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Resumen

Los Esquemas de Cifrado Tweakable (TES, por sus siglas en inglés) son un modo de
operación de los cifradores por bloque. Este tipo de esquemas han sido propuestos
para ser utilizados en las aplicaciones de cifrado de disco. Durante los últimos años se
ha visto una gran actividad en el diseño y seguridad de los TES. La IEEE ha elaborado
un estándar (IEEE Std 1619.2-2010) que espećıfica dos TES para ser utilizados en el
cifrado de dispositivos de almacenamiento. Esta tesis cubre dos aspectos relacionados
con la seguridad de los TES. El primer aspecto se relaciona con el análisis de seguridad
de un TES conocido como XCB, y el segundo aspecto está relacionado con la noción
de seguridad conocida como Mensajes que Dependen de la Llave.

El modo de operación XCB es uno de los dos esquemas que ha sido estandarizado
por la IEEE para el cifrado de dispositivos de almacenamiento. Existen dos versiones
de XCB, la primera versión (la cual llamaremos XCBv1) fue propuesta en 2004 y la
segunda versión (la cual llamaremos XCBv2) fue propuesta en 2007. XCBv2 es una
pequeña modificación a XCBv1. A pesar de que XCBv1 fue declarado un esquema
de cifrado seguro no cuenta con una prueba de seguridad. En el caso de XCBv2 los
autores proporcionaron una prueba de seguridad del esquema. XCBv2 fue adaptado
en el estándar 1619.2-2010. En este trabajo exponemos dos fallas en XCBv2 las
cuales ponen en duda su seguridad. La primera falla se debe a modificaciones en su
estructura. Estas modificaciones hacen a XCBv2 inseguro para mensajes de longitud
arbitraria. Restringiendo la longitud del mensaje se puede solventar este problema.
Sin embargo, señalamos que incluso tomando en consideración esta restricción el
análisis de seguridad de XCBv2 provisto por sus autores es erróneo. Presentamos un
nuevo análisis de la seguridad de XCBv2 y también por primera vez presentamos una
prueba de seguridad para XCBv1.

Por otro lado, analizamos la seguridad de los TES bajo una nueva noción de
seguridad conocida como Mensajes que Dependen de la Llave (KDM, por sus siglas
en inglés). KDM es una noción de seguridad más fuerte que la noción estándar de
seguridad de los TES. Damos dos ejemplos de esquemas de cifrado que han sido
probados seguros en el modelo estándar, pero que resultan inseguros en la noción de
KDM. Para solucionar lo anterior proponemos una transformación para convertir los
TES en esquemas seguros bajo la noción de KDM. Nuestra transformación resulta
más eficiente y general que la existente en la literatura.
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Abstract

Tweakable Enciphering Schemes (TES) are a block cipher mode of operation which
can be suitable used for the application of in-place disk encryption. There have been
lot of activities in designing secure TES in the last few years. IEEE has also formu-
lated a standard (IEEE Std 1619.2-2010) which specifies two TES for the application
of block oriented storage media. In this thesis we deal with two problems related
to security of TES. The first is related with the security analysis of the Extended
Codebook mode of operation and the second is related with the notion of security
called as Key Dependent Messages.

The Extended Codebook (XCB) mode of operation has been standardized by the
IEEE for wide block encryption for shared storage media. There are two versions of
XCB, the first version (which we call XCBv1) was proposed in 2004 and a later version
(which we call XCBv2) was proposed in 2007. XCBv2 is a minor modification of
XCBv1. Though XCBv1 was claimed to be a secure TES, the authors neither provided
a security bound nor a security proof. For XCBv2 the authors claimed a concrete
security bound and provided its proof. XCBv2 was adapted in the standard 1619.2-
2010. In this work we expose two flaws in XCBv2 which put in doubt its security. The
first flaw is due to modifications in its structure. These modifications make XCBv2
insecure for arbitrary length messages. Restricting the length of the input messages
can fix this glitch. However, we point out that even with this restriction the security
analysis of XCBv2 as stated by its authors is wrong. We present a new analysis for
the security of XCBv2 and as a consequence we state a new bound for its security.
Also, for the first time we give a detailed security analysis for the original proposal
of XCB (i.e. XCBv1).

On the other hand we analyze the security of TES under the notion of Key Depen-
dent Messages (KDM). KDM is stronger than the standard security notion of TES.
We give examples of well proved secure TES in the standard model which fail to be
secure under KDM. We propose a transformation to secure an arbitrary TES under
KDM. Our transformation turns out to be faster and more general than the other
one existing in the literature.
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1. Introduction

We can only see a short distance
ahead, but we can see plenty
there that needs to be done.

Alan Turing

In this thesis we deal with some problems of practical interest in a formal crypto-
graphic setting. In modern cryptography, given a cryptographic scheme Π, one tries
to define security of Π in formal terms and then prove that Π indeed provides the se-
curity as specified in its security definition. This paradigm, which is popularly known
as “provable security”, has gained a lot of attention in the last two decades. Now,
for a cryptographic scheme to be acceptable, it is required that the scheme is prov-
ably secure in some model. This paradigm, though very appealing, should be used
with utmost care, as there are many ways in which such a definition-proof paradigm
for security can fail. Firstly, it is nontrivial to define security in mathematical terms.
Developing a mathematical model which encompasses all possible threats from adver-
saries may generally not even be possible. There are many recent examples where a
provably secure scheme has suffered an attack, as the definition did not consider that
specific attack scenario [BFK+12, OST06]. Thus definition of security for a scheme
may evolve with time as different possibilities of new attacks arise [BRS02]. Secondly,
the proofs attached with cryptographic schemes tends to be complex and lengthy, and
thus are prone to errors. In the recent years many errors in security proofs have also
been discovered [Jou03, MLMI13]. In this thesis we address two issues related to
the provable security paradigm of a class of cryptographic schemes called Tweakable
Enciphering Schemes (TES).

Tweakable enciphering schemes are a class of block-cipher mode of operation,
which are meant to provide security as that of a tweakable strong pseudorandom
permutation (SPRP) (we define this formally in Chapter 3, in page 17). Designing
efficient TES which provides the required security in provable terms is a challenging
problem. In the last decade there have been some intense activities in designing such
schemes and proving their security [HR03, HR04, Hal04, MF04, WFW05, CS06a,
MV04, Sar09, CS06b, Hal07, Sar07]. TES are also practically interesting, as they are
the most suitable cryptographic schemes for the application of disk encryption (or
encryption of any storage media which are organized as sectors). This practical side
of TES has lead to standardization activities for the application of disk encryption

1



2 Chapter 1

[P1611].
To date, there are around ten different proposals for TES. Most of these schemes

have a proof of security attached to it. Among the existing schemes, XCB [MV04] is
one of the oldest and also this is part of the IEEE Std 1619.2-2010 standard for disk
encryption. In this thesis we show that the security proof for XCB (given in [MF07])
is wrong. We provide several counter examples which shows the security theorem of
XCB to be false. Our analysis on XCB is not only of theoretical interest, as some of
the attacks that we point out can have practical relevance.

The second problem that we deal with in this thesis is a definitional issue. The
standard security definition for TES does not consider the possibility of the scheme
encrypting its own key. This possibility, of an encryption scheme encrypting its own
key has long been known and has traditionally been considered to be an abuse of
encryption. During the formulation of the standard IEEE Std 1619.2-2010, this issue
for TES surfaced out, and the standards committee considered that a “good” TES
should be able to encrypt its own key securely. This property has been called as
Key Dependent Message (KDM) security. This observation of the P1619 committee
(committee responsible for the IEEE Std 1619.2-2010 standard) has recently lead
to some constructions of TES which can securely encrypt their own keys. In this
problem, we have two contributions. Firstly we explicitly show some weaknesses
in existing TES when they encrypt their own keys, these attacks are new to the
literature. Secondly, we propose a new transformation which can convert any (SPRP
secure) TES to a KDM secure TES. We also argue that our proposed transformation
is better both in functionality and efficiency compared to the existing one.

The rest of this chapter is organized as follows. We begin with some background
material in Sections 1.1 and 1.2. In Section 1.1 we mention three basic principles of
modern cryptography: precise definitions of security, clearly stated and well known
believed assumptions, and proofs of security. In Section 1.1 we informally discuss
TES and its usage. In Section 1.3 we elaborate on the problems addressed in this
thesis. We finish this chapter with a discussion on the contents of the chapters that
follow.

1.1 Modern Cryptography: The Paradigm of Prov-

able Security

Historically, cryptography was more of an art than a science. Cryptographic schemes
were designed in an ad-hoc manner and then evaluated based on their perceived
complexity or cleverness. Schemes of such kind, no matter how clever, were eventually
broken. Notable examples are the Caesar and Vigenère ciphers [Sti02].

Modern cryptography tries to organize itself in a mathematical fashion. It rests
on scientific foundations, it focuses in three basic principles [KL07]:

• Formulation of rigorous and precise definitions of security: Formal def-
initions are important for design, analysis and usage of cryptographic schemes:

CINVESTAV Computer Science Department
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– In terms of design, it is much better to define what is needed first and then
begin the construction of the scheme.

– If a strict definition of security exists, then analysis of the scheme can be
done much more easily, and one can precisely measure (in some cases) the
level up to which a scheme satisfies the required security as specified by
its definition.

– A practical problem may have specific security requirements. A precise
model of security of a scheme would in most cases clearly indicate the
practical scenarios where the scheme can be used.

• Reliance on clearly stated assumptions: Security of most practical cryp-
tographic schemes depends on un-proven assumptions. The most used assump-
tions in cryptography are the intractability of factorization, the intractability of
the discrete logarithm problem in certain groups, the existence of one-way func-
tions, etc. It is unlikely that these assumptions would be settled in near future,
as answers to these questions are related to some very old unsolved problems
in computational complexity theory. Thus, to design workable cryptographic
solutions we need to rely on assumptions. When the security of a cryptographic
construction relies on an assumption, the assumption must be precisely stated
and it must be as minimal as possible. Moreover, schemes should be based only
on well studied assumptions.

• Proof of Security: Cryptographic constructions should be accompanied by a
proof of security with respect to a formulated definition. Modern cryptography
stresses the importance of proofs of security, the fact that the ciphertext looks
garbled, does not necessarily mean that a sophisticated adversary is unable to
break the scheme.

A definition of security must accurately model the real world in order to deliver
a mathematical promise of security. Sometimes it had happened that implementa-
tions of provably secure schemes had weaknesses. For example, there are encryption
schemes that were proven secure and then implemented on smart cards. Due to phys-
ical properties of the smart cards, it was possible for an adversary to monitor the
power usage of the smart card when the encryption scheme was being run, and it
turned out that this information could be used to determine the key [KL07]. The
problem was simply that there was a mismatch between the definition and the real
world implementation of the scheme.

Such gaps in security definitions are very likely, as security in practice is complex
and often it is difficult to judge its various dimensions. Thus, it is expected that a
security definition is dynamic in nature, and it evolves as new threats are discovered.

It is to be understood that a security theorem is a mathematical statement, which
only states the extent to which a scheme achieves security in accordance to the defi-
nition. Thus, interpreting such theorems in the real world should be done carefully.

CINVESTAV Computer Science Department



4 Chapter 1

Moreover, most proofs of security are based on unproven assumptions, thus security
theorems almost never state the absolute truth.

In this work we deal with two problems, both of which highlight some subtleties
of the paradigm of provable security. We show a glaring error in a security theorem
of a scheme called XCB. This proof had been around in the literature for more than
five years. There have been other cases in the literature where a long-standing proof
has been shown to be incorrect. In the other problem, we deal with a definition which
we believe gets closer to a real world scenario. This definition deals with encryption
schemes ciphering their own decryption key. A scenario which has been largely ignored
before. We show that when this new dimension of security is considered then most
schemes which are proven secure in the standard definition breaks down. This shows
that security definitions need to be updated, and such updated definitions also call
for new constructions.

1.2 Tweakable Enciphering Schemes

This work focuses on a specific type of encryption scheme known as Tweakable En-
ciphering Schemes (TES). It has been suggested that tweakable enciphering schemes
can be suitably used for the application of low level disk encryption. For an intuitive
understanding of TES, let us imagine that we want to do a low level encryption of a
hard disk. A low level disk encryption scheme resides in the disk controller, it sees
the hard disk as a collection of sectors and is ignorant of the high level structures like
files, directories, etc. A low level disk encryption scheme functions as follows:

• When the disk controller is asked to write data, it passes the data through an
encryption algorithm and writes the output in the hard disk, so the hard disk
only contains cipher data.

• When the disk controller is asked to read data, it reads cipher data from the
hard disk; then it uses the decryption algorithm and delivers as output plain
data.

For an encryption algorithm to function in the above mentioned application it needs
to have the following characteristics:

• Length preserving: As the smallest unit that gets written or read from a
disk is the sector, hence a low level disk encryption scheme does sector wise
encryption. An important property that is required is that the length of the
ciphertext should be same as that of the plaintext. Hence there is no scope to
include states, nonces, etc. as part of the cipher text, which are common in
other symmetric encryption schemes. The requirement of length preservation,
also makes such schemes inherently deterministic.

• Ciphertext Variability: As the encryption algorithm is deterministic, so if
two sectors contains exactly the same information then the corresponding ci-
pher data of both sectors would be exactly the same. This is not desirable, as

CINVESTAV Computer Science Department
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this may reveal some pattern to an adversary. To mend this scheme, disk en-
cryption algorithms takes in as input an extra public quantity called the tweak.
For the application, sector addresses are considered as the tweaks. Tweakable
enciphering schemes obtain ciphertext variability through the use of the tweaks.

• Security: Disk encryption schemes must be secure against adaptive chosen
plaintext and adaptive chosen ciphertext adversaries. Such schemes are gen-
erally called CCA secure schemes (secure against chosen ciphertext attacks).
Achieving CCA security means that no adversary can be able to distinguish the
ciphertexts from random strings, and additionally the attacker must not be able
to modify the ciphertext so that it gets decrypted to something meaningful.

The properties which we described above are all provided by Tweakable Enciphering
Schemes. TES are length preserving, their security model is a strong pseudorandom
permutation indexed by a tweak. The tweak is an extra public parameter that in-
creases the variability of the ciphertext, i.e., if two different plaintext are encrypted
using the same key but the tweaks are different the resulting ciphertexts will be dif-
ferent. Other important property of TES is that if any part of the ciphertext is
changed the plaintext obtained after decryption looks like random strings. To date
there are more than ten different proposals for such schemes, additionally there is a
recent standard (IEEE Std 1619.2-2010) on such schemes formulated by IEEE. We
describe TES more formally in Chapter 3, in page 17.

This thesis is devoted to the study of two problems related to security of TES.
We discuss the two problems in the next section.

