
Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

UNIDAD ZACATENCO

DEPARTAMENTO DE COMPUTACIÓN

Estrategias Meméticas para Métodos de Puntos de

Referencia

TESIS

Que presenta

Jesús Alejandro Hernández Mejía

Para obtener el grado de

Maestro en Ciencias

en Computación

Director de la Tesis:

Dr. Oliver Steffen Schütze

México, D. F. Diciembre 2014



ii



Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

ZACATENCO

COMPUTER SCIENCE DEPARTMENT

Memetic Strategies for Reference Point Methods

Submitted by

Jesús Alejandro Hernández Mejía

as fulfillment of the requirement for the degree of

Master in

Computer Science

Advisor:

Dr. Oliver Steffen Schütze

Mexico, D. F. December 2014



iv



v

Resumen

En un problema de optimización multiobjetivo (POM) la tarea es optimizar varios

objetivos concurrentemente que usualmente están en conflicto. Dado que la solución

P de tales POMs está dada por un conjunto de k − 1 dimensiones en donde k es

el número de objetivos involucrados, la aproximación de P no es siempre deseada o

incluso posible, particularmente en problemas de muchos objetivos, i.e., problemas

con tres o más objetivos. En cambio, tiene sentido concentrarse en puntos particulares

o regiones del conjunto solución. En caso de que el tomador de decisiones tenga una

cierta idea sobre el desempeño esperado de su producto, se pueden usar los problemas

de punto de referencia para encontrar soluciones que se parezcan lo más posible a sus

preferencias (dadas por los puntos de referencia).

Las técnicas de programación matemática (PM) actuales para puntos de referencia

(e.g. el problema de las métricas ponderadas) trabajan sólo con un punto de referencia

a la vez. Más aún, pueden garantizar soluciones óptimas, pero sólo localmente. Por

otro lado, los algoritmos evolutivos (AE) (e.g. RNSGA-II) son beneficiosos para el

tratamiento de tales problemas en particular si hay múltiples puntos de referencia

y/o si los objetivos son altamente multimodales, sin embargo, sufren de la desventaja

general de velocidad de convergencia lenta.

Por tanto, se vuelve un paso natural hibridar un AE con una técnica de PM

para tomar ventaja de ambos enfoques. En este trabajo, investigamos el método de

Búsqueda Dirigida (Directed Search) para problemas de punto de referencia y discu-

timos su integración como motor de búsqueda local dentro de algoritmos evolutivos,

concretamente, del algoritmo estado del arte RNSGA-II. Resultados numéricos en

varios problemas estándar y de ingeniería (con y sin restricciones, unimodales y mul-



vi

timodales) indican que el nuevo algoritmo memético incrementa significativamente el

desempeño de su algoritmo base.



vii

Abstract

The task in a multi objective optimization problem (MOP) is to optimize several

objectives concurrently which are usually in conflict. Since the solution P of such

MOPs is typically given by an entire set of dimension k − 1, where k is the number

of objectives involved, the entire approximation of P is not always desired or even

possible, particularly in many objective problems, i.e., problems with three or more

objectives. Instead, it makes sense to concentrate on particular points or regions of

the solution set. In case the decision maker has a certain idea about the expected

performance of his/her product, reference point problems can be used to find solutions

that more closely resemble their preferences (given by reference points).

Current mathematical programming (MP) techniques for reference point problems

(e.g. the weighted metrics problem) work with only one reference point at a time.

Further, they can guarantee optimal solutions, but only locally. On the other hand,

evolutionary algorithms (EAs) (e.g., RNSGA-II) are advantageous for the treatment

of such problems in particular if there are multiple reference points and/or the ob-

jectives are highly multimodal. However, they suffer the general drawback of relative

slow convergence rates.

Hence, it becomes a natural step to hybridize an EA with MP techniques to

take advantage of both approaches. In this work, we investigate the Directed Search

method for reference point problems and discuss its integration as a local search engine

into evolutionary algorithms, namely, the state-of-the-art RNSGA-II. Numerical re-

sults on several benchmark and engineering problems (constrained and unconstrained,

unimodal and multimodal) indicate that the novel memetic algorithm significantly in-

creases the performance of its base algorithm.



viii

Agradecimientos

Al CONACyT y al CINVESTAV, por la gran experiencia que me ofrecieron durante

estos dos años.

A los investigadores del departamento de computación que siempre estuvieron dis-

puestos a compartir su conocimiento.

A las secretarias, Sofía, Erika y Felipa, por su gran actitud y apoyo.

Al Dr. Oliver Schütze, por brindarme el honor de trabajar como su alumno de tesis,

por la gran paciencia y la fe que tuvo durante el desarrollo de la misma y por las

experiencias que obtuve gracias a él.

Al Dr. Kalyanmoy Deb y a sus alumnos, cuya visita y consejo ampliaron mi percep-

ción del mundo.

A mi madre, Haydee, pues sin su apoyo y enseñanzas no sería quien soy hoy ni hubiera

llegado a este punto.

A mi padre, Noel, que siempre llevo en mi corazón.

A mi hermano, Ricardo, que ha sido un ejemplo a seguir.

A mis amigos del departamento de computación, que fueron un apoyo invaluable.

A mi mejor amigo Mario, con quien siempre se puede contar.

A mi novia Ana, por su amor y comprensión constante.



Contents

Index of Figures xii

Index of Tables xv

Index of Algorithms xviii

List of Acronyms xx

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 General and Particular Aims . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Single-Objective Optimization . . . . . . . . . . . . . . . . . . 8

2.1.2 Multi Objective Optimization . . . . . . . . . . . . . . . . . . 11

2.2 Multi Objective Optimization Algorithms . . . . . . . . . . . . . . . . 14

ix



x CONTENTS

2.2.1 Mathematical Programming Techniques . . . . . . . . . . . . 16

2.2.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . 27

2.3 Reference Point Problems . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Reference Point Based multi objective Optimization Evolution-

ary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Performance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Generational Distance . . . . . . . . . . . . . . . . . . . . . . 41

2.4.2 Inverted Generational Distance . . . . . . . . . . . . . . . . . 42

2.4.3 Averaged Hausdorff Distance ∆p . . . . . . . . . . . . . . . . . 44

2.4.4 UPCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Directed Search for Reference Point Problems 47

3.1 RDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Descent phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Continuation phase . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Step size control . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.4 Box constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.5 Non linear constraints . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Neighborhood exploration . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 RDS within MOEAs 59

4.1 Unconstrained and Box Constrained RPPs . . . . . . . . . . . . . . . 59



CONTENTS xi

4.1.1 General considerations . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 RDS within a MOEA . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Constrained RPPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Constraint handling RNSGA-II . . . . . . . . . . . . . . . . . 68

4.2.2 Further considerations . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Constrained RDS within a MOEA . . . . . . . . . . . . . . . . 70

4.3 A modified version of the IGD indicator for RPPs . . . . . . . . . . . 73

5 Numerical Results 75

5.1 Parameter setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Unconstrained models . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 CONV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 ZDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 DTLZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Constrained models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 C-DTLZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Three problems from practice . . . . . . . . . . . . . . . . . . . . . . 102

5.4.1 Welded Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Car Side Impact . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.3 Water Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusions and Future Work 109

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xii CONTENTS

Bibliography 113



List of Figures

2.1 Graphical example of a SOP . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Pareto dominance and Pareto front . . . . . . . . . . . . . . . . . . . 13

2.3 Example of p-norm in two dimensional space. . . . . . . . . . . . . . 18

2.4 Weighted metrics solution using different norms . . . . . . . . . . . . 19

2.5 Graphical representation of the steering property of DS method . . . 21

2.6 Descent phase of DS . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Continuation phase of DS . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Wierzbicki interactive reference point approach . . . . . . . . . . . . 27

2.9 Ideal and utopian point for a bi-objective problem . . . . . . . . . . . 36

2.10 Feasible and not feasible RP. . . . . . . . . . . . . . . . . . . . . . . . 37

2.11 Graphical example of GD indicator . . . . . . . . . . . . . . . . . . . 42

2.12 Graphical example of IGD indicator . . . . . . . . . . . . . . . . . . . 43

3.1 Typical image of a solution curve of (3.3). . . . . . . . . . . . . . . . 50

3.2 RDS Neighborhood Exploration on DTLZ1 . . . . . . . . . . . . . . . 57

3.3 RDS Neighborhood Exploration on DTLZ2 . . . . . . . . . . . . . . . 58

4.1 Memetic RDS-RNSGA-II . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiii



xiv LIST OF FIGURES

5.1 Graphical output of RNSGA-II and RDS-RNSGA-II on CONV . . . . 77

5.2 IGDZ of RNSGA-II and RDS-RNSGA-II on CONV . . . . . . . . . . 78

5.3 Graphical output of RNSGA-II and RDS-RNSGA-II on ZDT1. . . . . 79

5.4 IGDZ of RNSGA-II and RDS-RNSGA-II on ZDT1. . . . . . . . . . . 80

5.5 Graphical output of RNSGA-II and RDS-RNSGA-II on ZDT2. . . . . 81

5.6 IGDZ of RNSGA-II and RDS-RNSGA-II on ZDT2. . . . . . . . . . . 82

5.7 Graphical output of RNSGA-II and RDS-RNSGA-II on ZDT3. . . . . 83

5.8 IGDZ of RNSGA-II and RDS-RNSGA-II on ZDT3. . . . . . . . . . . 84

5.9 Graphical output of RNSGA-II and RDS-RNSGA-II on ZDT4. . . . . 85

5.10 IGDZ of RNSGA-II and RDS-RNSGA-II on ZDT4. . . . . . . . . . . 86

5.11 Graphical output of RNSGA-II and RDS-RNSGA-II on DTLZ2 for

k = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.12 IGDZ of RNSGA-II and RDS-RNSGA-II on DLTZ2 for k = 3. . . . . 89

5.13 IGDZ of RNSGA-II and RDS-RNSGA-II on DLTZ2 for k = 5. . . . . 91

5.14 Graphical output of RNSGA-II and RDS-RNSGA-II on DTLZ3. . . . 92

5.15 IGDZ of RNSGA-II and RDS-RNSGA-II on DTLZ3. . . . . . . . . . 93

5.16 Graphical output of RNSGA-II and RDS-RNSGA-II on C1-DTLZ1. . 95

5.17 IGDZ of RNSGA-II and RDS-RNSGA-II on C1-DTLZ1. . . . . . . . 96

5.18 Graphical output of RNSGA-II and RDS-RNSGA-II on C2-DTLZ2. . 97

5.19 IGDZ of RNSGA-II and RDS-RNSGA-II on C2-DTLZ2. . . . . . . . 98

5.20 Graphical output of RNSGA-II and RDS-RNSGA-II on C2-CONVEX

DTLZ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.21 IGDZ of RNSGA-II and RDS-RNSGA-II on C2-CONVEX DTLZ2. . 101



LIST OF FIGURES xv

5.22 Graphical output of RNSGA-II and RDS-RNSGA-II on Welded Beam

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.23 IGDZ of RNSGA-II and RDS-RNSGA-II on Welded Beam problem. . 104

5.24 Graphical output of RNSGA-II and RDS-RNSGA-II on Car Side Im-

pact problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.25 IGDZ of RNSGA-II and RDS-RNSGA-II on Car Side Impact problem. 106

5.26 IGDZ of RNSGA-II and RDS-RNSGA-II on Water Problem. . . . . . 108



xvi LIST OF FIGURES



List of Tables

5.1 RNSGA-II parameter setting for each test problem. . . . . . . . . . . 76

5.2 Initial, maximum and minimum parameters of the memetic algorithm

for RDS and RDDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Statistical results at three different stages on CONV. . . . . . . . . . 78

5.4 Statistical results at three different stages on ZDT1. . . . . . . . . . . 80

5.5 Statistical results at three different stages on ZDT2. . . . . . . . . . . 82

5.6 Statistical results at three different stages on ZDT3. . . . . . . . . . . 84

5.7 Statistical results at three different stages on ZDT4. . . . . . . . . . . 86

5.8 Statistical results at three different stages on DTLZ for k = 3. . . . . 89

5.9 Statistical results at three different stages on DTLZ2 for k = 5. . . . . 90

5.10 Statistical results at three different stages on DTLZ3. . . . . . . . . . 93

5.11 Statistical results at three different stages on C1-DTLZ1. . . . . . . . 96

5.12 Statistical results at three different stages on C2-DTLZ2. . . . . . . . 98

5.13 Statistical results at three different stages on C2-CONVEX DTLZ2. . 101

5.14 Statistical results at three different stages on Welded Beam problem. 103

5.15 Statistical results at three different stages on Car Side Impact problem. 106

5.16 Statistical results at three different stages on Water Problem. . . . . . 108

xvii



xviii LIST OF TABLES



List of Algorithms

1 Generic Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Differential Evolution rand/1/bin. . . . . . . . . . . . . . . . . . . . . 29

3 Non-dominated sorting procedure in t-th generation. . . . . . . . . . 31

4 MOEA-D generic algorithm . . . . . . . . . . . . . . . . . . . . . . . 32

5 Modified crowding distance in RNSGA-II. . . . . . . . . . . . . . . . 38

6 RMEAD algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 RDS Neighborhood Exploration . . . . . . . . . . . . . . . . . . . . . 57

8 Feasibility check of RP . . . . . . . . . . . . . . . . . . . . . . . . . . 61

9 Local Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10 RDS within a MOEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11 RDDS within a MOEA . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12 Constraint Handling RDS . . . . . . . . . . . . . . . . . . . . . . . . 71

xix



xx LIST OF ALGORITHMS

List of Acronyms
SOP single-objective optimization problem

MOP multi objective optimization problem

MOO multi objective optimization

RP reference point

RPP reference point problems

RPMOP reference point multi objective optimization problem

RPMOEA reference point multi objective evolutionary algorithm

DM decision maker

MOEA multi objective evolutionary algorithm

DS directed search method

DDS discrete directed search method



1 | Introduction

Many real world problems in fields like economics, engineering, chemistry, and biol-

ogy, to name a few, can be modelled by a function or a set functions which take as

input the features of a product of interest (that can be controlled by a human deci-

sion maker or short DM) and give as output the quality of the solution they represent.

An example of a problem with one objective (a single objective problem or SOP) is

the design of a car where manufacturers usually have the goal of producing a vehicle

which is safe (crash worthiness). In this case, DMs can decide which materials and

how much of them to take for the structure of the car and windshields, the shape of

each component of the car and whether to include complementary safety devices such

as airbags and seatbelts. These are called the input parameters. On the other hand,

for each configuration of the input parameters, an associated value can serve as an

indicator of how good the configuration is in terms of the goal (called objective func-

tion). Input parameters, such as the quantity of materials used in the car, oftentimes

need to be restricted in certain ways to comply with the finite resources available for

the problem in the real world. Problems of this kind are called constrained problems.

If there are no restrictions on the inputs, the problem is called unconstrained.

However, when a model has more than one objective (multi objective optimization

problems or MOPs) the solution is harder to reach. There are two main reasons for

this. The first big problem is that the concept of what solutions are better is not

1



2

straightforward since the solution domain can no longer be compared nor ordered.

The second big problem is that objectives are usually in conflict, meaning that there

exists a whole set representing different trade-offs between the objectives. In order

to illustrate this, reconsider the problem of producing a car stated before where DMs

are interested not only in safety but also want the vehicle to be cheap. Now consider

that for some given input parameters the following three hypothetical vehicles are

produced: (i) very cheap and very unsafe (ii) very expensive and very safe and (iii)

very expensive and very unsafe. The first issue is well represented when considering

(i) and (ii). One solution can not be considered to be better against the other one

since ideally each objective (cost and safety) is equally important. Nevertheless, (iii)

can be said to be worse than the first two because it is worse in each objective ((i)

and (ii) are optimal and ’dominate’ (iii)). A glimpse of the second issue, that there

is a whole solution set instead of a single one, comes when considering again the

first two solutions. Both of them represent optimal realizations of the product which

are interesting to the DMs. It can be inferred that the cheapest vehicle will be the

least safe one, but as the cost increases the car can become safer, hence a trade-off is

inherent to the problem.

Commonly, the goal in MOPs is to find the set of non-dominated solutions that

represent the trade-off between objectives, the so called Pareto front (where it is

known to form (k − 1)-dimensional objects, where k is the number of objectives in-

volved in the problem). The increase in the number of objectives gives rise to several

problems regarding algorithm designers. For instance, the number of points required

to represent the Pareto front grows exponentially with the number of objectives and

the dominance relation between points become weaker, to name just a few. Further-

more, DMs will certainly be overwhelmed examining the entire solution set. Even

more if they can not visualize the trade-off space when it exceeds our familiar two or

three dimensional spaces.

CINVESTAV Computer Science Department



INTRODUCTION 3

A relatively novel approach for handling MOPs that becomes useful for both DMs

and algorithm designers in many objective problems (problems with more than three

objectives), requires from the DM to establish reference points (RPs) or aspiration

levels he/she wants for each of the objectives. One major advantage is that the MOP

is now transformed into a SOP which is, in principle, easier to handle. The new

goal is then to find a solution that comes closest to the aspiration level established

beforehand. The original approach is meant to be an interactive process where DMs

can improve their preferences iteratively based on the solutions found in the process.

However, recent studies have also found that RPs or sets in objective space can be

used to find the complete Pareto set, hence its recent popularity.

Currently, there are two popular research approaches in optimization, mathe-

matical programming techniques and evolutionary or set-based algorithms. Among

set-based algorithms, subdivision techniques, cell mapping techniques and multi ob-

jective evolutionary algorithms (MOEAs [1, 2, 3]) have caught the interest of many

researchers. Reasons for this include that these methods allow for the approxima-

tion of the entire set of interest in a single run of the algorithm, and that they are

further characterized by a great robustness and minimal requirement on the model.

