB
pueden ser conectados a cualquiera de estos dos puertos. Existe un algoritmo de
cifrado implementado dentro de MiddleMan. Todas las transferencias en masa desde
el huésped hasta la memoria son cifradas a travez de MiddleMan. Transferencias de la
memoria al huésped son descifradas. Esto nos asegura que los datos almacenados en
la memoria siempre permanezcan cifrados. Internamente, MiddleMan funciona como
un dispositivo USB y también como un huésped. Ante el dispositivo de memoria,
este se presenta como un host, mientras que para el huésped, se presenta como un
dispositivo, esto logra comunicaciones transparentes para el usuario de la memoria
USB.MiddleMan utiliza un esquema de cifrado ajustable como su algoritmo de cifrado
y por lo tanto, garantiza una seguridad más fuerte que las soluciones comerciales.

Este trabajo también incluye una implementación prototipo de MiddleMan. Como
prueba de concepto, hemos implementado todas las funcionalidades de MiddleMan

en una tarjeta FPGA Spartan 3E. Para propósitos de esta implementación, también
requerimos de una mejora en el soporte USB de la Spartan 3E. Para esto diseñamos
una extensión especial para dicha tarjeta y la llamamos S3USB. Esta extensión in-
crementa la funcionalidad de la tarjeta FPGA en varios aspectos y este diseño es de
interés por si solo.

vii



viii

Hemos probado el prototipo en varias plataformas de cómputo y encontramos que
funciona satisfactoriamente. También hemos hecho algunas pruebas de rendimiento
controladas y encontramos que es e�ciente. El alentamiento que toma lugar dentro
de MiddleMan, se encuentra dentro de los límites aceptables para un escenario de uso
típico.
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Chapter 1

Introduction

Data storage is an important part in computer systems. There are several ways
of storing data, ranging from internal hard drives in desktop/laptop computers to
portable �ash based storage devices. Even the popular portable digital devices in
the market like smart phones, tablets, cameras, etc., have some way to store data.
The increase of portable devices and the improvements in their connectivity to the
Internet has raised numerous security concerns regarding data stored in various kinds
of storage media. The convenience of portability which most devices o�er today can
also be a problem: the smaller the device, the easier it can be lost.

In the last few years there has been signi�cant activity towards designing crypto-
graphic algorithms suitable for storage security [20, 21, 18, 11, 19, 32, 10], also there
have been some standardization e�orts [3, 4]. Thus in terms of designing secure and
e�cient cryptographic algorithms suitable for securing stored data there has been
signi�cant improvements. On the other hand, in open literature much is not reported
about practical deployments of these algorithms in speci�c devices. Though, there
are commercially available storage devices with encryption facilities, the intricacies
of their designs are trade secrets. This prevents easy reproducibility of those designs
and also prevents large scale security analysis of such devices.

In this thesis we design a novel device for enabling encryption in an external USB
memory. We name the device as MiddleMan. The basic functionality of MilddleMan is
to act as a special interface between an USB memory and the host computing system
(say a desktop or a laptop computer). MiddleMan is equipped with an encryption
algorithm and all bulk data transfers from the computer to the memory are encrypted
when passing through the MiddleMan. Transfers from the memory to the computer
get decrypted. Thus, the data that resides in the memory is always encrypted. The
MiddleMan is neither a part of the USB memory nor the host computing system, thus
any USB memory device can be connected to any computer using the device in the
middle to obtain functionality of encryption in the memory.

In this thesis we do a careful design of the MiddleMan and also do a prototype
implementation of the design in a Spartan 3E FPGA board. We decided to use
an FPGA, because it provides high �exibility in terms of low level, fast hardware
applications. In addition, the Spartan 3E board also provides a low cost FPGA

1



2 Chapter 1

solution. We have performed extensive testing with the prototype using di�erent
computing environment and we found the device to work satisfactorily.

1.1 Storage Security and the MiddleMan

Bulk storage in modern computing devices is provided through hard disks or NAND
type �ash memories. Though the technology behind these two options are quite
di�erent, they are similar in that both of them are organized as sectors. A sector is
the smallest addressable part of these storage systems and the host computing device
reads or writes on these medias at sector level granularity.

There exist a rich cryptographic literature which addresses the problem of en-
crypting sector oriented storage media. Also, there is a consensus in the cryptographic
community that a class of encryption algorithms, called tweakable encryption schemes
(TES) are best suited for the application [20]. To date there are numerous propos-
als of TES which are e�cient and proven secure in a well accepted and reasonable
security model.

The speci�c application area where TES can be deployed is called �in-place disk
encryption�. In this application the encryption algorithm is part of the disk/memory
controller and it encrypts sectors before it writes to the disk and decrypts sectors
before it sends them to the operating system. This model is general and can be
applied to any storage media organized into sectors, irrespective of the other high
level systems like operating systems, �le systems, etc.

There are two relevant active standards which speci�es cryptographic algorithms
for storage encryption. The IEEE 1619-2007 [3] speci�es an algorithm called XTS-
AES [30], and the IEEE 1619.2-2010 [4] speci�es two algorithms EME2 [21, 18] and
XCB [31]. EME2 and XCB are TES1. XTS-AES is not a TES, and the security
guarantees that XTS-AES provides are much less than those provided by any secure
TES, in particular XTS encryption is vulnerable to tampering which any TES can
resist to some extent. Security limitations of XTS are widely known and some details
regarding this can be found in [2, 17].

The advantage of XTS over any known TES is its e�ciency, as it uses far less
operations than any known TES and thus when implemented either in software or
hardware would be much more e�cient both in terms of speed and area compared
to any TES. But it is to be noted that there have been extensive studies on imple-
mentation of TES both in software [17] and hardware [29, 7, 10, 28] which suggests
that a TES when implemented using reasonable resources can exceed the data rates
of modern disk/memory controllers. Hence there is no e�ciency barrier for the use
of TES in the required application, and given that TES are more secure it should be
preferred to the XTS algorithm.

1Recently there was some attacks reported on XCB [9, 22], which questions the so far known
security properties of XCB. These observations thus puts into doubt the security of XCB and also
the standard which speci�es it.

CINVESTAV Computer Science Department



Introduction 3

In this work we are interested in encryption of USB memories. To apply in-place
disk encryption in case of USB memories, the most suited design strategy would
be to implement the encryption algorithm within the memory controller. Thus, the
encryption unit would be part of the memory stick. Such products are commercially
available [25], for example, Kingston, which is a major player in the market of USB
memories, has a spectrum of o�erings of secure USB drives [1]. As expected the
details of these designs are not publicly available, but they reveal the encryption
algorithms that they use. The secure USB drives marketed by Kingston either use
XTS (as in Data Traveller Vault Privacy 3.0 and Data Traveller 6000) or CBC (as in
Data Traveller Vault Privacy Managed and Data Traveller 4000). It is curious that
these commercially available products do not implement any TES, which is known to
be the best suited algorithms for this application. The reason behind this is probably
both CBC and XTS are much less complex than most known TES. It is to be noted
that CBC is a privacy only block cipher mode, which does not provide adequate
security for disk encryption and as already discussed, XTS though standardized for
disk encryption purposes, cannot match the security levels provided by a secure TES.

The design that we propose in this thesis is di�erent from the commercial products
described above. We aim to achieve a generic device for USB memory encryption,
which would be independent of both the memory device and the host. Our proposal,
the MiddleMan, acts as a encryption interface between any host and any USB bulk
storage device. The most important advantage of this philosophy is that we do not
require to depend on the USB memory vendor for its security, we can use an encryp-
tion algorithm of our choice to encrypt our memory. Moreover, a single encryption
device can be used to encrypt multiple memories.

To achieve the above mentioned objective, the MiddleMan has both the function-
ality of an USB host and a device. In simple terms, the MiddleMan accepts two USB
connections, with one it connects to the memory device and with the other it con-
nects to a host (for example a PC). To the memory device, it acts like a host and
thus receives bulk data transfers and redirects to the real host. To this real host the
MiddleMan posses as an USB device. MiddleMan has an encryption algorithm residing
within it: the host to the memory device transfers are encrypted and the transfers
from the memory device to the host are decrypted. While encrypting/decrypting the
MiddleMan follows the philosophy of in-place disk encryption, i.e., it performs sector
wise encryption/decryption of all bulk transfers which passes through it.

The basic design of MiddleMan can support any encryption algorithm. In our
implementation we use a speci�c TES which is called STES [10]. STES is a recent
proposal which is very di�erent from existing TES. The di�erence is that STES was
designed with the goal that when implemented suitably, it would have a very small
hardware and power footprint. This characteristic of STES is very important when
is used in MiddleMan, as this gives us a secure, e�cient and low cost encryption
algorithm.

The design of MiddleMan was done so that a big part of the design can be imple-
mented within a recon�gurable fabric like a �eld programmable gate array (FPGA).
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Figure 1.1: The prototype of the MiddleMan. The yellow rectangle marks the hard-
ware extension S3USB that we attached with the Spartan 3E board for implementing
the physical layer. a) Device USB port, b) Host USB port, c) Serial port for debug-
ging, d) FPGA con�guration port.

With the advent of small, low power and cheap FPGA families like Spartan , Lattice
etc., it may be possible that a practical realization of MiddleMan has an FPGA in it.
This would enable recon�gurability, then at least the built-in encryption algorithm
may be suitably changed according to diverse security needs or local security legis-
lation. Thus, MiddleMan provides a highly �exible and generic way to implement in
place encryption in a variety of USB mass storage devices, which can be practically
useful. Moreover, to the best of our knowledge there does not exist a device or a
design which is even similar to the design philosophy and goals of the MiddleMan.

This thesis also includes a prototypical implementation of most functionalities of
MiddleMan. The implementation was done in a Spartan 3E starter board. This board
is equipped with some rudimentary USB facilities, but these were not enough for our
purpose. Thus, we needed to extend the board with some custom designed hardware
where we implement the USB physical layer. We call this special add on to the board
as S3USB. This extended board can be of independent interest, and can serve as a
test platform for prototypical implementations of other applications, which uses the
USB protocol.

To achieve the intended functionality, we had to implement the whole USB pro-
tocol from scratch in an FPGA. There exist some open FPGA cores [27, 36], but we
found them to be in su�cient for our purpose. In our design, we implement the full
device USB protocol and additionally implement the part of the host protocol, which
is required for our design. Finally we suitably aggregate an FPGA implementation
of STES in our design to obtain the full functionality of MiddleMan.

The �nal prototype that we developed is shown in Figure 1.1. As is clear from the
�gure, for implementing the prototype we had to extend the Spartan 3E board by a

CINVESTAV Computer Science Department



Introduction 5

custom built circuit, the S3USB (marked by a yellow rectangle in the �gure). The
device and host USB ports (marked a and b respectively in the �gure) are parts of
S3USB. For using the device one needs to insert a USB memory in port b and connect
it to the host (a PC, laptop, tablet etc.) through port a. Once such a connection
is made, all data written to the USB memory by the host gets encrypted and any
data read by the host from the USB memory gets decrypted by the MiddleMan.
For enabling encryption functionality in any USB memory, the memory needs to be
formatted after it is connected to the host through the MiddleMan. This ensures
that the boot sector and the partition table in the memory are also encrypted. Thus
if it is connected to any host without the MiddleMan, the host will not recognize
the data inside the USB memory2. But when connected with the MiddleMan the host
receives the data in a decrypted form, and thus usual functionality of an USB memory
resumes.

As of now, the cryptographic key is hard coded in the device, thus for security,
this device has to be physically secure, i.e., if an adversary has access to both the
encrypted memory and the MiddleMan then no security remains. This is because we
have not implemented any specialized key management in the system. The design of
MiddleMan allows for other modes of key inputs and we suggest various ways in which
keys can be managed in the device. We plan to implement them in the near future.

1.2 The Organization of the Thesis

This thesis is organized into a total of eight chapters including the current chapter.
Next we give a brief overview of the contents of the following chapters.

In Chapter 2 we discuss the general problem of storage encryption and tweakable
enciphering schemes, which are the state of the art schemes for in-place storage en-
cryption. In this Chapter we also present the detailed algorithm for STES [10], which
is the algorithm that we selected for incorporation in the MiddleMan. The hardware
design for STES is also brie�y discussed in this Chapter.

In Chapter 3 we discuss the basics of the USB protocol. As this protocol forms
the heart of MiddleMan, we discuss all relevant aspects which we required for the
design and implementation of our device.

In Chapter 4 we give a design overview of the MiddleMan. In this chapter we
carefully de�ne the design goals of MiddleMan, and then do a systematic exploration
of the design space and concretize our design decisions. Finally, we present the basic
architecture of the MiddleMan. The design decisions are highly motivated by the
technology we used to implement it. In this chapter we also discuss some basic
implementational issues.

In Chapters 5 and 6 we provide the details of our design and implementations.
In Chapter 5 we discuss in detail the design and implementation of the extension

2Some operating systems like Windows, would ask to format the device as if there was no data,
doing so will destroy the encrypted information
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board for Spartan 3E. As discussed earlier we use the extension to implement some
functionality of the USB physical layer. This chapter also discuss the details of the
circuit diagram along with the speci�cations of the printed circuit board that we
designed for the purpose.

InChapter 6 we discuss the details of the USB protocol along with the encryption
algorithm implemented in the FPGA. This chapter provides all details related to how
the device and host protocols run inside the MiddleMan. In this Chapter we also
provide the detailed circuit diagrams of the various units that implements the whole
functionality of the MiddleMan.

In Chapter 7 we discuss some performance results for the device. We brie�y
discuss the various tools that were used to debug and test the device. Then, we
present the performance of the device in terms of data transfer rates and FPGA
utilization.

We conclude the thesis in Chapter 8 and point out the limitations of our imple-
mentation and also discuss various ways to overcome these limitations and improve
the design.
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Chapter 2

Secure Storage of Data

In this chapter we discuss about storage encryption. The purpose of such an encryp-
tion is to protect data inside a persistent media. This data may be the target of a
malicious entity accessing the device, either virtually trough malicious software or
physically by stealing.

The main goal of this Chapter is to introduce tweakable enciphering schemes
(TES) and to describe a speci�c TES called STES. For that purpose we need to
�x some notations which we do in Section 2.1. Then, in Section 2.2 we discuss
what storage encryption is and how we can achieve it by using TES. In Section
2.3 we provide a formal de�nition of TES, and also brie�y mention some existing
constructions. In section 2.4 we present STES, which is the scheme of choice for this
work. The description of STES presented in this Chapter closely follows the original
work where STES was �rst proposed [10]. In Section 2.5 we discuss a hardware
architecture of STES which we used in our prototype.

2.1 Notations

Binary strings: By {0, 1}∗ we denote the set of all binary strings and {0, 1}n denotes
the set of binary strings of length n. For X, Y ∈ {0, 1}∗, by X||Y we denote the
concatenation of X and Y . |X| denotes the length of X in bits. bits(X, i, j) denotes
the binary string formed by the substring of X extending from position i to position
j. By X ≪ r we mean a r bit circular left shift of X, i.e. if X = 011011 then
X ≪ 2 = 101101.
Finite �elds and string representations: By Fq we mean a �nite �eld with q
elements. We shall often treat n-bit binary strings as elements in F2n . For such a
treatment we would see a n bit string as a polynomial with coe�cients in {0, 1}, i.e.
if A = an−1an−2 . . . a1a0 be a binary string then we will treat A as the polynomial
A(x) = a0 + a1x+ · · ·+ an−1x

n−1, which is of degree at most n− 1. The addition of
elements A,B ∈ {0, 1}n is de�ned as A ⊕ B, where the operation ⊕ denotes the bit
wise xor of the strings. For de�ning multiplication of strings A and B we consider
them as polynomials A(x), B(x) and de�ne AB = A(x) · B(x) mod q(x) where q(x)

7



8 Chapter 2

is an irreducible polynomial of degree n.