1.3 The Problems Considered in this Thesis

This work deals with two major problems. We describe them next:

1. Security of XCB: XCB is a TES which was first proposed in 2004 [MV04]. The
original proposal did not have a security proof, later in 2007 [MF07] an updated
version of XCB was proposed along with a proof of security. For convenience we
shall call these two versions of XCB as XCBv1 and XCBv2 respectively. Later
XCBv2 was incorporated in the standard IEEE Std 1619.2-2010. We show that
the security of XCBv2 as claimed in [MF07] is wrong. We show a simple attack,
which establishes that XCBv2 is not a tweakable SPRP. This situation can be
repaired, if we consider a restricted message space for XCBv2, the restriction
required is that the messages should be such that their lengths are multiples
of the block length of the block cipher. If this is the case then our simple
attack does not work, but still we show that the security bound claimed in
[MF07] is erroneous. The counter examples that we use for refuting the claimed
bound involves some interesting combinatorial analysis which heavily depends
on some techniques recently used in [IOM12] for analyzing another standardized
authenticated encryption scheme called GCM.
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We also provide a new security proof for the restricted version of XCBv2. The
security bound that we derive is quite different (and weaker) than that claimed
in [MF07]. Our analysis thus reveals that there are multiple problems in XCB,
and it is not clear why this scheme was standardized.

Another contribution on this problem is that we provide a complete security
proof for XCBv1, such a proof does not exist in the literature.

2. KDM Security for TES: The other problem that we consider is: “whether
it is safe for a TES to encrypt its own key ”. This scenario of “self-encryption”
has been discussed in the Security in Storage Working Group (IEEE P1619).
Initially the working group considered this scenario as a theoretical possibility,
but when the group was informed that there existed real world implementations
which fall in this scenario the “self-encryption” was considered as a real problem.

This notion of “self-encryption” was captured in the definition of Key Depen-
dent Messages (KDM) proposed and studied by Black, Rogaway, and Shrimp-
ton [BRS02]. These definitions were later extended in [HK07]. A definition for
KDM security for TES also appears in [HK07].

TES are known to be secure in terms of strong pseudo-random permutation
(SPRP), however we do not have any security proof in the sense of KDM for
the existing schemes. Moreover there are also no known attacks which shows
KDM insecurity of the existing TES. We explicitly show KDM insecurity of two
TES, XCB and HCTR.

In a recent work Bellare, Cash and Keelveedhi [BCK11] gave two transforma-
tions to convert a tweakable enciphering scheme secure in the SPRP sense into
a KDM secure one. The transformations suggested to add an additional layer
of encryption to the existing TES to thwart attacks of KDM type. We provide
a new transformation for this task. We provide a detailed security argument
to establish that our transformation really work. Moreover we show that our
transformations are better than the one proposed in [BCK11] both in terms of
efficiency and functionality.

1.4 Organization of the Thesis

The rest of the document is organized into seven chapters; next we discuss in short
the contents of these chapters:

• In Chapter 2, we give some notations that we use throughout the document.
We introduce the Game Playing Technique, a widely used technique for secu-
rity proofs of encryption schemes. In this chapter we also give the standard
definitions of security.

• In Chapter 3, we discuss about Tweakable Enciphering Schemes. We go into
detail about their definition and their security. We give a brief history of TES
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and also we describe the TES EME2, XCB and HCTR. The reason that we
chose these schemes is that the first two have been standardized by the IEEE
for wide-block encryption for shared storage media. In case of HCTR, it is an
efficient scheme, and later we also use HCTR as an example for KDM insecure
scheme.

• In Chapter 4, we focus on XCB and its security proof. There are two versions of
XCB, the security proof given by the authors of XCB was for the second version
while the first remained without a proof. In this chapter, first we describe some
issues that were not considered in the original proof of XCB, and that can lead
to unwanted situations. And then we proceed with the fix of the proof of the
second version. In the last section of this chapter we also give for the first time
a security proof for the first version.

• In Chapter 5, we introduce the notion of Key Dependent Messages. We give a
definition and also we establish what does it mean for an encryption scheme to
be KDM secure. Additionally we present attacks on TES that fail to be secure
in the sense of KDM. At the end of this chapter we present the transformation
derived from the work of Bellare, Cash and Keelveedhi to turn a secure TES
into a KDM secure one.

• In Chapter 6, we present MStE, our transformation to turn a secure TES into
a KDM secure one. We accompany the transformation with its security proof.

• In Chapter 7, we show the results of the implementation of EME2, XCB and
HCTR. We take these implementations as a starting point to compare our
proposed transformation to that of Bellare et al. Outcomes of this comparison,
where our transformation results the winner, are shown in the last section of
this chapter.

• In Chapter 8, we conclude this work, and discuss about some issues which we
would like to take up for future study.
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2. Theoretical Framework

It is possible to build a cabin
with no foundations, but not a
lasting building.

Eng. Isidor Goldreich

In this chapter we introduce the notation and some basic concepts used in this
work. We give a brief introduction to a proof technique used in the field of provable
security, which is called the game-playing technique. We also define pseudorandom
functions, pseudorandom permutations, block ciphers and almost universal hash func-
tions. These objects would be fundamental to the schemes that we describe in the
rest of the thesis.

2.1 General Notation

We denote the set of all binary strings by {0, 1}∗ and the set of all n-bit strings by
{0, 1}n. We shall denote the concatenation of two strings X, Y ∈ {0, 1}∗ by X||Y . For
a bit string X ∈ {0, 1}∗, |X| is its length in bits, and |X|` = d|X|/`e is the length in `-
bit blocks. For a bit string X and an integer ` such that |X| ≥ `, msb`(X) is the most
significant ` bits (the leftmost ` bits) of X, and lsb`(X) is the least significant ` bits
(the rightmost ` bits) of X. For non-negative integers a and ` with a ≤ 2`−1, bin`(a)
will denote the `-bit binary representation of a, i.e., if a = a`−12`−1 + . . . + a12 + a0

for a`−1, . . . , a1, a0 ∈ {0, 1}, then bin`(a) = a`−1 . . . a1a0 ∈ {0, 1}`. For a bit string
X = X`−1 . . . X1X0 ∈ {0, 1}`, int(X) will denote the integer X`−12`−1+. . .+X12+X0.

For a finite set X , |X | denotes its cardinality, andX
$← X means the uniform sampling

of an element from X and assigning it to X.

The set of n-bit strings, {0, 1}n, is also sometimes regarded as GF (2n), the finite
field with 2n elements. An n-bit string an−1 . . . a1a0 ∈ {0, 1}n corresponds to a formal
polynomial a(x) = an−1 + an−2x + . . . + a1x

n−2 + a0x
n−1. When n = 128 and the

irreducible polynomial is not specified, we assume p(x) = 1 + x + x2 + x7 + x128 as
the irreducible polynomial. For X, Y ∈ GF (2n), X ⊕Y and XY will denote addition
and multiplication in the field respectively.

9
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2.2 Game-Playing Technique

Game-playing technique is widely used in provable security. Bellare and Rogaway [BR06]
gave a framework for the proofs based on this technique. In this section we give a
brief introduction to the technique based on the work of Bellare and Rogaway.

A game-playing proof in cryptography is any proof where one conceptualizes the
adversary’s interaction with its environment as a kind of game, the proof proceeds
by constructing a “chain” of such games. The adversary is considered to be a prob-
abilistic algorithm which models the source of all possible threats.

In our treatment, games are programs written in pseudocode; as we develop it,
game-playing centers around making disciplined transformations to code. A game
consists of an initialization procedure (Initialize), a finalization procedure (Finalize)
and named oracles (each a procedure). The adversary makes calls to the oracles.
The initialization and finalization procedures may be absent, and there may be any
number of oracles. All variables in a game are global, and they are not visible to the
adversary.

To begin, variables are given initial values. Integer variables are initialized to 0;
Boolean variables are initialized to false; string variables are initialized to the empty
string ε; set variables are initialized to the empty set ∅; and array variables hold the
value undefined ⊥, at every point. These conventions often enable omitting explicit
initialization code.

The Initialize procedure is the first to execute, possibly producing an output. This
is provided as input to the adversary procedure A, which now runs. The only way
for an oracle to return a value to the adversary is via a return statement. When
adversary A halts, possibly with some adversary output, we call Finalize providing
it any such output. The Finalize procedure returns a string that we call the game
output. We write Pr[AG ⇒ 1] for the probability that the adversary output is 1 when
we run game G with adversary A.

2.2.1 Advantages

If G and H are games and A is an adversary, let Adv(AG, AH) = Pr[AG ⇒ 1] −
Pr[AH ⇒ 1]. This represents the advantage of the adversary in distinguishing the
games G and H, measured via adversary output.

We will often use the fact that

Adv(AG, AI) = Adv(AG, AH) + Adv(AH , AI),

for any games G, H, I and any adversary A. This follows from the definition of the
advantage:

Adv(AG, AI) = Pr[AG ⇒ 1]− Pr[AI ⇒ 1]

= Pr[AG ⇒ 1]− Pr[AH ⇒ 1] + Pr[AH ⇒ 1]− Pr[AI ⇒ 1]

= Adv(AG, AH) + Adv(AH , AI).
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2.2.2 Fundamental lemma of game playing

Fundamental Lemma is about the probability that an adversary can distinguish be-
tween games (programs) that differ in a certain syntactic way.

Let G and H be games and let bad be a flag that occurs in both of them. Then
we say that G and H are identical-until-bad if their code is the same unless the bad
flag is set to true.

We write Pr[AG sets bad] to refer to the probability that the flag bad is true at
the end of the execution of the adversary A with game G.

The fundamental lemma says that the advantage of an adversary in distinguishing
a pair of identical-until-bad games is at most the probability that its execution sets
bad in one of them.

Lemma 2.2.1 (Fundamental lemma of game-playing). Let G and H be identical-
until-bad games and let A be an adversary. Then

Adv(AG, AH) ≤ Pr[AG sets bad].

The proof of the above Lemma and more information about the game-playing
technique can be found in [BR04].

2.3 Pseudorandom Functions and Pseudorandom

Permutations

Useful definitions to understand the security notions we cover in this work, are those
of pseudorandom functions (PRFs), pseudorandom permutations (PRPs) and strong
pseudorandom permutations (SPRPs). In this section we introduce PRFs, PRPs and
SPRPs, and discuss their basic properties.

2.3.1 Function families

A function family is a map F : K × D → R. Here K is the set of keys of F and D
is the domain of F and R is the range of F . The set of keys K and the range R are
finite, and all the sets are nonempty. The two-input function F takes a key K and
an input X to return a point Y we denote by Y = F (K,X).

For any key K ∈ K we define the map FK : D → R by FK(X) = F (X, Y ). We call
the function FK an instance of a function family F . Thus F specifies a collection of
maps, one for each key. That’s why we call F a function family or family of functions.

There is some probability distribution on the set of keys K. Unless otherwise

indicated, this distribution will be the uniform one. We denote by f
$← F the

operation: K
$← K; F ← FK . In other words, let f be the function FK where K

is a randomly chosen key. We are interested in the input-output behavior of this
randomly chosen instance of the family.
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Game RealF
procedure Initialize

K
$← K

procedure Fn(x)

return FK(x)

Game RandR
procedure Fn(x)

if T [x] = ⊥ then

T [x]
$← R

return T [x]

Figure 2.1: Games used to define PRFs.

A permutation is a bijection whose domain and range are the same set. We say
that F is a family of permutations if for every K ∈ K FK is a permutation.

2.3.2 Random functions and permutations

Let Func(D,R) be the set of all functions from D to R. By a random function (from
D to R) we mean a function selected uniformly at random from the set Func(D,R).
The randomness of the function refers to the way it was chosen, not to an attribute
of the selected function itself.

Game RandR, shown on the right hand side of Fig. 2.1 provides to an adversary
an oracle Fn that implements a random function. This means that on any query the
oracle returns a random point from R as a response subject to the restriction that if
it is queried twice on the same point, the response is the same both times. The game
maintains the function in the form of a table T where T [X] holds the values of the
function at X. Initially, the table is everywhere undefined.

Let Perm(D) be the set of all permutations from D to D. A random permutation
on D is a permutation selected uniformly random from Perm(D). The game PermD

shown on the right hand side of Fig. 2.2 provides to an adversary access to an oracle
that implements a random permutation over the finite set D.

2.3.3 Pseudorandom functions

A PRF is a family of functions with the property that the input-output behavior of
a random instance of the family is “computationally indistinguishable” from that of
a random function.

Definition 2.3.1. Let F : K × D → R be a family of functions, and let A be an
algorithm that takes an oracle and returns a bit. We consider two games as described
in Fig. 2.1. The prf-advantage of A is defined as

Advprf
F (A) = Pr[ARealF ⇒ 1]− Pr[ARandR ⇒ 1]. (2.1)

Game RealF picks a random instance FK of a family F and then runs adversary
A with oracle Fn = FK . Adversary A interacts with its oracle, querying it and
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Game RealF
procedure Initialize

K
$← K

procedure Fn(x)

return FK(x)

Game PermD

procedure Initialize

UR← ∅

procedure Fn(x)

if T [x] = ⊥ then

T [x]
$← D \ UR

UR← UR ∪ {T [x]}
return T [x]

Figure 2.2: Games used to define PRPs.

getting back answers, and eventually outputs a bit. Game RandR implements Fn
as a random function with range R. Again, adversary A interacts with the oracle,
eventually returning a bit that is the output of the game.

The task of the adversary is to determine which game it is playing with based on
the input-output behavior of Fn. Outputting the bit “1” means that A “thinks” it is
interacting with RealF , outputting the bit “0” means that A thinks it is interacting
with RandR.

Another way we write Eq. (2.1) using the notation Func(D,R) is the following:

Advprf
F (A) = Pr[K

$← K : AFK ⇒ 1]− Pr[ρ
$← Func(D,R) : Aρ ⇒ 1].

We say the family F is prf-secure if Advprf
F (A) is “small” for all “efficient” adver-

saries. It should be noted that the family F is public and known to the adversary.
Note that we leave the terms “small” and “efficient” undefined, which is quite

standard in the paradigm of concrete security. These terms are to be interpreted in
the context. We will follow this for all later security definitions, i.e., we shall never
define “small” advantage and “efficient” adversaries.

2.3.4 Pseudorandom permutations

A family of functions F : K × D → R is a Pseudorandom Permutation (PRP) if
the input-output behavior of a random instance of the family is “computationally
indistinguishable” from that of a random permutation on D.

In game RealF of Fig. 2.2, Fn is a random instance of F , i.e, it is the function
FK where K is a random chosen key. In game PermD, Fn is a random permutation
on D.

As before the task for the adversary A is to determine which game it is playing
with based on the input-output behavior of Fn.