Evolutionary algorithms are beneficial for the numerical treatment of reference point

problems (RPPs), as they can handle several RPs in a single run. On the other hand,

scalarization methods transform a MOP into a SOP (e.g., [4, 5, 6, 7]) to obtain a

single solution. They are characterized by its faster convergence but require certain

assumptions on the model, like differentiability or uni-modality. Hence, they lack the

convergence properties from MOEAs. As for reference point-specific methods pro-

posed so far ([8, 9, 5]), there are still many loopholes that are to be studied. The

most important of them is the attainability of RPs. When a RP is attainable or

feasible it is most likely not optimal and there will exist a subset of the Pareto front

dominating the RP (which is more interesting to the DM). Since such solutions exist,

it is unclear which solution should be presented to the DM, being the closest in the

Pareto front the one commonly chosen. A recent method which can follow a given

CINVESTAV Computer Science Department



4 Chapter 1

direction in objective space, is the Directed Search (DS) Method ([10]). DS is well

suited for handling RPPs because, plain and simple, the direction to follow is always

towards the RP. Still, it suffers from the drawbacks mentioned above. A third, not so

common approach combines both mathematical and set based techniques to create

new methods which in the ideal case do not inherit the disadvantages but only the

advantages of their predecessors. These hybrid algorithms are called memetic algo-

rithms. At present, there exist some work related to memetic algorithms for general

SOPs and MOPs ([11, 12, 13, 14, 15, 16]) that have shown in practice the advantages

of both approaches over its standalone original counterparts. However, there is none

specifically for RPPs.

1.1 Motivation

In contrast to a posteriori methods (where DMs are presented in the whole solution

set and they are expected to inspect it thoroughly), a priori or interactive methods

(such as the RP approach) can be put into practice to find regions of interest for

them beforehand. This is based on the assumption that DMs have in many cases a

good appraisal of the solutions they want for the given model (which is translated

into aspiration levels/RPs). Moreover, although the use of RPs in the absence of a

DM is a complicated task (being a correct positioning of RPs the most challenging

one), this approach has demonstrated to be advantageous when dealing with many

objective problems (see, for example, [17, 18]) The current trends of research in refer-

ence point optimization suffer from particular disadvantages which can be overcame

with a hybrid variant of two base algorithms: A MOEA to explore the global fitness

landscape and a local search technique to guarantee (locally) optimal solutions.

CINVESTAV Computer Science Department



INTRODUCTION 5

1.2 The Problem

The current approaches for the treatment of RPPs have major disadvantages. To

name a few of the two classes of algorithms:

• Mathematical Programming Techniques

– Commonly, for each RP provided by the DM, one RPP has to be solved.

– They are easily trapped in locally optimal regions.

– Only one solution is found for each RP.

• Evolutionary algorithms

– Dominance selection schemes are not efficient.

– Convergence towards RPs is slow.

– Relatively higher computational effort is required.

In addition, there does not exist currently a meaningful quality indicator for measur-

ing the output of RP based algorithms.

1.3 General and Particular Aims

General Aim

To develop a RP mathematical programming algorithm and hybridize it with an

existing MOEA to create a novel memetic algorithm.

Particular Aims

Specifically, we achieved the following goals:

CINVESTAV Computer Science Department



6 Chapter 1

• To propose a RP version of the DS called RDS.

• To implement a gradient free realization of the method.

• To propose a memetic strategy with the gradient based and gradient free RDS

as local search technique for unconstrained problems.

• To adapt the proposed algorithm and memetic strategy for constrained prob-

lems.

• To evaluate the performance of the proposed algorithm against state-of-the-art

MOEA for both unconstrained and constrained problems.

• To solve a real world problem with the resulting method.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows: in Chapter 2, we state the

background required for the understanding of this work as well as the related work in

RP optimization. In Chapter 3, we present the DS for the treatment of reference point

problem (RPPs) called RDS. In Chapter 4, we discuss how to integrate RDS into a

specific MOEA, namely RNSGA-II, leading to a new memetic strategy. In Chapter

5, we present some numerical results of RDS and RDS-RNSGA-II on some widely

used benchmark models and real world problems. Finally, we conclude in Chapter 6

and give possible paths for future work.

CINVESTAV Computer Science Department



2 | Background

This chapter introduces to the basic optimization theory needed to understand the

present work. The first section is dedicated to basic notions and formal definitions of

SOPs and MOPs. The concept of DM is introduced in MOP theory, together with a

classification of methods according to the moment of inclusion of the DMs preferences

in the optimization process. A general overview of the main type of algorithms used

to solve optimization problems is presented in Section 2.2. Special attention is put

to the DS Method since the proposed hybrid algorithm is based upon it. Section 2.3

introduces concepts related to RPs and two state-of-the-art MOEAs. Performance

indicators for MOPs which will be needed for discussion are presented in Section 2.4.

2.1 Theoretical Background

In this section we present the insights to identify and understand the components of an

optimization problem starting with the theory of SOPs and MOPs and reference point

problems (RPPs). The understanding of SOP theory is crucial since scalarization

methods (methods which transform a MOP into a succession of simpler SOPs) come

naturally in the scope of reference point optimization.

7



8 Chapter 2

2.1.1 Single-Objective Optimization

Definition 1 (Single Objective Optimization Problem). A continuous single objective

optimization problem (SOP) is defined as

min
x∈Rn

f(x) (2.1)

s.t gi(x) ≤0 i = 1, . . . , p

hj(x) =0 j = 1, . . . , q,

where f : Rn → R is called the objective function, gi(x) : Rn → R, and hi(x) : Rn → R

are the inequality and equality constraints, respectively. The restriction set is denoted

by

Q = {x ∈ Rn : gi(x) ≤ 0 and hj(x) = 0 i = 1, . . . , p j = 1, . . . , p} ⊂ Rn. (2.2)

Solutions in Q are called feasible as they comply with the restrictions, otherwise, they

are called infeasible.

Without loss of generality, we will aim in this study for minimization problems. An

optimal solution of (2.1) is called a minimum. Depending on the scope of the mini-

mum it is either a local minimum or a global minimum. As the name suggests, the

overall solution of (2.1) is the global minimum, however, global minimizers do not

have to be unique.

Definition 2 (Minimum of SOP). Let x be a point in Q,

• x is called a local minimum of (2.1) iff

f(x) ≤ f(y) ∀y ∈ N(x) ∩Q,

where N(x) is a neighborhood of x.

CINVESTAV Computer Science Department



BACKGROUND 9

• x is called a global minimum of (2.1) iff

f(x) ≤ f(y) ∀y ∈ Q.

In addition, a global minimum is also a local minimum since for any neighborhood

the statement in (2) is fulfilled.

Figure 2.1: A SOP with one input value. The local solution x3 is optimal within a chosen

neighborhood (light area). Solutions x2 and x3 are global minimizers with the same function

value.

It is impractical and sometimes impossible to test each feasible solution x ∈ Q in

order to find the minimum. Hence an intelligent search algorithm is needed. Any

such algorithm needs to guarantee its solution’s optimality. The means to do so are

the so-called optimality conditions presented in the next pages. We will start by

introducing the following definitions.

CINVESTAV Computer Science Department



10 Chapter 2

Definition 3 (Gradient). Let f be differentiable at x ∈ Q. The derivative or gradient

of f at the point x is defined as

∇f(x) =

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)T
∈ Rn.

Definition 4 (Hessian matrix). The second derivative of f at the point x is called

the Hessian matrix,

Hf(x) =


∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xn

... . . . ...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂xn∂xn

 ∈ Rn×n.
.

Definition 5 (Positive definite matrix). A symmetric matrix A ∈ Rn×n is called

positive definite if

xTAx > 0 ∀x ∈ Rn \ {0}.

The first order (necessary) conditions for x∗ to be a local solution of (2.1) are:

1. f has to be differentiable at x∗.

2. The gradient at x∗, ∇f(x∗), has to be equal to zero.

Points satisfying the previous conditions are not necessarily optimal, but certainly

candidates. The second order (sufficient) conditions for x∗ to be a locally optimal

solution are

1. f has to be twice continuously differentiable at the point x∗.

2. The Hessian at the point x∗, Hf(x∗), has to be positive definite.

CINVESTAV Computer Science Department



BACKGROUND 11

2.1.2 Multi Objective Optimization

As mentioned in the previous chapter, real world optimization problems can involve

several objectives which are in conflict with each other. We will now introduce the

formalities of multi objective optimization and will then turn our attention to the

particular kind of problems studied in this thesis.

Definition 6 (Multi Objective Optimization Problem). A continuous multi objective

optimization problem (MOP) can be written as follows:

min
x∈Q
{F (x)}. (2.3)

Analogously to the SOP formulation given by (2.1), Q ⊆ Rn is the feasible region

which is a subset of the decision variables space. The function F is now defined as

the vector of objectives functions:

F (x) : Q→ Rk

F (x) = (f1(x), . . . , fk(x))T ,
(2.4)

where k ≥ 2.

In contrast to a SOP a MOP has k output values. This new feature calls for a way

of comparing solutions. The most commonly used definition for this purpose is the

so called Pareto dominance (proposed in 1896 by Vilfredo Pareto, see [19]).

Definition 7 (Pareto dominance). (a) Let v, w ∈ Rk. Then the vector v is less

than w (denoted by v <p w), if vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is

defined analogously.

(b) A vector y ∈ Rn is dominated by a vector x ∈ Rn, denoted by (x ≺ y), with

respect to (2.3) if

F (x) ≤p F (y) and F (x) 6= F (y),

else x is called non-dominated by y.

CINVESTAV Computer Science Department



12 Chapter 2

Pareto dominance is commonly used to define optimality with respect to a MOP.

We can distinguish between different kinds of optimality:

Definition 8 (Pareto optimality). Let x ∈ Q.

(a) x is (Pareto) optimal or a Pareto point if there exists no y ∈ Q which dominates

x.

(b) x is locally (Pareto) optimal if there exists no y ∈ N(x) ∩Q which dominates x,

where N(x) is a neighborhood of x.

(c) x is weakly (Pareto) optimal if there exists no y ∈ Q s.t. F (y) <p F (x).

Now we can explicitly state the set of optimal solutions of (2.3):

Definition 9 (Pareto Set). The set of Pareto points is called the Pareto set denoted

by PQ.

Definition 10 (Pareto Front). The corresponding image in objective space of PQ is

called the Pareto front denoted by PF = F (PQ).

Under certain assumptions on the objective functions, we can assume that the

Pareto front is a manifold of dimension k − 1 (for a thourough discussion of this

topic, see [20]). Commonly, the ultimate goal in MOO is to find a good finite size

representation of the Pareto set. This is. however, not always the case, as we will

introduce later.

CINVESTAV Computer Science Department



BACKGROUND 13

Figure 2.2: Objective space of a MOP with two objectives. Solutions whose components are

in quadrant I dominate x. Solutions whose components are in quadrant II are dominated

by x. Solutions whose components are in any of the two remaining quadrants are called

non-dominated with respect to x. Solution y belongs to the Pareto set.

Analog to the SOP theory presented above, we need to stipulate optimality con-

ditions in order to guarantee the (Pareto) optimality of a candidate solution. We will

start with the definition of the derivative of the MOP, namely, the Jacobian matrix:

J(x) =
∂F

∂x
(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fk
∂x1

(x) . . . ∂fk
∂xn

(x)

 =


∇f1(x)T

...

∇fk(x)T

 ∈ Rk×n, (2.5)

where ∇fi(x) denotes the gradient of objective fi as in (3).

The famous theorem by Kuhn and Tucker [21], which is also credited to Karush

CINVESTAV Computer Science Department



14 Chapter 2

[22], gives a necessary condition for optimality.

Theorem 1. Let x∗ be a Pareto point and fi i = 1, . . . , k, be continuously differen-

tiable.

1. Let the MOP be unconstrained, then there exists α ∈ Rk : αi ≥ 0, i =

1, . . . , k and
∑k

i=1 αi = 1 s.t.

k∑
i=1

αi∇fi(x∗) = 0. (2.6)

2. If the MOP is defined by m equality constraints such that each hi is con-

tinuously differentiable, then there exists α ∈ Rk and λ ∈ Rm: αi ≥ 0,

i = 1, . . . , k
∑k

i=1 αi = 1 s.t.

k∑
i=1

αi∇fi(x∗) +
m∑
j=1

λj∇hj(x∗) = 0

s.t. hi(x
∗) = 0 i = 1, . . . ,m.

(2.7)

3. If the MOP is defined by p inequality constraints such that each gi is con-

tinuously differentiable, then there exists α ∈ Rk and µ ∈ Rp: αi ≥ 0, i =

1, . . . , k
∑k

i=1 αi = 1 µ ≥ 0 s.t.

k∑
i=1

αi∇fi(x∗) +

p∑
j=1

µj∇gj(x∗) = 0

s.t. gi(x
∗) ≤ 0

µigj(x
∗) = 0 i = 1, . . . ,m.

(2.8)

Points satisfying the above equations are called Karush-Kuhn-Tucker (KKT) points.

2.2 Multi Objective Optimization Algorithms

A consequence of the fact that the solution of the MOP is given by an entire set of

optimal solutions is that the decision of which single solution to actually implement in

CINVESTAV Computer Science Department



BACKGROUND 15

the real world is out of the scope of the optimization problem solvers, be it an analyst

or an algorithm. The person or persons in charge of making this decision is called

DM. Any method for solving MOPs can be classified depending on the information

available from the DM in time. There are many ways DMs can provide information

of their preferences such as utility functions or aspiration levels (equivalent to a RP).

We will present the classification of methods proposed in [5], which has four major

classes:

1. No preference. A single solution from the Pareto front is given as output to the

DM. The DM is not present in any time of the process.

2. A priori. In this kind of methods, the DM gives information of his/her pref-

erences to the problem solvers beforehand. The optimization process then is

focused on satisfying the goals of the DM.

3. A posteriori. A posteriori methods do not require any information of the DM

during the optimization process. Commonly, all the non-dominated solutions of

the MOP are computed and presented to the DM, who has the task of analyze

and choose a pertinent solution.

4. Interactive. In this type of methods, the optimization process is done along

with the DM. It can start as an a priori method. As a first solution is found

and presented to the DM, he/she will gain knowldege and will refine his or

her preferences in order to find a new solution. This iterative process will be

repeated until the DM is completely satisfied.

Aside from the classification above, there exists yet another division of the al-

gorithms based on the approach they use to solve MOPs (we mean by solving to

acquire a good approximation of the Pareto set): Mathematical Programming Tech-

niques which commonly generate a single solution iterated over time in a suitable

way, and Set Oriented Methods which rely on a ’set’ of solutions that solve the pro-

blem collectively. Methods of the first kind are well known for using mathematical

CINVESTAV Computer Science Department



16 Chapter 2

properties of the problem to reach the solution. Methods of the second kind have

been widely studied for the past years because of their outstanding performance and

minimal requirements on the model. We will now present and discuss the most widely

used ones of both classes.

In the remainder of this section, we will focus on a posteriori methods and will

present only one interactive approach. A posteriori methods are the most widely used

ones since they give a general overview of all the possible optimal realizations of the

problem.

2.2.1 Mathematical Programming Techniques

Most mathematical programming methods for the treatment of MOPs are based on

a reformulation of the original problem into several SOPs. Methods of this kind

are called scalarization methods. This methods exchange the original MOP by a

sequence of SOPs which are solved by a standard optimization technique for SOPs

([23]). The advantage of using a mathematical programming algorithms is that (lo-

cal) convergence towards a minimum can be guaranteed under certain assumptions

(usually smoothness, i.e., first or even second derivative of the model is required).

The main disadvantages are that the minimum found can be of local nature and/or

that the assumptions may not always be satisfied. A reason for this is that the deriva-

tives are not always available and when they are approximated by some means, the

computational cost might be intolerable.

Weighted Sum Method

The weighted sum (WS) method or simply weighting method [24, 5] associates a

weighting coefficient to each objective function to form a new SOP:

min
x∈Q

k∑
i=1

ωifi(x). (2.9)

CINVESTAV Computer Science Department



BACKGROUND 17

It is common practice to set ωi as convex weight, i.e. ωi ≥ 0 and
∑k

i=1 ωi = 1. As an

a priori method, the weighting coefficients might not be easy to set for the DM nor

even hold a physical meaning for him/her, rendering it useless in certain cases. As

an a posteriori approach, (2.9) must be solved many times with different weighting

coefficients to find the Pareto set. However, for all it is known, the method can only

find the solutions on the entire Pareto front where it is convex ([5]). In addition, the

solution found may be weakly Pareto optimal.

Weighted Metrics Method

The weighted metrics (WM) method, also called compromise programming, was first

presented by Zeleny in 1973 ([25]). This method was one of the first ones which used

RPs in MOO. However, WM is not an a priori method, i.e., the RP used is not set

by the DM. The RP to be computed is called the ideal RP (denoted by Z∗) whose

components are the individual minimizers of each objective. The WM method tackles

scalarization via a distance metric, for instance the p−norm (compare to Figure 2.3):

Definition 11 (p-norm). Let y ∈ Rn. The p-norm in Rn is defined as:

||y||p = (
n∑
i

|yi|p)
1
p

1 ≤ p <∞.

For the special case of p =∞, the norm is called the maximum or Tchebycheff norm:

||y||∞ = max
i=1,...,n

|yi|.

CINVESTAV Computer Science Department



18 Chapter 2

Figure 2.3: The p-norm equal to one in a two dimensional space for different values of p.

Definition 12 (Weighted p-norm). Let W ∈ Rn×n be a diagonal matrix with positive

entries ωi, i = 1, . . . , n, and y ∈ Rn. The weighted p-norm in Rn is defined as:

||Wy||p = (
n∑
i

ωi|yi|p)
1
p

1 ≤ p <∞.

The weighted Tchebycheff norm is defined as:

||Wy||∞ = ωi|yi|

1 ≤ p ≤ ∞.

Using the above definitions, WM reads as follows:

min
x∈Q
||Wy||. (2.10)

CINVESTAV Computer Science Department



BACKGROUND 19

For p =∞, the problem is called the weighted Tchebycheff problem:

min
x∈Q
||Wy||∞. (2.11)

Equation (2.11) carries the disadvantage of being nondifferentiable. Instead of it, one

could solve:

min
(x,α)∈Rn+1

α

s.t. α ≥ ωi(fi(x)− Z∗i ) i = 1, ..., k.

(2.12)

In this case, the variable α ∈ R, has to be optimized as well.

One interesting feature of the method is that the solution depends completely on

the choice of p as can be seen in Figure 2.4 on a hypothetical example.

Figure 2.4: The weighted metrics method with three different values of p.

CINVESTAV Computer Science Department



20 Chapter 2

The following theorems show important properties regarding the choice of p.