2.2 Storage Encryption

Common storage media like hard disks, �ash memories etc. are organized into sec-
tors of equal sizes. Securing data stored inside storage systems organized into sectors
is best achieved through a paradigm called �in-place encryption�. This type of en-
cryption sees data as a collection of sectors, and it does not know about the high
level organization (like �les and directories) of the data. The best way to achieve
in-place encryption is to implement the encryption algorithm within the controller of
the storage device, i.e., the encryption scheme should be a part of the storage media
itself not a part of the host computing system. In an in place encryption, when the
operating system writes a block, the controller encrypts the transmitted data before
being stored. Similarly, for a read procedure, the requested block is decrypted inside
the memory controller before being sent to the operating system. The obvious perfor-
mance guarantees required for such encryption schemes is that its throughput should
match the data rates of the storage device to prevent visible delays in data transfers.

The most accepted solution to achieve storage encryption is by the use of Tweak-
able Enciphering Schemes (TES) [20], which we discuss in the next section.

2.3 Tweakable Enciphering Schemes

Let Key, Tweak, Msg be a �nite non empty sets which we call as the key space, tweak
space and message space respectively. A tweakable enciphering scheme is a function
E : Key × Tweak ×Msg → Msg. For K ∈ Key, T ∈ Tweak and M ∈ Msg we denote
E(K,T,M) by ETK(M). It is required that E has the following properties:

1. For every K ∈ Key, and every T ∈ Tweak, ETK : Msg → Msg is a permu-
tation, which in turn implies that there exist an inverse function D : Key ×
Tweak×Msg → Msg, such that for every K ∈ Key, T ∈ Tweak and M ∈ Msg,
DTK(ETK(M)) = M .

2. E is length preserving, i.e., for every K ∈ Key, T ∈ Tweak and M ∈ Msg,
|ETK(M)| = |M |.

In addition, E is required to have some security properties. In formal terms, a
secure TES is supposed to be a strong pseudo-random permutation [28]. As we would
not further require to treat TES in a formal manner thus we do not try to formally
de�ne security properties of TES here. Informally, for a secure TES, the outputs
of both E and D should �look� like random strings to any computationally bounded
adversary.

For the purpose of disk encryption the set Msg should contain equal length strings
of size same as the sector size of the storage media where the algorithm needs to be
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applied, for current hard disks the sector sizes are 4096 bytes and for USB memories
it is 512 bytes. The tweak is considered to be the sector address. The tweak provides
some variability of the cipher text in the sense that if the same message is stored
in two di�erent sectors (with di�erent sector addresses) then they get encrypted by
distinct tweaks and hence the corresponding ciphertexts are di�erent.

In the last decade there has been signi�cant advancements in constructions of
secure TES. The �rst complete construction of a TES to be used for disk encryption
was CMC [20]. After this, several schemes appeared in the literature, and all the
schemes use a block-cipher as the main cryptographic primitive. Currently available
TES are classi�ed in three main groups: encrypt-mask-encrypt, hash-counter-hash
and hash-encrypt-hash. We brie�y discuss these three paradigms of TES construction
next:

• Encrypt-Mask-Encrypt type schemes have two layers of encryption with a
lightweight masking layer in between. Examples from this class of schemes are
CMC [20], EME [21] and EME∗ [18].

• Hash-Counter-Hash type schemes have two layers of universal hashing with
a counter mode of encryption in between. XCB [31], HCTR [37], HCH [8] and
HMCH [32] are some examples of this class of schemes.

• Hash-Encrypt-Hash uses two universal hash functions along with an Elec-
tronic Code Book encryption step in between. Examples of this class of schemes
are PEP [11], TET [19] and HEH [33] etc.

In terms of e�ciency, to encrypt a m block message (where the block size is
same as the block size of the underlying block cipher, for example, for AES the
block size is 128 bits) the hash-encrypt-hash type schemes require about 2m block
cipher calls. The other schemes require both block cipher calls along with �nite �eld
multiplications. HMCH and HEH require about one m block cipher calls and m �nite
�eld multiplications, all other schemes mentioned above in the hash-counter-hash and
hash-encrypt-hash categories require about m block cipher calls and 2m �nite �eld
multiplications.

Recently a TES called STES was proposed in [10]. STES is di�erent from the
previous proposals by the fact that it uses stream ciphers instead of block ciphers.
The main motivation behind the design of STES was to have a secure TES which
when implemented in hardware would have a small hardware footprint, such that the
algorithm can be used for encryption in small and power constrained devices. In [10]
STES was implemented with various datapaths, and the results demonstrate that
STES provide excellent time-area trade-o� and when implemented in certain class of
FPGAs has very low power consumption. Because of these encouraging features of
TES we decided to use STES in MiddleMan. In the next section we give an overview
of the construction of STES which follows closely the description in [10].
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2.4 STES Construction

The two main building blocks of STES are a special universal hash function called
MLUH and a stream cipher.

A Stream Cipher is a function SCK : {0, 1}` → {0, 1}L where ` << L. This
function takes as input an initialization vector (IV) of small length ` and outputs a
long and random looking string L.

STES construction also uses a particular hash function called Multilinear Universal
Hash. A multilinear hash function with output length b and datapath d is de�ned as

MLUHd,bK (M) = h1||h2|| · · · ||hb

where the input messageM is written asM = M1||M2|| · · · ||Mm, the key K is written
as K = K1||K2|| · · · ||Km+b−1, such that |Mi| = d for 1 ≤ i ≤ m and |Ki| = d for
1 ≤ i ≤ m+ b− 1, and

h1 = M1 ·K1 ⊕M2 ·K2 ⊕ ...⊕Mm ·Km

h2 = M1 ·K2 ⊕M2 ·K3 ⊕ ...⊕Mm ·Km+1

· · · · ·
hb = M1 ·Kb ⊕M2 ·Kb+1 ⊕ ....⊕Mm ·Kb+m−1.

 (2.1)

The additions and multiplications in the above equations are in F2d .
STES uses a stream cipher with IV SC, and a multilinear hash function as shown

in Figure 2.1. The algorithm also makes calls to an external function called Feistel

which is shown in Figure 2.2.
The algorithm is parameterized on the key K and tweak T , additionally it uses a

string fStr. It has been mentioned in [10] that the string fStr can be a public constant.
The algorithm assumes that the length of the IV of the stream cipher used is ` bits
and the datapath of the MLUH (described in Eq. 2.1) is d.

2.5 Implementation of STES

In this work we did not implement the STES, but used an implementation done by
Cuauhtemoc Mancillas-López. We only adapted the implementation for its proper
use within the MiddleMan. For completeness we describe brie�y the architecture of
STES that we used, the description again is adopted from the original article [10].

For our implementation we instantiated the stream cipher using Trivium, which
uses a 80 bit IV, and we used a MLUH with 8-bit data path. The architectural
overview is shown in Figure 2.3. Next we describe the architecture with reference to
the algorithm in Figure 2.1.

The circuit presented in Figure 2.3 consists of the following basic elements:

1. The MLUH constructed with 8-bit multipliers.
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STES.EncryptSTES.EncryptSTES.EncryptTK(P )

1. b← `
d ;

2. b1 ← |P |+|T |−2`
d ;

3. `1 ← (b1 + b− 1)d;
4. `2 ← (2b− 1)d;
5. `3 ← |P | − 2`;

6. P1 ← bits(P, 1, `); /* |P1| = `) */
7. P2 ← bits(P, `+ 1, 2`); /* |P2| = ` */
8. P3 ← bits(P, 2`+ 1, |P |); /* |P3| = `3 */

9. τ ← SC`1+`2+`K (fStr);
10. τ ′ ← bits(τ, 1, `1);
11. β ← bits(τ, `1 + 1, `1 + `);
12. τ ′′ ← bits(τ, `1 + `+ 1, `1 + `+ `2);

13. Z1 ← MLUHd,bτ ′ (P3||T )⊕ β;
14. A1 ← P1;
15. A2 ← P2 ⊕ Z1;

16. (B1, B2,W )← Feistel`,dK,τ ′′(A1, A2, `3);

17. C3 ← P3 ⊕W ;

18. Z2 ← MLUHd,bτ ′ (C3||T )⊕ (β ≪ 1);
19. C1 ← B1 ⊕ Z2;
20. C2 ← B2;
returnreturnreturn(C1||C2||C3);

STES.DecryptSTES.DecryptSTES.DecryptTK(C)

1. b← `
d ;

2. b1 ← |C|+|T |−2`
d ;

3. `1 ← (b1 + b− 1)d;
4. `2 ← (2b− 1)d;
5. `3 ← |C| − 2`;

6. C1 ← bits(C, 1, `); /* |C1| = `) */
7. C2 ← bits(C, `+ 1, 2`); /* |C2| = ` */
8. C3 ← bits(C, 2`+ 1, |C|); /* |C3| = `3 */

9. τ ← SC`1+`2+`K (fStr);
10. τ ′ ← bits(τ, 1, `1);
11. β ← bits(τ, `1 + 1, `1 + `);
12. τ ′′ ← bits(τ, `1 + `+ 1, `1 + `+ `2);

13. Z2 ← MLUHd,bτ ′ (C3||T )⊕ (β ≪ 1);
14. B1 ← C1 ⊕ Z2;
15. B2 ← C2;

16. (A1, A2,W )← InvFeistel`,dK,τ ′′(B1, B2, `3);

17. P3 ← C3 ⊕W ;

18. Z1 ← MLUHd,bτ ′ (P3||T )⊕ β;
19. P1 ← A1;
20. P2 ← A2 ⊕ Z1;
returnreturnreturn(P1||P2||P3);

Figure 2.1: STES: A TES using SC and MLUH. The `-bit string fStr is a parameter
to the whole construction. The length of the IV of SC is ` and the data path of MLUH

is d. This �gure has been taken verbatim from [10].
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Feistel`,dK,τ ′′(A1, A2, i)

1. H1 ← MLUHd,bτ ′′ (A1);
2. F1 ← H1 ⊕A2;

3. (G1,W )← SC`+iK (F1);
4. F2 ← A1 ⊕G1;

5. G2 ← SC`K(F2);
6. B2 ← F1 ⊕G2;

7. H2 ← MLUHd,bτ ′′ (B2);
8. B1 ← H2 ⊕ F2;
returnreturnreturn(B1, B2,W );

InvFeistel`,dK,τ ′′(B1, B2, i)

1. H2 = MLUHd,bτ ′′ (B2);
2. F2 = H2 ⊕B1;

3. G2 = SC`K(F2);
4. F1 = B1 ⊕G2;

5. (G1,W ) = SC`+iK (F1);
6. A1 = F2 ⊕G1;

7. H1 = MLUHd,bτ ′′ (A1);
8. A2 ← H1 ⊕ F1;
returnreturnreturn(A1, A2,W );

Figure 2.2: The Feistel network (and its inverse) constructed using a stream cipher
and a MLUH. The variable ` is the length of an IV for SC and d is the data path
of MLUH. This de�nition is di�erent from the usual Feistel construction: a positive
integer i is provided as an additional input and a binary string W of length i is
returned as an additional output. This �gure has been taken verbatim from [10].

2. Two stream cipher cores labeled SC1 and SC2.

3. Two 80-bit registers RegH1 and RegH2 which are used to store the output of
MLUH.

4. Four registers labeled regF1, regF2, regKh and regβ. All these registers are
80 bits long and are formed by ten registers each of eight bits connected in
cascade, so that they can be used as a FIFO queue.

5. One special register regβ1 which is able to store a 80-bit data and rotate it
in one bit position. This register outputs 8-bit data each clock cycle when the
control input ce is activated.

6. Seven multiplexers labeled 1, 2, 3, 4, 5, 6 and 7.

7. The control unit whose details are not shown in the Figure.

8. The connections between MLUH and the registers RegH1, RegH2 have a
data path of 80 bits. All other connections have a data path of 8 bits.

9. The input lines Mi, IV and K which receives the data and tweak, the initial-
ization vector and the key respectively.

10. The output line Ci which outputs the cipher.

TheMLUH computes the MLUH, it receives as inputs message blocksMi, tweak
blocks Ti and key blocks Ki and give as output the result of MLUH in its output
port S. The register RegH1 and RegH2 receive the output from S as input, in this
case |S| = 80 bits. The registers RegH1 and RegH2 are designed to give eight bit
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Figure 2.3: Architecture of STES
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blocks as outputs in each clock cycle in their output port BO. The MLUH receives
its input from the 3 × 1 multiplexer labeled 1. Notice, that in the algorithm of
STES, the MLUH is called on three di�erent inputs. Multiplexer 1 helps in selecting
these inputs. In the algorithm MLUH is called on two di�erent keys τ ′ and τ ′′, thus,
MLUH can receive the key from two di�erent sources: the key τ ′ is received directly
from the output of the stream cipher SC1 or SC2. The key τ ′′ is received either
directly from stream cipher SC1 or from the register regKh which is used to store
τ ′′. To accommodate these selection of keys the input port Ki ofMLUH receives the
input from the 2× 1 multiplexer 5.

We use two stream ciphers SC1 and SC2. Both take the key from the input line
K of the circuit. SC1 receives the IV from multiplexer 2, it selects between input line
IV or F1. Multiplexer 3 feeds the IV to the stream cipher SC2, it selects between
IV or F2.

In the algorithm of STES we can see that the output of MLUH is xored with
the value of β, or β ≪ 1, depending which hash is computed Z1 or Z2 and whether
encryption or decryption mode is being executing. The selection between these two
values is made with Multiplexer 7.

In the encryption mode the stream W is generated using SC2 but in the decryp-
tion mode it is generated by SC1. Multiplexer 6 is used to select the correct stream
cipher to produce the cipher text or plain text.
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The Universal Serial Bus

The Universal Serial Bus (USB) is a popular interface, which has been in use for
several years. Almost all computer devices use this interface to provide various func-
tionalities, ranging from basic I/O to video and audio devices.

In this chapter we provide general information on the most important aspects of
the USB interface. We begin with an introduction to the bus in Section 3.1, this is
important to understand the bus interconnection. Then, we discuss the internal USB
components. In Section 3.2 we give a short introduction to the Physical Layer (PHY),
in Section 3.3 we discuss about the Serial Interface Engine (SIE) and in Section 3.4
we discuss the USB Endpoints (ENP). These components are the building blocks for
every USB device.

Section 3.5 introduces the transactions, which are the lowest level protocol of the
USB communication. We also present the packet structure in this section. Transfers
are build upon transactions, we discuss about the transfer types in Section 3.6.

Some tables and �gures, which we used to explain several parts of the protocol,
where partially taken from the USB speci�cation [12] or the book by Axelson [6]. The
description of the bus and its functionality that we provide here is not detailed, the
reader may consult [12, 6] for more detailed information on the USB speci�cation.

3.1 USB Basics

In this section we discuss about the basics of the USB speci�cation. We begin by
de�ning the bus entities and its topology in Section 3.1.1. Then we present the four
speeds available in Section 3.1.2.

3.1.1 Components of the bus

USB is an interface created to achieve communications between a host entity and
several devices. The purpose of this communication is to provide extra functionality
to the host, which can be a computer or an embedded system.
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Several entities can interact in the bus at the same time. We list some of these
entities along with their basic functionality next:

• Host: Master and manager of the bus, it detects newly attached devices and
con�gures them in order to begin communication. It schedules bus time for
each of the devices attached to the bus.

• Device: This entity provides some functionality to the host. The most common
functionality is the external data storage.

• Hub: The Hub routes communications between the Host and any other Hub or
device attached to it's ports. It also manages bus speed conversion (low speed
devices connected to a high speed bus). The Hub can have multiple ports where
Devices or other Hubs can be attached. The host connects directly to a Hub
called the �Root Hub�.

• Compound device: this device is a combination of a Hub and a Device in a
single entity.

The bus topology is a tiered star as shown in Figure 3.1. In this topology, each
hub is a star center. Tiers are added by connecting additional Hubs in series, up
to �ve tiers can be attached with a total number of 127 devices (including the root
Hub). Despite the limit in the number of devices, it is impractical to have this many
devices attached to the bus at the same time. The host assigns bus time based on
the number of devices connected to the bus. Too many devices means less bus time
for each of them.