Definition 2.3.2. Let F : K ×D → D be a family of permutations, and let A be an
algorithm that takes an oracle Fn for a function Fn : D → D, and returns a bit. We
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consider two games as described in Fig. 2.2. The prp-advantage of A is defined as

Advprp
F (A) = Pr[ARealF ⇒ 1]− Pr[APermD ⇒ 1]. (2.2)

The intuition is similar to that for Definition 2.3.1. The difference is that here
the object that F is being compared with is no longer a random function, but rather
a random permutation. We also sometimes write Eq. (2.2) as:

Advprp
F (A) = Pr[K

$← K : AFK ⇒ 1]− Pr[π
$← Perm(D) : Aπ ⇒ 1].

When F is a family of permutations, one can also consider the case where the
adversary gets, in addition to the function Fn, an oracle for Fn−1. Giving an ad-
versary access to both oracle we can define another object which is called a Strong
Pseudorandom Permutation (SPRP).

Definition 2.3.3. Let F : K ×D → D be a family of permutations, and let A be an
algorithm that takes an oracle Fn for a function Fn : D → D, and also an oracle
Fn−1 for the function Fn−1 : D → D, and returns a bit. We consider two games as
described in Fig. 2.3. The sprp advantage of A is defined as

Adv±prp
F (A) = Pr[A±RealF ⇒ 1]− Pr[A±PermD ⇒ 1]. (2.3)

In the above definition the adversary has more power: not only it can query Fn,
but it can directly query Fn−1. We also write Eq. (2.3) as:

Adv±prp
F (A) = Pr[K

$← K : AFK ,F
−1
K ⇒ 1]− Pr[π

$← Perm(D) : Aπ,π
−1 ⇒ 1].

We say the family F is prp-secure if Advprp
F (A) is “small” for all efficient adver-

saries A. In the same manner the family F is sprp-secure if Adv±prp
F (A) is “small”.

2.3.5 Relations between the notions

For each advantage notion AdvxxxΠ we write AdvxxxΠ (RC) for the maximal value of
AdvxxxΠ (A) over all adversaries A that use resources at mostRC. Resources of interest
are the running time t, the number of queries q and the total length of all queries σ.

PRP/PRF switching lemma

The PRP/PRF Switching Lemma says that a truly random permutation looks very
much like a truly random function.

Lemma 2.3.1 (PRP/PRF Switching Lemma [BR04]). Let A be an adversary that
asks at most q oracle queries. Then

|Pr[π
$← Perm(D) : Aπ ⇒ 1]− Pr[ρ

$← Func(D,D) : Aρ ⇒ 1]| ≤ q(q − 1)

2|D|
.

From the above lemma we obtain

|Advprf
F (A)−Advprp

F (A)| ≤ q(q − 1)

2|D|
.

When |D| is large, q(q−1)
2|D| is “small”. Thus prp-security implies prf-security.
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Game ±RealF
procedure Initialize

K
$← K

procedure Fn(x)

return FK(x)

procedure Fn−1(x)

return F−1
K (x)

Game ±PermD

procedure Initialize

UR← ∅; UD ← ∅

procedure Fn(x)

if T [x] = ⊥ then

T [x]
$← D \ UR

S[T [x]]← x
UR← UR ∪ {T [x]}; UD ← UD ∪ {x}

return T [x]

procedure Fn−1(y)

if S[y] = ⊥ then

S[y]
$← D \ UD

T [S[y]]← y
UD ← UD ∪ {S[y]}; UR← UR ∪ {y}

return T [x]

Figure 2.3: Games used to define SPRPs.

SPRP implies PRP

Let F : K × D → D be a family of permutations and let A be a PRP attacking
adversary. Suppose that A runs in time t, asks q queries and these queries total σ
length. Then there exists a SPRP attacking adversary B that runs in time t, asks q
queries, and these queries total σ length, such that

Advprp
F (A) ≤ Adv±prp

F (B).

So sprp-security implies prp-security which implies prf-security. This is the reason
we are interested in proving sprp-security.

2.4 Cryptographic Primitives

Cryptographic primitives are cryptographic algorithms designed to do a very specific
task. By themselves, they do not provide something meaningful to an end user.
Instead they are used as building blocks in the construction of crypto-systems. A
primitive can provide different functionality depending on its mode of operation or
usage. We will discuss two of these primitives: block ciphers and universal hash
functions.
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2.4.1 Block cipher

A block cipher is a function E : {0, 1}k×{0, 1}n → {0, 1}n. The first input is the key.
The second is called the plaintext, and the output is called ciphertext. The key-length
k and the block-length n are parameters associated to the block cipher.

For each key K ∈ {0, 1}k let EK : {0, 1}n → {0, 1}n be the function defined
by EK(·) = E(K, ·). For any block cipher, and any key K, it is required that the
function EK be a permutation on {0, 1}n. This means that it is a bijection of {0, 1}n to
{0, 1}n. For every C ∈ {0, 1}n there is exactly oneM ∈ {0, 1}n such that EK(M) = C.
Accordingly EK has an inverse, and we denote it by E−1

K . We have E−1
K (EK(M)) = M

and EK(E−1
K (C)) = C for all M,C ∈ {0, 1}n.

Ideally a block cipher is considered to be secure if it is a SPRP. Unfortunately we
do not have any proof that the known block ciphers are SPRP. Hence we consider a
block cipher to be secure if it behaves like a SPRP, which is assumed to be true for
the block ciphers currently in use. The confidence in the assumption rests only on
the absence of discovered attacks.

Block Cipher Modes of Operation. Block ciphers modes of operation are algo-
rithms that specify the use of a block cipher to encrypt arbitrary long messages to
provide confidentiality or authentication. The most common modes of operation are
ECB, CBC, CFB, OFB and CTR [Dwo01].

2.4.2 Universal hash function

A hash function is used to construct a short “fingerprint” of some data; if the data
is altered, then the fingerprint will no longer be valid. Let h be a hash function and
let x be some data. The corresponding fingerprint, often referred as message digest,
is defined to be y = h(x).

A keyed hash family H is a family of functions H : K × X → Y , where K is the
key space and for any K ∈ K, h(K, ·) = hK(·) is a hash function. X is the set of
possible messages and Y is the set of possible message digests.
X could be a finite or infinite set while Y is always a finite set. If X is a finite set

it is always assumed that |X | ≥ |Y|.

Definition 2.4.1 ([Sti91]). A keyed hash family H : K × X → Y is called ε-almost
universal (ε-AU) provided that the following condition is satisfied for every x, x′ ∈ X
such that x 6= x′:

Pr[K
$← K : hK(x) = hK(x′)] ≤ ε.

H is called ε-almost xor universal (ε-AXU) if for all x, x′ ∈ X such that x 6= x′

and all y ∈ Y we have Pr[K
$← K : hK(x)⊕ hK(x′) = y] ≤ ε.
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3. Tweakable Enciphering Schemes

Any one who considers
arithmetical methods of
producing random digits is, of
course, in a state of sin.

John von Neumann

As mentioned in the introduction this thesis largely deals with security properties
of some tweakable enciphering schemes (TES). In this chapter we will discuss the main
ideas behind this important class of enciphering schemes. We begin this chapter with a
brief introduction to tweakable block ciphers (TBC) which are the true predecessors of
TES. In Section 3.2 we formally define the syntax and security of TES . In Section 3.3
we briefly trace the history of existing TES and finally in 3.4 we describe in details
some of the existing TES, whose description would be necessary for later chapters.

3.1 Tweakable Block Ciphers

Tweakable Block Ciphers (TBC) were a predecessor idea of TES. They were proposed
by Liskov, Rivest and Wagner [LRW02] as a cryptographic primitive. The main goal
of TBC is to give variability to block cipher outputs while maintaining a fixed key.

An n-bit block cipher E : {0, 1}k × {0, 1}n → {0, 1}n is inherently deterministic,
i.e, every encryption of a given message with a given key will be the same. TBC
provide variability to a block cipher by using a special public quantity called the
tweak. A TBC is formally defined as a function

Ẽ : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n.

Thus a TBC takes three inputs: a key K ∈ {0, 1}k, a tweak T ∈ {0, 1}t and a message
M ∈ {0, 1}n, and produce as output a ciphertext C ∈ {0, 1}n. The tilde above E
serves as a reminder that the block cipher is tweakable.

The difference between the key and the tweak is that the function of the key
is to provide uncertainty to the adversary, and the role of the tweak is to provide
variability, note that unlike the key the tweak is public. This role separation is the
reason to consider TBC as a separate cryptographic primitive.
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A tweakable block cipher has the property that changing the tweak is less costly
than changing the key. Many block ciphers have the property that changing the
encryption key is very expensive, since a “key setup” operation needs to be performed,
moreover, in some applications the key may be hard coded in a device, in such cases
a key change may amount to change of a circuit or a significant part of the hardware.
Another important property of TBC is that even if an adversary has control of the
tweak input TBC remain secure, because each fixed setting of the tweak gives rise to
a different, apparently independent, family of block cipher.

Security of Tweakable Block Cipher . Let Permt(n) be the set of functions
π : {0, 1}t × {0, 1}n → {0, 1}n such that π(T, ·) is a permutation for all T ∈ {0, 1}t.
We call such a permutation as a tweak indexed permutation. We define the advantage
an adversary A in distinguishing a tweakable block cipher from a tweakable random
permutation as

Adv
±p̃rp
Ẽ

(A) = Pr[K
$← {0, 1}k : AẼK(·,·),Ẽ−1

K (·,·) ⇒ 1]

−Pr[π
$← Permt(n) : Aπ(·,·),π−1(·,·) ⇒ 1].

Note, here all the oracles takes in two inputs, which signifies that the adversary is
allowed to choose both the message and the tweak for each oracle call. A tweak-

able block cipher Ẽ is considered secure if Adv
±p̃rp
Ẽ

(A) is “small” for all “efficient”
adversaries A.

Liskov, Rivest and Wagner [LRW02] proposed two constructions for TBC. Given
a block cipher EK : {0, 1}n → {0, 1}n and a tweak T ∈ {0, 1}n, we have the following
TBC

• ẼK(T,M) = EK(T ⊕ EK(M))

• ẼK1,K2(T,M) = EK1(M ⊕ hK2(T ))⊕ hK2(T ), where h is ε-AXU.

3.2 Tweakable Enciphering Schemes

Let a message space M be a set of strings, i.e., M =
⋃
i∈I{0, 1}i for some nonempty

index set I ⊆ N. A length-preserving permutation is a map π : M → M where
M is a message space and π is a permutation and |π(P )| = |P | for all P ∈ M. A
tweakable enciphering scheme is a function E : K × T ×M →M where K (the key
set) is a finite nonempty set and T (the tweak set) is a nonempty set and M is a
message space and for every K ∈ K and T ∈ T we have that E(K,T, ·) = ETK(·) is a
length-preserving permutation.

When M is a message space and T is a nonempty set we let Perm(M) denote
the set of all functions π : M → M that are length-preserving permutations, and
we let PermT (M) denote the set of functions π : T ×M→M for which π(T, ·) is a
length-preserving permutation for all T ∈ T .
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One can notice the similarity between a TBC and a TES. The main difference
being that the message space of a TES can contain arbitrary long strings, thus infor-
mally a TES is a TBC on a “bigger” message space.

Let E : K × T ×M → M be an encryption scheme and let A be an adversary.
We define the advantage of A in distinguishing a TES E from a random, tweakable,
length-preserving permutation and its inverse as

Adv
±p̃rp
E (A) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ .

The tilde above the “prp” denotes prp is tweakable (as was also the case in TBC).

We say that E is secure in the sense of a SPRP if the Adv
±p̃rp
E (A) is “small” for all

“efficient” adversaries A.

Pointless queries: In the description of the advantage above we implicitly assume
certain query restrictions of the adversary to rule out trivial wins. Let T , P and C
represent tweak, plaintext and ciphertext respectively. We assume that an adversary
never repeats a query, i.e., it does not ask the encryption oracle with a particular
value of (T, P ) more than once and neither does it ask the decryption oracle with a
particular value of (T,C) more than once. Furthermore, an adversary never queries
its deciphering oracle with (T,C) if it got C in response to an encipher query (T, P )
for some P . Similarly, the adversary never queries its enciphering oracle with (T, P )
if it got P as a response to a decipher query of (T,C) for some C. These queries
are called pointless as the adversary knows what it would get as responses for such
queries.

3.3 History of Tweakable Enciphering Schemes

Naor and Reingold [NR97, NR99] were the first to present a scheme very close to a
TES, they provided a design for constructing a SPRP on N bits using a block cipher
on n < N bits. The proposed construction uses a paradigm which has been later
generalized as the Hash-Encrypt-Hash paradigm. In this paradigm one applies to
the input an invertible universal hash function, encrypts the result, and then applies
another invertible hash function. They did not provide a tweakable SPRP, since their
work predates the notion of tweaks, which was proposed later by Liskov, Rivest and
Wagner [LRW02].

The first construction of a fully functional and secure tweakable SPRP, known
as CMC, was proposed by Halevi and Rogaway [HR03]. In their work they first
suggested that TES could be used for the application of low level disk encryption.
CMC consists of two layers of CBC mode of encryption along with an intermediate
masking layer, hence the name CMC which stands for CBC-Mask-CBC. Because of
the nature of the CBC mode of operation, CMC is not parallelizable. A follow-on
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work to CMC is the EME algorithm [HR04] proposed by the same authors of CMC.
Unlike its predecessor, EME, which stands for ECB-Mix-ECB, is a parallelizable
mode. EME has the limitation that it cannot securely encrypt messages in which
number of blocks are more than the block length of the underlying block-cipher, for
example, if AES is used as the block cipher in EME then it can securely encrypt
messages containing less than 128 blocks. This limitation was fixed in EME2 [Hal04].
The modes CMC, EME, EME2 have been classified as Encrypt-Mask-Encrypt type
modes, as they use two encryption layers along with a masking layer. For encrypting
m blocks of messages, these modes require around 2m block cipher calls, the block
cipher calls are the most expensive operations used by these modes.

A different paradigm of construction which has been named as the Hash-Counter-
Hash type, consist of two universal hash functions with a counter mode of encryption
in between. The first known construction of this kind is XCB [MF04]. Other known
constructions of this category are HCTR [WFW05], HCH [CS06a], ABL [MV04] and
HMCH [Sar09]. HCTR [WFW05] had a serious drawback in the claimed security, as
in [WFW05] it was proved that HCTR has a cubic security bound, later in [CN08]
a quadratic security bound was proved. In an attempt to fix the security bound
of HCTR, HCH [CS06a] was proposed. HCH modifies HCTR in various ways to
produce a new mode which uses one more block cipher call than HCTR but provides a
quadratic security bound. ABL [MV04] is another construction of the Hash-Counter-
Hash type, but it is inefficient compared to the other members of its category. Later
in [Sar09] it was proposed that a new kind of polynomials called Bernstein-Rabin-
Winograd (BRW) polynomials can be used for the universal hashing. A new mode
called HMCH was proposed in [Sar09] which is structurally similar to HCH and HCTR
but requires about half the number of multiplications compared to HCH and HCTR.
The constructions of this type require finite field multiplications and block cipher
calls. The efficient modes like HCTR, XCB and HCH use about m block cipher calls
along with 2m finite field multiplications for encrypting an m block message.

