
Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

UNIDAD ZACATENCO

DEPARTAMENTO DE COMPUTACIÓN

Mapeo de celda a celda para problemas de

optimización de dos niveles.

Tesis que presenta

Jesús Fernández Cruz

para obtener el Grado de

Maestro en Ciencias en Computación

Director de tesis:

Dr. Oliver Steffen Schütze

México, DF Noviembre del 2014

ii

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

ZACATENCO Campus

Computer Science Departmen

Cell-to-Cell Mapping for Bilevel Optimization

Problems

Submitted by

Jesús Fernández Cruz

As fulfillment of the requirement for the degree of

Ms. C. Computer Science

Advisor:

Dr. Oliver Steffen Schütze

México, DF November 2014

iv

Resumen

Cada d́ıa es más frecuente que encontremos problemas de optimización de dos niveles

simultáneos (POB). Cada nivel t́ıpicamente es un problema de optimización multi-

objetivo (POM); dónde estas dos funciones pueden ser cooperativas o no.

En esta tesis, presentamos métodos paralelos orientados a conjuntos para resolver

esta clase de problemas. En particular, nos enfocamos al problema de encontrar el

conjunto de soluciones óptimas de Pareto, pero también para el caso de los POMs

presentamos métodos paralelos para encontrar el conjunto de soluciones aproximadas.

También se presentan métodos paralelos para hallar la familia de frentes de Pareto de

problemas de optimización paramétricos (POP). Finalmente, se presenta un estudio

en el cual se analiza el paralelismo teórico y práctico que tienen estos métodos.

v

vi RESUMEN

Abstract

Nowadays, it is more common to deal with bilevel optimization problems (BOP);

where typically each level is a multi-objective optimization problem (MOP). These

two objective functions can be cooperative, or not.

In this thesis, we present parallel set oriented methods for the treatment of these

problems. In particular, we address the problem of computing the set of optimal

solutions; also, for the case of MOPs, we present parallel methods for finding the set

of approximate solutions. Parallel methods are also presented to find the family of

Pareto fronts of a given parametric optimization problem (POP). Finally, a study

that analyzes the theoretical and practical parallelism, of this methods, is presented.

vii

viii ABSTRACT

Agradecimientos

Quisiera agradecer a mi padre y mi madre, por todo el apoyo incondicional que me

dieron, aśı como también la educación que me impartieron.

También quisiera agradecer a mis hermanas por su apoyo, ya que sin él no hubiera

podido alcanzar mis metas.

A mi esposa Roćıo por acompañarme estos dos años, donde tuvo que demostrar

paciencia y amor al no poder siempre estar con ella.

A mis amigos Marco, RAL y Pesca que me ayudaron a lo largo de mi vida a

demostrar que es muy divertida.

Agradezco al CONACyT por la beca que me dio para poder realizar mis estudios

de maestŕıa.

También agradezco al CINVESTAV, en particular al departamento de com-

putación, a todos mis profesores, secretarias y compañeros, ya que con ellos compart́ı

experiencias y conocimiento importante, para lograr de mı́ una mejor persona.

Finalmente quisiera agradecer a mi asesor ya que siempre tuve de él, apoyo,

consejos y sobre todo paciencia, para que yo sea un mejor académico.

ix

x AGRADECIMIENTOS

Contents

Resumen v

Abstract vii

Agradecimientos ix

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1

1.1 Motivation . 1

1.2 The Problem . 2

1.3 Objectives . 2

1.3.1 General Objective . 2

1.3.2 Particular Objectives . 2

1.4 Contributions . 3

1.5 Organization of the thesis . 4

2 Background and Related Work 5

2.1 Optimization . 5

2.1.1 Multi-objective Optimization 5

xi

xii CONTENTS

2.1.2 Pareto Optimality . 6

2.1.3 Parameter dependant Multi-objective Optimization 8

2.1.4 Bilevel Optimization . 9

2.1.5 Pareto Optimality . 11

2.2 Parallel Computing . 14

2.3 Cell Mapping Techniques . 15

2.4 Evolutionary algorithms . 19

2.5 Descent directions . 21

3 Parallel Simple Cell Mapping for Multi-objective optimization

problems 25

3.1 Parallel Simple Cell Mapping . 27

3.1.1 Numerical Results . 29

3.2 Parallel Subdivision Simple Cell Mapping 32

3.2.1 Numerical Results . 33

3.3 Cell Control . 36

3.3.1 Numerical Results . 37

3.4 Approximate Solutions . 46

3.4.1 Numerical Results . 46

4 Parallel Simple Cell Mapping for Parametric Optimization Prob-

lems 51

4.1 Parametric pSCM . 51

4.1.1 Numerical Results . 52

5 Parallel Simple Cell Mapping for Bilevel Optimization Problems 59

5.1 Bilevel pSCM . 59

5.2 Bilevel Single-Objective Optimization 61

5.2.1 TP9 . 61

5.2.2 TP10 . 62

CONTENTS xiii

5.2.3 SMD1 . 62

5.2.4 SMD2 . 63

5.3 Bilevel Multi-Objective Optimization 63

5.3.1 DS1 . 64

5.3.2 DS2 . 65

6 Real World Application: Rotary Flexible Joint Module 67

6.1 The Design of the Problem . 68

6.2 Numerical Results . 70

7 Conclusions and Future Work 73

7.1 Conclusions . 73

7.2 Future Work . 74

Bibliography 75

xiv CONTENTS

List of Figures

2.1 Example of Pareto dominance, where the point A dominates the point

E, and the points B and C dominates the points E and D. 7

2.2 Pareto set (left) and Pareto front (right) of Leumman’s problem . . . 8

2.3 The feasible set (left) and its image (right) of DS1 problem. 12

2.4 Pareto set (left) and Pareto front (right) of DS1 problem. 13

2.5 The division of Ω into M rectangular cells. 17

2.6 The evolution of a cell to another cell. 18

3.1 True Pareto front and approximations for ZDT benchmark suite. . . . 35

3.2 True Pareto front and approximation for DTLZ benchmark suite with

2 objectives. 36

3.3 Pareto fronts of DTLZ functions for k = 2 obtained by pSCM. 39

3.4 Pareto fronts of DTLZ functions for k = 2 obtained by pSCM. 40

3.5 Pareto fronts of DTLZ functions for k = 3 obtained by pSCM. 41

3.6 Pareto fronts of DTLZ functions for k = 3 obtained by pSCM. 42

3.7 Acceleration for DTLZ functions for k = 2. 45

3.8 Acceleration for DTLZ functions for k = 3. 45

3.9 Sett of locally optimal solutions of problem 3.2 49

3.10 Approximate solutions of problem 3.3 with ε = [2, 0.0004]T .

Approximate solutions are shown with red boxes. 50

4.1 Result of PpSCM on PMOP1 . 54

xv

xvi LIST OF FIGURES

4.2 Result of PpSCM on PMOP2 . 54

4.3 Result of PpSCM on PMOP3 . 55

4.4 Result of PpSCM on PMOP4 . 56

4.5 Result of PpSCM on PMOP5 . 57

5.1 Results of BpSCM on DS1 problem. 64

5.2 Results of BpSCM on DS2 problem. 66

6.1 Rotary Flexible Joint module . 68

6.2 Upper and lower Pareto front of the problem 71

6.3 Numerical simulations of θ and α responses under Pareto optimal

controls. 71

List of Tables

3.1 Computational times and speedups obtained by SCM and pSCM on

the benchmark models. All the times are in milliseconds. 30

3.2 Computational times and speedups for m = 10 function evaluations to

increase the cost of the evaluation. All the times are in milliseconds. . 31

3.3 Computational times and speedups for m = 100 function evaluations

to increase the cost of the evaluation. All the times are in milliseconds. 31

3.4 Computational times and speedups for m = 1000 function evaluations

to increase the cost of the evaluation. All the times are in milliseconds. 31

3.5 Number of restarts and divisions per coordinate direction for the MOPs

considered in this study. 34

3.6 Obtained ∆2 values of the approximations obtained by pSCM and the

true Pareto fronts. 34

3.7 Number of restarts and divisions per coordinate direction for the MOPs

considered in this study. 38

3.8 Comparison times and accelerations of DTLZ functions for k = 3 for

sequential and parallel SCM in milliseconds. 43

3.9 Obtained ∆2 values of the approximations obtained by pSCM and the

true Pareto fronts. 43

3.10 Acceleration of DTLZ functions for k = 2 obtained by pSCM for

different costs of the function evaluation. 44

xvii

xviii LIST OF TABLES

3.11 Acceleration of DTLZ functions for k = 3 with pSCM for different

function costs. 44

4.1 Number of restarts and divisions per coordinate direction for the MOPs

considered in this study. 53

5.1 Quality of a candidate solution. 60

5.2 Number of restarts and divisions per coordinate direction for the

BSOPs considered in this study. 61

5.3 TP9 Comparison . 62

5.4 TP10 Comparison . 62

5.5 SMD1 Comparison . 62

5.6 SMD2 Comparison . 63

5.7 Number of restarts and divisions per coordinate direction for the

BMOPs considered in this study. 64

5.8 DS1 Comparison with k = 1 . 65

5.9 DS1 Comparison with k = 5 . 65

5.10 DS2 Comparison with k = 1 . 65

5.11 DS2 Comparison with k = 3 . 66

6.1 Number of restarts and divisions per coordinate direction for the problem. 70

List of Algorithms

1 Creation of the cell space . 27

2 Evolution of the system . 28

3 Analysis of the dynamical system . 29

4 Dominance Test . 29

5 parallel SCM . 30

6 Creation of the cell space with boundaries 32

7 pSCM . 33

8 pSCM 2nd version . 37

9 ε-Dominance . 46

10 doNSamplings . 47

11 getEpsilonDominance . 48

12 Parametric pSCM . 52

13 BpSCM . 60

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

Bilevel programming problems (BLPs) represent a special class of optimization

problems with two levels of optimization that appear e.g. in several practical problem

solving tasks. BLPs are different from the common optimization problems, as they

contain a nested optimization task within the constraints of another optimization

problem. The nested structure of the overall problem requires that a solution to the

upper level problem is feasible if and only if it is an optimal solution to the lower

level problem.

1.1 Motivation

Bilevel problems have been widely studied by researchers, in the field of classical

as well as evolutionary optimization. But in the context of multi-objective bilevel

optimization problems, which contain multiple objectives at one or both levels, few

recent studies in classical and evolutionary optimization have been done.

Recently, it has been discovered that these problem formulations can be very

useful in automatic control applications. For example, they can be used to compute

the worst case deviation of a suboptimal model predictive control scheme compared

to the optimal one [7].

1

2 Chapter 1

1.2 The Problem

Bilevel optimization constitutes a challenging class of optimization problems due to

its high dimensionality, the computational cost to obtain a feasible set for the upper

level task, and they are in most cases non-convex, therefore hard to solve for some

global search methods.

The greatest challenge in handling bilevel optimization problems is based on the

fact that unless a solution is optimal for the lower level problem, it cannot be feasible

for the overall problem. This requirement, in some sense, disallows any approximate

optimization algorithm (including Evolutionary Algorithms) to be used for solving

the lower level task.

The simple cell mapping method [18] gives us a useful tool to obtain the attractors

and basins of attractors of a dynamical system. This approach proposes to discretize

by dividing the state space in bigger hypercubes called cells. The evaluation of the

dynamical system is then reduced to a new function, which is defined not in Rn,

but on the cell space. In this case we restrict ourselves to functions that are strictly

deterministically defined. Thus, we can extend this idea to the context of bilevel

optimization.

1.3 Objectives

1.3.1 General Objective

To develop a method that uses simple cell mapping for the treatment of single-

objective and multi-objective bilevel optimization problems.

1.3.2 Particular Objectives

• To parallelize the Simple Cell Mapping method (pSCM).

• To develop a method that solves single-objective bilevel optimization problems

Cinvestav Departamento de Computación

Introduction 3

using pSCM.

• To develop a method that solves multi-objective bilevel optimization problems

using pSCM.

• To solve a real world problem with the resulting method.

1.4 Contributions

• Set oriented parallel algorithms for global multi-objective optimization problems

– parallel version of the SCM for multi-objective optimization.

– pSCM for multi-objective optimization problems.

– pSCM for the computation of the set of approximate solutions

• Set oriented parallel algorithm for global parametric optimization problems

– pSCM for multi-objective parametric optimization problems.

• Set oriented parallel algorithms for global bilevel optimization problems

– pSCM for single-objective bilevel optimization problems.

– pSCM for multi-objective bilevel optimization problems.

• Collaboration with the University of California, USA.

• Collaboration with the University of Tianjin, China.

• The thesis resulted in the following publications

– Contribution at EVOLVE 2014 international conference [11].

– Contribution at EVOLVE 2014 international conference [12].

– Contribution at EVOLVE 2014 international conference [25].

– Contribution at Journal of Sound and Vibration [27].

Cinvestav Departamento de Computación

4 Chapter 1

1.5 Organization of the thesis

This thesis consists of seven chapters, including this introductory chapter. The

remainder of this document is organized as follows:

Chapter 2 presents the basic concepts of multi-objective optimization, parametric

optimization, bilevel optimization and dynamical systems that are fundamental for

understanding the current work. Further, we review some of the methods for

solving a bilevel optimization problem along with some methods for global analysis

of dynamical systems.