Theorem 2. The solution of (2.10) is Pareto optimal if either:

• the solution is unique.

• all the weighting coefficients are positive.

Theorem 3. The solution of (2.11) is (weakly) Pareto optimal if ω ∈ Rk+.

Theorem 4. Let x∗ ∈ S be Pareto optimal. Then there exists ω ∈ Rk+ such that x∗

is a solution of (2.11).

The proofs can be found in [5]. The first theorem implies that the solution to (2.10)

is a Pareto point, but this does not imply that all Pareto points can be found by it.

When considering p =∞, all Pareto solutions can be found, however, weakly Pareto

solutions might be found during the process too. Hence, additional computation is

needed to identify the weak solutions.

Directed Search Method

Schütze et al. proposed in 2011 an algorithm for unconstrained MOPs called the

Directed Search (DS) Method [10]. The idea of DS is to find a direction ν ∈ Rn that

from a point x0 ∈ Rn can steer the search to a certain direction d ∈ Rk defined in

objective space. Formally stated, this is:

lim
t→0

fi(x0 + tν)− fi(x0)
t

= di, i = 1, . . . , k. (2.13)

CINVESTAV Computer Science Department



BACKGROUND 21

Figure 2.5: A set of possible directions to steer in objective space starting from x0.

Stated in matrix vector notation, Equation (2.13) is equivalent to:

J(x0)ν = d, (2.14)

where J(x) denotes the Jacobian at x0. Notice that (2.14) only has a unique solution

iff J(x) is square and has full rank. If the Jacobian is not square (which is usually

the case for a MOP since typically the number of objectives is much less than the

number of variables) the represented linear system of equations is under-determined

and has infinitely many solutions. Among the set of solutions, one suggesting choice

is to use the pseudo-inverse J(x0)
+ since it has the smallest Euclidean norm among

all possible solutions. In consequence, one can expect the greatest improvement in

direction d with a fixed and small step size t.

Regarding the choice of d, the authors make use of a direction tailored to find

CINVESTAV Computer Science Department



22 Chapter 2

dominating solutions, that is, each new solution found in an iteration of DS dominates

the previous one. For this, a descent direction d ≤p 0, d 6= 0 ∈ Rk is used. However,

since for a step size the corresponding movement in direction ν can lead the new iterate

away from the desired direction d, a corrector step is used to bring the solutions back

to the desired line F (x0) + t∗d. This process is equivalent to the numerical solution

of the following initial value problem:

x(0) = x0 ∈ Rn

ẋ(t) = ν+(x(t)), t > 0.
(2.15)

DS can only keep shooting in direction d until a boundary (and hopefully also Pareto)

point is reached. Such points are characterized by having a Jacobian matrix which is

rank deficient or equivalently that the gradients are linear dependent. That is, for a

boundary point xb there exist constants c1, . . . , ck with not all ci’s = 0 such that:

c1∇f1(xb) + · · ·+ ck∇fk(xb) = 0. (2.16)

A boundary point can be tested for optimality by solving the zero finding problem

associated to (2.6) in page 14.

This phase of finding a Pareto point is called the descent phase of DS. A stopping

criterion for this phase is to check for given tolerance on the condition number of the

Jacobian: κ(J(x)) < tol.

CINVESTAV Computer Science Department



BACKGROUND 23

Figure 2.6: Descent phase of DS using direction d = (−1,−1)T . Descent phase stops when

a Pareto point is reached.

In order to steer the search along PF from a given Pareto point x, a new direc-

tion d is computed to follow the boundary of the MOP. This second phase is called

continuation phase of DS due to the continuation-like method used. A continuation

method for a curve is basically composed of a predictor step and a corrector step. The

predictor step follows the curve in a given direction. Meanwhile, the corrector step

is used to correct back to the curve due to the possible errors made in the predictor

step.

Suppose we are given a Pareto point x0. Recall that such points fulfill,

k∑
i=1

αi∇fi(x∗) = 0,

CINVESTAV Computer Science Department



24 Chapter 2

where αi ≥ 0, i = 1, . . . , k , and
∑k

i=1 αi = 1 implies that α is orthogonal to the

linearized Pareto front at F (x∗) [20]. Hence, a search orthogonal to α will follow the

(linearized) Pareto front. This is done as follows. Compute the QR decomposition

of α: α = QR, where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and R =

(r11, 0, . . . , 0)T ∈ Rk×1 such that r11 6= 0. Since α = r11q1, the column vectors

q2, . . . , qk form an orthonormal basis of the hyperplane orthogonal to α. Hence, a

search in direction qi, i = 2, . . . , k, will follow partially the Pareto front. For the

special case of k = 2, the search in direction q2 will cover the entire Pareto front.

Figure 2.7: Continuation phase in a given direction along the Pareto front.

Discrete Directed Search

In 2012, Lara et al. presented a gradient free version of the DS method called the

Discrete Directed Search [26] or DDS. The method assumes a solution x ∈ Q is given

CINVESTAV Computer Science Department



BACKGROUND 25

along with r search directions νi ∈ Rn, i = 1, . . . , r. Then, the matrix F ∈ Rk×r is

defined as:

F := (〈∇fi(x), νj〉), i = 1, . . . , k; j = 1, . . . , r, (2.17)

where 〈·, ·〉 denotes the scalar product. Hence, each entry mij of F is equivalent to

the directional derivative of the i-th objective in direction νj (i.e. ∇νjfi(x)). The

following result is crucial for the DDS:

Proposition 1. Let x, νi ∈ Q, i = 1, . . . , r, λ ∈ Rr and ν :=
∑r

i=1 λiνi. Then

J(x)ν = Fλ. (2.18)

Proof 1. In the original work [26] the proof can be found.

Since we are only looking for a search direction ν satisfying (2.14) we can exchange

the problem by first solving

Fλ = d, (2.19)

and then set

ν :=
r∑
i=1

λiνi. (2.20)

In order to avoid computing the entries (derivatives) of F at some point x0, one can

try to approximate them by finite differences assuming r points xi, i = 1, . . . , r, in the

neighborhood of x0 together with their corresponding function values F (xi). Define

tj = ||xj − x0||2,

νj =
xj − x0
tj

, j = 1, . . . , r,
(2.21)

CINVESTAV Computer Science Department



26 Chapter 2

and set mij as

mij = 〈∇fi(x), νj〉 = lim
t→0

fi(x0 + tνj)− fi(x0)
t

≈ fi(x0 + tνj)− fi(x0)
||xj − x0||2

i = 1, . . . , k, j = 1, . . . , r.
(2.22)

Finally compute the direction ν as

ν(r) =
r∑
i=1

λiνi, where λ = F+(x)d. (2.23)

The Reference Point Method Interactive Approach

The use of RPs was introduced and first defended over scalarization methods (such

as the WS method mentioned above) by Wierzbicki in 1979 [9]. His work holds the

point of view that the optimization process has to be carried out along with the DM.

Moreover, Wierzbicki argues that goals are easy to understand and to be established

by DMs. Consequently, he proposes an interactive approach whose purpose is to

satisfy aspiration levels regardless of the properties of the MOP. The algorithm of

Wierzbicki is practical although very simple. First, a RP is asked from the DM.

As the solution of this problem is found, an extended set of RPs similar to the first

provided is created and all the solutions are presented to the DM. The DM then

analyzes the solutions and refines his/her preferences until he/she is satisfied. The

basic framework of the algorithm is as follows:

• Let Z ∈ Rk be a RP provided by the DM with Z∗ its corresponding solution

using Equation (2.10). Then, create k more RPs (and find the corresponding

solution) as:

Zi = Z + (Z∗ − Z) · êi, (2.24)

where êi, i = 1, . . . , k are the canonical vectors in Rk.

CINVESTAV Computer Science Department



BACKGROUND 27

• Present the k + 1 solutions to the DM. If he/she is satisfied, stop. Else, ask

the DM to choose a new RP or one out of the presented ones and repeat the

process.

Figure 2.8: Example of an interation of the interactive approach by Wierzbicki. Two new

RPs are set and their solution presented to the DM.

2.2.2 Evolutionary Algorithms

Evolutionary Algorithms (EA) approach optimization problems based on the princi-

ples of modern evolution. The evolution (optimization) process relies on the selection

of individuals of a population (candidate solutions) in a generation (iteration) based

on their fitness to create new, better, solutions. The fitness value represents the use-

fulness of the individual for solving the problem and is not necessarily associated to

the function value(s). The next generation of individuals (called the offspring popu-

lation) is created by combining the best-fitness individuals and mutating them. This

process is then repeated taking the offspring population to create new solutions until

CINVESTAV Computer Science Department



28 Chapter 2

a stopping criterion is met.

EAs have been widely used to solve optimization problems as they have shown an

extraordinary performance (see for example, [27]). Because of this, they have also

been adapted to the context of MOO [3] as multi objective Evolutionary Algorithms

(MOEA).

Unlike the mathematical scalarization methods listed before, MOEAs do not make

assumptions on the model. In turn, they can not guarantee optimality of the solutions

found. In addition, they have a slow convergence rate, as they test over and over (in

a structured manner) the variable space looking for better solutions. In the following,

we will present some of the most important EAs and MOEAs.

Genetic Algorithms

Genetic algorithms (GA) [28] were first proposed by John Holland in the sixties. In the

original work, solutions are represented by a binary string called chromosome, where

each entry of the chromosome (zero or one) is called an allele. The GA emphasizes the

creation of offspring from solutions with higher fitness value via its crossover operator.

A second operator, called mutation, is used to keep the population of chromosomes

from stagnation. The basic algorithm of the GA is presented in Algorithm 1.

Algorithm 1 Generic Genetic Algorithm
Require: NP : population size, Cp,Mp : cross-over and mutation probability.

1: Create a random initial population PG. Set G← 0

2: Compute the fitness of individual xi ∈ PG i = 1, . . . , NP

3: while stopping criterion not met do

4: Select individuals for cross-over based on fitness.

5: Apply cross-over with probability Cp and create new population QG.

6: Apply mutation with probability Mp to individuals in QG.

7: Select individuals for the next population PG+1. Set G← G+ 1.

8: end while

CINVESTAV Computer Science Department



BACKGROUND 29

It is a common practice in GA to select only the best NP individuals (elitism) from

the parent P and offspring Q combined population. Several different versions of GAs

have been suggested which vary in terms of the representation, selection mechanism,

crossover and mutation operator.

Differential Evolution

Differential Evolution is a relatively recent algorithm dating from 1997 designed by

Rainer Storn and Kenneth Price (DE,[27]) as a global optimizer for continuous SOPs.

Unlike most EAs, DE does not have a biological inspiration. Nevertheless, it has

proven efficacy and robustness in solving several benchmarks (e.g. [27]). Many ver-

sions of DE have been proposed, mainly classified as DE/x/y/z. Under this notation,

DE means Differential Evolution, x indicates the strategy used to select individual

included in the mutation operator, y is an integer representing the number of pairs of

solutions chosen for mutation and z stands for the recombination strategy used. The

most widely used variant is DE/rand/1/bin: the individuals selected for mutation

are chosen at random, one pair of solutions is chosen for this purpose and a binomial

recombination is used.

DE has only two specific parameters: CR and F . The former, controls the influence

of the parent individual in the offspring individual and is restricted to values between

0 and 1. The latter scales the influence of the pair of solutions in the mutation,

the recommended values are between 0 and 2. The main procedure is presented in

Algorithm 2.

Algorithm 2 Differential Evolution rand/1/bin.
Require: NP : population size, MAXGEN : maximum number of iterations, CR and

F are user-defined parameters of DE.

1: Create a random initial population xi,G i = 1, . . . , NP . Set G← 0.

CINVESTAV Computer Science Department



30 Chapter 2

2: Evaluate f(xi,G) i = 1, . . . , NP .

3: for G = 1 to MAXGEN do

4: for i = 1 to NP do

5: Select randomly r1 6= r2 6= r3:

6: jrand = randint(1,n).

7: for i = 1 to n do

8: if randj[0, 1) < CR or j = jrand then

9: ui,j,G+1 = xr3,j,G + F (xr1,j,G − xr2,j,G)

10: else

11: ui,j,G+1 = xi,j,G

12: end if

13: end for

14: if f(ui,G+1) ≤ f(xi,G) then

15: xi,G+1 = ui,G+1

16: else

17: xi,G+1 = xi,G

18: end if

19: end for

20: end for

NSGA-II

Deb proposed in 2002 an improved multi objective GA of his Non-dominated Sorting

Genetic Algorithm [29] or NSGA-II. The algorithm is characterized by the selection

mechanism based on a sorting of the population into different levels of non-dominated

fronts, hence its name. In the first stage, NSGA-II creates a random population and

produces an offspring population (using the Simulated Binary Crossover (SBX) [30]).

Then, both populations are combined and sorted using the procedure presented in

Algorithm 3.

CINVESTAV Computer Science Department



BACKGROUND 31

Algorithm 3 Non-dominated sorting procedure in t-th generation.
Require: P : population

1: for each individual p ∈ P do

2: Set Sp = 0 and ηp = 0 . Sp stores the indices of the solutions dominated by p

3: Set ηp = 0 . ηp is a counter of the number of solutions which dominate p

4: for each q ∈ P do

5: if p ≺ q then

6: Sp = Sp ∪ {q}

7: else if q ≺ p then

8: ηp = ηp + 1

9: end if

10: end for

11: if ηp = 0 then

12: prank = 1 . Non-dominated rank of p

13: F1 = F1 ∪ {p} . First front of non-dominated individuals

14: end if

15: i = 1

16: while Fi 6= ∅ do

17: Q = ∅

18: for each p ∈ Fi do

19: for each q ∈ Sp do

20: ηq = ηq − 1

21: if ηq = 0 then

22: qrank = i+ 1, Q = Q ∪ {q}

23: end if

24: end for

25: end for

26: i = i+ 1 , Fi = Q

27: end while

28: end for

CINVESTAV Computer Science Department



32 Chapter 2

Individuals are selected to the next parent population from the sorted combined popu-

lation starting from the first non-dominated front until the population size is exceeded.

If the last front can not be completely included but only partially, a second property

called crowding distance, is associated to each individual. This distance measures

how isolated a solution is from the rest of the population, being the most isolated

ones preferred over crowded solutions. The proposed crowding distance procedure

works only in two objectives and will not be presented here.

MOEA-D

The multi objective Evolutionary Algorithm based on Decomposition or MOEA-D

[31] was presented in 2007 by Qingfu Zhang and Hui Li from the University of Essex.

The main idea of MOEA-D is to solve the MOP by using scalarization methods like

the WS or WM methods presented before. Since the theoretical properties of the

WM method with the weighted infinity norm guarantee a (weakly) Pareto solution it

has been most widely used in practice. MOEA-D considers neighbor solutions for a

subproblem with weighting matrix Wi for crossover. These neighbor solutions consist

of the solutions with similar weighting matrix Wj. The population is then composed

of the best solution found so far for each subproblem. The generic algorithm of

MOEA-D is presented in Algorithm 4.

Algorithm 4 MOEA-D generic algorithm
Require: N : number of subproblems considered, T : number of neighbors to be

considered

1: Set EA = ∅ . The set EA is composed of all non-dominated solution found so

far

2: for each subproblem i = 1, . . . , N do

3: Compute the T closest solutions using a distance metric and store them in Bi.

4: end for

5: Initialize and evaluate a population with size N

CINVESTAV Computer Science Department



BACKGROUND 33

6: Compute the ideal point so far as Zi, where each component is the best value

found so far within the population’s objective values.

7: while stopping criterion not met do

8: for each subproblem i = 1, . . . , N do

9: Take two random solutions from Bi and create a new solution x for sub-

problem i with genetic operators.

10: Apply a heuristic to x to produce a better solution x′.

11: for each objective j = 1, . . . , k do

12: if F (x′)j < Zj then

13: Update the value of Zj with F (x′)j.

14: end if

15: end for

16: for each neighbor solution j = 1, . . . , T do

17: if WM(x′,Wj) < WM(xj,Wj) then . WM(∆,Wj)

is the subproblem using weighting matrix Wj,xj is the best value for subproblem

WM(∆,Wj).

18: Update the value of xj with x′.

19: end if

20: end for

21: Remove from EA all solutions dominated by x′.

22: if x′ is not dominated by a member of EA then

23: Set EA = EA ∪ {x′}

24: end if

25: end for

26: end while

It is worth mentioning that MOEA-D is just a framework to solve MOPs where any

heuristic could be taken within to obtain better solutions. Also, since the computation

of the real ideal point is a costful operation, it is taken rather from the minimum values

CINVESTAV Computer Science Department



34 Chapter 2

found so far from the population.

2.3 Reference Point Problems

Originally, the reference point approach was presented as an interactive method in

1979 by Wierzbicki [9]. In his work, he argues about the benefits of using RPs

instead of weight coefficients commonly used in scalarization methods. He gives

several qualitative and theoretical reasons for using RPs. However, we will not discuss

any RP interactive approach in this work. The reader is invited to read [5, 9] for a

thorough investigation of this topic.

No preference and a posteriori methods which use RPs are also found in literature

specially in mathematical programming techniques. They will be briefly discussed in

this section. We will emphasize the study of the a priori approach, i.e, we will assume

pre-defined RPs supplied by the DM.

Formally a reference point problem (RPP) is composed of a MOP along with a set

of RPs. A RP, Z ∈ Rk, is a point defined in objective space and serves as a pre-

established goal or aspiration level.

The task in a RPP usually consists of minimizing the distance of the feasible search

space and the RPs via a distance metric.

Definition 13 (Metric). A metric is a function D : Rn × Rn → R such that for all

x, y, z ∈ Rn, D satisfies:

D(x, y) ≥ 0

D(x, y) = 0 iff x = y

D(x, y) = D(y, x)

D(x, z) ≤ D(x, y) +D(y, z).

The most commonly used metric is the p-norm as presented before in (11). For the

following definitions consider a MOP of k objectives as in (2.3) and let Z ∈ Rk be a

CINVESTAV Computer Science Department



BACKGROUND 35

given RP. Then, the p-norm RPP becomes:

min
x∈Q
||F (x)− Z||p. (2.25)

Equation (2.25) has interesting features which will be studied in the following sub-

section.

Depending on the position the RP has in the objective space, it can be classified

into special cases and will have particular properties.