The Hash-Encrypt-Hash paradigm used by Naor and Reingold [NR97, NR99] has
also later been used to construct TES. Examples of such constructions are PEP [CS06b],
TET [Hal07] and HEH [Sar07]. Like the Hash-Counter-Hash constructions, these
modes also require about m block cipher calls and 2m finite field multiplications for
encrypting an m block message.

A later modification of HEH [Sar09] using BRW polynomial requires only m mul-
tiplications, thus making it the most efficient in the category.

3.4 Description of some TES

In the following subsections we give complete description of three TES. Two of them
fall in the category Hash-Counter-Hash, namely XCB and HCTR. The third, EME2,
falls in the category Encrypt-Mask-Encrypt.
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3.4.1 Extended codebook (XCB)

The Extended Codebook (XCB) mode of operation was proposed by D.A. Mc Grew
and S. Fluhrer as a tweakable SPRP which accepts arbitrarily-sized plaintext and
arbitrarily-sized tweak. There are two versions of XCB, one proposed in 2004 which
we will call as XCBv1 and the other one proposed in 2007 which we will call as
XCBv21. In this section we will see first the construction of XCBv1 and then we will
proceed with the changes made to get XCBv2. XCBv2 is one of the two algorithms
which are part of the IEEE Standard for Wide-Block Encryption for Shared Storage
Media (IEEE Std 1619.2-2010).

The construction of XCBv1

XCBv1 [MF04] uses two basic building blocks. An AXU hash function and a counter
mode of operation. The hash function is defined as:

Hh(X,T ) =X1h
m+p+1 ⊕X2h

m+p ⊕ . . .⊕ pad(Xm)hp+2 ⊕ T1h
p+1

⊕ T2h
p ⊕ . . .⊕ pad (Tp)h

2 ⊕ (binn
2
(|X|)||binn

2
(|T |))h,

(3.1)

where h is an n-bit hash key and X = X1||X2|| . . . ||Xm, such that |Xi| = n bits
(i = 1, 2, . . .m − 1), 0 < |Xm| ≤ n and T = T1||T2|| . . . ||Tp, such that |Tj| = n bits
(j = 1, 2, . . . p− 1), 0 < |Tp| ≤ n. The pad function is defined as pad(Xm) := Xm||0r
where r = n− |Xm|. Thus, |pad(Xm)| = n.

Given an n-bit string S, the counter mode is defined as follows.

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(inc0(S)), . . . , Am ⊕ EK(incm−1(S))).

In case the last block Am is incomplete then Am ⊕ EK(incm−1(S)) in Ctr is replaced
by Am ⊕ dropr(EK(incm−1(S))), where r = n − |Am| and dropr(EK(incm−1(S))) is
the first (n − r) bits of EK(incm−1(S)). In the definition of Ctr, for a bit string
X ∈ {0, 1}n, inc(X) treats the least significant 32 bits (the rightmost 32 bits) of X
as a non-negative integer, and increments this value modulo 232, i.e.,

inc(X) = msbn−32(X)||bin32(int(lsb32(X)) + 1 mod 232).

For r ≥ 0, we write incr(X) to denote the r times iterative applications of inc on X.
We use the convention that inc0(X) = X.

The encryption and decryption operations using XCBv1 are described in Fig. 3.1,
and a high-level description is provided in Fig. 3.2.

There is no known proof of XCBv1. We will for the first time provide a proof of
XCBv1 in Chapter 4, in page 31.

1These names XCBv1 and XCBv2 were not given by their proposers. We use this nomenclature
to separate out the differences.
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Algorithm ETK(P1, . . . , Pm)

1. h1 ← EK(0n−3||001)
2. h2 ← EK(0n−3||011)
3. Ke ← EK(0n)
4. Kd ← EK(0n−3||100)
5. Kc ← EK(0n−3||010)
6. CC ← EKe(P1)
7. S ← CC ⊕Hh1(P2|| . . . ||Pm, T )
8. (C2, . . . , Cm)← CtrKc,S(P2, . . . , Pm)
9. MM ← S ⊕Hh2(C2|| . . . ||Cm, T )

10. C1 ← E−1
Kd

(MM)

11. return (C1, C2, . . . , Cm)

Algorithm DT
K(C1, . . . , Cm)

1. h1 ← EK(0n−3||001)
2. h2 ← EK(0n−3||011)
3. Ke ← EK(0n)
4. Kd ← EK(0n−3||100)
5. Kc ← EK(0n−3||010)
6. MM ← EKd(C1)
7. S ←MM ⊕Hh2(C2|| . . . ||Cm, T )
8. (P2, . . . , Pm)← CtrKc,S(C2, . . . , Cm)
9. CC ← S ⊕Hh1(P2|| . . . ||Pm, T )

10. P1 ← E−1
Ke

(CC)

11. return (P1, P2, . . . , Pm)

Figure 3.1: Encryption and decryption using XCBv1. K is the block-cipher key and T the
tweak.

Specification of XCBv2

As stated earlier XCBv1 does not have a security proof associated with it. The
authors proposed some small changes in XCBv1 in [MF07], we call this version as
XCBv2.

According to the authors, the changes incorporated in XCBv2 make its security
easier to analyze. Firstly, XCBv2 uses only a single hash key, this allows one to
see some algebraic relations of the hash function. This change may also benefit
software implementations by relieving them of the need to store precomputed tables
for an additional hash key. Secondly, the inputs to the hash functions are slightly
rearranged, in order to make use of the properties of the hash function. Additionally,
the new design reorders the operations in a way that makes XCBv2 more amenable to
pipelined implementation, by changing the way the plaintexts are mapped to internal
variables.

The AXU hash function used in case of XCBv2 is defined as:

Hh(T,X) =T1h
p+m+1 ⊕ T2h

p+m ⊕ . . .⊕ pad (Tp)h
m+2 ⊕X1h

m+1

⊕X2h
m ⊕ . . .⊕ pad(Xm)h2 ⊕ (binn

2
(|T |)||binn

2
(|X|))h,

as before h is an n-bit hash key and X = X1||X2|| . . . ||Xm, such that |Xi| = n bits
(i = 1, 2, . . .m − 1), 0 < |Xm| ≤ n and T = T1||T2|| . . . ||Tp, such that |Tj| = n bits
(j = 1, 2, . . . p− 1), 0 < |Tp| ≤ n. The pad function is defined as pad(Xm) := Xm||0r
where r = n − |Xm|. Thus, |pad(Xm)| = n. As shown above, the difference between
the hash function used in XCBv1 and the hash function used in XCBv2 is the order
of the inputs.
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EKe

P1 2P Pm

Hh1

KcCtr

Hh2

E
−1

Kd

C1 C2 Cm

T

T

Figure 3.2: Encryption using XCBv1. Here Kc,Kd,Ke are the keys for the block cipher E
and h1, h2 are the keys for the hash function H.

For the counter mode of operation, XCBv2 uses the same counter mode of XCBv1.
The encryption and decryption operations using XCBv2 are described in Fig. 3.3, and
a high-level description is provided in Fig. 3.4.

In [MF07] the authors proved a security bound of XCBv2. But we found the bound
to be erroneous. We would discuss details of the security of XCBv2 in Chapter 4, in
page 31.

3.4.2 HCTR

HCTR is an efficient mode of operation when it is compared with other TES. It is
named HCTR because of the use of a special hash function and the counter mode
of operation; the algorithm is based in the Hash-Counter-Hash construction. HCTR
receives as input an arbitrary variable plaintext and an arbitrary but fixed-length
tweak.

Specification of HCTR

The AXU hash used in case of HCTR is defined as:

Hh(X) = X1h
m+1 ⊕X2h

m ⊕ . . .⊕ padr(Xm)h2 ⊕ binn(|X|)h,

where h is an n-bit hash key and X = X1||X2|| . . . ||Xm, such that |Xi| = n bits
(i = 1, 2, . . .m−1), 0 < |Xm| ≤ n. The pad function is defined as padr(Xm) := Xm||0r
where r = n − |Xm|. Thus, |padr(Xm)| = n. If X = λ, the empty string, we define
Hh(λ) = h.

HCTR requires a counter mode of operation. Given an n-bit string S, a sequence
S1, . . . , Sm is defined, where each Si depends on S. Given such a sequence and a key
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Algorithm ETK(P1, . . . , Pm)

1. h← EK(0n)

2. Ke ← msb|K|(EK(0n−3||001)||EK(0n−3||010))
3. Kd ← msb|K|(EK(0n−3||011)||EK(0n−3||100))
4. Kc ← msb|K|(EK(0n−3||101)||EK(0n−3||110))
5. (Pm−1, Pm)← (msb|Pm|(Pm−1), lsbn(Pm−1||Pm))

6. CC ← EKe (Pm)
7. S ← CC ⊕Hh(0n||T, P1|| . . . ||pad(Pm−1)||0n)
8. (C1, . . . , Cm−1)← CtrKc,S(P1, . . . , Pm−1)
9. MM ← S ⊕Hh(T ||0n, C1|| . . . ||pad(Cm−1)||(binn

2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|)))

10. Cm ← E−1
Kd

(MM)

11. return (C1, C2, . . . , Cm)

Algorithm DTK(C1, . . . , Cm)

1. h← EK(0n)

2. Ke ← msb|K|(EK(0n−3||001)||EK(0n−3||010))
3. Kd ← msb|K|(EK(0n−3||011)||EK(0n−3||100))
4. Kc ← msb|K|(EK(0n−3||101)||EK(0n−3||110))
5. (Cm−1, Cm)← (msb|Cm|(Cm−1), lsbn(Cm−1||Cm))

6. MM ← E−1
Kd

(Cm)

7. S ← MM ⊕Hh(T ||0n, C1|| . . . ||pad(Cm−1)||(binn
2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|)))

8. (P1, . . . , Pm−1)← CtrKc,S(C1, . . . , Cm−1)
9. CC ← S ⊕Hh(0n||T, P1|| . . . ||pad(Pm−1)||0n)
10. Pm ← E−1

Ke
(CC)

11. return (P1, P2, . . . , Pm)

Figure 3.3: Encryption and decryption using XCBv2. K is the block-cipher key and T the
tweak.

K the counter mode is defined as follows.

CtrK,S(A1, . . . , Am) = (A1 ⊕ EK(S1), . . . , Am ⊕ EK(Sm)),

where Si = S ⊕ binn(i). In case the last block Am is incomplete then Am ⊕ EK(Sm)
in Ctr is replaced by Am ⊕ dropr(EK(Sm)), where r = n − |Am| and dropr(EK(Sm))
is the first (n − r) bits of EK(Sm). The encryption and decryption operations using
HCTR are described in Fig. 3.5, and a high-level description is provided in Fig. 3.6.
If m = 1 (when we have one block message), we ignore line 4 in both encryption and
decryption algorithm.

Security of HCTR. The authors of HCTR proved a weaker bound in [WFW05].
Later in [CN08] the bound was improved. The following theorem specifies the updated
security bound of HCTR.

Theorem 3.4.1 (Security of HCTR [CN08]). Fix n, σ to be positive integers and an
n-bit block cipher E : K × {0, 1}n → {0, 1}n. Then

Adv
±p̃rp
HCTR[Perm(n) ]

(σ) ≤ 4.5σ2

2n
.

Adv
±p̃rp
HCTR[E ]

(σ, t) ≤ 4.5σ2

2n
+ Adv

±prp
E (σ, t′)

where t′ = t+O(σ).
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P1 Pm−1

Cm−1

Pm

KcCtr

C1

Hh

Hh

EKe

E
−1

Kd

Cm

T

T

Figure 3.4: Encryption using XCBv2. Here Kc,Kd,Ke are the keys for the block cipher E
and h is the key for the hash function H.

3.4.3 EME2

EME2 is the other algorithm which is part of the IEEE Standard for Wide-Block En-
cryption for Shared Storage Media (IEEE Std 1619.2-2010). EME2 is a modification
of the TES EME, which was proposed by Halevi and Rogaway for the disk-sector
encryption problem. EME2 solves some limitations founded in its predecessor: the
input message had to be a multiple of n, the block-size of the underlying cipher; and
the input message was limited to at most n2 bits.

Specification of EME2

EME2 consists of two layers of masked ECB encryption with a layer called interme-
diate mixing in between. The complete specification of EME2 is given in Fig. 3.7,
and a high-level description is provided in Fig. 3.8.

Security of EME2

Theorem 3.4.2 (Security of EME2 [Hal04]). Fix n, σ to be positive integers and an
n-bit block cipher E : K × {0, 1}n → {0, 1}n. Then

Adv
±p̃rp
EME2[Perm(n) ]

(q, σ) ≤ (2.5σ + 3q)2

2n+1
.

Adv
±p̃rp
EME2[E ]

(q, σ, t) ≤ (2.5σ + 3q)2

2n+1
+ 2Adv

±prp
E (σ, t′)

where t′ = t+O(σ).
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Algorithm ETK,h(P1, . . . , Pm)

1. MM ← P1 ⊕Hh(P2|| . . . ||Pm||T );
2. CC ← EK(MM);
3. S ←MM ⊕ CC;

4. (C2, . . . , Cm−1, Cm)
← CtrK,S(P2, . . . , Pm);

5. C1 ← CC ⊕Hh(C2||C3|| . . . ||Cm||T );
6. return (C1, . . . , Cm);

Algorithm DT
K,h(C1, . . . , Cm)

1. CC ← C1 ⊕Hh(C2||C3|| . . . ||Cm||T );

2. MM ← E−1
K (CC);

3. S ←MM ⊕ CC;

4. (P2, . . . , Pm−1, Pm)
← CtrK,S(C2, . . . , Cm);

5. P1 ←MM ⊕Hh(P2|| . . . ||Pm||T );
6. return (P1, . . . , Pm);

Figure 3.5: Encryption using HCTR. K is the block-cipher key, h the hash key and T the
tweak.

3.5 IEEE P1619

The Security in Storage Working Group (SISWG) is responsible for the standard-
ization project IEEE P1619, which includes a family of standards for protection of
stored data.

SISWG has four task groups: 1619 which deals with narrow block encryption,
1619.1 which deals with tape encryption, 1619.2 which deals with wide block encryp-
tion and 1619.3 which deals with key management.

The task groups 1619 and 1619.2 concentrated their effort on length preserving
encryption stressing this to be an important criteria for logical block based devices,
such as hard disk. As previously mentioned TES fit into this category.