Chapter 3 is devoted to present the parallel simple cell mapping method in the context

of multi-objective optimization. In this chapter, we discuss the key elements to adapt

this method and further on present numerical results on some academic models, also,

the chapter describe the simple cell mapping for the set of approximate solutions

where we describe the elements that are incorporated to the method to compute this

set.

Chapter 4 describes pSCM for multi-objective parametric optimization. In this

chapter we present an algorithm for the treatment of this kind of problems, along

with some numerical results on some academic models.

Chapter 5 includes the algorithm for the treatment of bilevel optimization problems,

this chapter also includes some numerical results and comparisons with other method.

Chapter 6 presents a real world application solved with pSCM and the interpretation

of the numerical results. Finally, Chapter 7 contains the conclusions and some possible

future ideas to be developed from this work.

Cinvestav Departamento de Computación

Chapter 2

Background and Related Work

2.1 Optimization

Optimization is the selection of the best element(s) with regard to some criteria, from

a set of feasible alternatives.

In this section we review the theoretical background on multi-objective

optimization and a definition of optimality.Then we describe the general background

on bilevel optimization (single-objective and multi-objective). Finally,we present

some notion of optimality for bilevel optimization problems.

2.1.1 Multi-objective Optimization

Multi-objective optimization is a kind of optimization that involves more than one

objective function to be optimized simultaneously. Multi-objective optimization has

been applied in many fields of science, including engineering, economics and logistics

where optimal decisions need to be taken in the presence of trade-offs between two or

more conflicting objectives. Two examples are minimizing cost while maximizing

comfort when buying a car, and maximizing performance whilst minimizing fuel

consumption of a vehicle.

A general multi-objective optimization problem (MOP) can be stated as follows:

5

6 Chapter 2

minimize
x∈Rn

F (x) = [f1(x), ..., fk(x)]T

subject to

gi(x) ≤ 0 i = 1, . . . , l,

hj(x) = 0 j = 1, . . . ,m.

(2.1)

Let Ω ⊂ Rn be a feasible region defined by

Ω = {x ∈ Rn|g(x) ≤ 0 and h(x) = 0}, (2.2)

where F : Ω→ Rk is a vector consisting of the objective functions

fi : Ω→ R, i = 1, . . . , k, (2.3)

x ∈ Ω is known as a decision vector, gi : Rn → R, i = 1, . . . , l is an inequality

constraint and hi : Rn → R, i = 1, . . . ,m is an equality constraint. In case there are

no constraints the MOP is known as unconstrained. We can also see that in case

k = 1 the problem is a single-objective optimization problem (SOP). It is important

to notice that we could also state the MOP as a maximization problem, however, any

maximization problem can be stated as a minimization problem, by multiplying the

objective function vector by −1.

2.1.2 Pareto Optimality

Once we know the problem, we must define what we seek, as in the example of the

choice of the car described in the Section 2.1.1. There is a set of feasible cars, but

among all of them, it is necessary to choose the best with certain characteristics of

speed and fuel consumption, but, what happens when we do not know which one

is the best? Or when our job is not to choose? For this task we can use Pareto

dominance relation and choose a set of non-dominated decision vectors among the

Cinvestav Departamento de Computación

Background and Related Work 7

entire search space.

Definition 2.1.1 Pareto dominance

1. Let y, x ∈ Rn, then x is less than y (x <p y) if xi < yi for all i = 1, . . . , n. The

relation ≤p is defined analogously.

2. A vector y ∈ Ω is called dominated by a vector x ∈ Ω (x ≺ y) if F (x) ≤p
F (y) and F (x) 6= F (y); else, it is called non-dominated by x.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

f
1
(x)

f 2(x
)

A D

B

C

E

Figure 2.1: Example of Pareto dominance, where the point A dominates the point E,
and the points B and C dominates the points E and D.

Figure 2.1 shows an example of Pareto dominance, which is a way to define which

point is ‘better’ according to another point.

Definition 2.1.2 Pareto optimal solution

A point x ∈ Ω is called Pareto point if there is not y ∈ Ω such that y ≺ x.

Usually, in the MOPs, there exists a set of Pareto optimal solutions, this set is

called Pareto set, and its image is called Pareto front.

Definition 2.1.3 1. The set of all Pareto optimal solutions is called the Pareto

set, i.e. P = {x ∈ Ω : x is a Pareto optimal point }.

Cinvestav Departamento de Computación

8 Chapter 2

2. The image of P , F (P), is called the Pareto front.

−5 0 5
−5

0

5

x
2

x1
0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f 2

f1

Figure 2.2: Pareto set (left) and Pareto front (right) of Leumman’s problem

Figure 2.2 shows the Pareto set of Leumman’s problem (see problem 2.4) [22],

which is a line where x ∈ [−2, 0] and y = 0, and the image of the Pareto set, typically

is an k-dimensional object.

minimize
x∈R2

F (x) = [f1(x), f2(x)]T

f1(x) = x2
1 + x2

2

f2(x) = (x1 + 2)2 + x2
2.

(2.4)

2.1.3 Parameter dependant Multi-objective Optimization

When we are dealing with optimization in real world applications, we often find some

variables that cannot be optimized, i.e. those variables no longer belong to the design

variables. Instead, those variables are external. For example, a car’s computer, when

is processing the best response for a given curve, we can optimized the velocity, the

angle of each tire, even the oil pressure; but, the wind is a parameter that cannot be

Cinvestav Departamento de Computación

Background and Related Work 9

optimize. Therefore, a new solution is obtained given a different wind parameter.

A parameter dependent optimization problem, given a parameter λ ∈ Rp can be

written as:

minimize
x∈R

F (x, λ) = [f1(x, λ), ..., fk(x, λ)]T

subject to

gi(x, λ) ≤ 0 i = 1, . . . , l,

hj(x, λ) = 0 j = 1, . . . ,m,

(2.5)

where: F : Rn × [λl, λu] → R
k. λh ∈ [λhl, λhu], λhl and λhu are the lower bounds

and upper bounds respectively. let Ω be the feasible set; every element in Ω complies

with the equality and inequality constraints. The feasible decision vectors are those

x ∈ Ω ⊆ Rn.

As a result of this kind of optimization, we obtain a particular Pareto front and

Pareto set for each λ value, i.e., the original function F is changing for each λ value.

2.1.4 Bilevel Optimization

Bilevel optimization problems (BOPs) are a special class of optimization problems

with two levels of optimization that appear e.g. in several practical problem solving

tasks. BOPs are different from the common optimization problems, as they contain

a nested optimization task within the constraints of another optimization problem.

The nested structure of the overall problem requires that a solution to the upper level

problem is feasible if and only if it is an optimal solution to the lower level problem.

A general single objective bilevel optimization problem (BSOP) can be formulated

as follows[1]:

Cinvestav Departamento de Computación

10 Chapter 2

minimize
xu∈Ωu,xl∈Ωl

fu(xu, xl)

subject to

Gi(xu, xl) ≤ 0 i = 1, . . . , L,

Hj(xu, xl) = 0 j = 1, . . . ,M,

xl ∈ argmin
l∈L


fl(xu, xl)

gi(xu, xl) ≤ 0, i = 1, . . . , l,

hj(xu, xl) = 0, j = 1, . . . ,m

 ,

(2.6)

where fu and fl represent the objective functions at the upper and lower level

respectively, xu represents the upper level decision vector and xl represents the

lower level decision vector. Inequality constraints at the upper and lower levels are

represented by Gi and gi, respectively, analog for equality constraints Hj and hj. Ωu

and Ωl are the bound constraints for the upper level decision vector and lower level

decision vector, respectively.

In the above formulation, a vector x
′
= (x

′
u, x

′

l) is considered to be feasible at the

upper level, if it satisfies all the upper level constraints and x
′

l is optimal at the lower

level for a given x
′
u. We observe in this formulation that the lower level problem is a

parametrized constraint to the upper level.

We can restate the single-objective bilevel program (Equation (2.6)) as a multi-

objective bilevel program (BMOP).

Cinvestav Departamento de Computación

Background and Related Work 11

min.
xu∈Ωu,xl∈Ωl

Fu(xu, xl) = [f
′

u1(xu, xl), ..., f
′

uk(xu, xl)]
T

subject to

Gi(xu, xl) ≤ 0 i = 1, . . . , L,

Hj(xu, xl) = 0 j = 1, . . . ,M,

xl ∈ argmin
l∈L


Fl(xu, xl) = [f

′
l1(xu, xl), ..., f

′
ln(xu, xl)]

T :

gi(xu, xl) ≤ 0, i = 1, . . . , l,

hj(xu, xl) = 0, j = 1, . . . ,m

 .

(2.7)

Hereby, Fu(u, l) and Fl(u, l) represent the vectors of objective functions where

f
′
ui, f

′

lj : Rn → R, i = 1, . . . , k, j = 1, . . . ,m, are the objectives, xu represents

the upper level decision vector and xl represents the lower level decision vector. Gi,

gi, Hj and hj denote the inequality and equality constraints for the upper and lower

level, respectively. A vector x
′
= (x

′
u, x

′

l) is considered feasible at the upper level, if it

satisfies all the upper level constraints and x
′

l is optimal at the lower level for the given

x
′
u. We observe in this formulation that the lower level problem is a parametrized

constraint to the upper level.

A football match is an example of a BMOP, since a player is the lower level

optimization task, and the player’s team is the upper level optimization task. The

best of the team is based on the strategy (upper level decision variables) that has the

best plays (lower level decision variables) of each player, and the best strategy among

all possibilities is the one that give to that team the maximum advantage over the

opponent’s team.

2.1.5 Pareto Optimality

Since the BMOPs are a special class of MOPs, we can use Pareto optimality as a way

to select the ‘best’ solutions, but it is necessary to perform two different tests. A test

Cinvestav Departamento de Computación

12 Chapter 2

is performed on the lower level objective functions, which is needed to get a feasible

set for the upper optimization task; a second dominance check is computed on the

upper level objective functions in order to obtain our final Pareto front and Pareto

set.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

xl1

x
u
1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

fu1

f u
2

Figure 2.3: The feasible set (left) and its image (right) of DS1 problem.

Figure 2.3 shows the feasible set for the upper optimization task of DS1 problem

(see problem 2.8) and Figure 2.4 presents its final result after a dominance test over

the upper level objective function.

Cinvestav Departamento de Computación

Background and Related Work 13

0 1 2 3
2

2.1

2.2

2.3

2.4

2.5

2.6

xl1

x
u
1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

f u
2

fu1

Figure 2.4: Pareto set (left) and Pareto front (right) of DS1 problem.

min.
xu∈Ωu,xl∈Ωl

fu1(xu, xl) =(1 + r − cos(απxl1)) +

K∑
i=2

(xli − (i− 1)/2)2

+ r
K∑
i=2

(xui − xli)2 − r cos((πxu1)/(2xl1))

fu2(xu, xl) =(1 + r − sin(απxl1)) +

K∑
i=2

(xli − (i− 1)/(2))2

+ r
K∑
i=2

(xui − xli)2 − r sin((πxu1)/(2xli))

subject to

xl ∈ argmin
l∈L



fl1(xu, xl) = x2
u1 +

∑K
i=2(xui − xli)2 +

∑K
i=2 10(1− cos(4π(xui − xli)))

fl2(xu, xl) =
∑K

i=1(xui − xli)2 +
∑K

i=2 10|(1− cos(4π(xui − xli)))|

−K <= xi <= K, 1 <= y1 <= 4, −K <= yj <= K

for i = 1, . . . ,K, j = 1, . . . ,K.


.

(2.8)

Cinvestav Departamento de Computación

14 Chapter 2

2.2 Parallel Computing

Amdahl’s law [29] indicates the maximum possible speedup of a program as a result

of parallelization.

The maximum acceleration, which can be obtained given n processors, is

represented by:

S(n) =
1

ps + 1
n
(1− ps)

, (2.9)

where ps ∈ [0, 1] is the sequential part of the program, i.e., the part that cannot be

parallelized.

Amdhal’s law also states that there exists an upper bound for the acceleration

regardless of the number of processing elements available.

The maximum theoretical acceleration (upper bound) is given in the limit where

the number of processors approaches infinity:

lim
n→+∞

S(n) = lim
n→+∞

1

ps + 1
n
(1− ps)

=
1

ps
, (2.10)

where ps ∈ [0, 1] is the sequential part of the program, i.e. the part that cannot be

parallelized.

Gustafson’s law [29] says that computations involving arbitrarily large data sets

can be efficiently parallelized. Gustafson’s law provides a counterpoint to Amdahl’s

law fixed data set size.

According to Gustafson’s law, the maximum acceleration which can be obtained

given n processors, is represented by:

S(n) = n− ps(n− 1), (2.11)

where ps ∈ [0, 1] is the sequential part of the program, i.e., the part that cannot be

parallelized.

Gustafson’s law addresses the shortcomings of Amdahl’s law, which does not

fully exploit the computing power that becomes available as the number of machines

Cinvestav Departamento de Computación

Background and Related Work 15

increases. Gustafson’s law instead proposes that programmers tend to set the size of

problems to use the available equipment to solve problems within a practical fixed

time. Therefore, if faster (more parallel) equipment is available, larger problems can

be solved in the same time.