Host

Root Hub

Hub

Hub

Function

Composite

Function Function

Hub

Function

Level 2

Level 1

Level 3

Level 4

Function

Figure 3.1: USB topology
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Inside each entity there are three basic components, the Physical Layer (PHY),
the Serial Interface Engine (SIE) and the Endpoint (ENP), their relationship is shown
in Figure 3.2. The endpoint section is only available for Hubs and Devices.

Physical
Layer

D+

D-

Serial
Interface
Engine

Endpoint
section

Aplication

Figure 3.2: USB device components

3.1.2 USB Supported Speeds

The USB speci�cation de�nes four speed con�gurations, these are shown in Table
3.1. The host detects the speed of a device by checking the D- and D+ lines shown
in Figure 3.2. If a device has the D- line connected to 5V through a resistor, the host
detects it as a low speed device. Full speed is detected if the device has D+ connected
to 5V through a resistor instead. Every high speed device connects to the USB bus
at full speed. When the host requests a device to enable high speed, if this device
supports it, then it will respond to this request and the host enables high speed.

Table 3.1: USB speed con�gurations.
Speed Data rate Common applications Supported USB versions

Low speed 1.5 Mbps input peripherals 3.0 and below
Full speed 12 Mbps Data transfer 3.0 and below
High speed 480 Mbps Data, Audio and Video 3.0,2.0
Super speed 5 Gbps Data transfer 3.0

The host requests high speed by using a protocol called �Chirp Protocol�, it uses
the signaling that will be explained in Section 3.2. The Chirp Protocol follows a
sequence of K and J USB bus states, which we de�ne in Table 3.2. We explain the
basic steps next:

1. The host detects a full speed device, then it resets the bus.

2. The device responds to the reset by transmitting a full speed K state for no less
than 1ms.

3. When the host detects the K state for at least 2.5µs, it waits for the device to
stop transmission. After this, the host transmits a series of K and J states.
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4. The device must detect the state sequence K-J-K-J-K-J. Each state must last
2.5µs. After the sequence has been detected, the device enables high speed.

USB 3.0 and super speed are not covered in this work, refer to [6] for more infor-
mation on these standards.

3.2 The Physical Layer

The Physical Layer (PHY) is the component which deals with the physical connection
in the USB bus. The responsibilities of this component are to detect the start and end
of a packet in order to receive it properly. This component also decodes or encodes
data transmitted from/to the bus. Encoding is explained later in this section.

The USB bus uses di�erential signaling techniques in order to transfer data. A
di�erential signal is transmitted over a pair of wires which have opposite voltage
levels, the USB naming convention for this pair of wires is D+ and D−. Table 3.2
shows the signal levels and possible bus states.

Table 3.2: USB 2.0 signaling
Bus state Signal level

Di�erential 1 D+ =high, D− =low
Di�erential 0 D+ =low, D− =high
Single ended 0 (SE0) D+ =low, D− =low
Single ended 1 (SE1) D+ =high, D− =high
J state:
Low speed Di�erential 0
Full speed Di�erential 1
High speed High speed di�erential 1 1

K state:
Low speed Di�erential 1
Full speed Di�erential 0
High speed High speed di�erential 0 1

There are two types of PHYs de�ned by the USB speci�cation: upstream and
downstream. We will explained them next:

• A downstream facing PHY goes from a Host or Hub to a device. It has two
resistors connected to ground on D+ and D- lines.

• An upstream facing PHY goes from a device to a Hub or Host. This PHY has
a resistor on D- connected to 5V for low speed, for full speed, the resistor is
connected from 5V to D+ instead.

1Full and high speeds di�er in voltage levels, refer to USB 2.0 [12, pp. 145-147]
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The USB speci�cation requires the codi�cation of bus data in the format called
�non-return zero invert format� (NRZI). NRZI represents data by a level change in-
stead of a logic level. In NRZI, a logic '0' is represented by a state change, a logic
'1' is represented by not changing the previous state; Figure 3.3 shows a codi�cation
example. This codi�cation must also stu� bits inside the data as follows: When there
are six consecutive '1', the PHY must stu� a '0' before encoding, this guarantees
regular changes in the bus state. Regular changes are needed by the PHY to keep
synchronization of bus data.

0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1

Data

J
K

Figure 3.3: NRZI encoding

3.3 Serial Interface Engine

The Serial Interface Engine (SIE) has several functions inside a USB host or device
entity. These functions are summarized next:

• Data conversion: The SIE receives data in serial format and converts it to
parallel. It also converts transmitted data from parallel to serial.

• Error checking: The SIE performs error checking of the received data by
calculating a Cyclic Redundancy Code (CRC). This code is compared against a
CRC appended at the end of each received USB packet. The packet is discarded
if the codes di�er. CRC calculation procedure for USB packets is described in
Appendix A.2.

• Acknowledge successful transmissions: The SIE must send an acknowledge
(ACK) packet for every data packet received without errors, this process is called
�Handshake�.

3.4 Endpoints

The endpoint (ENP) is the main source and sink of data. In order to communi-
cate with a device, a host controller addresses a speci�c endpoint inside a device.
Endpoints can have two directions:

• IN endpoints store data to be sent to the host.
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• OUT endpoints receive data from the host.

Full and high speed devices can have up to 32 endpoints (16 IN and 16 OUT).
Every device must implement at least the default endpoint, which consists of the
endpoint 0 in both directions. Con�guration of any USB device is done through the
default endpoint using a transfer type called �control transfer�. We discuss this trans-
fer type in Section 3.6. In addition to control transfers, Endpoints can be con�gured
to respond to other types of transfers, which are also discussed in Section 3.6.

3.5 Protocol

This section describes the basics of the USB protocol. There are several concepts
behind low level USB communication, which we present in this section. We discuss
transactions and packet structures in Sections 3.5.1 and 3.5.2, these are the building
blocks for USB transfers, which we introduce USB transfers in Section 3.6.

3.5.1 Transactions

Transactions are the lowest USB communication protocol. They are performed in the
following sequence:

1. The host sends a token packet to the device

2. If the token is an OUT token, then the host send data. If the token is an IN
token, then the device sends data.

3. The receiver of the data in the last step responds with an acknowledge packet.
Only error free packets are acknowledged.

The host divides the bus time in intervals of 1ms called �Frames�. during each
frame, the host and device can exchange data. For high speed, the host divides each
frame in eight parts of 125 µs. These parts are called �Micro frames�. The host signals
the start of each frame by sending a special token called Start of Frame (SOF). The
device may use this packet to detect bus activity. If the host stops sending SOFs for
more than 3 ms, the device must enter into a suspend mode, which consumes less
power.

The structure of a transaction is shown in Figure 3.4. Transaction type is sent by
the host in the token stage, there are three types of transactions:

• IN: Data travels from the device to the host. If the device has no data to send,
then it responds with a handshake (acknowledge) packet.

• OUT: Data travels from the host to the device.

• SETUP: Data travels from the host to the device. This token is used to indicate
that the data contains a command for device con�guration.
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Sender: Host Host Device

Token Data HandshakeOUT/SETUP

Sender: Host Device Host

Token Data Handshake

Handshake

IN

or

Figure 3.4: Stages of a transaction

3.5.2 Packet Structure

A USB transaction is build by three types of packets described in Section 3.5.1, each
packet has its own purpose and structure. All USB packets begin with a Packet
Identi�er (PID) byte, this identi�er tells a host or device the type of data received.
The four less signi�cant bits of the PID byte contain the identi�er, the last four contain
error protection bits. The error protection bits are calculated by complementing the
value of the identi�er bits. Table 3.3 shows the PID types and a small description.

Token packet

Token packets (shown in Figure 3.5) are only issued by the host. Their purpose is to
begin a transfer and to address a speci�c device.

PID Address Endpoint CRC

8b 7b 4b 5b

Fields protected by the CRC �eld

Figure 3.5: Fields inside a token packet

The PID �eld of a token packet identi�es the type of token and the direction of
the transfer. A device must decode the Address and Endpoint �elds to determine if
the transaction corresponds to this device.

The address �eld stores the USB device address, there can be up to 127 possible
addresses including a default address `0'. When a device powers up or is reset, it's
address register must be set to `0'. Once a device is con�gured, the host assigns a
di�erent address and the device must respond to any packet with an address �eld
equal to the one it was assigned. The next �eld in the packet is the endpoint, this
�eld is four bits long. It addresses 16 endpoints, the PID �eld is used to determine if
the endpoint addressed is an IN or OUT endpoint. A SETUP token is only considered
to address an OUT endpoint.
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Table 3.3: USB Packet IDs.
Type Name PID(bits 3 to 0) Description
Token OUT 0001B Host to function transaction

IN 1001B Function to host transaction
SOF 0101B Start of frame
SETUP 1101B Host to function setup transaction

Data DATA0 0011B Data packet PID even
DATA1 1011B Data packet PID odd
DATA2 0111B Data PID for high speed isochronous

transactions
MDATA 1111B Data packet for high speed split

and isochronous transactions
Handshake ACK 0010B Receiver accepts error-free

data packet
NAK 1010B Receiving device cannot accept or

transmit data
STALL 1110B Endpoint halted or control request

unsupported
NYET 0110B No response yet from the receiver

Special PRE 1100B Token to enable communications with
low speed devices

ERR 1100B Split transaction error handshake
(reuses PRE value)

SPLIT 1000B High speed split transaction token
PING 0100B High speed �ow control for a bulk or

control endpoint
Reserved 0000B Reserved PID

The start of frame (SOF) token is a special type of packet, it can only be issued
by the host and a device must not acknowledge its reception, Figure 3.6 shows this
packet structure.

PID Frame number CRC

8b 11b 5b

Fields protected by the CRC �eld

Figure 3.6: Fields inside a SOF packet.
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Data packet

Data packets, shown in Figure 3.7, are identi�ed by any Data PID (shown in table
3.3). The data �eld can be up to 64 bytes for full speed and 512 bytes for high speed.
The CRC �eld in this case is two bytes long (16 bits) and protects only the data �eld
in the packet.

PID Data CRC

8b 64 or 512 Bytes max 16b

Fields protected by the CRC �eld

Figure 3.7: Fields inside a data packet.

Handshake packet

The handshake packet is issued by the receiver of the data packet. It's purpose is to
report the status of the current transaction. If a data packet is received with errors,
no handshake is sent. The handshake consist of the PID �eld only (8 bits).

3.6 Transfer Types

This section describes the four transfer types de�ned for USB 2.0 (not to be confused
with transactions, which we explained in Section 3.5.1). Each transfer have their own
characteristics regarding latency and bus bandwidth. We must take care to select
the proper transfer type when designing a USB device. We discuss all transfer types
next:

Control transfer: This transfer is used to gather information, or send requests
in order to con�gure a device. This transfer is received by the default control
endpoint (Endpoint 0). Every device must support this endpoint.

A control transfer is shown in Figure 3.8, if consist of the following three trans-
action stages:

1. Setup stage: The host sends a setup transaction, it's structure is shown
in Figure 3.4. A Command is sent in the data packet.

2. Data stage: If the command in the Setup stage requires the host or device
to transmit more data, it is transmitted. This stage can have multiple IN
or OUT transactions, every packet in this stage has the same direction.

3. Status stage: A transaction is performed in this stage. If there was
no data stage or the direction of the previous transaction was from the
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host to the device, then the status stage is an IN transaction. An OUT
transaction is performed otherwise. This stage is used to report the status
of the transfer.

Transaction type: OUT OUT IN

Setup Data StatusControl OUT

Transaction type: OUT IN OUT

Setup Data StatusControl IN

Figure 3.8: Stages of a control transfer.

Control transfer are used by the host to con�gure a USB device. This con�gu-
ration process is called �Enumeration� and we discuss it in Appendix A.1.

Bulk transfer: This transfer may be used when there is the need to send big
amounts of data, which are not time critical. For this type of transfers, the host
allocates time for each packet when there is bus time available, therefore, a host
can take much time to complete this transfer if the bus is busy. If the bus is
otherwise idle, this type of transfer can be the fastest. Bulk transfers consist
only of one transaction, which begins with an IN or OUT token.

Interrupt transfer: This transfer may be used for devices needing a critical
time in their communications but don't require large amounts of data to trans-
fer. This transfer is adequate for I/O devices like keyboards, mouse or game
pads. The host guarantees a minimum bus bandwidth. The structure is similar
to Bulk transfers.

Isochronous transfer: This transfer is used to transmit large amounts of data,
which are time critical. The host guarantees a minimum bandwidth for these
transfers. In order to increase streaming speed, any error checking and retry is
disabled, therefore, this transfers are only suited for transmitting data where
error can be tolerated like in sound and video applications. These transfers
consist of a single transaction with a token and data stages, the handshake
packet is not present.

3.7 USB Device Classes

There are several devices which perform similar functions, like button events in a
mouse and keyboard, or data transfers to a printer or a network device. For such
similar functions, the USB speci�cation de�nes classes. Classes help to ease develop-
ment and compatibility, in addition, the operating system can have standard drivers
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for each class, this helps a device to operate properly without the requirement of ven-
dor speci�c drivers. This thesis focuses only on the mass storage device class. Every
external USB storage media use this class to communicate with a host.

We discuss the common architecture of a USB device in the mass storage class in
Section 3.7.1. For more about USB classes refer to [12, 6].

3.7.1 USB Mass Storage Class

The mass storage class de�nes several con�guration values and protocol de�nitions
in order to store or retrieve data inside a persistent medium. This class uses bulk
transfers, which we have discussed in Section 3.6. A USB device must support an
additional command set in order to send and receive user data, in this case the Small
Computer System Interface (SCSI) command set is used [34].

The USB de�nes a structure to transfer SCSI commands inside a data packet.
This structure is called a �Command Block Wrapper� (CBW), the last �eld of this
structure stores the SCSI command for the USB storage device to execute. In order
to know if a command was successfully executed, the host request status. The device
sends status information in a structure called �Command Status Wrapper� (CSW).
Both the CBW and CSW can be consulted in more detail in [5].

3.8 USB Storage Architecture

The common architecture for a USB memory device is shown in Figure 3.9. This
�gure shows all the speci�c parts any USB storage media should implement.

SIE Endpoint 0PHY

Bulk in
Endpoint 1-15

Bulk out
Endpoint 1-15

controller

Memory

controller

Memory

unit

Figure 3.9: A common USB memory architecture.
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The mass storage class de�nition speci�es at least the implementation of two
additional endpoints (besides endpoint 0). This is needed in order to transfer bulk
packets in both directions.

Data arriving to the bulk OUT endpoint is processed by the Device's controller.
Once a CBW arrives, the device executes it and then prepares the CSW in the bulk
IN endpoint. For SCSI commands, which require data, one of two cases may happen:

• The host writes data to the USB memory: After the host has sent the
CBW, it sends data packets. The USB memory must send a CSW when all
data packets are received.

• The host read data from the USB memory: After the host has sent the
CBW, the USB memory may send data. The USB memory must send a CSW
after all the packets where sent.
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Design Overview

In this Chapter we give an overview of the design of MiddleMan. We provide a
systematic exploration of the design space and argue why we chose a speci�c design
option.

The diagrams and discussions of this chapter does not carry much details. The
various design options discussed here are provided in a much elaborate manner in the
following two chapters.

4.1 Design Goals and Decisions

The main goal of this work is to protect data inside an USB memory device. In
order to achieve this protection, user data must be encrypted. This encryption can
be performed with one of the following methods:

• Host Encryption: Data is encrypted by software within the Host PC before
it is transmitted to the USB memory.

• Device Encryption: Data is transmitted to the USB memory, then it is en-
crypted within the memory.

• External Encryption: An encryption unit is attached between the Host and
Device. Data is encrypted in this external unit.

