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Resumen

En un gran número de aplicaciones prácticas se requiere la optimización simultánea
de varios objetivos. Dado que los criterios a optimizar suelen ser contradictorios, no
resulta sorprendente que estos problemas posean un conjunto de soluciones (denom-
inado conjunto de Pareto) en lugar de un óptimo absoluto. Además, bajo ciertas
condiciones se tiene que dicho conjunto es t́ıpicamente un objeto suave (similar a una
superficie o sólido). Por consiguiente, a fin de facilitar la toma de decisiones, nuestra
meta es obtener una representación finita del conjunto de Pareto. Alternativamente,
se podŕıa restringir la búsqueda a una zona espećıfica en situaciones en las que el
conjunto de interés sea excesivamente grande.

En esta tesis se propone un nuevo método predictor corrector para resolver pro-
blemas de optimización multi-objetivo mediante técnicas de continuación. El algo-
ritmo, denominado Pareto Tracer, fue diseñado para trazar la curva (u objeto dimen-
sional) de soluciones de Pareto (locales) en problemas con un número arbitrario de
objetivos. Adicionalmente, Pareto Tracer es capaz de lidiar con restricciones tanto
de caja como de igualdad mediante una modificación del método de Newton uti-
lizado como corrector. Se proponen además dos variantes basadas respectivamente
en métodos quasi-Newton y de gradiente descendente que no requieren el uso de segun-
das derivadas. El desempeño de la nueva propuesta se discute primero teóricamente
y luego se evalúa en varios ejemplos de prueba.
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Abstract

In many real-world applications, the problem arises that several objectives have to
be optimized concurrently leading to a multi-objective optimization problem. Since
these goals are typically contradictory, it comes as no surprise that the solution set—
the so-called Pareto set—of such problems does (in general) not consist of one single
solution. Moreover, under some mild conditions, this set is typically a smooth man-
ifold (like a surface or solid). For the decision maker it is hence desired to obtain a
suitable finite size representation of the optimal set, or to explore (locally) the possi-
bilities around a given solution in situations where the entire Pareto set is too large.

In this thesis, we devise a novel predictor corrector method to address multi-
objective optimization problems by continuation. The algorithm, Pareto Tracer, is
capable to trace the manifold of (local) Pareto solutions of a problem with in principle
any number of objectives. Our proposal can cope with box and equality constraints
for which a Newton-like method was designed to deal with restrictions. Furthermore,
two Hessian-free realizations of the Pareto Tracer were developed based respectively
on quasi-Newton and gradient descent approaches. We discuss the algorithm first
theoretically and demonstrate further on its strength on several examples.
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y experiencia en el área y por mostrarme el apasionante mundo de la investigación
cient́ıfica se ha ganado mi lealtad y total admiración.

Le agradezco eternamente a mi familia por creer en mı́ y apoyarme incondicional-
mente. A mis padres Olguita y Amauris por todo su cariño. A mi hermana Anabel
cuya fortaleza es mi fuente de inspiración y a mi sobrina Alejandra por todo su amor
y por ser una niña maravillosa.
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de puntualidad. A mis sinodales, el Dr. Luis Gerardo de la Fraga y el Dr. Francisco
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Chapter 1

Introduction

In many situations in everyday life, we face the problem that we want to optimize
certain quantity. In business applications, for instance, it would be desirable to min-
imize costs and to maximize profits, while transportation management systems call
for the minimization of distances or travel times. Basically, we can understand op-
timization as the process of selecting the best choice (with regard to some criteria)
among a set of possible alternatives. However, together with this elementary notion
of optimization, the question arises of what we consider to be the best choice. In
a typical scenario, but not necessarily indicative for all situations, we have a single
goal in mind. Think, for instance, of situations where we need the cheapest sup-
plier of some service or the fastest way to reach a specific location. The solutions to
these problems can be described quantitatively in terms of price and time, respec-
tively. Thus, we can establish an ordering between the available choices to select the
best option, which is, accordingly to the last examples, the supplier with the lowest
price or the travel plan that takes you to your destiny in the minimum amount of time.

A less intuitive scenario, nevertheless present in a great variety of applications,
is when several objectives have to be optimized concurrently. As a general example,
two common goals in product design are certainly to maximize the quality of the
product and to minimize its cost. Undoubtedly, high quality designs will be very at-
tractive to the customers. However, producing such nice models may increase the cost
per unit which goes along with fewer profits for the manufacturer, or alternatively,
the necessity to launch expensive products to the market. The last choice, on the
other hand, may lead several clients to reconsider its initial best and look for more
accessible options. A decision that, in the end, will be translated again in less benefits.

It is thereby mandatory that we arrive at a consensus over the meaning of an
optimal solution according to more than one objective. For this purpose, we employ
the notion of Pareto efficiency or Pareto optimality1, which states that a solution be-
comes better if at least one of its goals is improved while the others do not get worse.

1Named after the work of Vilfredo Pareto (1848-1923) in [1].
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Figure 1.1: Fictitious curve of non-dominated solutions of the well-known problem
‘quality versus cost’.

This term is also known as Pareto dominance. We will get deeper into this concept
in the next chapters, but for now it is good enough to think of an optimal solution as
one that is non-dominated (non-improved) by any other. Moreover, since our goals
are typically contradictory, it comes as no surprise that the solution set, the so called
Pareto set, respectively its image, the Pareto front, does in general not consist of one
single solution. To make it clear, we go back to our last example where the optimal
product designs are those which cannot improve its quality without spending more
money. Figure 1.1 shows a fictitious curve2 of non-dominated points, i.e, each point
on the curve represents an optimal solution in objective space. From the picture, it
is easy to see that choosing the design A is not a good idea: we can save money by
taking B which is a model of the same quality, or alternatively, if we choose C, we
end up with a higher quality product by spending the same amount of money. We
cannot, however, decide between B and C: we will obviously prefer C, but may be
unwilling to pay that much money.

Pareto efficiency is therefore a practical criterion for evaluating our possibilities:
an outcome that is not Pareto optimal can be potentially improved thus should be
avoided. Hence, our task is to restrict the attention to the set of non-dominated
choices. Then, a specialized designer can make tradeoffs within this set, rather than
considering the full range of possibilities.

2We will see later in this thesis that under certain smoothness assumptions, the solution set of a
problem like this forms—at least locally—a curve.
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1.1 Motivation

Multi-objective optimization methods3 have been finding ever wider use in differ-
ent areas of science, engineering, industry, or economics, and are an essential tool
in practical scenarios of decision making. Several strategies in this field have been
proposed and tested over the past decades. There are, for instance, scalarization
methods [2, 3, 4, 5, 6, 7] that transform (by parametrization) the original multi-
objective problem into a classical single-objective one. By choosing a clever sequence
of parameters, a suitable finite size approximation of the entire Pareto set can be
obtained. However, a remarkable drawback of this scheme lies in the selection of such
a convenient sequence of parameters. Further, there exist many set oriented methods
such as specialized evolutionary strategies [8, 9, 10], subdivision techniques [11, 12],
or cell mapping techniques [13, 14]. These methods have in common that they use
sets in an iterative manner and are thus able to deliver an approximation of the so-
lution set in one run of the algorithm. The limitation here, though, has a lot to do
with the efficiency. Evolutionary algorithms, on one side, can be seen as stochastic
global search methods inspired by genetics and natural selection, but are well-known
by its relatively slow converge rates. Besides, the optimality of the solutions can be
guaranteed only in a probabilistic sense. Subdivision or cell mapping techniques, on
the other side, are typically computationally expensive. Although, they have a global
scope and are well suited for parallelization [15]. Another group encloses the descent
direction methods [16, 17, 18, 19, 20, 21] that are generally fast local convergent al-
gorithms focused in finding only one optimal point. Thus, not surprisingly, some of
them are hybridized with a set oriented approach in the hope to gather the best of
both worlds (see [11, 22, 23, 24, 25, 26]). Finally, the methods based on continuation
strategies [27, 28, 29, 20, 30, 31, 32] exploit the fact that, under some mild condi-
tions, the Pareto set/front is typically a smooth object (like a surface or solid), so
these procedures can be applied to detect further solutions in the neighborhood of
a given optimal point. Literally, the idea here is to follow the curve (or manifold4)
of Pareto points which turns to be a very efficient manner to detect large connected
portions of the solution set. These methods are also of local nature, implying that
we can get trapped in local optima or miss sections of the Pareto set if it is not
connected. Thus, the necessity to combine local schemes with global strategies arises
once again in this context. Some examples are given in [33, 34, 35, 36, 22, 23].

We are not, yet, concerned with any hybridization technique. Rather, we pre-
fer to focus first on local continuation methods, where our main motivation—apart
of the given outline—is that most of the current designs are either limited to bi-

3We refer here to continuous optimization, i.e., all the functions involved (objectives as well as
constraints) are continuously differentiable.

4We will utilize the term ‘manifold’ for objects of any dimensions.
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objective problems, or they completely exclude second-order information. This ex-
clusion, though apparently convenient, directly attempts against the speed of conver-
gence of the method. The single exception is the approach proposed by Hillermeier in
[28]. However, as we will see later on, the efficiency of this method (at least in terms
of function evaluations) can be improved as well as the quality of its output (this
time in terms of the distribution of solutions in objective space). Besides, the latter
procedure was not designed to work with inequality constraints and requires the exact
second derivatives of the problem. Even when we already know that this knowledge
leads to better convergence rates, many real-world applications may have no access
to that kind of data. It is therefore one more challenge to provide a continuation
algorithm capable to (efficiently) approximate second-order information. To the best
of our knowledge, no such a strategy already exists in the context of multi-objective
continuation.5 On the other hand, descent direction methods are also part of our tar-
gets since local searches are widely used by continuation schemes. A Newton method
for multi-objective problems has been designed by Fliege et al. in [16] that uses sec-
ond derivatives. Recently, a quasi-Newton approach was suggested in [17] capable to
approximate this information by means of successive BFGS updates. Other gradient-
based approaches have been proposed in the literature as described in [18, 19, 20, 21].
However, almost none of these can deal with constraints. The exceptions are the one
given in [21] that works exclusively with box constrained problems, and the multi-
objective steepest descent method of Fliege and Svaiter [18] which manages general
inequalities.

1.2 The Problem

Our primary goal, in this thesis work, is to trace the manifold of optimal solutions of
a given continuous multi-objective problem. We will consider as well situations that
may be subject to equality and/or inequality constraints. More specifically, given an
initial efficient point of the problem in hand, the task is to explore the surrounding
neighborhood in order to find further solutions. We will continue this process in
an iterative manner until our set of solutions evolves to a suitable discretization of
one connected component of the Pareto set/front. By suitable discretization of the
solution set, we understand here one that resembles an even distribution of points
in objective space. The theory and tools provided by this research are all of local
nature, so we will assume that the starting point is sufficiently close or belongs to
the set of interest. In addition, we will only consider problems with one connected
optimal set. A global approach for our methods is left out of this study to be subject
of a future analysis.

5We can always take the method of Hillermeier using approximations by finite differences. How-
ever, this approach turns to be very inefficient even for medium sized problems.
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1.3 Aims of the Thesis

As stated above, we are interested in utilizing continuation techniques to approx-
imate the set of efficient solutions of a problem with multiple goals. Specifically,
we aim to design a predictor corrector method for the numerical treatment of such
multi-objective problems. The theoretical framework of classical predictor corrector
strategies for the solution of undetermined systems of equations is given in [37, 38].
Basically, these procedures consist of a succession of two main steps: a predictor step
where a movement along the linearized solution set is performed, and a following
corrector step concerned with returning that predicted point back to the manifold of
solutions. This step, undoubtedly, shall not be required if the Pareto set is linear. The
predictor corrector scheme has been applied before to the context of multi-objetive
optimization in [27, 28, 29]. However, only the method in [28] can deal with more than
two objectives. Two other approaches are proposed as well in [20] and [30] but these
works do not make an explicit use of the techniques explained in [37, 38]. Instead,
they are based exclusively on the gradient information of the optimization problem,
so shall only be seen as first steps toward procedures with better rates of convergence.

The Pareto Tracer, as we call our approach, should be able to deliver an even
discretization of the Pareto front. The efficiency of the method will be measured
in terms of function evaluations (also for comparison purposes). The justification
for this measure is that it is indicative of the costs required to solve problems that
are inherently expensive, i.e., the evaluation of the functions involved is very costly.
Additionally, a better quality of the solutions is desired such that—as commonly
pursued in multi-objective optimization—an evenly spread distribution of the optimal
points in objective space is produced. For this, the Pareto Tracer needs to steer the
search in parameter space based on a prescribed result in objective space. A property
that, on the other hand, most of the continuation methods lack. We will also deal
with equality as well as inequality constrained problems. With this purpose, a novel
Newton-like descent direction method will be designed to be capable of handling
general restrictions. The latter procedure is intended for (but not restricted to) the
internal use by the Pareto Tracer during the corrector phase. Moreover, in the absence
of second-order information, a succession of clever updates will take place via quasi-
Newton methods. This represents a clear advantage over other approaches where
the use of exact second derivatives is mandatory6 or is completely excluded. The
theoretical analysis of the convergence rate of our proposals will not be covered in
this work. However, we present plenty of numerical results that support our claim that
the Pareto Tracer is an affordable alternative for the numerical treatment of multi-
objective optimization problems. As pointed out before, the study of the asymptotic
time complexity is also omitted, but it is highly recommended for a future analysis
in order to better comprehend the strengths and weaknesses of our methods.

6We are also including in this statement finite differences approximations.
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1.4 Final Contributions

This thesis contributes to the area of continuous multi-objective optimization. Specif-
ically, it introduces a new predictor corrector method for problems with several objec-
tives that we call Pareto Tracer. In addition, a Newton algorithm capable of handling
general constraints is proposed and used as corrector by the novel continuation ap-
proach. The latter is a method of feasible directions, meaning that the initial point
and the subsequent iterations must remain feasible (with respect to the inequalities).
Thus, one problem that certainly arises in the context of continuation is that a pre-
dicted point cannot be guaranteed to be feasible. Given this inconvenient, we have
decided to limit the Pareto Tracer to the special case of equality and box constrained
problems. Further, we utilize gradient projections to ensure the feasibility of pre-
dictors. The Newton approach, on the other hand, comes together with a modified
Armijo condition concerning situations where there is no descent direction that addi-
tionally points toward the feasible region (this time regarding the equalities). A step
length control that considers this adjustment is essential to suffice those cases where
all objectives cannot be improved simultaneously in order to satisfy the equality con-
straints. Several numerical examples have been presented together with theoretical
evidence that help to explain the reliability of our method. However, a proper anal-
ysis of convergence and computational complexity is still missing. Furthermore, a
superiority of our design regarding the distribution of solutions arises from the steer-
ing property: the Pareto Tracer is able to guide the search in parameter space given
a desired movement in objective space.

We also cope with two Hessian-free realizations based respectively on gradient
descent and quasi-Newton methods. The numerical results indicate that the quasi-
Newton variant may be the best Hessian-free choice we could expect. However, the
implementation of the steepest descent version turns to be much more computation-
ally efficient. Moreover, we show by several examples that secants (i.e., the line that
passes through two consecutive solutions) could be a great approximation of tangent
directions (for the bi-objectives case) since the derivatives can be sometimes nearly
orthogonal to the Pareto set. The quasi-Newton approach, on the other hand, gets
significantly improved if the BFGS updates are applied on predictors as done through
the corrector iterations. This trick will provide a better initial guess for the Hessians
to the subsequent corrector, and will possibly help to preserve the second-order in-
formation gained along all the trajectory.

In conclusion, we consider the Pareto Tracer a highly competitive algorithm for
the treatment of multi-objective problems that fulfill the smoothness assumptions
required by continuation methods. Furthermore, it could be a powerful tool for a
wide range of real-life applications, specially for those where the function evaluations
are too costly and resource-intensive. A preliminary study of this work can be found
in [39], where the discussion is limited to unconstrained bi-objective problems.
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1.5 Organization of the Thesis

The remainder of this paper is organized as follows. In Chapter 2, we present the
theoretical background required to understand the ideas developed along this thesis.
Additionally, we provide the reader with an outline of the related work proposed
by other researchers in order to place our contributions in the proper context. The
Pareto Tracer method is introduced and extensively described in Chapter 3 for un-
constrained problems. Then, in Chapter 4, the corresponding modifications to deal
with equality restrictions are covered in detail. The Newton method for constrained
problems is also introduced in this chapter. Chapter 5 is then dedicated to the han-
dling of inequality constraints. Further modifications to the Pareto Tracer with this
purpose are illustrated and the Newton method is (once more) extended to deal with
inequalities. We finally conclude in Chapter 6 where we also propose some ideas to
follow in a future work.
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Chapter 2

Background and Related Work

We begin this chapter by a presentation of a brief but essential background on the
concepts required to understand the ideas developed in this thesis. Here, we will
address two different classes of optimization problems: single-objective optimization
problems (SOPs) and multi-objective optimization problems (MOPs). Though the
focus of this work is on MOPs, a thorough understanding of the theory and available
methods to handle SOPs is crucial to efficiently treat as well problems with more
than one objective. In the second part of this chapter we provide the reader with
an outline of the related work proposed by other researchers in order to place our
contributions in the proper context.

2.1 Theoretical Background

This section presents a theoretical background on the key definitions and principles
that constitute the foundations of SOPs and MOPs.

2.1.1 Single-objective Optimization

A general continuous SOP is defined as

min
x∈Rn

f(x)

s.t. gj(x)≤ 0, j = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,

(2.1)

where f : Rn → R is called the objective function, gj : Rn → R, j = 1, . . . ,m,
are the inequality constraints and hj : Rn → R, j = 1, . . . , p, are the equality con-
straints. We assume along this work that the objective function and the constraints
are continuously differentiable. Alternatively, we can write (2.1) as

min
x∈X

f(x), (2.2)

where X = {x ∈ Rn | g(x) ≤ 0 and h(x) = 0} is called the feasible region and
g : Rn → R

m and h : Rn → R
p are defined as the vector functions of inequalities

9
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and equalities, respectively. At a feasible point x, the inequality constraint gj, j ∈
{1, . . . ,m} is said to be active if gj(x) = 0, and inactive if the strict inequality gj(x) <
0 is satisfied. Additionally, we define the gradient ∇f(x) ∈ Rn of a multivariable
function f as the vector consisting of the function’s partial derivatives

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 , (2.3)

and the Hessian matrix ∇2f(x) ∈ Rn×n as the square matrix of the second-order
partial derivatives

∇2f(x) =


∂f
∂2x1

(x) ∂f
∂x1∂x2

(x) . . . ∂f
∂x1∂xn

(x)

∂f
∂x2∂x1

(x) ∂f
∂2x2

(x) . . . ∂f
∂x2∂xn

(x)
...

...
. . .

...
∂f

∂xn∂x1
(x) ∂f

∂xn∂x2
(x) . . . ∂f

∂2xn
(x)

 . (2.4)

Since we are dealing with a single objective, the concept of minimizer becomes
intuitive and simple to understand.

Definition 2.1.1
(a) A point x∗ is a global minimizer of f if f(x∗) ≤ f(x) for all x ∈ X .

(b) A point x∗ is a local minimizer of f if f(x∗) ≤ f(x) is satisfied in a feasible
neighborhood of x∗.

Closely related to the definition of optimality are the first-order necessary condi-
tions or Karush-Kuhn-Tucker (KKT)1 conditions for SOPs, which are summarized in
the following theorem.

Theorem 2.1.1
Suppose that x∗ is a local solution of (2.1) that satisfies some regularity conditions (see
below). Then, there exist Lagrange multipliers λj, j = 1, . . . , p, and γj, j = 1, . . . ,m,
such that the following conditions are satisfied:

∇f(x∗) +

p∑
j=1

λj∇hj(x∗) +
m∑
j=1

γj∇gj(x∗) = 0,

hj(x
∗) = 0, j = 1, . . . , p,

gj(x
∗) ≤ 0, j = 1, . . . ,m,

γj ≥ 0, j = 1, . . . ,m,

γjgj(x
∗) = 0, j = 1, . . . ,m.

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)

1Named after the work of Karush [40] and Kuhn and Tucker [41].
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Figure 2.1: Critical points of an univariate function.

One of the most widely used regularity conditions is the linear independence con-
straint qualification (LICQ), which states that the gradients of the equality constraints
and the gradients of the active inequality constraints are linear independent at x∗.

The KKT conditions, as stated above, are only necessary conditions. Hence, the
points satisfying these requirements are merely candidates for being a local minimum.
For instance, KKT points of unconstrained problems are those where the derivative
vanishes (also called critical points) but not all are necessarily optima. Critical points
of smooth functions can be stationary: local minima (the Hessian is positive definite)
and local maxima (the Hessian is negative definite), or saddle points, i.e., there is a
change of curvature (the Hessian is indefinite). See Figure 2.1 for an example. Most
optimization algorithms focus only on the detection of KKT points including those
considered here, therefore the study of the sufficient conditions for optimality is left
out of the scope of this thesis.

Finally, we would like to emphasize a particular case of inequality constraints:
those that impose lower and upper bounds on the variables, commonly defined as

li ≤ xi ≤ ui, i = 1, . . . , n, (2.6)

or alternatively, we can say that x ∈ B where

B = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n}. (2.7)

If some component of x lacks a lower or an upper bound, we set the appropriate com-
ponent of l and u to −∞ or +∞, respectively. Considering the interesting properties
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given by the rectangular shape of the feasible region (sometimes called box ) and the
numerous scientific applications that depend on box constrained optimization, this
remains a very active area of research. Ultimately, box restrictions can be expressed
in standard form

−xi + li ≤ 0
xi − ui ≤ 0

, i = 1, . . . , n, (2.8)

and handled as general inequalities, but the latter can turn out to be inefficient since
2n constraints would be added to the original problem.

2.1.2 Multi-objective Optimization

In the following, we define a general continuous MOP as

min
x∈Rn

F (x)

s.t. gj(x)≤ 0, j = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,

(2.9)

where F : Rn → R
k is the vector of objective functions f1, . . . , fk : Rn → R,

gj : Rn → R, j = 1, . . . ,m, are the inequality constraints and hj : Rn → R,
j = 1, . . . , p, are the equality constraints. We also assume that all objectives and
constraints are continuously differentiable. The feasible region in parameter space is
defined as for the single-objective case by X = {x ∈ Rn | g(x) ≤ 0 and h(x) = 0}
where g : Rn → Rm and h : Rn → Rp are defined as the vector functions of inequal-
ities and equalities respectively. Additionally, we will call F = F (X ) the feasible
objective region and ∂F the boundary of F .

Since no single solution would generally minimize every objective simultaneously,
the concept of optimality for MOPs is given by the notion of Pareto efficiency [1],
sometimes called Pareto dominance.

Definition 2.1.2
(a) A point y ∈ Rn is dominated by a point x ∈ Rn (x ≺ y) with respect to F if

F (x) ≤ F (y) and F (x) 6= F (y), 2

else y is said to be non-dominated by x (x 6≺ y).

(b) A feasible point x∗ ∈ X is Pareto efficient if 6 ∃y ∈ X such that y ≺ x.

(c) A feasible point x∗ ∈ X is weak Pareto efficient if 6 ∃y ∈ X such that F (y) < F (x).

(d) A point x∗ ∈ X is locally (weak) efficient if it is (weak) efficient in a feasible
neighborhood of x∗.

2All operators are taken componentwise when convenient.
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To be more precise, the Pareto optimality concept employs a partial order induced
by Rk

+ (the Paretian cone or non-negative orthant on Rk) defined by

F (x) ≤ F (y)⇔ F (y)− F (x) ∈ Rk
+,

where R+ denotes the set of non-negative real numbers. Then, our task is to search
for minimal points induced by such partial order. On the other hand, the definition
of weak Pareto efficiency is induced by Rk

++, the interior of the Paretian cone, i.e.,

F (x) < F (y)⇔ F (y)− F (x) ∈ Rk
++,

where Rk
++ denotes the set of strictly positive real numbers. A well-known property

of partial orders is that not every pair of elements needs to be related: for some pairs,
it may be that neither element dominates the other. Thus, it is natural that the
solution set of MOPs does in general not consist of one single solution but rather of
an entire set of solutions. Note that, in contrast, the concept of optimality for SOPs
is given by the complete order induced by R+.

Definition 2.1.3
(a) The set of Pareto optimal points P = {x ∈ X |6 ∃y ∈ X : y ≺ x} of F is called

the Pareto set of F .

(b) The image F (P) of the Pareto set is called the Pareto front of F and is denoted
by F∗.

For a better understanding we provide a graphic example. Consider the following
MOP where the domain set was taken as Q = [−1, 1]2:

f1(x) = |x1 + x2|
f2(x) = −x1x2.

(2.10)

The Pareto optimal set of (2.10) is given by P = {(x1, x2) | x1 = x2} and the weak
Pareto set is given by PW = {(x1, x2) | x1 = x2}∪{(x1, x2) | x1 = −x2} as illustrated
in Figure 2.2.

Subsequently, the first-order optimality conditions for MOPs can also be seen as
an extension of the KKT conditions for SOPs, for which k = 1 and α = 1. These are
summarized in the following theorem.

CINVESTAV Computer Science Department



14 Chapter 2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x
2

 

 

Pareto set
weak Pareto set

(a) decision space

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

f1

f 2

 

 

Pareto front
weak Pareto front

(b) objective space

Figure 2.2: Weak and optimal Pareto set and front of the MOP (2.10).

Theorem 2.1.2
Suppose that x∗ is a local solution of (2.9) that satisfies some regularity conditions,
e.g., the LICQ condition. Then, there exist Lagrange multipliers αj, j = 1, . . . , k, λj,
j = 1, . . . , p, and γj, j = 1, . . . ,m, such that the following conditions are satisfied

k∑
j=1

αj∇fj(x∗) +

p∑
j=1

λj∇hj(x∗) +
m∑
j=1

γj∇gj(x∗) = 0,

hj(x
∗) = 0, j = 1, . . . , p,

gj(x
∗) ≤ 0, j = 1, . . . ,m,

αj ≥ 0, j = 1, . . . , k,∑k
j=1 αj = 1,

γj ≥ 0, j = 1, . . . ,m,

γjgj(x
∗) = 0, j = 1, . . . ,m.

(2.11a)

(2.11b)

(2.11c)

(2.11d)

(2.11e)

(2.11f)

(2.11g)

This time, in order to characterize critical points for MOPs, we first introduce the
definition of a descent direction.

Definition 2.1.4
At a point x ∈ Rn, a descent direction for a function f : Rn → R is defined as a
vector ν ∈ Rn such that

∇f(x)Tν < 0. (2.12)

CINVESTAV Computer Science Department



Background and Related Work 15

Similarly, for a vector function F : Rn → Rk with F (x) = (f1(x), . . . , fk(x))T ∈ Rk,
ν must satisfy

∇fj(x)Tν < 0, ∀j = 1, . . . , k, (2.13)

meaning that all objectives can be decreased simultaneously.

To see this, take the univariate function fν : R→ R such that

fν(t) = f(x+ tν). (2.14)

Given that ν is a descent direction, it is that f ′ν(0) = ∇f(x)Tν < 0. Then, for all
t ∈ (0, t̄] where t̄ is sufficiently small, we have that fν(t) < fν(0). The extension
to the multi-objective case follows immediately from applying the previous reasoning
componentwise.

Consequently, critical points for unconstrained MOPs are sometimes defined as those
points x̂ ∈ Rn such that for every vector ν ∈ Rn there is a j ∈ {1, . . . , k} satisfying

∇fj(x̂)Tν ≥ 0. (2.15)

Thus, in order to improve some of the objectives, at least one must worsen result-
ing in a non-dominated solution. Still, for more than one objective, critical points
are not necessarily optima (note that weak Pareto points are also critical: there is a
j ∈ {1, . . . , k} such that ∇fj(x̂)Tν = 0). Accordingly, noncritical points are those for
which a descent direction exists, therefore, dominating solutions can be found.

Another criteria widely used involves the Jacobian of F , more precisely, x̂ is a critical
point of F if rank(J(x̂)) < k, where the Jacobian of F at an arbitrary point x is
defined as

J(x) =

 ∇f1(x)T

...
∇fk(x)T

 ∈ Rk×n. (2.16)

Then, noncritical points are those where the Jacobian has full rank. However, this
criteria applies for both minimization and maximization problems.

Finally, and perhaps most importantly in the context of our work, is that Pareto
candidates (or KKT points) typically form a (k− 1)-dimensional differentiable mani-
fold [28]. This and subsequent applications will be subject to an in-depth discussion
throughout the entire thesis.
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2.2 Related Work

In this section we describe some of the strategies that are currently used to solve
SOPs and MOPs. We restrict our discussion to mathematical programming (MP)
techniques—our area of research—although there are many other approaches that
also show excellent results in a great variety of problems.

As we pointed out before, this thesis is mainly concerned with solving MOPs.
However, most of the methods currently used for this matter utilize SOPs in one way
or another. Thus, the study of this subarea is an excellent starting point for a better
comprehension of the techniques used to deal with MOPs.

2.2.1 Single-objective Optimization

SOPs are handled so far from different perspectives. The most traditional one com-
prises the MP techniques covering a great set of algorithms. We refer the reader to
[42, 43, 44] and references therein for a survey on other approaches such as evolu-
tionary algorithms (EAs). MP can be divided into two major groups: unconstrained
and constrained optimization. These methods can also be classified according to the
nature of the objective function and the constraints, giving rise to different subfields
in the area.

We start our discussion by the most generic class of problems: when at least one
of the constraints or the objective is a general nonlinear function. This case classifies
as a nonlinear programming (NLP) problem, which primarily arise in areas of physics
and engineering. One of the most popular techniques of NLP is the Nelder-Mead
[45] or downhill simplex method since it fits in situations where the derivatives are
unknown. Additionally, the constrained case is normally handled by replacing the
problem by one or more unconstrained problems using penalty, barrier, or augmented
Lagrangian functions [46]. Of special interest for this work are the steepest descent
[46], Newton [46] and quasi-Newton [47] methods, for which we dedicate a separate
subsection.