2.3 Cell Mapping Techniques

Cell mapping techniques were originally designed for the global analysis of general

dynamical systems ([18, 6]). Algorithms of that type discretize the entire search space

into cells and consider instead of the point-wise iteration of the dynamical system F ,

the dynamics on the cells induced by F .

A dynamical system [18] is a system whose state changes with time (t). Two main

types of dynamical systems are encountered:

• Those for which the time variable is discrete (t ∈ N), called maps.

• Those for which the time variable is continuous (t ∈ R), called flows.

Discrete dynamical systems can be presented as the iteration of a function

xt+1 = f(xt), (2.12)

where xt is the actual iteration, F : Rn → Rn is the motion or dynamics of the system

and xt+1 is the next iterate.

When studying the global behavior of a nonlinear dynamic system, one usually

focuses on the following steps:

• Formulation of the equations of motion.

• Localization of stationary, periodic, quasiperiodic and chaotic solutions of the

system.

• Determination of the stability properties of the solutions.

Cinvestav Departamento de Computación

16 Chapter 2

• Study of changes in the solutions (in forms, magnitude, number, stability and

type) when varying system parameters.

In nonlinear systems, one often deals with the coexistence of various stable

solutions, also called attractors. For each attractor, a subset of the state space

exists, containing all initial values leading to that attractor, the so-called basin of

attraction. Which attractor the system will lead to depends on the initial conditions

of the system.

When using numerical techniques to solve problems, roundoff errors are introduced

due to the computer’s limited precision. Moreover, in experimental methods, a limit of

measurement accuracy exists, which means that in both numerical and experimental

methods, desired quantities cannot be obtained in an exact manner.

According to Hsu[18], this implies that a state variable, describing a part of the

state of a dynamical system cannot be regarded as a continuum, which can take every

possible value xi ∈ R. Instead it is better to consider as a discrete quantity, and its

range as a collection of n-dimensional intervals, where n is the state space dimension.

Such discretized space is called a cell state space.

Consider a dynamical system with Euclidian state space Rn, n ∈ N, n ≥ 1.

Generally, the state of a dynamical system will be restricted to a bounded subset

of the state space. For convenience, we consider this subset, denoted by Ω, to be

rectangular. Let x = (x1, . . . , xn) be the state vector, then for each state variable xi

a lower and upper boundaries li and ui exists. Hence:

li ≤ xi ≤ ui, i = 1, . . . , n. (2.13)

Having defined Ω, we divide it into cells. Cells can be of an arbitrary form, as

long as they fill up Ω. The division of Ω in rectangular cells can be done by dividing

each interval [li, ui] into Mi intervals of equal length hi where:

hi =
ui − li
Mi

, i = 1, . . . , n. (2.14)

Cinvestav Departamento de Computación

Background and Related Work 17

In this way, Ω has been divided into M rectangular cells as shown in Figure 2.5,

with:

M =
n∏
i=1

Mi. (2.15)

Figure 2.5: The division of Ω into M rectangular cells.

Each cell is denoted by an index j ∈ 1, . . . ,M . The region Rn \ Ω is called the

sink cell and is denoted by index 0. The complexity given by Equation 2.15 indicates

that this method works only for low dimensional problems. All possible states within

one cell are denoted by the same index and are treated as one.

The mapping C : N → N is called a simple cell mapping (SCM), by ξ(n + 1) =

C(ξ(n)) is implied that the next state of the system is completely determined by its

current state as shown in Figure 2.6.

When the system enters the sink cell, its evolution is no longer followed. We define

C(0) = 0. Under SCM, two kinds of regular cells are obtained: periodic and transient

cells.

A cell ξ that satisfies ξ = Cm(ξ) for some m ∈ N, is called a periodic cell with

period m, or P −m cell, here Cm denotes the cell mapping C applied m times, all

the cells Cm−1(ξ), Cm−2(ξ), . . . are also P −m cells. By definition the sink cell is a

Cinvestav Departamento de Computación

18 Chapter 2

Figure 2.6: The evolution of a cell to another cell.

P − 1 cell. A cell which is not a periodic cell is called transient cell.

The fundamental step in the SCM algorithm is the following. The state of the

system at time t is no longer described by the state vector x(t), but by the index

ξ(t) ∈ 0, . . . ,M of the cell containing the state vector

ξ(t) = j ⇐⇒ x(t) ∈ cellj.

As an example of SCM for the treatment of multi-objective optimization problems,

we present the following paper:

• Hernandez, Yousef, Yousef, Wei, Schütze and Jian-Qiao Sun introduce the

simple cell mapping method for the multi-objective optimal time domain design

of feedback controls for linear systems with or without time delay [15]. The

authors consider two feedback control design problems to demonstrate their

method: a linear quadratic regulator based approach with the weighting

matrices as design parameters, and a directed optimization with feedback

control gains as design parameters.

Cinvestav Departamento de Computación

Background and Related Work 19

2.4 Evolutionary algorithms

An evolutionary algorithm (EA) is a heuristic optimization algorithm using techniques

bio-inspired by species evolution such as mutation, recombination and natural

selection, in order to find an optimal individual for the given problem [4].

At the beginning of the algorithm, a group of individuals (called population) is

created, then in each iteration of the EA (called generation) the algorithm produces

a new population via reproduction (or recombination) and mutation, in order to

converge to a result the EA uses a natural selection, which selects the ‘best’ individual

of the current population and tries to preserve its genes and makes small modifications

by any via (exploitation) or makes mutations on some individuals, in order to get a

better individual than the actual ‘best’ (exploration).

These algorithms are widely used because they produce a ‘good’ approximation

of the Pareto set and Pareto front, without using any extra information and they cut

the search space giving us a save of function calls, i.e., total time of execution, which

can be a decisive factor.

In the following, we present some EA approaches for the treatment bilevel

optimization problems:

• Deb and Sinha address certain intricate issues related to solving multi-objective

bilevel programming problems [8]. They also present challenging test problems

and propose a viable and hybrid evolutionary-cum-local-search based algorithm

as a solution methodology. The population sizing and termination criteria are

made self-adaptive, so that no additional parameters need to be supplied by the

user. The study indicates a clear niche of evolutionary algorithms in solving

such difficult problems of practical importance compared to their usual solution

by a computationally expensive nested procedure. The study opens up many

issues related to multi-objective bilevel programming.

• Ruuska and Miettinen propose a procedure to construct evolutionary bilevel

optimization algorithms based on recent theoretical advances that have

Cinvestav Departamento de Computación

20 Chapter 2

established connections between bilevel optimization and multi-objective

optimization [31]. In the proposed procedure, a new algorithm is defined

by integrating an evolutionary multi-objective optimization algorithm with a

partial order that is compatible with bilevel optimization.

• Sinha, Malo and Deb propose a procedure for designing controlled test problems

for bilevel single-objective optimization [39]. The proposed procedure is flexible

such that the different complexities present in a bilevel problem can be

controlled independently of each other. Also the authors provide a test suite

of 12 test problems, which consists of 8 unconstrained and four constrained

problems.

• Deb and Sinha propose five test problems, which are scalable in terms of the

number of variables and objectives, and which enable researchers to evaluate

different phases of a bilevel problem solving task [7]. The test problem

construction procedure is interesting and may motivate other researchers to

extend the idea to develop further test problems.

• Gupta, Kelly, Ehrgott and Bickerton describe an Evolutionary Algorithm which

is presented to solve the problem of the design parameters of the resin transfer

molding (RTM) and compression RTM (CRTM) that are popular methods

for high volume production of superior quality composite parts [14]. The

parameters must be carefully chosen in order to reduce cycle time, capital layout

and running cost, while maximizing the final part quality. These objectives are

principally governed by the filling and curing phases of the manufacturing cycle,

which are strongly coupled in the case of completely non-isothermal processing.

Independently optimizing either phase often leads to conditions that adversely

affect the progress of the other. In light of this fact, this work models the

complete manufacturing cycle as a static Stackelberg game with two virtual

decision makers (DMs) monitoring the filling and curing phases, respectively.

The model is implemented through a Bilevel multi-objective Genetic Algorithm

Cinvestav Departamento de Computación

Background and Related Work 21

(BMOGA), which is integrated with an Artificial Neural Network (ANN) for

rapid function evaluations. The obtained results are thus efficient with respect

to the objectives of both DMs and provide the manufacturer with a diverse set

of solutions to choose from.

2.5 Descent directions

A descent direction is a vector ν ∈ Rn, if a descent direction ν is given at a point

x, a further candidate solution xnew that dominates x can easily be found by a line

search, i.e., by setting

xnew = x+ tν, (2.16)

where t ∈ R+ is a suitable step size.

The solution of this kind of problems would give as result a curve of dominated

points, i.e., the new point dominates the previous one.

In the following, we present several methods which use this idea to find a descent

direction ν.

• Lara proposes the simplest bi-objective descent direction [23], which is one way

to combine two gradients to obtain a descent direction by a vector sum

v(x0) = −(
∇f1(x)

||∇f1(x)||
+
∇f2(x)

||∇f2(x)||
), for ∇fi(x) 6= 0 (2.17)

where || · || = || · ||2,x ∈ Rn and v is a descent direction at x0.

However, this approach cannot be generalized to more than two objective

functions.

• Schütze, Lara and Coello propose the following descent [36]: assume a point

x0 ∈ Ω is given as well as a vector d ∈ Rk representing a desired direction in

objective space.

J(x)v = d,

Cinvestav Departamento de Computación

22 Chapter 2

where v ∈ Rn is a search direction in parameter space,|| · || = || · ||2 and J(x) is

the jacobian matrix. wich is defined by

J(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fk
∂x1

(x) . . . ∂fk
∂xn

(x)

 (2.18)

the authors propose that v can be computed by solving a system of linear

equations. Since typically the number of parameters is higher than the number

of objectives, the system of equations is underdetermined, which implies that

its solution is not unique. To deal with this, the problem can be formulated as:

v = J(x0)+d,

where J(x0)+ denotes the pseudo inverse of the Jacobian J(x0) ∈ Rk×n. Further,

we can solve the following initial value problem (IVP):

x(0) = x0 ∈ Rn

ẋ(m) = να(x(m)), t > 0.
(2.19)

• Schäffler, Schultz and Weinzierl [32] propose the following descent direction:

q(x) =
k∑
i=1

â∇fi(x),

where q : Rn → Rn and â is a solution of

min
α∈Rk
{||

k∑
i=1

αi∇fi(x)||22, αi ≥ 0, i = 1, . . . , k,
k∑
i=1

αi = 1},

where ∇fi is the gradient of the ith component of the ith objective function

and k is the number of objectives.

Cinvestav Departamento de Computación

Background and Related Work 23

From this we have that either q(x) = 0 or −q(x) is a descent direction for all the

objective functions; hence, each x with q(x) = 0 fulfills the first-order necessary

conditions for Pareto optimality.

• Fliege and Svaiter [13] propose the following descent direction:

fx(v) = max(Av)i, i = 1, . . . ,m,

where fx : Rn → R. We can see that fx is convex and positive homogeneous.

Using this function the authors propose the following problem:

min fx(v) +
1

2
||v||2

subject to v ∈ Rn.

From this we have that, if x is Pareto optimal, then v(x) = 0. If it is not the

case then v is a descent direction.

Cinvestav Departamento de Computación

24 Chapter 2

Cinvestav Departamento de Computación

Chapter 3

Parallel Simple Cell Mapping for

Multi-objective optimization

problems

In this chapter we focus on the case of SCM for the treatment of MOPs.

As in Equation 2.15 the total cell number in the system grows exponentially as the

number of dimensions increases. This represents a problem due the limited amount

of memory and processor time.

In order to overcome this problem we can use two different approaches:

• To use parallel computing, in order to process more cells in less time.

• To reduce the search space, in order to process less cells and therefore reduce

the computational burden.

In order to choose which path is the best to solve this problem, we can state some

SCM properties. Hernández Castellanos propose an algorithm [17], which its most

expensive part is the computation of the dynamical system. In this part, at least two

function evaluations are performed inside the cell, one of those is for the evaluation

of the center point and at least one evaluation for the computation of the step size.

25

26

In the cell evolution part, the mapping C (SCM) is given by a point-wise iteration

xj = xi + tν:

Where:

xi: Center point of the current cell

xj: Final point

t: Step size

ν: Descent direction

Since xi, t and ν can be known locally, in other words, the evolution of a cell

can be done without any other information of another cell, therefore the mapping

function C, is applied on each cell in the system , that means a Single Instruction

Multiple Data computer could do this task in a parallel way and also means that we

can use data parallelism.

If we have a great amount of processors (p = ∞), the theoretical acceleration

given by Amdhal’s law (see Equation 2.9) and the number of cells in the system

(see Equation 2.15) is ps = 1
M

, thus the computational time is given by only one

evaluation.

In conclusion, we can apply parallel techniques to increase the number of cells

that can be processed in a certain amount of time without changing the algorithm,

therefore we still get all the information that SCM provide, but in other hand, the

computational complexity remains the same.

If we choose to cut the search space, we use algorithms that has been tested, like

refinement or subdivision techniques, in this way we can make at the beginning bigger

cells, then when the algorithm reach a point of quality, take the best results and refine

the cell until it reach a desired quality, in that way we can reduce the search space of

the problem and thus the computational time.