These three cases are shown pictorically in Figure 4.1. Each method has its
own advantages and drawbacks, which are summarized in Table 4.1. We used two
properties in order to compare the three methods. Device compatibility refers to the
number of USB memory devices that can be used with a particular method. For
instance, a USB with internal data protection can not encrypt other USB memory
devices. In contrast, host encryption can encrypt every USB memory device. Finally,
Host power refers to the computational power a Host needs to have in order to encrypt.
Data rate was not used for comparison, this is because it is highly dependent on the
speci�c implementation rather than the method itself. For instance, a Host encryption
method is faster on a high end PC rather than a digital camera or a smart phone.
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Plaintext
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Figure 4.1: USB memory encryption methods: a) Within the PC, b) In the USB
controller, c) In an external device.

Table 4.1: Comparison table between encryption methods of Figure 4.1.
Method Device compatibility Host power
Host encryption High High
Device encryption Low Low
External encryption High Low

We can see from Table 4.1 that the best method is the external encryption. Using
this method we can achieve the best compatibility with the lowest host power usage.
We decided to use this method to implement data encryption, in order to protect the
information inside a USB memory device. We called this device the �MiddleMan�.

CINVESTAV Computer Science Department



Design Overview 29

4.2 Design of the MiddleMan

In order to design the MiddleMan, we must �rst understand what happens between
a USB Host and Device. In Section 4.2.1 we will discuss the overall data �ow of
a USB memory device, the entities involved and what they expect to receive while
performing USB communications. Then in section 4.2.2, we will introduce the Mid-

dleMan's functionalities. The USB speci�cation de�nes a device and a host, in this
section we refer as Host PC to the USB host which controls the bus. We refer as
USB memory to the device attached to the bus. The MiddleMan also implements a
USB host controller in order to communicate with the USB memory, we refer to this
controller as the USB host controller. Host PC is just a name to avoid confusion, in
fact a Host can be any computer, tablet or similar device with at least one USB port
available.

4.2.1 Functionality of a USB Memory Device

When a Host PC and USB memory are interacting in the bus, there are two types
of data being exchanged: control data and user data. Control data is used to issue
commands to the USB memory in order to get information and set a con�guration.
User data is the actual information that is stored inside a USB memory. Before a
Host PC can store user data in a USB memory, it must gather information regarding
this particular device. This information contains, among other things, the device's
structure. This structure is the most important information inside a USB device. It
tells the Host PC how the hardware is organized and what resources are available.
Figure 4.2 shows the data �ow between a USB Host and a memory device. This data
�ow takes place in the following manner:

1. The Host PC sends a command or data to the USB memory.

2. The USB memory sends an acknowledge.

3. The Host sends a data request to the USB memory.

4. The USB memory responds with data.

5. The Host sends an acknowledge.

The USB memory can send a negative acknowledge (NAK) to signal the Host PC
that it does not have any data ready, NAKs send by the USB memory are omitted
from the �gure for simplicity.

4.2.2 Functionality of the MiddleMan

The MiddleMan must be able to operate without disrupting the USB functionality
discussed in the previous section. Figure 4.3 shows the expected USB data �ow when
the MiddleMan is attached between the Host PC and the USB memory.

The �ow of data in this case is as follows:
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Host PC USB memory

command or data

ack

data request

data

ack

Figure 4.2: USB communications data �ow.

1. The Host PC sends a command or data to the MiddleMan, the Host PC thinks
it is the real USB memory.

2. The MiddleMan sends an acknowledge to the Host PC and sends the captured
command or data towards the USB memory.

3. The USB memory sends an ACK upon reception of the command or data to
the MiddleMan, the USB memory sees MiddleMan as if it were the original Host
PC.

4. The Host PC sends a data request to the MiddleMan.

5. The MiddleMan responds with a negative acknowledge (NAK) and replicates
the data request towards the USB memory.

6. The Host PC will retry the data request until MiddleMan responds with data.

7. Middle man will respond any following data request with NAKs, and will also
retry the same data request to the USB memory until the USB memory responds
with data, at this point MiddleMan will send this data to the Host PC on the
next data request.

8. The host will send an acknowledge.
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Host PC MiddleMan USB memory

command or data

ack

data request
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data request

nak

data request
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ack

command or data

ack

data request

data

Figure 4.3: USB communications data �ow with MiddleMan.

As we can see, the MiddleMan must behave as if, it was not connected to the bus
and at the same time, it should be able to analyze and modify the information in
transit.

Figure 4.4 shows all the components inside the MiddleMan. These components
must be included regardless of the technology used to implement the design. In order
to implement MiddleMan, we consider several options, every option uses an FPGA to
implement the cryptographic part, along with some external components. Data �ow
inside MiddleMan's components is as follows:

1. The Host PC sends a command or data to theMiddleMan, USB device controller
sends an ACK to the Host PC.

2. The USB host controller sends this command or data to the USB memory.
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Figure 4.4: Components inside the MiddleMan implementation.

3. The USB memory sends an ACK upon reception of the command or data, which
is received by the USB host controller.

4. The Host PC sends a data request to the MiddleMan, USB device controller
responds with a NAK.

5. The USB host controller replicates this data request towards the USB memory.

6. The USB memory may respond with a NAK or data.

7. The USB host controller will retry the same data request if a NAK is received.
If data is received, the USB host controller will store the data inside a bu�er,
and then it sends an ACK to the USB memory.

8. The Host PC will retry the data request until MiddleMan responds with data,
the USB device controller will check the USB host controller's bu�er for data,
if there is no data it sends a NAK, it sends data otherwise.

9. The host will send an acknowledge, which is captured by the USB device con-
troller.

4.2.3 Design Options for MiddleMan

We considered three options for the design of the MiddleMan. We discuss these three
options below:

1. FPGA only:

This option is shown in Figure 4.5. It uses the direct pin connections of the
FPGA to drive the USB bus signals. The advantage of this choice is that just a
basic external component is needed, also full �exibility is achieved (we can work
with the smallest delay possible at low level). The drawback is the limitation
in signal quality. This approach was tested and proved to have good reception
but it has problems to transmit data back to the host PC.
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Figure 4.5: FPGA implementation.

2. FPGA + Microcontroller:

This option is shown in Figure 4.6. It uses a USB capable microcontroller in
order to handle USB communications and a FPGA to process the data. The
microcontroller considered for this option was the PIC18F4550, which is capable
of handling USB communications and ease the process by abstracting all low
level details of the protocol from the user. The drawback of this option is the
added delay to the processing time.

There are two types of USB ports, one type is used by the host in order to detect
devices, the other is used by the device to report speed. The PIC18F4550 has
only one device port and therefore, cannot communicate with another USB
device. A di�erent microcontroller with host capabilities may also be chosen.

FPGA

USB
Host

controller
and

encryption

PHY
host

PHY
device

controller

Micro Micro

USB
memory

Host

Figure 4.6: FPGA + microcontroller implementation.

3. FPGA + Physical layer (PHY):

This option is shown in Figure 4.7. It uses an external physical layer chip with
an FPGA. The advantage is that we have low level control, the system delay is
small and we can con�gure the physical layer chip to work as a host or device
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port. The drawback is that the implementation of the circuit and an external
manufacturer must be used in order to produce the board. In contrast with the
previous option, the microcontroller board can be fabricated in place.

FPGA

USB
device

controller

USB
Host

controller
and

encryption

PHY
host

PHY
device

PHY PHY

USB
memory

Host

Figure 4.7: FPGA + physical layer implementation.

Table 4.2 shows a comparison between all the options considered for the design
of the MiddleMan. In the table, FPGA Usage refers to the amount of physical
resources used inside the FPGA, System Delay refers to the processing time of the
MiddleMan, Signal Reliability refers to the quality of the signal inside the physical
connections of the USB bus and Flexibility is the freedom we have to process low
level information.

Table 4.2: Performance comparison between design options for the MiddleMan.
Option FPGA usage System Delay Signal Reliability Flexibility
(FPGA only) High Low Low High
(FPGA+ Low High High Low
Microcontroller)
(FPGA+PHY) Medium Low High High

We decided to use the third option (i.e. FPGA+PHY), the reason is that this
option provides the lowest system delay and the highest �exibility without sacri�cing
signal reliability. Choosing this option means we need an additional circuit imple-
menting the physical layer. We built an external circuit and attached this as an
extension to the Spartan 3E board. We call this additional circuit as S3USB.

4.3 Physical Layer Implementation

This part of the design implements communications between a USB host and device,
using the Spartan 3E board as a router device. Communications between the physical
layer and the FPGA board are performed through a 100 pin external port. The
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Physical layer (PHY) communicates using an 8 bit data bus plus 5 bits for control.
Our implementation uses two physical layer blocks for a total of 26 connection lines.
Figure 4.8 shows the basic structure of all the components. The host physical layer
needs an additional power source for an attached device, this power is taken from
the FPGA board. The current provided to the device is controlled by a current
limiter integrated circuit (IC) inside the host PHY block. This current IC protects the
system from any device, which could consume too much current. We implemented the
external PHY block by designing the S3USB board, according to the characteristics
we have just discussed.

5v power
source

FPGA

External 100 pin port

Spartan 3E starter board External PHY card

host
PHY

device
PHY

Figure 4.8: FPGA + physical layer external card.

The physical layer uses a standard protocol for the bus called �USB2.0 Transceiver
Macrocell Interface extension, Low Pin Interface� (ULPI) [38]. We implement this
protocol in the FPGA in order to send and receive data to the physical layer.

4.4 USB Protocol Implementation

ForMiddleMan the whole USB protocol needs to be implemented. Some USB protocol
implementations exists in the literature [27, 36]. These cores where not used for the
design of the USB controller of the MiddleMan. The �rst reference [27], was designed
to be used with a Cypress SX2 USB controller [15]. This controller is only capable of
functioning as a USB device, this means that we can not communicate with a USB
memory using this controller. The second reference [36] is a more generic design,
which is intended to interface with devices using UTMI, a standard protocol for USB
controller communications [39]. We didn't use this core as it has several components
that are not necessary for the implementation of the MiddleMan, also the UTMI
interface, although compatible with ULPI, adds more delay to the transmission of
data when interacting with an ULPI bus. The implementation of the MiddleMan

requires communication with a USB host and a USB memory device, while keeping
the lowest delay possible. For these reasons, the implementations in both references
were not used.
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The physical layer explained in the previous section, deals only with raw data,
which is transmitted or received on the bus. It provides every packet on the bus as
it is, the designer must implement a way to handle the low level USB protocol, from
�ltering USB packets, to acknowledge for any packet received without errors.

The USB protocol is implemented inside the FPGA. Figure 4.9 shows the location
of the block in the data processing path. To handle this protocol, we need a device and
a host block. The device block handles communications with the main host PC. The
host block handles communications with the USB memory device, and acts similarly
to the main Host PC. Implementing a host is not an easy task, it requires control over
many aspects of the USB speci�cation, like power management and bus time division
and administration. The host also detects newly attached devices, con�gures them
and checks whether they are high speed capable. All of these are performed by a host
in addition to perform the tasks of the low level USB protocol. In order for a host to
communicate with a USB memory device, it must be compatible with Small Computer
System Interface (SCSI) commands [34], and use a Command Block Wrapper (CBW)
packet, discussed in Chapter 3.7.1 in page 25, to carry these commands through the
bus. Implementing a full host inside a FPGA is impractical for this project as we
have limited space. Instead of implementing a full featured host, we implemented
only the basic functions. Bus time managing was omitted (as we only work with one
USB memory at a time). The SCSI protocol required is implemented, but instead
of generating the protocol, we can just use the packets received from the Host PC
and re-transmit them to the USB device. These two simpli�cations save design and
debug time, and reduces the space and complexity of a host controller. We name
the resulting component as �Packet Replicator�. This Packet Replicator receives and
transmits data from every endpoint and controls them.

host SIE

device SIEFPGA

USB device cotroller

USB host cotroller

Spartan 3E starter board External PHY card

host
PHY

device
PHY

Figure 4.9: Location of the protocol implementation.

ForMiddleMan to provide transparent communications in the bus, the device block
executes all the commands addressed to the USB memory device and ultimately, it
becomes a copy of the USB memory attached to it. At this point, the USB memory
and the MiddleMan have the same USB address, name, logical units, storage size, etc.
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The host PC can only see and communicate with the MiddleMan but it thinks it's
communicating with the USB memory attached at the other side of the MiddleMan.

The USB Packet Replicator acts as as a regular USB endpoint, but instead of
processing all the packets, it just transmits them to their destination. This process
is described as follows:

1. The host PC transmits a packet.

2. The Packet Replicator receives it, if it is a regular packet then it is transmitted
to the USB memory.

3. If the USB memory should respond to the packet, then the Packet Replicator
waits for a response.

4. The Packet replicator tells the USB device controller that there is data available,
and is sent to the host PC upon request.

This process should not take much time, and must work at low level. This is
why we chose a FPGA to implement the design. The Packet Replicator inside the
FPGA is capable of identifying all USB packets, and determine whether they contain
a command or user data.

STES unit

FPGA

USB host cotroller

Spartan 3E starter board External PHY card

host
PHY

device
PHY

Figure 4.10: Location of the encryption implementation.

4.5 USB Data Encryption

This part is implemented inside the host controller as shown in Figure 4.10. the
purpose of this unit is to encrypt user data only, allowing any other type of data
to be retransmitted without any modi�cations. It encrypts data using the hardware
implementation of STES described in Chapter 2 (in page 10). To encrypt data, STES
needs a key and a destination sector. The key is stored in a register inside the host
controller, it can be input using the FPGA buttons and switches, or by implementing
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custom USB commands. The sector value is taken from the CBW. The system only
encrypts or decrypts data after a SCSI write or read command is received. The data
�ow for encryption can be summarized as follows.

1. The Packet Replicator receives a write or read command, sector and data length
are stored.

2. The command is replicated to the USB memory device.

3. The next packet is treated as user data and encrypted (or decrypted). The same
is done for any other following packets until the Packet Replicator has received
all data packets.

During the encryption of each sector of data, only the host PC waits for the proper
response, the USB memory just receives or sends data upon request from the Packet
Replicator. In both cases the host PC and the USB memory device are not aware of
the Packet Replicator's presence.

Key management was not completely implemented at this point. We use a �xed
key for the encryption process, various options for key management would be discussed
in Chapter 8 (in page 89).

4.6 USB Storage Architecture Comparison

Section 3.8 (in page 25) discusses the common architecture for any USB storage
device. In this section we will show how we implemented this architecture inside the
MiddleMan's components shown in Figure 4.4.

Figure 4.11, shows the common architecture. This �gure highlights the compo-
nent locations mentioned in this chapter. The device controller component and the
Host controller and encryption component share part of the common architecture's
controller. The USB memory section can be replaced by any storage device. The
common architecture uses a memory controller and a memory unit, in contrast, the
proposed architecture uses a USB host port (host PHY included) to attach a second
USB device.

The proposed architecture can be easily modi�ed to encrypt other types of media
that can be replaced in the USB memory component shown in the �gure, from SD
memory cards to external hard drives.
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SIE Endpoint 0PHY

Bulk in
Endpoint 1-15

Bulk out
Endpoint 1-15

controller

Memory

controller

Memory

unit

Device controller

Host controller and encryption

USB memory

Figure 4.11: Common USB architecture with MiddleMan's block division.
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Chapter 5

Hardware Design

The design of theMiddleMan requires two USB physical layers connected to an FPGA.
In this Chapter we will discuss the design of an external device which e�ectively adds
USB communications to an FPGA. We named this device S3USB.

The FPGA board we have chosen is the Spartan 3E starter board. We will only
refer to it as FPGA through the rest of the chapter. This board features a 100 pin
connector, which we used to connect the S3USB device.

The chapter organization is as follows: In Section 5.1 we will talk about all the
design considerations for the development of S3USB. In Section 5.2 we discuss the
connectivity between the FPGA and the S3USB board. In Section 5.3 we explain
S3USB's functionality and how we designed the circuit. Finally, in Section 5.6, we
will talk about the features and limitations of S3USB.