Following, and among the most significant categories, we can mention linear pro-
gramming (LP), where both, the objective and the constraints, are linear. The sim-
plex [48] and interior point [49] methods are probably the most widely used algorithms
in this subfield, having a great application in marketing, operation research and fi-
nances. Problems with linear constraints where the objective function is quadratic fall
into the category of quadratic programming (QP). These problems are particularly
relevant because they arise as subproblems in optimization methods with general
constraints, e.g., in sequential quadratic programming methods. Examples of QP
techniques include interior point methods for QP [50] and active set methods [46].
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When the constraints as well as the objective function are quadratic, we are faced
with a quadratically constrained quadratic programming (QCQP) problem. It is of
interest to point out that the general case of a QCQP problem is NP-hard, still, they
can be treatable by means of reformulation-linearization techniques and semidefinite
programming (SP) [51] or second-order cone programming (SOCP) [52] relaxations.
A particular case of QCQP is when the objective function is linear, referred to as
quadratically constrained linear programming (QCLP). The latter forms an important
part of many of the techniques employed along this work and is handled in all cases
by means of SOCP reformulations. Therefore, a special subsection is dedicated to
this category. This is also the case of nonlinear least squares (NLS) that we later
approach in more detail.

Line Search Strategies

There are two basic iterative approaches to find a local minimum of a function:
line search strategies and trust region frameworks [46]. We focus here only on the
former, which starts by finding a descent direction and then computes a step size that
determines the maximal suitable movement along the given direction. Thus, a new
iteration is defined as

x̄ = x+ tν, (2.17)

where t > 0 is the desired step length, ν ∈ Rn the descent direction, and x the current
iteration point. The ideal scenario is to be able to find the minimizer of the univariate
function

fν(t) = f(x+ tν). (2.18)

Nevertheless, such exact line search procedures may be too costly and time consuming,
so it seems to be wise to select an inexact strategy to deliver acceptable solutions to
our problem. One measure of the quality of our solution can be given by the Wolfe
conditions [46], even though, there are other policies. The most intuitive prerequisite
for a step size to be acceptable is that it produces sufficient decrease in the objective
function. This rule is also called the Armijo condition [46] and asserts that

f(x̄) ≤ f(x) + c1t∇f(x)Tν, (2.19)

where c1 ∈ (0, 1). A second rule can be introduced in order to reject too small step
lengths. We may require that t also satisfies

∇f(x̄)Tν ≥ c2∇f(x)Tν, (2.20)

where c2 ∈ (c1, 1). The previous two conditions together are called the Wolfe condi-
tions.

An important result here due to Zoutendijk [53] is that a line search scheme
under the Wolfe conditions converges to a critical point provided that some moderate
requirements are fulfilled. First, it should be that |∇f(x)Tν| ≥ ε for some ε > 0 which
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indicates that the angle between the derivative and the search direction is bounded
away from 90◦. Secondly, it is also required that f is continuously differentiable
and bounded from below, and ∇f is Lipschitz continuous (see Definition 2.2.1). A
procedure like this yields a sequence of candidate solutions xi with limi→∞∇f(xi) = 0.
Thus, the search can be stopped when

‖∇f(x)‖ ≤ ε, (2.21)

where ε > 0 is a small tolerance and the operator ‖ · ‖ refers to the Euclidean norm3.

Definition 2.2.1
A function f : X ∈ Rn → R is called Lipschitz continuous on X if there exists L > 0
such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ X , (2.22)

where L is called the Lipschitz constant and ‖ · ‖ defines any norm. The extension to
a multi-objective function F : X ∈ Rn → Rk is straightforward.

Further, Equation (2.12) for descent directions defines not only one vector but
instead a cone of descent directions. The latter has encouraged the development
of several procedures that mainly differ by the selection of the search direction to
explore. Thus, in the following, we will cover some of these methods but centering
our attention on the selection of the descent direction to use.

Steepest Descent Method

Probably the most basic strategy to solve NLP problems without restrictions is to
take steps proportional to the most greedy search direction at each point, i.e., the
steepest descent (SD) direction [46]

ν = − ∇f(x)

‖∇f(x)‖
. (2.23)

However, this method shows severe drawbacks since it requires a great number of
iterations for functions that have long narrow valleys. In such cases, the nonlinear
conjugate gradient (CG) method [54] is preferable. The latter can reach the solution
in at most n iterations for pure quadratic functions but for general cases it may have
a slower progress that resembles the behavior of the SD method.

Newton Method

Another approach within the unconstrained NLP category is the Newton method [46],
where the search direction is computed by

ν = −∇2f(x)−1∇f(x). (2.24)

3The operator ‖ · ‖ refers to the Euclidean norm unless specified otherwise.
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This is a robust and efficient procedure that shows at most quadratic convergence,
but unfortunately, at the expense of requiring the Hessians to compute the successive
steps. Moreover, the Hessian matrix is not necessarily positive definite in all the
domain space, therefore, the Newton direction may be a non-descent direction. Yet,
there are several ways to handle this issue as described in [46] which basically consist
of a modification of the Hessian to keep it positive definite. In this context, one of the
most attractive practices is to use modified Cholesky factorizations as the algorithm
proposed by Gill, Murray and Wright [55, 56].

An additional concern when designing practical Newton methods is the computa-
tional time since it has a complexity of O(n3) where n is the number of variables. To
accomplish this goal it is common to use inexact Newton methods, for instance, the
Newton-CG also known as truncated Newton [46]. The latter computes the search
direction by an adapted version of the CG method that ends as soon as a direction
of negative curvature is encountered.

Quasi-Newton Methods

For problems where no Hessian information is provided, best suitable techniques can
be used: the quasi-Newton (QN) methods [47]. QN methods build a quadratic model
of the problem at each iteration approximating Hessians by calculating the differ-
ences between the gradients of the successive steps. These approximations are good
enough to produce at most superlinear convergence which makes these procedures an
affordable choice on a large variety of problems. QN methods can also be seen from
two different perspectives: a line search strategy and a trust region framework, but
we will focus only on the former. Here, the search direction is given by

ν = −B−1∇f(x), (2.25)

where B ≈ ∇2f(x). Note that the only difference with the classical Newton method
is the approximation of the Hessian by B.

One remarkable point about this theory is that B−1 does not need to be calculated
at every step. Instead, it may only be updated which reduces the complexity time of
each iteration to O(n2). Another idea is to update the Cholesky decomposition of B
which is widely regarded as more reliable [57]. Based on the type of update, several
QN methods can be defined, but in general, all must comply with the secant equation
which is

B̄s = y, (2.26)

where B̄ denotes the updated Hessian at the new iteration point x̄, s = x̄ − x and
y = ∇f(x̄)−∇f(x). The secant equation is underdetermined for n > 1, thus, it does
not have a unique solution. Most updates are based on finding a symmetric solution
to (2.26) that minimizes some norm of the difference between B̄ and B. Additionally,
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in the context of a line search, it is advisable to provide positive definite approxima-
tions to ensure that the search directions are descent.

The most popular update is the BFGS, named for its discoverers Broyden, Fletcher,
Goldfarb, and Shanno, and is given by

B̄ = B − BssTB

sTBs
+
yyT

yT s
. (2.27)

The BFGS update satisfies the secant equation and the symmetry property but it
does not ensure the required positive definiteness of the matrices in the context of
line searches. Observe that if we premultiply sT at both sides of (2.26) we obtain

sT B̄s = sTy > 0, (2.28)

a necessary and sufficient condition for the positive definiteness of B̄ called the curva-
ture condition. This requirement is satisfied by imposing the Wolfe condition (2.20)
on the step size control described earlier.

Nonlinear Least-Squares

The problem of NLS fitting requires the minimization of the squared residuals of k
functions:

min
x∈Rn

f(x) =
1

2
‖r(x)‖2, (2.29)

where r : Rn → R
k is the vector of residual functions r1, . . . , rk : Rn → R. One

effective method to deal with this class of problems is the Gauss-Newton [58] that
can be viewed as a modification of the Newton method. We start by defining the first
and second derivatives of f(x) as

∇f(x) = J(x)T r(x), and

∇2f(x) = J(x)TJ(x) +
k∑
j=1

rj(x)∇2rj(x),

(2.30a)

(2.30b)

respectively. Here, J(x) denotes the Jacobian of r(x). Then, the second term of
∇2f(x) is neglected and the search direction is computed as

ν = −(J(x)TJ(x))−1J(x)r(x) = −J(x)+r(x), (2.31)

where J(x)+ denotes the Moore-Penrose pseudo inverse of J(x). The quadratic con-
vergence of the Newton method is commonly observed assuming that J(x) has full
rank, though, it depends to a great extent on how much more significant the first term
in (2.30b) is with respect to the second. There are other algorithms as the Levenberg-
Marquardt that is certainly more robust and can be viewed as a Gauss-Newton using
a trust region approach. The latter was recently modified in [59] to support problems
with box constraints.
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Second-Order Cone Programming

SOCP [60] is a relatively young area in optimization. The task is to minimize a
linear function over the intersection of an affine set and the product of second-order
(Lorentz) cones, hence, the problem is defined by

min
x∈Rn

fTx

s.t. ‖Ajx+ bj‖ ≤ cTj x+ dj, j = 1, . . . , k,
Ex+ e= 0,

(2.32)

where f, cj ∈ Rn, Aj ∈ R(nj−1)×n, bj ∈ Rnj−1, dj ∈ R, E ∈ Rp×n and e ∈ Rp. The
inequality constraints in (2.32) are called second-order cone constraints of dimension
nj since

‖Ajx+ bj‖ ≤ cTj x+ dj ⇔
(
Aj
cTj

)
x+

(
bj
dj

)
∈ Knj

,

where Knj
is the standard second-order cone of dimension nj defined as

Knj
=

{(
u
v

)
| u ∈ Rnj−1, v ∈ R and ‖u‖ ≤ v

}
.

This area of research has been finding ever wider use as there are several families
of problems that can be recast as SOCP, in particular, all its subclasses: LP ⊂ QP ⊂
QCQP ⊂ SOCP ⊂ SP. See, for instance, [61] and references therein. Admitting that
it is not a good idea shifting LP and QP to SOCP, it is an accepted practice to refor-
mulate QCQP applications as SOCP to be solved by specialized primal-dual interior
point methods. SP reformulations are also used, though more expensive. There are
other approaches, e.g., the one proposed in [62] but are not considered in this work.
A more detailed explanation will be given throughout the rest of this paper where we
will be confronted with several instances of QCLP.

One final consideration is that the dual problem of (2.32) belongs as well to the
category of SOCP and is given by

max−bTu− dTv − eTy
s.t. ATu+ CTv + ETy = f,

‖uj‖ ≤ vj, j = 1, . . . , k,
(2.33)

with variables uT = (uT1 , . . . , u
T
k ), where uj ∈ Rnj−1, v ∈ Rk and y ∈ Rp. Further, it

is AT = (AT1 , . . . , A
T
k ) and CT = (c1, . . . , ck). Actually, as in LP, the duality in SOCP

comes in a symmetric sense, meaning that the dual of the dual is the primal.
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2.2.2 Multi-objective Optimization

We finally turn our attention to many of the strategies designed so far for the nu-
merical treatment of MOPs. As stated earlier, we are seeking for a set of solutions,
not a single point, so multi-objective optimization programs certainly have to deal
with two goals: convergence toward the Pareto set as well as a good distribution of
the solutions along this set. Hence, it should come as no surprise that multicriteria
tradeoffs emerge once again in our designs. To overcome this compromise between
spread and proximity, various quality indicators have been proposed over the past
few years. These are commonly used to guide the search of a multi-objective evolu-
tionary algorithm (MOEA) although have also application as performance measures
for comparative studies. A good survey on this topic is provided in [63].

In order to shortly review the state-of-the-art methods and best practices in multi-
objective optimization, we focus our discussion (as for the single-objective case) on
multi-objective mathematical programming (MOMP) techniques. However, we shall
call attention to a prominent class of algorithms that has made a big impact on
the scientific community: the MOEAs, being quite successful in a great number of
applications of the real world as wireless sensor networks, resource allocation, data
mining, bioinformatics, among others [8, 9, 10]. These are population based methods
capable to deliver an approximation of the solution set in one run of the algorithm.
The latter, together with their global approach and a derivative-free implementation,
are the main reasons of the MOEAs’ popularity. Nevertheless, one major drawback
are their relatively slow convergence rates and the fact that the optimality of the
solutions cannot be guaranteed (it is only known that the generated solutions are
non-dominated by any other).

As a remedy, the hybridization of MOEAs and MOMP has gained increasing pop-
ularity since they aim to take the best of both worlds. These techniques, referred to
as memetic algorithms (MAs) [26, 64], attempt to exploit the global mechanisms of
MOEAs and the power of MOMP methods as local searchers in order to get fast and
reliable optimization procedures. One weakness of MAs is that MOMP techniques
usually require gradient or even Hessian information at each candidate solution which
we don’t have at hand in a great variety of problems. On the other side, approxi-
mations of gradients, e.g., by finite differences (FD), increase in a big amount the
computational cost of the process since they take a lot of additional function evalua-
tions. For instance, forward FD requires n additional function evaluations to approx-
imate one derivative, where n is the number of variables of the problem. Therefore,
the development of derivative-free MP techniques has gained the interest of many
researchers. In spite of most progress has been made for SOPs, some gradient-free
memetic approaches has recently been proposed for MOPs [65, 22, 66].

Another group of well-known set oriented methods are subdivision techniques
[11, 12] or cell mapping techniques [13, 14] that were initially proposed to determine
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the global behavior of nonlinear dynamical systems and later extended to deal with
MOPs. The former is based on strategies to successively partition the space into
boxes that may be discarded by some optimality cut-off test, while the main idea
of the latter consists of a discretization of the space into hypercubes inspired by the
finite precision arithmetic of the machine. Admitting that this set of methods can
be computationally expensive, they have a global scope and are well suited for par-
allelization techniques [15].

From now on and for a better comprehension and clarity, we dedicate a separate
subsection to three of the main subcategories of MOMP: scalarization methods, de-
scent direction methods and finally (and the center of our attention) continuation
methods.

Scalarization Methods

One of the most basic and followed philosophies to handle MOPs is to transform the
original problem into a single-objective one that can be solved by means of standard
optimization techniques. There are different strategies of reformulations [2, 3, 5] but
the key idea is to require that an optimal solution of the new SOP is also a Pareto
optimal solution of the original MOP. Further, a selection of a clever sequence of
these SOPs will also be necessary such that a suitable finite size approximation of the
entire Pareto set is obtained.

Two classic scalarization techniques are the weighted sum (WS) [67, 4] and the
ε-constraint [68, 69] methods. The first one is based on the following subproblem

min
x∈Rn

k∑
j=1

wjfj(x), (2.34)

where a sufficient condition for a solution of (2.34) to be a Pareto point is the selection
of positive weights. It is also common to normalize the coefficients of the subproblem
such that

∑k
j=1wj = 1. The WS scheme is simple and easy to implement, but also

has clear disadvantages. First of all, the question arises of what sequence of weights is
more appropriate taking into account that a uniform distribution of weights does not
guarantee a uniformly distributed set of Pareto optimal solutions, and secondly—but
not less important—is that only solutions in the convex subset of the Pareto front
are to be found [70, 71].

Following is the ε-constraint method [68, 69] that overcomes some of the convexity
problems of the WS strategy. Here, the proposed SOP to be solved is defined by

min
x∈Rn

fp(x)

s.t. fj(x)≤ εj, j ∈ {1, . . . , k} \ {p},
(2.35)
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Figure 2.3: x∗ε1 is the minimum found by the ε-constraint method where the primary
objective is f2 and f1 is bounded above by ε1. f

∗
1 and f ∗2 are the minimum values of

f1 and f2, respectively.

where fp is regarded as the primary objective. See Figure 2.3 for a bi-objective exam-
ple. This time, a solution x∗ of the subproblem (2.35) is a Pareto optimal point if and
only if it is also a solution of the subproblem for each value of p ∈ {1, . . . , k} such that
fj(x

∗) = εj for all j 6= p. An advantage over the WS approach is the possibility to
reach the entire set of Pareto efficient solutions, but again, how to choose the ε-values
is not an easy task and remains under investigation.

Later, the Physical Programming (PP) design was proposed in [72] which looks
like a more reliable choice [73]. PP does not involve the use of weights but requires
the designer to divide the objectives into regions or intervals to be assigned to one
of the following categories: ‘unacceptable’, ‘highly undesirable’, ‘undesirable’, ‘tol-
erable’, ‘desirable’, and ‘highly desirable’. Each criterion is also associated with a
class-function: ‘smaller is better’, ‘larger is better’, and ‘center is better’. These cate-
gories and class-functions are then used to define an aggregate function that attempts
to comply with the user’s preferences.

In the following, we explain in more detail two other scalarization techniques
relevant to our work since they better follow the spirit of continuation-type methods.

Normal Boundary Intersection (NBI) The NBI method [6] is a scalarization
strategy specially designed for the generation of uniformly distributed optimal solu-
tions in the objective space. The first step is to construct what the authors call the
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convex hull of individual minima (CHIM): given an even distribution of vectors in
the unit k-dimensional hypercube, define

CHIM =

{
Φw |

k∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . , k

}
, (2.36)

where the matrix Φ ∈ Rk×k is usually called the pay-off matrix and is given by

Φ = (F ∗1 − F ∗, . . . , F ∗k − F ∗) . (2.37)

Here, F ∗j = F (x∗j) and x∗j represents the individual global minima of the j-th ob-
jective. Additionally, the vector F ∗ = (f ∗1 , . . . , f

∗
k )T is referred to as the shadow

minimum where f ∗j = fj(x
∗
j) for j = 1, . . . , k.

The main idea of the method relies on the observation that the intersection be-
tween the boundary of the feasible objective region and the normal to any point in
the CHIM is probably a Pareto optimal point. Then, the original MOP is replaced
by a sequence of NBI subproblems (each defined by a point in the CHIM) as follows

max
(x,t)∈Rn×R

t

s.t. Φw + tn̂= F (x), 4

gj(x)≤ 0, j = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,
l ≤ x≤ u.

(2.38)

If we do not have the exact normal to the CHIM simplex, we can compute a quasi-
normal direction n̂ given by

n̂ = −Φe, (2.39)

where e is the vector of all ones. Figure 2.4 provides a more comprehensible descrip-
tion of the scheme adopted by the NBI algorithm.

Among the advantages of this approach it is highlighted that the method is capable
of producing an evenly spaced set of Pareto optimal points without requiring exact
Hessians, instead, secant approximations can be used as BFGS updates. However, the
algorithm depends on a uniform distribution of the input parameters (weights) which
is a non-trivial task [74, 75], augmented with the fact that an efficient computation of
the NBI subproblems hardly depends on the selection of the initial guesses. The latter
is softened by defining an ordering of the weights such that one can use the previously
computed solution as the starting point for the current computations, which gives
the NBI the nature of continuation-type methods. However, establishing such an
order becomes seriously complicated for problems with more than two objectives.
Additionally, and as a consequence of reducing the entire feasible objective region to
a simplex, the NBI may leave out some areas of the front located outside the shadow
projected by the CHIM in the direction of the normal. See Figure 2.5 for such an
example.

4Actually F (x) is replaced by F (x)− F ∗ such that all objective functions are non-negative.
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Figure 2.4: Scheme followed by the NBI. Each intersection of a normal with the
boundary may define a new solution.

Figure 2.5: Unobtainable Pareto front sections under the NBI scheme. The dark
triangle represents the CHIM and the Pareto front is a quarter of a sphere (lighter
surface). It is easy to see that a projection of the triangle onto the sphere won’t
necessarily cover all the border sections.
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Figure 2.6: Scheme followed by the NNC method. Each intersection of a NNC to N1

with the boundary may define a new solution. Note that the spurious point is not
even local optimum.

Normalized Normal Constraint (NNC) The NNC method [7] was proposed
with the aim of improving some of the limitations of the NBI design. Here, the
CHIM is renamed to utopia line or hyperplane but for the sake of clarity we keep
the notation Φ. Again, an evenly spaced discretization of the utopia hyperplane is
ensured by the use of uniformly distributed convex weights, and accordingly, one
subproblem is solved for each hyperplane point:

min
x∈Rn

fk(x)

s.t. Nj(F (x)− Φw)≤ 0, j = 1, . . . , k − 1,
gj(x)≤ 0, j = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,
l ≤ x≤ u,

(2.40)

where
Nj = F ∗k − F ∗j . (2.41)

The main modification is given by the exchange of the NBI equality constraint by
(k − 1) inequalities that progressively reduce the feasible domain. See Figure 2.6 for
a graphical description. The term normalized is given due to the following normal-
ization scheme

fj(x)←
fj(x)− f ∗j
fnj − f ∗j

, j = 1, . . . , k, (2.42)

where
fnj = max (fj(x

∗
1), . . . , fj(x

∗
k)) , j = 1, . . . , k. (2.43)
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The point F n = (fn1 , . . . , f
n
k )T ∈ Rk is usually called the nadir point.

Note by Figure 2.6 that the NNC algorithm suffers from the same limitation of
the NBI approach: a subproblem optimal point is not necessarily Pareto efficient.
Nevertheless, the use of inequality constraints seems to be less likely to generate non
Pareto points over the use of the NBI equality since the latter forces the solution to
lie on the normal. Moreover, the NBI method works with a family of quasi-normals
while the NNC scheme defines true normals to the utopia hyperplane which possibly
leads to a better distribution of the obtained solutions. In general, due to the sim-
ilarities between both strategies, these methods share several features (advantages
and disadvantages) that won’t be listed here in detail, but we would like to mention a
suggested procedure in [76] to overcome the drawback of missing sections of the front.
The proposal consists of extending the utopia hyperplane (by allowing the weights to
fall beyond zero and one) such that the entire Pareto front can be reached. In spite
of additional optimization problems have to be solved, this and the introduction of
a Pareto filter to exclude dominated points from the solution set, constitute a great
help to improve the results of this excellent optimization method.

In general, there have been other attempts to enhance the last two algorithms, but
we will simply close this subsection by recommending the reading of one in particular:
the Directed Search Domain (DSD) method [77, 78]. This algorithm was developed
with the intention to combine the advantages of PP, NBI and NNC procedures.
Additionally, it introduces the idea of shrinking the search domain in order to partially
reduce the tendency of the above-mentioned methods to compute redundant solutions.

Descent Direction Methods

Now it is the turn to discuss a different class of algorithms that focuses only on finding
one optimal point. These methods do not use any ordering or scalarization of the
objective functions, rather, a line search is performed in a direction that decreases
all objectives simultaneously, i.e., a descent direction (see Definition 2.1.4). Thus,
in order to solve the problem, this kind of procedures follows a curve of dominated
points until no further improvement can be achieved. Line search strategies for MOPs
follow the same plan described in Section 2.2.1 for SOPs. The difference here is that
almost all methods have its own strategy not only for the selection of the search direc-
tion but also for the step length control and the stopping criteria. Thus, we discuss
each particularity at the proper time. There are also developments for MOPs based
on trust region frameworks (see [79, 80]) but we leave this topic out since our main
interest here is on line search strategies.

Since we are now dealing with MOPs, an interesting aspect worth discussing in
some detail is about how to use descent directions to obtain an approximation of the
entire solution set. In [16, 17, 21, 81] the authors solve several instances of their respec-
tive programs for different starting points equally spatially distributed or randomly

CINVESTAV Computer Science Department



Background and Related Work 29

uniformly distributed in the parameter space. The experiments show that the choice
of a large number of such initial points seems to give satisfactory approximations of
the whole local Pareto fronts from a heuristic point of view. Nevertheless, a sub-
stantial number of redundant solutions are expected in this type of practice which is
definitely problematic when the efficiency has priority. Furthermore, even an equally
spaced distribution of points in the parameter space does not guarantee an equally
distributed discretization of the front. For this purpose, it seems more promising to
combine descent direction methods with MOEAs—to design new MAs—as treated
for instance in [25, 24, 22] and references therein. Hopefully, the MOEA should pro-
vide a well distributed set of solutions while the local search will help to improve the
convergence toward the efficient set. Another approach is to use descent directions
inside a global subdivision technique [11] where the underlying idea is to write down
an iteration scheme which—interpreted as a discrete dynamical system—possesses
the Pareto set as an attractor. Continuation methods are also good candidates to
discover connected portions of the solution manifold by utilizing procedures of this
class, but we cover this area more seriously in the next subsection.

In the sequel, some popular descent direction methods are described with the
hope of highlighting the main similarities, differences and distinctive characteristics
of developments in this subfield.

A Stochastic Descent Direction Method One of the first approaches suggested
in this category is the one proposed by Schäffler, Schultz and Weinzierl in [19]. This
method develops from the KKT equations for unconstrained optimization. Thus, the
search direction here is defined by

q(x) = −
k∑
j=1

αj∇fj(x) = −J(x)Tα, (2.44)

where α ∈ Rk is the solution of the following norm minimization problem

min
α∈Rk

‖
∑k

j=1 αj∇fj(x)‖2

s.t.
∑k

j=1 αj = 1,

αj ≥ 0, j = 1, . . . , k.

(2.45)

If x is a KKT point, q(x) is zero and the components of α coincide with the Lagrange
multipliers, otherwise q(x) is a descent direction at x of the considered MOP. Thus,
the method can stop when the norm of q(x) is under a given tolerance. These results
are used later to state that the unique solution of the following initial value problem
(IVP) is a curve consisting of dominated points:

x(0) = x0, t = 0,
ẋ(t) = q(x(t)), t > 0.

(2.46)

CINVESTAV Computer Science Department



30 Chapter 2

In order to solve (2.46) numerically, the authors propose to use the Euler method
[82], a standard approach in the numerical analysis of ordinary differential equations
(ODEs). For the step size control, they use a simple backtracking strategy in which
the step length t is divided by two in case the next iteration point is dominated by
the current point.

An additional consideration here is that this method was not originally applied
in its deterministic form. Instead, a stochastic differential equation (SDE) is derived
from (2.46) for which typical solutions stay close to the Pareto set for a relatively
long period of time. For a throughout discussion on SDEs, see for instance [83, 84]
and references therein. The numerical treatment of this SDE leads to a heuristic
algorithm for the computation of a large number of Pareto optimal solutions. In
contrast, the deterministic version of the method was later integrated into a global
subdivision technique [11] where the dynamical system iterations are obtained via
suitable discretizations of the ODE given by (2.46).

The main advantage of the considered method is the simplicity of its idea followed
by efficient computations: the norm minimization problem has only k variables and
k + 1 constraints and the descent direction merely requires a matrix-vector product.
The linear convergence rate, however, is possibly its main drawback which may lead
to a huge number of function evaluations for more complicated MOPs.

The Directed Search Descent Method The Directed Search (DS) method [20]
is an iterative procedure based on the idea of steering the search along a predefined
direction in objective space. That is, given a point x ∈ Rn in parameter space and a
direction d ∈ Rk in objective space, a direction vector ν ∈ Rn is sought such that

lim
t↘0

fj(x+ tν)− fj(x)

t
= 〈∇fj(x), ν〉 = dj, j = 1, . . . , k. (2.47)

With this, the relative change of each objective value for an infinitesimal step size is
given by the components of d. In matrix notation, we have for Equation (2.47)

Jν = d, 5 (2.48)

whose solution is a descent direction provided that all components of d are negative.
Typically for MOPs, the number of parameters is higher than the number of objectives
(n� k) so we can assume that the linear system (2.48) is (highly) underdetermined
implying that its solution is not unique. One choice is to take

ν+ = J+d, (2.49)

which is the solution of (2.48) (if rank(J) = k) with the smallest Euclidean norm.
This alternative has the advantage that it leads to the largest decay in direction d

5It can be taken J = J(x) for the Jacobian matrix and ν = ν(x) for any descent direction vector
when convenient.
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(in objective space) for a line search with a small step in direction ν+ (in parameter
space). Further, the trajectory followed by this procedure is identical to the solution
curve of the subsequent IVP

x(0) = x0, t = 0,
ẋ(t) = ν+(x(t)), t > 0,

(2.50)

whose limit point x∗ is also a critical point of the considered MOP. The step length
control is similar to the one previously described, but this time the method stops
when rank(J(x)) < k. The latter is relaxed by using the condition number of the
Jacobian to stop when

κ2 =

√
λmax(JJT )

λmin(JJT )
≥ ε, (2.51)

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of a matrix
A ∈ Rk×k, respectively. If J is rank deficient, it holds that λmin(JJT ) = 0. Then, we
may expect that κ2 →∞ as x(t)→ x∗ so ε is taken as a very large number.

One advantage of the DS is that it can be realized without gradient information
when used as a local searcher in a MA [23]. In this context, the computation of the
search direction may be obtained for free if neighborhood information is available,
i.e., if there are points of the population containing other points inside certain neigh-
borhood radius. Furthermore, the method is also coupled into a continuation strategy
that is covered later in this chapter.

A Descent Direction Method for Handling Box Constraints The following
method [21] looks for Pareto optimal points of box constrained MOPs as limit points
of the trajectory solutions of suitable IVPs for ODEs. The proposed IVP reads as

x(0) = x0, t = 0,
ẋ(t) = h(x(t)), t > 0,

(2.52)

where the vector h(x) is described as a kind of steepest descent direction and is given
by

h(x) = −Dl(x)2Du(x)2J(x)Td(x). (2.53)

The auxiliary vector d(x) ∈ Rk is computed by means of

d(x) =
(
J(x)Dl(x)2Du(x)2J(x)T

)∗
e, (2.54)

where e is the vector of all ones and A∗ denotes the adjoint matrix of A ∈ Rk×k.6

Finally, the diagonal scaling matrices are defined as follows

6AA∗ = A∗A = det(A)I, where I denotes the identity matrix.
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(Dl(x)α)ij =

{
(xi − li)α, i = j

0, i 6= j
, i, j ∈ {1, . . . , n},

(
Du(x)β

)
ij

=

{
(ui − xi)β, i = j

0, i 6= j
, i, j ∈ {1, . . . , n},

(2.55a)

(2.55b)

for some α, β > 0.

Here, a point x̂ ∈ B is said to be a critical point of the box constrained problem if
the matrix

(
J(x̂)Dl(x̂)2Du(x̂)2J(x̂)T

)
∈ Rk is singular. Note that for points strictly

inside the box, the last condition holds if and only if the Jacobian matrix is rank-
deficient. Thus, a possible stop condition could be to check whether the determinant
of the above matrix falls under a small threshold. On the other hand, the step length
is chosen by a bisection strategy to ensure that the next iteration point is dominant
and remains inside the box.

So far, we are not aware of any integration of this method into an EA or continu-
ation strategy. Alternatively, one can run multiple instances of the program starting
at different points with the aim of obtaining several solutions. An improved version
of this approach is given in [81].