To cut the search space can be very useful for higher dimensions, but we lost a

lot of information of the dynamical system that can be useful.

These two approaches are different, but we can apply both in order to get a better

algorithm. This task has to be performed carefully, because some techniques needs

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 27

to be performed sequentially making the overall algorithm less efficient in the context

of parallel computing, thus in practice this algorithm will be inefficient due to the

overhead of threads control.

3.1 Parallel Simple Cell Mapping

The algorithm [16] can be divided into three principal parts:

• Creation of the cells: where the information (center point, boundaries, index,

etc.) of each cell is computed.

• Evolution of the system: where the SCM is processed.

• Post-processing: where it is performed extra algorithms in order to obtain the

set of approximate solution.

Algorithm 1 works on the GPU side, this algorithm creates the set of cells together

with their center points to be processed by the Algorithm 2. The key factor of this

algorithm is the function Getid() which must return a unique and valid value, which

is the identity id of a cell cid for instance Getid() = threadIdx.x + blockIdx.x ∗

blockDim.x, where threadIdx.x, blockIdx.x and blockDim.x are built-in GPU’s

variables. Each cell has a center point cp and a function value fv .

Algorithm 1 Creation of the cell space

Require: Function F
1: id← Getid()
2: cid.cp← Center point of the cell.
3: cid.fv ← f(cid.cp)

Once the algorithm created on GPU memory all the required information we can

proceed with the evaluation of each cell (Algorithm 2). As for Algorithm Creation

of the cell space, we need to calculate a unique and valid id for the cell. Then, we

calculate the mapping defined by the underlying dynamical system for the cell cid.

Cinvestav Departamento de Computación

28 Chapter 3

Based on this, we decide if the cell is mapped into another cell c̃ (i.e., a new vector

is found dominating the center point of the current box which is located in cell c̃) or

the cell is mapped to itself.

It is important to note that the division of the problem is over the data set (each cell

is processed individually on each core), thus the theoretical acceleration is given by

the numbers of cells mc in the system

S(n) =
1

1
mc

+ 1
n
(1− 1

mc
)
. (3.1)

Algorithm 2 Evolution of the system

Require: Number tot of total cells in the system and the sizes h per dimension
1: id← Getid()
2: Calculate the decent direction v
3: t← norm(h)
4: aux← f(cid.cp+ t ∗ v)
5: while cid.fv ≺ aux do
6: t← t/2
7: aux← f(cid.cp+ t ∗ v)
8: end while
9: cid.nextCell← i s.t. aux ∈ ci

In this way, we can proceed with the analysis (see Algorithm 3) in order to mark

the candidate cells where the non-dominated set might be located in. Algorithm

Analysis of the dynamical system goes through all cells and checks if they belong

to the p-group. In principle, only 1-groups are of interest (i.e., self-mapping cells).

Note, however, that by discretization of the cell mapping ansatz also p-groups with

p > 1 can be generated that are of interest (the most common ones are 2-groups that

perform a ‘flipping’ around a (local) solution). The algorithm marks all p-groups as

candidates when their period is less or equal to a maximum value mp i.e. p ≤ mp.

In order to select the Pareto set, a parallel dominance test has to be performed

using the center points of all candidate cells, see Algorithm 4. Cells those center

points are not dominated by any other center points of the candidate set are stored

as part of the (obtained) Pareto set. The Pareto front can then e.g. be approximated

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 29

Algorithm 3 Analysis of the dynamical system

Require: Total cells tot in the system and the maximal period mp.
1: id← Getid()
2: i← 0
3: c = i← cid.nextCell
4: while cid 6= ci and i < mp do
5: c = i← cid.nextCell
6: end while
7: if cid = ci then
8: mark cid.
9: end if

via considering the function values of the center points.

Algorithm 4 Dominance Test

Require: Total candidate cells tot and a set C of candidates cells.
1: id← Getid()
2: for all c ∈ C do
3: if cid ≺ c then
4: unmark the cell.
5: end if
6: end for
7: if cid is marked then
8: Save cid
9: end if

Finally, Algorithm 5 states the pseudo code of the parallel version of the SCM.

3.1.1 Numerical Results

In the following we investigate the acceleration obtained via parallel SCM compared

to its sequential counterpart. Table 3.1 shows the execution times for the creation and

the evaluation algorithm as well as for the complete procedure. In all cases we have

used n = 10 for the dimension of the parameter space. For the computations, we have

used an Alienware Mx17 R4 laptop with 8GB RAM and the following characteristics:

(i) a Nvidia gtx 680m GPU with 1344 CUDA cores and a 720 MHz processor clock,

(ii) an Intel Core i7-3720QM CPU with a clock speed of 2.6 GHz and a maximal

turbo frequency of 3.6 GHz.

Cinvestav Departamento de Computación

30 Chapter 3

Algorithm 5 parallel SCM

Require: The objective functions vector F , total cells tot in the system, the sizes h
per dimension and their limits lim

Ensure: Approximation of the Pareto set and Pareto front of the MOP.
1: Creation of the cell space(F ,tot,h,lim)
2: Evolution of the system(f ,tot,h,lim)
3: Analysis of the dynamical system(tot,2)
4: DominanceTest(tot)

Table 3.1: Computational times and speedups obtained by SCM and pSCM on the
benchmark models. All the times are in milliseconds.

Creation Evaluation Total Total acceleration
parallel sequential parallel sequential parallel sequential

ZDT1 150.78 1367.52 642.99 3861.02 1345.11 5461.8 4.06x
ZDT2 157.94 2025.54 646.44 4318.52 1270.69 6989.44 5.50x
ZDT3 144.18 1705.36 642.99 3861.02 1326.13 6244.94 4.70x
ZDT4 274.72 3235.67 677.76 6727.01 1506.64 10216.8 6.78x
ZDT6 216.87 2740.5 851.26 7047.48 1688 10101.29 5.98x

The total acceleration for these seven examples ranges from a speedup of four to

nearly seven. This is on the one hand not that overwhelming. Due to the overhead

associated with transitions between GPU and CPU, the practical acceleration of each

problem is (much) below the theoretical one. On the other hand, we note that parallel

computing allows for computational times of 1.3 to 1.7 seconds which is more than

reasonable for the global solution of problems of that dimension. Further, it has to

be noted that the evaluation time for each of the chosen academic models is quite

low (less than a millisecond per function evaluation). For real-world applications, for

which the cell mapping techniques are originally designed, such evaluation times are

not realistic, but can range in minutes or even hours as e.g. for airfoil design ([20, 26]).

In order to artificially increase the cost of our benchmark functions without defining

new ones, we evaluate each function m times in each cell. The next tables show the

total acceleration obtained for the values m = 10 (Table 3.2), 100 (Table 3.3) and

1000 (Table 3.4) .

The main reason for the difference in the accelerations shown in the tables is due

to logarithmic and trigonometric operations. Inside the GPU, these operations are

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 31

Table 3.2: Computational times and speedups for m = 10 function evaluations to
increase the cost of the evaluation. All the times are in milliseconds.

Creation Evaluation Total Total acceleration
parallel sequential parallel sequential parallel sequential

ZDT1 216.78 4100.29 885.33 9544.66 1653.45 13878.21 8.39x
ZDT2 908.58 8305.58 947.844 14753.33 2353.334 23268.37 9.88x
ZDT3 855.21 5561.39 870.34 12059.91 2309.36 17837.43 7.72x
ZDT4 1785.53 23592.76 1508.6 36939.37 3841.77 60789.04 15.82x
ZDT6 1271.08 19319.85 1593.42 40400.23 3535.89 60045.2 16.98x

Table 3.3: Computational times and speedups for m = 100 function evaluations to
increase the cost of the evaluation. All the times are in milliseconds.

Creation Evaluation Total Total acceleration
parallel sequential parallel sequential parallel sequential

ZDT1 773.86 28397.96 2377.93 57299.13 3690.73 85962.74 23.29x
ZDT2 7336.26 64829.31 4033.77 104667.53 11888.89 169704.77 14.27x
ZDT3 6873.71 39873.82 2882.07 77183 10274.94 117319.35 11.41x
ZDT4 15543.47 206302.48 9310.72 306838.34 25409.73 513415.04 20.20x
ZDT6 10311.19 161705.26 8578.83 335403.28 19511.11 497455.11 25.49x

Table 3.4: Computational times and speedups for m = 1000 function evaluations to
increase the cost of the evaluation. All the times are in milliseconds.

Creation Evaluation Total Total acceleration
parallel sequential parallel sequential parallel sequential

ZDT1 6031.4 270900.7 17609.6 532799.7 24198.26 803979.4 33.22x
ZDT2 71108.5 631137.9 34965.96 1001487.8 106581.5 1632867.0 15.32x
ZDT3 67032.0 383867.53 23360.0 729958.5 90903.2 1114083.9 12.25x
ZDT4 152470.2 2039935.3 87354.85 3056862.0 240392.0 5097091.6 21.20x
ZDT6 100382.3 1588335.8 78485.2 3282948.5 179502.0 4871649.8 27.13x

Cinvestav Departamento de Computación

32 Chapter 3

performed in hardware units called Special Functions Units which are fewer than the

number of cores in the GPU. However, as can be seen speedups of more than 30 can

be obtained. For instance, the computational time for ZDT6 is about 3 minutes when

using pSCM, while the sequential SCM needs 81 minutes for the same computation.

3.2 Parallel Subdivision Simple Cell Mapping

The above algorithms constitutes the required steps to perform the parallel cell map-

ping for a fixed discretization of the parameter space. Note, however, that even if we

achieve a great performance due to the GPUs, we still face the same dimensionality

problem as for the sequential algorithm, namely that the number of cells (and thus

the overall cost of the algorithm) increases exponentially with the number of dimen-

sions. which will eventually overflow the memory capabilities of any computer. Here,

we follow the suggestion made in [24] and perform the cell mapping in an iterative

way on the set of candidate cells. In this way, cell mapping gets combined with sub-

division techniques presented in [10, 19, 37].

The new algorithm must store the boundaries of each cell, therefore Algorithm 1

must be redefined. Algorithm 6 stores the boundaries of each cell.

Algorithm 6 Creation of the cell space with boundaries

Require: Function F , total cells tot in the system, sizes h per dimension, and limits
lim per dimension.

1: id← Getid()
2: cid.cp← Center point of the cell.
3: cid.lim← local boundaries,
4: cid.fv ← f(cid.cp)

Algorithm 7 presents the overall iterative parallel version of SCM for the treatment

of multi-objective optimization problems using the Algorithm 6. The main idea is to

make a gross SCM trying to use all the available GPU processors. Then, the best

points selected by the dominance test constitute the new search space. This process,

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 33

cell mapping and selection, is iterated until the desired depth md of the search is

reached.

Algorithm 7 pSCM

Require: Total cells tot in the system, the sizes h per dimension and their limits
lim, the depth d of the search, and the maximal depth md.

Ensure: Approximation of the Pareto set and Pareto front of the MOP.
1: cs← ∅
2: if d = md then
3: Store candidate set cs.
4: else
5: Create of the state space with boundaries(f ,tot,h,lim)
6: Evolution of the system(f ,tot,h,lim)
7: Analysis of the dynamical system(tot,2)
8: cs← DominanceTest(tot)
9: for all ci ∈ cs do
10: h← h/tot
11: pSCM(f ,tot,h,ci.lim,d+ 1,md)
12: end for
13: end if

3.2.1 Numerical Results

Here we present some numerical results of the novel parallel cell mapping algorithm

and discuss the speedup against its sequential counterpart. For the problems,

we have chosen to take the bi-objective ones from the ZDT [43] and DTLZ [9]

benchmark suites. These problems have different characteristics (e.g., convex, concave

or disconnected Pareto front, uni-modal or multi-modal functions, Pareto front within

or at the boundary of the domain) and are widely used to demonstrate the capability

of an algorithm to compute the entire Pareto front of a given MOP. In all cases we have

used n = 10 for the dimension of the parameter space. For the computations, we have

used an Alienware Mx17 R4 laptop with 8GB RAM and the following characteristics:

(i) a Nvidia gtx 680m GPU with 1344 CUDA cores and a 720 MHz processor clock,

(ii) an Intel Core i7-3720QM CPU with a clock speed of 2.6 GHz and a maximal

turbo frequency of 3.6 GHz. The design parameters of pSCM for each problem can

Cinvestav Departamento de Computación

34 Chapter 3

Table 3.5: Number of restarts and divisions per coordinate direction for the MOPs
considered in this study.

restarts divisions per coordinate

ZDT1 12 [2 2 2 2 2 2 2 2 2 2]
ZDT2 12 [2 2 2 2 2 2 2 2 2 2]
ZDT3 6 [5 3 3 3 3 3 3 3 3 3]
ZDT4 4 [5 5 5 5 5 5 5 5 5 5]
ZDT6 12 [2 2 2 2 2 2 2 2 2 2]
DTLZ1 12 [2 2 2 2 2 2 2 2 2 2]
DTLZ2 6 [5 3 3 3 3 3 3 3 3 3]

Table 3.6: Obtained ∆2 values of the approximations obtained by pSCM and the true
Pareto fronts.