The task group 1619 has come up with the standard document IEEE Std 1619-
2007 for narrow block algorithms. The narrow block algorithms operate on small
portions of data and have the advantage of efficient hardware implementation. The
standard defines the XTS-AES tweakable block cipher and its use for encryption of
sector based storage. XTS-AES is a tweakable block cipher that acts on data units
of 128 bits or more and uses the AES block cipher as a subroutine. The XTS-AES
can be seen as an electronic code book mode of tweakable block-ciphers where each
block uses a different tweak, hence the name “narrow block mode”.

The result of the task group 1619.2 was the standard document IEEE Std 1619.2-
2010 for wide block algorithms. Wide block algorithms act on the whole logical
block at once, and each bit on the input plaintext influences every bit of the output
ciphertext. The standard specifies the EME2-AES and the XCB-AES wide block
encryption algorithms, which use the AES block cipher as a subroutine.
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P1 2P Pm

C1 C2 Cm

Ctr KKE

hH

hH

T

T

Figure 3.6: Encryption using HCTR. Here K is the key for the block cipher EK() and h
is the key for the universal hash function Hh().
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function HK,R(T1, . . . , T`−1, T`)
01. if T is empty return EK(R)

10. for i = 1 to `− 1, TTTi ← EK(2iR⊕ Ti)⊕ 2iR
11. if |T`| = n then TTT` ← EK(2`R⊕ T`)⊕ 2`R
12. else TTT` ← EK(2`+1R⊕ (T`||10 . . . 0))⊕ 2`+1R
13. return TTT1 ⊕ · · · ⊕ TTT`

Algorithm ETK,L,R(P1, . . . , Pm)

101. if |Pm| = n then lastFull← m
102. else lastFull← m− 1
103. PPPm ← Pm padded with 10 . . . 0

110. for i = 1 to lastFull,
111. PPi ← 2i−1L⊕ Pi
112. PPPi ← EK(PPi)

120. SP ← PPP2 ⊕ · · · ⊕ PPPm
121.MP1 ← PPP1 ⊕ SP ⊕HK,R(T )
122. if |Pm| = n then MC1 ← EK(MP1)
123. else MM ← EK(MP1)
124. MC1 ← EK(MM)
125. Cm ← Pm ⊕ (MM truncated)
126. CCCm ← Cm padded with 10 . . . 0
127.M1 ←MP1 ⊕MC1

130. for i = 2 to lastFull,
131. j = di/ne, k = (i− 1) mod n
132. if k = 0 then
133. MPj ← PPPi ⊕M1

134. MCj ← EK(MPj)
135. Mj ←MPj ⊕MCj
136. CCCi ←MCj ⊕M1

137. else CCCi ← PPPi ⊕ 2kMj

140. SC ← CCC2 ⊕ · · · ⊕ CCCm
141. CCC1 ←MC1 ⊕ SC ⊕HK,R(T )
142. for i = 1 to lastFull,
143. CCi ← EK(CCCi)
144. Ci ← CCi ⊕ 2i−1L

150. return C1, . . . , Cm

Algorithm DT
K,L,R(C1, . . . , Cm)

101. if |Cm| = n then lastFull← m
102. else lastFull← m− 1
103. CCCm ← Cm padded with 10 . . . 0

110. for i = 1 to lastFull,
111. CCi ← 2i−1L⊕ Ci
112. CCCi ← E−1

K (CCi)

120. SC ← CCC2 ⊕ · · · ⊕ CCCm
121.MC1 ← CCC1 ⊕ SC ⊕HK,R(T )

122. if |Cm| = n then MP1 ← E−1
K (MC1)

123. else MM ← E−1
K (MC1)

124. MP1 ← E−1
K (MM)

125. Pm ← Cm ⊕ (MM truncated)
126. PPPm ← Pm padded with 10 . . . 0
127.M1 ←MP1 ⊕MC1

130. for i = 2 to lastFull,
131. j = di/ne, k = (i− 1) mod n
132. if k = 0 then
133. MCj ← CCCi ⊕M1

134. MPj ← E−1
K (MCj)

135. Mj ←MPj ⊕MCj
136. PPPi ←MPj ⊕M1

137. else PPPi ← CCCi ⊕ 2kMj

140. SP ← PPP2 ⊕ · · · ⊕ PPPm
141. PPP1 ←MP1 ⊕ SP ⊕HK,R(T )
142. for i = 1 to lastFull,

143. PPi ← E−1
K (PPPi)

144. Pi ← PPi ⊕ 2i−1L

150. return P1, . . . , Pm

Figure 3.7: Encryption using EME2. K is the block-cipher key, and T is the associated
data.
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EK

EK

EK

EK EK EK

EK EK

EK EK

EK

EK EK

P128P2P1 P129 P130

C1 C2 C128 C129 C130

aL a127 L a128 L a129 L

PPP 1 PPP 2 PPP 128 PPP 129 PPP 130

CCC1 CCC2 CCC128 CCC129 CCC130

aL a127 L a128 L a129 L

MP 1

Ma 1 a127 M 1 aM 2

M 1

M 1

MP 2

MC 2

MC 1

P131

C131

PPP 131

CCC131

pad

pad

L

L

MM

T*SP

T*SC

MM

Figure 3.8: Encryption using EME2 with n+2 full blocks and one partial block. Here K
is the key for the block cipher EK() and R in addition with K are the keys for the hash

function HK,R.
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4. On Security of XCB

About 1,000 instructions is a
reasonable upper limit for the
complexity of problems now
envisioned.

Herman Goldstine and John von
Neumann (1946)

McGrew and Fluhrer proposed XCB in [MF04]. However, they did not give a proof
of security for their construction. Later in [MF07] they made changes to the original
construction proposed in [MF04] and proved security of the updated construction.
In [MF07] the authors claim that the changes made to the original construction helps
in an easy analysis of it. For ease of reference we shall call the different versions of
XCB in [MF04] and [MF07] as XCBv1 and XCBv2 respectively.

In this chapter we do a rigorous analysis of both XCBv1 and XCBv2. As a result
of our analysis we conclude that the security claims about XCBv2 made in [MF07]
are largely erroneous. Primarily, XCBv2 is not at all secure for messages whose
lengths are not the multiples of the block length of the underlying block cipher. We
demonstrate this by a simple distinguishing attack on XCBv2. If we restrict the
message space to contain only messages whose lengths are multiples of the block
length of the block cipher then our distinguishing attack does not work. But in case
of such restricted message spaces also the security bound claimed by the authors is
not justified. We demonstrate this by pointing out an error in the security proof of
XCBv2, the error occurs in a Theorem (Theorem 1 in [MF07]) which is central to
the proof of the security theorem stated in [MF07]. We were not able to construct a
counterexample for the security theorem itself, but surely the proof provided for the
security theorem is incorrect.

We also provide a new security theorem for XCBv2, where the security bound is
very different from that claimed in [MF07]. In particular, our theorem shows that
XCBv2 is much less secure than that claimed in [MF07].

Additionally in this chapter we prove security for the original XCB (i.e. XCBv1)
as proposed in [MF04]. Our security theorem for XCBv1 provides a concrete security
bound which was not known before.

Before we continue we want to remark that XCBv2 with AES as the underlying
block cipher has been accepted by the IEEE as a standard for wide block encryption
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for shared storage media [P1611]. Being a part of the standard it is expected that
XCBv2 would be soon deployed (or has been already deployed) as an encryption
scheme for a wide range of storage applications. Our results in this chapter shows
that XCBv2 has numerous security flaws, thus the users and implementors should be
caution regarding its use. Moreover our analysis puts in serious doubt the process and
outcome of the IEEE working group on security in storage, the group which proposed
this standard.

4.1 Differences of XCBv2 with XCBv1

We have already described XCBv1 and XCBv2 in Chapter 3, but for easy reference
we describe the encryption algorithms again in Fig. 4.1. Recall that the hash function
H in Fig. 4.1 is defined as

Hh(X,T ) =X1h
m+p+1 ⊕X2h

m+p ⊕ . . .⊕ pad(Xm)hp+2 ⊕ T1h
p+1

⊕ T2h
p ⊕ . . .⊕ pad (Tp)h

2 ⊕ (binn
2
(|X|)||binn

2
(|T |))h,

(4.1)

where h is an n-bit hash key and X = X1||X2|| . . . ||Xm, such that |Xi| = n bits
(i = 1, 2, . . .m − 1), 0 < |Xm| ≤ n and T = T1||T2|| . . . ||Tp, such that |Tj| = n bits
(j = 1, 2, . . . p− 1), 0 < |Tp| ≤ n. The pad function is defined as pad(Xm) := Xm||0r
where r = n− |Xm|. Thus, |pad(Xm)| = n.

Next we point out some of the main differences in the two versions.

1. Only a single hash key is used: XCBv1 has a different key for each com-
putation of the hash function. In XCBv2 the computation of the hash function
is done using the same key. This change enables algebraic relations about the
hash function and also benefits software implementations by relieving them of
the need to store precomputed tables for an additional hash key1.

2. Key sizes: Both XCBv1 and XCBv2 are parameterized by the key K which
is the key of the underlying block cipher. For using XCBv1 it has to be the
case that the block length of the block cipher and the key lengths are the same.
Notice, that in XCBv1 both Kd and Kc are block cipher outputs and are thus
bound to be of the same length of that of the block length of the block cipher.
Thus in XCBv1 one cannot use an AES with 192 or 256 bit keys. This limitation
was first pointed out in [CS06a]. In XCBv2 this restriction has been removed
and it can work for any block cipher whose key length is less or equal to twice
its block length.

3. Inputs to the hash function are rearranged: The order of the inputs to the
hash in the two different constructions differ along with some extra formatting

1Note that while arguing about efficiency of XCB the authors stress on a software implementation
of the multiplier which uses pre-computed tables, and in such a software implementation only XCB
may have its efficiency comparable with constructions which only uses block ciphers
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of the inputs. In XCBv1 first and second computations of the hash function in
lines 007 and 009 are the same, except that in line 007 the input to the hash is
the tweak and the plaintext and in line 009 the inputs are the tweak and the
ciphertext. In XCBv2 the two computations of the hash functions (in lines 107
and 109) differ in the following ways:

(a) In line 107, the first input to the hash is the tweak with a block of zeros
concatenated in the beginning, whereas in line 109 the first input is the
tweak with a block of zeros concatenated in the end.

(b) The second input in line 107 is the padded plaintext concatenated with a
block of zeros. And in line 109, the second input is the padded ciphertext
concatenated with the length of the tweak plus the block length, and the
length of the ciphertext.

Note that in case of XCBv2 the second inputs to both the hashes are already
padded, and the length parameter is only added in the second hash (line 109).

According to the authors this change in the formatting and order of the hash
inputs helps in their analysis, but given that the original definition of the hash
(in Eq. (4.1)) already includes a length parameter of the inputs, it is not clear
why the authors propose to input the padded messages thus nullifying the effect
of the lengths in the first hash and again adding the extra length parameter in
case of the second hash computation. We will see later this makes XCBv2
insecure for certain types of messages.

4. Plaintext is formatted differently: XCBv1 uses the first n bits of the plain-
text to compute the value CC while XCBv2 uses the last n bits of the plaintext
to compute the value of the same variable. According to the authors, this change
makes the construction amenable to a pipelined implementation.

Changes 1 and 3 give rise to some special properties in the hash function H and
the variables CC and MM . These properties are central to the security proof of
XCBv2 provided in [MF07]. The properties are as follows:

Theorem 4.1.1 (H is linear). For any h ∈ {0, 1}n and any T, T ′, P and P ′ such that
|T | = |T ′| and |P | = |P ′|,

Hh(T, P )⊕Hh(T
′, P ′) = Hh(T ⊕ T ′, P ⊕ P ′)⊕ (binn

2
(|T |)||binn

2
(|P |))h.

Theorem 4.1.2 (CC and MM have a simple relation).

CC = MM ⊕Hh(Z,EKc(inc
0(S))|| . . . ||dropr(EKc(incm−2(S))))h

where Z = (T ||0n)⊕ (0n||T ).

Proofs of the above theorems are given in Appendix A.
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Encryption under XCBv1: ETK(P1, . . . , Pm)

001. h1 ← EK(0n−3||001)
002. h2 ← EK(0n−3||011)
003. Ke ← EK(0n)

004. Kd ← EK(0n−3||100)
005. Kc ← EK(0n−3||010)
006. CC ← EKe (P1)
007. S ← CC ⊕Hh1 (P2|| . . . ||Pm, T )

008. (C2, . . . , Cm)← CtrKc,S(P2, . . . , Pm)
009. MM ← S ⊕Hh2 (C2|| . . . ||Cm, T )

010. C1 ← E−1
Kd

(MM)

011. return (C1, C2, . . . , Cm)

Encryption under XCBv2: ETK(P1, . . . , Pm)

101. h← EK(0n)

102. Ke ← msb|K|(EK(0n−3||001)||EK(0n−3||010))
103. Kd ← msb|K|(EK(0n−3||011)||EK(0n−3||100))
104. Kc ← msb|K|(EK(0n−3||101)||EK(0n−3||110))
105. (Pm−1, Pm)← (msb|Pm|(Pm−1), lsbn(Pm−1||Pm))

106. CC ← EKe (Pm)
107. S ← CC ⊕Hh(0n||T, P1|| . . . ||pad(Pm−1)||0n)
108. (C1, . . . , Cm−1)← CtrKc,S(P1, . . . , Pm−1)
109. MM ← S ⊕Hh(T ||0n, C1|| . . . ||pad(Cm−1)||(binn

2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|)))

110. Cm ← E−1
Kd

(MM)

111. return (C1, C2, . . . , Cm)

Figure 4.1: Encryption using XCBv1 and XCBv2.

4.2 Security Claims in [MF07]

The security bound for XCBv2 as claimed in [MF07] is summarized in the following
theorem.

Theorem 4.2.1. Fix n, σ to be positive integers and an n-bit block cipher E : K ×
{0, 1}n → {0, 1}n. Then

Adv
±p̃rp
XCBv2[E]

(σ, t) ≤ q2d`/n+ 2e223 + 22

2n
+ Adv

±prp
E (σ, t′)

where t′ = t+O(σ) and ` is an upper bound on the total number of bits in the tweak
and the plaintext/ciphertext.

The bound stated in the above theorem is based on the following result:

Theorem 4.2.2 (H is unlikely to collide with incs(H)). For any T, T ′, P, P ′, D,D′

where either T ′ 6= T or P ′ 6= P or both inequalities hold, and any index s,

Pr[h
$← K : Hh(T, P )⊕D = incs(Hh(T

′, P ′)⊕D′)] ≤ d`/n+ 2e
2n

,

whenever the inputs T and P are restricted to so that the sum of their lengths is ` or
fewer bits.

In the following two sections we show that both these Theorems are wrong by
showing counter examples.
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4.3 Distinguishing Attack on XCBv2

Here we give a distinguishing attack on XCBv2 which violates Theorem 4.2.1.
Previously we mentioned that a TES is secure if no adversary can distinguish

between the scheme and a random permutation, or the probability that the latter
happens is small. A distinguishing attack on a scheme consists of the construction of
an adversary which can distinguishing between the scheme and a random permutation
with high probability. The existence of such adversary implies the insecurity of the
scheme.