Newton, Quasi-Newton and Steepest Descent Methods This space is ded-
icated to the multi-objective versions of three well-known algorithms for SOPs—the
Newton, quasi-Newton (QN) and steepest descent (SD) methods—since they share
many ideas that can be unified in a single theory.

We start with the Newton method [16] which seems to be the best choice when
we have the exact Hessians of all functions available. The core of the method is to
solve—at each iteration of a line search—one minimization subproblem to obtain the
direction to follow. The indicated subproblem reads as

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νT∇2fj(x)ν ≤ δ, j = 1, . . . , k,

(2.56)

where ν ∈ Rn stands for the search direction. Note that the left hand side of each
constraint in (2.56) is a quadratic approximation of each function decrease, so basi-
cally we are trying to reduce all objectives as much as possible where δ is a measure
of the expected decrease. Assuming that all Hessians are positive definite, the sub-
problem (2.56) is convex and has a unique minimizer, which is a descent direction
provided that x is noncritical. A cheap stopping criterion for the method is supported
by Proposition 2.2.1.
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Proposition 2.2.1
For each x ∈ Rn the following statements are equivalent:

(a) the point x is noncritical,

(b) ν 6= 0, and

(c) δ < 0,

where ν and δ are respectively the solution and the minimum function value of the
direction subproblem (2.56).

Then, for zero values of δ, ν is also zero and x is a critical point. Thus, we can stop
when

δ ≥ −ε, (2.57)

where ε > 0 is a small tolerance (generally taken as ε = 5
√

eps). A suggested idea
in [16] for the step length control is to take a t > 0 such that it satisfies the Armijo
condition [46] taken componentwise

F (x+ tν) ≤ F (x) + ctδe, (2.58)

where e ∈ Rk is the vector of all ones and 0 < c < 1 is a constant (generally taken as
0.1). The second term in the right hand side of (2.58) is inferred taking into account
that

δ = max
j=1,...,k

∇fj(x)Tν +
1

2
νT∇2fj(x)ν, (2.59)

and by the positive definiteness of the Hessians it follows that

∇fj(x)Tν ≤ δ, ∀j = 1, . . . , k. (2.60)

Putting all together and under suitable local assumptions, full Newton steps are al-
ways accepted and the generated sequence converges superlinear (or at most quadrat-
ically)7 to a local solution. Last, in order to see the relation to the single-objective
version of the method, we utilize the Lagrangian of the subproblem (2.56) that reads
as

L((ν, δ), α) = δ +
k∑
j=1

αj

(
∇fj(x)Tν +

1

2
νT∇2fj(x)ν − δ

)
(2.61)

with derivatives

∇νL =
k∑
j=1

αj
(
∇fj(x) +∇2fj(x)ν

)
= 0, and

∇δL = 1−
k∑
j=1

αj = 0.

(2.62a)

(2.62b)

7Additionally, for quadratic convergence, all Hessians must be Lipschitz continuous.
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In particular, from (2.62a) we obtain

ν = −

(
k∑
j=1

αj∇2fj(x)

)−1 k∑
j=1

αj∇fj(x) (2.63)

which coincides with the Newton direction for the SOP resulting from weighting the
objectives by the a-priori unknown Lagrange multipliers. Also see that in case we are
dealing with a single-criterion, α = 1 and ν matches the Newton direction for SOPs
(2.24).

A clear limitation of this approach is the requirement of the exact Hessians of
all objectives. Although, if we don’t have second-order information available, we can
choose between the QN [17] and the SD [18] methods for MOPs. The first one looks
very similar to the Newton approach. At each iteration it solves

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νTBj(x)ν ≤ δ, j = 1, . . . , k,

(2.64)

that differs only from the Newton direction subproblem in the approximation of each
Hessian by a BFGS update (2.27). However, the trouble here is that the uniqueness
of the solution depends on the positive definiteness of the Hessians. One way out for
SOPs is to impose the Wolfe conditions on the step length control (defined by the
equations (2.19) and (2.20)), but these requirements may be too hard (not to say
impossible) to satisfy for many objectives simultaneously. Thus, as for the Newton
method, it is assumed that the problem is strictly convex. It is also worth mentioning
that some other advantages of the QN framework are not (yet) available for MOPs.
This is the case of the reduction of the computational complexity of the iterations:
for SOPs there is a reduction from O(n3) to O(n2) while for MOPs the complexity
of the direction subproblem is not simplified. Still, another similarity to the single-
objective version arises: a Hessian-free approach comes with the cost of a convergence
downgrade from quadratic to superlinear8.

On the other hand, we can completely disregard the second-order information of
the problem and use the SD [18] method. This time the subproblem to solve for a
descent direction is given by

min
(ν,δ)∈Rn×R

1
2
‖ν‖2 + δ

s.t. ∇fj(x)Tν ≤ δ, j = 1, . . . , k,
(2.65)

where the term 1
2
‖ν‖2 is added to the objective function in order to keep the problem

bounded. With this, the convergence rate is reduced to linear but the computations
become more efficient. Note that the SD direction subproblem belongs to the category

8Assuming that the derivatives are Lipschitz continuous.
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of QP while the Newton and QN respective subproblems fit into QCLP which is a
more general class. Finally, the Lagrangian of (2.65) reads as

L((ν, δ), α) =
1

2
‖ν‖2 + δ +

k∑
j=1

αj
(
∇fj(x)Tν − δ

)
(2.66)

with derivatives

∇νL = ν +
k∑
j=1

αj∇fj(x) = 0, and

∇δL = 1−
k∑
j=1

αj = 0,

(2.67a)

(2.67b)

from which we obtain
ν = −JTα. (2.68)

Further, the dual problem of (2.65) is given by

max
α∈Rk

−1
2
αTJJTα

s.t.
∑k

j=1 αj = 1,

αj ≥ 0, j = 1, . . . , k.

(2.69)

Observe that the dual formulation of the SD direction subproblem is equivalent to
the direction taken by the method of Schäffler et al. [19] explained earlier.

From these three methods, the SD is the only one that can handle inequality con-
straints. For this, a LP version of (2.65) is utilized given by

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν ≤ δ, j = 1, . . . , k,
∇gj(x)Tν ≤ δ, j ∈ I,
‖ν‖∞ ≤ 1.

(2.70)

Note that the change consists of removing the quadratic term of the objective func-
tion in (2.65) and adding one more constraint to keep the problem bounded. By
the choice of the infinity norm, the additional inequality is also linear. Hereby,
I = {j | gj(x) > −ε, j = 1, . . . ,m} denotes the set of active and nearly active
constraints where ε > 0 is a small value. Further, the step length control has to
satisfy the Armijo condition while keeping the subsequent iterations feasible.

As far as we know, neither of these methods has been coupled into a global ap-
proach such as EAs or subdivision or cell mapping techniques, leaving room for future
research in these lines of investigation. This is also the case for the development of
continuation methods based on these strategies, which forms an important part of
the contributions of this work.
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Continuation Methods

The prime motivation to apply continuation for the numerical treatment of MOPs
comes from the fact that under certain mild assumptions, it can be induced from the
KKT conditions that the Pareto set (respectively its image, the Pareto front), of a
continuous MOP is a piecewise continuous (k−1)-dimensional manifold [28], where k
is the number of objectives. Thus, specialized techniques capable to perform a search
along the manifold of solutions—if one (or more) solution is at hand—promise to be
very efficient applied to this context.

Continuation methods can be seen from the point of view made in [38, 37]. That
is, the set of methods and techniques for the numerical approximation of a curve9

implicitly defined by an undetermined system of equations. A particularly attrac-
tive branch—because of their robustness and flexibility—are the so called predictor
corrector (PC) or pseudo arc length continuation methods, which also constitute the
spine of this work. Thus, we will first state the main steps of PC techniques for
tracing one-dimensional solution sets of underdetermined nonlinear equations. For a
more thorough discussion as well as extensions to higher dimensional solution sets we
refer e.g. to [38, 37, 85]. Assume we are given the equation

H(x) = 0, (2.71)

where H : RN+1 → R
N is sufficiently smooth. If x is a solution of (2.71) with

rank(H ′(x)) = N , then it follows by the Implicit Function Theorem (IFT) [28] that
there exist a value ε > 0 and a curve c : (−ε, ε)→ RN+1 such that c(0) = x and

H(c(s)) = 0, ∀s ∈ (−ε, ε). (2.72)

Differentiating (2.72) leads to

H ′(c(s)) · c′(s) = 0. (2.73)

Hence, tangent vectors c′(s) (and thus, linearizations of the solution curve at x = c(s))
can be found via computing kernel vectors of H ′(x). This is done in literature by a
QR factorization [86] of H ′(x)T : if

H ′(x)T = QR = (q1, . . . , qN+1)R (2.74)

for an orthogonal matrix Q ∈ R(N+1)×(N+1) and a right upper triangular matrix R ∈
R

(N+1)×N , then the last column vector qN+1 of Q is such a desired kernel vector. The
orientation of the curve (note that both +qN+1 and −qN+1 are desired linearizations,
but point in opposite directions) can be inferred by monitoring the sign of

det

(
H ′(x)
qTN+1

)
. (2.75)

9The definition in [38, 37] is given for problems with one-dimensional solution sets. For problems
with higher dimensional solution sets, ‘curve’ can simply be replaced by ‘manifold’ in the definition.
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            curve to follow: 𝑐 𝑠    

            predictor  point 

            corrector point 

  

Figure 2.7: Scheme followed by predictor corrector methods.

More specifically, we change the sign of the computed predictor whenever the deter-
minant in (2.75) is negative. Having the vector pointing along the linearized solution
curve, a movement in that direction can be performed leading to a predictor point p.
In a following corrector step, one can get back to c by using (2.71) e.g. via a Gauss-
Newton or a Levenberg-Marquardt method [58] starting with p. In this manner, a
sequence of solutions that are aligned along the curve H−1(0) can be obtained. Fig-
ure 2.7 provides a more illustrative example of the working principle of PC methods.

The relation between the classical continuation theory and multi-objective opti-
mization is thus easily derived: the first-order optimality conditions for MOPs (see
Theorem 2.1.2) lead to an undetermined system of equations (that we call indis-
tinctly KKT system or KKT equations). Thus, applying the IFT on the underlying
system and under some mild conditions, it is inferred that the optimal solution set is a
(k− 1)-dimensional object that can be tracked e.g. by PC methods. A more detailed
argument on this subject is provided in [28]. The algorithms we review next closely
follow the spirit of the continuation theory (in particular, PC methods) although not
all are oriented to explicitly solve the KKT system of equations. We separate them
into three groups: the classical methods that focus on the solution of the KKT sys-
tem, the scalarization-based methods which formulate a scalar subproblem—based on
the objectives and the constraints of the original MOP—whose corresponding KKT
system has to be solved, and the gradient-based methods that use the gradients to
predict a suitable point that later is corrected until an optimal solution is found. The
last two groups—though implicitly—end up with a set of solutions for the KKT equa-
tions where the Lagrange multipliers may (if necessary) be determined a-posteriori.
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Before getting into the details of the specific methods, we would like to empha-
size that these are very efficient procedures in terms of function evaluations, though,
mainly because of its local nature. This implies that we can get trapped into local
optima or miss sections of the solution set if it is not connected. Thus, the necessity
of hybridizing local methods with global strategies arises once again for the solution
of MOPs. So far, continuation methods have been used as recovering operators ap-
plied after global subdivision techniques with the aim to repair sections of the front
that may has been discarded. See for instance [34] which is mentioned later in the
appropriate context. A different approach is based on a Delaunay tessellation of
the search space [87, 88] which utilizes simplices instead of hypercubes—as done by
cell mapping and subdivision techniques—to discretize the search space. Another
alternative is to combine continuation strategies with metaheuristics. One example
that integrates a MOEA, a recovering technique and a continuation approach is the
Evolutionary Recover Algorithm (ERA) proposed in [35]. Additionally, a very at-
tractive idea was developed in [36] that consists of a curve-based MOEA combined
with a gradient-based PC method (see below). However, continuation methods for
MOPs are, in general, not derivative-free. To our knowledge, a PC algorithm based
on the derivative-free local search given in [22] and a gradient-free version of the DS
method [23] are the only proposals in this field. Both strategies are integrated into a
metaheuristic.

Classical Continuation Methods We call classical continuation methods those
strategies based on the use of standard continuation routines on the system of equa-
tions defined by the first-order optimality conditions for MOPs. According to our
knowledge, there are only two approaches in this category: the method of Hillermeier
(immediately described) and the approach of Martin et al. [29] which extends the for-
mer to handle inequality constraints, although, restricted to bi-objective optimization
problems (BOPs).

The Method of Hillermeier A direct application of PCs on the KKT equa-
tions of a MOP was first introduced by Hillermeier in [28]. Consider the map

F̃ (x, α, λ) =


k∑
j=1

αj∇fj(x) +
p∑
j=1

λj∇hj(x)

h(x)
k∑
j=1

αj − 1

 = 0. (2.76)

The set of KKT points of a nonlinear equality constrained MOP is contained in the
zero set of F̃ which motivates the continuation along F̃−1(0). For BOPs, the method
proceeds as the general technique described above but with the following change:
instead of computing the determinant given in (2.75) to orientate the continuation,
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the author proposes to check whether the condition

[X − X̃ ] · q ≥ 0 (2.77)

is met, where X = (x, α, λ) ∈ Rn+k+p is the current corrector point, X̃ is the previously
computed solution, and q is the tangent vector. If that is not the case, the direction
of q is flipped. Then, a suitable step length that guarantees a uniform spread of
solutions on the front is sought. That is, for two consecutive solutions x̃ and x, it is
desirable that

‖F (x)− F (x̃)‖ ≈ τ, (2.78)

where τ > 0 is a user specified value. For this, one can take the step size

t =
τ

‖Jq‖
(2.79)

inferred from linear approximations of the objectives—by first-order Taylor expan-
sions [89]—which is close to reality for small step sizes (τ � 1). Additionally,
some conditions need to be assumed here in order to apply the IFT to F̃ : the
LICQ constraint qualification must hold as well as the regularity of the matrix(∑k

j=1 αj∇fj(x) +
∑p

j=1 λj∇hj(x)
)

in (2.76). The multi-objective case is handled

by taking kernel vectors of F̃ ′ obtained via a QR factorization [86] of F̃ ′T . Given that

F̃ ′(x, α, λ)T = QR = (q1, . . . , qn+p+k)R (2.80)

for an orthogonal matrix Q ∈ R(n+k+p)×(n+k+p) and a right upper triangular matrix
R ∈ R(n+k+p)×(n+p+1), the last k− 1 column vectors of Q forms an orthonormal basis
of the linearized solution set in the compound (x, α, λ)-space. Thus, one can e.g.
move in the directions of the computed orthonormal vectors qn+p+2, . . . , qn+p+k to
obtain predictors that are grid-aligned along the tangent space of the optimal mani-
fold in decision space. A problem of this election, though, is that after mapping the
computed predictors to the objective space, the grid-alignment is probably not kept.
Finally, the continuation algorithm is stopped if one of the Lagrange multipliers αj,
j ∈ {1, . . . , k} is negative, which is indicative that a non-optimal solution has been
found.

The Hillermeier algorithm has been successfully applied in [34] within a global
subdivision technique to recover missing parts of the front that may have been dis-
carded during the subdivision phase. Recall that subdivision strategies are based
on successive partitions of the space into boxes that may be removed if no solution
is found within them. Nevertheless, this cut-off test does not guarantee that boxes
containing optimal points are not excluded. Thus, after the subdivision phase, a re-
covering process is performed consisting of a continuation algorithm starting at the
solutions corresponding to the retained set of boxes.

CINVESTAV Computer Science Department



40 Chapter 2

On the other hand, one of the main drawbacks of classical approaches is the re-
quirement of the exact Hessians of all the functions involved—objectives as well as
equalities—followed by a lack of strategies to handle inequality constraints. To over-
come the former limitation, a modification is proposed in [90] based on successive
approximations of the tangent space. This proposal allows finding promising pre-
dictor points with lower effort (in particular for high dimensional models) since no
Hessian of the objectives have to be calculated. Additionally, an extension to tackle
inequality constrained problems is given by Martin et al. in [29] which employs a
modification of ParCont [91] a rigorous PC method based on interval analysis and
parallelotope domains. The fundamental idea of the suggested procedure rests on a
certified continuation on the first-order conditions of optimality coupled with an active
set management strategy inspired by the method of Rakowska et al. [27] (explained
below) which is, however, restricted to bi-objective problems.

Scalarization-based Continuation Methods This class of methods is (so far)
mainly concerned with BOPs and can be seen as a particular instance of parametric
optimization. The idea is to transform the MOP into a SOP by inducing an additional
parameter that controls the trade-off between the optimal solutions (as in scalarization
methods). The difference here lies in the way the resulting parametric SOP is treated:
instead of solving several instances of the SOP for a sequence of a-priori computed
parameters, a continuation-like method is used to track the solution manifold of the
parametric SOP.

The Method of Rakowska, Haftka and Watson One interesting approach
in this class is proposed by Rakowska et. al in [27] which is based on a previous
work by the same authors on parametric optimization [92]. The method relies on
a scalarization subproblem based on the weighted sum of the objectives as defined
below.

min
(x,α)∈Rn×R

(1− α)f1(x) + αf2(x)

s.t. gj(x)≤ 0, j = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p.10

(2.81)

The goal here is to trace the path of KKT points of (2.81) for different values of the
parameter α ∈ [0, 1]. This task is achieved by a PC approach on the KKT system
of equations of (2.81) combined with a strategy to identify and maintain the set of
active constraints. The latter is specially important since the solution curve is not
necessarily smooth at points corresponding to changes in the active set. Thus, each
smooth segment of the optimal curve is detected by solving the reduced KKT system

10This method was not originally proposed to handle equalities but they can be included with no
additional modification. Furthermore, for the sake of simplicity, the box constraints are assumed to
be general inequalities.
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of equations involving only the active constraints:

(1−α)∇f1(x) + α∇f2(x) +

p∑
j=1

λj∇hj(x) +
∑
j∈I

γj∇gj(x) = 0,

hj(x) = 0, j = 1, . . . , p,

gj(x) = 0, j ∈ I,

(2.82a)

(2.82b)

(2.82c)

where I = {j | gj(x) > −ε, j = 1, . . . ,m} denotes the set of active and nearly
active constraints for a small tolerance ε > 0. The logic behind this strategy is
that the active constraints in each smooth segment are fixed, so they can be treated
as equalities. Then, in order to detect switching points (transition points to a new
segment), it is necessary to identify if:

– a previously positive Lagrange multiplier γj, j ∈ {1, . . . ,m} becomes zero, or

– a previously negative inequality gj, j ∈ {1, . . . ,m} becomes zero.

Since it is known that the Lagrange multipliers associated with inactive constraints
should be zero, the first item may be indicative that one of the current active con-
straints becomes inactive. The second item is associated with the opposite scenario:
when one of the inactive constraints becomes active. In such cases, it is necessary to
restart the continuation algorithm with a new set of active constraints, although, a
special analysis should be made in cases for which both conditions are satisfied: γj
and gj become equal to zero for the same index j ∈ {1, . . . ,m}. A better discussion
on how to handle different types of singularities is discussed in [93, 92].

The orientation of the path following is given by the sign of ∂α/∂s where s is the
arc length of the curve. Finally, second-order optimality conditions are utilized to
determine whether the solutions of the KKT system are indeed minima, in which
case we can decide either stop the procedure or to follow the critical points until the
solutions become optimal again. In spite of the fact that this method can satisfactory
handle inequality constraints, it is restricted to convex BOPs with known Hessians,
which is, indeed, a disadvantage.

The Method of Pereyra, Saunders and Castillo The prime goal of this
procedure [32] is to provide an equispaced Pareto front discretization for BOPs (same
goal as the NBI design). The method follows the idea of formulating equispacing con-
straints from a previous paper [94] and extend it for the management of constrained
problems. Here, an arc length continuation is performed with a parameter α and an
additional equality constraint, one that is explicitly designed to request an equally

CINVESTAV Computer Science Department



42 Chapter 2

spaced outcome. Specifically, the task is to solve the subproblem

min
(x,α)∈Rn×R

(1− α)f1(x) + αf2(x)

s.t. ‖F (x)− F (x̃)‖2 = τ 2,
gj(x)≤ 0, j = 1, . . . ,m,
hj(x) = 0, j = 1, . . . , p,
l ≤ x≤ u,
0 ≤ α≤ 1,

(2.83)

where x̃ is the previously computed solution, and τ > 0 is an estimation of the dis-
tance between the consecutive solutions. Note that the subproblem (2.83) is a convex
combination of the objectives, which is well-known by its difficulty to select α-values
that generate an evenly distributed set of solutions, though, it is precisely this issue
what the equispacing constraint is intended to handle.

Just as the NBI method, this strategy requires the individual global minima of each
objective, but this time to estimate the space between points on the front, given by

τ =
c‖F ∗1 − F ∗2 ‖

l − 1
, (2.84)

where c ≥ 1 and l is the number of desired solutions. Then, the method stops after
performing exactly l−2 steps. Here, one complication arises from our ignorance of the
exact arc length: we may fall too short of or overshoot the end-point. Furthermore,
the equispacing constraint provides no insight of the orientation of the continuation,
thus, in order to prevent going backward we need to impose constraints on the ob-
jectives (e.g., defining the one that decreases certainly provides an orientation).

In a more direct comparison to the NBI and the NNC methods, a clear advantage is
the non-necessity of an a-priori known set of uniformly distributed weights. Instead,
the parameter α is implicitly determined at each iteration. However, extending this
approach to the general case would be clearly more challenging: (i) it is also required
an ordering of the subproblems (at least defining a previous solution is mandatory),
(ii) the complexity of the subproblems increases since the parameter α augments its
dimension and, (iii) additional distance constraints would be necessary. Again, no
second derivatives of the functions are crucial, but the inclusion of the equispacing
constraint may turn the subproblem treated here nonconvex, even if the original ob-
jectives and constraints are convex.

There are other approaches in this category that we won’t be covered here. How-
ever, we will simply highlight one of them: the ODE Normalized Normal Equality
Constraint (ODE NNEC) method [31]. The emphasis is given to this one in partic-
ular since the associated scalar subproblem is not based on the weighted sum of the
objectives. Instead, the NNC subproblem is used with a small change: the NNC (an
inequality) is replaced by a NNEC (an equality). This change makes the approach
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a kind of hybrid between the NBI and the NNC methods. Additionally, the idea of
managing the inequality constraints by tracking the active set changes is incorporated
from the method of Rakowska et al. [27]. The difference is that instead of solving the
corresponding KKT equations by classical PC methods, the authors propose to use
an ODE integrator able to detect the changes of activity of the inequalities.

Gradient-based Continuation Methods The aim of the set of methods de-
scribed here is as well to look for further solutions by following the optimal manifold
of a MOP. However, they do not (explicitly) solve the system of equations induced by
the first-order optimality conditions (as in classical continuation methods) neither use
any scalarization approach (as in scalarization-based continuation methods). Instead,
they perform a step along the front by following one of the gradients (or a linear com-
bination of them) in order to compute a promising predictor point. Then, the task is
to correct the predicted point back to the solution manifold by using exclusively the
derivatives of the objectives. This strategy leads to Hessian-free PC methods with
the additional advantage that the iterations are generally very efficient in terms of
computational time complexity and memory usage. Still, since only first-order infor-
mation is used, a great number of iterations is expected for problems with Pareto
sets showing a high degree of curvature. Thus, these methods should be seen as first
steps toward procedures with better rates of convergence.

The Directed Search Continuation Method The novel idea of the following
PC method [20] is the suggestion of a new predictor direction based on the geometry
of the Pareto front. Given a (local) Pareto point x ∈ Rn of an unconstrained MOP
and the associated Lagrange multipliers α ∈ Rk, it is known (see e.g. [28]) that
α is orthogonal to the linearized Pareto front at F (x). Thus, a movement in the
orthogonal space to α (in objective space) could be a promising search direction to
obtain new predictor points. For this purpose, a QR factorization [86] of α is utilized
such that

α = QR, (2.85)

where Q = (q1, . . . , qk) ∈ Rk×k is an orthogonal matrix and R = (r11, 0, . . . , 0)T ∈ Rk

with r11 ∈ R++. Here, the last k− 1 columns of Q forms an orthonormal basis of the
kernel space of α (since the columns of Q are orthogonal and α = r11q1 by (2.85)).
Taking the previous reasoning into account, a possible well-spread set of predictor
directions νi may be the ones that satisfy

Jνi = qi, i = 2, . . . , k.11 (2.86)

The directions in (2.86) coincide with the search direction taken by the DS method
discussed above. Thus, the computation of predictors this way can be seen as further
applications of the DS method on Pareto points, where a fixed step length—that is a
problem dependent parameter—is chosen. Next, the corrector phase is handled once

11Additionally, the negative vectors −νi, i = 2, . . . , k, are also taken.
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again by the DS method where the search direction in objective space is taken as
−α. Finally, to deal with problems with more than two objectives, a coupling of this
approach with the recovering algorithm in [34] is achieved with promising results.
The latter is, however, not necessary for the bi-objective case where the use of data
structures can be avoided. The idea is to perform first a continuation all along in the
direction to optimize one of the objectives, and then (by reversing the orientation)
a continuation all along in the direction to optimize the other objective. Thus, the
current solution is guaranteed to be new and the knowledge of the previously obtained
solutions is not required. More precisely, suppose that an improvement according to
f2 is desired. Then, in order to give the right orientation to the continuation, the
coefficient q22 is used in the computation of predictors such that

p = x− sgn(q22)tν, (2.87)

where t ∈ R++ stands for a suitable step length. The continuation is thus stopped
when the extreme vector of weights12 α = (0, 1)T is reached. If, on the contrary, f1
should be improved, we flip the sign of the second term in (2.87) and stop when the
current multipliers are near enough to α = (1, 0)T . A derivative-free version of the DS
method that exploits neighborhood information to approximate gradients has been
proposed in [23].

The Zigzag Search Method The Zigzag Search (ZS) method is another gradient-
based continuation algorithm for the numerical treatment of BOPs that was designed
in [30]. This method works by alternating the gradients of the objectives in a local
search along the front, leading to a kind of zigzag behavior capable of producing a
discretization of the solution curve. More precisely, the predictor and corrector steps
are renamed to zig and zag, which are successively executed after a previous FFPO
(find the first Pareto optimum) algorithm.

Let’s suppose that we start at a Pareto point x1 ∈ Rn and the continuation is ori-
ented to decrease f2. The zig step performs a movement following the direction of
∇f1(x1) to obtain a candidate solution p with a higher value of f1 and a lower value
of f2. Then, in a consecutive zag step, we move in the projected direction of −∇f2(p)
onto the orthogonal hyperplane to ∇f1(p), obtaining, this time, a solution x2 with a
lower value of f2 and a slightly changed value of f1. The zag step is repeated until no
further improvement can be achieved on f2 and a new Pareto optimal point is found.
Finally, the procedure stops if there are no more Pareto optimal solutions found at the
current zigzag iteration. For a better understanding, we refer the reader to Figure 2.8.

The idea proposed by this method contributes to computationally efficient implemen-
tations (note that no optimization subproblem or equation system has to be solved)
but a clear limitation here is that the steepest descent behavior of the approach may

12The terms ‘weights’, ‘Lagrange multipliers’, ‘KKT multipliers’, and just ‘multipliers’ can be
interchanged whenever it leads to no ambiguity.
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Figure 2.8: One run of the Zigzag Search method.

result in a potential loss of performance making the method zigzag along and toward
the front. Additionally, the extension to problems with more than two objectives
seems to be a non-trivial task.

There is another gradient-based PC approach for BOPs whose reading is recom-
mended since it is used in a very interesting MA. This is the Pareto Path Following
(PPF) method [36] which performs a predictor step guided by the gradient of one of
the objectives (as done by the ZS method) and then utilizes the Pareto Descent local
search [95] (a kind of steepest descent optimizer) as corrector. It also incorporates a
procedure to manage inequalities by means of gradient projections: the Pareto De-
scent Repair Operator proposed in [96]. However, the most attractive contribution
of the approach is the integration of the PPF into a curve-based MOEA. The result-
ing MA considers the disconnected fragments of the solution curve as the units of
search, where the genetic crossover combines solutions from different curves to find
undiscovered sections of the front. The role of the local search is therefore to discover
connected solutions. Additionally, two metrics are proposed to assess the performance
of the algorithm: an inter-curve coverage (interested in the discovery of every portion
of the optimal curve) and an intra-curve coverage (focused in a satisfactory sampling
of each connected portion).
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Chapter 3

The Pareto Tracer Method

In this chapter, we present a novel PC method for the treatment of MOPs where
we utilize classical continuation techniques on a map F̃ that is motivated by the
KKT equations for MOPs. More precisely, for every optimal solution x (in decision
space of a MOP) there exists an associated convex weight (or Lagrange multipliers)
α such that (x, α) satisfies the first-order conditions of optimality and that this tuple
is contained in the zero set of F̃ . In [28], F̃ is used to perform a PC method in the
compound (x, α)-space. The additional consideration of the weight space, however,
comes with a possible increase of the nonlinearity of the solution set. If, for instance,
the Pareto set is linear—which is the ideal case for PC methods since then no corrector
step has to be performed—the related solution set does not have to be linear in the
(x, α)-space leading to additional corrector steps (see the next section for such an
example). In our algorithm we utilize F̃ , but separate decision and weight space
whenever possible leading to significant savings in the overall computational cost.
For the corrector, we use the multi-objective Newton method proposed by Fliege et
al. in [16] which assumes the objectives to be strictly convex. The method is also
applicable to nonconvex problems, however, without guarantee of convergence. The
resulting PC method, the Pareto Tracer, is in principle applicable to MOPs with
any number of objectives and can be made Hessian-free via quasi-Newton or gradient
descent methods. For simplicity, we will restrict this chapter to the unconstrained
case

min
x∈Rn

F (x), (3.1)

and discuss in the next chapters problems with different types of constraints.