∆p value

ZDT1 0.0043
ZDT2 0.0043
ZDT3 0.0035
ZDT4 0.0043
ZDT6 0.0037
DTLZ1 0.0011
DTLZ2 0.0046

be found in Table 3.5.

Figure shows the numerical approximations of the Pareto fronts of the ZDT

functions plus the true Pareto fronts and Figure the respective ones for the DTLZ

functions. Apparently, in all cases the approximations are nearly identical to the true

Pareto sets and can certainly be considered to be ‘good enough’ from the practical

point of view. This observation is underlined by Table 3.6 which shows the obtained

∆p values (for p = 2) of the obtained approximations and the true Pareto fronts. The

indicator ∆p [34] can be viewed as an averaged Hausdorff distance between two sets.

Since all values are close to zero, this indicates a good approximation quality of the

outcome sets.

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

True Pareto front
Solution

(a) ZDT1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

f
1

f 2

True Pareto front
Solution

(b) ZDT2

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

f
1

f 2

True Pareto front
Solution

(c) ZDT3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

True Pareto front
Solution

(d) ZDT4

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

True Pareto front
Solution

(e) ZDT6

Figure 3.1: True Pareto front and approximations for ZDT benchmark suite.

Cinvestav Departamento de Computación

36 Chapter 3

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

f 2

f
1

True Pareto front
Solution

(a) DTLZ1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

True Pareto front
Solution

(b) DTLZ2

Figure 3.2: True Pareto front and approximation for DTLZ benchmark suite with 2
objectives.

3.3 Cell Control

We have to consider that as the number of objectives increases, the number of

candidate solution also increases. This may lead to an overflow of memory and

workload as the number of iteration increases. For this reason we propose to use the

external archive ArchiveUpdate2 [35] with ε = 0. This archive allows us to define a

value δ which defines a desired distance between solutions in objective space. In this

case, we define an appropriate value for δ. That is performed as follows:

δ =
max
i∈k

Fi(cell)−min
i∈k

Fi(cell)

max arch
,

Algorithm 8 presents the overall iterative pSCM for the treatment of multi-

objective optimization problems. The main idea is to make a gross SCM trying to

use all the available GPU processors. Then, cells selected after the archive constitute

the new search space. This process, cell mapping and selection, is iterated until the

desired depth md of the search is reached.

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 37

Algorithm 8 pSCM 2nd version

Require: Total cells tot in the system, the sizes h per dimension and their limits
lim, the depth d of the search, and the maximal depth md.

Ensure: Approximation of the Pareto set and Pareto front of the MOP.
1: cs← ∅
2: if d = md then
3: Store candidate set cs.
4: else
5: Creation of the cell space with boundaries(f ,tot,h,lim)
6: Evolution of the system(f ,tot,h,lim)
7: Analysis of the dynamical system(tot,2)
8: cs← ArchiveUpdateTight2(tot, δ)
9: for all ci ∈ cs do
10: h← h/tot
11: pSCM(f ,tot,h,ci.lim,d+ 1,md)
12: end for
13: end if

3.3.1 Numerical Results

Here we present some numerical results of the 2nd version of pSCM and discuss the

speedup against its sequential counterpart. To measure the approximation quality we

have used the averaged Hausdorff distance ∆2 which is common for the comparison

of different algorithms.

For the problems, we have chosen to take DTLZ [9] benchmark suites for k =

2, . . . , 3. These problems have different characteristics (e.g. concave or disconnected

Pareto front, uni- or multi-modal functions, Pareto front within or at the boundary

of the domain) and are widely used to demonstrate the capability of an algorithm to

compute the entire Pareto front of a given MOP.

In all cases, we have used n = 10 for the dimension of the parameter space. For

the computations, we have used an Alienware Mx17 R4 laptop with 8GB RAM and

the following characteristics: (i) a Nvidia gtx 680M GPU with 1344 CUDA cores and

a 720 MHz processor clock, (ii) an Intel Core i7-3720QM CPU with a clock speed of

2.6 GHz and a maximal turbo frequency of 3.6 GHz.

For the problems with k = 2, Table 3.7 contains the initial parameters of the

Cinvestav Departamento de Computación

38 Chapter 3

Table 3.7: Number of restarts and divisions per coordinate direction for the MOPs
considered in this study.

restarts divisions per coordinate

DTLZ1 5 [3 3 3 3 3 3 3 3 3 3]
DTLZ2 5 [3 3 3 3 3 3 3 3 3 3]
DTLZ3 5 [3 3 3 3 3 3 3 3 3 3]
DTLZ4 5 [3 3 3 3 3 3 3 3 3 3]
DTLZ6 5 [3 3 3 3 3 3 3 3 3 3]
DTLZ7 5 [3 3 3 3 3 3 3 3 3 3]

algorithm. Next, we set the limit to 300 solutions for the archive.

For the problems with k = 3, we used a initial grid of the same size as for k = 2.

We used seven restarts. We set the limit to 500 solutions for the archive.

Figures 3.3, 3.4,3.5 and 3.6 show the results for DTLZ functions for k = 2 and

k = 3 respectively. As we can see from the pictures, in all cases we obtain a fine grain

representation of the Pareto front. This can be confirmed in Table 3.9, which shows

the ∆2 values computed by pSCM. The reference fronts where taken from [4] This

values show that we are able to obtain a good approximation to the real Pareto front

as the values are close to zero.

Table 3.8 shows the speedups of the pSCM compared with SCM for k = 3.

The table shows that we can obtain a speedup close to 10x. As we can see, this

speedup is far from theoretical values described above. This is due to the overhead

associated with transitions between GPU and CPU. Further, it has to be noted that

the evaluation time for each of the chosen academic models is quite low (less than a

millisecond per function evaluation).

In order to increase the cost of our benchmark functions without defining new

ones, we evaluate each function m times in each cell. Since each cell is treated

individually (we upload one cell to the GPU, then we subdivide it and finally we

process it), we can consider the time for one cell and then multiply it by the number

of cells processed. This is valid for both sequential and parallel SCM. Thus, we use

this method to measure the speedups for benchmark functions with additional time

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 39

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

f1

f 2

(a) DTLZ1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

(b) DTLZ2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

(c) DTLZ3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

(d) DTLZ4

Figure 3.3: Pareto fronts of DTLZ functions for k = 2 obtained by pSCM.

Cinvestav Departamento de Computación

40 Chapter 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

(a) DTLZ5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f 2

(b) DTLZ6

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

f1

f 2

(c) DTLZ7

Figure 3.4: Pareto fronts of DTLZ functions for k = 2 obtained by pSCM.

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 41

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.5

f1f2

f 3

(a) DTLZ1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(b) DTLZ2

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(c) DTLZ3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(d) DTLZ4

Figure 3.5: Pareto fronts of DTLZ functions for k = 3 obtained by pSCM.

Cinvestav Departamento de Computación

42 Chapter 3

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(a) DTLZ5

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

f1f2

f 3

(b) DTLZ6

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1

2

3

4

5

6

f1f2

f 3

(c) DTLZ7

Figure 3.6: Pareto fronts of DTLZ functions for k = 3 obtained by pSCM.

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 43

Table 3.8: Comparison times and accelerations of DTLZ functions for k = 3 for
sequential and parallel SCM in milliseconds.

Problem Parallel Serial Acceleration
DTLZ1 257923 3125320 12.1172598023
DTLZ2 255774 3042160 11.8939376168
DTLZ3 258532 3095730 11.9742623737
DTLZ4 178957 2125210 11.8755343462
DTLZ5 100376 1161780 11.5742807046
DTLZ6 251401 2963050 11.7861504131
DTLZ7 217742 2709310 12.4427533503

Table 3.9: Obtained ∆2 values of the approximations obtained by pSCM and the true
Pareto fronts.

Problem k = 2 k = 3
DTLZ1 0.0021 0.0131
DTLZ2 0.0039 0.0254
DTLZ3 0.0039 0.0256
DTLZ4 0.0122 0.0384
DTLZ5 0.0043 0.0024
DTLZ6 0.0041 0.0061
DTLZ7 0.0388 0.0466

cost.

Tables 3.10 and 3.11 shows the total acceleration obtained for k = 2 and k = 3

respectively. The values shown correspond to m = 10, 100 and 1000 (even for

m = 1000 the evaluation time for each function is still much less than one second).

We can see from the acceleration values that as the function cost increases, we can

achieve grater accelerations. This can be seen in Figures 3.7 and 3.8, which show the

acceleration graphics for k = 2 and k = 3 respectively.

Cinvestav Departamento de Computación

44 Chapter 3

Table 3.10: Acceleration of DTLZ functions for k = 2 obtained by pSCM for different
costs of the function evaluation.

Problem
10x 100x 1000x

Parallel Serial Acc Parallel Serial Acc Parallel Serial Acc
DTLZ1 127 1940 15.2755 232 7380 31.8103 1320 63230 47.9015
DTLZ2 122 1910 15.6557 219 6320 28.8584 1180 43680 37.0169
DTLZ3 126 1980 15.7142 251 7650 30.4780 1513 64410 42.5710
DTLZ4 120 1830 15.25 224 7040 31.4285 1255 55790 44.4541
DTLZ5 122 1750 14.3442 217 6180 28.4792 1198 46470 38.7896
DTLZ6 124 2670 21.5322 241 14470 60.0414 1436 138130 96.1908
DTLZ7 131 1410 10.7633 154 1720 11.1688 504 5670 11.25

Table 3.11: Acceleration of DTLZ functions for k = 3 with pSCM for different function
costs.

Problem
10x 100x 1000x

Parallel Serial Acc Parallel Serial Acc Parallel Serial Acc
DTLZ1 143 2120 14.8251 271 7500 27.6752 1524 62050 40.7152
DTLZ2 144 2070 14.375 283 6890 24.3462 1709 56590 33.1129
DTLZ3 148 2290 15.4729 318 8460 26.6037 1987 71360 35.9134
DTLZ4 137 2340 17.0802 292 10670 36.5410 1813 94820 52.3000
DTLZ5 140 1990 14.2142 284 6850 24.1197 1690 54990 32.5384
DTLZ6 145 2750 18.9655 308 14560 47.2727 1901 133400 70.1735
DTLZ7 138 1690 12.2463 212 2590 12.2169 940 9610 10.2234

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 45

0 2000 4000 6000 8000 10000
10

20

30

40

50

60

70

80

90

100

110

Cost of function

A
cc

el
er

at
io

n

dtlz1
dtlz2
dtlz3
dtlz4
dtlz5
dtlz6
dtlz7

Figure 3.7: Acceleration for DTLZ functions for k = 2.

0 2000 4000 6000 8000 10000
10

20

30

40

50

60

70

80

Cost of function

A
cc

el
er

at
io

n

dtlz1
dtlz2
dtlz3
dtlz4
dtlz5
dtlz6
dtlz7

Figure 3.8: Acceleration for DTLZ functions for k = 3.

Cinvestav Departamento de Computación

46 Chapter 3

3.4 Approximate Solutions

After the run of the Algorithm 8, we have computed an approximation of the global

optimal points. If we remove the archive control technique and the dominance check,

we also compute the local optimal points. In this setting, we look for the set of

approximate solutions. Algorithm 8 shows the key elements for this algorithm. This

algorithm works as follows: Starting in the first pSCM iteration, for each candidate

cell we take n samples inside the cell and count how many of those points are non-ε-

dominated (see Algorithm 10). If the count is equal to the number of samples, we add

that box to an archive PQε, otherwise, if the count is bigger than zero, we subdivide

the cell and do the same procedure and add these new cells to the candidate set. The

algorithm finishes when it reaches the number of iterations.

Algorithm 9 ε-Dominance

Require: P : Pareto front of the problem, ε: value of epsilon, y: function evaluation
.

Ensure: True if y is non-ε-dominated.
for all pi ∈ P do

if pi ≺ε ys then
return False

end if
PQε ← ∅

end for
return True

3.4.1 Numerical Results

Next, we show the capabilities of the pSCM to compute not only the global front but

also all the local fronts. We show this on the following problem based on the one

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 47

Algorithm 10 doNSamplings

Require: f : Objective functions, n: number of samplings, lim: cell boundaries, P :
Pareto front .

Ensure: The number of non-ε-dominated elements.
i← 0
c← 0
repeat

x← random point ∈ lim
y ← f(x)
c← c+ ε-dominance(P, ε, y)
i← i+ 1

until i 6= n
return c

proposed in [30]:

F (x) = (f1(x), f2(x)), where:

f1(x) = (x1 − t1(c+ 2a) + a)2 + (x2 − t2b)2 + δt

f2(x) = (x1 − t1(c+ 2a)− a)2 + (x2 − t2b)2 + δt

where

t1 = sgn(x1) min

(⌈
|x1| − a− c/2

2a+ c

⌉
, 1

)
,

t2 = sgn(x2) min

(⌈
|x2| − b/2

b

⌉
, 1

)
,

δt =

 0 for t1 = 0 and t2 = 0

0.01 for t1 = −1 and t2 = 0

(3.2)

We used n = 3, a grid of 3 × 3 × 3 and 4 subdivision steps. Figure 3.9 shows

the result using pSCM, as we can see the method is able to correctly identify all

connected components of the Pareto set.