Let Z ∈ Rk be a RP and F (Q) be the domain of F .

Definition 14 (Ideal and Utopian Reference Point). The ideal RP Z∗ is composed

of the individual minimum of each objective, i.e.

Z∗i = min
x
fi(x) ∀i = 1, ..., k.

Z∗∗ is called the utopian RP if it is partially less than every Pareto point:

Z∗∗i = Z∗i − ε ∀i = 1, ..., k.

Proposition 2. The solution of (2.25) using the ideal RP is a Pareto point.

Proof 2. Assume the solution x∗ of (2.25) is not Pareto optimal. Then x∗ is

dominated by at least one point. Let x∗∗ ≺ x∗, i.e. F (x∗∗) <p F (x∗). Since

Z∗ <p F (x) ∀x ∈ Q, ||F (x∗∗) − Z∗||p < ||F (x∗) − Z∗||p. Hence, the solution to

(2.25) is non-dominated.

The same proof is valid when using the utopian RP.

CINVESTAV Computer Science Department



36 Chapter 2

Figure 2.9: Ideal (Z1) and utopian (Z2) RPs of a concave MOP with two objectives. The

black line indicates the Pareto front.

Definition 15 (Feasible Reference Point). Z is called feasible,non-utopian or at-

tainable if Z ∈ Qk. For a feasible RP the following statement is true:

∃x∗ ∈ Q s.t. ||F (x∗)− Z||p = 0. (2.26)

If (2.26) is not satisfied, Z is called infeasible. Two properties from RP’s feasibility

are to be noticed:

1. Non-feasibility does not necessarily imply optimality as the RP can be partially

more than a point x∗ yet not be contained in Qk. That is, ∃x∗ ∈ Q : F (x∗) <p Z

such that (2.26) is not satisfied.

2. A feasible RP is only optimal if it belongs to the Pareto front. In any other

case, there will exist a better solution according to the dominance relation than

the feasible RP. However, notice that as expressed by (2.26) for a non-optimal

RP, the actual solution of the RPP is given at x∗ and not at a Pareto point.

CINVESTAV Computer Science Department



BACKGROUND 37

Figure 2.10: Example of a feasible RP Z1 and an infeasible RP Z2. For Z1 there exists a

point x ∈ Q s.t. F (x) = Z1.

2.3.1 Reference Point Based multi objective Optimization Evo-

lutionary Algorithms

The work that exists in literature on RPs is presented in this section. Two remarkable

features of RP-based MOEAs are to be noticed. Ideally, a RP-based MOEA should

be able to:

• Work with several RPs in one single run.

• Given a RP for which the closest solution is not a Pareto point, it should be

able to find solutions on the Pareto front close the such RP.

CINVESTAV Computer Science Department



38 Chapter 2

These algorithms usually take more than one criteria (distance towards a RP) to

obtain optimal solutions since in the sense of the classical RP problem (2.25) for

feasible RPs, the problem attains its optimal value at the RP and not in a point on

the Pareto front.

RNSGA-II

The RNSGA-II [32] algorithm was proposed by Deb. et al in 2006. RNSGA-II is an

a priori version of the popular NSGA-II algorithm presented in the previous section

which can deal with user preferences in the form of RPs. The framework of the

NSGA-II algorithm is kept with only one difference, namely, the crowding distance is

replaced by the procedure presented in Algorithm 5.

Algorithm 5 Modified crowding distance in RNSGA-II.
Require: P : population , Z: set of RPs , ε: desired spread around Zi

1: for each RP Zi ∈ Z do

2: Compute the distance of each member in the population to Zi and store it in

an ordered ascending list.

3: end for

4: for each p ∈ P do

5: Assign the minimum rank p has in the sorted lists as the modified crowding

distance.

6: end for

7: Cluster solutions with normalized difference in objective values of ε or less.

8: for each cluster do

9: Keep the assigned crowding distance of a random solution and change the

crowding distance of all others to a large value.

10: end for

RNSGA-II was tested on the bi-objective benchmark problems ZDT1, ZDT2,

ZDT3 and the three, five and ten objective DTLZ2.

CINVESTAV Computer Science Department



BACKGROUND 39

RMEAD

In 2012, Mohammadi et al. proposed a RP algorithm based on decomposition called

RMEAD [33]. Similarly to MOEA-D, RMEAD is an algorithm which borrows the idea

of decomposition of the MOP into simpler SOP subproblems, however, the subprob-

lems are restricted to those which give solutions close to the supplied RPs. Namely,

RMEAD takes two decomposition methods: the WS and WM with Tchebycheff norm.

The algorithm was tested and compared against RNSGA-II on two and three objec-

tive concave and convex problems giving better results when using the WM method.

RMEAD was outperformed when using WS as decomposition since for non convex

problems the formulation does not guarantee a Pareto optimal solution.

The RMEAD algorithm is presented in Algorithm 6.

Algorithm 6 RMEAD algorithm.
Require: Ps: population size , radius: spread of solutions around a given RP , Z:

set of RPs, lb: lower bounds, ub: upper bounds

1: Initialize a population with Ps individuals within the boundaries lb and ub.

2: Compute a set of Ps initial weight vectors IW .

3: Use a heuristic to find the weight vectors giving the closest solutions to the RPs.

4: Evaluate the population using the given MOP.

5: for each RP Zi ∈ Z do

6: Find the closest individual and its associated weight vector BWi in the popu-

lation to Zi.

7: Use BWi to initialize Ps new weight vectors Wi in the neighborhood of size

radius.

8: end for

9: Initialize a population with Ps × |Z| individuals.

10: Set step = radius/Ps.

11: while stop criteria not met do

12: Evolve the population using a given heuristic

CINVESTAV Computer Science Department



40 Chapter 2

13: Evaluate the population using the set of weight vectors Wi.

14: for each RP Zi ∈ Z do

15: Set besti as the weight of the closest solution to Zi.

16: Set worsti as the weight of the farthest solution to Zi.

17: Compute an update direction as d = besti − worsti
18: Update the weight vector Wi in direction d by an amount step.

19: end for

20: end while

2.4 Performance Indicators

All methods presented so far need to be assessed in order to obtain certain infor-

mation about their outcome. The means for retrieving such information are called

performance indicators. In practice, it is always desirable to attain an approximation

that (a) covers the entire Pareto front uniformly (which accounts for spread) and

(b) lies exactly over the Pareto front (which accounts for convergence). There exists

several performance indicators for this task, nevertheless, none of them are perfect

on their own. We will present in this section the ones which will be the most relevant

in the context of RPPs.

In the following, we will define the output of a method, a finite approximation of the

Pareto set, as an archive.

Definition 16 (Archive). An archive A of size l contains l elements in Rn which are

mutually non dominated, i.e.

A = {a1, . . . , al} ai ∈ Rn i = 1, . . . , l

: ai ⊀ aj ∀i = 1, . . . , l : ∀j = 1, . . . , l, j 6= i.
(2.27)

Because of the use of distances in RPPs, we will begin this section with the

definition of special metrics.

CINVESTAV Computer Science Department



BACKGROUND 41

Definition 17 (Distance from a point to a set). The distance between a point b ∈ Rn

and a set A ⊂ Rn is defined as:

dist(b, A) := inf
a∈A
||b− a||, (2.28)

where || · || is a norm as in Equation (11).

Definition 18 (Semi-distance from two sets). The semi-distance between two sets A,

B ⊂ Rn is defined as

dist(B,A) = sup
b∈B

dist(b, A). (2.29)

Note that dist(A,B) is not symmetric, i.e., it does not have to hold dist(B,A) 6=

dist(A,B) for all sets.

Finally, the Hausdorff distance [34], is defined as:

Definition 19 (Hausdorff distance). Let A,B ⊂ Rn, then the Hausdorff distance

between A and B is defined as

dH(A,B) = max(dist(A,B), dist(B,A)). (2.30)

2.4.1 Generational Distance

The Generational Distance (GD) indicator measures the (averaged) distance from an

archive A to the true Pareto front F (PQ). Veldhuizen and Lamont introduced the

GD indicator in [35]:

Definition 20.

GD(F (A), F (PQ)) :=
1

|A|
(

|A|∑
i=1

da∈F (A)(a, F (PQ))2)1/2. (2.31)

The GD indicator takes the distance from each member of the archive to the closest

point in the Pareto front. This property suggests that GD measures convergence to

the Pareto front (a GD value of zero means all solutions of A lie on the Pareto front).

CINVESTAV Computer Science Department



42 Chapter 2

Figure 2.11: A discretization of the Pareto front (red line) is used to compute GD indicator.

Single solutions have a huge impact in the GD value.

However, GD is not well suited for measuring spread of solutions. For example,

an archive with a single solution which is Pareto optimal would get the best value of

the GD indicator, although it doesn’t cover F (PQ). In addition, requiring the true

Pareto front is a big disadvantage of GD, since it is not always available in real world

problems or even in academic examples.

2.4.2 Inverted Generational Distance

A variation of the GD indicator is called the Inverted Generational Distance (IGD).

First presented in [36] by Cruz and Coello, IGD can be seen as complementary to

GD.

Definition 21 (Inverted Generational Distance). Let FP = {y1, . . . , ym} be a finite

CINVESTAV Computer Science Department



BACKGROUND 43

size discretization of the Pareto front. IGD is defined as:

IGD(F (A), FP ) :=
1

m
(

|FP |∑
i=1

dp∈Fp(p, F (A))2)1/2. (2.32)

Hence, the IGD value of an archive denotes ’how well’ the archive covers the given

discretization of the Pareto front. In this sense, IGD is a good indicator for the spread

of solutions. IGD is not flawless. Picture the following scenario: let an archive have

more points than FP and for each point in FP there is a point in F (A) where the

distance between them is zero. Then, all remaining points are not taken into account

by the IGD indicator and can lie wherever in the objective space.

Figure 2.12: A small discretization of the Pareto front (black circles) is used to compute

IGD indicator. Only the closest solutions in the population (empty diamonds) are considered

meanwhile solutions far away from FP are neglected.

CINVESTAV Computer Science Department



44 Chapter 2

2.4.3 Averaged Hausdorff Distance ∆p

The ∆p indicator proposed by Schütze et al. [37] can be viewed as an averaged version

of the Hausdorff distance. This indicator slightly changes and combines the GD and

IGD indicators in an attempt to prevent their individual disadvantages:

Definition 22 (∆p). Let FP be a subset of the Pareto front.

GDp(A,FP ) :=

 1

|A|

|A|∑
i=1

dist(a, F (PQ))p

1/p

(2.33)

IGDp(A,FP ) :=

 1

|FP |

|FP |∑
i=1

dist(p, F (A)))pi

1/p

(2.34)

∆p := max(GDp(A), IGDp(A)). (2.35)

For p = ∞ it is ∆p = dH . For p < ∞ the distances in Equations (2.33) and (2.34)

are averaged. Thus, ∆p can be viewed as an averaged Hausdorff distance.

2.4.4 UPCF

In 2013, Mohammadi et al. proposed a RP metric called user-preference metric based

on a composite front or UPCF. UPCF was designed to avoid requiring the Pareto front

beforehand by creating a ’reference Pareto front’ from the non-dominated solutions

of more than one algorithm. The procedure is as follows:

1. Combine all non-dominated solutions from the algorithms to be compared. This

set of optimal solutions form the so called composite front.

2. For each RP, identify the closest solution in the composite front. A parameter

r (specified by the user) defines the spread of solutions sought in the composite

front. Only solutions within Euclidean distance r to the closest point will be

considered for further computations.

CINVESTAV Computer Science Department



BACKGROUND 45

3. Using the preferred region on the composite front as the reference Pareto front,

a ’classical’ indicator as IGD is applied on each population of the algorithms.

UPCF was meant to compare more than one algorithm as can be seen from Step 1,

since for only one archive all non-dominated solutions belong to the same algorithm.

Hence, any metric used would have a perfect value. Nevertheless, this metric was

used with the IGD and Hyper volume to compare RMEAD and RNSGA-II.

CINVESTAV Computer Science Department





3 | Directed Search for Reference Point

Problems

We have discussed so far the generic structure of the RPP along with properties

regarding the position of the RP. In this chapter, we will turn our attention to the

Directed Search method presented in the previous chapter for solving RPPs such as

(2.25) which we call Reference Point - DS or RDS.

The theoretical basis of the RDS is presented in Sections 3.1.1 and 3.1.2 which includes

the descent and continuation phases, respectively, analog to the ’classical’ DS. Further,

for a feasible RP and in contrast to the classical formulation of the RPP, we present

an alternative for finding better solutions according to the dominance relation. A

novel feature consisting of neighborhood exploration of the solution of a RPMOP is

discussed in Section 3.2. Finally, a brief discussion of the novel RDS is provided in

Section 3.3.

3.1 RDS

3.1.1 Descent phase

In the previous section we have presented the highlights of the DS where we have

emphasized the ’steering’ property via a direction d ∈ Rk. In order to compute such

47



48 Chapter 3

a direction in the context of RPPs, recall the generic formulation of the RPP

min
x∈Rn

D(F (x), Z), (3.1)

where D : Rn → R is a chosen metric such as the p-norm, F : Rn → Rk is a k

objective unconstrained MOP, and Z ∈ Rk is a given RP in objective space.

Now, given an initial point x0 and a RP Z, the greedy direction dG in objective

space is certainly given by

dG = Z − F (x0). (3.2)

Therefore, dG can be used by the DS approach. That is, an application of DS is

equivalent to the numerical realization of the following initial value problem (IVP):

x(0) = x0 ∈ Rn

ẋ(t) = J(x(t))+(Z − F (x(t))), t > 0.
(3.3)

In order to understand the end point of the solution curve (3.3) we need to identify

when ẋ(t) = 0.

Proposition 3. Given a RP Z, the end point of (3.3) is a critical point of (3.1).

Proof 3. We know that an end point to (3.3) is such that ẋ(t) = 0. This is the case

if one of the three cases is satisfied:

1. J(x(t))+ = 0.

2. (Z − F (x(t))) = 0.

3. J(x(t))+(Z − F (x(t))) = 0.

• If the given RP is feasible then there exists x∗ ∈ Rn : F (x∗) = Z. Hence, the

solution curve of (3.3) ends when the second case is met.

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR REFERENCE POINT PROBLEMS 49

• If the given RP is infeasible, consider the following auxiliary function

g(x) = D(Z, F (x)) =
1

2
||Z − F (x)||22. (3.4)

We know that a critical point of this function can be found by setting the deriva-

tive to zero:

∇D(Z, F (x)) =

(
1

2
(2)||Z − F (x)||2

(Z − F (x))T

||Z − F (x)||2
J(x)

)T
= J(x)T (Z − F (x)) = 0.

(3.5)

Hence, we can assume that the third condition for an end point of the solution

curve of (3.3) is reached when the minimum of the RPP (3.1) is obtained.

Equation (3.5) gives insight of another appealing reason to use RDS in RPPs, par-

ticularly when a feasible RP is used. Namely, that we can expect (local) quadratic

convergence as the following discussion shows. If we consider (3.2) as a root finding

problem, an iteration of the Gauss-Newton method (for which locally quadratical

convergence is know, see [38]) is given by:

xi+1 = xi − Jg(xi)+g(xi) = xi − J(xi)
+(F (xi)− Z)

= xi + J(xi)
+(Z − F (xi)),

(3.6)

where Jg(x) denotes the Jacobian of (3.4) at x.

On the other hand, an iteration performed via DS yields

xi+1 = xi + tiJ(xi)
+(Z − F (xi)), (3.7)

where ti ∈ R+ is the chosen step size. Comparing (3.6) and (3.7) we see that both

iterations coincide for ti = 1. Such a step size can be used even when a RP is not

feasible in order to reach Pareto (boundary) solutions as soon as possible.

CINVESTAV Computer Science Department



50 Chapter 3

It is worth noticing that, unlike the ’classical’ DS where the direction d ∈ Rk dictates

a straight line in direction d, (requiring consequently a corrector step to the line

F (x) + td the direction used in (3.3) is updated at each point x(t).

3.1.2 Continuation phase

In order to see how to proceed in case the given RP is not feasible, we have to

understand the geometry of the solution curves of IVP (3.3). For this, compare to

Figure 3.1.

Figure 3.1: Typical image of a solution curve of (3.3).

We can divide such solution curves into two parts:

• In part I, a movement in d-direction is performed that accounts for the descent

phase of RDS.

• Once a boundary point x of the MOP is reached, the movement is steered along

the linearized Pareto front at F (x). This movement along the Pareto front

constitutes part II of the solution curve.

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR REFERENCE POINT PROBLEMS 51

Unfortunately, the ordinary differential equation in (3.3) is stiff in part II which means

that its numerical treatment gets complicated. To see the stiffness, let x be a bound-

ary point. Then there exists a direction d such that the equation J(x)ν = d has

no solution. This is equivalent to rank(J(x)) < k which means that the condition

number of J(x) is infinite.

In order to overcome this stiffness, we can perform a linearization to steer the

search directly as follows: let x be a boundary point with weight α ∈ Rk such that:

k∑
i=1

αi∇fi(x) = 0. (3.8)

Further, let a QR factorization of α be given,

α = QR = (q1, . . . , qk)R. (3.9)

Then the column vectors of Q2 = (q2, . . . , qk) ∈ Rk×(k−1) form an orthonormal basis

of the linearized Pareto front at F (x). Given the greedy direction dG, the projection

onto the tangent space is thus given by

dnew = Q2(Q
T
2Q2︸ ︷︷ ︸
=I

)−1QT
2 dG = Q2Q

T
2 dG. (3.10)

Denote by P (x) := Q2(x)Q2(x)T the projection described above. Then we can solve

the following IVP for points x0, where F (x0) is on the boundary of the image:

x(0) = x0 ∈ Rn

ẋ(t) = J(x(t))+P (x(t))(Z − F (x(t))), t > 0.
(3.11)

The switch between (3.3) and (3.11) can be handled via monitoring the condition

number of J(x):

CINVESTAV Computer Science Department



52 Chapter 3

• If J(x) < tol for a certain tolerance value we choose to follow the flow in (3.3).

• Otherwise we take (3.11)

The flow given by (3.11) can certainly lead to a new point away from the Pareto

front when traversing it. Hence, a corrector step might be needed to bring the new

solution back to the desired curve.