The remainder of this chapter is organized as follows. In Section 3.1 we address
issues related to the computation of predictor points while Section 3.2 is dedicated
to the corrector phase. In Section 3.3 we present the Pareto Tracer, and discuss
Hessian-free realizations using ideas from quasi-Newton and gradient descent methods
in Section 3.4. In Section 3.5, we show some numerical results, and finally conclude
in Section 3.6.
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3.1 Predictor

The first task for the computation of predictor points in continuation methods is
typically to determine the tangent space to the curve (or manifold) of interest at a
given solution. Let x ∈ Rn be a KKT point of (3.1) and α ∈ Rk its associated
Lagrange multipliers, that is, αj ≥ 0, j = 1, . . . , k, with

∑k
j=1 αj = 1 and

k∑
j=1

αj∇fj(x) = JTα = 0. (3.2)

Crucial for our considerations is the map

F̃ (x, α) =


k∑
j=1

αj∇fj(x)

k∑
j=1

αj − 1

 = 0 (3.3)

motivated by the KKT conditions for unconstrained MOPs (see Theorem 2.1.2). In
[28], kernel vectors of F̃ ′ are obtained via a QR factorization of F̃ ′T which yields an
orthonormal basis of the linearized solution set in the compound (x, α)-space. The
additional consideration of the weight space, however, comes with a possible increase
of the nonlinearity of the solution set. The latter is mainly due to the difference
of magnitudes between the parameters of the problem and the Lagrange multipliers
(i.e., 0 ≤ αj ≤ 1, j = 1, . . . , k). A more illustrative example is given in Figure 3.1
where the Pareto set of the BOP (3.69) is displayed together with its corresponding
values of α1. Note that while the Pareto set is a line, the augmented optimal curve in
(x, α)-space is not. Considering that predictor points are obtained through lineariza-
tions of the solution set, following the (generally nonlinear) trajectory of tuples (x, α)
will inevitably lead to the computation of correctors. Instead, moving in a tangent
direction to the Pareto set (in this case) will end up with a predictor that is already
on the desired curve, so no corrector step would be necessary.

Inspired by the previous discussion, we choose another way to proceed which
allows to separate decision from weight space yielding tangent vectors to the Pareto
set. In Chapter 2, we learned that F̃ ′ is orthogonal to the solution manifold of F̃
at a given solution point. Thus, as in [28], we are seeking for kernel vectors of F̃ ′

which are in turn tangent to the augmented optimal set. However, in order to be
able to decouple x and α, QR decompositions of F̃ ′T are replaced this time by direct
computations of kernel vectors (ν, µ) ∈ Rn+k such that

F̃ ′(x, α)

(
ν

µ

)
=

( ∑k
j=1 αj∇2fj(x) ∇f1(x) . . .∇fk(x)

0 1 . . . 1

)(
ν

µ

)
=

(
0

0

)
. (3.4)
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Figure 3.1: Pareto set of the BOP (3.69) and its corresponding Lagrange multiplier
α1.

Here, by the second equation in (3.4) we see that

k∑
j=1

µj = 0. (3.5)

Assume for now that we are given a vector µ 6= 0 such that the above property is
fulfilled. Then, we obtain by the first equation in (3.4)

k∑
j=1

αj∇2fj(x)ν = −
k∑
j=1

µj∇fj(x) = −JTµ. (3.6)

Additionally, under the requirement that the matrix

Wα =
k∑
j=1

αj∇2fj(x) ∈ Rn×n (3.7)

is regular, the vector νµ that satisfies (3.4) can be expressed as

νµ = −W−1
α JTµ. (3.8)

Let’s show next that if rank(J) = k − 1, the vector νµ is zero if and only if µ is
also zero. Since Wα is regular, we have that νµ = 0 if and only if JTµ = 0. By
the rank nullity theorem [97] dim(ker(JT )) = 1 and from the KKT conditions of
optimality JTα = 0 (see Equation (3.2)). Thus, JTµ = 0 if and only if µ = cα for
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some c ∈ R. Suppose that the previous condition is met, then by (3.5) we have that
0 =

∑k
j=1 µj = c

∑k
j=1 αj = c which implies that µ = 0. Note that by the same argu-

ment it is possible to prove that under our rank assumptions the Jacobian matrix is
not orthogonal to the linearized Pareto set.

The following discussion shows that νµ is a tangent vector to the Pareto set at x. Let

gα(x) =
k∑
j=1

αjfj(x). (3.9)

Then, a curve along the set of KKT points through x0 with associated weight α0 can
be described via

H(x, t) = ∇gα(t)(x) = 0, t ∈ R+. (3.10)

Since µ represents the change in α-space we can set α(t) = α0 + tµ, and it is thus
H(x0, t0 = 0) = 0. Consequently, for the tangent vector of H−1(0) at (x0, t0) it holds

tH(x0, t0) = −
(
∂H

∂x

)−1
∂H

∂t
= −

(
k∑
j=1

αj∇2fj(x)

)−1( k∑
j=1

µj∇fj(x)

)
= νµ. (3.11)

The second step of the predictor phase is to decide the orientation of the move-
ments along the tangent space. In order to accomplish this task, we will show im-
mediately that µ can be used to steer the search in objective space. First of all,
given a direction ν ∈ Rn in parameter space of (3.1) the corresponding movement in
objective space for infinitesimal step sizes is given by

d = Jν. (3.12)

To see this, consider the j-th component of the right hand side of (3.12):

(Jν)j = 〈∇fj(x), ν〉 = lim
t↘0

fj(x+ tν)− fj(x)

t
, j = 1, . . . , k. (3.13)

Secondly, since x is a KKT point, almost all values of ν lead to a movement along
the linearized Pareto front:

〈Jν, α〉 = 〈ν, JTα〉 (3.2)
= 0. (3.14)

Taking into account that α is orthogonal to the Pareto front [28], Equation (3.14)
implies that either Jν = 0 or a movement along the linearized front at F (x) is
performed. It is hence desired to steer the search into a direction d ∈ Rk \ {0} in
objective space such that d is orthogonal to α. Thus, the task is to find the proper
orientation vector µd ∈ Rk that satisfies

Jνµd = d. (3.15)
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If we substitute νµd in Equation (3.15) by its expression given by (3.8), we obtain

Jνµd = −JW−1
α JTµd = d. (3.16)

However, the solution of the linear system (3.16) either does not exist, or is not
unique. Recall that J is rank deficient at optimal points so it is JW−1

α JT . Let’s take

A = −JW−1
α JT ∈ Rk×k. (3.17)

Given that rank(J) = k − 1, it follows that also rank(A) = k − 1. Further, since
JTα = 0, then Aα = 0, and thus kernel(A) = span{α}. By construction d ⊥ α (i.e.,
d and α are linearly independent). Then, Equation (3.16) has one and thus an infinite
number of solutions. More precisely, suppose that µ+

d is one particular solution, e.g.,

µ+
d = A+d. (3.18)

Then, the solution of (3.16) can be expressed as

M = µ+
d +Rα =

{
µ+
d + cα | c ∈ R

}
, (3.19)

and in order to find a µd ∈M that satisfies the condition (3.5), we do

0 = eTµd = eT (µ+
d + cα) = eTµ+

d + ceTα = eTµ+
d + c, (3.20)

where e ∈ Rk is the vector of all ones. Such a solution is therefore

µd = µ+
d − (eTµ+

d )α. (3.21)

It is not required, however, to explicitly determine µd. Note that

νµd = −W−1
α JTµd = −W−1

α JT (µ+
d + cα) = −W−1

α JTµ+
d − cW

−1
α JTα

= −W−1
α JTµ+

d .
(3.22)

We can thus compute a set of vectors ν1, . . . , νk−1 such that the corresponding move-
ments Jνi, i = 1, . . . , k − 1, in objective space form an orthonormal basis of the
linearized Pareto front at F (x): let

α = QR = (q1, . . . , qk)R (3.23)

be a QR factorization of α, where qi is the i-th column vector of Q, then set

di = qi+1, i = 1, . . . , k − 1, (3.24)

to obtain an orthonormal basis of the tangent space to the Pareto front. Later, for
each direction di in objective space, we can determine µ+

di
via (3.18) to be utilized in

the computation of the corresponding νi = νµdi by (3.22). If it is alternatively desired
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to obtain orthogonal vectors that span the linearized Pareto set, one can e.g. realize
this via computing an orthonormal basis of the image of

M = −W−1
α JT ∈ Rn×k. (3.25)

Note that since Mµ is tangent to the Pareto set for any µ 6= 0 such that
∑k

j=1 µj = 0,
it follows that M spans the tangent space to the Pareto set. Finally, we summarize
the results of the above discussion in the following theorem.

Theorem 3.1.1
Let x be a KKT point of (3.1) with associated Lagrange multipliers α ∈ Rk. Further,
let rank(J) = k − 1, and Wα be regular. Let d1, . . . , dk−1 be as in (3.24), and µ+

di
as

in (3.18). Then, the vectors

νµdi = −W−1
α JTµ+

di
, i = 1, . . . , k − 1, (3.26)

point along the linearized Pareto set at x such that the vectors

Jνµdi , i = 1, . . . , k − 1, (3.27)

form an orthonormal basis of the linearized Pareto front at F (x).

For the special case k = 2 there are—after normalization—only two choices for µ
with the property (3.5):

µ(1) = (1,−1)T and µ(2) = (−1, 1)T . (3.28)

If both objectives are strictly convex, we can directly steer the search without using
(3.18): given µ, we have for the corresponding movement in objective space

dj = (Jνµ)j = −∇fj(x)TW−1
α JTµ

= −
2∑
i=1

µi∇fj(x)TW−1
α ∇fi(x).

(3.29)

By the strict convexity of the objectives it follows that W−1
α is positive definite.

Further, since x is a KKT point of a BOP, the two objective gradients point into
opposite directions. That is, there exists a c < 0 such that ∇f2(x) = c∇f1(x). Thus,
we obtain for the first component of d

d1 = −µ1∇f1(x)TW−1
α ∇f1(x)− µ2∇f1(x)TW−1

α ∇f2(x)

= −µ1∇f1(x)TW−1
α ∇f1(x)︸ ︷︷ ︸

>0

−µ2 c︸︷︷︸
<0

∇f1(x)TW−1
α ∇f1(x)︸ ︷︷ ︸

>0

. (3.30)

Evaluating the choices for µ in (3.28) we see that

d1 = c1µ1, (3.31)
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Figure 3.2: For BOPs, we can orientate the continuation into two possible ways: to
minimize the first objective (left up), or to minimize the second one (right down).

where c1 < 0. Analog, we obtain d2 = c2µ2, for a c2 < 0. Since d 6= 0 it follows by
(3.14) that a movement along the linearized Pareto front is performed. More precisely,
for µ(1) we obtain a ‘left up’ movement along the (local) Pareto front and for µ(2) a
‘right down’ movement orthogonal to α. See Figure 3.2 for a graphical description.

Finally, to obtain the predictor p = x + tνµ (for a given µ) at the current KKT
point x, we need to select the step size t. In this study we are particularly interested
in an evenly distributed set of solutions along the Pareto front. That is, at least for
two consecutive solutions x̃ and x we want that

‖F (x̃)− F (x)‖ ≈ τ, (3.32)

where τ > 0 is a user specified value. For this, we follow the suggestion made in [28]
and take the step size

t =
τ

‖Jνµ‖
. (3.33)

3.2 Corrector

The goal of the corrector phase is to ensure that the resulting solution is on the effi-
cient set (i.e., it is at least a KKT point). However, a predictor cannot—in general—
guarantee even local optimality, unless of course, we are following a flat Pareto set.
Therefore, our new target is to bring (or correct) that predicted point back to the
solution manifold which is certainly not an easy assignment. Nevertheless, due to the
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smoothness assumptions we consider in this study, a good property of predictors is
that they remain close to the Pareto set provided that we do not move too far along
the tangent. Then, it seems that the set of methods that fit best in this context are
those based on descent directions (see Chapter 2) since they do not use any ordering
or scalarization of the objectives avoiding the use of extra parameters. Moreover,
they are exclusively designed to find only one optimal solution—hopefully the closest
one to the initial point—so running one of these algorithms starting at the predictor
promises to be an efficient alternative to find such a (corrected) optimal solution.
Here, we have decided to take the Newton method [16] for unconstrained MOPs as
corrector since it is (to our knowledge) the only one that can handle second-order
information. Another option could be minimizing the norm of the map F̃ as done
e.g. in [28] but one problem of this choice is the tight coupling between parameter
and weight space and the possible convergence to non-optimal solutions (e.g., one
with negative Lagrange multipliers or that maximizes the objectives).

Having made our selection, we dedicate this section to several details related to
the implementation of the Newton method. As we saw in the previous chapter, the
Newton direction is defined as the solution of

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νT∇2fj(x)ν ≤ δ, j = 1, . . . , k,

(3.34)

where δ serves as a measure of the expected decrease in objective space produced by
a line search in direction ν in parameter space. Particular attention should be paid
to the additional variable δ which plays an important role here since it is used in the
step length control and the stopping criteria. More precisely, an acceptable step size
may be decided by a backtracking procedure based on a bisection strategy together
with a modification of the (componentwise) Armijo condition. Basically, the idea is
to take a t > 0 such that it simultaneously satisfies

F (x+ tν) ≤ F (x) + ctδe, (3.35)

where e ∈ Rk is the vector of all ones and 0 < c < 1 is a constant (generally taken as
c = 0.1). In case the above condition is not met by the current value of t, it should
be divided by two and, as a recommendation, the initial step length t = 1 should
always be taken. Finally, the method is stopped when no more progress is expected
in objective space (i.e. δ = 0 which implies that ν = 0). A more relaxed stopping
criteria can be defined as

δ ≥ −ε, (3.36)

where ε > 0 is a small tolerance (generally taken as ε = 5
√

eps). In [16], it has been
shown that under suitable local assumptions (the objectives are strictly convex and
the second derivatives are Lipschitz continuous) full Newton steps are always accepted
and the generated sequence yields quadratic convergence toward a KKT point1.

1The same rate of convergence is also observed by applying a Gauss-Newton or Levenberg-
Marquardt method to minimize the norm of the map F̃ as done e.g. in [28].
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We will, in the following, proceed as one step of a standard line search strategy:
starting at a given point x ∈ Rn, we will focus first in determining a search direc-
tion ν ∈ Rn, and later in computing a new iteration point by performing a suitable
step (t > 0) along the given direction (unless, of course, the stop condition is satis-
fied). Our first task is thus to solve the subproblem (3.34) that we will call Newton
direction subproblem (NDS). Note that this problem is in the category of quadrati-
cally constrained quadratic programming (QCQP), o more specifically, quadratically
constrained linear programming (QCLP).2 One way to handle such problems is by
shifting them to second-order cone programming (SOCP) to be solved by specialized
primal-dual interior point methods. Recall that SOCP focuses on minimizing a linear
function subject to second-order (Lorentz) cone constraints. Hence, this area deals
with problems of the form

min
x∈Rn

fTx

s.t. ‖Ajx+ bj‖ ≤ cTj x+ dj, j = 1, . . . , k,
(3.37)

where f, cj ∈ Rn+1, Aj ∈ R(nj−1)×(n+1), bj ∈ Rnj−1 and dj ∈ R. Consequently, our
aim is now to transform the NDS into the form required by (3.37). To accomplish
this, we define the minimization problem

min
(ν,δ)∈Rn×R

(
0, . . . , 0, 1

)( ν

δ

)
= δ

s.t.

∥∥∥∥∥
(

1
2
∇fTj −1

2

1√
2
LTj 0

)(
ν

δ

)
+

(
1
2

0

)∥∥∥∥∥ ≤ (− 1
2
∇fTj , 12

)( ν

δ

)
+

1

2
, j = 1, . . . , k,

(3.38)

where LjL
T
j = ∇2fj(x) and ∇fj = ∇fj(x). Note that (3.38) belongs to SOCP with

f = (0, . . . , 0, 1)T ∈ Rn+1,

Aj =

(
1
2
∇fTj −1

2

1√
2
LTj 0

)
∈ R(n+1)×(n+1),

bj = (1/2, 0, . . . , 0)T ∈ Rn+1, cj = (−1/2∇fTj , 1/2)T ∈ Rn+1, and dj = 1/2 ∈ R. Note
also that both the NDS and the problem (3.38) have the same objective function.
Then, the equivalence between them depends on the equivalence between both sets
of constraints as shown below:

2Actually, every QCQP can be transformed to a QCLP by the standard trick of adding one more
variable and one more constraint.
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∥∥∥∥∥
(

1
2
∇fTj −1

2

1√
2
LTj 0

)(
ν

δ

)
+

(
1
2

0

)∥∥∥∥∥ ≤ (− 1
2
∇fTj , 12

)( ν

δ

)
+

1

2∥∥∥∥∥∥
 ∇fTj ν−δ+1

2

1√
2
LTj ν

∥∥∥∥∥∥ ≤ −∇f
T
j ν + δ + 1

2

(∇fTj ν − δ + 1)2

4
+

1

2
νTLjL

T
j ν ≤

(−fTj ν + δ + 1)2

4
1

2
νT∇2fj(x)Tν ≤ δ −∇fj(x)Tν

∇fj(x)Tν +
1

2
νT∇2fj(x)Tν ≤ δ.

One important detail here is that in order to cast the NDS to SOCP, it is necessary
to perform a Cholesky decomposition of all Hessians to obtain the set of Lj ∈ Rn×n

such that LjL
T
j = ∇2fj(x) for all j = 1, . . . , k. However, in practical implementa-

tions of Newton methods it is a common practice to transform the Hessian to keep
it positive definite. In our context, the positive definiteness of the Hessians is also
a requirement for the NDS to be convex and have a unique minimizer. One way to
achieve such transformations is by means of modified Cholesky decompositions, so it
may be possible that Hessian factorizations be anyway a necessary task.3 With this
purpose, we choose the algorithm of Gill, Murray and Wright [55].

Another aspect to have in mind when solving the NDS is that we need the Lagrange
multipliers related to the corrector x∗ for the computation of the tangent to the Pareto
set and subsequently the next predictor(s) (see Equation (3.8)). Recall that the dual
problem of (3.37) is given by

max−bTu− dTv
s.t. ATu+ CTv = f,

‖uj‖ ≤ vj, j = 1, . . . , k,
(3.39)

with variables uT = (uT1 , . . . , u
T
k ), where uj ∈ Rnj−1 and v ∈ Rk. Further, it is

AT = (AT1 , . . . , A
T
k ) and CT = (c1, . . . , ck). Here, it is easy to see (from the first-order

optimality conditions) that some of the dual variables of the NDS at x∗ coincide with
the multipliers coming from the KKT conditions of the considered MOP at x∗. The
same also applies to the dual variables of the problem (3.38) since (as shown above) it
is equivalent to the NDS. More precisely, at the last iteration of the Newton method,
one can set

αj = vj, j = 1, . . . , k, (3.40)

which are required for computing (later) tangent vectors to the Pareto set at x∗ (see
Equation (3.8)). Alternatively, one can deal with the dual problem (3.39) and ask

3Hessian modifications do not guarantee the convergence of the Newton method. Nevertheless,
such modifications do ensure that the resulting ν is a descent direction provided that x is noncritical.
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the solver for the primal variables ν and δ.4 In our implementations, we have chosen
the latter approach since (3.39) fits better in the standard input accepted by SeDuMi
[98, 99], the solver of our preference. There are other options as SDPT3 [100, 101] but
in our experiments we have found that SeDuMi is faster, though, SDPT3 is reported
as more reliable. Another non-free software packages that can deal with SOCP are
Gurobi [102] and MOSEK [103]. Finally, an alternative much easier to use is CVX
[104, 105] that was designed as a modeling system for convex programming which
does not require a fixed format for the input. CVX is capable to automatically con-
vert the problem from its original form (as e.g. the form of the NDS) into the format
required for any of the solvers we previously mentioned.5 However, we only used this
choice at the earlier stages (as a proof of concept) since this is the slowest option
probably due to the on the fly conversion feature.

Our main concern when deciding to use the Newton method as corrector was the
computational cost of one iteration of this method compared to one iteration of the
Gauss-Newton or Levenberg-Marquardt methods used to minimize the norm of F̃ .
In general, primal-dual interior point methods for SOCP are slower, although they
can be solved as well in polynomial time. Strictly speaking, no formal asymptotic
bounds for the complexity of SOCP optimizers are usually available and, if they exist,
are overly pessimistic. In practice, the treatment of special problem structures (e.g.,
sparsity) often allows faster running times and, in general, the observed speed is much
better than the theoretical worst case. Moreover, no formalism has been established
so far about the asymptotic lower bound for such methods. For all of these reasons
and considering that the Newton method has better theoretical properties than solv-
ing the system of equations F̃ , we have decided to use it as corrector and consider
the computational cost in terms of function evaluations. A more thorough study on
this topic is encouraged for a future work.

Once that we have the search direction, we can compute a new iteration point
x̄ ∈ Rn such that

x̄ = x+ tν, t > 0, (3.41)

and continue in this manner until the stop condition is satisfied. Due to numerical
issues, it may be convenient to set a maximum number of iterations N ∈ N (where
N stands for the set of strictly positive natural numbers). Furthermore, we can also
establish a threshold ε (that we take as ε = eps) to stop the execution when the
absolute change in parameter space is unimportant. No further discussion concerning
the implementation of the step length control or the stopping criteria is considered
necessary so we immediately proceed to illustrate the pseudo code of the Newton
method for unconstrained MOPs in Algorithm 1. Following, in Algorithm 2, we show
the pseudo code of a bisection backtracking strategy based on the Armijo condition.

4Recall that in SOCP the dual of the dual is the primal. Then, to obtain the final expression of
the dual problem, we only need to substitute A, b, C and d in (3.39) by their formulas given above.

5The conversion can only be successfully achieved if the convexity of the problem can be verified.
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Algorithm 1 Newton method for unconstrained MOPs

Require: x̄ ∈ Rn, ε > 0, N ∈ N, ε > 0
Ensure: KKT point x∗ with associated weight α ∈ Rk (if not terminated in Line 2)

1: set i = 0
2: while i < N and ‖x̄− x‖ > ε do . main loop
3: set x = x̄
4: solve the subproblem (3.38) to obtain ν and δ, and . search direction
5: ask the solver for the dual variables to set α = v, or
4: solve the dual subproblem (3.39) to set α = v, and
5: ask the solver for the primal variables ν and δ
6: if δ ≥ −ε then . stop condition
7: set x∗ = x and return
8: else
9: obtain a suitable step length t > 0 by Algorithm 2 . line search

10: compute x̄ = x+ tν and set i = i+ 1 . next iteration
11: end if
12: end while

Algorithm 2 Line search based on the Armijo condition with bisection

Require: t̄ > 0, ν ∈ Rn, δ < 0, c ∈ (0, 1), ε > 0
Ensure: t∗ ∈ R+ satisfiying the Armijo condition

1: while t̄ > ε do . main loop
2: set t = t̄
3: if F (x+ tν) ≤ F (x) + ctδe then . Armijo condition
4: set t∗ = t and return
5: else
6: compute t̄ = t/2 . bisection
7: end if
8: end while
9: set t∗ = 0

3.3 The Pareto Tracer Method

We are now in the position to put predictor and corrector methods together into a
continuation algorithm that we call Pareto Tracer (PT). The resulting pseudo code is
presented below in Algorithm 3. As the name suggests, the PT is designed to trace
the curve (or manifold) of Pareto points of a MOP. The procedure perfectly fits into
the category of PC methods where arc length approximations are used to provide a
discretization of the desired set (Line 10). It also follows the spirit of classical con-
tinuation (as done e.g. in [28] and [29]) but goes beyond of purely solving the KKT
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system of equations.6 Additionally, the method seeks for a separation of decision and
weight space which allows to compute predictors in a more efficient manner. As a
by-product, a new set of multipliers µ1, . . . , µk is introduced with the role of steering
the search. If, for instance, uniform spread of points on the Pareto front is sought,
we may want to obtain predictors such that the corresponding movements in objec-
tive space are as well distributed as possible (e.g., they are orthogonal to each other
(Line 6)). At any case, by computing the appropriate orientation vector µ (Line 8),
we can steer the search into any direction given in objective space (lines 9 and 11).
Another difference of the PT with the proposals in [28] and [29] is the election of
the Newton method as corrector instead of directly solving F̃ (lines 1 and 13). As
discussed in the previous section, this choice is not based on an improvement of the
computational complexity of the corrector algorithm. Our intention here is to in-
vestigate other possibilities that fit better into the context of optimization since—as
pointed out before—the zero set of the map F̃ contains solutions that are not even
local optima.

Algorithm 3 Pareto Tracer method for unconstrained MOPs

Require: p ∈ Rn, τ > 0
Ensure: finite size approximation of P and F∗

1: starting at p, obtain x0 and α0 by Algorithm 1 . first corrector
2: set P = P ∪ x0, F∗ = F∗ ∪ F (x0), and W =W ∪ α0

3: set l = 1
4: while l ≤ |P| do . main loop
5: set x0 = Pl and α0 =Wl

6: compute di, i = 1, . . . , k − 1, as in (3.24) . objective directions
7: for i = 1, . . . , k − 1 do
8: compute µ+

di
as in (3.18) . orientation vector

9: compute νi = νµdi as in (3.26) . tangent vector
10: compute ti as in (3.33) . step length
11: compute pi1 = x0 + tiνi and pi2 = x0 − tiνi . predictors
12: for ij = i1, i2 do
13: starting at pij , obtain xij and αij by Algorithm 1 . correctors
14: if F (xij) 6∈ F∗ then
15: set P = P ∪ xij , F∗ = F∗ ∪ F (xij), and W =W ∪ αij
16: end if
17: end for
18: end for
19: set l = l + 1
20: end while

6Actually, in [29], the map F̃ is based on the Fritz John conditions of optimality.
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In addition, the PT has to deal with a well-known problem of PC methods—in
particular for k > 2—consisting of identifying the part of the solution manifold that is
already covered by the algorithm. To achieve this, it is crucial to provide an efficient
data structure to store the computed solutions since the time complexity of verifying
whether or not a solution belongs to the set (Line 14) is a critical part of the overall
performance of the method. To this end, we choose the data structure proposed in
[34] which is based on a subdivision of the search space into boxes. Other ideas can
be found in [106, 107, 108, 87, 88] and references therein. The only difference of our
approach with the one in [34] is that we construct the partition in objective space
and not in parameter space. The change is realized because we aim in this work for
an evenly spread approximation of the Pareto front whereas in [34] a covering of the
Pareto set is considered. In the following, we explain some of the details regarding the
implementation of this data structure. Let’s suppose that every function is restricted
to a certain range in objective space

lFj ≤ fj(x) ≤ uFj , j = 1, . . . , k. (3.42)

The objective space is then given by

QF = [lF , uF ] = [lF1 , u
F
1 ]× [lF2 , u

F
2 ]× · · · × [lFk , u

F
k ] ∈ Rk×2. (3.43)

Under this hypothesis, we can tessellate the space into small boxes where each box
B ⊂ Rk is represented by a center c ∈ Rk and a radius r ∈ Rk such that

B(c, r) = {F (x) ∈ QF : |fj(x)− cj| ≤ rj, ∀j = 1, . . . , k} . (3.44)

The underlying idea of this approach is to maintain a collection of boxes where each
box is restricted to contain only one solution, and where the covering box B(F (x)) of a
given solution F (x) can be unequivocally determined. Thus, a box can be represented
by both B(c, r) and B(F (x)). This strategy leads to a finite size discretization of the
objective space with two important consequences: (i) the possibility of a good spread
of solutions and (ii) the possibility of determining (in a finite amount of time) whether
or not a solution is already computed, that is, whenever its corresponding box belongs
to the collection. For this purpose, however, the definition given in (3.44) is useless
since several boxes can share a common boundary. Thus, in order to unequivocally
determine the covering box of a given solution, we redefine (3.44) as

B(c, r)=

{
F (x)∈QF

∣∣∣∣∣cj−rj ≤ fj(x)< cj+rj, if cj+rj<u
F
j

cj−rj ≤ fj(x)≤ cj+rj, if cj+rj =uFj
, ∀j = 1, . . . , k

}
. (3.45)

Let’s now consider a partition of the space starting at B(c, r) = QF with radius
r = (uF − lF)/2 and center c = lF + r. A box B(c, r) can be subdivided with respect
to the i-th coordinate leading to two new boxes that completely cover the old one.
That is, B̄(c̄, r̂) and B+(c+, r̂) where

r̂j =

{
rj, i 6= j
rj/2, i = j

and c∓j =

{
cj, i 6= j

cj ∓ rj/2, i = j
. (3.46)
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Subsequently, after h subdivisions of the current set of boxes and by cyclically choos-
ing the reference coordinate, i.e.,

ji = (i− 1) mod k + 1, i = 1, . . . , h, (3.47)

we finish with a partition of QF into boxes of radius

rj =


uFj − lFj
2b

h−1
k c+2

, j ≤ (h− 1) mod k + 1

uFj − lFj
2b

h−1
k c+1

, j > (h− 1) mod k + 1

, j = 1, . . . , k, (3.48)

where for every point F (x) ∈ QF there exists exactly one covering box with center in

cj =


lFj + 2rj

⌊
fj(x)− lFj

2rj

⌋
+ rj, fj(x) 6∈ uFj

lFj + 2rj

⌊
fj(x)− lFj

2rj

⌋
− rj, fj(x) ∈ uFj

, j = 1, . . . , k. (3.49)

We can thus maintain a collection B(F∗) to store the boxes corresponding to the
solution’s images in F∗. An efficient implementation of this data structure can be
achieved by considering B(F∗) a binary tree where each level corresponds to one sub-
division step and each leaf to one box. For a better understanding Figure 3.3 shows a
binary tree representation of five boxes obtained after three subdivision steps. Note
that each step is completely determined by the tree structure and the initial box
QF .7 Considering B(QF , h) the full set of boxes obtained after h subvidisions, it is
not hard to see that B(QF , h) is defined by a complete binary tree of height h [109]
and that any arbitrary tree B(F∗) ⊂ B(QF , h) is usually not complete. Moreover,
using this scheme, the memory requirements seem to grow only linearly in the number
of objectives and solutions. On the other hand, the operation of insertion as well as
verifying whether a box (leaf) belongs to the set (tree) can be implemented in O(h).
Algorithm 4 shows the pseudo code of a method that combines the operations ‘insert’
and ‘contains’ into a new one called ‘recover’. The method ensures that the covering
box of a given solution is added to the tree (recovered) and returns whether the corre-
sponding leaf was really inserted or already belonged to the collection. Then, we can
replace the condition of the if-statement in Line 14 of Algorithm 3 by an appropriate
call to Algorithm 4. An additional optimization here could be to bypass predictor
points when their associated boxes have previously been considered (i.e., they already
contain a corrector). Considering that predictors and correctors are supposed to be
close, this will avoid the computation of a corrector that may be later discarded by
the ‘recover’ algorithm in Line 14.

7We do not actually need to store any information at the nodes of the tree since the tree structure
by itself is good enough to represent the entire collection of boxes.
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Figure 3.3: The data structure used for the representation of the solution set.