Further, we present a result of approximate solutions on the following problem

Cinvestav Departamento de Computación

48 Chapter 3

Algorithm 11 getEpsilonDominance

Require: C: main cell of the problem,dd n: number of samples, f : function, i:
iterations, lim: box constraints, P : Pareto front found.

Ensure: PQε, F (PQε)
PQε ← ∅
F (PQε)← ∅
aux← doNSamplings(n, lim, P)
if aux = n then

PQε ← PQε ∪ c.boundaries
F (PQε)← F (PQε) ∪ F (c.boundaries)
return

end if
C.boundaries← load the cells of the first iteration
C.iteration← 0
for all c ∈ C do

if c.iteration = i then
PQε ← PQε ∪ c.boundaries
F (PQε)← F (PQε) ∪ F (c.boundaries)

else
aux← doNSamplings(n, c.boundaries, P)
if aux = n then

PQε ← PQε ∪ c.boundaries
F (PQε)← F (PQε) ∪ F (c.boundaries)

else if aux > 0 then
Csub.boundaries← subdivide cell c and compute boundaries.
Csub.iteration← c.iteration+ 1
C ← C ∪ Csub

end if
end if

end for

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Multi-objective optimization problems 49

−10 −5 0 5 10
−10

−5

0

5

10

x1

x
2

0 0.5 1 1.5
0

0.5

1

1.5

f1

f 2

Figure 3.9: Sett of locally optimal solutions of problem 3.2

proposed in [33]:

F (x) = (f1(x), f2(x)), where:

f1(x) =
n∑
j=1

xj,

f2(x) = 1−
n∏
j=1

(1− wj(xj)),

wj(z) =


0.01 · exp(−(z

20
)2.5) for j = 1, 2

0.01 · exp(− z
15

) for j > 2

(3.3)

As in the previous example, we used a grid of 3 × 3, , 10 test points and 4

subdivision steps, we used ε = [2, 0.0004]T which represents the accepted deterioration

for each objective function. Figure 3.10 shows the result using pSCM. In this case

pSCM is also able to find the set of approximate solutions.

Cinvestav Departamento de Computación

50 Chapter 3

Figure 3.10: Approximate solutions of problem 3.3 with ε = [2, 0.0004]T .
Approximate solutions are shown with red boxes.

Cinvestav Departamento de Computación

Chapter 4

Parallel Simple Cell Mapping for

Parametric Optimization Problems

One special kind of multi-objective optimization problems that has the same

dimensionality problem are the PMOPs, The reason is that the total dimension is

given by the number of dimensions of the problem n and the number of dimensions

of the external parameter λ, the problem is n+ l dimensional in total, and its Pareto

front is a k − 1 + l manifold.

In this chapter we focus on the application of SCM for the treatment of PMOPs.

On Section 4.1 we create our novel algorithm for the treatment of PMOPs,finally,

some numerical results are on Section 4.1.1.

4.1 Parametric pSCM

We can use the idea of family of Pareto fronts and a family of Pareto sets to

solve the PMOPs using pSCM algorithm, in this way, we can create a family of

dynamical systems, which each decision variable is a λi space divided into a given

hλi. The combination of each decision variable generates a l-dimensional hypercube,

i.e. Λ = λ1× . . .×λl. For each vector λ
′ ∈ Λ we create a new function F . Finally, we

solve the new problem using any SCM algorithm. In this way we propose the novel

51

52 Chapter 4

algorithm of Parametric pSCM (see Algorithm 12) described as follows:

Algorithm 12 Parametric pSCM

Require: The objective functions vector F , the external parameter λ, total cells tot
in the system, the sizes h per dimension and their limits lim, the depth d of the
search, and the maximal depth md.

Ensure: Approximation of the family of Pareto sets Ps and the family of Pareto
fronts Pf of the PMOP.

1: Λ← ∅
2: Ps← ∅
3: Pf ← ∅
4: for all λi ∈ λ do
5: Λi ← Division of the λi space in hλi
6: Λ← Λ× Λi

7: end for
8: for all λ

′
j ∈ Λ do

9: Psj, Pfj ← pSCM(Fλ′j
,tot,h,ci.lim,d+ 1,md)

10: Ps← Ps ∪ λ′
j × Psj

11: Pf ← Ps ∪ λ′
j × Pfj

12: end for

Algorithm 12 has two parts; the first part divides each parameter λi into hλi pieces

in order to create a cell division over the λ space. The second part searches for the

global optima using each value of λ
′
j ∈ Λ, this task is perform using a unique function

Fλ′j
. After, we compute each individual problem using Algorithm 7, for each Pareto

front and Pareto set obtained in this way, we perform a Cartesian product using the

corresponding λ
′
j vector, finally we store the resulting points into an archive. At the

end of the second part we will have our approximation of the family of Pareto fronts.

4.1.1 Numerical Results

Here we present some numerical results of the novel Parametric pSCM algorithm. For

the problems, we have chosen to take the bi-objective ones from book[42]. In all cases

we have used for the dimension of the parameter space. For the computations, we have

used an Alienware Mx17 R4 laptop with 8GB RAM and the following characteristics:

(i) a Nvidia gtx 680m GPU with 1344 CUDA cores and a 720 MHz processor clock,

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Parametric Optimization Problems 53

Table 4.1: Number of restarts and divisions per coordinate direction for the MOPs
considered in this study.

restarts divisions per coordinate divisions per lambda parameter

PMOP1 1 [32 32] [30]
PMOP2 1 [32 32] [30]
PMOP3 1 [32 32] [30]
PMOP4 1 [32 32 32] [30]
PMOP5 1 [32 32] [30]

(ii) an Intel Core i7-3720QM CPU with a clock speed of 2.6 GHz and a maximal

turbo frequency of 3.6 GHz. The design parameters of pSCM for each problem can

be found in Table 4.1.

PMOP1

The following problem is highly non-linear in one objective and is defined as follows:

minF : R2 × R→ R2, F = (f1, f2)

f1(x, λ) = λ((x1 − 2)2 + (x2 − 2)2) + (1− λ)((x1 − 2)4 + (x2 − 2)8)

f2(x, λ) = (x1 + 2λ)2 + (x2 + 2λ)2
(4.1)

The result using Ω = [−2, 2]2 and λ = [0, 1] is presented in Figure 4.1.

PMOP3

The following problem has different Pareto fronts given each λ (convex, concave or

both):

Cinvestav Departamento de Computación

54 Chapter 4

(a) family of Pareto fronts (b) family of Pareto sets

Figure 4.1: Result of PpSCM on PMOP1

PMOP2

The following problem has different Pareto fronts given each lambda (convex, concave
or both):

minF : R2 × R→ R2, F = (f1, f2)

f1(x, λ) = 0.5(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 − x2) + λ exp−(x1−x2)2

f2(x, λ) = 0.5(
√

1 + (x1 + x2)2 +
√

1 + (x1 − x2)2 + x1 + x2) + λ exp−(x1−x2)2
(4.2)

The result using x = [−2, 2]2 and λ = [0, 1] is presented in Figure 4.2.

(a) family of Pareto fronts (b) family of Pareto sets

Figure 4.2: Result of PpSCM on PMOP2

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Parametric Optimization Problems 55

(a) family of Pareto fronts (b) family of Pareto sets

Figure 4.3: Result of PpSCM on PMOP3

minF : R2 × R→ R2, F = (f1, f2)

f1(x, λ) =
√

1 + (x2
1) +

√
1 + (x2

2) + exp−(x1−λ)2 + exp−(x2+
√

1+(x22)+λ)2 −x2

f2(x, λ) =
√

1 + (x2
1) +

√
1 + (x2

2) + exp−(x1−λ)2 + exp−(x2+λ)2 +x2

(4.3)

The result using x = [−2, 2]2 and λ = [0, 1] is presented in Figure 4.3.

PMOP4

The following problem has different Pareto fronts given each λ (convex, concave or

both), also is three objective:

Cinvestav Departamento de Computación

56 Chapter 4

(a) family of Pareto fronts (b) family of Pareto sets

Figure 4.4: Result of PpSCM on PMOP4

minF : R2 × R→ R3, F = (f1, f2, f3)

f1(x, λ) =
√

1 + (x2
1) +

√
1 + (x2

2) +
√

1 + (x2
3) + λ exp−(x22−x23) +

√
2x2

f2(x, λ) =
√

1 + (x2
1) +

√
1 + (x2

2) +
√

1 + (x2
3) + λ exp−(x22−x23)−.5

√
2x2 +

√
3

2
x3

f3(x, λ) =
√

1 + x2
1 +

√
1 + x2

2 +
√

1 + x2
3 + λ exp−(x22−x23)−.5

√
2x2 −

√
3

2
x3

(4.4)

The result using x = [−2, 2]3 and λ = [0, 1] is presented in Figure 4.4.

PMOP5

The following problem is a convex problem:

minF : R2 × R→ R2, F = (f1, f2)

f1(x, λ) = (x1 − sin(λ))2 + (x2 − cos(λ))2

f2(x, λ) = (x1 − 2 sin(λ))2 + (x2 − 2 cos(λ))2
(4.5)

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Parametric Optimization Problems 57

(a) family of Pareto fronts (b) family of Pareto sets

Figure 4.5: Result of PpSCM on PMOP5

The result using x = [−2, 2]2 and λ = [0, π] is presented in Figure 4.5.

Cinvestav Departamento de Computación

58 Chapter 4

Cinvestav Departamento de Computación

Chapter 5

Parallel Simple Cell Mapping for

Bilevel Optimization Problems

In this chapter we focus on the treatment of BMOPs. Section 5.1 we create our novel

algorithm for the treatment of BMOPs, some numerical results of BSOPs are Section

5.2 and finally, in Section 5.3, we present some numerical results for different BMOPs.

5.1 Bilevel pSCM

As we mention in Chapter 2, the BMOP’s are a special class of optimization problems,

where the lower level task is a parametric optimization problem. Therefore we can

use the same idea of PpSCM (see Algorithm. 12), it means to use a nested pSCM in

order to solve the lower level optimization task, and control the search over the upper

level using a dominance check over the upper objective function.

Since we have two simultaneous optimization proceses we have to select our

priority task. In Table 5.1 we see that the most important task to find a bilevel

optimum solution is to minimize any point in the lower objective decision vector and

then search for the best values in the upper level objectives.

The BpSCM (see algorithm 13) is as follows: first we create a box over x = xu∪xl
using the box constraints of the problem, then we divide each dimension of the box

59

60 Chapter 5

Table 5.1: Quality of a candidate solution.

Optimum in the lower level Non-optimum in the lower
level

Optimum in the upper
level

The candidate is a Pareto
point, the problem is a
cooperative problem

The candidate is not feasi-
ble

Non-optimum in the
upper level

The candidate is a feasible
point, it could be a Pareto
point

The candidate is not feasi-
ble

into div elements, after that, we perform pSCM on Fl returning a set s of non-

dominated cells, then we perform a dominance check over Fu on s. Finally, we use

those cells to repeat the process until md number of iterations are done.

Algorithm 13 BpSCM

Require: Total cells tot in the system, the sizes h per dimension and their limits lim,
the depth d of the search, the maximal depth md, the upper objectives functions
Fu,the lower objectives functions Fl.

Ensure: Approximation of the Pareto set and Pareto front of the MOP.
1: cs← ∅
2: if d = md then
3: Store candidate set cs.
4: else
5: Psj, Pfj ← pSCM(Fl,tot,h,ci.lim,d+ 1,md)
6: cs← DominanceTest(tot) over Fu
7: for all ci ∈ cs do
8: h← h/tot
9: BpSCM(Fu,Fl,tot,h,ci.lim,d+ 1,md)
10: end for
11: end if

The BpSCM (see algorithm 13) is as follows: first we create a box over x = xu∪xl
using the box constraints of the problem, then we divide each dimension of the box

into div elements, after that, we perform pSCM on Fl returning a set s of non-

dominated cells, then we perform a dominance check over Fu on s, finally, we use

those cells to repeat the process until md number of iterations are done.

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Bilevel Optimization Problems 61

Table 5.2: Number of restarts and divisions per coordinate direction for the BSOPs
considered in this study.

restarts divisions per coordinate xl divisions per coordinate xu

TP9 10 [3 3] [3 3]
TP10 10 [3 3] [3 3]
SMD1 10 [3 3] [3 3]
SMD2 10 [3 3] [3 3]

5.2 Bilevel Single-Objective Optimization

Here we present some numerical results of the novel parallel cell mapping algorithm

for the treatment of BSOPs.

We compare against BLEAQ [38] using the TP benchmark suite [38] and SMD

benchmark suite [39]. In order to make a fair comparison we use the function

evaluations and the quality of the approximation (for upper and lower objective

function). In all cases we have used n = 4 for the dimension of the parameter

space. For the computations, we have used an Alienware Mx17 R4 laptop with 8GB

RAM and the following characteristics: (i) a Nvidia gtx 680m GPU with 1344 CUDA

cores and a 720 MHz processor clock, (ii) an Intel Core i7-3720QM CPU with a clock

speed of 2.6 GHz and a maximal turbo frequency of 3.6 GHz. The design parameters

of pSCM for each problem can be found in Table 5.2.