The distinguishing attack on XCBv2 that we show here consists of generating the
same counter (value of the variable S in the encryption procedure) for two different
messages.

We assume an adversary which makes two encryption queries (T (1), P (1)) and
(T (2), P (2)), where T (1) = T (2) = T ∈ T is an arbitrary tweak and P (1) = 02n+1,
P (2) = 03n. As a response to these queries the adversary gets back C(1) and C(2). If
the first n-bits of C(1) and C(2) are equal then the adversary concludes that it’s oracle
is that of XCBv2 and otherwise it concludes that it’s oracle is a random permutation.

Now, we explain why this attack works. For the first query (T (1), P (1)), the internal
variable S(1) (see line 107) would be,

S(1) = EKe(0
n)⊕Hh(0

n||T, 0n||pad(0)||0n)

= EKe(0
n)⊕Hh(0

n||T, 03n).

The first block of ciphertext for this query would be

C
(1)
1 = 0n ⊕ EKc(inc0(S(1))). (4.2)

For the second query the variable S(2) would be

S(2) = EKe(0
n)⊕Hh(0

n||T, 02n||0n)

= EKe(0
n)⊕Hh(0

n||T, 03n).

Note that for computing S(2) no padding is required, as the plaintext is a multiple of
n. Similarly, we have the first block of the ciphertext for the second query as

C
(2)
1 = 0n ⊕ EKc(inc0(S(2))). (4.3)

Now, as S(1) = S(2), hence it would always be the case that C
(1)
1 = C

(2)
1 . Thus

the success probability of the adversary is 1 which contradicts the bound given in
Theorem 4.2.1.

We can have a general description of this attack. Let us consider two messages
P (1) and P (2) as

P (1) = P1|| . . . ||Pm−1||Pm,
P (2) = P1|| . . . ||Pm−1||0n−p||Pm,
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where |Pm−1| = p < n and |Pi| = n for 1 ≤ i ≤ m and i 6= m−1. Note that the length
of P (2), is a multiple of the block length n, which is not the case for P (1). Any two
messages of this form will result in the same value of S, and hence the first (m− 2)
blocks of ciphertext produced by this pair of different messages with the same tweak
would be equal.

We can vary the size of Pm−1 and obtain many different messages which will give
the same value S. In [P1611], where XCBv2 has been standardized, the length in bits
of the message is restricted to be a multiple of 8 bits, it is easy to see that with this
restriction also our distinguishing attack works.

4.3.1 Some comments about the attack

1. The attack works because of the way the padding is applied. As the hash
function takes as input the zero padded message, hence the length of the original
message has no effect on the value of the first hash.

2. The attack does no depend on the padding function. If any other deterministic
padding function is applied (say instead of padding zeros, one pads one) this
attack can be easily modified to make it work.

3. It seems that the specific way in which the padding is applied has something to
do with the proof of the scheme. We show in Appendix A that if the padding
is applied in a different way then Theorem 4.1.2 does not hold.

4. An easy way to bypass this attack is to restrict the message space to contain
only messages whose lengths are multiples of the block length. In such messages
explicit padding would be not required and hence at least this attack would not
work in case of XCBv2.

4.4 Collisions in the Increment Function

In the previous section we showed a distinguishing attack which shows that the main
security Theorem (Theorem 4.2.1) of XCBv2 is false. We also mentioned that if we
restrict ourselves to only messages whose lengths are multiples of the block length
of the block cipher then our distinguishing attack does not work. Here we show
that even if we restrict ourselves to messages whose length are multiples of the block
length, then too the proof of Theorem 4.2.1 as provided in [MF07] is not correct.

The proof of Theorem 4.2.1 as provided in [MF07] depends on the result stated
in Theorem 4.2.2. We show that this Theorem is also false by giving some counterex-
amples.

The result in Theorem 4.2.2 has also been used to argue about the security
of an authenticated encryption scheme GCM. Recently, Iwata, Ohashi and Mine-
matsu [IOM12] pointed out an error in the security bound of GCM, this error also
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stems from the falsity of Theorem 4.2.2. The counter example that we present here
is highly motivated by [IOM12], but our examples are different.

For the discussion that follows, we shall treat an n-bit string a = an−1an−2. . .a1a0

as a polynomial a(x) = an−1 ⊕ an−2x⊕ · · · ⊕ a1x
n−2 ⊕ a0x

n−1.
Let us consider D = D′ = T = T ′ = 0128, P = 0384 and P ′ = 0640. Then, according

to Theorem 4.2.2

ps = Pr[h
$← {0, 1}128 : Hh(T, P ) = incs(Hh(T

′, P ′))] ≤ 8

2128
,

for any index s. We show that p1 ≥ 16/2128, p2 ≥ 16/2128 and p4 ≥ 15/2128, thus
invalidating the theorem.

For our choice of P, P ′, T, T ′ and the description of the hash function in equation
(4.1) we have Hh(T, P ) = L1h and Hh(T

′, P ′) = L2h, where L1 = x56 + x119 + x120

and L2 = x56 +x118 +x120. We were able to find 16 distinct values of h which satisfies

L1h⊕ inc(L2h) = 0128. (4.4)

Also we found 16 distinct values of h satisfying L1h⊕ inc2(L2h) = 0128, and 15 distinct
values of h satisfying L1h⊕ inc4(L2h) = 0128. These values are listed in Tables 4.1, 4.2
and 4.3. This suggests that p1 ≥ 16/2128, p2 ≥ 16/2128 and p4 ≥ 15/2128.

0xBE7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xBF7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xBB7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xAB7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xEB7FFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0x297FFFFFFFFFFFFFFFFFFFFFFFFFFFFE
0xA57FFFFFFFFFFFFFFFFFFFFFFFFFFFF8 0xD37FFFFFFFFFFFFFFFFFFFFFFFFFFFE3
0xC97FFFFFFFFFFFFFFFFFFFFFFFFFFF8E 0xA17FFFFFFFFFFFFFFFFFFFFFFFFFFE3A
0xC37FFFFFFFFFFFFFFFFFFFFFFFFFF8EB 0x897FFFFFFFFFFFFFFFFFFFFFFFFFE3AE
0x637FFFFFFFFFFFFFFFFFFFFFFFFF8EBB 0x4F7FFFFFFFFFFFFFFFFFFFFFFFFE3AED
0xFF7FFFFFFFFFFFFFFFFFFFFFFFF8EBB5 0x797FFFFFFFFFFFFFFFFFFFFFFFE3AED6

Table 4.1: List of solutions for L1h⊕ inc(L2h) = 0128.

0xBEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xBCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xB4FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0x94FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0x14FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0x52FFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
0x88FFFFFFFFFFFFFFFFFFFFFFFFFFFFF1 0x64FFFFFFFFFFFFFFFFFFFFFFFFFFFFC7
0x50FFFFFFFFFFFFFFFFFFFFFFFFFFFF1D 0x80FFFFFFFFFFFFFFFFFFFFFFFFFFFC75
0x44FFFFFFFFFFFFFFFFFFFFFFFFFFF1D7 0xD0FFFFFFFFFFFFFFFFFFFFFFFFFFC75D
0xC6FFFFFFFFFFFFFFFFFFFFFFFFFF1D76 0x9EFFFFFFFFFFFFFFFFFFFFFFFFFC75DA
0x3CFFFFFFFFFFFFFFFFFFFFFFFFF1D76B 0xF2FFFFFFFFFFFFFFFFFFFFFFFFC75DAC

Table 4.2: List of solutions for L1h⊕ inc2(L2h) = 0128.

Next, we describe the method we used to find the solutions for equation (4.4).
Similar methods can be used to find solutions for L1h⊕ inc2(L2h) = 0128 and L1h⊕
inc4(L2h) = 0128.

Our method is based on the following simple observation.

Definition 4.4.1. For a ∈ {0, 1}128, i.e, a(x) = a127 ⊕ a126x ⊕ a125x
2 ⊕ · · · a1x

126 ⊕
a0x

127, where each aj ∈ {0, 1}. Define, lbit(a) = 127 − i, where i is the smallest
integer such that 0 ≤ i ≤ 127, and ai = 0. If, such a i does not exist (such a i will
not exist if all bits of a are 1) or i > 31, then we fix lbit(a) = 96.
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0xBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0xABFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0xEBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
0x29FFFFFFFFFFFFFFFFFFFFFFFFFFFFFE 0xA5FFFFFFFFFFFFFFFFFFFFFFFFFFFFF8
0xD3FFFFFFFFFFFFFFFFFFFFFFFFFFFFE3 0xC9FFFFFFFFFFFFFFFFFFFFFFFFFFFF8E
0xA1FFFFFFFFFFFFFFFFFFFFFFFFFFFE3A 0xC3FFFFFFFFFFFFFFFFFFFFFFFFFFF8EB
0x89FFFFFFFFFFFFFFFFFFFFFFFFFFE3AE 0x63FFFFFFFFFFFFFFFFFFFFFFFFFF8EBB
0x4FFFFFFFFFFFFFFFFFFFFFFFFFFE3AED 0xFFFFFFFFFFFFFFFFFFFFFFFFFFF8EBB5
0x79FFFFFFFFFFFFFFFFFFFFFFFFE3AED6

Table 4.3: List of solutions for L1h⊕ inc4(L2h) = 0128.

Proposition 4.4.1. Fix a ∈ {0, 1}128, if lbit(a) = j, then inc(a) = a(x)⊕xj⊕xj+1⊕
· · · ⊕ x127.

If we assume that a solution h of Eq. (4.4) is such that lbit(L2h) = j, then by
Proposition 4.4.1 we have

h =
xj ⊕ xj+1 ⊕ · · · ⊕ x127

L1 ⊕ L2

. (4.5)

Using 96 ≤ j ≤ 127, in Eq. (4.5) we obtain 32 values of h. We substitute
these values in Eq. (4.4) to check whether the value obtained is really a solution.
It turned out that sixteen of the 32 values obtained satisfied Eq. (4.4), and these
values are reported in Table 4.1. It is easy to characterize inc2(a) and inc4(a) along
the lines of Proposition 4.4.1, and using these characterizations we generate the data
for Tables 4.2 and 4.3.

4.5 The Security of XCBv2

In this section we give an updated theorem regarding the security of XCB, and its
proof.

The following theorem specifies the security of XCBv2.

Theorem 4.5.1. Fix n, σ to be positive integers and an n-bit block cipher E : K ×
{0, 1}n → {0, 1}n. Then when removing the padding function from XCBv2 i.e., the
input message is a multiple of n,

Adv
±p̃rp
XCBv2[Perm(n),Perm(n),Perm(n)]

(σ) ≤ (222q2`2
max + 2σ2)/2n−1. (4.6)

Adv
±p̃rp
XCBv2[E]

(σ, t) ≤ (222q2`2
max + 2σ2)/2n−1 + Adv

±prp
E (σ, t′) (4.7)

where t′ = t+O(σ) and `max is the maximum query length.

Eq. (4.6) represents the information theoretic bound, i.e., here we are considering
that the three main block-ciphers (in lines 106, 108 and 110 of Fig. 4.1) are replaced
by random permutations. Thus, the bound in Eq. (4.6) represents an ideal scenario.
Eq. (4.7) represents the complexity theoretic bound, thus here the advantage of an
adversary includes the distinguishing advantage of the block cipher itself. As it has
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been noted before (for example in [HR03], [CN08]), passing from Eq. (4.6) to Eq. (4.7)
is quite standard and so we will not provide details of the proof of Eq. (4.7) here.
We provide the detailed proof of Eq. (4.7) in the next section. Our proof does not
essentially contain any new idea. The structure of the proof closely follows [CN08],
and it uses a combinatorial result previously stated in [IOM12].

Note that Theorem 4.5.1 is different from the original claimed security in [MF07]
in two aspects. Firstly, Theorem 4.5.1 considers a restricted message space, and
secondly, the bound in Theorem 4.5.1 is quite different.

4.6 Proof of Theorem 4.5.1

In this section, we derive the information theoretic security bound for XCBv2. For
deriving this bound we use the assumption that the underlying block cipher E is a
secure pseudorandom permutation. We replace the block cipher calls EKc(), EKd()
and EKe() by three permutations π1, π2 and π3 chosen uniformly at random from
Perm(n). We also choose the hash key h uniformly at random from {0, 1}n.

The notation XCBv2[E] denotes a tweakable enciphering scheme, where the n-
bit block cipher E is used in the manner specified by XCBv2. We will use the
notation Eπ1,π2,π3 as a shorthand for XCBv2[Perm(n),Perm(n),Perm(n)] and Dπ1,π2,π3

will denote the inverse of Eπ1,π2,π3 . Thus, the notation AEπ1,π2,π3 ,Dπ1,π2,π3 will denote
an adversary interacting with the oracles Eπ1,π2,π3 and Dπ1,π2,π3 .

For proving Eq. (4.6), we need to consider an adversary’s advantage in distinguish-
ing a tweakable enciphering scheme E from an oracle which simply returns random
bit strings. This advantage is defined in the following manner.

Adv±rnd
XCBv2[Perm(n),Perm(n),Perm(n)]

(A) =∣∣∣Pr
[
π1, π2, π3

$← Perm(n) : AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1
]

−Pr
[
A$(.,.),$(.,.) ⇒ 1

]∣∣ , (4.8)

where $(.,M) and $(., C) returns independently distributed random bits of length
|M | and |C| respectively.
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The basic idea of proving Eq. (4.6) is as follows.

Adv
±p̃rp
XCBv2[Perm(n),Perm(n),Perm(n)]

(A)

=
(

Pr
[
π1, π2, π3

$← Perm(n) : AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1
]

− Pr
[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

=
(

Pr
[
π1, π2, π3

$← Perm(n) : AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1
]

− Pr
[
A$(.,.),$(.,.) ⇒ 1

])
+
(
Pr
[
A$(.,.),$(.,.) ⇒ 1

]
− Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
])

≤ Adv±rnd
XCBv2[Perm(n),Perm(n),Perm(n)]

(A) +

(
q

2

)
1

2n
, (4.9)

where q is the number of queries made by the adversary. For a proof of the last
inequality see [HR03]. Thus, the main task of the proof now reduces to obtaining

an upper bound on Adv±rnd
XCBv2[Perm(n),Perm(n),Perm(n)]

(σ). In Section 4.6.1 we prove

that

Adv±rnd
XCBv2[Perm(n),Perm(n),Perm(n)]

(σ) ≤ (222q2`2
max + 1.5σ2)/2n−1. (4.10)

Using Eq. (4.10) and Eq. (4.9) we obtain Eq. (4.6).
We will devote the next two sections in proving the bound in Eq. (4.10).