Algorithm 4 Recover algorithm

Require: binary tree B(F∗) ⊂ B(QF , h), F (x) ∈ Rk

Ensure: B(F (x)) ∈ B(F∗) is ‘recovered’
1: starting at the root of B(F∗)
2: for i = 1, . . . , h do . main loop
3: compute j = (i− 1) mod k + 1 . current coordinate
4: compute cj = lFj + (uFj − lFj )/2 . current center
5: if fj(x) < cj then . left branch
6: if there is no left child then
7: create a new left child
8: end if
9: move one level down to the left child

10: set uFj = cj . shrinking the space
11: else . right branch
12: if there is no right child then
13: create a new right child
14: end if
15: move one level down to the right child
16: set lFj = cj . shrinking the space
17: end if
18: end for
19: compute r = (uF − lF)/2 and c = lF + r . covering box of F (x)

20: return B(F (x)) = B(c, r) and

{
1 if a new leaf was created

0 if the corresponding leaf already existed

Another aspect related to the performance of the PT method has to do with the
information we keep or recompute regarding the current set of solutions. Note that
the set of Pareto points P is treated as a queue where the solutions are being stored
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as they are being computed. Initially, P contains only one point (Line 2) and at each
iteration l = 1, 2, . . . , at most m = 2(k − 1) new points—obtained after computing
m predictors and their respective correctors starting at Pl—are added to the queue
(Line 15). For each point in P , the corresponding function and α values are stored
respectively in F∗ and W to be used at the proper time. However, first and second-
order information will also be required for the computation of new solutions. Here,
we should decide whether to store the Jacobian and Hessian matrices of the solutions
held in P , or alternatively recompute them again when requested (e.g., to compute
tangent vectors at the current solution (Line 9)). In our implementations, we utilized
the first choice since our goal so far is to reduce the number of function evaluations.

The last task to complete the PT algorithm is to determine the value of h (i.e.,
the number of subdivisions of the objective space). Since we aim in this work for an
evenly spread distribution of solutions where the distance between neighbor points
is approximately τ > 0 (see Equation (3.32)), one strategy could be to perform the
least number of subdivisions such that

τ ≥ 2 max
j=1,...,k

rj = 2 max r. (3.50)

With this, our intention is to ensure—to the extent possible—that a new solution does
not fall into the same box as the solution from which the local exploration departed.
In the following, we will show that

h = k

⌈
log2

max (uF − lF)

τ

⌉
(3.51)

satisfies such a requirement. First, observe that⌊
h− 1

k

⌋
=

⌊⌈
log2

max (uF − lF)

τ

⌉
− 1

k

⌋
=

⌈
log2

max (uF − lF)

τ

⌉
− 1. (3.52)

Also, since h is a multiple of k, we have from (3.48)

2r =
uF − lF
2b

h−1
k c+1

. (3.53)

Then, combining (3.52) and (3.53), we get

2 max r =
max (uF − lF)

2b
h−1
k c+1

≤ max (uF − lF)
max(uF−lF )

τ

≤ τ. (3.54)

Yet, there is one more trick that can help to refine the results: standing at the
box corresponding to the current solution, we can check the points existing in the
neighboring boxes and bypass the result if it is too close to one of its neighbors. More
precisely, two points F (x) and F (x̂) are considered to be close if

‖F (x)− F (x̂)‖ < cτ, (3.55)
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where c ∈ (0, 1] is a small constant and F (x̂) ∈ N (F (x)). Further, N (F (x)) denotes
the set of points whose covering boxes have a common boundary with B(F (x)). This
situation occurs relatively frequently since the points are not necessarily located at
the center of the boxes and may be near to the boundaries. For the sake of efficiency,
we can also discard predictors p if there is some corrector x such that F (x) ∈ N (F (p))
and ‖F (p)− F (x)‖ < cτ . The best results—in terms of costs and distribution—were
obtained in our experiments for a value of c = 0.7. However, this strategy comes with
some drawbacks. First, the index of the solutions in P (respectively in F∗) should be
stored at the leafs of the tree to be able to identify the point existing inside a given
box. Second, the number of neighboring boxes is exponential in k so this strategy is
limited to problems with a few objectives.

Algorithm 5 Pareto Tracer method for unconstrained BOPs

Require: p ∈ Rn, τ > 0, ζ > 0
Ensure: finite size approximation of P and F∗

1: starting at p, obtain x and α by Algorithm 1 . first corrector
2: set P = P ∪ x, and F∗ = F∗ ∪ F (x)
3: for j = 1, 2 do
4: set µ = µ(j) as in (3.28) . orientation vector
5: repeat
6: compute ν̃ = νµ as in (3.8) . tangent vector
7: if (Jν̃)j < 0 then . orientation adjustment
8: set ν = ν̃
9: else

10: set ν = −ν̃
11: end if
12: compute t as in (3.33) . step length
13: compute p = x+ tν . predictor
14: starting at p, obtain x and α by Algorithm 1 . corrector
15: set P = P ∪ x, and F∗ = F∗ ∪ F (x)
16: until αj ≥ 1− ζ or fj could not be improved . stop condition
17: end for

Finally, the representation of the solution set gets significantly simplified for BOPs:
since the Pareto fronts of such problems are typically one-dimensional, there are only
‘left up’ or ‘right down’ movements to be considered in objective space. The idea
is thus to perform first a continuation all along in the direction to optimize one of
the objectives, and then (by reversing the orientation) a continuation all along in the
direction to optimize the other objective. This ensures that the image of the new
solution does not belong to F∗ avoiding the use of additional data structures or any
other strategy to verify this fact. In Section 3.1, we saw that if both objectives are
convex, the choice of µ(1) in (3.28) leads to a movement oriented to minimize the first
function (left up), while the choice of µ(2) ensures a movement in order to minimize
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the second one (right down). In case the convexity requirement cannot be guaranteed,
we can implement the following orientation adjustment: let’s suppose—without loss
of generality—that an improvement according to f1 is sought. Then, we can check at
every step the condition

∇f1(x)Tν < 0, (3.56)

and reverse the orientation if it is not satisfied. Algorithm 5 shows the pseudo code of
a version of the PT that has been optimized to deal exclusively with BOPs. Note that
the orientation adjustment is implemented from Line 7 to Line 11. Another matter
of importance in the context of BOPs is the selection of a stopping criterion for the
continuation. When dealing with more than two objectives, the ‘recover’ algorithm
provides such a criterion. Here, an application of the Newton method starting at a
predictor that goes beyond the boundaries of the Pareto set/front will step back in
order to reach (again) the manifold of optimal solutions. In this case, the obtained
corrector will probably belong to a box that is already in B(F∗) and consequently will
be discarded. Then, the PT eventually stops when the neighborhood of all solutions
in P has been explored (Line 4 of Algorithm 3). Since for the bi-objective case we
obviously desire to avoid the overhead of additional data structures, we are forced to
consider other alternatives to stop the method. One possibility (given that we have
the Lagrange multipliers available) is to stop when

αj ≥ 1− ζ, j ∈ {1, 2}, (3.57)

where ζ > 0 is a small value (that we take as ζ = 10−3) and j refers to the function we
seek to minimize (see Line 16). There are other criteria that can be used to improve
the results. For instance, we can verify whether the function that is supposed to
decrease actually decreases, i.e.,

fj(x) < fj(x̃)− ε, j ∈ {1, 2}, (3.58)

where ε > 0 is a small tolerance (e.g., ε = 5
√

eps) and x̃ is the previous solution.
Otherwise, x is probably a weak optima and we stop. Additionally, we can check that
the condition

fi(x) ≥ fi(x̃), i ∈ {1, 2}, (3.59)

is met all the way, where the i-th objective is the one that should increase. Too short
steps may also be indicative that we are near to one of the extremes of the Pareto
set/front (applicable to the general case) so we could also stop when

‖F (x)− F (x̃)‖ ≤ cτ, (3.60)

where c ∈ (0, 1) can be taken this time as e.g. c = 0.1. Further stopping criteria as
well as degeneracy or singularity detection are left out of this study and recommended
for a future work.
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3.4 Hessian-free Realizations

As the reader has probably noted from the analysis above, one disadvantage of the
PT is the requirement of the exact Hessians of all objective functions. Although
second-order algorithms usually show good convergence rates, the issues related to
the computation of Hessians are twofold. First of all, we may not have this information
available and the use of approximations (e.g., by FD) could be extremely expensive in
terms of function evaluations (our main concern regarding performance). Secondly,
Hessian matrices demand a storage capacity of O(n2) which is resource-intensive even
for medium sized problems. In this section, we therefore face a new challenge: the de-
velopment of Hessian-free realizations of the PT. In the following, we will first address
different alternatives to compute predictors and will later on discuss the computation
of correctors.

3.4.1 Predictor

The most basic mechanism to let Hessians out of the equation is to approximate them
by the identity matrix (I ∈ Rn×n). By doing so, we get from (3.8)

νµ = −W−1
α JTµ = −

k∑
j=1

αjIJ
Tµ = −JTµ. (3.61)

Given d 6= 0, we can use (as in Section 3.1)

µ+
d = −(JJT )+d, (3.62)

which comes from (3.18) by using the same trick as before on W−1
α . Then,

νµd = JT (JJT )+d = J+d. (3.63)

This means that the predictor directions coincide with the election made by the
Directed Search algorithm proposed in [20], and will be a linear combination of
the derivatives of the problem. Specifically for k = 2, we have at Pareto points:
∇f1(x) = c∇f2(x) for a value of c < 0. Then, it can be easily derived that the use
of the equations above is equivalent to move in the direction of −∇f1(x) if we want
the continuation oriented to minimize the first function, and otherwise, to move in
the direction of −∇f2(x) if we need to improve the second objective. Recall from
Chapter 2 that this strategy for BOPs has been used before in [36] and [30], from
which (3.61) is a generalization. This choice of predictor directions is very attractive
for several reasons: (i) it completely discards Hessians, (ii) the computations turn to
be very efficient since only a matrix-vector multiplication is required8, and (iii) under

8We would also need to compute the pseudo inverse of J if we desire to steer the search into a
direction d given in objective space. However, this is not mandatory: the components of µ can be
chosen e.g. at random such that they sum up to zero.
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the assumption that rank(J) = k−1, the Jacobian is not orthogonal to the linearized
solution set so a movement toward the Pareto set is expected. In spite of this fact,
however, the derivatives can be sometimes nearly orthogonal to the Pareto set. See
Figure 3.4 for such examples. Thus, it seems more reasonable to take as predictor
directions the secant between the last two points9, i.e.,

ν = x̃− x, (3.64)

where x is the current corrector and x̃ is a previous point on the solution curve.
With this, both direction and orientation come essentially for free while (implicitly)
some curvature information is captured. Moreover, for MOPs with linear Pareto sets,
derivatives and secants coincide with the direction of the solution set, so it seems
that the use of secants is not worse than the use of derivatives as approximations
of tangent vectors. Actually, in all our experiments, secant predictors lead to much
better results than taking gradients, except for linear Pareto sets where the results
were identical. However, extending the concept of secants for k = 3 is not a trivial
task. Then, for comparison purposes, we define the steepest descent approximation
of the tangent space as follows: for BOPs we take the secant as in (3.64), and for the
general case we utilize (3.63) to obtain an approximate tangent direction.

The computation of the tangent space can also be made Hessian-free when utilizing
elements from quasi-Newton methods [17, 47]. That is, at a point x ∈ Rn, we
replace the matrix Wα in the formulations of νµd and µ+

d (Equations (3.22) and (3.18),
respectively) by

Bα =
k∑
j=1

αjBj ∈ Rn×n, (3.65)

where Bj ≈ ∇2fj(x). In the first iteration, we choose Bj = Bα = I leading to
νµd = J+d as in (3.63). In subsequent iterations, we typically obtain better Hessian
approximations due to the successive BFGS updates performed in the previous cor-
rector steps if the QN method [17] is used instead of the Newton method (see the
next heading). Figure 3.5 shows an example of an approximated tangent computed
by utilizing the approximated Hessians B1 and B2 at a corrector point on the Pareto
set of a BOP. We compared this choice of quasi-Newton predictors for BOPs with
the use of secant predictors and obtained in all our test cases better results (fewer
function evaluations) except for problems with linear Pareto sets where the results
were the same (no corrector step was needed). However, the differences here between
both choices of predictors were not so dramatic as the differences observed when com-
paring secant and gradient predictors (by using the formula (3.63)). These results
encourage a further study on the use of secants for situations where efficiency has
priority. Note, though, that for efficiency here we refer to asymptotic time complex-
ity which would be reduced from O(n3) to O(n) if we decide to use secants instead

9Initially, we have no option but to take derivatives.
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(b) Pareto set of the BOP (3.71)
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(c) Pareto set of the BOP (3.73)

Figure 3.4: The derivatives of the objective functions along the Pareto set of three
BOPs.
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           Pareto set 

           predictor  point 

           corrector point 

  

Figure 3.5: The second-order information gathered during the corrector phase is uti-
lized to approximate the predictor direction. The more accurate the second-order
information, the better the tangent estimation, and in consequence, the fewer correc-
tor steps is expected.

of QN approximations. Nevertheless, this would not improve the overall performance
of the continuation method since the corrector iterations clearly require more than
O(n3) to perform. In conclusion, the QN approximation of the tangent space will be
given by the formulas (3.22) and (3.18) where Wα is replaced by Bα as in (3.65) and
the approximated Hessians Bj, j = 1, . . . , k, are obtained as a by-product of a QN
method applied as the previous corrector.

3.4.2 Corrector

For the corrector phase we can (again) completely disregard the Hessian information
and use the SD method [18] for MOPs. Note that the Newton direction subproblem
becomes equivalent to

min
(ν,δ)∈Rn×R

1
2
‖ν‖2 + δ

s.t. ∇fj(x)Tν ≤ δ, j = 1, . . . , k,
(3.66)

if we approximate the Hessians as the identity matrix. Subproblem (3.66) is utilized
by the SD method to compute the search direction (see Chapter 2 for more details).
Further, the step length control and the stopping criteria remain the same as for
the Newton version. This is also the case of the QN method [17], a more promising
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approach that utilizes BFGS updates to approximate Hessians. Here, the search
direction subproblem is given by

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νTBjν ≤ δ, j = 1, . . . , k,

(3.67)

which differs only from the Newton direction subproblem by the use of Bj ≈ ∇2fj(x).
Then, the current Hessians are updated at each iteration based on the information
we have just computed to be used in the next step, i.e.,

B̄j = Bj −
Bjss

TBj

sTBjs
+
yjy

T
j

yTj s
, j = 1, . . . , k, (3.68)

where B̄j denotes the j-th updated Hessian at the new point x̄, s = x̄ − x, and
yj = ∇fj(x̄) − ∇fj(x). As usual, in the first iteration we take the Hessians as the
identity matrix. We will omit the pseudo code of these two methods since they are a
small variation of Algorithm 1. For the SD version, we just replace the subproblem
to solve by (3.66). Note also that the dual problem of (3.66) is given in Chapter 2 by
(2.69). For the QN approach, we additionally have to introduce the BFGS updates at
x̄ after Line 10. The improvement of the QN method over the SD is that a superlinear
convergence rate can be proven under some mild conditions while the SD method is
at most linearly convergent. One disadvantage, though, is that (3.66) is a quadratic
program simpler to solve than the QN direction subproblem (3.67) which belongs to
QCLP. In addition, (3.66) guarantees a descent direction while (3.67) requires the
positive definiteness of each Bj for the same purpose (including the uniqueness of
the solution). As explained in the previous chapter for SOPs, the updated Hessian is
forced to be positive definite by imposing the Wolfe conditions—(2.19) and (2.20)—on
the step length control, but for MOPs it seems that these rules may be impossible to
satisfy for all objectives together. We then solve the problem as in Section 3.2 for the
Newton method: by applying a modified Cholesky factorization on each Bj to keep
them positive definite. After all, recall also from Section 3.2 that in order to solve
the quadratically contrained program (3.67) we have to shift it to SOCP. Thus, a de-
composition of the form Bj = LjL

T
j for all j = 1, . . . , k, will be anyway a requirement.

Given this scenario, it seems wiser to store and update the Cholesky factors Lj,
j = 1, . . . , k, rather than maintaining the full Hessians. Note that the operation of
update can be done inO(n2) [57, 110] compared to theO(n3) required by the modified
Cholesky decomposition [55]. However, the potential advantage of this optimization
gets obscure since sooner or later we would have to multiply the Cholesky factors in
order to compute the inverse of Bα =

∑k
j=1 αjBj for the next predictor. The imple-

mentation and analysis of this and similar strategies has been left out of the scope of
this thesis. In general, no improvement on the time complexity for the QN approach
could be achieved over the Newton method. On the contrary, additional resources
have to be employed for the computation of the k BFGS updates given in (3.68).
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(a) Zigzag behavior resulting from QN correc-
tors taking I as initial guess for the Hessians.
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(b) Results of taking QN correctors with an
updated initial guess for the Hessians.

Figure 3.6: Variants of the QN version of the PT on the BOP (3.71) with n = 100.

Figure 3.6 (a) shows one run of the QN version of the PT on the BOP (3.71).
For this choice we observed a kind of zigzag behavior: whenever the predicted point
is far from the curve, we have to perform many corrector steps and obtain at the
end good approximations of the Hessians, which yields in consequence well-estimated
predictors. Such exact predictors, however, may lead to just a few corrector iterations
resulting in a relatively bad approximation of the Hessians, so we obtain this time a
bad guess for the new predictor. Then, many corrector steps will be performed again
leading to a good predicted point in the upcoming step, and so on. This phenomenon
is mainly observed in problems with a large number of variables since starting at the
identity matrix, n updates may be needed to approach the true Hessians [47]. As
an alternative, the information gathered for the previous corrector can be utilized
to update the Hessians at the current predictor. To be more precise, we apply the
BFGS update (3.68) taking x̄ as the current predictor (x̄ = p) and x as the previous
corrector. With this, we expect to offer a better initial guess for the Hessians to
the QN method employed as corrector. Furthermore, given that both points are
close to each other, we expect that this strategy allows to keep the second-order
information gained along all the continuation process. Figure 3.6 (b) shows the result
of this variation in contrast to the choice of taking the identity matrix as an initial
estimation for the Hessians in every corrector step. From the graphical results, it is
easy to guess the starting point of the continuation. We will also omit the pseudo code
of the SD and QN versions of the PT but would like to make one final remark: the
Hessian updates at the predictor points should be placed after Line 11 in Algorithm 3
and after Line 13 in Algorithm 5 to be utilized by the following corrector.
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3.5 Numerical Results

Here we present some numerical results of the PT and compare it against the method
of Hillermeier [28] since both are close in spirit and deliver comparable results. The
latter is not the case for other methods, mainly because their applications lead to
approximations of different magnitude which hinders a fair comparison. For the PT
we use the Newton, quasi-Newton, and steepest descent realizations called PT-N,
PT-QN, and PT-SD in the following. The values of the parameters have been taken
as specified when they were first introduced. On the other hand, our implementation
of the method of Hillermeier follows strictly the instructions given in [28] explained
also in Chapter 2. Additionally, we use the data structure presented in Section 3.3 to
handle problems with more than two objectives. For the corrector, we resolved to use
the Matlab implementation of the Levenberg-Marquardt method setting the default
tolerances for the first order optimality measure (10−6) and for the relative change in
the step length (10−6). In all cases, we have taken one initial Pareto optimal solution
as starting point (the same for each of the algorithms).

In the following, we present six examples of unconstrained MOPs (four of them
with two objectives and the other two with three objectives). For each problem, we
show a table that records the number of solutions produced by each algorithm plus
the average number of corrector and backtrack iterations and the total amount of
function, Jacobian and Hessian evaluations required to obtain the corresponding set
of solutions. The field associated to the number of backtrack iterations performed
by the method of Hillermeier is left empty since the Levenberg-Marquardt method
is based on a trust-region framework. Analogously, the fields corresponding to the
number of Hessian evaluations required by the PT-QN and the PT-SD are left empty.
In addition, the approximations of the Pareto set (respectively the Pareto front)
obtained by the PT-QN are displayed graphically for each example.

3.5.1 Example 1

First we consider the BOP from [111] defined as

f1(x1, x2)=
1

2

(√
1 + (x1 + x2)2+

√
1 + (x1 − x2)2 + x1−x2

)
+λ · e−(x1−x2)2 , and

f2(x1, x2)=
1

2

(√
1 + (x1 + x2)2+

√
1 + (x1 − x2)2 − x1+x2

)
+λ · e−(x1−x2)2 . (3.69)

The Pareto set of (3.69) is a line and the Pareto front is convex-concave for λ = 0.85
as chosen here. Since the Pareto set is unbounded, we have restricted the search to
[−2, 2] in both coordinate directions. As desired step length in objective space we
have chosen τ = 0.27. Figure 3.7 shows the numerical results of the PT-QN and Ta-
ble 3.1 the costs (in function evaluations) for the different methods. Apparently, the
cost of the Hillermeier method is higher than the cost of the PT-N. The reason for this
is that the Pareto set is linear resulting in zero corrector steps for all the PT variants,
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while the solution set is nonlinear in (x, α)-space. See Figure 3.8 (a) where the α1-
value is plotted against the x-values. Consequently, the Hillermeier approach needs
more corrector steps and the solutions—after being projected onto the x-space—may
be not so well-distributed in the areas where the curvature of the augmented curve
is higher (see Figure 3.8). The latter may cause that the method yields a different
number of solutions (in this case it delivered 29 solutions while all the PT variants
delivered 28 solutions). Another cause for this may be that the Hillermeier method
can converge to points with negative Lagrange multipliers if e.g. it goes beyond the
limits of the solution set. In this case, the solution is discarded while the PT can step
back and obtain a new optimal point. Here, both the PT-QN and the PT-SD are the
winners in terms of costs, and the costs are equal due to the linearity of the Pareto set.

Hillermeier PT-N PT-QN PT-SD

Solutions 29.0000 28.0000 28.0000 28.0000
Avg. corrector iterations 3.2333 0.0000 0.0000 0.0000
Avg. backtrack iterations - 0.0000 0.0000 0.0000
Function evaluations 29.0000 28.0000 28.0000 28.0000
Jacobian evaluations 128.0000 28.0000 28.0000 28.0000
Hessian evaluations 256.0000 56.0000 - -

Table 3.1: Computational efforts of the four PC variants on the BOP (3.69).

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

(a) decision space

0 1 2 3 4 5
0

1

2

3

4

5

f1

f 2

(b) objective space

Figure 3.7: Numerical results of the PT-QN on the BOP (3.69).
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Figure 3.8: Numerical results of the Hillermeier method on the BOP (3.69). The
projections of the solutions onto the x-space are also plotted in (a).

3.5.2 Example 2

Next we consider the following example from [33] given by

fj(x) =
100∑
i=1
i 6=j

(xi − aji )2 + (xj − ajj)4, j = 1, 2, (3.70)

where a1 = (1, . . . , 1)T ∈ R100 and a2 = −a1. The Pareto set of this problem is a
nonlinear curve connecting the two minima a1 and a2. See Figure 3.9 and Table 3.2
for the results of the PT-QN and the computational efforts, respectively for τ = 10.
Although the Pareto set is nonlinear, we see again that the PT-N needs less correctors
and outperforms the classical PC method in terms of Jacobian and Hessian evalua-
tions. However, the method of Hillermeier requires less evaluations of the objective
functions. This behavior is because the latter is based on the system of equations
F̃ that is terms only of the Jacobian and the Hessians of the problem. Thus, only
one evaluation of the objectives at each solution found is required at the end of the
procedure to deliver the Pareto front. Nevertheless, the costs of the PT-N can be
further reduced via using its QN counterpart. Actually, the PT-QN takes a few more
function and Jacobian evaluations than the PT-N, but taking in mind that no Hes-
sian information is required, we consider this method the overall winner. On the
other hand, since this model is more complicated than the previous one, the PT-SD
needs much more corrector steps to bring a predicted point back to the solution curve.
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Hillermeier PT-N PT-QN PT-SD

Solutions 69.0000 69.0000 69.0000 69.0000
Avg. corrector iterations 2.2647 0.9706 1.5441 10.4559
Avg. backtrack iterations - 0.0000 0.0074 3.6166
Function evaluations 69.0000 135.0000 175.0000 1972.0000
Jacobian evaluations 223.0000 135.0000 174.0000 780.0000
Hessian evaluations 446.0000 270.0000 - -

Table 3.2: Computational efforts of the four PC variants on the BOP (3.70).
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Figure 3.9: Numerical results of the PT-QN on the BOP (3.70).

3.5.3 Example 3

We take this time one of the problems of the benchmark proposed in [112]

f1(x) = x1 +
2

|J1|
∑
j∈J1

(
xj − x

0.5(1+ 3(j−2)
n−2 )

1

)2

, and

f2(x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

(
xj − x

0.5(1+ 3(j−2)
n−2 )

1

)2

,

(3.71)

where J1 = {j | j is odd and 2 ≤ j < n} and J2 = {j | j is even and 2 ≤ j < n}.
The Pareto set is given by

x1 ∈ [0, 1] and xj = x
0.5(1+ 3(j−2)

n−2 )
1 , j = 2, . . . , n. (3.72)
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As in the first example, the optimal curve is unbounded so the domain search was
chosen to be Q = [0, 1]× [−1, 1]n−1 and n = 100. The desired step length in objective
space was set as τ = 0.02. As can be seen in Table 3.3, the Hillermeier method shows
the worst performance (except, of course, in terms of objective function evaluations).
The results of the PT-QN are shown in Figure 3.10 and are again comparable to those
of the PT-N considering that exact Hessians are not required. However, it is interest-
ing to see that the PT-SD needs only two corrector iterations in average. This may
be caused by the lack of second-order information which leads in turn to the compu-
tation of more backtrack steps, and eventually, more objective function evaluations.
Furthermore, since the Wolfe conditions have been left out of the step length control,
the backtracking procedure does not require additional Jacobian evaluations, so this
indicator remains low for the PT-SD in this particular case.

Hillermeier PT-N PT-QN PT-SD

Solutions 74.0000 72.0000 72.0000 73.0000
Avg. corrector iterations 5.2267 0.5753 1.5616 2.0946
Avg. backtrack iterations - 0.0000 0.1370 3.2532
Function evaluations 75.0000 116.0000 198.0000 535.0000
Jacobian evaluations 468.0000 116.0000 188.0000 230.0000
Hessian evaluations 936.0000 232.0000 - -

Table 3.3: Computational efforts of the four PC variants on the BOP (3.71).
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Figure 3.10: Numerical results of the PT-QN on the BOP (3.71).
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3.5.4 Example 4

The following problem was taken as well from [112] and reads as

f1(x) = x1 +
2

|J1|
∑
j∈J1

{
xj − 8x1 cos

(
6πx1 +

jπ

n

)}2

, and

f2(x) = 1−
√
x1 +

2

|J2|
∑
j∈J2

{
xj − 8x1 sin

(
6πx1 +

jπ

n

)}2

,

(3.73)

where J1, J2, and the domain set Q were chosen as above. We also set n = 100 and
τ = 0.02. The Pareto set is given by

x1 ∈ [0, 1] and xj =

{
8x1 cos

(
6πx1 + jπ

n

)
, j ∈ J1

8x1 sin
(
6πx1 + jπ

n

)
, j ∈ J2

, j = 2, . . . , n. (3.74)

The problems of the benchmark suggested in [112] were designed to have a Pareto set
with a high level of curvature in contrast to those of the suite Zitzler-Deb-Thile (ZDT)
[113] and Deb-Thile-Laumanns-Zitzler (DTLZ) [114] which have a flat Pareto set. We
select the BOP (3.73) among the most complicated models (see Figure 3.11). Even
though, the comparison in Table 3.4 remains consistent with the previous examples:
(i) the behavior of the PT-QN remains closer to that of the PT-N, and (ii) the
consideration of the compound space (x, α) leads to a potential loss of performance
due to the increase of the nonlinearity of the solution set. Observe also in the last
column of Table 3.4 that the PT-SD yielded a much greater number of solutions. This
is possibly because the Hessian information is completely discarded which makes this
method to accumulate sometimes points at the extremes of the solution set. Most
likely for the same reason, the phenomenon observed in the previous example arises
here again: the PT-SD needs much more backtrack iterations which reduces the
number of correctors. Still, this implies a high number of function evaluations but
due to the non-consideration of the curvature condition in the step length control,
the number of evaluations of the Jacobian remains low.

Hillermeier PT-N PT-QN PT-SD

Solutions 75.0000 74.0000 73.0000 79.0000
Avg. corrector iterations 6.1974 0.9595 2.4247 3.9241
Avg. backtrack iterations - 0.0000 0.0000 2.9191
Function evaluations 76.0000 146.0000 251.0000 1156.0000
Jacobian evaluations 564.0000 146.0000 251.0000 390.0000
Hessian evaluations 1128.0000 292.0000 - -

Table 3.4: Computational efforts of the four PC variants on the BOP (3.73).
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Figure 3.11: Numerical results of the PT-QN on the BOP (3.73).

3.5.5 Example 5

Now we consider the DTLZ2 test problem from [114] with three objectives given by

f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2),

f2(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2), and

f3(x) = (1 + g(x)) sin(x1π/2),

(3.75)

where

g(x) =
100∑
i=3

(xi − 0.5)2. (3.76)

The Pareto set here is a flat rectangular surface as shown in Figure 3.12. Taking
τ = 0.04, we can see from Table 3.5 that as in the first example—which has a lin-
ear Pareto set—only the Hillermeier approach needs some correctors to find optimal
points. Additionally, for k > 2, the number of function evaluations is not even close
to the number of final solutions. This is due to the data structure utilized to track the
part of the manifold that is currently covered by the continuation (see Section 3.3).
Here, instead of evaluating every solution at the end of the method, each corrector
point should be immediately evaluated to verify whether it already belongs to the
current solution set. One way to avoid this is by building the partition in param-
eter space, but this would affect the distribution of points on the Pareto front and
the comparison with the PT would not be fair. Observe also that the method of
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Hillermeier found less solutions. As explained above, this is the result of discarding
solutions with negative Lagrange multipliers.

Hillermeier PT-N PT-QN PT-SD

Solutions 908.0000 930.0000 930.0000 930.0000
Avg. corrector iterations 3.6380 0.0000 0.0000 0.0000
Avg. backtrack iterations - 0.0000 0.0000 0.0000
Function evaluations 4545.0000 3721.0000 3721.0000 3721.0000
Jacobian evaluations 4531.0000 930.0000 930.0000 930.0000
Hessian evaluations 13593.0000 2790.0000 - -

Table 3.5: Computational efforts of the four PC variants on the MOP (3.75).
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Figure 3.12: Numerical results of the PT-QN on the MOP (3.75).