5.2.1 TP9

This test problem, where the lower level problem is a convex optimization task and the

upper level is convex with respect to upper level variables. The two levels cooperate

with each other.

Table 5.3 presents that our method has the same approximation of the optimum

but we have a significantly less lower level function evaluations.

Cinvestav Departamento de Computación

62 Chapter 5

Table 5.3: TP9 Comparison

Lower FE Upper FE F error f error

BLEAQ
11714 53 0.000058 0.000058 1 0

BpSCM
1782 891 0.000025 0.000025 1 0

Table 5.4: TP10 Comparison

Lower FE Upper FE F error f error

BLEAQ
9600 79 0.000053 0.000053 1 0

BpSCM
1782 891 0.000025 0.000025 1 0

5.2.2 TP10

This test problem has the same properties of TP9.

Table 5.4 shows that our method has the same approximation of the optimum but

we have a significantly less lower level function evaluations.

5.2.3 SMD1

This test problem, where the lower level problem is a convex optimization task and the

upper level is convex with respect to upper level variables. The two level cooperate

with each other.

Table 5.5 shows that our method retrieve a bad solution due to it get stuck in a

local minimum.

Table 5.5: SMD1 Comparison

Lower FE Upper FE F error f error

BLEAQ
12748 217 0.002381 0.002381 0.00009 0.00009

BpSCM
13122 6561 0.69444444 0.69444444 0 0

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Bilevel Optimization Problems 63

Table 5.6: SMD2 Comparison

Lower FE Upper FE F error f error

BLEAQ
4066 167 -0.011068 0.011068 0.026473 0.026473

BpSCM
1782 891 -0.096817 0.096817 0.096817 0.096817

5.2.4 SMD2

This test problem is similar to the SMD1. How ever, there is a conflict between the

upper level and lower level optimization task. Since the two levels are in conflict,

a non-optimum lower level solution may lead to a better upper level function value

than the true optimum for the bilevel problem.

Table 5.6 presents that our method have an average performance due to it get

stuck in a local minima, but it can handle problems with conflict between both levels.

5.3 Bilevel Multi-Objective Optimization

Here we present some numerical results of the BpSCM for the treatment of

BMOPs.We use the DS-benchmark [8]. In order to make a fair comparison we us

the function evaluations and ∆2 of the approximation (for upper objective). For DS1

function we use k = 1 and k = 5 and for DS2 we use k = 1 and k = 3 (each problem

are 2k-dimensional). For the computations, we have used an Alienware Mx17 R4

laptop with 8GB RAM and the following characteristics: (i) a Nvidia gtx 680m GPU

with 1344 CUDA cores and a 720 MHz processor clock, (ii) an Intel Core i7-3720QM

CPU with a clock speed of 2.6 GHz and a maximal turbo frequency of 3.6 GHz. The

design parameters of BpSCM for each problem can be found in Table 5.7.

Cinvestav Departamento de Computación

64 Chapter 5

Table 5.7: Number of restarts and divisions per coordinate direction for the BMOPs
considered in this study.

restarts divisions per coordinate xl divisions per coordinate xu

DS1k = 1 5 [3] [3]
DS1k = 5 5 [3 3 3 3 3] [3 3 3 3 3]
DS2k = 1 5 [3] [3]
DS2k = 3 4 [3 3 3] [3 3 3]

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

fu1

f u
2

(a) DS1 k = 1

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

fu1

f u
2

(b) DS1 k = 5

Figure 5.1: Results of BpSCM on DS1 problem.

5.3.1 DS1

This problem has 2k variables with k real-valued variables each for lower and upper

levels. Lower level problem has multi-modalities. We use r = 0.1, α = 1, γ = 1 and

τ = 1.

Figure 5.1 shows the final approximation of the BpSCM, we present in Table 5.8

and 5.9 the results of the approximation, we can see that BpSCM solves the problem,

but even with the subdivision techniques, when the number of dimensions increases,

the algorithm becomes too expensive.

Cinvestav Departamento de Computación

Parallel Simple Cell Mapping for Bilevel Optimization Problems 65

Table 5.8: DS1 Comparison with k = 1

Lower FE Upper FE Upper level ∆p

BpSCM
52182 26091 0.00039997

Table 5.9: DS1 Comparison with k = 5

Lower FE Upper FE Upper level ∆p

BpSCM
684614106 342307053 0.00046061

5.3.2 DS2

The next problem uses the φU parametric function, which causes a few discrete values

of y1 to determine the upper level Pareto optimal front.

Figure 5.2 shows the final approximation of the BpSCM, we present in Table 5.10

and 5.11 the results of the approximation, we can see that BpSCM solve the problem,

but even with the subdivision techniques when we increase the number of dimensions

the algorithm becomes too expensive, even more, in this problem in particular, each

iteration of the algorithm return too many candidate cells.

Table 5.10: DS2 Comparison with k = 1

Lower FE Upper FE Upper level ∆p

BpSCM
659916 329958 0.0096

Cinvestav Departamento de Computación

66 Chapter 5

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

fu1

f u
2

(a) DS2 k = 1

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

fu1

f u
2

(b) DS2 k = 5

Figure 5.2: Results of BpSCM on DS2 problem.

Table 5.11: DS2 Comparison with k = 3

Lower FE Upper FE Upper level ∆p

BpSCM
178800858 89400429 0.0233

Cinvestav Departamento de Computación

Chapter 6

Real World Application: Rotary

Flexible Joint Module

Full state feedback control is an important part of the modern control theory [3].

Because of its vast applications in industries, there have been many studies to develop

design or tuning techniques of the control. The well-known linear quadratic regulator

(LQR) is the most popular optimal controller design in the modern control theory [2].

Since feedback controls are often designed to meet multiple and possibly conflicting

performance goals, comprehensive studies are usually carried out to tune control gains

in order to achieve the best overall performance [5, 41]. In the last three decades there

have been a large number of publications on multi-objective optimal design of feedback

controls, but few of those are related to bilevel optimization. In each level there is

a multi-objective optimal control design that can be carried out in time domain or

frequency domain. Time domain approach uses the time domain specifications of

the closed-loop response as the objective functions such as overshoot, peak time,

settling time and tracking error [21]. On the other hand, frequency domain design

uses phase and gain margins as the objectives, and can consider robust issues such as

model uncertainty, load disturbance and measure noise. Multi-objective optimization

with robustness often involves the optimization among several norms. Vroemen and

Jager reviewed the multi-objective design of robust controls for linear systems [40]. A

67

68 Chapter 6

Figure 6.1: Rotary Flexible Joint module

normal Rotary Flexible Joint module (see Figure 6.1) consists of a free arm attached

to two identical springs. The springs are mounted to an aluminum chassis which is

fastened to the Rotary Servo Base Unit load gear. The module attaches to a DC

motor on the Servo Base Unit that rotates a beam mounted on a flexible joint. The

full state feedback tracking control of this module has been studied [28], in which the

best tracking response of the system according to the time domain specifications.

If we want to suppress the vibration of the beam via a DC motor, the system

can not be solved by a multi-objective optimization,instead, a bilevel formulation is

possible.

6.1 The Design of the Problem

Feedback controls are often designed to achieve the best tracking response of the

system according to the time domain specifications such as the peak time, settling

time, overshoot and steady-state tracking error. The state vector describing the

system dynamics is given as x = (θ, α, θ̇, α̇), where θ is the angle of the base and α

is the relative angle of the flexible arm with respect to the base. The control goal is

to let θ follow a given command while keeping the vibration of α minimal. the state

equation for this system has the following form:

Cinvestav Departamento de Computación

Real World Application: Rotary Flexible Joint Module 69

ẋ(t) = Ax(t) + Bu(t), (6.1)

where the state matrices are given by

A =


0 0 1 0

0 0 0 1

0 628.5625 −40.4033 0

0 −1024.7473 40.4033 0

 ,B = [0, 0, 61.7567,−61.7567]T . (6.2)

To achieve tracking control, we need to augment the original dynamic system by

introducing an additional state variable xi =
∫ t

0
(θ − θd) ds. The state equation for

the augmented system can be written as

ẋe(t) = Aexe(t) + Beu(t) + Geθd(t), (6.3)

where

xe(t) =
[
xT , xTi

]
is the augmented state vector.

Ae,Be and Ge are given as

Ae =

 A 0

e 0

 ,Be =

 B

0

 ,Ge =

 0

−1

 , (6.4)

where e = [1, 0, 0, 0]T .

The full state feedback control for the augmented system is given as

u(t) = −kexe(t) + kp,θθd(t), (6.5)

where

ke = −[kp,θ, kd,θ, ki,θ, kp,α, kd,α]. (6.6)

The performance indices to be minimized are the overshoot Mp, settling time ts,θ

Cinvestav Departamento de Computación

70 Chapter 6

Table 6.1: Number of restarts and divisions per coordinate direction for the problem.

restarts divisions per coordinate xl divisions per coordinate xu

TP9 7 [2 2 2] [2 2 2 2]

and absolute integrated error eIAE of θ. The control objectives of θ are selected to

optimize the tracking control as the upper level. In order to suppress the unwanted

vibration of α, the maximum absolute response of α, denoted as max |α|, and the

settling time of ts,α are considered as the lower level. All theses objectives serve the

control mission that θ follows the given command and α oscillates as little as possible.

The final formulation of this control design can be stated as

min
θ,α
{Mp, ts,θ, eIAE}

subject to

α ∈ argmin{max |α| , ts,α}.

(6.7)

6.2 Numerical Results

Here we present the result of BpSCM, using the parameters shown in Table 6.1. For

the computations, we have used an Alienware Mx17 R4 laptop with 8GB RAM and

the following characteristics: (i) a Nvidia gtx 680m GPU with 1344 CUDA cores and

a 720 MHz processor clock, (ii) an Intel Core i7-3720QM CPU with a clock speed of

2.6 GHz and a maximal turbo frequency of 3.6 GHz.

Figure 6.2 shows the upper and lower Pareto front obtained by BpSCM, the lower

Pareto front contains the points of the families of the Pareto sets that are non-

dominated in the upper level. In Figure 6.3 we can see the competitive nature of

the problem since if we move faster to reach the desired displacement, it will take

more settle time, and also the vibration of the beam will be easily controlled by the

actuator, but in the other hand, if we want a soft movement, the actuator will work

more making the beam unstable.

Cinvestav Departamento de Computación

Real World Application: Rotary Flexible Joint Module 71

0

0.5

1

0

5

10
0.03

0.035

0.04

0.045

0.05

0.055

t
s,θ

M
p

e IA
E

(a) UF

0 2 4 6 8
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

α

t s,
α

(b) BP3

Figure 6.2: Upper and lower Pareto front of the problem

0 0.5 1 1.5 2
0

5

10

15

20

25

time

θ
(d
eg
re
e)

Worst according 1st objective
Worst according 2nd objective
Worst according 3rd objective
knee point

(a) UF

0 0.5 1 1.5 2
−6

−4

−2

0

2

4

time

α
(d
eg
re
e)

Worst according 1st objective
Worst according 2nd objective
Worst according 3rd objective
knee point

(b) BP3

Figure 6.3: Numerical simulations of θ and α responses under Pareto optimal controls.

Cinvestav Departamento de Computación

72 Chapter 6

Cinvestav Departamento de Computación

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The main goal of this thesis has been to design set oriented methods for the numerical

treatment of bilevel optimization problems. The proposed approach was to adapt the

simple cell mapping method to this context. In Chapter 5 we have proposed BpSCM,

which is a modification of pSCM algorithm, this algorithm is highly parallelizable.

The numerical results show that BpSCM is competitive on low dimensional problems

against a well known state of the art algorithm, and that a reasonable amount of

function evaluations can be expected if the problem is small.

We have proposed parallel SCM in Chapter 3, it is a parallel implementation of

the cell mapping technique for the approximation of the Pareto set/front of a given

multi-objective optimization problem. Due to the data dependency of its two most

costly tasks (creation of the cell space and evolution of the system), we have chosen

a data parallelism approach. The implementation has been designed for the use of

GPUs which allows the use of a large number of cores on a relatively small and cheap

computer. Further, we proposed an upgrade of this algorithm, it is called pSCM

algorithm. This algorithm uses subdivision techniques along archive techniques in

order to reduce the number of cells inside of the cell space, in this way, larger problems

can be solved.

73

74 Chapter 7

We proposed PpSCM algorithm for the treatment of parametric optimization

problems in Chapter 4, this algorithm can handle the problems proposed as test,

but, the same dimensional problem appears when the dimensions of the external

parameter increases, leading it to a work overflow on the CPU.

In Chapter 6 we give numerical evidence, which indicates that the BpSCM can

be used to solve real world applications such as control design where a function

evaluation take some seconds to be computed, the main reason is BpSCM is based on

cell mapping techniques, and have its advantages like its global view of the problem

and its highly parallelizable structure.

7.2 Future Work

One of the opportunities with the current algorithm is to improve the multimodality

handling, since it is possible to find a candidate cell that dominates another candidate

cell that contains the Pareto set, and it is possible that the algorithms get stuck in

local minima points.

Further, it is expected that the constraint handling techniques have to be improved

such as the additional consideration of equality constraints. Finally, we intend to

apply the parallel algorithm to other problems such as constrained multi-objective

optimization, and constrained bilevel optimization where the cell mapping ansatz will

be advantageous.