4.6.1 The game sequence

We shall model the interaction of the adversary with XCBv2 by a sequence of games.
We shall start with the game XCB1 which describes the mode XCBv2, and with
small changes we shall reach the game RAND2 which will represent an oracle which
returns just random strings and we shall bound the advantage of an adversary in
distinguishing between the games XCB1 and RAND1. Note that in the games we
remove the pad function because we are assuming the length of the input message is
multiple of the length of the block. Next we describe the games.

Game XCB1: In XCB1, the adversary interacts with Eπ1,π2,π3 and Dπ1,π2,π3 where
each πi (i = 1, 2, 3) is a randomly chosen permutation from Perm(n). Instead of
initially choosing πi, we build up πi in the following manner.

Initially πi is assumed to be undefined everywhere. When πi(X) is needed, but the
value of πi is not yet defined at X, then a random value is chosen among the available
range values. Similarly when π−1

i (Y ) is required and there is no X yet defined for
which πi(X) = Y , we choose a random value for π−1

i (Y ) from the available domain
values.
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The domain and range of πi are maintained in two sets Domaini and Rangei, and
Domaini and Rangei are the complements of Domaini and Rangei relative to {0, 1}n.
The game XCB1 is shown in Figure 4.2. The figure shows the subroutines Ch-πi, Ch-
π−1
i , the initialization steps and how the game responds to a encipher/decipher query

of the adversary. The jth query of the adversary depends on its previous queries, the
responses to those queries and on some coins of the adversary.

The game XCB1 accurately represents the attack scenario, and by our choice of
notation, we can write

Pr[AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1] = Pr[AXCB1 ⇒ 1]. (4.11)

Game RAND1: We modify XCB1 by deleting the boxed entries in XCB1 and call
the modified game as RAND1. By deleting the boxed entries it cannot be guaranteed
that πi (i = 1, 2, 3) are permutations as though we do the consistency checks but we
do not reset the values of Y (in Ch-πi) and X (in Ch-π−1

i ). Thus, the games XCB1
and RAND1 are identical apart from what happens when the bad flag is set. By the
fundamental lemma of game-playing technique (Lemma 2.2.1), we obtain

|Pr[AXCB1 ⇒ 1]− Pr[ARAND1 ⇒ 1]| ≤ Pr[ARAND1 sets bad]. (4.12)

Another important thing to note is that in RAND1 in line 104, for an encryption
query CCs (and MM s for a decryption query) gets set to a random n bit string.
Similarly in line 108, Zs

i gets set to random values, and in line 112 for an encryption
query Cs

ms (and P s
ms for a decryption query) gets set to a random n bit string. Thus the

the adversary gets random strings in response to both his encryption and decryption
queries. Hence,

Pr[ARAND1 ⇒ 1] = Pr[A$(.,.),$(.,.) ⇒ 1]. (4.13)

So using Eq. (4.8), Eq. (4.12) and Eq. (4.13) we get

Adv±rnd
XCBv2[Perm(n),Perm(n),Perm(n)]

(A) = |Pr[AEπ1,π2,π3 ,Dπ1,π2,π3 ⇒ 1]

−Pr[A$(.,.),$(.,.) ⇒ 1]| (4.14)

= |Pr[AXCB1 ⇒ 1]

−Pr[ARAND1 ⇒ 1]|
≤ Pr[ARAND1 sets bad]. (4.15)

Game RAND2: Now we make some subtle changes in the game RAND1 to get a
new game RAND2 which is described in Figure 4.3. In game RAND1 the permutation
was not maintained and a call to the permutation was responded by returning random
strings, so in Game RAND2 we no more use the subroutines Ch-πi and Ch-π−1

i . Here
we immediately return random strings to the adversary in response to his encryption
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Subroutine Ch-πi(X) (i = 1, 2, 3)

11. Y
$← {0, 1}n; if Y ∈ Rangei then bad ← true; Y

$← Rangei ; end if;

12. if X ∈ Domaini then bad ← true; Y ← πi(X) ; end if

13. πi(X)← Y ; Domaini ← Domaini ∪ {X};
Rangei ← Rangei ∪ {Y }; return(Y );

Subroutine Ch-π−1
i (Y )

14. X
$← {0, 1}n; if X ∈ Domaini then bad ← true; X

$← Domaini ; end if;

15. if Y ∈ Rangei then bad ← true; X ← π−1
i (Y ) ; end if;

16. πi(X)← Y ; Domaini ← Domaini ∪ {X};
Rangei ← Rangei ∪ {Y }; return(X);

Initialization:
17. for all X ∈ {0, 1}n πi(X) = undef end for
18. bad = false

19. h
$← {0, 1}n

Respond to the sth query as follows:
Encipher query: Enc(Ts;Ps1 , P

s
2 , . . . P

s
ms )

101. if Psms = Ps
′

ms
′ for s′ < s then

102. CCs ← CCs
′

103. else
104. CCs ← Ch-π1(P

s
ms )

105. end if

106. Ss ← CCs ⊕Hh(0n||Ts, Ps1 || . . . ||P
s
ms−1||0

n)

107. for i = 0 to ms − 2,

108. Zsi ← Ch-π2(inc
i(Ss))

109. Csi+1 ← Psi+1 ⊕ Z
s
i

110. end for
111.MMs ← Ss ⊕Hh(Ts||0n, Cs1 || . . . ||C

s
ms−1||(binn2

(|Ts||0n|)||binn
2
(|Cs1 || . . . ||C

s
ms−1|)))

112. Csms ← Ch-π−1
3 (MMs)

113. return (Cs1 , C
s
2 , . . . , C

s
ms )

Decipher query: Dec(Cs1 , C
s
2 , . . . , C

s
ms , T

s)

101. if Csms = Cs
′

ms
′ for s′ < s then

102. MMs ← MMs′

103. else
104. MMs ← Ch-π3(C

s
ms )

105. end if

106. Ss ← MMs ⊕Hh(Ts||0n, Cs1 || . . . ||C
s
ms−1||(binn2

(|Ts||0n|)||binn
2
(|Cs1 || . . . ||C

s
ms−1|)))

107. for i = 0 to ms − 2,

108. Zsi ← Ch-π2(inc
i(Ss))

109. Psi+1 ← Csi+1 ⊕ Z
s
i

110. end for
111. CCs ← Ss ⊕Hh(0n||Ts, Ps1 || . . . ||P

s
ms−1||0

n)

112. Psms ← Ch-π−1
1 (CCs)

113. return (Ps1 , P
s
2 , . . . , P

s
ms )

Figure 4.2: Games XCB1 and RAND1: In RAND1 the boxed entries are removed.
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Respond to the sth adversary query as follows:

Encipher query Enc(Ts;Ps1 , P
s
2 , . . . , P

s
ms )

11. tys = Enc

12. Cs1 ||C
s
2 || . . . ||C

s
ms−1||C

s
ms

$← {0, 1}nm
s

13. return Cs1 ||C
s
2 || . . . ||C

s
ms

Decipher query Dec(Ts;Cs1 , C
s
2 , . . . , C

s
ms )

21. tys = Dec

22. Ps1 ||P
s
2 || . . . ||P

s
ms−1||P

s
ms

$← {0, 1}nm
s

23. return Ps1 ||P
s
2 || . . . ||P

s
ms

Finalization:

001. h
$← {0, 1}n

for s = 1 to q,
if tys = Enc then

101. if Psms = Ps
′

ms
′ for s′ < s then

102. CCs ← CCs
′

103. else

104. CCs
$← {0, 1}n

105. D1 ← D1 ∪ {Psms}
106. R1 ← R1 ∪ {CCs}
107. end if
108. Ss ← CCs ⊕Hh(0n||Ts, Ps1 || . . . ||P

s
ms−1||0

n)

109. MMs ← Ss ⊕Hh(Ts||0n, Cs1 || . . . ||C
s
ms−1||(binn2

(|Ts||0n|)||binn
2
(|Cs1 || . . . ||C

s
ms−1|)))

110. D3 ← D3 ∪ {Csms}
111. R3 ← R3 ∪ {MMs}
112. for i = 0 to ms − 2,
113. Y si ← Csi+1 ⊕ P

s
i+1

114. D2 ← D2 ∪ {inci(Ss)}
115. R2 ← R2 ∪ {Y si }
116. end for

else if tys = Dec then

201. if Csms = Cs
′

ms
′ for s′ < s then

202. MMs ← MMs′

203. else

204. MMs $← {0, 1}n
205. D3 ← D3 ∪ {Csms}
206. R3 ← R3 ∪ {MMs}
207. end if
208. Ss ← MMs ⊕Hh(Ts||0n, Cs1 || . . . ||C

s
ms−1||(binn2

(|Ts||0n|)||binn
2
(|Cs1 || . . . ||C

s
ms−1|)))

209. CCs ← Ss ⊕Hh(0n||Ts, Ps1 || . . . ||P
s
ms−1||0

n)

210. D1 ← D1 ∪ {Psms}
211. R1 ← R1 ∪ {CCs}
212. for i = 0 to ms − 2,
213. Y si ← Csi+1 ⊕ P

s
i+1

214. D2 ← D2 ∪ {inci(Ss)}
215. R2 ← R2 ∪ {Y si }
216. end for

end if
end for

Second phase
bad = false;
if (some value occurs more than once in Di, i = 1, 2, 3) then bad = true end if;
if (some value occurs more than once in Ri, i = 1, 2, 3) then bad = true end if.

Figure 4.3: Game RAND2.
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or decryption queries. Later in the finalization step we adjust variables and maintain
multi sets Di and Ri where we list the elements that were supposed to be inputs and
outputs of the permutation. In the second phase of the finalization step, we check for
collisions in the multi sets Di and Ri, and in the event of a collision we set the bad
flag to true.

Game RAND1 and Game RAND2 are indistinguishable to the adversary, as in
both cases he gets random strings in response to his queries. Also, the probability
with which RAND1 sets bad is same as the probability with which RAND2 sets bad.
Thus we get:

Pr[ARAND1 sets bad] = Pr[ARAND2 sets bad]. (4.16)

Thus from Eq. (4.15) and Eq. (4.16) we obtain

Adv±rnd
XCBv2[Perm(n),Perm(n),Perm(n)]

(A) ≤ Pr[ARAND2 sets bad]. (4.17)

Now our goal would be to bound Pr[ARAND2 sets bad]. We notice that in Game
RAND2 the bad flag is set when there is a collision in either of the sets Di or Ri. So
if COLLDi and COLLRi represent the event of a collision in Di and Ri respectively
then

Pr[ARAND2 sets bad] ≤
3∑
i=1

(Pr[COLLRi] + Pr[COLLDi]) .

We devote the next section in bounding the collision probabilities in Di and Ri.

4.6.2 Bounding collision probability in Di and Ri

In the analysis we consider the sets Di andRi to consist of the formal variables instead
of their values. For example, whenever we set D ← D ∪ {X} for some variable X we
think of it as setting D ← D∪{“X”} where “X” is the name of that formal variable.
This is the same technique as used in [HR03]. Our goal is to bound the probability
that two formal variables in the sets D and R take the same value. After q queries
of the adversary where the sth query has ms blocks of plaintext or ciphertext and ts

blocks of tweak, then the sets Di and Ri can be written as follows:

D1 = {P s
ms : 1 ≤ s ≤ q},

D2 =
⋃q
s=1{inc

j(Ss) : 0 ≤ j ≤ ms − 2},
D3 = {Cs

ms : 1 ≤ s ≤ q}.

R1 = {CCs : 1 ≤ s ≤ q},
R2 =

⋃q
s=1{Y s

j = Cs
j+1 ⊕ P s

j+1 : 0 ≤ j ≤ ms − 2},
R3 = {MM s : 1 ≤ s ≤ q}.
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Before we present the collision analysis let us identify the random variables based
on which the probability of collision would be computed. In game RAND2 the hash
key h is selected uniformly from the set {0, 1}n. The outputs that the adversary
receives are also uniformly distributed, and are independent of the previous queries
supplied by the adversary and the outputs obtained by the adversary. The ith query
supplied by the adversary may depend on the previous outputs obtained by the ad-
versary, but as the output of GAME2 is not dependent in any way on the hash key
h thus the queries supplied by the adversary are independent of h.

We consider T s as ts n-bit blocks. Thus, for any s, Hh either in line 108, 109, 208
or 209 of game RAND2 has degree at most ms+ts+2. Let us write σ =

∑
s t
s+
∑

sm
s

and `s,s
′
= max{ts +ms, ts

′
+ms′}+ 2. Since `s,s

′ ≤ ms +ms′ + ts + ts
′
+ 2, we have

the following inequality∑
1≤s<s′≤q

`s,s
′ ≤

∑
1≤s<s′≤q

(ts + ts
′
) +

∑
1≤s<s′≤q

(ms +ms′) +

(
q

2

)
2

≤ (q − 1)(σ + q).

As we already noted the response of encryption or decryption query are completely
independent of h (the poly hash key). Thus, inputs of Hh(·) for each query are
independent of h. So we can use the fundamental theorem of algebra to claim that
the probability that h is a root of a d degree polynomial is at most d/2n where h is
chosen uniformly and independently from the coefficient of the polynomial, which is
true in case of Hh in RAND2 game.

Claim 4.6.1. The upper bound for the probability of collision in D1 is
(
q
2

)
/2n.

Proof. When the adversary does an encryption query we have no collision in D1

because of the condition in line 101 of RAND2. Otherwise when the adversary does a
decryption query D1 has q elements and each element is chosen uniformly at random
from {0, 1}n. Thus,

Pr[P s
ms = P s′

ms′
: for some 1 ≤ s < s′ ≤ q] ≤

(
q
2

)
/2n. (4.18)

For the collisions in D2, we need to find the probability of incj (Ss) = incj
′
(Ss

′
)

for some 1 ≤ s < s′ ≤ q, 0 ≤ j ≤ ms− 2 and 0 ≤ j′ ≤ ms′ − 2. Let COLLh(r, S
s, Ss

′
)

denote the event

incr(Ss)⊕ Ss′ = 0n, where r = j − j′, (4.19)

without loss of generality, let us assume that j− j′ ≥ 0, since ms,ms′ ≤ 232 when the
block size of the underlying block cipher is 128 bits, the range of r is as 0 ≤ r ≤ 232−2.
Then we have that

Pr
[
incj(Ss) = incj

′
(Ss

′
)
]

= Pr
[
h

$← {0, 1}n : COLLh(r, S
s, Ss

′
)
]
. (4.20)
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In [IOM12], Iwata, Ohashi and Minematsu introduced a combinatorial problem in

order to derive an upper bound on Pr
[
h

$← {0, 1}n : COLLh(r, S
s, Ss

′
)
]
, here we use

the same combinatorial problem.