5.1 Design Considerations

Some FPGA development boards provide basic USB communications, which allow
simple input peripherals to interact, others even have basic data transmission capa-
bilities. The aforementioned options are not optimal for data storage applications
like ours for the following reasons:

• They usually require a driver and/or software.

• Most of them use the available USB ports for con�guration or basic I/O.

• Common FPGA boards provide only USB device ports. They cannot be used
to implement a USB host controller.

• A common method to add USB capabilities to a device is by adding a dedicated
USB microcontroller. Most FPGA boards, which have a USB port, perform
USB communications through a microcontroller. The �rmware inside these
microcontrollers can not be changed easily.
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Because of the limitations in existing FPGA boards we decided to build an USB board
as an expansion to a FPGA. In this extended board we implement the MiddleMan

USB communications. Thus we are following the FPGA+PHY option as discussed
in Chapter 4 (in page 27). The board extension (which we call S3USB) is used to
implement the physical layer.

There are some design considerations to be taken into account for a proper design
of the FPGA+PHY approach, and the S3USB. We discuss them next:

• Connectivity: The Spartan 3E board provides several ports, which can be
used to connect external devices. There are simple pin connectors, which have
the advantage of easy interface prototyping. The drawback of these connectors
is that they have low pin count and don't support high speed signaling. The
board also provides a high speed connector with a 100 pin interface.

• Power: The Spartan 3E board provides 3.3V and 5V power sources for external
logic. The S3USB board needs at least a 5 Volts to drive one USB port. Some
components of the S3USB may use a 3.3 Volts source. We must be sure that
the FPGA board can source the S3USB properly.

• Compatibility: The S3USB must be able to communicate with a USB host or
device. It must be able to meet MiddleMan's requirements.

• Working frequency: S3USB must operate at a working frequency, which is
compatible with the FPGA board. Higher frequencies may put some synchro-
nization problems due to the distance from the FPGA to the connector where
S3USB will be attached.

• Routing: Careful routing considerations must be taken to reduce signal noise.
Routing deals with a proper placement of the copper tracks in a Printed Circuit
Board.

• Clocking: Clocking the S3USB can be done by providing a clock signal from
the FPGA or including independent crystal oscillators. FPGA clock sourcing
reduces the number of components inside the S3USB but may generate noise in
the clock signal. Crystal source uses more components but the clock signal may
be more reliable.

We decided to attach our circuit in the 100 pin expansion port of the Spartan
3E starter board. Event though the connector is not easily available, this port was
designed speci�cally for implementations with the characteristics of the S3USB board,
as we will discuss next.

5.2 Spartan 3E Connectivity

The Spartan 3E starter board has several external connectors, which can be used to
interface the FPGA with an external circuit. The best option for this project is the

CINVESTAV Computer Science Department



Hardware Design 43

external 100 pin port of the Spartan 3E board [40, p. 113], we will refer to this port as
FX2. Most of the pins in this port are tied to ground to support high speed signaling.
The FPGA provides two voltage sources to the FX2: a 3.3V and a 5V source. The
former can be used to power the components, while the latter may be used as the
source to drive the USB port of the S3USB.

Another important thing to consider for the design of S3USB is the clock source
and the clock routing. We describe next two di�erent possibilities of clock sources:

1. FPGA as a clock source:

The FX2 connector provides some pins for clock input and output to the FPGA.
These clock pins can be used to source a clock signal to S3USB. We can use the
FPGA as a clock source but this should be done carefully. A clock feedback
would be necessary for proper synchronization. This clocking approach reduces
the external component count at the cost of low working frequency and design
di�culty. Figure 5.1 shows a block diagram for this approach. If this approach
is well implemented, we can achieve full synchronization of the FPGA and the
S3USB board.

FPGA

FX2

Expansion
board

Clk

Clkfb

PHY PHY

Figure 5.1: FPGA clock sourcing.

FPGA clock sourcing requires a careful routing of the clock signal, also they
must be properly terminated. Termination is a method to reduce noise by
adding a circuit at the end. This prevents the signal to be re�ected to the
signal's source. Re�ection adds to much noise to the clock inputs of the circuit
components. Some techniques for proper termination can be found in [26, 14].

2. Crystal oscillator source:

Another clock sourcing method, shown in Figure 5.2, provides a crystal oscillator
for each clock input. This approach uses more components, particularly, one
crystal, one resistor and two load capacitors [16]. This approach o�ers better
clock stability for external components, in exchange of extra space, also we will
end up working with an asynchronous system. We decided to use this method
because calculations and tests are easier than designing a proper FPGA clock
source. If the FPGA clock source design was bad, we must redesign the whole
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PCB, wasting time and money. If the crystal oscillator fails, we can just change
the crystal or faulty components.

FPGA

FX2

Expansion
board

Clk

Clkfb

PHY PHY

Clk Clk

Figure 5.2: External clock sourcing.

The distance between the FPGA and the S3USB board must be considered. The
optimal placement for any interconnected component is right next to each other,
however, there are situations where this is not possible. This is the case of expansion
boards, if the distance between the components can not be changed, then we must
be careful in the routing designs to avoid synchronization errors.

5.3 Design of the S3USB Expansion Board

The �nal circuit schematic for the S3USB is shown in Figure 5.3. We will use the
reference labels of this schematic to explain the functionality of each component
through the rest of this chapter. Some components can have an associated number
next to the reference label. This number is the actual part we used in the �nal design.

5.3.1 S3USB circuit functionality

The S3USB circuit in Figure 5.3, is based upon two USB physical layer components
referred to as U2 and U3. These components are implemented with the USB3300 IC
[35]. They capture USB serial data from ports J2 and J3, and bu�ers it to a digital
bus connected to port J1. As discussed in Chapter 4, the MiddleMan implementation
requires two physical layers to communicate with a USB memory and a Host PC.
Components U2 and U3 are designed to be con�gured as a USB host or device and
thus, they successfully implement the communication requirements of the MiddleMan.

Communications between the FPGA and components U2 and U3 are performed
through port J1. Connections for each component are summarized in Table 5.1. This
table shows pin to pin connections between the FPGA, connector J1 and components
U2 and U3. Each component communicates through a parallel bus, which uses a
protocol called ULPI. We will discuss this protocol in Chapter 6. The control pins of
the bus are:
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Figure 5.3: PHY schematic.
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• RESET: This line reset the internal logic of units U2 and U3.

• NXT: This is the data throttle line. The FPGA must assert this line to insert
the current value of the DATA port.

• DIR: This line is controlled by U2 and U3. It signals the current ownership of
the bus: '0' FPGA, '1' U2 or U3.

• STP: Stop signal, the FPGA asserts STP when there is no more data to be
inserted.

• CLKOUT: This is the clock source from which the bus is synchronized. It
runs at 60 Mhz.

The S3USB board is divided in two blocks: the host and device block. The device
block consist of components U3, J2, X1 and all the associated capacitors and resistors
on coordinates A and B on Figure 5.3. This block was designed to work in a USB
device mode. For this mode, the circuit only requires a USB port to communicate
with a Host PC. The host block on the other hand, was designed to work in a USB
host mode. It consists of components U1, U2, J3, X2 and all the associated capacitors
and resistors on coordinates C through E.

Host mode is slightly more complex than device mode. It needs to provide a port
to connect an external USB device and provide a suitable 5V source. The J3 port is
sourced by the FPGA board through components U1 and C4. Capacitor C4 keeps
the voltage source stable when a USB device is attached on port J3. Component U1
is an important IC, is used by U2 in order to manage bus power. Component U1 is
a current limiter switch, if a device attached to J3 draws too much power, U1 turns
o� the power source in order to protect the internal components. The bus power
will remain o� until the device is removed. U2 can also enable or disable bus power
by controlling �ONA� port of component U1. Voltage status on J3 is reported to
U2 through component U1's �FAULTA� port, this status can be read by the FPGA.
The part we choose to implement U1 is the MAX1823B [24], for U2 and U3 the part
number is USB3300 [35].

5.4 Circuit Design

The S3USB circuit on Figure 5.3 was designed based on the application notes for
components U1,U2 and U3. These application notes can be found in [35, 24].

The application notes contain the recommended con�gurations and values for
most passive components in the S3USB schematic. The only components that where
calculated are the capacitors associated with X1 and X2, Figure 5.4 gives a close up
of these components.

Capacitors on Figure 5.4 are called �load capacitors�. These capacitors help the
crystal oscillator components X1 and X2 to start properly. Load capacitor values are
de�ned by the oscillator's manufacturer and can be found on the device's data sheet.
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Table 5.1: J1 connector pin-out.
Block FPGA FX2 U2/U3

USB Device

B4 6 RESET
A4 7 NXT
D5 8 DIR
C5 9 STP
A6 10 CLKOUT
E7 12 DATA(7)
F7 13 DATA(6)
D7 14 DATA(5)
C7 15 DATA(4)
F8 16 DATA(3)
E8 17 DATA(2)
F9 18 DATA(1)
E9 19 DATA(0)

USB Host

A13 26 RESET
B13 27 NXT
A14 28 DIR
B14 29 STP
C14 30 CLKOUT
A16 32 DATA(7)
B16 33 DATA(6)
E13 34 DATA(5)
C4 35 DATA(4)
B11 36 DATA(3)
A11 37 DATA(2)
A8 38 DATA(1)
G9 39 DATA(0)

Table 5.2: USB3300 bus interface signals.
Signal Direction Description

CLKOUT out USB3300 reference clock.
NXT out Data throttle.
DIR out Bus direction controller by PHY.
STP in Stop signal.
DATA io Bidirectional data bus.

For this design we used the oscillator found in [23]. The data sheet speci�es a load
capacitance of 20 pF for a proper functioning of the oscillator, however, we could not
use this value directly on the circuit, we needed to account for the connection and
parasitic capacitance. We will show how we include this extra capacitance next.

Table 5.3 summarizes all the parameters needed in order to calculate the compo-
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Figure 5.4: Close up of the oscillator networks of Figure 5.3. a) Device block oscillator,
b) Host block oscillator. Pins 1 and 2 of components X1 and X2 connect directly to
pins XO and XI of components U2 and U3.

nents of Figure 5.4. Reference [16] give us the following formula for the calculation:

CL =
CL1 × CL2
CL1 + CL2

+ Cstray, (5.1)

where CL is the total load capacitance speci�ed in [23], CL1 and CL2 are the capacitors
we need to calculate and Cstray is an additional capacitance calculated as:

Cstray = Ci + Cp (5.2)

Ci is the total capacitance added from U3's XO and Xi pins and Cp is the total
parasitic capacitance generated by the connection traces. For this case, equation 5.1
is simpli�ed by choosing CL1 = CL2. Solving Equation 5.1 for CL1 and substituting
Cstray from 5.2 yields:

CL1 = 2(CL − (Ci + Cp)). (5.3)

We use this formula to calculate capacitors C20, C21, C22 and C23. The capacitance
value for Ci is speci�ed in U3's data sheet [35]. Cp is calculated based on a type of
transmission line called microstrip, which can be seen on Figure 5.5. It consist of a
conductor line and a ground plane separated by a dielectric insulator. Parameters in
the Table 5.3 were calculated using the formulas provided in [26, p. 430]. To calculate
Cp we use this formula:

CMSTRIP =
PMSTRIP

ZMSTRIP
× x (5.4)

Where PMSTRIP is the propagation delay measured in pico seconds, ZMSTRIP is
the characteristic impedance of the microstrip in Ohms and CMSTRIP is the trace
capacitance for one length unit. Cp is obtained by multiplying CMSTRIP times the
length of the connection between X1 and U3. Parameters in Table 5.3 are organized
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in order of dependency. To calculate the E�ective Relative Permittivity (EEFF) and
the E�ective electrical trace width (WE); we need εr, h, w and t. To calculate the
propagation delay (PMSTRIP) we need EEFF and so on.

h
t

w

εr

Ground plane

Figure 5.5: Micro strip parameters diagram.

Table 5.3: Parameters calculated for the capacitors of Figure 5.4.
Parameter Value Units Description
CL 20 pF crystal's load capacitance
εr 4.6 n/a Dielectric's relative permittivity.
h 0.03125 in Distance from trace to ground.
w 0.01 in Trace width.
t 0.00134 in Trace thickness.
x 0.4894 in Trace length.
EEFF 10.317776118 n/a E�ective relative permittivity.
WE 0.0129542576 in E�ective electrical trace width.
PMSTRIP 0.272131613788334 ns Propagation delay
ZMSTRIP 55.2912009238 Ω Microstrip characteristic

impedance.
Cp 2.4087 pF Microstrip trace capacitance
Ci 3 pF USB3300 Xi,Xo capacitance.
Cstray 5.408723441758 pF Cp + Ci capacitance.
CL1 29.18255311648 pF Capacitance for components in

Figure 5.4

5.5 PCB Design

The S3USB circuit was built in a two layer PCB. The front layer shown in Figure
5.6 is used to route signals, while the back layer shown in Figure 5.7 is used for the
ground plane and power source connections.

There are three problems regarding the design of a PCB. The �rst and most
important is the distance between interconnected components. This distance may
cause synchronization issues. The reason for this is that at long distances, electric
signals may arrive at di�erent times [26, pp. 7-8]. To ensure proper synchronization
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Figure 5.6: S3USB Front PCB layer (signal layer).

Figure 5.7: S3USB back PCB layer (ground and power layer).

on long distances, all signal traces must have similar lengths. The FPGA board
provides similar trace lengths on port J1, we routed the circuit components as close
as possible to this connector, this way we ensured similar length traces. We can
compare the �nal component placement in Figures 5.3, 5.6 and 5.8.

The second problem is the signal routing of U2 and U3. These components provide
an eight bit bus plus control lines. Having a bus means having several signal traces
running in parallel to each other. Parallel traces can cause unwanted noise which
may cause data errors. Noise is reduced by implementing a ground plane below the
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Figure 5.8: S3USB silk screen layer (component labels).

bus (shown in Figure 5.7), and by adding a proper distance between each signal trace
(shown in Figure 5.6).

The last problem is the proper routing of power traces. Power traces must have
low impedance, this means that they need to be wide. For this particular design,
routing power lines was di�cult, mainly because the power pins where obstructed by
connector J1. Di�culty lies in the distance between each pin hole in Figure 5.6. PCB
manufacturers have a minimum distance tolerance between traces. Putting power
lines in between these holes can increase PCB's manufacture costs.

5.6 Some Characteristics of the S3USB Expansion Board

The S3USB expansion board shown in Figure 5.9, is a device intended to add two full
featured USB 2.0 ports. This board was designed to address the lack of some features
needed to implement a USB memory encryption device in a Spartan 3E board. The
S3USB board has the following features:

• Speed support: USB 2.0 low, full and high speed support.

• Unpowered type B port: It can be con�gured as a device or host using an
external power supply.

• Powered type A port: It can be con�gured as device or host with bus power
supply and overload protection. This port can provide up to 700 mA.

• Design �exibility and speed: The USB protocol can be implemented inside
the FPGA, allowing full control and fast responses.
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Figure 5.9: The S3USB expansion board.

The board's limitation is the maximum power supply for external devices. It is
designed to provide up to 700 mA. This power source fully complies with the USB
speci�cation. The limitation lies in the fact that some devices actually draw more
than this limit. The most obvious examples are the external USB hard drive devices.

Though we used the S3USB for a prototypical implementation ofMiddleMan, it can
be used to implement several other devices and thus, can be of independent interest.
Some other possible uses of the board are explained in Chapter 8.
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Chapter 6

Recon�gurable USB Architecture

In this chapter we discuss the part including the FPGA implementation of the USB
memory encryption device. In Section 6.1 we present an overview of the part, which
we implemented in an FPGA, and explain the general functionality of each unit
in the implementation. In the subsequent sections we discuss the details of each
implementation unit along which the speci�c block and state diagrams.