For a corrector direction, notice that for an iterate which is away from the Pareto

front it is the again case that J(x) < tol. That is, we can use again the descent phase

of RDS using the greedy direction dG.

An observation from (3.5) can be used as a stopping criterion: recall that a critical

point of the p-norm RPP is given by

∇D(Z, F (x)) = J(x)T (Z − F (x)) = 0.

Now, assume a Pareto point x∗. We know by the KKT conditions for the uncon-

strained case (2.6) that there exists an associated weight α ∈ Rk where the sum of

gradients multiplied by each component of α is zero.

Hence, a solution to (3.1) satisfies the following two conditions:

• rank(J(x)) < k ↔ cond(J(x)) =∞.

• α and (Z − F (x)) are collinear.

3.1.3 Step size control

Possible step size controls for the DS method have been discussed in [39, 40]. Although

they were shown to be efficient for the classical DS, we can improve them for the

problem at hand since we can take advantage of the fact that the RPP is in principle

a SOP.

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR REFERENCE POINT PROBLEMS 53

Motivated by the discussion above, we can set a step size equal to one expecting to

achieve (local) quadratic convergence. However, if it is the case that the new iterate

is farther away from the RP Z, we can attempt an Armijo backtrack as follows:

Let x0 be an initial point with single objective value f(x0) where the SOP’s ob-

jective function f is the RPP as defined in (3.4). A line search starting at x0 is

defined as fν(0) = f(x0). Further, assume RDS yields a new iterate such that

f(x1 = x0 + tν) = fν(t) > f(x0). If we consider that the direction ν found by

RDS is a also descent direction of (3.4) then it holds f ′v(0) = 〈∇f(x), ν+〉 < 0 (by

looking at (3.5) we can obtain the derivative of f without additional cost).

Then, approximate fv by a quadratic polynomial using the interpolation conditions

p(t) = at2 + bt+ c.

p′(t) = 2at+ b = 0.
(3.12)

By the considerations above, we know that p is a strongly convex function and has a

unique minimizer. The solution to (3.13) is given by

topt =
−b
2a

=
−t2 < ∇f(x0), ν >

2(f(x1)− f(x0)− t〈∇f(x0), ν〉)
.

(3.13)

If fv(topt) > fv(0) we can repeat the process.

3.1.4 Box constraints

In the following, we consider box constrained MOPs of the form

min
x∈Rn

F (x)

s.t. l ≤ x ≤ u,

(3.14)

CINVESTAV Computer Science Department



54 Chapter 3

where l, u ∈ Rn are the lower and upper limits, respectively.

Among the various methods for handling box constraints, the most effective one is

probably the gradient projection method [41]. Each iteration of the method consists

of two steps. In the first one, we perform a search in the descent (e.g. steepest

descent) direction for the current iterate and in the second one the search direction

is bended so that the iterate remains feasible.

That is if for a search direction and a step size a new iterate does not violate any of

the box constraints, it can be accepted with no further considerations. On the other

hand, if any of the inequality constraints is active (x = l or x = u) the inequality

constraint can be considered as an equality constraint of the following form

hi(x) = ±xi + ai = 0 i = 1, . . . , p. (3.15)

In this case a movement orthogonal to the gradient of the active inequality constraints

is sought, i.e.

〈∇hi(x), ν〉 = 0 for all i = 1, . . . , p. (3.16)

This property can be easily fulfilled. The derivative of an active box constraint has

the following form

∇hi(x) = (0, . . . , 0,±1, 0, . . . , 0)T i = 1, . . . , p. (3.17)

Thus, directions with νi = 0 comply with (3.16).

3.1.5 Non linear constraints

In [39], Salinas proposed an extension for handling non linear constraints in the DS

method which can be easily adapted to the RDS. Analog to the gradient projection

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR REFERENCE POINT PROBLEMS 55

method, the idea is to handle the problem as if it is unconstrained until inequality

constraints become active. In his work, the problem of a search direction is treated

as a general least squares problem of the following form

min
x
||Ax− b||22

s.t. Cx = d,

(3.18)

where A ∈ Rn×k, b ∈ Rn, C ∈ Rm×k and d ∈ Rm. In the context of DS, the problem

becomes

min
ν
||J(x)ν − d||22

s.t. H(x) = 0,

(3.19)

where H(x) ∈ Rq×n is the Jacobian of the q active equality and inequality constraints.

The solution to (3.19) can be stated in closed form as

 2J(x)TJ(x) H(x)T

H(x) 0

 ν

λ∗

 =

 J(x)Td

0

 ,
and solving for (ν, λ∗)T

 ν

λ∗

 =

 2J(x)TJ(x) H(x)T

H(x) 0

+  J(x)Td

0

 . (3.20)

3.2 Neighborhood exploration

In the sense of (3.1), the problem is considered solved when a solution to the RPP is

found. However, may times the purpose of DMs when establishing RPs is to explore

optimal solutions in the Pareto front similar to the RP supplied, that is, to obtain

CINVESTAV Computer Science Department



56 Chapter 3

an overview of the region surrounding a RP. As presented in Chapter 2, EAs already

include the means to accomplish this task by relying on the population’s individuals

to cover the sought regions. However, there does not exist such a specific tool in

mathematical programming techniques. Here we will present a simple adaption of

the RDS for ’exploring’ the neighborhood of the solution to the RPP in the form of

an algorithm.

3.2.1 Considerations

Let x∗ be a Pareto point and the solution to the RPP found by RDS. Assume the

Jacobian of x∗, J(x∗), is given along with the associated convex weight α. Then,

an exploration of the surrounding optimal solutions of x∗ can be performed with no

additional Jacobian computations for a small neighborhood.

Recall that RDS’s direction in variable space ν is computed using only the Jaco-

bian of a starting point (in this case, the solution of the RPP) which is then used in

a line search. Now, as it has been discussed in [40], a sufficiently small step size tx

in variable space Q is equivalent to a step size ty in objective space Rk, i.e., tx ≈ ty

for tx → 0. These two observations suggest that further Pareto points can be found

by choosing first a suitable set of directions D = {d1, . . . , dF} ⊂ Rk and then a set of

step sizes T = {t1, . . . , tN} ⊂ R.

Such directions need to point along the Pareto front in order to guarantee the opti-

mality of the neighboring solutions. For the special case of k = 2 such directions are

restricted to either ’left up’ or ’right down’ in objective space. However, for k > 2

the set of directions is infinite. Here we propose to take the coordinate directions

êi ∈ Rk , i = 1, . . . , l, in positive and negative directions: di,1 = êi, di,2 = −êi and to

project them to the Pareto front using the projection operator defined in the second

phase of RDS. All that remains is to provide a set of desired neighborhood sizes to

explore in order to cover a certain extent of the Pareto front. The pseudo code of the

neighborhood exploration can be found in Algorithm 7.

CINVESTAV Computer Science Department



DIRECTED SEARCH FOR REFERENCE POINT PROBLEMS 57

Algorithm 7 RDS Neighborhood Exploration
Require: x∗: solution to RPP, J(x∗) : Jacobian of MOP at x∗ , α: convex weight,

N ⊂ R neighborhood sizes.

Compute the projection operator P (x∗) of the linearized Pareto front at x∗ as in

(3.10).

for each neighborhood size n ∈ N do

for each coordinate axis êi i = 1, . . . , k do

Project êi using P (x∗) and obtain ėi.

Shoot in direction d = ėo − F (x∗) using step size t = n

Project −êi using P (x∗) and obtain −ėi.

Shoot in direction d = −ėi − F (x∗) using step size t = n

end for

end for

We will now present two examples of the neighborhood exploration on three objec-

tive functions. Namely these are the DTLZ1(linear) and DTLZ2(concave) problems.

For both examples we have used a RP which is infeasible and computed the solution

to the associated RPP which is a Pareto point with RDS. From there on we have

used it as starting point for exploration. The red diamond represents the RP, the

green circle is the solution F (x∗) to the RPP, the blue diamonds are the neighboring

solutions for two desired neighborhoods around the RP and still within the Pareto

front.

(a) Neighborhood exploration spread of

solutions

(b) Neighborhood exploration opti-

mality of solutions

Figure 3.2: Neighborhood exploration on DTLZ1.

CINVESTAV Computer Science Department



58 Chapter 3

(a) Neighborhood Explo-

ration Spread

(b) Neighborhood Exploration

Convergence

Figure 3.3: Neighborhood exploration on DTLZ2.

3.3 Discussion

In this chapter we presented a modification of DS, called RDS, to tackle RPPs. RDS

has a big advantage over several other mathematical techniques, namely, that it can

be made gradient free by sampling solutions in the neighborhood. This becomes

specially useful when considering set based algorithms such as MOEAs. Further,

almost all work done for DS can be used for RDS such as the constraint handling.

Also, a novel method for exploring neighboring solutions from the original solution

of a RPP without computing further derivatives was proposed.

CINVESTAV Computer Science Department



4 | RDS within MOEAs

In this chapter we will present a hybridization of RNSGA-II and the RDS algorithms

presented in the previous chapters. This memetic algorithm takes the best features

from both approaches: the global overview of the problem given by the evolutionary

algorithm and the accurate and focused search carried by the mathematical program-

ming technique along with its convergence properties.

The resulting algorithm, called RDS-RNSGA-II, is first introduced for uncon-

strained and box constrained problems in Section 4.1 and for constrained problems in

Section 4.2.3 where one comparison of RDS-RNSGA-II against RNSGA-II is shown.

A modified version of the IGD indicator discussed in Chapter 2 is presented in Section

4.3.

4.1 Unconstrained and Box Constrained RPPs

In this section, we will introduce the base framework for the hybridization of RNSGA-

II and RDS. First, we will address the general considerations of the memetic strategy

which will be used in the memetic RPMOEA regardless of the model. Next, we will

present the local search algorithm for the totally unconstrained case. The adaption

for box constrained problems are presented last.

59



60 Chapter 4

4.1.1 General considerations

When designing the memetic RDS-RNSGA-II algorithm, many aspects were taken

into account in order to get a balance between the LS and the EA. The generic

parameters suggested in [42]) are:

• The number of individuals to which LS will be applied.

• The maximal iteration number (depth) of the LS applied to an individual.

• Frequency of the same.

Next to these generic parameters there are some more specific ones related to RPPs.

Firstly, in order to guarantee balanced convergence for each RPP, we decided to take

RPs for improvement one at a time in a round robin fashion. That is, given a set of

RPs Z1, . . . , Zl, Z1 is first taken for a RPP and marked as the current working RP.

This RPP is optimized by RDS for a given budget, then Z2 is taken as the current

working RP and so on until Zl is reached. If some budget is still available, the process

is repeated in the same order.

The second issue to tackle is which solution to chose for improvement. This is the

most important aspect in the memetic algorithm. Considering the non dominated

sorting of NSGA-II, a LS algorithm could try to improve individuals on the first non

dominated front and backwards from then on. This approach, however, is not useful

in particular when the number of objectives increases since most of the individuals will

belong to this front. Hence, a second and more promising alternative is to improve

solutions which are already close to RPs whether they are dominated or not.

However, this selection scheme introduces a problem when a RP is found to be feasible

during the evolution since there will exist better solutions according to the domination

relation: a new iterate, closer to the current working RP found by local search would

be discarded by RNSGA-II in favor of dominating solutions, wasting computational

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 61

effort in the process. Recall that the first goal of RNSGA-II is to obtain non dominated

individuals and afterwards solutions close to the supplied RPs.

Therefore, a feasibility check of the RPs (presented in Algorithm 8) is performed

always after a generation ends.

Algorithm 8 Feasibility check of RP
Require: Population P , supplied RPs Z1, ..., Zl, feasible RPs found so far FRP

Ensure: Feasible RPs so far FRP

1: for each Zi ∈ Z do

2: for each pi ∈ O do

3: Set Fi as the function value of individual pi.

4: if ||Fi − Zi|| < tol or Fi <p Zi then

5: Add Zi to FRP

6: end if

7: end for

8: end for

In RDS-RNSGA-II, individuals are sorted according to a fitness function that

takes into account the feasibility of the RP. Then, the best individual is improved.

The fitness functions for each case is described below:

• If the RP is not feasible, the distance towards the RP becomes the fitness

function. This way, closest solutions are preferred.

• If the RP is feasible, the distance towards the RP plus the non dominated

rank times a constant becomes the fitness function. In this sense, dominating

solutions are preferred and within the same front, closest solutions are taken.

In order to avoid premature convergence due to super elite individuals, the trail

of solutions improved by the LS are stored and replace the worst solutions in the

population.

CINVESTAV Computer Science Department



62 Chapter 4

Algorithm 9 shows the whole process of selection and replacement of RDS-RNSGA-II

described so far.

Algorithm 9 Local Search Engine
Require: Population P , RPs Z1, ..., Zl, feasible RPs so far FRP , iterations XDSI,

solutions to improve per RP XDSPZ

1: Set Sr as 0. . Success rate of the RDS

2: for i = 1 to XDSPZ do

3: for each Zi do

4: if Zi is feasible then

5: Set the fitness function Ff (I) as the distance towards Zi plus a domi-

nated penalty.

6: else

7: Set the fitness function Ff (I) as the distance towards Zi.

8: end if

9: Sort P using Ff (I).

10: Take the best solution and apply "Local Search" for XDSI iterations.

11: Store the trail of solutions obtained in a set TS.

12: if TS 6= ∅ then

13: Replace the worst solutions by each solution in TS one by one.

14: Set Sr as Sr + 1.

15: end if

16: Check for feasibility of Zi.

17: end for

18: end for

19: Set Sr as Sr
|Z|×XDSPZ .

A success rate variable Sr is computed in order to further apply or postpone the

LS.

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 63

4.1.2 RDS within a MOEA

It is worth noticing that all the considerations discussed above are completely inde-

pendent of the choice of the LS algorithm including the RDS. Hence, they are useful

for both the gradient based and the gradient free version of the RDS algorithm. Both

algorithms are used further or not depending on the success rate they have once

applied. The reason for this is that in the first stages of the evolution, the EA’s po-

pulation is less likely to have neighborhood information available, being the opposite

in the last stages, where the population is expected to converge towards the optimal

areas.

This behavior suggests that at the beginning of the evolution, RDS will yield better

solutions than the gradient free version and should be used to reach the Pareto front

as quick as possible, meanwhile the RDDS can gain the most when the population

members become closer and more search directions can be included to approximate

the gradient.

In Algorithm 9, the "Local Search" procedure refers to the RDS and RDDS. We will

now present in Algorithm 10 RDS within the memetic strategy.

Algorithm 10 RDS within a MOEA
Require: Initial point x0 along with F (x0), RP Z, flag of Z’s feasibility, iterations

XDSI

1: Compute the Jacobian J(x0) at x0.

2: Compute α = argminα∈Rk ||∇fi(x0)αi||. Set iter ← 0.

3: Set xH and FH to the empty set. Add x0 and F (x0) to xH and FH respectively.

. xH and FH will store the trials.

4: while iter < XDSI do

5: Compute the greedy direction dG = Z − F (x0).

6: if κ (J(x0)) < tol then . x0 lies on the Pareto front

7: Compute the projection operator as in (3.11).

CINVESTAV Computer Science Department



64 Chapter 4

8: Project dG and obtain d.

9: else

10: if Z is feasible then . Looking for dominating solutions

11: Set d as −(1, . . . , 1)T

12: else . Looking for closer solutions

13: Set d as dG.

14: end if

15: end if

16: Normalize d as d
||d||2

17: Compute direction ν = J(x0)
+d

18: Modify ν to comply with box constraints.

19: Compute a suitable step size t.

20: while t > tol2 do

21: Compute p = x0 + νt and F (p).

22: if Z is feasible then

23: if D(Z, F (p)) < D(Z, F (x0) then

24: Accept p.

25: else

26: Backtrack using J(x0) and reducing step size.

27: end if

28: else

29: if p ≺ x or (D(Z, F (p)) < D(Z, F (x0)) and x0 ⊀ p) then

30: Accept p.

31: else

32: Reduce the step size by some factor.

33: end if

34: end if

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 65

35: if p accepted then

36: Exchange x0 by p and F (x0) for F (p).

37: Add x0 and F (x0) ton xH and FH respectively.

38: end if

39: end while

40: Update the Jacobian J(x0) and the associated convex weight α.

41: Set iter ← iter + 1.

42: end while

Two features of this version of RDS are to be noticed when the flag of feasibility

is active.

1. The direction dD = −(1, . . . , 1)T is used to find a curve of dominating solutions

in order to aid the RNSGA-II converge faster to the Pareto front. Furthermore,

if a solution already lies on the Pareto front, the projection operator as defined

in the previous chapter can be used to project the RP to the Pareto front and

compute a better direction in order to bring a solution closer to the real solution.

2. The criteria to accept a new iterate p takes into account the case when the

initial solution x0 is not a Pareto point (p ≺ x0) and when it is a Pareto point

((D(Z, F (p)) < D(Z, F (x0)) and x0 ⊀ p)).

Correspondingly, the RDDS is modified to work as local search engine and isp-

resented in Algorithm 11. This algorithm works with one individual at the time.

The best individuals are chosen to construct the matrix V and correspondingly F . If

the number of neighbors is greater or equal to a value Tp, RDDS is expected to have

improvement. This value has to hold a relation with the number of variables n (a

more thorough discussion on the choice of neighbors can be found in [39]).

CINVESTAV Computer Science Department



66 Chapter 4

Algorithm 11 RDDS within a MOEA
Require: Initial point x0 along with function value F (x0), RP Z, iterations XDSI,

population P , neighborhood size Nh, test points required Tp

1: Search for individuals in P within neighborhood Nh of x0. Store in PN .

2: Set V and F as the empty matrices.

3: Set a counter c to 0.

4: for each inividual i ∈ PN do

5: Set mi,j as Fi−F (x0)
||xi−x0|| .

6: Set νi,j as xi−x0
||xi−x0|| . Add νi,j to V as a column vector.

7: if κ(V ) > tol then

8: Remove νi,j from V .

9: else

10: Add mi,j to F as a column.

11: Increment the counter c.

12: end if

13: end for

14: if c ≥ Tp then

15: if Z is feasible then . Looking for dominating solutions

16: Set d as −(1, . . . , 1)T

17: else . Looking for closer solutions

18: Set d as the greedy direction dG = Z − F (x0).