3.5.6 Example 6

Finally, we reconsider the nonlinear problem given in the second example this time
with three objectives, i.e.,

fj(x) =
100∑
i=1
i 6=j

(xi − aji )2 + (xj − ajj)4, j = 1, 2, 3, (3.77)
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where a1 = (1, . . . , 1)T ∈ R100, a2 = −a1, and a3 = (1,−1, 1,−1, . . .)T ∈ R100. Fig-
ure 3.13 shows the numerical results of the PT-QN for τ = 10 and Table 3.6 the costs
of the different methods to obtain this approximation. Due to the variations in the
number of solutions produced by the different algorithms, it becomes hard to estab-
lish a fair comparison here. As we have previously commented, this variations may be
given by many factors. For instance, poor second-order information, the nonlinearity
of the model, and the convergence to suboptimal points among other possibilities.
However, the PT-N continues to be the one that requires the fewest corrector itera-
tions in average followed by its QN counterpart, while the SD version (as expected)
shows the worst results.

Hillermeier PT-N PT-QN PT-SD

Solutions 728.0000 678.0000 669.0000 675.0000
Avg. corrector iterations 2.7542 1.3349 2.2254 11.5232
Avg. backtrack iterations - 0000.0000 0.0272 2.9711
Function evaluations 3640.0000 3865.0000 4643.0000 29219.0000
Jacobian evaluations 3361.0000 2016.0000 2749.0000 10796.0000
Hessian evaluations 10083.0000 6048.0000 - -

Table 3.6: Computational efforts of the four PC variants on the MOP (3.77).
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Figure 3.13: Numerical results of the PT-QN on the MOP (3.77).
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3.6 Discussion

In this chapter, we have presented a novel PC method to trace the manifold of KKT
points of a given MOP. The method is in the spirit of classical continuation techniques
for the solution of underdetermined systems of equations and has some similarities
with the approach proposed by Hillermeier in [28]. The main difference between
our method and the latter procedure is that the Pareto Tracer separates decision
and weight space whenever possible leading to significant savings in the computa-
tional effort—measured in number of function evaluations—which is reported on some
benchmark examples. As a by-product, a new set of multipliers µ1, . . . , µk is intro-
duced to play the role of providing the degree of freedom necessary to steer the search
in parameter space based on what we need in objective space. Additionally, the New-
ton method recently proposed by Fliege et al. in [16] was selected as corrector instead
of applying a Gauss-Newton or Levenberg-Marquardt method to solve the system of
equations given by the first-order optimality conditions. However, so far we can-
not say much about the computational complexity of the Newton method, which is
encouraged for a future work in order to provide a comparison with the available
alternatives. Nevertheless, our aim here has been principally to investigate other
possibilities for correctors that are not so hardly dependent on the set of Lagrange
multipliers. Besides, the zero set of the KKT equations contains solutions that are
not even local optima. The Pareto Tracer method is applicable to MOPs with in
principle any number k of objectives and can be made Hessian free via using ele-
ments from QN methods. Here, we have proposed to ensure the positive definiteness
of the BFGS updates through modified Cholesky factorizations—used as well by the
Newton method—since the Wolfe conditions may be hard to satisfy for each objective
at a time. Furthermore, a second role for the BFGS updates is suggested in the con-
text of continuation: an update of the Hessians at predicted points with base on the
information gathered from the previous corrector may help to preserve the second-
order information gained along all the trajectory. For comparison purposes, we also
provide a SD realization of the method and suggest to include in the comparison the
approach in [90] that can approximate the tangent space in O(n2) without the use of
Hessians. Several optimizations for the bi-objective case were implemented as well.
The most significant one—apart of excluding data structures—is the use of secants
in the context of the PT-SD to compute predictor directions. As graphically illus-
trated by three examples in Figure 3.4, the derivatives can be nearly orthogonal to
the Pareto set, which additionally encourages the use of QN realizations. Moreover,
based on the numerical results, the PT-QN seems to be the overall winner in terms of
function evaluations, so our next task would be clearly to intensify the investigation
of this particular method in order to provide more efficient computations.
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Chapter 4

Handling Equality Constrains

In this chapter, we will extend the Pareto Tracer method to handle equality con-
straints, i.e., we will consider MOPs of the form

min
x∈Rn

F (x)

s.t. hj(x) = 0, j = 1, . . . , p.
(4.1)

Again, we utilize classical continuation techniques on a map F̃ that is motivated by
the KKT conditions (now for equality constrained MOPs). The extended method can
also separate decision from weight space leading to a reduction of the overall com-
putational cost. The vector µ resulting from this separation will have—consistently
with the unconstrained case—the role of steering the search into a direction given in
objective space. For the corrector, we suggest a modification of the Newton method
[16] to handle problems with equalities. The analysis of the convergence rate of the
modifications is not considered in this paper but is highly recommended for a future
work. We will, instead, give some theoretical and numerical evidence that the flow de-
fined by the adapted Newton direction leads from an initial solution to a KKT point.
In addition, an Armijo condition adequate to the new context had to be designed in
order to respect the predicted improvements of the considered functions (objectives
and equalities). Take in mind that it may be cases where there is no descent direction
that additionally points toward the feasible region. Those situations claim for a care-
ful review of the concept we have so far of suitable step lengths. Furthermore, two
Hessian-free realizations of the Pareto Tracer were developed based respectively on
quasi-Newton and gradient descent methods. Still, a detailed study of the asymptotic
time complexity of the proposals is missing which is mandatory to provide a more
fair comparison with other methods and possibly to optimize the computations.

The remainder of this chapter is organized as follows. Sections 4.1 and 4.2 are
dedicated to the computation of predictors and correctors, respectively. The extended
Pareto Tracer for equality constrained MOPs is presented in Section 4.3 and Hessian-
free realizations are discussed later on in Section 4.4. Finally, some numerical results
are given in Section 4.5 and the conclusions in Section 4.6.

83



84 Chapter 4

4.1 Predictor

As usual during predictor steps, we start by computing the tangent space to the
solution manifold at a given KKT point of (4.1), namely x ∈ Rn. Here, we can
proceed analog to the unconstrained case as we will show immediately. The auxiliary
map F̃ : Rn+k+p → Rn+p+1 inspired by the first-order conditions of optimality (as in
Equation (3.3)) reads as

F̃ (x, α, λ) =


∑k

j=1 αj∇fj(x) +
∑p

j=1 λj∇hj(x)

h(x)∑k
j=1 αj − 1

 = 0, (4.2)

where α ∈ Rk and λ ∈ Rp are the associated Lagrange multipliers such that αj ≥ 0
for all j = 1, . . . , k. See Theorem 2.1.2 for more details. Defining

Wα,λ =
k∑
j=1

αj∇2fj(x) +

p∑
j=1

λj∇2hj(x) ∈ Rn×n, and (4.3)

H =

 ∇h1(x)T

...
∇hp(x)T

 ∈ Rp×n, (4.4)

we obtain

F̃ ′(x, α, λ) =

 Wα,λ JT HT

H 0 0
0 1 . . . 1 0

 ∈ R(n+p+1)×(n+k+p) (4.5)

whose kernel vectors are sought. For this, let ν ∈ Rn, µ ∈ Rk, ξ ∈ Rp such that Wα,λ JT HT

H 0 0
0 1 . . . 1 0

 ν
µ
ξ

 =

 0
0
0

 . (4.6)

Again, we choose a µ that satisfies (3.5), i.e.,
∑k

j=1 µj = 0, which reduces (4.6) to

(
Wα,λ HT

H 0

)(
νµ
ξ

)
= −

(
JT

0

)
µ. (4.7)
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If rank(Wα,λ) = n and rank(H) = p, it follows that the solution of (4.7) is unique
since then the matrix on the left hand side is regular. To show this, let’s suppose
that (

Wα,λ HT

H 0

)(
ν
ξ

)
= 0, (4.8)

or equivalently

Wα,λν +HT ξ = 0, and

Hν = 0.

(4.9a)

(4.9b)

From (4.9a), we obtain ν = −W−1
α,λH

T ξ, and substituting the value of ν in (4.9b) it

is −HW−1
α,λH

T ξ = 0 which implies that ξ = 0. Then, substituting ξ in (4.9a) leads
to Wα,λν = 0 which implies in turn that ν = 0. Thus, the linear system of equations
(4.8) has only the trivial solution ν = 0 and ξ = 0 implying that its associated matrix
is regular. One difference here with the handling of unconstrained MOPs is that we
have to compute the compound vector (νµ, ξ) ∈ Rn+p in order to obtain νµ. This
means that we shall solve an equation system of size O(n+ p)2 and later discard the
component ξ of the solution. We can otherwise find a way to compute ξ in advance
(as we did with µ) but this would be far more complicated. Moreover, since ξ does
not have neither an associated meaning nor any degree of freedom, the invested time
and efforts would possibly be in vain. Our next task is thus to prove that νµ is tangent
to the Pareto set of the equality constrained MOP (4.1). Let

gα,λ(x) =
k∑
j=1

αjfj(x) +

p∑
j=1

λjhj(x). (4.10)

Then, a curve along the set of KKT points through x0 with associated weight (α0, λ0)
can be described via

H(x, t) =

(
∇gα(t),λ(t)(x)

h(x)

)
= 0, t ∈ R+. (4.11)

Since µ represents the change in α-space we can set α(t) = α0 + tµ. Analogously,
λ(t) = λ0 + tξ and it is thus H(x0, t0 = 0) = 0. Consequently, for the tangent vector
of H−1(0) at (x0, t0) it holds

∂H

∂x
tH(x0, t0) +

∂H

∂t
= 0(

Wα,λ

H

)
tH(x0, t0) +HT ξ + JTµ = 0
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which is satisfied for tH(x0, t0) = νµ. Note that we can also express (4.7) as

Wα,λνµ +HT ξ = −JTµ, and

Hνµ = 0,

(4.12a)

(4.12b)

and by the sum of (4.12a) and (4.12b) it follows that

Wα,λνµ +Hνµ +HT ξ + JTµ = 0. (4.13)

In our implementations, we have made one modification w.r.t. (4.7): instead of Wα,λ

we have used Wα which means that we only consider first order approximations of
the equality constraints. That is, we compute the predictor direction νµ such that(

νµ
ξ

)
= −

(
Wα HT

H 0

)−1(
JT

0

)
µ. (4.14)

We have observed that the change from (4.7) to (4.14) leads to nearly the same per-
formance while the requirements of (4.14) are much lower since the Hessians of the
equalities are omitted. A further study on the impact of eliminating the second-order
terms of the equality constraints should be considered in the immediate future.

Now we are ready to orientate our tangent in parameter space based on a desired
movement d ∈ Rk in objective space. Again, the set of multipliers µ1, . . . , µk will play
the predominant role in this task. The idea is to compute first a µd ∈ Rk satisfying
the linear system of equations

Jνµd = d. (4.15)

However, since the solution of (4.7) is a compound vector, we transform (4.15) into

(J 0)

(
νµd
ξ

)
= d, (4.16)

and substituting (νµd , ξ) in Equation (4.16) by its corresponding expression given by
(4.7), we obtain the linear system of size O(k2)

− (J 0)

(
Wα,λ HT

H 0

)−1(
JT

0

)
µd = d. (4.17)

For simplicity, we will take

A = − (J 0)

(
Wα,λ HT

H 0

)−1(
JT

0

)
= −JWJT ∈ Rk×k,

(4.18)

where W ∈ Rn×n is the left top submatrix of(
Wα,λ HT

H 0

)−1
.

CINVESTAV Computer Science Department



Handling Equality Constrains 87

Since J is rank deficient at optimal points, rank(A) < k and the solution of (4.17) is
not unique or does not exist. On the other hand, note that from (4.7), the predictor
directions can be expressed as

νµ = −WJTµ, (4.19)

from which it can be derived (using the fact that νµ is a tangent vector for any µ with
components that sum up to 0) that the columns of −WJT span the tangent space of
the Pareto set (at least under our rank assumptions). Additionally, since x is a KKT
point, by Theorem 2.1.2 it follows that

JTα +HTλ = 0, (4.20)

where α ∈ Rk and λ ∈ Rp are the corresponding KKT multipliers. Then, by taking
the inner product of νµ and (4.20), we obtain from (4.12b)

νTµ J
Tα + νTµH

Tλ = νTµ J
Tα = 0. (4.21)

Since the above equation is satisfied for an arbitrary νµ in the range of −WJT , it
holds that Aα = 0. Then, under the assumption that rank(J) = k−1, we can proceed
analogously to Chapter 3. That is, the solution of (4.17) is given by

M = µ+
d +Rα, (4.22)

where

µ+
d = A+d, (4.23)

and the solution µd ∈M with components that sum up to zero is given by

µd = µ+
d − (eTµ+

d )α. (4.24)

Next, following the instructions above, we can compute a set of vectors ν1, . . . , νk−1
such that the corresponding movements Jνi = di, i = 1, . . . , k − 1, in objective
space form an orthonormal basis of the linearized Pareto front at F (x), i.e., the
set of directions d1, . . . , dk−1 are chosen as in (3.24). Alternatively, one can obtain
orthogonal vectors that span the linearized Pareto set via computing an orthonormal
basis of the image of

M = −WJT ∈ Rn×k.

Finally, the step size as well as the special treatment for the bi-objective case can be
taken as proposed in the previous chapter.

CINVESTAV Computer Science Department



88 Chapter 4

4.2 Corrector

In order to correct the predicted point back to the manifold of optimal solutions, we
have decided to adapt the Newton method presented in [16] to the current context.
Another option, as stated before, could be to solve the KKT system of equations.
Based on the arguments given in Chapter 3, we prefer to study new alternatives and
present numerical results that may inspire further investigation. So far, we have not
considered the convergence rates of the modifications (which is certainly an interesting
topic), but can give evidence that the flow defined by the Newton direction leads from
any initial solution to a KKT point. That is, the resulting Newton method will also
converge toward a KKT point if the step size is chosen adequately. In particular, we
suggest to compute the Newton direction for (4.1) via solving

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νT∇2fj(x)ν ≤ δ, j = 1, . . . , k,

hj(x) +∇hj(x)Tν = 0, j = 1, . . . , p.

(4.25)

The difference of (4.25) with the unconstrained version (3.34) is the additional con-
straint h(x) + Hν = 0. Still, δ represents a measure of the expected decrease of the
objectives by performing a line search in direction ν. To be more precise, given ν, we
can compute δ as

δ = max
j=1,...,k

∇fj(x)Tν +
1

2
νT∇2fj(x)ν, (4.26)

from which it is inferred that the progress toward the optimal set is determined by
the objective function that decreases the least. Additionally, we need a similar merit
function to estimate how close we expect to be from the feasible region defined by
X = {x ∈ Rn | h(x) = 0}. For this, we utilize

Ph(x) =
1

2

p∑
j=1

hj(x)2 =
1

2
‖h(x)‖2, (4.27)

whose expected decrease in direction ν can be measured by the directional derivative

∇νPh(x) = h(x)THν = −‖h(x)‖2. (4.28)

By premultiplying h(x)T at both sides of the equality constrain in (4.25) we obtain
the second equality above. The following result shows that this adaption can be seen
as a particular penalization method for which the penalized MOP is given by

min
x∈Rn

Fh : Rn → Rk, (4.29)

where Fh is the vector of penalized functions fh1 , . . . , f
h
k : Rn → R defined as

fhj (x) = fj(x) + CP (x), j = 1, . . . , k, (4.30)

for some C > 0.
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Proposition 4.2.1
Let x ∈ Rn be given and let the objective functions be strictly convex. Further, let
(ν∗, δ∗) be the solution of (4.25).

(a) If ν∗ = 0, then δ∗ = 0 and x is a KKT point of (4.1).

(b) If ν∗ 6= 0 and δ∗ < 0, then ν∗ is a descent direction of (4.29) for C = 0 (i.e., a
descent direction of the unconstrained MOP (3.1)).

(c) If ν∗ 6= 0 and δ∗ ≥ 0, then ‖h(x)‖2 6= 0 and ν∗ is a descent direction of (4.29)
for

C >
δ∗

‖h(x)‖2
> 0. (4.31)

Proof The Lagrangian of (4.25) is given by

L((ν, δ), α, λ) = δ +
k∑
j=1

αj

(
∇fj(x)Tν +

1

2
νT∇2fj(x)ν − δ

)

+

p∑
j=1

λj
(
hj(x) +∇hj(x)Tν

)
.

(4.32)

Then, the KKT conditions for (4.25) at (ν∗, δ∗) read as

∇νL =
k∑
j=1

αj
(
∇fj(x) +∇2fj(x)ν∗

)
+

p∑
j=1

λj∇hj(x) = 0,

∇δL = 1−
k∑
j=1

αj = 0,

∇fj(x)Tν∗ +
1

2
ν∗T∇2fj(x)ν∗ ≤ δ∗, j = 1, . . . , k,

hj(x) +∇hj(x)Tν∗ = 0, j = 1, . . . , p,

αj ≥ 0, j = 1, . . . , k,

αj

(
∇fj(x)Tν∗ +

1

2
ν∗T∇2fj(x)ν∗ − δ∗

)
= 0, j = 1, . . . , k.

(4.33a)

(4.33b)

(4.33c)

(4.33d)

(4.33e)

(4.33f)

(a) Let ν∗ = 0. From (4.33b) and (4.33e) it follows that α is a convex weight. Further,
from (4.33a) it follows that if ν∗ = 0 then

k∑
j=1

αj∇fj(x) +

p∑
j=1

λj∇hj(x) = 0,

and from (4.33d) that h(x) = 0. Thus, x is a KKT point of (4.1). Finally, from
(4.33f) we obtain δ∗ = 0.
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(b) Let ν∗ 6= 0 and δ∗ < 0. Then by (4.33c) and since all Hessians are positive definite
we have

∇fj(x)Tν∗ ≤ δ∗ − 1

2
ν∗T∇2fj(x)ν∗ < 0, j = 1, . . . , k. (4.34)

Since h is not used here, the statement holds also for unconstrained problems
which has already been proven in [16].

(c) Let ν∗ 6= 0 and δ∗ ≥ 0. From (4.28) we have for each penalized function

∇fhj (x)Tν∗ =

(
∇fj(x) + C

p∑
j=1

hj(x)∇hj(x)

)T

ν∗ = ∇fj(x)Tν∗ − C‖h(x)‖2.

Thus, it is ∇fhj (x)Tν∗ < 0, ∀j = 1, . . . , k, for

C >
max
j=1,...,k

∇fj(x)Tν∗

‖h(x)‖2
.

Since by (4.26) δ∗ > max
j=1,...,k

∇fj(x)Tν∗, we can take

C >
δ∗

‖h(x)‖2
> 0

to ensure that C is strictly positive. It remains to show that ‖h(x)‖2 6= 0: from
(4.33f) we conclude that either αj = 0 or

∇fj(x)Tν∗ ≥ −1

2
ν∗T∇2fj(x)ν∗, j = 1, . . . , k. (4.35)

Then, by taking the inner product of ν∗ and (4.33a) we obtain

k∑
j=1

αj
(
∇fj(x)Tν∗ + ν∗T∇2fj(x)ν∗

)
+

p∑
j=1

λj∇hj(x)Tν∗ = 0. (4.36)

By using (4.35), the above formula reduces to the following inequality

1

2
ν∗TWαν

∗ +

p∑
j=1

λj∇hj(x)Tν∗ ≤ 0. (4.37)

If additionally h(x) = 0, in virtue of (4.33d) we end up with

1

2
ν∗TWαν

∗ ≤ 0 (4.38)

which is satisfied only if ν∗ = 0 since α is a convex weight and the Hessians are
positive definite. This contradicts the assumption, and the claim follows. �
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Since we are thus computing descent directions of (4.29) there are three choices: (i)
we can improve F but not Ph, (ii) we can improve both, and (iii) we can improve
Ph but not F . This is reflected by the step size control we propose in the following.
The idea is to apply the same componentwise Armijo condition as above but on the
following function

F̃h(x) =


F (x), δ < 0 and ‖h(x)‖ = 0,

(F (x), Ph(x))T , δ < 0 and ‖h(x)‖ 6= 0,

Ph(x), δ ≥ 0.

(4.39)

Recall that we already proved (in Proposition 4.2.1 (c)) that if δ ≥ 0, then ‖h(x)‖ 6= 0
and the term Ph(x) will decrease (see Equation (4.28)). If δ < 0, either item (i) or (ii)
holds and by Proposition 4.2.1 (b), ν∗ is a descent direction of F . If ‖h(x)‖2 = 0, Ph
cannot be improved any more and we neglect the penalization term. If ‖h(x)‖2 6= 0, Ph
and F can be decreased simultaneously by a line search in direction ν∗. Therefore, the
step size control should monitor that a sufficient decrease is achieved for each objective
including Ph. Here, we avoid the selection of a penalization factor by applying a
componentwise Armijo condition on the augmented function resulting of considering
Ph as the (k + 1)-th objective. Finally, in case (iii), since δ ≥ 0, at least one of the
objectives will worsen in direction ν∗. However, by Proposition 4.2.1 (c), ‖h(x)‖2 6= 0
and ν∗ is a descent direction of (4.29) for a value of C > 0 given in (4.31). Then,
the choice of a step length that produces a sufficient decrease in Ph—excluding the
objective functions—can be seen as the choice of C � 0. Putting all together, we
take as an acceptable step length t > 0 one that satisfies

F̃h(x+ tν) ≤ F̃h(x) + ct∆F̃h(x). (4.40)

Here, ∆F̃h(x) represents the expected decrease of F̃h in objective space given by

∆F̃h(x) =


δe, δ < 0 and ‖h(x)‖2 = 0,

(δe,−‖h(x)‖2)T , δ < 0 and ‖h(x)‖2 6= 0,

−‖h(x)‖2, δ ≥ 0,

(4.41)

where e ∈ Rk is the vector of all ones. In our implementations, we have chosen c = 0.1
as proposed in [16]. Last, Proposition 4.2.1 (a) suggests as a possible stopping criteria

‖ν∗‖ < ε, (4.42)

for a small value ε > 0 (taken as ε = 5
√

eps).

We will next discuss some of the implementation details of the proposed method.
First, we must deal with the Newton direction subproblem (NDS) that—as for the
unconstrained case—is in the category of QCLP. Again, we will shift it into the form

min
x∈Rn

fTx

s.t. ‖Ajx+ bj‖ ≤ cTj x+ dj, j = 1, . . . , k,
Ex+ e= 0,

(4.43)
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where f, cj ∈ Rn+1, Aj ∈ R(nj−1)×(n+1), bj ∈ Rnj−1, dj ∈ R, E ∈ Rp×(n+1) and
e ∈ Rp. The modified NDS is thus given by

min
(ν,δ)∈Rn×R

(
0, . . . , 0, 1

)( ν

δ

)
= δ

s.t.

∥∥∥∥∥
(

1
2
∇fTj −1

2

1√
2
LTj 0

)(
ν

δ

)
+

(
1
2

0

)∥∥∥∥∥ ≤ (− 1
2
∇fTj , 12

)( ν

δ

)
+

1

2
, j = 1, . . . , k,

h(x) + (H 0)

(
ν

δ

)
= 0,

(4.44)

where LjL
T
j = ∇2fj(x) and ∇fj = ∇fj(x). Note that the only difference between

(4.44) and (3.38) is the additional equality constraint. Then, the subproblem (4.44)
belongs to SOCP with f = (0, . . . , 0, 1)T ∈ Rn+1,

Aj =

(
1
2
∇fTj −1

2

1√
2
LTj 0

)
∈ R(n+1)×(n+1),

bj = (1/2, 0, . . . , 0)T ∈ Rn+1, cj = (−1/2∇fTj , 1/2)T ∈ Rn+1, and dj = 1/2 ∈ R.

Additionally, it is E = (H 0) ∈ Rp×(n+1) and e = h(x) ∈ Rp. No further discussion
on the implementation of the step length control and the stopping criteria will be
necessary. As well, the pseudo codes of the Newton method for equality constrained
MOPs and the proposed linear search backtracking are quite similar to Algorithm 1
and Algorithm 2, respectively, so will be omitted. For the Newton method, just recall
that the dual problem of (4.43) was given in Chapter 2 by (2.33). For the step length
control, it will only be required to change the condition of the if-statement in Line 3
by the modified Armijo condition (4.40).

4.3 The Pareto Tracer Method

In this section, we are ready to describe the Pareto Tracer method for equality con-
strained MOPs. The resulting pseudo code is basically the procedure presented in
Algorithm 3 to handle problems without restrictions. Thus, in the following, we will
merely discuss some minor details that are relevant to the new context.

The Pareto Tracer is now capable of tracing the manifold of Pareto points of
MOPs with equality constraints. Again, the method separates decision from weight
space obtaining as a result a vector µ that can be used to steer the search given a
direction d in objective space. In addition, we chose to utilize a modified version of
the Newton method as corrector instead of solving the KKT system of equations.
Several reasons for this election were given in the previous chapter and section which
are supported by the promising numerical results presented later in this chapter. We
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can thus base the new implementations on Algorithm 3 by changing the lines 8 and 9
to use the formulas (4.24) and (4.14) for the computation of orientation and direction
vectors, respectively. Further, the lines 1 and 13 should make a call to the appropriate
corrector method.

In order to keep track of the covered section of the solution set, we can take the
data structure proposed in [34] with the modifications explained in Chapter 3. Basi-
cally, the ‘recovering’ technique presented in Algorithm 4 remains untouched.

Finally, for equality constrained BOPs, the computations can also be significantly
simplified: still, the Pareto fronts of such problems are typically one-dimensional (i.e.,
the inclusion of equality restrictions does not change the dimension of the solution
manifold). We can find more details on this in [28]. Then, we will keep Algorithm 5
identical except for Line 6 that should include Equation (4.14) to compute the tangent
vector, and Line 14 that should use the modified Newton method. The discussion
regarding the stopping criteria for the continuation can also be incorporated without
further changes.

4.4 Hessian-free Realizations

To cope with Hessian-free realizations of the PT that can additionally handle prob-
lems subject to equality constraints, we basically have two options: one exclusively
based on gradients (the SD realization) and another one based on QN methods.

If we choose to completely disregard the second-order information (first option),
we have to approximate the Hessians by the identity matrix (I ∈ Rn×n). Then, from
(4.14) we obtain for the predictor(

νµ
ξ

)
= −

(
I HT

H 0

)−1(
JT

0

)
µ. (4.45)

The orientation vector can in turn be computed as in Equation (4.24) where

µ+
d = A+d, (4.46)

and A is this time

A = − (J 0)

(
I HT

H 0

)−1(
JT

0

)
. (4.47)

Next, for the corrector, the Newton direction subproblem (4.25) gets reduced to

min
(ν,δ)∈Rn×R

1
2
‖ν‖2 + δ

s.t. ∇fj(x)Tν ≤ δ, j = 1, . . . , k,

hj(x) +∇hj(x)Tν = 0, j = 1, . . . , p.

(4.48)
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Note that (4.48) belongs to the QP category as the corresponding SD version of the
direction subproblem for the unconstrained case. The stopping criteria and the step
length control do not need to suffer any modification.

If, on the other hand, we aim for faster rates of convergence, a QN realization
would be a better choice. Here, the formulas for direction (νµ) and orientation (µ)
remains as in (4.14) and (4.24) respectively, except for the term Wα that is replaced
by

Bα =
k∑
j=1

αjBj ∈ Rn×n, (4.49)

where Bj ≈ ∇2fj(x). Since we have decided to approximate the equality constraints
by linear functions, no approximation of the Hessians of the equalities is required
and Bα remains exactly as in (3.65). Initially, we take Bj = Bα = I leading to
the SD version of the predictor. For subsequent iterations, though, we expect better
approximations of Bα coming from the corrector phase. For this, we define the search
direction subproblem as

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νTBjν ≤ δ, j = 1, . . . , k,

hj(x) +∇hj(x)Tν = 0, j = 1, . . . , p,

(4.50)

which differs only from the Newton direction subproblem by the use of Bj ≈ ∇2fj(x).
Consistently with the predictor step, no update of the Hessians of the equalities is
required so we apply the BFGS formula (Equation (3.68)) only to the Hessians of the
objective functions. This time, we cannot say much about the convergence rate of
both SD and QN versions of the method, although a superiority of the QN approach
can be observed in the numerical results presented below. About the computational
complexity, the QN direction subproblem again belongs to SOCP which certainly
requires more effort than solving the SD direction subproblem. Moreover, modified
Cholesky factorizations would also be required on B1, . . . , Bk to ensure that (4.50)
has a unique solution which is also a descent direction. Under this scenario, a detailed
analysis of the convergence rate of this modification is basically a necessity in order
to justify—beyond numerical results—the additional overhead required by the QN
realizations. Finally, the same trick of updating the Hessians at predicted points
using the information gathered from the previous corrector seems to work likewise in
this context. With this, the zigzag behavior illustrated in Figure 3.6 as a consequence
of resetting the Hessian information at each predictor (by taking ∇2fj(p) ≈ I, j =
1, . . . , k) is partially or completely eliminated yielding improved results as for the
unconstrained case.
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4.5 Numerical Results

In the following, we present some numerical results of the PT for problems with
equality constraints. Since the Hillermeier method can also handle this type of prob-
lems, we will use it again in a comparison with the three versions of the PT (that
we will continue to call PT-N, PT-QN and PT-SD). The values of the parameters
have been taken as in the previous chapter (they are all specified when they were first
mentioned). As stated as well in Chapter 3, the implementation of the method of
Hillermeier follows the instructions given in [28] and uses the Levenberg-Marquardt
method as corrector setting the default tolerances for termination (10−6). For all
methods, we have taken the same initial Pareto optimal solution as starting point.

We will present next four examples (three of them with two objectives and the
other one with three objectives). The respective number of solutions and average
number of corrector and backtrack iterations are summarized in a table together with
the total number of function, Jacobian and Hessian evaluations. We do not show the
number of evaluations of the equality functions neither their respective number of
Jacobian evaluations. These indicators, however, coincide or are close to the number
of function and Jacobian evaluations of the objectives. Recall that in the case of the
PT, the Hessians of the equalities are not utilized at all, which represents an advan-
tage over the Hillermeier method. It is not clear, though, whether this information is
required to guarantee a competitive rate of convergence. The backtrack information
is omitted also for the method of Hillermeier since the Levenberg-Marquardt method
is not a line search but a trust-region strategy. The fields related to the Hessian infor-
mation are also left empty for the PT-QN and the PT-SD, respectively. Additionally,
we present graphically the approximations of the solution set (Pareto set and front)
obtained by the PT-QN.