6.1 Architecture Overview

The MiddleMan architecture is divided in three layers. We already discussed the
physical layer implementation in Chapter 5, and introduced the S3USB board, which
we used for implementing the physical layer. The other two layers are the link and
the Protocol layer, which are shown in Figure 6.1

The Link and Protocol layers are implemented inside the FPGA. We call this unit
the �USB Packet Replication Core� (UPRC). The Link layer inside UPRC communi-
cates directly to the S3USB with a standard protocol, which we will explain later in
Section 6.2.1. The protocol layer receives USB data from the Link. This layer takes
care of the low level communications in the USB. The UPRC block with its main
components are shown in Figure 6.1.

Data �ow within the MiddleMan is either from the host to the device or from the
device to the host. We will explain these two cases separately:

• Host to device: In a host to device communication, the host �rst issues a
token packet. This packet is then received by MiddleMan's physical layer. Upon
reception of the token packet, the physical layer issues a reception command to
the link layer. The link receives the data and forwards it to the protocol layer.
On receiving data, the protocol layer sends an acknowledge to the host PC, and
then it analyzes the token packet and decides if it is to be �ltered or send to
the device.

Upon receiving the acknowledge from the protocol layer the host sends a data
packet. The same protocol is followed for the data packet as in the case of the
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Device Link Device SIE Enpoint 0

Host Link Host SIE
Host

controller

Link Layer Protocol Layer

Figure 6.1: Block diagram of the UPRC architecture.

token packet for all layers except the protocol layer. Here the packet is analyzed
to detect user data. If the packet contains user data, then the data inside the
USB packet is encrypted and then sent to the device.

• Device to host: For a device to host communication, the process begins with
the host sending a token to request data to the device. This token is processed
in all layers in the same way as the previous case except for the protocol layer.
When the token arrives at the protocol layer, it is sent to the USB device. At
this point the protocol layer responds to the host with a negative acknowledge
(NAK). This response tells the host to retry. The protocol layer will respond
with a NAK to every successive token the host sends until the USB device re-
sponds. When this happens, the protocol layer will acknowledge the reception
of the data packet from the USB device. This packet is also analyzed to deter-
mine if it is user data and decrypt it. When the host retries, the protocol layer
will respond with the data packet.

The UPRC block is responsible for implementing the data�ow we explained above.
Figure 6.19 shows the full implementation of the block diagram presented in Figure
6.1. Now we will discuss the overall functionality of the components in Figure 6.1
and it's corresponding schematic �gure:

• Host and device link: These two devices communicate directly with the phys-
ical layer. They receive and transmit data from and to the S3USB board. Figure
6.19 shows the interface between their corresponding physical layers (shown as
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bold text in the �gure), and the connection with the components of the protocol
layer. The host and device link are basically the same circuit, their details are
shown in Figure 6.20.

• Device and host Serial Interface Engine (SIE): These two hardware com-
ponents communicate with their corresponding link components. They perform
the USB protocol at the lowest level. These two components are implemented
similarly. The details of the implementation are shown in Figure 6.21.

• Endpoint 0: This block consists of components descriptor ram and ENP0
shown in Figure 6.19. The descriptor ram stores the USB information regarding
the MiddleMan. Endpoint 0 executes the most important device requests sent
by the host PC, in order to con�gure the MiddleMan. It takes the data in the
descriptor ram when the host PC requests a descriptor. In our implementation,
descriptor data requested to Endpoint 0 is not used by the device SIE, descriptor
data is taken from the USB memory instead. The descriptor ram was left in
order to implement an alternative mode of operation in the case the MiddleMan

does not have a USB memory attached,though this functionality was not used.
The implementation details of the Endpoint 0 is shown in Figure 6.22.

• Host controller: This component interacts with both the device and host
SIEs. It receives packets from both sides, and performs data encryption. The
full architecture is shown in Figure 6.23. The crypto unit inside this �gure is
the main cryptographic core. It is based on the STES scheme proposed in [10].
The architecture of the crypto unit is separately shown in Figure 6.24.

6.2 The Link Layer

The link layer connects directly to the S3USB board through the 100 pin connector
provided by the FPGA. There are two components inside this layer:

• Device Link: This component communicates with the S3USB section, which
interacts with the host PC.

• Host Link: This component communicates with the USB device.

To understand the Link layer implementation, we must �rst introduce the com-
munications bus that is used by the physical and link layers. After that, we present
the implemented architecture.

6.2.1 The ULPI bus

The physical and link layer communicate using a bus called ULPI [38]. This is a
standard bus, which uses eight bits for data transfer and �ve bits for control. We
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Table 6.1: The ULPI bus signals.
RESET Asynchronous reset
NXT Data throttle, next signal
DIR Bus ownership
STP Stop signal
CLKOUT Bus clock signal
DATA 8 bit bidirectional data bus

Table 6.2: S3USB Register space only some registers where omitted.
Address (6 bit)

Register name Read Write Set Clear
Vendor ID low 00h - - -
Vendor ID high 01h - - -
Product ID low 02h - - -
Product ID high 03h - - -
Function control 04h-06h 04h 05h 06h
Interface control 07h-09h 07h 08h 09h
OTG Control 0Ah-0Ch 0Ah 0Bh 0Ch

have discussed brie�y the bus signals on Chapter 5, in page 41. In Table 6.1 we list
the ULPI bus signals.

The ULPI speci�cation not only de�nes the protocol and signals of the bus, it also
de�nes how to implement a physical layer (PHY). Every physical layer compliant with
the ULPI speci�cation must have a set of registers. These registers store information
about the device and are also used for con�guration.

The physical layer integrated circuit used for the S3USB board implements the
registers shown in Table 6.2. These registers can be accessed for read, write, set and
clear operations. Operations are performed by addressing the register, i.e._ we can
write to the Function Control register by writing the desired value to the address 04h.
We will explain the purpose of the most important registers only.

• Function Control: This register stores the physical layer's con�guration re-
garding the USB device functionality. The speed of the USB device (low, full
and high), and USB suspend are con�gured here. The USB suspend is a feature
that must be implemented by every device and allows to enter a low power
consumption state when the USB bus is not active.

• OTG control: This register is used to con�gure the features of the physical
layer when working in host mode. It con�gures the resistors used to detect low
and full speed devices and enables bus power on the S3USB.

In order to read or write to a register inside the PHY, the ULPI protocol de�nes
two types of commands: The TX and RX commands. TX commands are sent by
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the link layer while the RX commands are sent by the PHY. A TX command is an
eight bit string value, where bits 7 to 6 carry the speci�c command for the PHY to
execute and bits 5 to 0 carry the command parameters. Table 6.3 summarizes all the
commands.

Table 6.3: TX commands
Command name Command Parameters Description

(bits 7-6)
Idle 00b 000000b ULPI bus idle
Transmit 01b 000000b USB transmit with no PID

00XXXX USB transmit, X is the PID
Register Write 10b XXXXXX Register write,

X is the address
Register Read 11b XXXXXX Register read, X is the address

X is the address

Now we explain the ULPI commands in details. The waveforms for the TX com-
mands are:

• TX commands: The waveforms for the di�erent TX commands are shown in
Figure 6.2. There are three di�erent TX commands, which are explained as
follows:

1. Transmit command: As the name implies, it sends a USB packet to
the PHY for transmission over the USB bus. The command is put into
the DATA lines and the PHY asserts NXT when the command or data is
accepted. The link layer must put the next value into the bus the cycle
after NXT is asserted. When the link does not have more data to send, it
must assert STP.

2. Write command: This command writes a value inside any writable reg-
ister on the PHY. First the link layer must put the write command into
the bus. The address bits must contain a valid write address from Table
6.2. When the PHY accepts the command it asserts NXT, the link must
put the write value on the next cycle, after this, the link must assert STP.

3. Read command: The read command gets the value of any register inside
the PHY. First the link must put the read command and register address
into the bus. When the PHY accepts the command it asserts NXT, then
DIR is asserted and the PHY takes control of the bus. The link waits one
cycle, the PHY will put the valid register value on the following cycle.

• RX commands:

RX commands are send by the host every time the PHY asserts the DIR signal.
The link layer cannot send any TX commands while DIR is asserted. When
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CLKOUT

DATA TX transmit D1 D2 D3 Idle

DIR

STP

NXT

DATA TX write Data Idle

DIR

STP

NXT

DATA TX read Bus turn Data Bus turn Idle

DIR

STP

NXT

(a)

(b)

(c)

Figure 6.2: TX commands. a) Transmit command, b) Write command and c)Read
command.
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Figure 6.3: RX commands. a) RX command with the PHY status, b) RX command
for USB packet receptions. RX commands are received between USB data to update
the PHY status.

The RX command data carries the PHY status which is stored inside the link
layer. Figure 6.3 shows the waveform for a RX command.

6.2.2 The Link Architecture

The link component interacts directly with the physical layer. It is connected directly
to the S3USB board through the Spartan 3E expansion port. It consists of two FIFOs
used for I/O, a command generation unit and a control unit as shown in Figure 6.4
(the details of the same �gure are shown in Figure 6.20). The I/O FIFOs have two
di�erent clocks domains. The ULPI domain uses the PHY clock signal (CLKOUT)
to synchronize the input bus lines, while the FPGA domain uses the clock generated
inside the FPGA. The Link component can con�gure each USB3300 component inside
the S3USB unit as a host or device port.

To transmit a TX command, the link layer's control unit uses the command gen-
eration block. This block is implemented as an array of multiplexers, which select the
proper command or data to be inserted into the output FIFO. Data extraction from
this FIFO is controlled by NXT DIR and STP signals. A more detailed link layer
schematic can be seen on Figure 6.20(in page 75).

To receive RX commands, the ULPI bus state is extracted from the Input FIFO
on each cycle. The control unit monitors the extracted value in order to detect USB
packet receptions or PHY status updates. The bus state register stores the value
of the last Rx command received. The Rx command contains the state of several
parameters of the PHY like USB D+ and D- status or device attached to the port.
RX commands are always sent to the link layer after a TX command or when the
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Figure 6.4: Block diagram of the ULPI link layer.

status of the PHY changes.

To keep the Link Layer interface simple, some ULPI features supported by the
USB3300 unit [35] inside the S3USB where not implemented. These features are the
suspend mode and interrupts. These features are not necessary for a basic implemen-
tation.
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Figure 6.5: Link Layer state diagram.
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Figure 6.5 shows the main Finite State Machine (FSM) for the Link Layer. The
description of the states is as follows:

• idl: This is the idle default state.

• icf: This state initializes the con�guration procedure for the S3USB.

• fsc: This state writes the con�guration values to the register inside the S3USB.

• cfg: S3USB con�gured state.

• fsr: Reads con�guration values from the S3USB to check it was properly con-
�gured.

• tok: This state compared the read values and ends the test procedure.

• tup: Performs a USB transmission.

• chp: USB bus reset protocol state. In device mode this state detects the reset
and performs the protocol to enable high speed. In host mode this state controls
the reset state on the bus and initiates the protocol to enable high speed. This
protocol is called the �Chirp protocol�. The USB speci�cation [12] discuss this
protocol in more detail.

The FSM of Figure 6.5 performs several TX write and read commands. These
commands are implemented by two additional FSM. The TX write FSM of Figure
6.6 has the following states:

• idl: The default idle state.

• txw: Insert the TX write command.

• txd: Insert the TX command data. If the commands does not have data then
this state is skipped.

• stp: Insert the TX command stop signal.

• txi: Insert the ULPI bus idle state.

This FSM is used by states fsc,chp and tup of Figure 6.5. The TX read command
in Figure 6.7 varies slightly, the states for this command are the following:

• idl: The default idle state:

• txr: Insert the TX read command.

• txe: TX read command end. This states just adds a cycle to wait for turn
around.

• txi: Insert the ULPI bus idle state.

• txw: Wait for the register data.
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Figure 6.7: TX read command FSM.

6.3 The Protocol Layer

This is the top layer inside the MiddleMan. This layer implements the USB protocol
and replicates every packet sent from the host or device. It consists of four units
shown in Figure 6.1, which are described as follows:

• Device SIE: This unit implements the USB protocol for a USB device. Checks
the Status from the Endpoint 0 and Host controller in order to send acknowl-
edgments and data to the host PC.

• Host SIE: This unit implements the USB protocol for a USB host. It commu-
nicates with an external USB device.

• Endpoint 0: This endpoint is invisible to the host PC. It is included in order
to con�gure the same address as the USB device attached at the host link.
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• Host controller: This unit receives all the packets from the device SIE and
replicates this information towards the USB device attached at the host link.
This unit is also performs encryption of user data.

Data and control signals within the protocol layer can be seen in more detail on
Figure 6.19. We will now discuss each unit's architecture.

6.3.1 Serial Interface Engine

Figure 6.8 shows the block diagram for the architecture of the SIE. This architecture
is divided in two blocks, reception and transmission. Data is registered from both
sides, the SIE acts as a pipeline between the link and protocol layer.

CRC
check

CRC
gen

ACK
gen

Control

To Link To Endpoints

.USB_out

USB_in

Dout

Din

Figure 6.8: Serial Interface Engine architecture.

The transmission block checks the Host controller status. When the host PC
requests data, the SIE will respond based on the host controller status in three ways:

• If the host controller has data available, then the SIE will send this data host
controller.

• If the host controller is empty, the the SIE will respond to the host controller
with a negative acknowledge, this is generated inside the ACK gen block.

• If the host controller has the stall �ag asserted, then the SIE will send a stall
packet to the host PC, this is also generated at the ACK block.

The SIE automatically calculates CRC codes when receiving and transmitting
data. This is done inside the CRC gen and check blocks. The USB CRC generation
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Figure 6.9: CRC Generation architecture.

algorithm de�ned in [12], process its input bit-wise, in contrast, the device SIE pro-
cess it's data byte-wise. To overcome this issue, the SIE parallelize this process by
calculating eight steps per cycle. The resulting architecture is shown in Figure 6.9.

Figure 6.10, shows the FSM for the SIE's control unit. This FSM detects valid
token packets from the USB bus and responds accordingly for IN or OUT transactions.
The states de�ned for the SIE are as follows:

• idl: This is the default idle state. The FSM changes state when the SIE receives
data.

• tck: This state receives the second byte in a token packet, if there is no more
data, the FSM returns to idl.

• tls: The last token data is received in this state. If there is no more data it the
FSM returns to idl.

• tkn: Valid token check. IN, OUT or invalid tokens are checked in this state.
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• wer: When there are packet errors, this state will wait until there is no more
data to receive. Received data is discarded.

• sof: This state �lters Start of frame packets or any other data, which is not
detected as a token packet.

• wdt: This state waits for the host PC data for an OUT transaction. if the data
received is not a data packet the FSM detects the error and goes to wer.

• dot: This state waits for the rest of the received data packet.

• trn: This state waits for the USB turn around.

• sak: This state sends the acknowledge to the host PC.

• itn: This state handles the bus turn around for USB IN transactions.

• idt: The SIE extracts data from the host controller and transmit it to the host
PC. if the host controller does not have data, then the SIE sends a negative
acknowledge or a stall packet.

• wak: This state waits for the acknowledge from the host after sending a data
packet.

For the Host SIE unit, the FSM is similar. The token states tck, tls and tkn are
used to extract data from the host controller. These states are also used to generate
start of frame tokens on intervals of 1 ms. The host SIE then detects an IN or OUT
token. Transitions of the tkn state in Figure 6.10 are swapped for IN and OUT
conditions. The Enp_empty condition and the wer state are removed. The host
SIE architecture is similar to the device SIE's architecture in Figure 6.8. It has small
di�erences that can be seen in the schematic of Figure 6.21.

6.3.2 Endpoint 0

The purpose of the Endpoint 0 (ENP0) is to respond to control transfers from the
Host PC in order to con�gure the USB block inside UPRC unit. Each control transfer
carries a device request, which must be processed by this endpoint. Device requests
needed for a successful con�guration a listed in Table 6.4.

Table 6.4: USB required Device requests.
Request Description

Get_Descriptor Retrieves information for the USB device.
Get_Con�guration Retrieves the current USB device con�guration.
Set_Con�guration Sets a proper con�guration for the USB device.
Set_address Sets an address for the USB device.
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Figure 6.10: Serial Interface Engine state diagram.