19: end if

20: Compute λ = F−1d.

21: Set ν = V λ and normalize it as ν = ν
||ν||

22: Modify ν to comply with box constraints.

23: Compute a suitable step size t.

24: end if

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 67

25: Set iter to 0.

26: while t > tol2 or iter > XDSI do

27: Compute p = x0 + νt.

28: Compute F (p).

29: if p ≺ x0 or (D(Z, F (p)) < D(Z, F (x0)) and x0 ⊀ p) then

30: Accept p.

31: else

32: Reduce the step size by some factor.

33: end if

34: if p accepted then

35: Exchange x by p and F (x0) for F (p).

36: end if

37: Set iter as iter + 1.

38: end while

4.1.3 Example

For the following example consider the bi-objective problem

f1(x) = ||x− a1||22, f2(x) = ||x− a2||22, (4.1)

where a1 = (1, ..., 1)T ∈ R100, a2 = −a1, Q = R100 and

Z = {(20, 200)T , (100, 50)T , (250, 10)T , (150, 150)T}.

In Figure 4.1, blue circles represent individuals of a RNSGA-II’s population.

Circles filled with red are selected for LS (RDS and RDDS) since they are the closest

in objective space with respect to the given RPs.

CINVESTAV Computer Science Department



68 Chapter 4

Figure 4.1: Local search operator on RDS-RNSGA-II’s population for problem (4.1).

It can be seen from Figure 4.1 that a great improvement can be expected in the

first stages of the evolution. The trail of solutions is stored and replace the farthest

solutions accordingly in order to prevent super elite individuals. Even in the presence

of a feasible RP, RDS can accelerate convergence by searching in the dominating

zones of the MOP.

4.2 Constrained RPPs

In this section, we will present extended versions of the local search engine selection

mechanism, the RDS and RDDS.

4.2.1 Constraint handling RNSGA-II

RNSGA-II does not include a mechanism for handling constraints per se as it was

tested only on unconstrained or box constrained problems. In turn, the generic

constraint-domination relation proposed by Deb in [29] can be easily included to

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 69

tackle such problems. The constraint handling RNSGA-II remains the same except

for the replacement of the domination relation for the constraint-domination in Al-

gorithm 3. This new relation requires the constraint violation value defined as:

Definition 23 (Constraint Violation). The constraint violation of a solution x is

defined as:

CV (x) =

p∑
i=1

max(0, gi(x)) +

q∑
i=1

|hi(x)|. (4.2)

Hence, feasible solutions have a constraint violation value of zero and infeasible solu-

tions have a constraint violation value greater than zero.

Definition 24 (Constraint-Domination). A solution x ∈ R is said to constraint-

dominate a solution y ∈ R if either of the following conditions are true

• x and y are infeasible and CV (x) < CV (y).

• x is feasible and y is infeasible.

• x and y are feasible and x ≺ y.

That is, (i) for infeasible solutions, the one with the less constraint violation

wins, (ii) a feasible solutions always win over an infeasible one and (iii) for feasible

solutions, the one dominating wins. Therefore, the algorithm remains the same as in

the unconstrained case in absence of constraints.

RNSGA-II can be said to optimize two different functions during the evolution pro-

cess. When only infeasible solutions are present, the algorithm becomes a SOP opti-

mizer that directs the search towards less constraint violating region and once feasible

solutions are found the original RPP takes over as the main objective.

CINVESTAV Computer Science Department



70 Chapter 4

4.2.2 Further considerations

When constraints have to be considered in a memetic algorithm the selection of

individuals is, once again, a crucial decision. In this case, in order to agree on a LS

algorithm within RNSGA-II, it has to minimize the constraint violation value of the

best individual and once feasible solutions are available, retake the RPP. Nevertheless,

solutions already close to RPs with small constraint violation can yield less constraint

violating or even feasible solutions depending on the landscape of the MOP. Motivated

by this we reformulate the fitness function for selection of individuals to further

include the constraint violation of a solution.

• If the RP is not feasible, the distance towards the RP plus the constraint vio-

lation value becomes the fitness function.

• If the RP is feasible, the distance towards the RP plus the constraint viola-

tion value plus the non dominated rank times a constant becomes the fitness

function.

If the objective space and the constraints are normalized in a proper way (see for

example [3]) a balance can be considered between the search of feasible solutions and

the distances for the RPP.

4.2.3 Constrained RDS within a MOEA

Motivated by the discussion above, RDS does not allow a new iterate to have more

constraint violating value than the original starting point. In addition, if any con-

straints are active, the proper system of equations is modified to comply with such

constraints. The constrained RDS is presented in Algorithm 12.

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 71

Algorithm 12 Constraint Handling RDS
Require: Initial point x0 along with function and constraint value

F (x0), G(x0), H(x0), RP Z, flag of Z’s feasibility, iterations XDSI

1: Compute the Jacobian J(x0) and the derivative of the constraints JG(x0), JH(x0)

at x0

2: Solve (2.8) for active equality and inequality constraints.

3: Set iter ← 0. . These sets will store the trials.

4: Set xH and FH to the empty set.

5: Add x0 and F (x0) to xH and FH respectively.

6: while iter < XDSI do

7: Compute the greedy direction dG = Z − F (x0).

8: if κ (J(x0)) < tol then . x0 lies on the Pareto front

9: Compute the projection operator as in (3.11).

10: Project dG and obtain d.

11: else

12: if Z is feasible then . Looking for dominating solutions

13: Set d as −(1, . . . , 1)T

14: else . Looking for closer solutions

15: Set d as dG.

16: end if

17: end if

18: Normalize d as d
||d||2

19: if there are active constraints then

20: Compute ν as in (3.20)

21: else

22: Compute ν = J(x0)
+d

23: end if

24: Modify ν to comply with box constraints.

25: Compute a suitable step size t.

CINVESTAV Computer Science Department



72 Chapter 4

26: while t > tol2 do

27: Compute p = x0 + νt and F (p).

28: if CV (p) > CV (x0) then

29: Reduce step size.

30: Continue

31: end if

32: if Z is feasible then

33: if D(Z, F (p)) < D(Z, F (x0) then

34: Accept p

35: else

36: Backtrack using J(x0) and reducing step size.

37: end if

38: else

39: if p ≺ x or (D(Z, F (p)) < D(Z, F (x0)) and x0 ⊀ p) then

40: Accept p.

41: else

42: Reduce the step size by some factor.

43: end if

44: end if

45: if p accepted then

46: Exchange x0, F (x0), G(x0), H(x0) for the corresponding values of p.

47: Add x0 and F (x0) to xH and FH respectively.

48: end if

49: end while

50: Update the Jacobian J(x0), the derivative of the constraints JG(x0), JH(x0).

51: Solve (2.8) for active equality and inequality constraints.

52: Set iter ← iter + 1.

53: end while

CINVESTAV Computer Science Department



RDS WITHIN MOEAS 73

4.3 A modified version of the IGD indicator for RPPs

As discussed in Chapter 2 (in page 40), performance indicators are tailored to assess

the final outcome of a MOEA. However, in a memetic strategy it is also important

to evaluate the convergence of the algorithms in previous stages of the optimization

process. We decided not to take the RP indicator UPCF since it is meaningless before

the final output is available. Furthermore, the advantages of the memetic strategy

(in terms of convergence) are diminished when taking only the final archive.

Recall the classical RPP for point-wise iterative methods

min
x∈Q

D(Z, F (x)), (4.3)

where Z ∈ Rk is the given RP and D is a chosen metric. Since a MOEA is dealing

with entire sets of candidate solutions (populations or archives), it is advantageous

to re-state the problem as

min
A⊂Q
|A|=N

dist(Z, F (A)), (4.4)

where A is an archive of magnitude N , and dist measures the distance of two sets as

in Equation (2.28) and (2.29).

The advantages of (4.4) over (4.3) in our context are that (i) archives can be con-

sidered to be ‘good‘ even if they contain elements ai ∈ A that are far away from Z

(those elements will not be selected by the DM anyway), and (ii) this concept can be

extended to the case Z = Z1 ∪ . . . ∪ Zl contains multiple RPs Zi, i = 1, . . . , l.

We have chosen to take the IGD indicator ([43]) applied to RPPs which can be viewed

as an averaged version of the distance measurement (4.4):

IGDZ(F (A), Z) =
1

|Z|

|Z|∑
i=1

|A|
min
j=1

dist(Zi, F (aj)). (IGDZ)

CINVESTAV Computer Science Department



74 Chapter 4

Hereby, A ⊂ Q is the given population or archive and dist the chosen distance

metric. Hence, IGDZ averages the distance of the closest member of the archive to a

RP. Needless to say, the optimal value of IGDZ is zero.

However, for constrained problems, the archive A has to filter its members in order

to have only feasible solutions: although infeasible solutions can be the closest to

a respective RP, they are not interesting for DMs and will likely be discarded by

a MOEA, resulting in a non monotonically decreasing function which does not re-

flect convergence towards the solution. If only infeasible solutions are present in a

generation, the archive will be composed of the less violating solution.

CINVESTAV Computer Science Department



5 | Numerical Results

In this chapter we will present numerical results on unconstrained, box constrained,

and constrained problems where we concentrate on models with small number of

objectives (up to five). The novel memetic algorithm RDS-RNSGA-II is compared

against its base algorithm RNSGA-II. All results are averaged over 30 independent

runs. The best, median and worst IGDZvalues are computed and presented in a table

for each problem at three different stages of the evolution: early, middle and later

stage where significant improvement is achieved in the early and middle stages for

the majority of the test problems. The last row are the results of the t-test (p-values)

using a 95% confidence interval.

5.1 Parameter setting

In the following problems, RDS-RNSGA-II and RNSGA-II share the evolutionary

algorithm’s parameters: population size, generations, crossover and mutation proba-

bility and ε spread. Table 5.1 presents the corresponding value for each problem. For

RDS-RNSGA-II the parameters shown in Table 5.2 were used for RDS and RDDS.

Since the parameters are changed adaptively during the evolution, we have set in

addition to the initial values, lower and upper limits to each of the variables. Finally,

all problems are normalized in objective space by dividing each objective by the nadir

point minus the ideal point.

75



76 Chapter 5

P G CP MP ε

CONV 100 200 0.9 0.01 1E-3

ZDT1 100 200 0.9 0.03 1E-3

ZDT2 100 200 0.9 0.03 1E-3

ZDT3 100 200 0.9 0.03 1E-3

ZDT4 100 200 0.9 0.1 1E-3

DTLZ2 k = 3 100 200 0.9 0.03 1E-3

DTLZ2 k = 5 100 200 0.9 0.03 1E-3

DTLZ3 100 500 0.9 0.14 1E-3

C1-DTLZ1 100 250 0.9 0.14 1E-5

C2-DTLZ2 100 150 0.9 0.083 1E-5

C2-CONVEX DTLZ2 100 150 0.9 0.083 1E-5

Welded Beam 80 100 0.9 0.25 1E-5

Car Side Impact 80 100 0.9 0.14 1E-5

Water Problem 100 100 0.9 0.33 1E-5

Table 5.1: RNSGA-II parameter setting for each test problem P population size, G gener-

ations, CP crossover probability, MP mutation probability and ε spread.

IC F D SPZ

Max Ini Min Max Ini Min Max Ini Min

RDS 1 (G) 11 (G) 0.1 (B) 0.15 (B) 2 (G) 2 (G) 4 (G) 1

RDDS 0.05 (G) 6 (G) 0.05 (B) 0.15 (B) 1 5 5 10

Table 5.2: Initial, maximum and minimum parameters of RDS and RDDS: IC initial call,

F frequency of LS, D depth of the same and SPZ number of solutions to improve for each

RP. Parameters are updated based on the success rate of the LS. Parameters are stated in

relation to a specific generation (G) or a percent of the budget of generations (B).

CINVESTAV Computer Science Department



NUMERICAL RESULTS 77

5.2 Unconstrained models

5.2.1 CONV

First, we consider the bi-objective problem CONV ([44])

f1(x) = ||x− a1||22, f2(x) = ||x− a2||22, (5.1)

where a1 = (1, ..., 1)T ∈ R100 and a2 = −a1, and where Q = R100 is the domain. We

chose the four RPs Z = {(20, 200)T , (100, 50)T (250, 10)T (150, 150)T}. Since CONV

is a convex problem large improvements are expected via the help of RDS. This is

indeed the case as can be seen in Figure 5.1 as well as in Table 5.3, where the IGDZ

values for all the examples are significantly better in all three stages.

(a) 1,600 function calls (b) 2,200 function calls

(c) 3,000 function calls (d) 10,000 function calls

Figure 5.1: Numerical results of RNGSA-II (black) and RDS-RNGSA-II (blue) on CONV.

CINVESTAV Computer Science Department



78 Chapter 5

Early (600) Middle (2,000) Later (5,000)

RDS-RNSGA-II

0.906710 0.003985 0.000496

1.101572 (0.094642) 0.011901 (0.004613) 0.002284 (0.001145)

1.254400 0.020219 0.004600

RNSGA-II

2.582100 1.002100 0.259280

2.899363 (0.121790) 1.146750 (0.073128) 0.338415 (0.039805)

3.154800 1.300100 0.452310

RDS-RNSGA-II

vs 4.441786e-35 3.385631e-36 9.442286e-29

RNSGA-II

Table 5.3: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.2: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on CONV.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 79

5.2.2 ZDT

Now we consider the bi-objective box constrained functions ZDT1 up to ZDT4 func-

tions from the ZDT benchmark suite ([45]).

ZDT1

The ZDT1 function is defined as

f1(x) = x1

f2(x) = g(x)(1−

√
f1(x)

g(x)
)

g(x) = 1 +
9

n− 1

n∑
i=2

xi

s.t. 0 ≤ xi ≤ 1 i = 1, . . . , n.

(5.2)

We used n = 30 and Z = {(0.1, 0.6)T , (0.5, 0.2)T , (0.9, 0)T}. Compared to CONV,

RDS-RNSGA-II needs more function evaluations on ZDT1 to obtain a covering of the

optimal solutions near the RPs, but comes quite close after already 6,000 function

calls (compare to Figure 5.3 and Table 5.4).

(a) 1,800 function calls (b) 6,000 function calls

Figure 5.3: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on ZDT1.

CINVESTAV Computer Science Department



80 Chapter 5

Early (400) Middle (1,800) Later (6,000)

RDS-RNSGA-II

0.314820 0.067492 0.000253

0.505073 (0.081484) 0.141993 (0.056467) 0.001451 (0.000837)

0.633980 0.271670 0.003725

RNSGA-II

1.335100 0.429280 0.030279

1.540096 (0.116520) 0.490541 (0.055729) 0.044529 (0.009092)

1.742100 0.636430 0.067333

RDS-RNSGA-II

vs 4.198558e-21 2.737065e-16 3.617890e-18

RNSGA-II

Table 5.4: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages.The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.4: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on ZDT1.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 81

ZDT2

ZDT2 represents a challenge for evolutionary algorithms since typically in first stages

of the search, all solutions concentrate on the left top area of the objective space

where weak Pareto points exist. The mathematical definition of ZDT2 is as follows

f1(x) = x1

f2(x) = g(x)

(
1−

(
f1(x)

g(x)

)2
)

g(x) = 1 +
9

n− 1

n∑
i=2

xi

s.t. 0 ≤ xi ≤ 1 i = 1, . . . , n.

(5.3)

Here,we can see in Figure 5.5 that RDS-RNSGA-II achieves a focus on the desired

areas here given by Z = {(0.1, 0.9)T , (0.8, 0.2)T , (0.6, 0.5)T} after a budget of 6,200

function calls. Table 5.5 confirms that the performance of the memetic algorithm is

significantly better in the best, median and worst cases for the checkpoints considered.

(a) 2,000 function calls (b) 6,200 function calls

Figure 5.5: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on ZDT2.

CINVESTAV Computer Science Department



82 Chapter 5

Early (2,000) Middle (3,600) Later (6,200)

RDS-RNSGA-II

0.138220 0.008232 0.000145

0.282305 (0.114797) 0.028267 (0.015262) 0.000724 (0.000371)

0.581880 0.065586 0.001714

RNSGA-II

0.760730 0.294620 0.056378

1.058190 (0.195260) 0.553861 (0.226002) 0.199139 (0.212441)

1.487200 0.995980 0.683100

RDS-RNSGA-II

vs 1.127396e-14 2.110516e-11 9.662720e-05

RNSGA-II

Table 5.5: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.6: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on ZDT2.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 83

ZDT3

ZDT3 has a more complex geometry than the previous MOPs, where not all boundary

solutions are optimal. ZDT3 is defined as

f1(x) = x1

f2(x) = g(x)

(
1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin (10πf1(x))

)

g(x) = 1 +
9

n− 1

n∑
i=2

xi

s.t. 0 ≤ xi ≤ 1 i = 1, . . . , n.

(5.4)

Here, we have chosen Z = {(0.8,−0.6)T , (0.1, 0.6)T , (0.35, 0.1)T}. In the early stages

of the evolution, the memetic strategy is outperforming RNSGA-II (compare to Figure

5.7 and Table 5.6). Nevertheless, at a budget of 5,400 function calls solutions both

algorithms are very close together.

(a) 800 function calls (b) 5,400 function calls

Figure 5.7: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on ZDT3.

CINVESTAV Computer Science Department



84 Chapter 5

Early (800) Middle (2,600) Later (5,400)

RDS-RNSGA-II

0.322600 0.054966 0.003117

0.494672 (0.112499) 0.115268 (0.035003) 0.027388 (0.018857)

0.712720 0.176390 0.078693

RNSGA-II

0.561860 0.118280 0.027756

0.655991 (0.045888) 0.163294 (0.031888) 0.046208 (0.015386)

0.772640 0.217180 0.111150

RDS-RNSGA-II

vs 9.076490e-07 3.614816e-05 1.254285e-03

RNSGA-II

Table 5.6: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.8: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on ZDT3.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 85

ZDT4

ZDT4 is a convex multimodal problem where the challenge is to overcome 21 local

Pareto fronts when using n = 10. The problem definition is as follows

f1(x) = x1

f2(x) = g(x)

(
1−

√
f1(x)

g(x)

)
g(x) = 1 + 10(n− 1) + sumn

i=2(x
2
i − 10 cos (4πxi))

s.t. 0 ≤ x1 ≤ 1

and 0 ≤ xi ≤ 5 i = 2, . . . , n.