In this thesis we proposed the use of cell mapping techniques along with

subdivision techniques in order to handle more dimensions, but, it is possible to

use different approaches to do this task, we propose, as a future work, the use

of cell mapping techniques with evolutionary algorithms, in order to eliminate the

dimensionality problems and still have the global view of the two approaches.

Cinvestav Departamento de Computación

Bibliography

[1] Jonathan F. Bard. Practical Bilevel Optimization: Algorithms and Applications.

Klugwer Academic Publishers, USA, 1st edition, 1999.

[2] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos.

The explicit linear quadratic regulator for constrained systems. Automatica,

38(1):3–20, 2002.

[3] Zdzislaw Bubnicki. Modern control theory, volume 422. Springer, 2005.

[4] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, New York, second

edition, September 2007. ISBN 978-0-387-33254-3.

[5] P Cominos and N Munro. PID controllers: Recent tuning methods and design to

specification. IEE Proceedings-Control Theory and Applications, 149(1):46–53,

2002.

[6] L. G. Crespo and J. Q. Sun. Stochastic optimal control of nonlinear dynamic

systems via Bellman’s principle and cell mapping. Automatica, 39(12):2109–2114,

Summer 2003.

[7] Kalyanmoy Deb and Ankur Sinha. Constructing test problems for bilevel

evolutionary multi-objective optimization. In Evolutionary Computation, 2009.

CEC’09. IEEE Congress on, pages 1153–1160. IEEE, 2009.

75

76 BIBLIOGRAPHY

[8] Kalyanmoy Deb and Ankur Sinha. An efficient and accurate solution

methodology for bilevel multi-objective programming problems using a hybrid

evolutionary-local-search algorithm. Evolutionary computation, 18(3):403–449,

fall 2010.

[9] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable

test problems for evolutionary multiobjective optimization. Springer, USA, 1st

edition, 2005.

[10] Michael Dellnitz, Oliver Schütze, and Thorsten Hestermeyer. Covering Pareto

sets by multilevel subdivision techniques. Journal of Optimization Theory and

Applications, 124(1):113–136, January 2005.

[11] Jesús Fernández Cruz, Oliver Schütze, Jian-Qiao Sun, and Fu-Rui Xiong. Parallel

cell mapping for unconstrained multi-objective optimization problems. In

Alexandru-Adrian Tantar, Emilia Tantar, Jian-Qiao Sun, Wei Zhang, Qian Ding,

Oliver Schütze, Michael Emmerich, Pierrick Legrand, Pierre Del Moral, and

Carlos A. Coello Coello, editors, EVOLVE - A Bridge between Probability, Set

Oriented Numerics, and Evolutionary Computation V, volume 288 of Advances

in Intelligent Systems and Computing, pages 133–146. Springer International

Publishing, 2014.

[12] Jesús Fernández Cruz, Oliver Schütze, Jian-Qiao Sun, and Fu-Rui Xiong. Simple

cell mapping for multi-objective bi-level optimization problems. In Alexandru-

Adrian Tantar, Emilia Tantar, Jian-Qiao Sun, Wei Zhang, Qian Ding, Oliver

Schütze, Michael Emmerich, Pierrick Legrand, Pierre Del Moral, and Carlos A.

Coello Coello, editors, Extended Abstracts Collection—–EVOLVE - A Bridge

between Probability, Set Oriented Numerics, and Evolutionary Computation

V, volume 288 of Advances in Intelligent Systems and Computing. Springer

International Publishing, 2014.

Cinvestav Departamento de Computación

BIBLIOGRAPHY 77

[13] Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria

optimization. Mathematical Methods of Operations Research, 51(3):479–494,

2000.

[14] Abhishek Gupta, Piaras Kelly, Matthias Ehrgott, and Simon Bickerton. Apply-

ing bi-level multi-objective evolutionary algorithms for optimizing composites

manufacturing processes. In Evolutionary Multi-Criterion Optimization, pages

615–627. Springer, 2013.

[15] Carlos Hernández, Yousef Naranjani, Yousef Sardahi, Wei Liang, Oliver Schütze,

and Jian-Qiao Sun. Simple cell mapping method for multi-objective optimal

feedback control design. International Journal of Dynamics and Control,

1(3):231–238, 2013.

[16] Carlos Hernández, Jian-Qiao Sun, and Oliver Schütze. Computing the set of

approximate solutions of a multi-objective optimization problem by means of

cell mapping techniques. In Michael Emmerich, Andre Deutz, Oliver Schütze,

Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre Del Moral,

Pierrick Legrand, Pascal Bouvry, and Carlos A. Coello, editors, EVOLVE

– A Bridge between Probability, Set Oriented Numerics and Evolutionary

Computation IV, pages 171–188. Springer, 2013.

[17] Carlos Ignacio Hernández Castellanos. Cell-to-Cell mapping for Global Multi-

Objective Optimization. Master’s thesis, Departamento de Computación,

CINVESTAV, México, 2003.

[18] C.S. Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear

systems. Applied mathematical sciences. Springer-Verlag, USA, 1st edition, 1987.

[19] Johannes Jahn. Multiobjective search algorithm with subdivision technique.

Computational Optimization and Applications, 35(2):161–175, October 2006.

Cinvestav Departamento de Computación

78 BIBLIOGRAPHY

[20] Timoleon Kipouros. Stochastic optimisation in computational engineering

design. In Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar,

Emilia Tantar, Pascal Bouvry, Pierre Del Moral, and Pierrick Legrand,

editors, EVOLVE - A Bridge between Probability, Set Oriented Numerics, and

Evolutionary Computation II, volume 175 of Advances in Intelligent Systems and

Computing, pages 475–490. Springer Berlin Heidelberg, 2013.

[21] C Agees Kumar and N Kesavan Nair. Multi-objective PI controller design

with an application to speed control of permanent magnet dc motor drives.

In Signal Processing, Communication, Computing and Networking Technologies

(ICSCCN), 2011 International Conference on, pages 424–429. IEEE, 2011.

[22] Rajeev Kumar and Peter Rockett. Improved sampling of the pareto-front

in multiobjective genetic optimizations by steady-state evolution: a pareto

converging genetic algorithm. Evolutionary computation, 10(3):283–314, 2002.

[23] Adriana Lara López. Using Gradient Based Information to build Hybrid Multi-

objective Evolutionary Algorithms. PhD thesis, Departamento de Computacion,

CINVESTAV, 2013.

[24] Yousef Naranjani, Carlos Hernández, Fu-Rui Xiong, Oliver Schütze, and Jian-

Qiao Sun. A hybrid algorithm for the simple cell mapping method in multi-

objective optimization. In M. Emmerich et al., editor, EVOLVE – A Bridge

between Probability, Set Oriented Numerics and Evolutionary Computation IV,

pages 207–223. Springer, 2013.

[25] Yousef Naranjani, Yousef Sardahi, Jesús Fernández Cruz, Oliver Schütze, Jian-

Qiao Sun, and Fu-Rui Xiong. A simple cell mapping and genetic algorithm

hybrid method for multi-objective optimization problems. In Alexandru-

Adrian Tantar, Emilia Tantar, Jian-Qiao Sun, Wei Zhang, Qian Ding, Oliver

Schütze, Michael Emmerich, Pierrick Legrand, Pierre Del Moral, and Carlos A.

Coello Coello, editors, Extended Abstracts Collection—–EVOLVE - A Bridge

Cinvestav Departamento de Computación

BIBLIOGRAPHY 79

between Probability, Set Oriented Numerics, and Evolutionary Computation

V, volume 288 of Advances in Intelligent Systems and Computing. Springer

International Publishing, 2014.

[26] JohnM. Oliver, Timoleon Kipouros, and A.Mark Savill. A self-adaptive

genetic algorithm applied to multi-objective optimization of an airfoil. In

Michael Emmerich, Andre Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar,

Alexandru-Adrian Tantar, Pierre Del Moral, Pierrick Legrand, Pascal Bouvry,

and Carlos A. Coello, editors, EVOLVE - A Bridge between Probability, Set

Oriented Numerics, and Evolutionary Computation IV, volume 227 of Advances

in Intelligent Systems and Computing, pages 261–276. Springer International

Publishing, 2013.

[27] Zhi-Chang Qin, Fu-Rui Xiong, Carlos Hernandez, Jesus Fernandez, Qian Ding,

Oliver Schuetze, and Jian-Qiao Sun. Multi-objective optimal design of slide mode

control with parallel simple cell mapping method, 2014.

[28] Zhi-Chang Qin, Shun Zhong, and Jian-Qiao Sun. Sliding mode control

experiments of uncertain dynamical systems with time delay. Communications

in Nonlinear Science and Numerical Simulation, 18(12):3558–3566, 2013.

[29] Thomas Rauber and Gudla Rünger. Parallel Programming For Multicore and

Cluster Systems. Springer-Lehrbuch. Springer-Verlag, Germany, 2nd edition,

2007.

[30] Günter Rudolph, Boris Naujoks, and Mike Preuss. Capabilities of EMOA to

detect and preserve equivalent Pareto subsets. In Evolutionary Multi-Criterion

Optimization, pages 36–50. Springer, 2007.

[31] S. Ruuska and K. Miettinen. Constructing evolutionary algorithms for bilevel

multiobjective optimization. In Evolutionary Computation (CEC), 2012 IEEE

Congress on, pages 1–7. IEEE, June 2012.

Cinvestav Departamento de Computación

80 BIBLIOGRAPHY

[32] Stefan Schäffler, Reinhart Schultz, and Klaus Weinzierl. Stochastic method

for the solution of unconstrained vector optimization problems. Journal of

Optimization Theory and Applications, 114(1):209–222, July 2002.

[33] Stefan Schäffler, Reinhart Schultz, and Klaus Weinzierl. Stochastic method

for the solution of unconstrained vector optimization problems. Journal of

Optimization Theory and Applications, 114(1):209–222, 2002.

[34] O Schütze, Xavier Esquivel, Adriana Lara, and Carlos A Coello Coello. Using

the averaged Hausdorff distance as a performance measure in evolutionary

multiobjective optimization. Evolutionary Computation, IEEE Transactions on,

16(4):504–522, August 2012.

[35] O Schütze, M. Laumanns, E. Tantar, C. A. Coello Coello, and E. Talbi.

Computing gap free Pareto front approximations with stochastic search

algorithms. Evolutionary Computation, 18(1):65–96, 2010.

[36] Oliver Schütze, Adriana Lara, and Carlos A. Coello. The directed search method

for unconstrained multi-objective optimization problems. Technical Report

COA-R1, CINVESTAV-IPN, 2010.

[37] Oliver Schütze, Massimiliano Vasile, Oliver Junge, Michael Dellnitz, and Dario

Izzo. Designing optimal low-thrust gravity-assist trajectories using space pruning

and a multi-objective approach. Engineering Optimization, 41(2):155–181,

January 2009.

[38] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Efficient evolutionary algorithm

for single-objective bilevel optimization. arXiv preprint arXiv:1303.3901,

abs/1303.3901, October 2013.

[39] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. Test problem construction for

single-objective bilevel optimization. Evolutionary computation, June 2013.

Cinvestav Departamento de Computación

BIBLIOGRAPHY 81

[40] Bas Vroemen and Bram de Jager. Multiobjective control: An overview. In

Decision and Control, 1997., Proceedings of the 36th IEEE Conference on,

volume 1, pages 440–445. IEEE, 1997.

[41] Qing-Guo Wang, Tong-Heng Lee, Ho-Wang Fung, Qiang Bi, and Yu Zhang.

PID tuning for improved performance. Control Systems Technology, IEEE

Transactions on, 7(4):457–465, 1999.

[42] K. Witting. Numerical Algorithms for the Treatment of Parametric Multiob-

jective Optimization Problems and Applications. PhD thesis, Paderborn, Univ.,

Diss., 2012.

[43] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of multiob-

jective evolutionary algorithms: Empirical results. Evolutionary computation,

8(2):173–195, summer 2000.

Cinvestav Departamento de Computación

	Resumen
	Abstract
	Agradecimientos
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	 Motivation
	The Problem
	Objectives
	General Objective
	Particular Objectives

	Contributions
	Organization of the thesis

	Background and Related Work
	Optimization
	Multi-objective Optimization
	Pareto Optimality
	Parameter dependant Multi-objective Optimization
	Bilevel Optimization
	Pareto Optimality

	Parallel Computing
	Cell Mapping Techniques
	Evolutionary algorithms
	Descent directions

	Parallel Simple Cell Mapping for Multi-objective optimization problems
	Parallel Simple Cell Mapping
	Numerical Results

	Parallel Subdivision Simple Cell Mapping
	Numerical Results

	Cell Control
	Numerical Results

	Approximate Solutions
	Numerical Results

	Parallel Simple Cell Mapping for Parametric Optimization Problems
	Parametric pSCM
	Numerical Results

	Parallel Simple Cell Mapping for Bilevel Optimization Problems
	Bilevel pSCM
	Bilevel Single-Objective Optimization
	TP9
	TP10
	SMD1
	SMD2

	Bilevel Multi-Objective Optimization
	DS1
	DS2

	Real World Application: Rotary Flexible Joint Module
	The Design of the Problem
	Numerical Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