This component implements both ENP0 IN and OUT (Figure 6.11). ENP0 OUT
receives and process device requests. Received data is stored inside a packet bu�er,
then the control unit checks this data for a valid request and executes it. If the device
request requires data to be sent to the host, the control inserts data inside ENP0 IN
FIFO. Although the Endpoint 0 is a full featured endpoint, the UPRC only uses it
to store the USB address into the register found at coordinates (3,B) of Figure 6.19.
The complete architecture can be seen in Figure 6.22.

Figure 6.12 shows the FSM used to respond to control transfers. The states are
the following:

• idl: The default idle state, the FSM transitions when a setup token is received.

• dec: Decode state. It wait for the Data packet that follows the setup token in
order to decode the device request. On error the FSM returns to idl.

• sst: This state attends device requests that need data inserted into the ENP0
Fifo in block.

• wst: This state wait for the host to send the status packet to end a device
request. if for some reason the hosts request more data, the FSM transitions to
zlp.
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Figure 6.11: Endpoint 0 architecture.

• zlp: This state inserts a zero length packet inside FIFO IN, this tells the host
that there is no more data to be sent. a zero length packet only has a data PID
followed by the CRC bits.

• sdt: This state attends device requests, which don't require data to be sent to
the host PC.

• wak: This state will wait for the device SIE to send an acknowledge to the
host.

If a new setup token is received while the FSM is in states wak or wst, the FSM
will immediately decode the next device request.
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Dec SstSdt

SrVr'

CrCw

Dend
Sr

Ir

OrPs

Sr

Figure 6.12: Endpoint 0 state diagram.
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6.3.3 Host controller

Implementing a fully featured host controller is di�cult and impractical for the pro-
tocol layer we need. To reduce development time and FPGA resources, we have done
the following simpli�cations:

• Replicate packets from the host PC: A regular host controller generates token
packets and in the case of USB memories, it also generates SCSI commands.
Our host controller can reuse packets sent from the host PC and replicate them.

• Bus time management: A regular host controller manages bus time to attend
several USB devices attached in the bus. Out host controller will only interact
with a USB memory device, so there is no need to manage the bus.

The �nal architecture for the host controller is a USB packet replicator, Figure
6.23 shows the full schematic. This component receives all packets from the host PC
and transmit them to a USB device. The device SIE sees the host controller as an
Endpoint, which is accessible at every address (i.e. the host controller responds to
Endpoints 0 through 15).

Figure 6.13 shows the block diagram for the host controller. Each block's function
is as follows:

• Token bu�er: This is the main data input from the device SIE. It inserts all
user data inside the FIFO out or crypto unit. Its called Token bu�er because
the system analyzes token packets inside this bu�er before insertion.

• SCSI bu�er: This bu�er captures SCSI commands from the host PC. These
commands contain information, which is used by the crypto unit.

• FIFO in: When a USB device communicating with the host SIE sends data,
it is inserted here. Every user data is decrypted �rst.

• FIFO out: All data going to the USB device must be inserted inside this FIFO.

• Crypto unit: All user data is processed by this block. It encrypts or decrypts
data following a SCSI command.

• Input bu�er: This bu�er is used to �lter the CRC portion of every packet
received from the USB device.

The FSM in Figure 6.14 controls the USB packet replication process. The states
are the following:

• idl: The default idle state. The FSM changes state when a valid token is
detected in the token bu�er block.

• out: OUT token received state. This token is inserted in the FIFO out block.
when the insertion is complete, the FSM waits for the data packet.
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Figure 6.13: Host controller architecture.

• wd: Wait data state. The following data packet is inserted in the FIFO out
block.

• od: This state waits for the token bu�er to get empty.

• in: IN token received state. The token is inserted in the FIFO out block and
then the FSM waits for the data response from the USB device.

Rst

IdlIn Out

Od Wd
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brdy'

orep

brdy'

Dok

Dend

Figure 6.14: Host controller packet replicator state diagram.

The FIFO out block and the crypto unit block in Figure 6.13 use a special type
of FIFO, which is called �Success-Retry FIFO�. As the name implies, this FIFO has
a feature to retry a previous data extraction. It functions as a normal FIFO, the
di�erence lies in the addition of a Success and a Retry input. When the Retry input
is asserted, all extracted data up to the last Success assertion is recovered. Figure
6.15 shows a diagram of it's functionality.
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Figure 6.15: Success Retry FIFO functionality. a) FIFO before the extraction. b)
Data extraction. c) Retry is asserted. d) Success is asserted.

Success-Retry FIFOs are useful for systems where the extracted data needs to be
recovered when an error occurs, this is the case for the FIFO out block. When the
host SIE extracts data from this block, it waits for a response from the USB device.
If the external device fails to respond, then the Retry input is asserted. The crypto
unit uses this FIFO to process data sequentially with an option to �seek� to the start
of a sector or �free� it when the encryption is complete.

The crypto unit block is designed to capture USB data coming from the token
bu�er block. Figure 6.16 shows the block diagram of the crypto unit. The input
register stores the sector, which is going to be encrypted or decrypted, the output
register stores the result. We have implemented the STES core from [10]. This core
performs disk encryption using a stream cipher and universal hash function. Figure
6.24 shows the complete implementation inside the STES unit. This unit divides the
input sector in three parts, the additional bu�ers shown in the �gure are used to swap
these parts as required by the STES implementation.

In order to encrypt user data, the host controller unit implements USB bulk
transfers and SCSI command detections. All USB mass storage devices use a sub set
of the SCSI command [34, 5]. This command set is transmitted using bulk transfers,
and stored inside the SCSI bu�er in the host controller. User data is received after
each SCSI Read or Write command. The SCSI command is wrapped inside a CBW
structure (Chapter 3). Figure 6.17 shows the packet sequence for a SCSI command

CINVESTAV Computer Science Department



Recon�gurable USB Architecture 71

STES
cipher

.

.

Input Register

Output Register

Data bit toggle

Token PID

Token Addr

Token Enp

Key register

LBA (SCSI bu�er)

Token Bu�er Input Bu�er

.To FIFO IN
(from Input Bu�er)

To FIFO OUT
(from Token Bu�er)

Figure 6.16: Host controller encryption architecture (Crypto unit).

CBW
SCSI

Command

User
data· · ·User

data
CSW
Status

1n, · · · , 3, 2n+ 1

Data processed by the crypto unit

Figure 6.17: Packet sequences in a bulk transfer for a SCSI command. Each packet
is prepended with an IN or OUT token.

inside a bulk transfer. The host controller detects Read(10) and Write(10) commands.
The procedure for the detection and encryption of data is as follows:

• Read(10), USB Memory to host PC data transfer.

� The USB packet containing the SCSI command is received and replicated
towards the USB memory device.

� An IN token packet is received from the host PC. This packet is replicated
to the USB memory and reused until input register has a complete sector
inside.

� The STES unit will decrypt the sector inside the Input Register and store
the plain text in the Output Register.
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� A DATA PID is added to the data inside the output register. If more
than one packet is needed, the output register data is divided into several
packets, for each packet, Data bit toggle will generate the correct DATA
PID.

• Write(10), Host PC to USB Memory data transfer.

� The USB packet containing the SCSI command is received and replicated
towards the USB memory device.

� The host controller will receive an out token packet, this packet is not repli-
cated. The following data packet will be stored inside the Input Register.
This process is repeated until the Input Register has a sector inside.

� The STES unit process the data inside the Input Bu�er Reg, the encrypted
data is inserted into the Output Register.

� The crypto unit will generate a valid token packet and insert it inside FIFO
OUT. Then a DATA PID is added to the Output register and inserted into
FIFO OUT. If more than one packet is needed to transfer the data, the
crypto unit will generate a valid token and DATA PID for each packet.

The number of packets needed to �ll the Input register depends of the USB op-
erating speed. Full speed transmits packets up to 64 Bytes, High speed can transmit
packets up to 512 Bytes.

The USB protocol uses a parity bit in order to synchronize data packets. The
crypto unit stores the parity bit value of the �rst data packet of each SCSI command.
Data bit toggle component uses this value to generate consecutive data packets.
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Figure 6.18: Endpoint 1 USB bulk, SCSI and Cipher state diagram.

The FSM, which controls the cryptographic part of the packet replicator, is shown
in Figure 6.18. The states are described as follows:
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• idl: The default idle state. It will transition when a command block wrapper
command is detected inside the SCSI bu�er.

• cbw: This state decodes the SCSI command inside the command block wrapper.
Read(10) or Write(10) are detected here.

• dout: This state attends a SCSI write. It will wait for user data from the Host
PC until a sector is received.

• enc: Encryption state.

• pout: This state inserts a packet with the encrypted data into the FIFO out
block. This packet is sent to the USB memory.

• htx: Wait for the previously inserted packet to be successfully received by the
USB memory. When the sector has been transmitted successfully, the FSM
waits for the next sector from the host, if there is no more data then the FSM
ends.

• din: This state attends a SCSI read. Data is read from the USB memory until
a sector is received.

• dec: Decryption state.

• pin: This state inserts a packet with the decrypted data into the FIFO in block.
This packet is sent to the host PC.

• dtx:Wait for the previously inserted packet to be successfully received by the
host PC. The FSM waits for the next sector from the USB memory, if there is
no more data then the FSM ends.
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Figure 6.19: USB Packet Replication Core architecture.
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Chapter 7

Tests and Performance Results

In this Chapter we report some performance data of MiddleMan. First, in Section
7.1 we discuss the various tools that we required to test and debug the developed
application. Then in Section 7.2 we describe a simple protocol to measure the data
transfer rates within MiddleMan. Finally we present the performance data both in
terms of transfer speed and area utilization in the FPGA. We also present some
preliminary analysis to explain the results.

7.1 Test and Debug Platform

In order to debug and test the MiddleMan, we chose a collection of tools which are
available in any GNU/Linux distribution. We also implemented others inside the
FPGA. Here is a list of the tools we used for test and and debug.

• usbmon: Linux built in kernel USB monitor module.

• Wireshark: Network protocol analyzer for Unix and Windows.

• RS232 Serial port: The Spartan 3E board has a built in serial port. To use
it we implemented a simple core inside the FPGA to handle this tool.

• cutecom: Application to communicate with serial port interfaces.

• Xilinx ISE simulation tools: Xilinx tool chain to synthesize and simulate
recon�gurable implementations.

• VirtualBox: Virtualization tool, used to test USB protocol on other operating
systems while analyzing tra�c with usbmon.

We debug the USB protocol inside MiddleMan by using usbmon to capture USB
packets. These captured packets are read using Wireshark, this way we can see
the captured data in a more convenient way. We debug the functionality of the
MiddleMan's internal components by capturing input and output data. This data is
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transmitted through the FPGA serial port. We need a terminal emulator to receive
the captured data inside the MiddleMan. The minicom terminal emulator is the
most well known terminal emulator under GNU/Linux and in general it works �ne.
However, we chose cutecom because this terminal is oriented to communications
with microcontrollers. This means that cutecom has a better hexadecimal display
and dump characteristics. The serial port of the FPGA can be used to dump data
from every internal unit inside the MiddleMan. We have a limitation when dumping
data from the serial port, it is not fast enough to keep up with the insertion of data.
This limitation was reduced by implementing a big bu�er, which allows a proper
dump of the monitored unit up to the maximum size of the bu�er.

Host implementations di�er greatly between operating systems (OS). So for testing
the application in di�erent platforms we used virtual machines for di�erent OS inside
the GNU/Linux system.

7.2 Performance Tests

One of the most important performance metric for MiddleMan is its transmission
speed. The MiddleMan device currently works at USB full speed, theoretical speed
in this mode is 12 Mbps. The bus in practice does not achieve this theoretical limit.
The e�ective speed of the bus is reduced because of the following reasons:

• Protocol overhead: Transmission of data through the USB bus is performed
by appending extra data and sending token packets.

• USB host implementation: The host schedules certain amount of packets
per frame to each device connected to the bus. Bulk transfers have the lowest
priority over the bus, and these transfers are used by USB memory devices,
which results in a slowdown.

• Device processing speed: The USB memory or any other USB memory
device process the USB protocol by �rmware, this can be slow on some devices.
Also, accessing time of a NAND memory inside a USB can take some time.

The USB host divides the bus time in frames of 1 ms each. During this time, the
host can theoretically schedule up to 19 packets, each with 64 bytes of data at full
speed. This amounts to an e�ective user data transmission rate of 9.27 Mbps. This
restriction applies speci�cally to USB bulk transfers [12], which is the type of transfers
used by storage devices.

We performed two controlled tests in order to measure the e�ective speed of the
MiddleMan unit. The �rst test counts the number of packets received from the host
to the FPGA, the second test counts the number of packets transmitted from the
FPGA to the storage device.

To implement these tests we had to implement a small tool within the MiddleMan

(i.e. in the FPGA). The tool consists of maintaining a counter, which gets incremented
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every time the FPGA sends or receives an acknowledge packet, and resets when a new
frame starts (i.e., a start of frame packet is received). The counter is sampled and
transmitted over the serial port and captured by cutecom. We ensure constant use
of the USB bus by copying a big �le to the USB device attached to the host through
the MiddleMan. We take several samples in order to calculate an average value of the
number of packets received and transmitted.

In Table 7.1 we show the various parameters used for the above mentioned test
and Table 7.2 shows the transfer rates.

Table 7.1: Parameters for the speed test of the MiddleMan.
Parameter Value Units

Packet size (without USB protocol) 64 bytes
Time interval (USB frame) 1 ms
USB theoretic bus speed 12 Mbps

Table 7.2: Speed results for the MiddleMan.
Test Packets per frame Throughput (Mbps)

Host to FPGA packets 16 7.8125
FPGA to Device packets 8 3.9062

Results in Table 7.2 shows that the host sends an average of 16 packets per frame1,
which means a data transmission rate of 7.8 Mbps. The average amount of packets
sent byMiddleMan to the device is 8. Thus theMiddleMan slows down the performance
in average by a ratio of 0.49. It is to be noted that the transfer rate of 16 packets per
frame in the host device is only attained in a controlled environment where only one
USB port is in use, and that port is connected to the MiddleMan. If more devices are
added to the bus then the host transfer rates slows down, but this will not result in
any further slowdown in the MiddleMan. In a modern computer, there exist numerous
USB ports and in general they may be the part of the same hub, also in a typical usage
scenario, several USB devices would be attached to the hub (say the mouse, keyboard
etc.). Thus, in this scenario, the transfer rates from the host to the MiddleMan would
be much lesser than what we observed in our controlled experiment.

Now, we try to analyze this result and try to �nd out the reason of this slowdown.
The most computationally intensive operation that goes on inside the MiddleMan is
the encryption through STES. The speci�c STES implementation that we use, uses
a 8 bit data path and it takes 1705 cycles to encrypt and 1551 to decrypt a sector of
512 bytes. Thus, at an operating frequency of 60 Mhz and using a frame division of
1 ms, we can achieve a performance of 35.19 encryption operations per frame.

1Note that this rate is lower than the theoretical limit of 19 packets per frame which is indicated
in the standard. But, this is quite normal as practically no physical host operates at the theoretical
rate
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Table 7.3: Spartan 3E resources used by the MiddleMan unit.
Parameter Value

Slices 3215
LUTs 5073
Ramblocks 9
Operating frequency 60 Mhz

We can see from the results that the host can transmit up to 2 sectors per frame (8
packets = 1 sector). TheMiddleMan can process more than 35 sectors per frame, which
is much more than the transfer rate of the host. This means that the performance
drop is not due to the cryptographic process.

The real bottleneck of the system is in the communication between the MiddleMan

unit and the USB storage device. In our implementation, the system can only bu�er
one sector. It waits for the encryption process and the transmission of data to the
storage device, in order to receive more data. This is the reason of the slowdown
demonstrated in our experiments. This bottleneck can be improved in the future by
increasing the bu�er size.