4.5.1 Example 1

We start with the following problem from [33] subject to one linear equality constraint

fj(x) =
100∑
i=1
i 6=j

(xi − aji )2 + (xj − ajj)4, j = 1, 2,

s.t. 1
2
x1 = x2.

(4.51)

Here, a1 = (1, . . . , 1)T ∈ R100, a2 = −a1, and the step length for the continuation in
objective space was chosen as τ = 1. The Pareto set of this example is a line so we
expect that the PT requires no corrector at all. Our expectations are confirmed by
the results illustrated in Table 4.1 where the costs of the algorithm of Hillermeier are
also recorded in the first column. Further, Figure 4.1 shows graphically the numerical
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results of the PT-QN. Consistently with the previous chapter, we see that the strategy
followed by Hillermeier leads to more corrector iterations due to the consideration of
the compound space (x, α, λ) which certainly increases the nonlinearity of the optimal
set (see the first numerical example of Chapter 3). Observe also in Table 4.1 that
the PT-QN needs 0.3125 correctors in average. To clarify this result we would like to
point out that the PT-QN actually needs one corrector at one of the extremes of the
Pareto set. This happens due to our ignorance of the total arc length of the curve
allowing predictors to be located beyond the limits of the solution manifold. In such
cases, the algorithm steps back in one or more corrector iterations to reach (again)
the Pareto set/front. The same situation occurs for the SD version of the method
which in addition requires one backtrack iteration.

Hillermeier PT-N PT-QN PT-SD

Solutions 34.0000 33.0000 33.0000 33.0000
Avg. corrector iterations 3.4412 0.0000 0.3125 0.3125
Avg. backtrack iterations - 0.0000 0.0000 0.3125
Function evaluations 34.0000 33.0000 34.0000 35.0000
Jacobian evaluations 152.0000 33.0000 34.0000 34.0000
Hessian evaluations 304.0000 66.0000 - -

Table 4.1: Computational efforts of the four PC variants on the BOP (4.51).
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Figure 4.1: Numerical results of the PT-QN on the BOP (4.51).
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4.5.2 Example 2

Next we consider the BOP subject to one quadratic constraint

fj(x) =
∑100

i=1(xi − a
j
i )

2, j = 1, 2,

s.t. ‖x− c‖2 = r2,
(4.52)

where

a1 =
1√
100

(1, . . . , 1)T ∈ R100, and a2 =
1√
100

(1, . . . , 1︸ ︷︷ ︸
50 times

,−1, ...,−1︸ ︷︷ ︸
50 times

)T ∈ R100.

We also take c = (0, ..., 0)T ∈ R100 and r = 1. See Figure 4.2 and Table 4.2 for
the results of the PT-QN and the computational efforts, respectively for τ = 0.05.
Observe that even when the solution set is nonlinear, the PT-N needs less correctors
and in consequence less Jacobian and Hessian evaluations than the classical method.
Also recall that the Hillermeier approach is more likely to require less evaluations of
the objectives since the map F̃ is in terms only of the Jacobian and the Hessians of
the problem. For the latter, as the table shows, the number of function evaluations
coincides with the number of solutions at least for the bi-objective case. Thus, given
that we are considering several performance indicators, the reader may have noted
that deciding the overall winner is also a MOP. In our opinion, the most reliable choice
continues to be the PT-QN since without second-order information, the resulting
number of function and Jacobian evaluations are not far from those of the PT-N,
and in particular, the number of evaluations of the Jacobian is much lower than
what the Hillermeier method requires. However, if the exact Hessians are available,
taking the PT-N seems to be the best alternative since only the number of function
evaluations is outperformed.1 A completely atypical situation occurs here with the SD
approach: it requires less correctors (including backtrack iterations) than the method
of Hillermeier. This behavior is not observed in general but the opposite case: the
PT-SD is usually the method showing the worst performance, unless of course, the
considered solution set is linear or nearly linear.

Hillermeier PT-N PT-QN PT-SD

Solutions 63.0000 64.0000 64.0000 64.0000
Avg. corrector iterations 3.0000 1.0000 1.1270 1.8095
Avg. backtrack iterations - 0.0000 0.0000 0.0079
Function evaluations 63.0000 127.0000 135.0000 179.0000
Jacobian evaluations 257.0000 127.0000 135.0000 178.0000
Hessian evaluations 514.0000 254.0000 - -

Table 4.2: Computational efforts of the four PC variants on the BOP (4.52).

1The PT-QN needs no Hessian evaluations but instead requires BFGS updates. If evaluating the
Hessians is very costly, the QN approach may be preferable. Otherwise, the use of exact second-order
information (if available) may lead to better rates of convergence.
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Figure 4.2: Numerical results of the PT-QN on the BOP (4.52).

4.5.3 Example 3

We will now reconsider the first example subject to a quadratic equality constraint.
The problem thus reads as

fj(x) =
100∑
i=1
i6=j

(xi − aji )2 + (xj − ajj)4, j = 1, 2,

s.t. ‖x− c‖22 = r2,

(4.53)

where a1 and a2 as well as c and r are taken as in the previous example. Figure 4.3
shows the numerical results of the PT-QN for τ = 0.05 and Table 4.3 shows the
computational costs for all methods. Again, the PT-N wins (except for the required
number of function evaluations) over the classical approach due to the fewer number of
correction steps that had to be performed. Since the Pareto set is nonlinear, the PT-
QN is outperforming the PT-SD as well as all other methods in terms of total number
of function evaluations (including objective functions, Jacobian and Hessians). In this
case, a total of 189 function and 189 Jacobian evaluations (plus the detection of a
Pareto optimal solution) were sufficient to obtain a suitable representation of the
entire Pareto set/front of a problem of hundred variables. Nevertheless, these results
are only of local nature unless (as it is the case) we are dealing with a convex problem.
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Hillermeier PT-N PT-QN PT-SD

Solutions 63.0000 64.0000 65.0000 64.0000
Avg. corrector iterations 3.2031 1.7778 1.9375 5.2222
Avg. backtrack iterations - 0.0000 0.0000 0.0676
Function evaluations 63.0000 176.0000 189.0000 534.0000
Jacobian evaluations 270.0000 176.0000 189.0000 393.0000
Hessian evaluations 540.0000 352.0000 - -

Table 4.3: Computational efforts of the four PC variants on the BOP (4.53).
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Figure 4.3: Numerical results of the PT-QN on the BOP (4.53).

4.5.4 Example 4

In order to test a MOP with three objectives, we take the following problem subject
to a torus equality constraint

f1(x) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2,
f2(x) = (x1 + 1)2 + (x2 + 1)2 + (x3 + 1)2, and
f3(x) = (x1 − 1)2 + (x2 + 1)2 + (x3 − 1)2,

s.t. r2 − (
√
x21 + x22 −R)2 − x23 = 0,

(4.54)

where r = 0.3 and R = 0.5. For τ = 0.15, we can see from Table 4.4 that in accordance
with the previous results, the PT-N is the method that takes the fewest number of
correctors in average, followed very close by its QN counterpart which requires even
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less iterations than the approach of Hillermeier. The PT-SD in turn is the least
efficient one taking in average more than nine iterations to correct the solutions back
to the optimal manifold. However, when we consider the other indicators, the results
do not look so good since all versions of the PT used more function evaluations than
the algorithm of Hillermeier. The reasons for this are diverse. First, the number of
objective evaluations required by the method of Hillermeier, though typically larger
than the amount of solutions for k ≥ 3, is more likely to be lower than the number
of evaluations required by the Newton method. The difference here is that the latter
evaluates the objectives at each iteration while the former only evaluates the potential
solutions to verify whether they were already computed (see Section 3.3 of the previous
chapter). In addition, the PT generated more solutions due its capacity of walking
backward when the boundaries of the Pareto set are left behind. Nevertheless, we did
not observe the best performance of the modified Newton method in this problem.
For instance, when a predictor goes beyond the limits of the solution set, it may find
a corrector at the opposite extreme of the manifold instead of actually stepping back.
This occurs more or less frequent depending on the values of τ , i.e., larger values are
more prone to cause this behavior. At any case, the method does not show a good rate
of convergence if started at a non-efficient point where all the constraints are satisfied.
The good news, however, is that—though slow—it follows the solution manifold of
the equalities (as a consequence of the equality restriction introduced in the Newton
direction subproblem) until it converges to a (local) optimal point. In conclusion,
at least for this problem, the PT does (in general) not outperform the method of
Hillermeier in terms of costs. Then, in order to overcome this limitation, we propose
to work deeper in the convergence properties of our proposal and encourage the design
of other equality constrained test problems that fulfill the smoothness assumptions
required by continuation methods.

Hillermeier PT-N PT-QN PT-SD

Solutions 560.0000 600.0000 600.0000 963.0000
Avg. corrector iterations 3.5015 3.1415 3.1462 9.8294
Avg. backtrack iterations - 0.1755 0.1766 0.6546
Function evaluations 2841.0000 6570.0000 6596.0000 95369.0000
Jacobian evaluations 2927.0000 3397.0000 3405.0000 13906.0000
Hessian evaluations 8781.0000 10191.0000 - -

Table 4.4: Computational efforts of the four PC variants on the MOP (4.54).

On the other hand, if we analyze other quality indicators as the distribution
of solutions in objective space, the PT is clearly the winner. Figure 4.4 shows the
approximations of the Pareto set and front obtained by the method of Hillermeier, and
in contrast, Figure 4.5 illustrates the numerical results of the PT-QN. Furthermore,
this problem has several pieces of local optima connected to the global solution set.2

2This is the reason why the PT-SD found 963 solutions: it followed a larger piece of local optima.
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Thus, after applying a dominance filter (see e.g. [7, 76] and references therein) to the
output of both the Hillermeier and the PT-QN methods, we present their respective
results in Figure 4.6 and Figure 4.7.
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Figure 4.4: Numerical results of the Hillermeier method on the MOP (4.54).
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Figure 4.5: Numerical results of the PT-QN method on the MOP (4.54).
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Figure 4.6: Filtered numerical results of the Hillermeier method on the MOP (4.54).
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Figure 4.7: Filtered numerical results of the PT-QN method on the MOP (4.54).
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4.6 Discussion

We have extended the Pareto Tracer method to handle MOPs subject to equality
constraints. The method again utilizes classical continuation techniques on a map
F̃ induced by the first-order optimality conditions for equality constrained MOPs.
However, unlike the approach proposed in [28], the Pareto Tracer still separates pa-
rameters from KKT multipliers leading to a reduction of the total number of function
evaluations in several test cases. The orientation vector µ—resulting from the above-
mentioned separation—emerges as well in this context allowing to steer the search
with a focus on an even distribution of points in objective space. For the corrector, a
modified version of the Newton method [16] is proposed capable to deal with equal-
ity restrictions. The numerical results were very promising in several BOPs but the
method presented problems in the last example that considers three objectives. This
scenario encourages a further study of the convergence rate of the modifications in or-
der to improve the efficiency of the new method. Note, though, that the Pareto Tracer
continues to show the best quality of the solutions (with regard to distribution) due to
its facility to steer the search in both decision and objective space. Another advantage
of this proposal is that it completely disregards the Hessians of the constraints, even
though we cannot (yet) establish the relation between this information and the rate
of convergence of the corrector. In addition, the new version of the Newton method
for equality constrained MOPs comes together with a modified Armijo condition con-
cerning the estimated decrease of both the objectives and a merit function based on
the equalities. This should suffice those cases where the objective functions cannot be
improved in order to reach the feasible region. However, one drawback of the modified
Newton direction (possibly the cause of the slow convergence observed in one of the
examples) is that starting at a non-efficient point that satisfies the constraints, it will
follow a path on the manifold defined by the equalities to finally converge to a (local)
solution. On the other hand, two Hessian-free realizations of the algorithm were also
developed based on quasi-Newton and steepest descent methods, respectively. The
computational time complexity of these approaches is still an issue and recommended
for a future investigation.
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Chapter 5

Handling Inequality Constrains

Finally, this chapter is dedicated to the treatment of MOPs subject to inequality
constraints. More precisely, we consider here problems of the form

min
x∈Rn

F (x),

s.t. gj(x) ≤ 0, j = 1, . . . ,m.
(5.1)

Handling such problems is not an easy topic in the context of continuation since the
inequalities can turn the followed manifold non-smooth at points where the set of
active constraints changes. One way to deal with those singularities is maintaining
the set of restrictions that are currently active in order to detect and manage such
changes of activity. We will denote this set at a point x ∈ Rn as

A(x) = {j|gj(x) = 0, j = 1, . . . ,m} . (5.2)

This has been implemented in [92] for parametric optimization and later in [27] for
bi-objective optimization which inspired the works presented in [29] and [31] also for
the bi-objective case. The general approach of Hillermeier [28], however, is not de-
signed to handle problems that include inequality constraints. See Chapter 2 for more
details. Here, we will utilize the fact (as did by the aforementioned techniques) that
applying a continuation on the full KKT system of equations is equivalent to deal
with a reduced system F̃ involving only the active constraints (see [92, 27, 29, 31] and
references therein). We thus proceed for the predictor as for the equality constrained
case but on the reduced map F̃ resulting from taking the active inequalities as equal-
ities. In consequence, from the separation of parameters from Lagrange multipliers,
the orientation vector µ emerges once more serving as a bridge between tangent di-
rections in objective and decision space. For the corrector, a further modification
of the Newton method [16] that considers the current active set is suggested. This
approach, though, bears little relation to the modified Newton method proposed in
Chapter 4 for equality constrained MOPs. Instead, it is closer in spirit to the steepest
descent procedure designed by Fliege and Svaiter [18] to manage MOPs restricted by
inequalities (see Chapter 2). Our proposal (as in [18]) is a method of feasible direc-
tions, meaning that the initial point and the subsequent iterations must be feasible.
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This, regrettably, represents a clear limitation in the current context since so far we
cannot guarantee that the predictor is a feasible point. Thus, for practical purposes,
we will limit the Pareto Tracer to box constrained MOPs, i.e.,

min
l≤x≤u

F (x), (5.3)

and utilize gradient projection methods to ensure the feasibility of the predicted
points. Nevertheless, we will continue to show several theoretic aspects for the gen-
eral case. A detailed analysis of the convergence rate for the suggested corrector is
also delegated in this chapter for a future work. Though, we provide as well theoreti-
cal and numerical evidence that support our proposal. We also encourage an in-depth
study of the time complexity of the extended Pareto Tracer for inequality constrained
MOPs. Further, we recommend to include in the analysis the Hessian-free versions
derived from quasi-Newton and steepest descent realizations of the method.

The remainder of this chapter is organized as follows. The computation of pre-
dictors for inequality constrained MOPs is discussed in Section 5.1. Additionally, in
the same section, the particular case of MOPs subject to box constraints is consid-
ered. We cover the corrector phase in Section 5.2 for the general case first and then
for problems with box restrictions. Subsequently, the Pareto Tracer for inequality
constrained MOPs as well as its Hessian-free realizations are discussed in Section 5.3
and Section 5.4, respectively. Some numerical examples are presented in Section 5.5
and we finally conclude in Section 5.6.

5.1 Predictor

In this section, we will start by computing tangent directions to the Pareto set of
general inequality constrained MOPs. As stated in [92] and [27], this task can be
accomplished by considering the reduced KKT system of equations including exclu-
sively the active constraints at the current solution. Due to numerical issues, we will
take in our computations the set of active and nearly active constraints at a given
point x ∈ Rn, that is

I = I(x) = {j | gj(x) > −ε, j = 1, . . . ,m} ⊃ A(x) (5.4)

for some ε > 0 (taken as ε =
√
ε = 4

√
25× eps). Thus, such a reduced KKT map

F̃ : Rn+k+s → Rn+s+1 would read as

F̃ (x, α, γ) =


∑k

j=1 αj∇fj(x) +
∑

j∈I γj∇gj(x)

gj∈I(x)∑k
j=1 αj − 1

 = 0, (5.5)

where s = |I|. Further α ∈ Rk and γ ∈ Rs are the associated Lagrange multipliers
such that αj ≥ 0 for all j = 1, . . . , k. See Theorem 2.1.2 for more details on the first-
order conditions of optimality. Analog to the equations (4.3) and (4.4) in Chapter 4,
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we define

Wα,γ =
k∑
j=1

αj∇2fj(x) +
∑
j∈I

γj∇2gj(x) ∈ Rn×n, and (5.6)

GI =
(
∇gj(x)T

)
j∈I ∈ R

s×n, (5.7)

leading to

F̃ ′(x, α, γ) =

 Wα,γ JT GT
I

GI 0 0
0 1 . . . 1 0

 ∈ R(n+s+1)×(n+k+s). (5.8)

Since we are seeking for kernel vectors of (5.8)—which are tangent to the augmented
solution manifold—we have to solve Wα,γ JT GT

I
GI 0 0
0 1 . . . 1 0

 ν
µ
ς

 =

 0
0
0

 , (5.9)

where ν ∈ Rn, µ ∈ Rk, and ς ∈ Rs. Then, after choosing a value of µ that satisfies
(3.5), i.e.,

∑k
j=1 µj = 0, the system (5.9) gets reduced to(

Wα,γ GT
I

GI 0

)(
νµ
ς

)
= −

(
JT

0

)
µ. (5.10)

Note that (5.10) is identical to (4.7) except for the submatrices involved. Thus, we can
use the same arguments as above to show that if rank(Wα,γ) = n and rank(GI) = s,
the matrix in the left hand side of (5.10) is regular and the solution of the system is
unique. Moreover, νµ will be a nontrivial tangent to the Pareto set of the MOP (5.1)
unless there is a change of activity at x (or µ = 0). Figure 5.1 illustrates a concrete
example of this case taken from [31]. Consider the constrained BOP of two variables

f1(x) = x1, and
f2(x) = x2,

s.t. 14− x21 − x22 ≤ 0,

5e−x1 + 2e−0.5(x1−3)
2 − x2 ≤ 0,
x1 − 5≤ 0,
x2 − 5≤ 0.

(5.11)

The points a, b, c, and d in the figure are called turning points, i.e., non-smooth
points where the flow of the continuation locally changes. This may have several
causes but in this particular context we will restrict to (i) transition points between
the pieces of the solution set defined by the active constraints (b, c) and (ii) extreme
points (a, d). Take e.g. c, where the first two constraints are active. At this point
the first constraint becomes active while the second one changes to inactive along the
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solution manifold. Given the derivatives of both constraints at c, it is easy to see that
there is no vector ν 6= 0 such that GIν = 0. Thus, the system (5.10) can only be
satisfied for νµ = 0. Nevertheless, the probability to reach exactly one of this turning
points is extremely remote.

−4 −2 0 2 4 6
−4

−2

0

2

4

6

a

b

c

d

x1/f1

x
2
/f

2

 

 

constraints

Pareto set/front

derivatives

Figure 5.1: Turning points on the Pareto set and front of the BOP (5.11).

Additionally, in order to avoid dealing with the Hessians of the inequalities, we have
made one modification to (5.10) (as done for (4.7) in Chapter 4) consisting of replacing
Wα,γ by Wα in the computations. This means that only first-order approximations of
the constraints are considered and therefore the tangent directions will be computed
by (

νµ
ς

)
= −

(
Wα GT

I
GI 0

)−1(
JT

0

)
µ. (5.12)

In spite of a more careful analysis should be done on the impact of removing the
second-order terms of the constraints, the numerical results so far are very promising
since the change from (5.10) to (5.12) leads to nearly the same performance.
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On the other hand, if we restrict the inequalities to box constraints, the auxiliary
map F̃ would be given by

F̃ (x, α, ρ, %) =



k∑
j=1

αj∇fj(x)−
∑
i∈Il

ρiei +
∑
i∈Iu

%iei

(−xi + li)i∈Il

(xi − ui)i∈Iu∑k
j=1 αj − 1


= 0, (5.13)

where

Il = {i | −xi + li > −ε, i = 1, . . . , n}, and

Iu = {i | xi − ui > −ε, i = 1, . . . , n}
(5.14)

are the sets of active and nearly active lower and upper box constraints, respectively.
It is also

Il,u = {i | i ∈ Il or i ∈ Iu} (5.15)

the set of active and nearly active box constraints. We take r = |Il,u| and (ρ, %) ∈ Rr

as the Lagrange multipliers associated with the active box constraints. Furthermore,
ei stands for the i-th canonical vector of the appropriate length. For the sake of
simplicity, we will define the matrix Il,u ∈ Rr×n as

(Il,u)ji =

{
−eTi , i ∈ Il
eTi , i ∈ Iu,

, j = 1, . . . , r, (5.16)

where (A)j denotes the j-th row of A. Then, F̃ ′ is given by

F̃ ′(x, α, ρ, %) =

 Wα JT ITl,u
Il,u 0 0
0 1 . . . 1 0

 ∈ R(n+r+1)×(n+k+r). (5.17)

To obtain a kernel vector of F̃ ′, let ν ∈ Rn, µ ∈ Rk, and η ∈ Rr such that Wα JT ITl,u
Il,u 0 0
0 1 . . . 1 0

 ν
µ
η

 =

 0
0
0

 . (5.18)

By choosing another time a µ with components that sum up to zero, Equation (5.18)
is reduced to (

Wα ITl,u
Il,u 0

)(
νµ
η

)
=

(
−JTµ

0

)
. (5.19)
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If rank(Wα) = n and rank(Il,u) = r, then the solution of (5.19) is unique since its
associated matrix is regular.1 Also from (5.19) we obtain

Wανµ + ITl,uη = −JTµ, and

Il,uνµ = 0,

(5.20a)

(5.20b)

and from (5.20b) that νiµ = 0 for i ∈ Il,u. Thus, we only need to compute the j-th
components of νµ such that j 6∈ Il,u. We also know that (ITl,uη)j = 0 for j 6∈ Il,u.
Then, the linear system of equations (5.19) is equivalent to

W Ic
α ν

Ic
µ = −JTIcµ, Ic = {1, . . . , n} \ Il,u, (5.21)

where W Ic
α is the matrix that results from Wα where the i-th row and column vectors

are deleted for all i ∈ Il,u. Analog, νIcµ results from νµ and JIc from J by deleting the i-
th element respectively the i-th column vector. Observe that if no constraint is active,
the system (5.21) coincides with the formula for tangent vectors of unconstrained
MOPs (see Equation (3.8)). Thus, in case νjµ = 0 for all j 6∈ Il,u, we compute the
predictor as for the unconstrained case (see Chapter 3) and then project it onto the
box, i.e.,

pi =


li, p̃i < li

p̃i, p̃i ∈ [li, ui]

ui, p̃i > ui,

, i = 1, . . . , n, (5.22)

where p̃ is the computed unrestricted predictor. The latter is actually an unusual case
that takes place when e.g. we are in a corner of the box (n constraints are active).
In such situations, computing a direction without taking the constraints into account
and then projecting the resulting predictor onto to the box (to keep it feasible) seems
to be more promising than just stopping the method.

It is then time for the second phase in the computation of predictors: to provide
the appropriate orientation to our tangent vectors depending on a desired result in
objective space. That is, given a direction d ∈ Rk in objective space, we seek for an
orientation vector µd ∈ Rk such that

Jνµd = d. (5.23)

When dealing with the general case, we transform (5.23) into

(J 0)

(
νµd
ς

)
= d (5.24)

since the solution of (5.10) is a compound vector. Then, substituting (νµd , ς) in
Equation (5.24) by its corresponding expression given by (5.10) we obtain

− (J 0)

(
Wα,γ GT

I
GI 0

)−1(
JT

0

)
µd = d, (5.25)

1We used here the same argument to prove that the matrices corresponding to the systems (4.7)
and (5.10), respectively, are regular.
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which is a linear system of equations of size O(k2). As in the previous two chapters,
(5.25) has none or an infinite number of solutions since the matrix involved is rank
deficient. Here, it is

A = − (J 0)

(
Wα,γ GT

I
GI 0

)−1(
JT

0

)
= −JWJT ∈ Rk×k,

(5.26)

where W ∈ Rn×n is the left top submatrix of(
Wα,γ GT

I
GI 0

)−1
.

Analog to the discussion in Chapter 4, it is possible to prove that Aα = 0 and thus
(5.25) has an infinity of solutions. Again, we will take

µd = µ+
d − (eTµ+

d )α, (5.27)

where
µ+
d = A+d. (5.28)

Let’s suppose in the following that our problem comes only with box restrictions
as in the MOP (5.3). If we substitute νµd in Equation (5.23) by its expression given
in (5.21) for box constrained problems, we get

Jνµd = −JIc
(
W Ic
α

)−1
JTIcµd = d. (5.29)

Note that JIc ∈ Rk×(n−r), W Ic
α ∈ R(n−r)×(n−r), and the r components of νµd corre-

sponding to the active constraints are zero. Then, by a similar reasoning to that
provided in Chapter 3, we will compute

νIcµd = −
(
W Ic
α

)−1
JTIcµ

+
d , (5.30)

where

µ+
d = A+d =

(
JIc
(
W Ic
α

)−1
JTIc

)+
d. (5.31)

Finally, the predictor stage ends by computing a sequence of tangent vectors
ν1, . . . , νk−1 that leads to a set of movements d1, . . . , dk−1 in objective space belonging
to an orthonormal basis of the linearized Pareto front at F (x). The steps to achieve
our goal are simple: (i) we compute a set of vectors d1, . . . , dk−1 as in Equation (3.24),
(ii) we compute the corresponding µd1 , . . . , µdk−1

as in (5.27) or (5.31) depending on
whether we are dealing with the general case or a box constrained problem, and (iii)
we obtain the tangent vectors νµd1 , . . . , νµdk−1

with the appropriate orientation by the

respective formulas (5.12) or (5.30). In case we get empty vectors, assuming that x
is a turning point, we can proceed as described above for box constrained problems:
computing first the unconstrained tangent and then projecting the resulting predictor
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onto the box to keep it feasible. However, a more careful analysis should be done for
the case of MOPs with general inequality constraints which is not provided in this
work. On the other hand, we can instead seek for orthogonal vectors that span the
linearized Pareto set. Then, we may compute an orthonormal basis of the image of

M = −WJT ∈ Rn×k, (5.32)

or alternatively utilize

M = −
(
W Ic
α

)−1
JTIc ∈ R

(n−r)×k (5.33)

for problems with box restrictions (recall that r components of the tangent vectors will
be zero). To obtain a suitable step size and further optimizations of the computational
costs for BOPs, we refer the reader to Chapter 3.

5.2 Corrector

In this section, we develop a new modification of the Newton method proposed by
Fliege et al. in [16] to deal with problems subject to inequality restrictions. The
new proposal resembles the steepest descent method for constrained MOPs designed
by Fliege and Svaiter in [18]. However, we include second-order information of the
objectives and a different design of the search direction subproblem by including the
terms gj(x) for j ∈ I in the inequalities. More precisely, we suggest to compute the
Newton direction for (5.1) by solving

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νT∇2fj(x)ν ≤ δ, j = 1, . . . , k,

gj(x) +∇gj(x)Tν ≤ 0, j ∈ I.

(5.34)

The difference of (5.34) with the unconstrained version (given by (3.34)) is the con-
sideration of the additional inequalities gj(x) + ∇gj(x)Tν ≤ 0 corresponding to the
active constraints, which also differ from the design in [18] by the term gj(x). Here,
as in [18], we are proposing a method of feasible directions, meaning that the initial
point and the subsequent iterations must remain feasible. Additionally, the variable
δ still represents the expected decrease in objective space by performing a line search
in direction ν, and will be utilized as well by the stopping criteria and the step length
control. We will delegate the analysis of the convergence rate for a future study and
will give in the following some theoretical arguments that help to support the con-
vergence of the method toward KKT points.
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Proposition 5.2.1
Let x ∈ Rn be a feasible point of (5.1) and let the objective functions be strictly
convex. Further, let (ν∗, δ∗) be the solution of (5.34).

(a) If ν∗ = 0, then δ∗ = 0 and x is a KKT point of (5.1).

(b) If ν∗ 6= 0, then ν∗ is a descent direction for F at x.

Proof The Lagrangian of (5.34) is given by

L((ν, δ), α, γ) = δ +
k∑
j=1

αj

(
∇fj(x)Tν +

1

2
νT∇2fj(x)ν − δ

)
+
∑
j∈I

γj
(
gj(x) +∇gj(x)Tν

)
.

(5.35)

Then, the KKT conditions for (5.34) read as

∇νL =
k∑
j=1

αj
(
∇fj(x) +∇2fj(x)ν∗

)
+
∑
j∈I

γj∇gj(x) = 0,

∇δL = 1−
k∑
j=1

αj = 0,

∇fj(x)Tν∗ +
1

2
ν∗T∇2fj(x)ν∗ ≤ δ∗, j = 1, . . . , k,

gj(x) +∇gj(x)Tν∗ ≤ 0, j ∈ I,
αj ≥ 0, j = 1, . . . , k,

αj

(
∇fj(x)Tν∗ +

1

2
ν∗T∇2fj(x)ν∗ − δ∗

)
= 0, j = 1, . . . , k

γj ≥ 0, j ∈ I,
γj
(
gj(x) +∇gj(x)Tν∗

)
= 0, j ∈ I.

(5.36a)

(5.36b)

(5.36c)

(5.36d)

(5.36e)

(5.36f)

(5.36g)

(5.36h)

(a) Let ν∗ = 0. From (5.36b) and (5.36e) it follows that α is a convex weight and
from (5.36a) that

k∑
j=1

αj∇fj(x) +
∑
j∈I

γj∇gj(x) = 0.

Since x is feasible, gj(x) ≤ 0 for all j = 1, . . . ,m. Further, by (5.36g) we have
that γj ≥ 0 and by (5.36h) that γjgj(x) = 0 for j ∈ I. Thus, taking γj = 0 for
j 6∈ I we conclude that x is a KKT point of (5.1). Finally, δ∗ = 0 follows from
(5.36f).
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(b) Let ν∗ 6= 0. Since x is feasible, it follows that ν = 0 is a feasible direction for
(5.34) and thus that δ∗ ≤ 0. Since further all Hessians are positive definite, we
obtain

∇fj(x)Tν∗ ≤ δ∗ − 1

2
ν∗T∇2fj(x)ν∗ < 0, j = 1, . . . , k,

and the claim follows. �

On the other hand, for box constrained MOPs, the Newton direction subproblem
(5.34) reads as

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νT∇2fj(x)ν ≤ δ, j = 1, . . . , k,
−νi − xi + li ≤ 0, i ∈ Il,
νi + xi − ui ≤ 0, i ∈ Iu,

(5.37)

which can be stated as

min
(ν,δ)∈Rn×R

δ

s.t. ∇fj(x)Tν + 1
2
νT∇2fj(x)ν ≤ δ, j = 1, . . . , k,

Il,uν + Il,u(x+ l + u)≤ 0.