(5.5)

The search space ranges from −5 to 5 for the nine last variables and 0 to 1 for the

first one. We have chosen the RPs Z = {(0, 0.6)T (0.35, 0.25)T (0.6, 0.1)T (0.85, 0)T}.

The multimodal nature of ZDT4 makes it more difficult to reach the Pareto front in

comparison to the previous problems. However, as can be seen from Figure 5.9 and

Table 5.7 there is a better distribution and convergence of solutions even in the local

fronts.

(a) 8,400 function calls (b) 18,200 function calls

Figure 5.9: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on ZDT3.

CINVESTAV Computer Science Department



86 Chapter 5

Early (800) Middle (8,400) Later (18,200)

RDS-RNSGA-II

8.220500 3.780700 0.237630

27.265883 (10.165459) 8.507060 (3.037916) 0.692766 (0.371938)

56.936000 15.567000 1.673900

RNSGA-II

33.492000 4.933700 0.571870

48.271767 (6.739564) 11.554433 (3.592855) 1.509929 (0.586590)

61.591000 20.110000 3.092100

RDS-RNSGA-II

vs 7.005070e-11 9.653172e-04 2.846882e-06

RNSGA-II

Table 5.7: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.10: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on ZDT4.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 87

5.2.3 DTLZ

The DTLZ benchmark suite functions are scalable in the number of variables and

objectives and each one poses different challenges to MOEAs and memetic algorithms.

In this study we decided to take the three and five objective DTLZ2 presented in the

original RNSGA-II paper and the three objective DTLZ3 problem.

Three Objective DTLZ2

In its general form, DTLZ2 is defined as

f1(x) = cos (
π

2
x1) . . . cos (

π

2
xk−1)(1 + g(x))

f2(x) = cos (
π

2
x1) . . . sin (

π

2
xk−1)(1 + g(x))

. . .

fk(x) = sin (
π

2
x1)(1 + g(x))

g(x) =
n∑
i=k

(xi − 0.5)2

s.t. 0 ≤ xi ≤ 1 i = 1, . . . , n.

(5.6)

For the first RPP we have chosen k = 3,n = 20 and Z = {(0, 0, 0.9)T (0, 0.9, 0)T (0.9, 0, 0)T}.

It can be seen from Figure 5.11 that great improvement is reached even in the early

stage. Table 5.10 shows that the performance of RDS-RNSGA-II is significantly bet-

ter in the early, middle and later stage.

CINVESTAV Computer Science Department



88 Chapter 5

(a) 1,000 function calls (b) 1,000 function calls

(c) 2,000 function calls (d) 2,000 function calls

(e) 5,000 function calls (f) 5,000 function calls

Figure 5.11: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on DTLZ2.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 89

Early (600) Middle (1,000) Later (3,000)

RDS-RNSGA-II

0.009449 0.001590 0.000282

0.021091 (0.007473) 0.004786 (0.001778) 0.001445 (0.000733)

0.042114 0.007548 0.003115

RNSGA-II

0.480290 0.051691 0.006714

0.583997 (0.057965) 0.075625 (0.012442) 0.011200 (0.002145)

0.736570 0.097156 0.014696

RDS-RNSGA-II

vs 2.020206e-25 6.097794e-20 3.835055e-17

RNSGA-II

Table 5.8: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.12: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on DTLZ2 with k = 3.

CINVESTAV Computer Science Department



90 Chapter 5

Five Objective DTLZ2

For the next RPP, we choose to take DTLZ2 with five objectives and 20 decision

variables with RPs Z = {(0.25, 0.25, 0.25, 0.25, 0.25)T}. Table 5.9 shows that a

better performance is achieved by the memetic algorithm RDS-RNSGA-II even in

the early stage of 600 function calls. Figure 5.13 shows how RDS-RNSGA-II’s local

search brings the IGDZ closer to the best value. RPs This problem shows that RDS-

RNSGA-II keeps outperforming the traditional MOEA regardless of the increase in

the number of objectives. The t-test shows that there is indeed a statistical difference

between both algorithms.

Early (600) Middle (1,000) Later (3,000)

RDS-RNSGA-II

0.451640 0.441670 0.440990

0.521481 (0.058174) 0.449111 (0.007101) 0.441105 (0.000109)

0.634230 0.469450 0.441490

RNSGA-II

0.765460 0.473330 0.442150

0.928997 (0.083361) 0.492402 (0.013223) 0.443092 (0.000635)

1.089100 0.524710 0.444720

RDS-RNSGA-II

vs 4.582916e-16 2.965448e-13 1.190214e-13

RNSGA-II

Table 5.9: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 91

Figure 5.13: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on DTLZ2 for k = 5.

DTLZ3

DTLZ3 is a highly multimodal problem with 3n − 1 local Pareto fronts. DTLZ3 is

defined as

f1(x) = cos (
π

2
x1) cos (

π

2
x2)(1 + g(x))

f2(x) = cos (
π

2
x1) sin (

π

2
x2)(1 + g(x))

f3(x) = sin (
π

2
x1)(1 + g(x))

g(x) = 100(10 +
n∑
i=3

(xi − 0.5)2 − cos (20π(xi − 0.5)))

s.t. 0 ≤ xi ≤ 1 i = 1, . . . , n,

(5.7)

where we chose n = 7 and Z = {(0, 0, 0.9)T (0, 0.9, 0)T (0.9, 0, 0)T}. In this problem

we can see from Table 5.10 that the performance of RDS-RNSGA-II is only better in

CINVESTAV Computer Science Department



92 Chapter 5

the early or middle stage, although the t-test hints that both algorithms performance

is not truly different. This behavior was somehow expected as the LS operator can

get stuck in any of the many local Pareto fronts.

(a) 7,500 function calls (b) 7500 function calls

(c) 19,000 function calls (d) 19,000 function calls

(e) 22,000 function calls (f) 22,000 function calls

Figure 5.14: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on DTLZ3.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 93

Early(5,000) Middle (10,000) Later(19,000)

RDS-RNSGA-II

4.062700 0.126080 0.001074

11.356508 (5.231146) 2.123615 (1.603333) 0.742888 (0.963273)

20.234000 6.393600 3.635100

RNSGA-II

2.435800 0.117000 0.007968

13.495268 (5.021763) 2.130263 (1.603003) 0.492401 (0.627942)

27.018000 6.417900 2.768300

RDS-RNSGA-II

vs 1.434311e-01 6.676504e-01 2.978407e-01

RNSGA-II

Table 5.10: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.15: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on DTLZ3 for k = 3.

CINVESTAV Computer Science Department



94 Chapter 5

5.3 Constrained models

5.3.1 C-DTLZ

For the constrained version of RDS-RNSGA-II we decided to take three test prob-

lems from [18]. The chosen C-DTLZ problems introduce one non-linear inequality

constraint that modifies the search space in a specific manner.

C1-DTLZ1

Problem C1-DTLZ1 is based on the multimodal DTLZ1 problem where the majority

of the search space is made infeasible. DTLZ1 has 11n − 1 local Pareto fronts and is

defined as

f1(x) =
1

2
x1x2(1 + g(x))

f2(x) =
1

2
x1(1− x2)(1 + g(x))

f3(x) =
1

2
(1− x1)(1 + g(x))

g(x) = 100(10 +
n∑
i=3

(xi − 0.5)2 − cos (20π(xi − 0.5)))

s.t. 0 ≤ xi ≤ 1 i = 1, . . . , n.

(5.8)

The C1-DTLZ1 inequality constraint is defined as

g1(x) =
fk(x)

0.6
+

k−1∑
i=1

fi(x)

0.5
− 1, (5.9)

where we chose n = 7 and Z = {(0.4, 0, 0.05)T (0.05, 0.35, 0.05)T (0.3, 0.1, 0.05)T (0.2, 0.2, 0.2)T}.

Figure 5.16 and Table 5.11 show that for the memetic algorithm a big improvement

can be expected even when the population lies on the infeasible region (early stage).

However, the LS operator gains the most when solutions lie close to the Pareto front

CINVESTAV Computer Science Department



NUMERICAL RESULTS 95

(later stage). Table 5.11 confirm that the IGDZ values are better in these two stages

for the memetic algorithm.

(a) 3,700 function calls (b) 3,700 function calls

(c) 10,000 function calls (d) 10,000 function calls

(e) 15,000 function calls (f) 15,000 function calls

Figure 5.16: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on C1-

DTLZ1.

CINVESTAV Computer Science Department



96 Chapter 5

Early (2,000) Middle (5,000) Later (10,000)

RDS-RNSGA-II

4.471100 1.018600 0.001753

12.549900 (6.227609) 3.417825 (1.597864) 0.051518 (0.139535)

23.485000 6.621500 0.637570

RNSGA-II

13.465000 0.746190 0.007376

27.557950 (8.708799) 3.980884 (2.048932) 0.494893 (0.468109)

43.109000 8.420100 1.806900

RDS-RNSGA-II

vs 1.049737e-05 3.244156e-01 8.795591e-04

RNSGA-II

Table 5.11: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.17: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on C1DTLZ1.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 97

C2-DTLZ2

C2-DTLZ2 extends the original DTLZ2 problem by adding one inequality constraint.

The feasible objective space lies inside k + 1 hyper spheres of radius r = 0.4 where

the inequality constraint is defined as

g1(x) = −max

[
k

max
i=1
−

[
(fi(x)− 1)2 +

k∑
j=1,j 6=i

fj(x)2 − r2
]
,−

[
k∑
i=1

(fi(x)− 1√
k

2

− r2
]]

.

(5.10)

We took n = 12 and Z = {(0.4, 0.4, 0.4)T (0.6, 0.6, 0)T (0.8, 0, 0)T (0.15; 0.8; 0.15)T (0, 0, 0.9)T}

for our RPP (see Figure 5.18). Table 5.12 shows that RDS-RNSGA-II clearly out-

performs RNSGA-II in all three stages.

(a) 750 function calls (b) 750 function calls

(c) 4,500 function calls (d) 4,500 function calls

Figure 5.18: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on C2-

DTLZ2.

CINVESTAV Computer Science Department



98 Chapter 5

Early (750) Middle (2,600) Later (5,000)

RDS-RNSGA-II

0.043942 0.002885 0.000944

0.114567 (0.082092) 0.013328 (0.011808) 0.001684 (0.000561)

0.433460 0.041206 0.002941

RNSGA-II

0.139890 0.030398 0.003215

0.256823 (0.068890) 0.086089 (0.048306) 0.013915 (0.022673)

0.385260 0.182830 0.104700

RDS-RNSGA-II

vs 2.014172e-05 5.263643e-06 2.587012e-02

RNSGA-II

Table 5.12: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.19: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on C2DTLZ2.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 99

C2-CONVEX DTLZ2

Problem C2-CONVEX DTLZ2 relies on a convex reformulation of DTLZ2. Here,

each objective is modified as follows

fi(x) = fi(x)4 i = 1, . . . , k − 1

fk(x) = fk(x)2.
(5.11)

C2-CONVEX DTLZ2 has a ”hole” of infeasibility in the objective space introduced

by a hyper cylinder of radius r = 0.225 when k = 3 defined by the following inequality

constraint

g1(x) = r2 −
k∑
i=1

(fi(x)− λ)2

λ =
1

k

k∑
i=1

fi(x).

(5.12)

The objective space is graphically represented in Figure 5.20 in different stages of

RDS-RNSGA-II and RNSGA-II evolution. Table 5.13 shows that such constraints

can be easily handled by the memetic algorithm with a significant improvement in

early, middle or later stage, where the p-values show that there is a clear advantage

of the memetic algorithm over the MOEA.

CINVESTAV Computer Science Department



100 Chapter 5

(a) 1,500 function calls (b) 1,500 function calls

(c) 2,500 function calls (d) 2,500 function calls

(e) 4,000 function calls (f) 4,000 function calls

Figure 5.20: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on C2-

CONVEX DTLZ2.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 101

Early (800) Middle (1,500) Later (4,000)

RDS-RNSGA-II

0.023379 0.002878 0.000749

0.049699 (0.024897) 0.005857 (0.002477) 0.001445 (0.000532)

0.118890 0.011516 0.003154

RNSGA-II

0.115840 0.025375 0.002721

0.205667 (0.049033) 0.039196 (0.010318) 0.004061 (0.000942)

0.308500 0.065317 0.005898

RDS-RNSGA-II

vs 7.377884e-12 2.772782e-11 6.848316e-10

RNSGA-II

Table 5.13: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.21: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on C2-CONVEX DTLZ2.

CINVESTAV Computer Science Department



102 Chapter 5

5.4 Three problems from practice

Now we will consider three engineering problems with two, three and five objectives.

These are the Welded Beam design [32], Car Side Impact for crash worthiness [18] and

Water problem [46], respectively. As for the previous problems, we will concentrate

on the speed of convergence for the memetic strategy.

5.4.1 Welded Beam

The Welded Beam problem is a two objective, four variable problem with four non

linear constraints. The objectives are the cost of fabrication and the deflection of the

welded beam

f1(x) = 1.1047x21x2 + 0.04811x3x4(14 + x2)

f2(x) =
2.1952

x23x4

g1(x) = 13600− τ

g2(x) = 30000− σ

g3(x) = x4 − x1

g4(x) = P − 6000

τ =

√
τ ′2 + τ ′′2 + x2τ ′τ ′′/

√
0.25(x22 + (x1 + x3)2)

τ ′ =
6000√
2x1x2

τ ′′ =
6000(14 + 0.5x2

√
0.25(x22 + (x1 + x3)2)

2(0.707x1x2(x22/12 + 0.25(x1 + x3)2))

σ =
504000

x23x4

P = 64746.022(1− 0.0282346x3)x3x
2
4

s.t. 0.125 ≤ x1, x4 ≤ 5 0.1 ≤ x2, x3 ≤ 10.

(5.13)

CINVESTAV Computer Science Department



NUMERICAL RESULTS 103

Figures 5.22 and 5.23 show that both algorithms have an expected similar per-

formance with good values in the early stage already, since the complexity and scale

of objectives and constraints can be easily handled by RNSGA-II. That is indeed the

case as the statistical significance test shows in Table 5.14.

(a) 1,600 function calls (b) 2,550 function calls

Figure 5.22: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on the

Welded Beam problem.

Early (950) Middle (1,600) Later (2,550)

RDS-RNSGA-II

0.006904 0.004942 0.003065

0.023025 (0.009056) 0.015464 (0.006019) 0.011100 (0.006286)

0.043220 0.028164 0.027509

RNSGA-II

0.044925 0.038428 0.032565

0.022974 (0.010723) 0.017111 (0.009857) 0.011150 (0.008095)

0.007681 0.002882 0.001395

RDS-RNSGA-II

vs 9.834391e-01 4.097445e-01 9.892144e-01

RNSGA-II

Table 5.14: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

CINVESTAV Computer Science Department



104 Chapter 5

Figure 5.23: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on bi objective Welded Beam problem.

5.4.2 Car Side Impact

The Car Side Impact problem is a three objective MOP where the objectives are (i)

to minimize the weight of car, (ii) the pubic force experienced by a passenger and

(iii) the average velocity of the V-Pillar responsible for withstanding the impact load.

The problem has three objectives, seven design variables and is constrained by ten

inequality constraints. The problem is given by

f1(x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 0.00001x6 + 2.73x7

f2(x) = 4.72− 0.5x4 − 0.19x2x3

f3(x) = 0.5(10.58− 0.674x1x2 − 0.67275x2 + 16.45− 0.489x3x7 − 0.843x5x6)

g1(x) = −1 + 1.16− 0.3717x2x4 − 0.0092928x3

g2(x) = −0.32 + 0.261− 0.0159x1x2 − 0.06486x1 − 0.019x2x7 + 0.0144x3x5 + 0.0154464x6

CINVESTAV Computer Science Department



NUMERICAL RESULTS 105

g3(x) = −0.32 + 0.214 + 0.00817x5 − 0.045195x1 − 0.0135168x1 + 0.03099x2x6 − 0.018x2x7

+ 0.007176x3 + 0.023232x3 − 0.00364x5x6 − 0.018x22

g4(x) = −0.32 + 0.74− 0.61x2 − 0.031296x3 − 0.031872x7 + 0.227x22

g5(x) = −32 + 28.98 + 3.818x3 − 4.2x1x2 + 1.27296x6 − 2.68065x7

g6(x) = −32 + 33.86 + 2.95x3 − 5.057x1x2 − 3.795x2 − 3.4431x7 + 1.45728

g7(x) = −32 + 46.36− 9.9x2 − 4.4505x1

g8(x) = −4 + 4.72− 0.5x4 − 0.19x2x3

g9(x) = −9.9 + 10.58− 0.674x1x2 − 0.67275x2

g10(x) = −15.7 + 16.45− 0.489x3x7 − 0.843x5x6

s.t. 0.5 ≤ x1, x3, x4 ≤ 1.5 0.45 ≤ x2 ≤ 1.35 0.875 ≤ x5 ≤ 2.625 0.4 ≤ x6, x7 ≤ 1.2

(5.14)

Figure 5.25 and Table 5.15 show that RDS-RNSGA-II has better best and median

IGDZ values in all three stages. Although the p value is not as big as in the academic

problems, there is indeed a difference in the performance of the memetic strategy.

(a) 480 function calls (b) 4,500 function calls

Figure 5.24: Numerical results of R-NGSA-II (black) and RDS-RNGSA-II (blue) on the Car

Side Impact Problem.

CINVESTAV Computer Science Department



106 Chapter 5

Early (480) Middle (1,600) Later (4,500)

RDS-RNSGA-II

0.042154 0.030761 0.029540

0.072363 (0.013766) 0.040208 (0.006474) 0.032780 (0.002489)

0.098701 0.055860 0.040981

RNSGA-II

0.112420 0.059682 0.039558

0.086927 (0.012254) 0.045197 (0.005877) 0.033920 (0.002005)

0.063910 0.035668 0.030374

RDS-RNSGA-II

vs 1.725967e-05 1.808759e-03 7.714379e-02

RNSGA-II

Table 5.15: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.25: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on three objective Car Side Impact problem.