In Table 7.3 we present the amount of hardware resources utilized by MiddleMan

within the FPGA. The resources used include the cores implemented to communicate
with the external S3USB board, the USB protocol and the cryptographic implemen-
tation. The total implementation only uses 66% of the available space in the speci�c
Spartan 3E device that we use. This shows that the hardware resource usage of
MiddleMan is minimal.
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Conclusion and Future Work

In this Chapter we describe again the main contributions of this thesis. The main
contribution of this work was to develop a detailed design and a working prototype
of an USB memory encryption device. We achieved our goal to a great extent, and
as a result we have a functional prototype of the MiddleMan. In Section 8.1 of this
chapter we summarize our contributions and mention the main features and novelties
of MiddleMan. In Section 8.2 we note down some known limitations of our design
and implementation and also discuss some feasible directions to overcome the known
limitations.

8.1 Summary of Contributions

The main contribution of this thesis is the design and implementation of a generic
scheme for USB memory encryption. Our design, the MiddleMan, is di�erent in many
respects compared to available designs for storage encryption. We elaborate a bit
more on this in the following paragraphs.

Disk/memory encryption was initially proposed to be implemented inside a disk/mem-
ory controller. But to the best of our knowledge this philosophy has not been still
well accepted by the manufacturers of storage devices. The widely deployed systems
for disk encryption are still based on software solutions, and there exist many such
solutions for example Linux dm-crypt, LUKS & LVM, BestCrypt, OpenBSD softraid,
Mac OS X FileVault 2 etc. These schemes does not follow the true model of a low
level or in-place disk encryption. There are some commercially available secure USB
memories which some what gets closer to the philosophy of in-place encryption in the
sense that in these cases the encryption is a part of the memory controller. Although
they are e�cient, they are �rmware based and still slower compared to dedicated
hardware implementations.

Our design goes a step forward compared to the existing designs by the fact that
we followed the true philosophy of low level encryption in a dedicated hardware with
the help of minimal resources. MiddleMan is not a part of the memory controller, but
it controls the USB memory itself by acting as an interface between the memory and
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the host. It works in a level which is �low� enough to guarantee e�ciency. Moreover,
the MiddleMan being independent of both the memory and the host, provides lots of
�exibility to the user in terms of repeated usage for di�erent memory/host devices.
MiddleMan can be used to secure USB memories already owned by users which does
not have any encryption included in it.

Finally, the encryption algorithm implemented within the MiddleMan is a tweak-
able enciphering scheme. As we have repeatedly mentioned, this class of schemes are
most suited both in terms of security and functionality for sector wise storage encryp-
tion. These schemes are not yet widely deployed probably because of the high costs
involved in implementing them. Though there have been prototype studies which
proves that many TES can achieve performance/area metrics suitable for the appli-
cation, but we do not know of a real life low-level disk/memory encryption device
which uses TES. Thus, our work can also be seen as a �rst real world implementation
of a TES which performs the functionality of low level encryption in a real storage
device.

Features of MiddleMan: MiddleMan has many features which are quite lucrative
in terms of usability, �exibility, cost and performance. Next we discuss these novel
features of the MiddleMan:

Transparent Communication: The design of the MiddleMan enables com-
munications from an USB to a host and vice versa in a completely transparent
manner, i.e., when in operation neither the host nor the USB is aware of its
presence. This means that there is no extra overhead within the host or the
memory controller for using the MiddleMan.

Plug and Play: There is no necessity of any driver or extra �rmware for the
use of MiddleMan, it can be plugged in between a host and an USB and it
immediately starts functioning.

Multi-platform Support: As MiddleMan functions at low level, it only re-
quires that the USB memory and the host follow the standard USB protocol.
The design does not assume any other high level details of the host computing
platform. A host computer with an USB port can use MiddleMan irrespective
of the operating system or �le system it uses.

Recon�gurability: The design ofMiddleMan is targeted towards FPGAs. The
main communication protocol and the encryption algorithm is implemented
within an FPGA. This gives us options of recon�guration. The encryption
algorithm or other details can be changed or updated if required.

Low Cost: The hardware resources required to implement MiddleMan are low.
It can be easily implemented within a low cost FPGA (like Spartan3, Lattice
ICE40) with minimal additional hardware. Thus the real cost of such a device
would be very low.
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The S3USB Extension: An important part of our implementation is the design
of the S3USB circuit which was used to extend the Spartan 3E board. Though we
used S3USB solely for the purpose of implementing the MiddleMan, this circuit can
be of independent interest as it increases the functionality of the Spartan 3E board
in several respects.

The S3USB expansion provides the necessary low level USB communication. This
extension was developed to overcome several issues with the current FPGA boards
regarding USB support. These issues are summarized as follows:

• Con�guration only port: Most FPGAs have a USB port only intended for
for con�guration of the FPGA.

• Basic USB support: FPGAs, which features a USB port for communications,
do so by implementing basic functions. These functions are in general aimed
at basic I/O devices such as keyboards, but not for storage devices which uses
bulk transfers.

• Low data transfer rates: There are some FPGAs, in particular, made by
Digilent, which has a basic USB data transfer function. This data transfer is
very limited, and in order to transmit user data, a third party programs are
required to be installed in the host PC.

The S3USB overcomes these issues by providing the most �exible solution possible.
We mainly used the S3USB for developing theMiddleMan. However, this expansion

board can e�ectively be used for many more USB applications. The addition of
S3USB to a Spartan 3E board converts it it into an embedded USB platform. Such
a platform can be used to develop various USB based applications, we mention some
of the possibilities below (the list of course is not exhaustive):

• Embedded PC with USB support: The Spartan 3E can function as an
embedded PC with a MicroBlaze processor. We can add two full featured USB
ports (using S3USB) to extend communications.

• Two channel USB signal processing and capture device: The Spartan
3E board features two digital to analog and analog to digital converters. We
can develop a USB signal capturing device for audio or other analog signal
applications using the S3USB.

• Fast IP debugging: We used the serial port of the Spartan 3E board in order
to debug the MiddleMan. But a better debugging option for any other IP core
implemented inside the FPGA can be achieved through an USB isochronous
communication protocol through the S3USB. This will provide an almost real
time signal debugging. Some Xilinx tools like Chip Scope already provide this
feature. But under Linux this feature does not work well because of some driver
speed issues. Thus debugging though S3USB can be a much better option.
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Hence, the design and implementation of S3USB is also a contribution by itself.
And it is also an open source implementation, which means that anyone is free to use
it.

8.2 Limitations of our Implementation

The implementation that we have is prototype, and thus it has some limitations which
we are aware of. Below we discuss some known limitations of MiddleMan along with
the ways that we can possibly overcome them. Trying out these ways are left as
future work.
Speed: Currently, the MiddleMan can only work at USB Full speed. High speed is
possible but it has not yet been implemented. Also, it is evident from the experimental
results in Section 7.2, MiddleMan does not achieve transfer speeds expected from a
Full Speed device. As discussed, the implementation of MiddleMan can be improved
in this respect. We discuss some possible directions of improvements in the following
points:

• Upgrading MiddleMan to support High speed is not a big issue. Currently it
does not support this speed because of the limitation of the USB protocol im-
plemented within it. The protocol supporting High speed is much more complex
than the one supporting only Full Speed. So, to minimize the coding e�orts we
chose not to incorporate this advanced USB version in our prototype. The de-
sign has no limitation on adding this functionality and the current implemented
protocol can be upgraded to support high speed with just some extra amount
of coding and debugging e�ort.

• The bu�er structures and pipelining currently implemented in the host con-
troller of MiddleMan are not optimal, this leads to delays in data transfers from
the MiddleMan to the device. In intuitive terms, currently the bu�er size can
hold only one sector. Thus after encryption, unless the encrypted sector has
been transferred completely to the device, MiddleMan does not start encrypt-
ing the next sector. This leads to delays. This can be solved by designing an
optimal pipelining strategy, and we plan to work on this in the future.

• The STES implementation that we use withinMiddleMan can also be made more
e�cient. Firstly, we use an implementation, which uses a 8-bit datapath. In
[10] where STES was originally proposed, experimental results up to 40-bit dat-
apaths are reported. Of course bigger datapaths give rise to better throughput.
Additionally, the STES implementation exploits parallelism in the design to the
granularity of sectors, i.e., the design considers parallelism when the data size
is same as the sector. But this can be further improved by exploiting paral-
lelism across sectors, as in MiddleMan (also in other bulk storage applications)
multiple sectors are generally read from and written into a storage device. Con-
sidering issues of such parallelization a more improved and e�cient design of
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STES is possible. Though this is an interesting work which we plan to attempt
in the future, it is worth mentioning that the speci�c design of STES that we
use is e�cient enough for the application. The reason why MiddleMan does not
achieve the speeds of a full speed device has more to do with the sub optimal
pipelining and bu�ering strategy which we adopted in the implementation of
the host controller than with the ine�ciency of the encryption algorithm.

Key Management: Securing user data requires the input of a key which must be
provided by the user. At this point we haven't implemented any key management
functionality withinMiddleMan. Currently the key is hardcoded inside the device, and
for key changes the circuit needs to be recon�gured. This is of course not a viable
option both from usability and security perspectives. However, there can be various
ways in which a proper key management module can be added on to MiddleMan. We
discuss some of these possibilities, which we plan to add to our prototype in future.

1. Keypad password insertion: A simple keypad can be provided as a part
of MiddleMan. With this an user can directly feed in the key in the device
whenever it is to be used. Moreover in this paradigm, options for changing keys
can also be provided.

2. Fingerprint scan: A �ngerprint scanner can be attached to the MiddleMan.
There exists techniques to convert biometric information like �ngerprints to
cryptographic keys. Chips implementing �ngerprint scanners are commercially
available. Adding such a chip to MiddleMan would not involve signi�cant com-
plexity.

3. RFID Key Device: We can also think of a scheme, where the key itself is
a hardware, say a RFID tag. We can implement a RFID reader within the
MiddleMan and when the RFID tag containing the key is brought in physical
contact to (or near) the MiddleMan the key is read.

4. Software Based key management: In this option, the key is inserted by a
software support. The USB speci�cation allows the developer to insert custom
device requests. We can de�ne some of these requests in order to generate and
set a key inside MiddleMan.

It seems to us that the above discussed options are all viable to add a functional key
management module to MiddleMan. But we need to do a systematic security and
feasibility analysis for these options. We plan to do this in the near future.

Power issues: MiddleMan is currently implemented in a Spartan 3E board. This
requires to be powered up through an external power source. But if we make Mid-

dleMan into an independent device, then issues of power consumption would become
important. Feeding power from an external source for a device like MiddleMan does
not seem to be satisfactory. It would be the best if the power requirements of the
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MiddleMan can be fed by the host USB port. Though we have not made any exten-
sive power measurements, it seems that the power consumption of Middleman is low
enough to support such a design.
Other Minor Issues: The current implementation still have some other minor issues
mainly in the circuit board of S3USB which are required to be �xed. For completeness
we list them:

1. The Link layer inside the MiddleMan has yet to be improved to better handle
the USB ports. The host link can handle well when a USB memory is attached
at the port. But detachments are yet to be implemented.

2. The device section of the S3USB board has the D+ and D- lines swapped, this
was �xed by building a cable with the lines swapped. When we print the circuit
board for S3USB again, we would �x this issue.

3. The connection between the USB ports and the USB3300 must have a di�er-
ential impedance close to 45 Ω. In the current circuit this impedance is much
more than that. The device still works �ne in Full Speed. But improving
the impedance would improve the error rate at High speed, and this change is
necessary if we upgrade MiddleMan to support High speed.
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USB Suplementary Information

A.1 USB Enumeration Process

The USB enumeration is the process used by a host in order to con�gure a USB device.
This process gathers information needed in order to select a proper con�guration, the
process steps are as follows:

• The host detects a new device attached to the bus.

• The host sends a reset signal to the device.

• After reset, information is gathered from the device.

• After gathering enough information, the host assigns an address and con�gura-
tion to the device.

This process is performed by sending packets to the device with a structure called
device request. We present the structure in table A.1, for a deep description of each
�eld refer to [12, P. 293]. We can see the minimum device requests in Table A.2. These
are the device requests needed to con�gure a USB device. Every device request is
transmitted to a device by performing a control transfer. These transfers are always
addressed at endpoint 0. A control transfer carrying a device request has a packet ID
for a setup transaction as seen on table 3.3 page 22.

Information requested by GET_DESCRIPTOR is stored inside a USB device in
a data structured called descriptor [12]. There are several type of descriptors, they
store information about the number of endpoints the device supports, vendor code,
device ID and device type like storage or capture.

A.2 USB CRC Generation

To protect data transmitted in the bus, the USB protocol implements Cyclic Redun-
dancy Codes (CRC). These codes protect non PID �elds inside a token or data packet
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Table A.1: Device requests data structure. This table was taken from the USB 2.0
speci�cation.
O�set Field Size Value Description

0 bmRequestType 1 bitmap Characteristics of Request
D7: Data transfer direction

0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4...0 Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4...31 = Reserved

1 bRequest 1 Value Speci�c request see table A.2
and USB speci�cation [12, p. 250]

2 wValue 2 Value Word size �eld that varies
according to request

4 wIndex 2 Index or Word size �eld that varies
o�set according to request; typically used

to pass an index or o�set
6 wLength 2 Count Number of bytes to transfer if

there is a data stage

Table A.2: Device requests needed to perform the enumeration process.
Request Description
GET_DESCRIPTOR The device must send the requested information

to the host.
SET_ADDRESS The device must set the address value contained

inside the request as it's own device address
SET_CONFIGURATION Every device must support at least one

con�guration, this command tell the device to set a
speci�c con�guration

and are appended at the end of the transmitted data. The size of a CRC �eld for a
token packet is 5 bits, for a data packet is 16 bits.
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We can intuitively obtain a CRC by computing I mod Gc(x), where I ∈ {0, 1}∗
is the input data, G5(x) = x5 +x2 + 1 is a generator polynomial for F25 and G16(x) =
x16 + x15 + x2 + 1 is a generator for F216 . We use the F25 �eld to calculate CRC
for token packets, and F216 for data packets. To calculate the modulo operation we
take the binary representation of Gc(x). For both �elds we have G5(x) = 100101 and
G16 = 11000000000000101.

For USB, calculation of CRC varies slightly. The USB implementation of CRC
requires to initialize a remainder accumulator with all bits set to one. The next input
bit is XOR'ed with the most signi�cant bit of the accumulator. Then this accumulator
is shifted to the left, a '0' is inserted in the least signi�cant bit. If the result of
the XOR is '1', then the generator polynomial is subtracted from the accumulator.
When the division is complete, we must invert the accumulator to obtain the CRC.
Algorithm 1 shows the CRC calculation procedure, the architecture is in Figure A.1.
The algorithm and implementation presented here can compute CRC5 and CRC16.
Examples of CRC calculation can be consulted in [13].

Algorithm 1 Procedure to calculate a CRC5 or CRC16 code for a USB packet.

CRC (I, n, c) . I ∈ {0, 1}n, n ∈ {0, · · · , 4096}, c ∈ {5, 16}
1: Acc← {1}c
2: if c = 16 then
3: Xc ← “11000000000000101” . Xc ← x16 + x15 + x2 + 1.
4: else
5: Xc ← “100101” . Xc ← x5 + x2 + 1
6: end if
7: for i = 0; i ≤ n; i← i+ 1 do . Acc shift and accumulate cycle
8: Acc[0]← I[i]⊕ Acc[c− 1]
9: for j = 1; j < c; j ← j + 1 do
10: if Xc[j] = 1 then
11: Acc[j]← Acc[j − 1]⊕ Acc[0]
12: else
13: Acc[j]← Acc[j − 1]
14: end if
15: end for
16: end for

return ∼ Acc
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15 ⊕ 14,· · · ,5 4,· · · ,3 ⊕ 2,· · · ,0 ⊕

CRC16(bits 15 to 0) CRC5(bits 4 to 0)

I..

. c

Figure A.1: Architecture of the CRC calculator.
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