(5.38)

Recall that xi, i = 1, . . . , n, is not supposed to be active with respect to a lower and
an upper bound at the same time. Note also that (5.38) becomes the unconstrained
Newton direction subproblem (3.34) if no restriction is active, i.e., x is inside the box.
At any case, the stopping criteria can be left as in Chapter 3 given by

δ ≥ −ε, (5.39)

where ε > 0 is a small tolerance (ε = 5
√

eps). For the step length control, we take
the Armijo rule for unrestricted MOPs but impose the following upper bound on the
step size:

tmax = min
i=1,...,n

ti, (5.40)

where

ti =


li − xi
νi

νi < 0

ui − xi
νi

νi > 0

+∞ νi = 0

, i = 1, . . . , n. (5.41)

Then, as initial step length, one can take t = min(1, tmax) and the backtracking strat-
egy will be identical to the procedure described in Algorithm 2 for the unconstrained
case. The step length control for the general case will be considered in the future
(although we may e.g. take the one suggested in [18]).
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It only remains to give some instructions on how to solve the Newton direction
subproblem. Since (5.38) belongs to the category of QCLP, we will have to shift
it to SOCP. As previously done, we will leave the objective function δ as it is and
transform the inequalities into second-order cone constraints, i.e.,

‖Ajx+ bj‖ ≤ cTj x+ dj, (5.42)

where f, cj ∈ Rn+1, Aj ∈ R(nj−1)×(n+1), bj ∈ Rnj−1, dj ∈ R, and j is an index
used here for convenience. The first k inequalities (associated with the objective
functions of the original MOP) are handled as in the previous two chapters (see the
SOCP instances (3.38) and (4.44)), and the last r inequalities (corresponding to the
active constraints) can be left basically as they are since most of the solvers can mix
linear inequality constraints with the original definition of SOCP. After all, they are
a particular case of (5.42) with A = 0 ∈ Rr×(n+1), b = 0 ∈ Rr, C = (cTj )j=1,...,r =

−(Il,u 0) ∈ Rr×(n+1),2 and d = (d1, . . . , dr)
T = −Il,u(x + l + u) ∈ Rr. The pseudo

code of the Newton method for MOPs with box restrictions is basically the procedure
described in Algorithm 1 after using the corresponding equations given in this section.

5.3 The Pareto Tracer Method

The Pareto Tracer method for MOPs with general inequality constraints is still in-
complete. The main trouble here is that the corrector has been designed as a method
of feasible directions and the predictor cannot be guaranteed to be a feasible point.
If the inequalities are linear, we can go for a gradient projection method (to project
the predictor onto the feasible polytope) but it would imply to solve an additional
convex quadratic program. See for instance [46]. For general inequalities, various
techniques (including heristics) can be used to determine an initial feasible point (a
good starting on this topic is also [46]). The good news is that the predictor, though
infeasible, is supposed to be close to the feasible region under some mild smoothness
assumptions and provided that we are not stepping too far along the followed tra-
jectory on the optimal manifold. In [92, 27, 29, 31] the alternative (for BOPs) has
been to solve the reduced KKT system of equations based on the current active set.
This technique, however, requires an a-priori knowledge of the active constraints at
the corrector. The latter represents no challenge while following a single piece of the
solution manifold where the active set is suppose to remain unchanged. The problem
arises when a turning point is detected since all possible combinations of the poten-
tial active constraints should be considered in order to identify the next segment to
follow.3 Then, we prefer to leave these issues to be subject to a detailed analysis in

2Recall that we are dealing with a compound variable (ν, δ) ∈ Rn+1 so being strict (Il,u 0) will
be considered by the solver instead of just Il,u.

3The technique actually includes (i) to determine the number s of constraints that are supposed
to be active, (ii) to identify the set Z of all potential active constraints, and (iii) to test all possible
s-combinations of constraints out of Z to identify the new active set.
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the future and focus here in box constrained problems.

The pseudo code of the Pareto Tracer for box constrained MOPs is thus very
close to Algorithm 3. We only have to change the lines 8 and 9 to use respectively
the formula (5.31) to compute the desired orientation µ+

d and the formula (5.30) to
compute the direction νµd . Additionally, if the tangent vector results to be zero, we
have to repeat the process with the original formulas (3.18) and (3.26), respectively.
Then, the resulting unconstrained predictor p̃ would have to be projected onto the box
by Equation (5.22) in order to obtain a feasible point p. The lines 1 and 13 should
also be changed to make a call to the new version of the Newton method capable
to work with box restrictions. No further modification of the data structure used
to keep track of the covered section of the Pareto front is required so the ‘recovery’
technique can be used as it is described in Algorithm 4. Finally, we can also apply the
computational optimizations suggested in Chapter 3 for BOPs. Then, Algorithm 5
will remain identical except for Line 6 that should use Equation (5.21) to compute
the tangent vector, and Line 14 that should make a call to the appropriate version of
the Newton method.

5.4 Hessian-free Realizations

We will cover in this section the Hessian-free realizations of the current version of the
PT. To be consistent with the work developed before, we will present in the following
two approaches: one based on SD methods, and the other one based on QN methods.
Considering first the general inequality case, we would obtain for predictor directions(

νµ
ς

)
= −

(
I GT

I
GI 0

)−1(
JT

0

)
µ, (5.43)

if the second-order information is completely omitted from Equation (5.12), i.e., as in
SD methods the Hessians are approximated by the identity matrix. The orientation
vector will be computed as in Equation (5.27) where

µ+
d = A+d, (5.44)

and A is approximated by

A = − (J 0)

(
I GT

I
GI 0

)−1(
JT

0

)
. (5.45)

If we restrict the problem to accept only box constraints, the formulas for direction
and orientation would be even more simplified. We will compute νµ by

νIcµ = −
(
W Ic
α

)−1
JTIcµ = −

k∑
j=1

αjIn−rJ
T
Icµ = −JTIcµ,

ν
Il,u
µ = 0,

(5.46)
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where In−r ∈ R(n−r)×(n−r) is the identity matrix and ν
Il,u
µ stands for the components

of νµ corresponding to the active constraints. Then, given d, we compute first

µ+
d = −(JIcJ

T
Ic)

+d, (5.47)

as done in (5.31), which leads to

νIcµd = JTIc(JIcJ
T
Ic)

+d = J+
Icd. (5.48)

The corrector, on the other hand, gets reduced to

min
(ν,δ)∈Rn×R

1
2
‖ν‖2 + δ

s.t. ∇fj(x)Tν ≤ δ, j = 1, . . . , k,

gj(x) +∇gj(x)Tν = 0, j ∈ I,

(5.49)

which is transformed into

min
(ν,δ)∈Rn×R

1
2
‖ν‖2 + δ

s.t. ∇fj(x)Tν ≤ δ, j = 1, . . . , k,
Il,uν + Il,u(x+ l + u)≤ 0,

(5.50)

for box constrained MOPs.

A more promising choice, after the results of the previous two chapters, is to
utilize a QN approach. Here, the formulas for νµ and µ given for MOPs with general
inequalities as well as for MOPs subject to box restrictions remain as they were
originally specified, except for the term Wα that is replaced by

Bα =
k∑
j=1

αjBj ∈ Rn×n. (5.51)

See (5.12) and (5.27) for the equations corresponding to direction and orientation
in problems with inequality restrictions. The equivalent formulas for the box con-
strained case are given by (5.30) and (5.31), respectively. Again, no approximation
of the Hessians of the inequalities is required since they are approximated by linear
functions or they are actually linear (box constraints). Then, only the Hessians of the
objectives will be updated (by means of BFGS updates (3.68)) at each iteration of
the corrector method. For this, the Newton direction subproblem (see the subprob-
lems (5.34) and (5.38) for inequality and box contrained MOPs, respectively) remains
unchanged except for the term ∇2fj(x) that is replaced by its approximation Bj for
all j = 1, . . . , k. The Hessians corresponding to predictor points are also updated
based on the information gathered from the previous corrector, which improves (as
expected) the performance of the method. We are still missing a proper analysis
of the convergence rates of these procedures, but the numerical results presented in
the next section point toward a superiority of the QN approach over the SD ver-
sion. Additionally, a study of the asymptotic time complexity of each realization is
highly recommended in order to provide a balance between convergence speed and
computational cost.
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5.5 Numerical Results

We will compare in the following the three versions of the PT for problems with box
(and possibly equality) constraints. However, we will not include this time a compar-
ison with the method of Hillermeier since it was not originally designed to work with
inequalities. Also, we follow the routine of setting the parameters with the values
specified at their first appearance and choose the same initial Pareto point for each
of the algorithms.

To complete our tests, we will present immediately three constrained problems.
The first two with two objectives and the last one with three objectives. In particu-
lar, the second example shows the performance of the PT on a problem with mixed
box and inequality restrictions. As usual, a table will record the number of solutions
encountered by each algorithm as well as the average number of corrector and back-
track iterations and the total amount of function, Jacobian and Hessian evaluations
required. Despite we provide no comparison with any further method, the material
presented here helps to understand the differences that arise from the alternative we
choose to manage second-order information. It will be clearly illustrated that the
results (in that sense) remain consistent with what was observed in the previous two
chapters: the more accurate the Hessian information we have, the faster the con-
vergence toward the Pareto set. We resolved (as in Chapter 4) that the number of
function and Jacobian evaluations of the constraints provides no additional insights
on the behavior of the PT since they are close to the amount of function and Jacobian
evaluations of the objectives. Finally, we will continue to show the numerical results
of the QN approach in a separate figure.

5.5.1 Example 1

The first example is a BOP subject to one box inequality given by

f1(x) = (x1 − a11)4 +
100∑
i=2

(xi − a1i )2, and

f2(x) =
100∑
i=1

(xi − a2i )2,

s.t. x1 ≥ 0,

(5.52)

where a1 = (1, . . . , 1)T ∈ R100 and a2 = −a1. The solution set of the BOP (5.52)
after removing the constraint is a nonlinear curve connecting the points a1 and a2

that gets projected onto the subspace defined by x1 = 0 if we add the box restriction
above. Call b the solution of the unconstrained problem where the first component
is set to zero (b1 = 0). Then, the Pareto set of the BOP (5.52) comes in two pieces:
one linear segment from a0 = (0,−1, . . . ,−1) ∈ R100 to b, and one curved segment
from b to a1. For a better understanding, Figure 5.2 shows the Pareto set/front
obtained by the PT-QN using a step length of τ = 10 in objective space. Here, the
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three versions of the PT performed no corrector step while following the fragment
of the solution curve from a0 to b. Table 5.1 records the respective computational
efforts required by each algorithm. Undoubtedly, the differences observed between
the methods arise from the continuation on the nonlinear segment that connects the
points b and a1. Specifically, the PT-N is the one that requires the least number of
correctors at the cost of performing in this case 198 evaluations of the Hessians. The
PT-QN is in second place, but considering the savings in Hessian evaluations and
the small differences in function and Jacobian evaluations with respect to the PT-N,
it can be considered the overall winner. The PT-SD is the one that requires more
correctors, but on the other hand, its implementation does not have to deal with
matrices of size O(n2).

PT-N PT-QN PT-SD

Solutions 66.0000 66.0000 66.0000
Avg. corrector iterations 0.5077 0.6923 1.6308
Avg. backtrack iterations 0.0000 0.0410 4.2153
Function evaluations 99.0000 116.0000 657.0000
Jacobian evaluations 99.0000 111.0000 172.0000
Hessian evaluations 198.0000 - -

Table 5.1: Computational efforts of the three PT variants on the BOP (5.52).
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Figure 5.2: Numerical results of the PT-QN method on the BOP (5.52).
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5.5.2 Example 2

Next we consider a BOP of five variables subject to box restrictions and two equality
constraints. This is a modification of the test problem presented in [6] that reads as

f1(x) = x21 + x22 + x23 + x24 + x25, and

f2(x) = 3x1 + 2x2 −
x3
3

+ 0.01(x4 − x5)3,

s.t. x1 + 2x2 − x3 − 0.5x4 + x5 = 2,

4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x25 = 0,

−2 ≤ xi ≤ 2, i = 1, . . . , 5.

(5.53)

Figure 5.3 shows the numerical results of the PT-QN for τ = 0.25 and Table 5.2 the
computational costs of the three variants of the PT. We can see in the picture that
the Pareto set of this problem is as well a piecewise curve induced by the inequality
constraints. All versions of the PT were successful in finding the entire solution set.
However, a strange event takes place here: the PT-QN converges slightly faster than
the PT-N. A reasonable explanation for this particular scenario is that the Hessian
of the second objective function is indefinite or negative definite in all the domain
interval, so we apply a transformation (i.e., a modified Cholesky decomposition) on
this matrix to keep it positive definite. Then, it is highly probable4 that this (neces-
sary) modification downgrades the convergence rate of the PT-N. This observation
provides a further incentive for the use of QN methods in real-life applications where
the Hessians are not necessarily positive definite and will have to be modified anyway.

PT-N PT-QN PT-SD

Solutions 62.0000 62.0000 62.0000
Avg. corrector iterations 1.0323 0.9839 2.3226
Avg. backtrack iterations 0.0000 0.0000 0.2969
Function evaluations 127.0000 124.0000 296.0000
Jacobian evaluations 127.0000 124.0000 207.0000
Hessian evaluations 254.0000 - -

Table 5.2: Computational efforts of the three PT variants on the BOP (5.53).

4We can only establish certainty after the proper convergence rate analysis of the corrector
methods.
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Figure 5.3: Numerical results of the PT-QN method on the BOP (5.53).

5.5.3 Example 3

The last example is a three objectives problem defined by

fj(x) =
100∑
i=1
i6=j

(xi − aji )2 + (xj − ajj)4, j = 1, 2, 3,

s.t. x1 ≥ 0.5, and
x2 ≥ 0.5,

(5.54)

where a1 = (1, . . . , 1)T ∈ R100, a2 = −a1, and a3 = (1,−1, 1,−1, . . .)T ∈ R100. The
Pareto set and front of the unconstrained version of this problem is presented in
Figure 3.9 (last example of Chapter 3). Here, after introducing a lower bound for
the first two variables, we obtain a similar Pareto front but a quite different Pareto
set. See Figure 5.4 for a graphical illustration of the numerical results yielded by
the PT-QN using a step length of τ = 10 (the same was taken in Chapter 3 for the
unconstrained case). It is interesting to see in the picture the remarkable differences
between the distribution of points in parameter and objective space. Clearly, the PT
had to be very precise in selecting the proper direction in decision space to produce
such well placed results in objective space. Again, the variant that uses exact second
derivatives converges faster toward the solution set. In contrast, the SD version is
notably slower due to the total omission of the Hessian information. The best balance
seems to be the QN approach that is most of the time capable to come close to the
Newton behavior without any knowledge of the second-order information.
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PT-N PT-QN PT-SD

Solutions 711.0000 726.0000 644.0000
Avg. corrector iterations 1.1635 1.2933 8.1253
Avg. backtrack iterations 0.0000 0.0105 2.2218
Function evaluations 3870.0000 4111.0000 19297.0000
Jacobian evaluations 1907.0000 2081.0000 7502.0000
Hessian evaluations 5721.0000 - -

Table 5.3: Computational efforts of the three PT variants on the MOP (5.54).
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Figure 5.4: Numerical results of the PT-QN method on the MOP (5.54).

5.6 Discussion

In this chapter, we end up with a version of the Pareto Tracer that can handle both
equality and box restrictions for problems with virtually any number of objectives.
Additionally, the theoretical basis for the consideration of general inequality con-
straints has also been established. The strategies followed here are consistent with
the work developed in the last two chapters and are similar in principle to classical
continuation techniques. The map F̃ coming from the first-order conditions of opti-
mality plays a key role in the derivation of tangent directions, although we actually
use a reduced version of F̃ by taking the active inequalities as equalities and excluding
the inactive constraints. Since for k ≥ 3 there is an infinity of possible vectors within
the tangent space to the Pareto set, it is essential to come up with a good selection
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mechanism for such predictor directions. This is precisely the inherent role associated
with the rotation vector µ ∈ Rk (coming also from F̃ ) which can be chosen based
on a desired movement in objective space by solving an additional system of linear
equations of size O(k2). For the corrector, we have proposed a further modification
of the Newton method [16] which can easily be coupled with the algorithm designed
in Chapter 4 for equality constrained MOPs. This is, however, a method of feasible
directions and it is still missing an effective strategy to deliver feasible predictors.
Then, we have limited our implementations to problems subject to box constraints
and utilize gradient projection methods to guarantee the feasibility of the predictors.
The development of further strategies for the general case has been left for a future
work. Other authors have proposed to use instead a Gauss-Newton or Levenberg-
Marquardt method to solve the reduced system F̃ induced by the active set (see for
instance [92, 27, 29, 31]). Our aim here, though, has been to exploit the ideas of the
Newton method of Fliege et al. which is proven to have better convergence prop-
erties.5 Besides, the alternatives suggested above hardly depend on an elaborated
procedure to determine (a-priori) the active constraints at the following corrector.
In addition, we developed two Hessian-free realizations of the Pareto Tracer based
respectively on quasi-Newton and gradient descent methods, and the choice will de-
pend on how we intend to manage the second-order information of the problem. The
Hessians of the constraints are completely ignored since we approximate both equal-
ity and inequalities by linear functions. So far we have not been able to determine
whether this linear approximations are good enough to provide a competitive rate
of convergence for our methods. Thus, a detailed study of this topic as well as an
analysis of the computational time complexity of the procedures are recommended as
the next steps to follow.

5By convergence properties here we do not mean rate of convergence but the capacity of the
Newton method to avoid being attracted to e.g. points of maximum.
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Chapter 6

Conclusions and Future Work

This chapter summarizes the thesis work, discusses its findings and contributions,
and points out its limitations. Then, in a second part, it also outlines directions for
future research.

6.1 Conclusions

We have devised, in this thesis work, a novel PC method to trace the manifold of
Pareto points of a given MOP. The Pareto Tracer, as we call it, follows the spirit
of classical continuation techniques for the treatment of undetermined systems of
equations. Numerical path following methods [38] have been utilized before in the
context of multi-objective optimization. The most classical example is the approach
of Hillermeier [28] which can be seen as an application of the Euler-Newton method
[38] on the system of equations inferred from the KKT optimality conditions. Our
proposal differs from the latter method in two major aspects. First of all, one of the
main concerns of the Pareto Tracer focuses on a separation of the decision from the
weight space. To be more precise, for every optimal solution, there exists an associ-
ated vector of weights (or Lagrange multipliers) such that they satisfy together the
first-order conditions of optimality (see Theorem 2.1.2). It has been vastly illustrated
along this work (see for instance Figure 3.1) that the additional consideration of the
weight space comes with a possible increase of the nonlinearity of the solution set. If,
for instance, we are dealing with a linear Pareto set, the corresponding augmented so-
lution manifold does not have to be linear again, most likely because of the difference
of magnitudes between the parameters of the problem and the Lagrange multipli-
ers. Thus, considering that predictor points are obtained through linearizations of
the solution set, following a (generally nonlinear) trajectory in the compound space
(as done by the method of Hillermeier) will unavoidable lead to the computation of
correctors even when the Pareto set is a line or a flat surface. As a byproduct of the
separation process, we come up with a new set of multipliers that play the role of
providing certain degree of freedom to steer the search in parameter space based on
a desired movement in objective space. The latter property gives an advantage to
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the Pareto Tracer over the Hillermeier approach since it has a direct impact on the
distribution of solutions in objective space.

The second major difference between the strategy proposed by Hillermeier and
ours lies in the corrector phase. Here, the Newton method recently proposed by
Fliege et al. in [16] was selected as corrector instead of applying a Gauss-Newton
or a Levenberg-Marquardt method [58] to solve the KKT system of equations. The
computational complexity of the Newton approach is yet to be determined, though,
it can be solved in polynomial time. The prime motivation for our decision has been,
however, to investigate other alternatives that are not so hardly dependent on the
set of Lagrange multipliers and have, in addition, better theoretical properties. Re-
call that the corrector proposed by Hillermeier can converge to non-optimal solutions
(e.g., one with negative Lagrange multipliers or that maximizes the objectives).

Our contributions also include the design of a Newton-like algorithm for MOPs
subject to general constraints which is used as corrector by the Pareto Tracer when
dealing with this type of problems. For the sake of simplicity, we have divided the
procedure into one method that deals exclusively with equality restrictions (covered
in Chapter 4) and another one designed to handle problems subject to inequality
constraints (enclosed in Chapter 5). The integration of both algorithms into a single
one is straightforward and has been omitted in favor of a greater clarity. The idea of
the new approach is quite simple and mainly consists of a modification of the Newton
direction subproblem given in [16] to include a linearization of the active constraints.
Our proposal is a method of feasible directions, meaning that the initial point and the
subsequent iterations must remain feasible (with respect to the inequalities). Thus,
one problem that certainly arises in the context of continuation is that a predicted
point cannot be guaranteed to be feasible. Given this inconvenient, we have decided
to limit this work to the special case of box constrained problems and utilize gradient
projections to ensure the feasibility of predictors.1 A step length control strategy for
MOPs with general inequalities is also missing. Basically, it should be one that satis-
fies the Armijo condition while keeping the iterations feasible (we may e.g. take the
one suggested in [18]). However, we have focused so far exclusively on line searches
dealing with box restrictions. Furthermore, the Armijo condition has been extended
for equality constrained MOPs. Take in mind that there may be cases where there
is no descent direction that additionally points toward the feasible region (regard-
ing the equalities). Then, the line search should be designed in accordance to the
predicted decrease of both the objectives and a merit function based on the equal-
ity restrictions (we take here −‖h(x)‖2). This should suffice those cases where the
functions cannot be improved simultaneously in order to reach the feasible region.
The estimated reduction of the objectives, on the other hand, is given precisely by
the Newton direction subproblem, where the minimum function value (denoted by δ)

1The extension to MOPs with linear constraints is straightforward but has been left to be devel-
oped in the future together with the general case.
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represents such a measure. Several numerical examples have been presented together
with theoretical evidence that help to support the convergence of the method toward
KKT points. However, a detailed analysis of the convergence rate has been left out
of the scope of this thesis. In particular, such analysis may help to understand the
problems observed in the last example of Chapter 4 (subject to equality constraints),
or even better, could help to improve the new method as well as these results.

We also cope with two Hessian-free realizations of the Pareto Tracer. The most
basic one rests on gradient descent methods, i.e., the Hessians are approximated by
the identity matrix. This implies that predictor directions would be a linear combina-
tion of the derivatives of the problem. This choice is very attractive by the efficiency
of its computations, and has been used in [36] and [30] for the treatment of BOPs.
Additionally, under the assumption that rank(J) = k − 1, the Jacobian is not or-
thogonal to the linearized manifold of solutions, so a movement toward the Pareto
set is expected. In spite of this fact, the derivatives can be nearly orthogonal to the
solution set as graphically illustrated by three examples in Figure 3.4. Thus, we take
as predictor directions (at least for the bi-objective case) the secant between the last
two points. With this, both direction and orientation come essentially for free while
(implicitly) some curvature information is captured. Moreover, for problems with
linear Pareto sets, derivatives and secants coincide with the direction of the solution
set, so it seems that the use of secants is not worse than the use of derivatives as
approximations of tangent vectors. For the corrector, we take the steepest descent
method for MOPs proposed by Fliege and Svaiter in [18] and apply the modifications
suggested here to deal with constrained problems. In consequence, our steepest de-
scent approach for MOPs restricted by inequalities merely differs from the one in [18]
by the inclusion of the terms gj(x) for j ∈ I in the constraints of the search direction
subproblem. The computations get thus simplified to the solution of a QP problem
in contrast to the QCLP instance utilized by the Newton method. The savings are,
though, at the expense of a downgrade of the convergence rate from quadratic to
linear (at least for the unconstrained case).

Mainly due to the last statement, our preferred choice for a Hessian-free realization
is one that utilizes elements from quasi-Newton methods. A more clever management
of the second-order information is achieved here by means of BFGS updates. The
corrector phase is then accomplished by the quasi-Newton method for MOPs [17]
which is taken as well with the appropriate modifications to handled problems with
constraints. For the predictor, in turn, the exact Hessians are replaced in the proper
formulations by their respective approximations obtained through the corrector steps.
The improvement of the quasi-Newton method over the steepest descent approach is
that a superlinear convergence rate can be proven under some mild conditions. On
the other hand, the Newton method can guarantee at most quadratic convergence
but at the cost of demanding the exact second derivatives of all objective functions.
It seems that the quasi-Newton variant of the Pareto Tracer is the best Hessian-free
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choice we could expect. However, the implementation of the steepest descent version
is much more efficient since it does not implicate matrices of size O(n2). Another
concern about the search direction subproblem is that the matrices involved must be
positive definite to guarantee a descent direction as result (including the uniqueness
of the solution). For SOPs, the updated Hessian is forced to be positive definite by
imposing the Wolfe conditions on the step length control, but for MOPs it seems that
these rules may be too hard (not to say impossible) to satisfy for all objectives simul-
taneously. We then solve the problem by applying a modified Cholesky factorization
on each matrix to keep it positive definite. Actually, the same strategy is utilized in
the Newton method since most real-life applications cannot ensure the positive defi-
niteness of the Hessians in all the domain. Furthermore, a second role for the BFGS
updates is suggested in the context of continuation: an update of the Hessians at pre-
dicted points with base on the information gathered from the previous corrector will
provide a better initial guess to the subsequent corrector, and will possibly help to
preserve the second-order information gained along all the trajectory. The Hessians
of the constraints are not included in the updates since they are all approximated
by linear functions. It is not clear, though, whether this information is required to
provide a competitive rate of convergence.

Several optimizations of the computational costs for the bi-objective case were
implemented as well. In particular, we avoid the use of data structures to keep track
of the zone of the Pareto set/front that is already covered by the algorithm. This has
been possible by performing an orientation adjustment of the continuation process for
nonconvex problems. With this, we ensure to follow the optimal curve all along in the
direction to minimize one of the objectives, and then, by reversing the orientation,
we will go all along in the direction to minimize the other.

In conclusion, we consider the Pareto Tracer a highly competitive algorithm for
the treatment of general MOPs that fulfill the smoothness assumptions required by
continuation methods. Therefore, we intent to intensify the investigation in this
line of research with special emphasis on Hessian-free realizations. A lot of work
remains to be done as described in the next section, but we have shown that the
use of continuation techniques is an affordable choice in a great variety of academic
examples. This provides strong evidence that the Pareto Tracer could be as well a
powerful tool for a wide range of real-life applications, particularly for those where
the function evaluations are very costly and resource-intensive.

6.2 Future Work

There are several lines of research arising from this work that may be pursued in the
future. We recommend to start by a proper extension of the Pareto Tracer to handle
MOPs subject to general inequality restrictions. For linear constraints, we would
simply have to solve a convex quadratic program to project the predictors onto the
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feasible polytope. Note that—as in box constrained problems—this projection would
rarely be required: only when the step along the tangent passes by a corner of the
polytope. Additionally, the (projected) predictor will be in most cases already a KKT
point, but unfortunately, this approach will only work if absolutely all constraints are
linear. The general (mixed) case would be much more challenging to work out. For
this, it looks like an affordable choice to modify the method of feasible directions
we propose here to accept infeasible starting points. Of course, this strategy should
come with the proper modification of the step length control taking into account that
not always all objectives can be improved in order to reach the feasible region. See
Chapter 4 for a similar situation in the context of equality constrained MOPs.

A detailed analysis of the convergence rate and the asymptotic time complexity
of the different variants of the Pareto Tracer are highly recommended for a better
comprehension of the strengths and weaknesses of our proposals. In particular, we
would like to improve the computational costs of the quasi-Newton approach over
the Newton method. Recall that for SOPs the complexity of the iterations is re-
duced from O(n3) to O(n2) when we opt for quasi-Newton alternatives. In addition,
such a study should (in our opinion) anticipate a possible extension of these methods
for high dimensional problems (i.e., n > 1000). This is an almost unexplored area
of research in multi-objective optimization that has a lot of practical interest. See
for instance [115] and [116] in the context of evolutionary optimization, and [90] in
multi-objective continuation. Here, we suggest to investigate the possibility of a lim-
ited memory version of the Pareto Tracer. As done with the Newton, quasi-Newton,
and steepest descent methods, we could go for an adaptation of the limited memory
BFGS (L-BFGS) [117, 118, 119, 120] for problems with more than one objective.
The study of trust-region frameworks as alternatives to the line search strategies we
manage here is another topic that could be of certain interest (see [79, 80, 65]).

We would also like to stress that the Pareto Tracer—as all continuation methods—
is of local nature. It is thus conceivable to hybridize the algorithm with a global
strategy such as specialized MOEAs in order to obtain a fast and reliable procedure.
So far we have only tested our method on academic examples, but the true purpose
of this research is to apply the new knowledge to real-world applications. We expect
that the hybridized approach has more probabilities of success in this environment.
Regarding this matter, a source of many interesting ideas is the proposal given in
[36]. The latter is basically the integration of the Pareto Path Following, a gradient-
based continuation method, into a curve-based MOEA. Although restricted to BOPs,
this scheme comes with two new metrics to assess the performance of the algorithm:
an inter-curve coverage (interested in the discovery of every portion of the optimal
curve) and an intra-curve coverage (focused in a satisfactory sampling of each con-
nected portion). Derivative-free realizations come in handy here and now, but this is
probably one of the most challenging suggestions we have made for the future work.
Some derivative-free quasi-Newton designs for SOPs are proposed in [121, 122, 123]

CINVESTAV Computer Science Department



130 Chapter 6

which may serve as a good starting point.

Finally, one of the primary goals of continuation has a lot to do with visualization.
Thus, a great choice and a nice complement to the Pareto Tracer would be the
integration of an interpolation or triangulation strategy such that it can render a
body or surface rather than plotting a set of isolated points. Two approaches related
to this topic are proposed in [124] and [125].
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