CINVESTAV Computer Science Department



NUMERICAL RESULTS 107

5.4.3 Water Problem

The Water Problem is a three variable, five objective problem taken from [46]. The

mathematical formulation of the problem is as follows

f1(x) = 106780.37(x2 + x3) + 61704.67

f2(x) = 3000x1

f3(x) = 305700 ∗ 2289
x2

(0.06 ∗ 2289)0.65

f4(x) = 250 ∗ 2289e−39.75x2+9.9x3+2.74

f5(x) = 25(
1.39

x1x2
+ 4940x3 − 80)

g1(x) = −1 +
0.00139

x1x2
+ 4.94x3 − 0.08

g2(x) = −1 +
0.000306

x1x2
+ 1.082x3 − 0.0986

g3(x) = −50000 +
12.307

x1x2
+ 49408.24x3 + 4051.02

g4(x) = −16000 +
2.098

x1x2
+ 8046.33x3 − 696.71

g5(x) = −10000 +
2.138

x1x2
+ 7883.39x3 − 705.04

g6(x) = −2000 +
0.417

x1x2
+ 1721.26x3 − 136.54

g7(x) = −550 +
0.164

x1x2
+ 631.13x3 − 54.84

s.t. 0.01 ≤ x1 ≤ 0.45 0.01 ≤ x2, x3 ≤ 0.1.

(5.15)

Table 5.16 shows that in the later stage the memetic strategy has the best IGDZ

value in the best, median and worst case which translates into higher accuracy. This

was not the case in the early stage since the original MOEA had a better average

performance. However, as in the Welded Beam problem, the statistical significance

determined that both algorithms have a similar performance.

CINVESTAV Computer Science Department



108 Chapter 5

Early (400) Middle (1,400) Later (3,000)

RDS-RNSGA-II

0.006328 0.000204 0.000204

0.024149 (0.014080) 0.005129 (0.003049) 0.002693 (0.001930)

0.063493 0.011112 0.006714

RNSGA-II

0.055148 0.010949 0.006720

0.021734 (0.012671) 0.005327 (0.002654) 0.003221 (0.001472)

0.055148 0.010949 0.006720

RDS-RNSGA-II

vs 5.275097e-01 7.738408e-01 2.121774e-01

RNSGA-II

Table 5.16: Best, median and worst IGDZ for RDS-RNSGA-II and RNSGA-II at three

different stages. The last row are the results for statistical significance based on the t-test

using a 95% confidence interval.

Figure 5.26: IGDZ against function calls RNGSA-II (straight line) and RDS-RNGSA-II

(dashed line) on five objective Water Problem.

CINVESTAV Computer Science Department



6 | Conclusions and Future Work

In this work we have discussed and developed an a priori approach for solving MOPs

using RPs. Firstly, we developed a version of DS for tackling such problems called

RDS. Among the highlights of RDS are the following:

• It can shoot towards the RP from any direction of the objective space in the

greedy direction. The direction is inherently updated at each iteration of RDS.

• It can reach a feasible RP with local quadratic convergence.

• Furthermore, given a feasible RP, RDS is able to find better solutions by "shoot-

ing" in a dominating direction towards the Pareto front.

• For infeasible RPs, in order to reach the closest solution to the RP, a continu-

ation phase along the Pareto front was proposed.

• A new step size strategy was proposed for the given context. Classical DS step

size strategies can also be implemented.

A neighborhood exploration procedure was also discussed at this point. This new

algorithm, called Neighborhood exploration, was able to find new local solutions in

the Pareto front close to a given Pareto point (for example, the solution to a RPP) in a

structured manner. A major advantage of the proposed algorithm is its ability to find

different layers of neighborhoods, each one defined by user specified step size, making

it ideal for an a posteriori treatment of the RPP. Furthermore, only the Jacobian

matrix for the initial Pareto point is needed, making it a very efficient algorithm.

109



110

The comprehensive RDS was extended to handle box constraints with a gradient

projection method which proved to be effective by Salinas et al., likewise, RDS was

made gradient free by taking into account the considerations of the DDS.

A first attempt to hybridize both the gradient based and the gradient free RDS

with RNSGA-II for box constrained problems was proposed and tested against its

original counterpart on several unconstrained and box constrained problems where

a significant improvement was achieved. For this memetic algorithm, we proposed a

framework for selecting, improving and replacing solutions within a population which

proved to be efficient on the many benchmark functions tested. Worth noticing, is

that this hybrid version of RDS was designed to be independent of the base algorithm,

in this case, RNSGA-II. Hence, it can be used by any other evolutionary RP-based

algorithm. We investigated possible performance indicators for assessing the speed

and convergence of our algorithm (that is, before the final archive is ready) and

took a variant of the IGD metric. This version, which we called IGDZ , measures

convergence towards the solution of the RPP given by each RP.

The RDS was able to handle non-linear constraints by using once again the gradi-

ent projection method. In addition, we have included constraint handling mechanisms

for the RDS as local search engine in order to agree with RNSGA-II’s constraint han-

dling strategy. Proper modifications were made for improving always feasible over

infeasible solutions and for archiving only feasible solutions for IGDZ to take.

RDS-RNSGA-II was able to outperform significantly RNSGA-II in all three kinds

of academic problems (unconstrained, box constrained and constrained) at different

stages of their evolution (early, middle and later) in terms of IGDZ . Interestingly

enough, pictures of each problem show a better spread of solutions around each RP,

however, this property could not be measured before the final archive is ready.

Finally, we took three constrained engineering problems with 2, 3 and 5 objectives.

For these three problems, the performance of RDS-RNSGA-II and RNSGA-II was not

significantly different. For such complex models, the considerations for the memetic

CINVESTAV Computer Science Department



CONCLUSIONS AND FUTURE WORK 111

algorithm on constrained problems need to be improved.

Hence, we can conclude that the local search engine proposed in combination with

DS previous work make RDS a competitive local search engine for RPPs, backed up by

the experiments presented in the previous chapter. Furthermore, the hybrid algorithm

is able to yield better and more accurate solutions with a statistical significance in

most test cases.

During the development of this thesis:

• The work was presented in the international conference EVOLVE 2014 - A

Bridge Between Probability, Set-Oriented Numerics, and Evolutionary Compu-

tation, held in Beijing, China from July 1st to the 4th. The title of the work is

A Memetic Variant of RNSGA-II for Reference Point Problems and its authors

are Jesús Alejandro Hernández Mejía, Oliver Schütze and Kalyanmoy Deb. The

considerations of RDS were presented in this work along with a first approach

to its hybridization with RNSGA-II for unconstrained and box constrained aca-

demic problems. The RDS-RNSGA-II was compared to RNSGA-II in terms of

IGDZ outperforming it.

6.1 Future work

To improve the existing work there exist many options such as:

• The inclusion of a "Pareto explorer" such as the Neighborhood exploration

presented in Chapter 3. Given a Pareto point, for instance, the closest to a

supplied RP, further optimal solutions can be obtained in the neighborhood

that can be interesting for DMs. Although we presented very nice images of

this neighborhood exploration feature for three dimensional problems, this calls

for an extended metric of IGDZ that can measure the desired spread of solutions

within the Pareto front.

CINVESTAV Computer Science Department



112 Chapter 6

• Different constraint handling techniques for the local search engine. The nu-

merical results presented in the previous chapter show that RDS’ performance

is much better on unconstrained (box constrained) problems.

• Further experiments for highly multimodal problems such as DTLZ3.

• Comparison with other RP based MOEAs such as RMEAD.

• To address RPPs by achievement scalarizing functions (ASF) other than the

one taken in this work.

• To test the memetic strategy on several many objective problems since it is

expected that in this kind of problems, RDS-RNSGA-II can overwhelmingly

outperform RP based MOEAs, as it was the case for DTLZ2. Benchmark

and real world functions with different properties should be considered for this

purpose.

• To further hybridize RDS and RDDS in order to reduce the use of gradients in

the memetic strategy.

CINVESTAV Computer Science Department



Bibliography

[1] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wi-

ley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

[2] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective selection

based on dominated hypervolume. European Journal of Operational Research,

2006.

[3] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, New York, second

edition, September 2007. ISBN 978-0-387-33254-3.

[4] I. Das and J. Dennis. Normal-boundary intersection: A new method for generat-

ing the Pareto surface in nonlinear multicriteria optimization problems. SIAM

Journal of Optimization, 8:631–657, 1998.

[5] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub-

lishers, Boston, Massachusetts, 1999.

[6] J. Fliege. Gap-free computation of Pareto-points by quadratic scalarizations.

Mathematical Methods of Operations Research, 59:69–89, 2004.

[7] G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization.

Springer, Berlin Heidelberg, 2008. ISBN 978-3-540-79157-7.

[8] J.P. Ignizio. Goal programming and extensions. Lexington Books, 1976.

113



114 BIBLIOGRAPHY

[9] Andrzej P. Wierzbicki. The use of reference objectives in multiobjective opti-

mization. In Günter Fandel and Tomas Gal, editors, Multiple Criteria Decision

Making Theory and Application, volume 177 of Lecture Notes in Economics and

Mathematical Systems, pages 468–486. Springer Berlin Heidelberg, 1980.

[10] O. Schütze, A. Lara, and C. A. Coello Coello. The directed search method

for unconstrained multi-objective optimization problems. In Proceedings of the

EVOLVE – A Bridge Between Probability, Set Oriented Numerics, and Evolu-

tionary Computation, 2011.

[11] Karthik Sindhya, Kalyanmoy Deb, and Kaisa Miettinen. A local search based

evolutionary multi-objective optimization approach for fast and accurate con-

vergence. In Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni, and

Nicola Beume, editors, Parallel Problem Solving from Nature – PPSN X, vol-

ume 5199 of Lecture Notes in Computer Science, pages 815–824. Springer Berlin

Heidelberg, 2008.

[12] Jih-Yiing Lin and Ying ping Chen. When and what kind of memetic algorithms

perform well. In Evolutionary Computation (CEC), 2012 IEEE Congress on,

pages 1–8, June 2012.

[13] S. Bechikh, L. Ben Said, and K. Ghedira. Estimating nadir point in multi-

objective optimization using mobile reference points. In Evolutionary Computa-

tion (CEC), 2010 IEEE Congress on, pages 1–9, July 2010.

[14] Karthik Sindhya, Kalyanmoy Deb, and Kaisa Miettinen. A local search based

evolutionary multi-objective optimization approach for fast and accurate con-

vergence. In Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni, and

Nicola Beume, editors, Parallel Problem Solving from Nature, PPSN X, volume

5199 of Lecture Notes in Computer Science, pages 815–824. Springer Berlin Hei-

delberg, 2008.

CINVESTAV Computer Science Department



BIBLIOGRAPHY 115

[15] Karthik Sindhya, AnaBelen Ruiz, and Kaisa Miettinen. A preference based

interactive evolutionary algorithm for multi-objective optimization: PIE. In

RicardoH.C. Takahashi, Kalyanmoy Deb, ElizabethF. Wanner, and Salvatore

Greco, editors, Evolutionary Multi-Criterion Optimization, volume 6576 of Lec-

ture Notes in Computer Science, pages 212–225. Springer Berlin Heidelberg,

2011.

[16] A. Lara, G. Sanchez, Carlos A. Coello Coello, and O. Schütze. HCS: A new local

search strategy for memetic multiobjective evolutionary algorithms. Evolutionary

Computation, IEEE Transactions on, 14(1):112–132, Feb 2010.

[17] K. Deb and H. Jain. An Evolutionary Many-objective Optimization Algorithm

Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving

Problems with Box Constraints. Evolutionary Computation, IEEE Transactions

on, 18(4):577–601, Aug 2014.

[18] H. Jain and K. Deb. An Evolutionary Many-objective Optimization Algorithm

Using Reference-Point-Based Nondominated Sorting Approach, Part II: Han-

dling Constraints and Extending to an Adaptive Approach. Evolutionary Com-

putation, IEEE Transactions on, 18(4):602–622, Aug 2014.

[19] V. Pareto. Cours d’economie politique, volume I and II. f. rouge, lausanne. 1896.

[20] C. Hillermeier. Nonlinear Multiobjective Optimization - A Generalized Homotopy

Approach. Birkhäuser, 2001.

[21] H. Kuhn and A. Tucker. In Proceedings of the Second Berkeley Symposium on

Mathematical Statistics and Probability, page 481–492. University of California

Press, Berkeley and Los Angeles, 1951.

[22] W. E. Karush. Minima of functions of several variables with inequalities as side

conditions. PhD thesis, Dept. Math., Univ. Chicago, 1939.

CINVESTAV Computer Science Department



116 BIBLIOGRAPHY

[23] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. Springer, 2006.

[24] L.A. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Trans-

actions on Automatic Control, 8:59–60, 1963.

[25] J.L. Cochrane and M. Zeleny. Multiple Criteria Decision Making. University of

South Carolina Press, Columbia, 1973.

[26] A. Lara, S. Alvarado, S. Salomon, G. Avigad, C. A. Coello Coello, and O. Schütze.

The gradient free directed search method as local search within multi-objective

evolutionary algorithms. In EVOLVE - A Bridge between Probability, Set Ori-

ented Numerics, and Evolutionary Computation (EVOLVE II), pages 153–168,

2013.

[27] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global Op-

timization, 11(4):341–359, 1997.

[28] John H. Holland. Outline for a logical theory of adaptive systems. J. ACM,

9(3):297–314, July 1962.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions

on, 6(2):182–197, Apr 2002.

[30] Ram Bhusan Agrawal and Kalyanmoy Deb. Simulated binary crossover for con-

tinuous search space. Technical report, 1994.

[31] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm

based on decomposition. Evolutionary Computation, IEEE Transactions on,

11(6):712–731, Dec 2007.

[32] Kalyanmoy Deb, J. Sundar, Udaya Bhaskara Rao N, and Shamik Chaudhuri. Ref-

erence point based multi-objective optimization using evolutionary algorithms.

CINVESTAV Computer Science Department



BIBLIOGRAPHY 117

In International Journal of Computational Intelligence Research, pages 635–642.

Springer-Verlag, 2006.

[33] A Mohammadi, M.N. Omidvar, and Xiaodong Li. Reference point based multi-

objective optimization through decomposition. In Evolutionary Computation

(CEC), 2012 IEEE Congress on, pages 1–8, June 2012.

[34] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing im-

ages using the Hausdorff distance. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 15(9):850–863, 1993.

[35] D. A. Van Veldhuizen and G. B. Lamont. On measuring multiobjective evolu-

tionary algorithm performance. In 2000 Congress on Evolutionary Computation,

volume 1, pages 204–211, Piscataway, New Jersey, July 2000. IEEE Service Cen-

ter.

[36] Carlos A. Coello Coello and Nareli Cruz Cortés. Solving multiobjective opti-

mization problems using an artificial immune system. Genetic Programming and

Evolvable Machines, 6(2):163–190, 2005.

[37] O. Schütze, X. Esquivel, A. Lara, and Carlos A. Coello Coello. Using the aver-

aged hausdorff distance as a performance measure in evolutionary multiobjective

optimization. Evolutionary Computation, IEEE Transactions on, 16(4):504–522,

Aug 2012.

[38] E. L. Allgower and K. Georg. Numerical Continuation Methods. Springer, 1990.

[39] Eduardo Salinas Márquez. A New Gradient Free Continuation Method for the

Treatment of Constrained Multiobjective Optimization Problems. PhD thesis,

Computer Science Department, CINVESTAV, 2013.

[40] Erick Ignacio Mejía Estrada. The Directed Search Method for Constrained Multi-

Objective Optimization Problems. PhD thesis, Computer Science Department,

CINVESTAV, 2012.

CINVESTAV Computer Science Department



118 BIBLIOGRAPHY

[41] J.B. Rosen. The gradient projection method for nonlinear programming part i

linear constraints. Journal of the Society for Industrial and Applied Mathematics,

8:181–217, 1960.

[42] Hisao Ishibuchi, Tadashi Yoshida, and Tadahiko Murata. Balance between ge-

netic search and local search in hybrid evolutionary multi-criterion optimization

algorithms. IEEE Trans. on Evolutionary Computation, 7:204–223, 2002.

[43] C. A. Coello Coello and N. Cruz Cortés. Solving Multiobjective Optimization

Problems using an Artificial Immune System. Genetic Programming and Evolv-

able Machines, 6(2):163–190, June 2005.

[44] M. Köppen and K. Yoshida. Substitute distance assignment in NSGA-II for

handling many-objective optimization problems. In S. Obayashi et al., editor,

Evolutionary Multi-Criterion Optimization, 4th International Conference (EMO

2007), pages 727–741, Matshushima, Japan, March 2007. Springer. Lecture Notes

in Computer Science Vol. 4403.

[45] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8:173–195, 2000.

[46] T Ray, K Tai, and C Seow. An evolutionary algorithm for multiobjective opti-

mization. Eng. Optim, 33(3):399–424, 2001.

CINVESTAV Computer Science Department


	Index of Figures
	Index of Tables
	Index of Algorithms
	List of Acronyms
	Introduction
	Motivation
	The Problem
	General and Particular Aims
	Organization of the Thesis

	Background
	Theoretical Background
	Single-Objective Optimization
	Multi Objective Optimization

	Multi Objective Optimization Algorithms
	Mathematical Programming Techniques
	Evolutionary Algorithms

	Reference Point Problems
	Reference Point Based multi objective Optimization Evolutionary Algorithms

	Performance Indicators
	Generational Distance
	Inverted Generational Distance
	Averaged Hausdorff Distance p
	UPCF


	Directed Search for Reference Point Problems
	RDS
	Descent phase
	Continuation phase
	Step size control
	Box constraints
	Non linear constraints

	Neighborhood exploration
	Considerations

	Discussion

	RDS within MOEAs
	Unconstrained and Box Constrained RPPs
	General considerations
	RDS within a MOEA
	Example

	Constrained RPPs
	Constraint handling RNSGA-II
	Further considerations
	Constrained RDS within a MOEA

	A modified version of the IGD indicator for RPPs

	Numerical Results
	Parameter setting
	Unconstrained models
	CONV
	ZDT
	DTLZ

	Constrained models
	C-DTLZ

	Three problems from practice
	Welded Beam
	Car Side Impact
	Water Problem


	Conclusions and Future Work
	Future work

	Bibliography