Problem 4.6.1 (Combinatorial problem). For 0 ≤ r ≤ 232 − 1, let

Yr = {bin32(int(Y ) + r mod 232)⊕ Y |Y ∈ {0, 1}32}. (4.21)

We also let αr = |Yr| denote the cardinality of Yr, and αmax = max{αr|0 ≤ r ≤
232 − 1}. Find αmax.

The following lemma shows the relationship of αr with our desired bound on

Pr
[
h

$← {0, 1}n : COLLh(r, S
s, Ss

′
)
]
.

Lemma 4.6.1. For any 0 ≤ r ≤ 232 − 1, Ss and Ss
′

polynomials of degree at most

`s,s
′
, Ss 6= Ss

′
, Pr

[
h

$← {0, 1}n : COLLh(r, S
s, Ss

′
)
]
≤ αr`

s,s′/2n.

Proof. The proof is exactly the same as the proof of Lemma 2 in [IOM12], we present
it here for completeness. Fix r, then the set Yr has αr many elements

Yr = {Y1, Y2, . . . , Yαr}.

From the definition of the set Yr we can see that each element of Yr is a class
representative of an equivalence class.

[Yj] = {Y ∈ {0, 1}32|bin32(int(Y ) + r mod 232)⊕ Y = Yj}, 1 ≤ j ≤ αr.

Let Yj = [Yj], as each Yj is an equivalence class we have Y1 ∪ · · · ∪ Yαr = {0, 1}32,
and Yj ∩ Yj′ = ∅ for 1 ≤ j ≤ j′ ≤ αr.

Observe that if Y ∈ Yj, then bin32(int(Y ) + r mod 232) can be replaced with
Y ⊕ Yj. For 1 ≤ j ≤ αr, let Dj be the event COLLh(r, S

s, Ss
′
)∧ lsb32(Ss) ∈ Yj. Since

D1, . . . ,Dαr are disjoint events, we have

Pr
[
h

$← {0, 1}n : COLLh(r, S
s, Ss

′
)
]

=
∑

1≤j≤αr

Pr [Dj] . (4.22)

Recall that COLLh(r, S
s, Ss

′
) denotes the event incr(Ss)⊕Ss′ = 0n, and since lsb32(Ss) ∈

Yj, incr(Ss) can be replaced with Ss⊕(0n−32||Yj), implying that the event Dj is equiv-
alent to

Ss ⊕ Ss′ ⊕
(
0n−32||Yj

)
= 0n (4.23)

and lsb32(Ss) ∈ Yj. We see that Eq. (4.23) is a non-trivial equation in h of degree at
most `s,s

′
over GF(2n), and hence it has at most `s,s

′
solutions. From Eq. (4.22), we

obtain the lemma.
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In [IOM12] a method was also given to compute αr and αmax, where it was found
that αmax = 3524578 ≤ 222. Thus by Lemma 4.6.1 we have,

Pr
[
h

$← {0, 1}n : COLLh(r, S
s, Ss

′
)
]
≤ 222`s,s

′

2n
. (4.24)

With this we are ready to compute the collision probability in D2.

Claim 4.6.2. The upper bound for the probability of collision in D2 is(∑
sm

s − q
2

)
/2n +

(
q

2

)
222`2

max

2n−1
.

Proof. In line 108 of RAND2 we observe that Ss is obtained from CCs⊕Hh(·) for an
encryption query (and from MM s⊕Hh(·) for a decryption query), given the condition
in lines 101 and 201 we have two cases:

• If P s
ms 6= P s′

ms′
or Cs

ms 6= Cs′

ms′
for s′ < s then CCs or MM s is chosen at random,

and so the probability of collision among Ss and Ss
′

for s 6= s′ is 1/2n. Thus,

Pr [incj(Ss) = incj
′
(Ss

′
) : for some 1 ≤ s′ < s ≤ q,

0 ≤ j ≤ ms − 2, 0 ≤ j′ ≤ ms′ − 2] ≤
(∑

sm
s − q

2

)
/2n. (4.25)

• If P s
ms = P s′

ms′
or Cs

ms = Cs′

ms′
for s′ < s, then we need to compute the probability

of collision between incj(Ss) and incj
′
(Ss

′
) for 1 ≤ s ≤ s′ ≤ q, 0 ≤ j ≤ ms − 2

and 0 ≤ j′ ≤ ms′ − 2.

The collision between incj(Ss) and incj
′
(Ss

′
) happens whenever any of the fol-

lowing two events occurs.

Ss ⊕ incj
′
(Ss

′
), 0 ≤ r ≤ ms′ − 2

and
incj(Ss)⊕ Ss′ , 0 ≤ r ≤ ms − 2.

By Lemma 4.6.1 we obtain the probability of incj(Ss) = incj
′
(Ss

′
) for fixed Ss

and Ss
′
.

Pr[incj(Ss) = incj
′
(Ss

′
)] ≤

ms+ms
′−4∑

r=1

αr`
s,s′

2n
<
αmax`

s,s′(ms +ms′)

2n
.

Now we are able to compute the probability of collision for 1 ≤ s < s′ ≤ q,

Pr[h
$← {0, 1}n : COLLh(r, S

s, Ss
′
)] ≤

∑
1≤s<s′≤q

αmax`
s,s′(ms +ms′)

2n

≤
(
q

2

)(
222`s,s

′

2n

)(
2`s,s

′
)

≤
(
q

2

)
222`2

max

2n−1
. (4.26)

From Eq. (4.25) and Eq. (4.26) we obtain the bound.
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Claim 4.6.3. The upper bound for the probability of collision in D3 is
(
q
2

)
/2n.

The proof of Claim 4.6.3 is similar to that of Claim 4.6.1.

Claim 4.6.4. The upper bound for the probability of collision in R1 is
(
q
2

)
/2n.

Proof. For the collision in R1 we have two cases: one for an encryption query and
another one for a decryption query.

• When the adversary does an encryption query, CCs is chosen uniformly at
random from {0, 1}n. Thus,

Pr[CCs = CCs′ : for some 1 ≤ s < s′ ≤ q] ≤
(
q
2

)
/2n. (4.27)

• For the case of a decryption query, from RAND2 line 208 we have

CCs ← MM s ⊕Hh(0n||T s, P s1 || . . . ||P sms−1||0n)

⊕ Hh(T s||0n, Cs1 || . . . ||Csms−1||(binn2 (|T s||0n|)||binn
2
(|Cs1 || . . . ||Csms−1|))).

P s
1 , . . . , P

s
ms are chosen uniformly at random from {0, 1}n in line 22 of RAND2.

Thus

Pr[CCs = CCs′ : for some 1 ≤ s < s′ ≤ q] ≤
(
q
2

)
/2n. (4.28)

From Eq. (4.27) and Eq. (4.28) we obtain the bound.

Claim 4.6.5. The upper bound for the probability of collision in R2 is
(∑

sm
s−q

2

)
/2n.

Proof. We consider collision among Y s
i , 0 ≤ i ≤ ms − 2, 1 ≤ s ≤ q. For the pairs

(Y s
i , Y

s′

i′ ) with s′ ≤ s and (s, i) 6= (s′, i′), the collision probability is 1/2n, since either
P s or Cs is chosen uniformly and independently from the rest of the variables. There
are

(∑
sm

s−q
2

)
pairs of this form. Thus,

Pr[Y s
i = Y s′

i′ : for some 1 ≤ s ≤ s′ ≤ q, 1 ≤ i ≤ ms, 1 ≤ i′ ≤ ms′ , (s, i) 6= (s′, i′)]

≤
(∑

sm
s − q

2

)
/2n. (4.29)

Claim 4.6.6. The upper bound for the probability of collision in R3 is
(
q
2

)
/2n.

The proof of Claim 4.6.6 is similar to that of Claim 4.6.4.
From Claim 4.6.1 to Claim 4.6.6 we obtain

Pr[ARAND2 sets bad] ≤ (222q2`2
max + 1.5σ2)/2n−1.

Using the above equation and Eq. (4.17) we obtain Eq. (4.10), which completes the
proof.
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4.6.3 Real world scenario

We consider the situation in which the adversary has access to a 1Tb hard drive. We
give the adversary the power to choose either the plaintext or the ciphertext for each
sector of the hard drive. We consider each query the adversary does as a message of
4096 bytes, as this is the size of a sector for the currently available hard drives. We
consider the tweak to be 16 bytes.

With the above data we can compute the following information for a block length
of n = 128 bits.

• Each sector contains 28 blocks.

• The size of the tweak is equal to 1 block.

• The adversary can ask at most q = 228 queries.

• The complexity of the queries asked by the adversary is σ = 228(1 + 28).

As we note in the proof of Claim 4.6.2 the upper bound for XCBv2 depends on
αr where r ranges from 0 to the number of blocks in the message. For this scenario
we do not consider αmax = 222 which is the general case when 0 ≤ r ≤ 232 − 1 but
instead we consider αmax = 211 as this is the case when 0 ≤ r ≤ 28 in Problem 4.6.1.

Now we can compute the advantage of the adversary in distinguishing XCBv2.

Adv
±p̃rp
XCBv2[E]

(σ, t) ≤ (211q2`2
max + 2σ2)/2n−1

≤ (284 + 264)/2127.

4.7 The Security of XCBv1

When XCBv1 was proposed no proof of its security was given. In this section we give
a security bound for XCBv1.

The following theorem specifies the security of XCBv1.

Theorem 4.7.1. Fix n, σ to be positive integers and an n-bit block cipher E : K ×
{0, 1}n → {0, 1}n. Then

Adv
±p̃rp
XCBv1[Perm(n),Perm(n),Perm(n)]

(σ) ≤ (222q2`2
max + 2σ2)/2n−1. (4.30)

Adv
±p̃rp
XCBv1[E]

(σ, t) ≤ (222q2`2
max + 2σ2)/2n−1 + Adv

±prp
E (σ, t′) (4.31)

where t′ = t+O(σ) and `max is the maximum query length.

The analysis of XCBv1 is very similar to that of XCBv2. In this section we just
mention the differences. For the game sequence we just write the final game RAND2
and the bounds for the collision probabilities of the sets Di and Ri.
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As in Eq. (4.9) we have

Adv
±p̃rp
XCBv1[Perm(n),Perm(n),Perm(n)]

(A)

≤ Adv±rnd
XCBv1[Perm(n),Perm(n),Perm(n)]

(A) +

(
q

2

)
1

2n
.

Now, the main task of the proof reduces to obtaining an upper bound on

Adv±rnd
XCBv1[Perm(n),Perm(n),Perm(n)]

(σ).

4.7.1 The game sequence

The interaction of the adversary with XCBv1 is modeled by a sequence of games.
We start with a game which describes the mode XCBv1 and with small changes we
reach the game RAND2 which represents an oracle which returns random strings.
Steps taken to reach game RAND2 in XCBv1 are the same of those of XCBv2. Game
RAND2 for XCBv1 is shown in Fig. 4.4.

Note that game RAND2 in Fig. 4.4 slightly differs from that of Fig. 4.4. The
differences are in the inputs of the hash function. The order of the inputs change
and also their lengths. For XCBv2 we add a block of zeros to the inputs. Another
difference is that in XCBv1 we have two different keys (h1,h2) for the computation of
the hash function while in XCBv2 we only have one key.

Recall from Section 4.6.1 that

Adv±rnd
XCBv1[Perm(n),Perm(n),Perm(n)]

(A) ≤ Pr[ARAND2 sets bad]. (4.32)

Now our goal is to bound Pr[ARAND2 sets bad]. From Claim 4.7.1 to Claim 4.7.6
we obtain

Pr[ARAND2 sets bad] ≤ (222q2`2
max + 1.5σ2)/2n−1.

We notice that in Game RAND2 the bad flag is set when there is a collision in
either of the sets Di or Ri. So if COLLDi and COLLRi represent the event of a collision
in Di and Ri respectively then

Pr[ARAND2 sets bad] ≤
3∑
i=1

(Pr[COLLRi] + Pr[COLLDi])

Bounding collision probability in Di and Ri

After q queries of the adversary where the sth query has ms blocks of plaintext or
ciphertext and ts blocks of tweak, then the sets Di and Ri can be written as follows:
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Respond to the sth adversary query as follows:

Encipher query Enc(Ts;Ps1 , P
s
2 , . . . , P

s
ms )

11. tys = Enc

12. Cs1 ||C
s
2 || . . . ||C

s
ms−1||D

s
ms

$← {0, 1}nm
s

13. Csms ← dropn−rs (Dms )
14. return Cs1 ||C

s
2 || . . . ||C

s
ms

Decipher query Dec(Ts;Cs1 , C
s
2 , . . . , C

s
ms )

21. tys = Dec

22. Ps1 ||P
s
2 || . . . ||P

s
ms−1||V

s
ms

$← {0, 1}nm
s

23. Psms ← dropn−rs (Vms )
24. return Ps1 ||P

s
2 || . . . ||P

s
ms

Finalization:

001. h
$← {0, 1}n

for s = 1 to q,
if tys = Enc then

101. if Ps1 = Ps
′

1 for s′ < s then

102. CCs ← CCs
′

103. else

104. CCs
$← {0, 1}n

105. D1 ← D1 ∪ {Ps1 }
106. R1 ← R1 ∪ {CCs}
107. end if
108. Ss ← CCs ⊕Hh1 (Ps2 || . . . ||P

s
ms , T

s)

109. MMs ← Ss ⊕Hh2 (Cs2 || . . . ||C
s
ms , T

s)

110. D3 ← D3 ∪ {Cs1}
111. R3 ← R3 ∪ {MMs}
112. for i = 0 to ms − 3,
113. Y si ← Csi+2 ⊕ P

s
i+2

114. D2 ← D2 ∪ {inci(Ss)}
115. R2 ← R2 ∪ {Y si }
116. end for
117. Y sms−2 ← Csms ⊕ P

s
ms

118. D2 ← D2 ∪ {incm
s−2(Ss)}

119. R2 ← R2 ∪ {Y sms−2}
else if tys = Dec then

201. if Cs1 = Cs
′

1 for s′ < s then

202. MMs ← MMs′

203. else

204. MMs $← {0, 1}n
205. D3 ← D3 ∪ {Cs1}
206. R3 ← R3 ∪ {MMs}
207. end if
208. Ss ← MMs ⊕Hh2 (Cs2 || . . . ||C

s
ms , T

s)

209. CCs ← Ss ⊕Hh1 (Ps2 || . . . ||P
s
ms , T

s)

210. D1 ← D1 ∪ {Ps1 }
211. R1 ← R1 ∪ {CCs}
212. for i = 0 to ms − 3,
213. Y si ← Csi+2 ⊕ P

s
i+2

214. D2 ← D2 ∪ {inci(Ss)}
215. R2 ← R2 ∪ {Y si }
216. end for
217. Y sms−2 ← Csms ⊕ P

s
ms

218. D2 ← D2 ∪ {incm
s−2(Ss)}

219. R2 ← R2 ∪ {Y sms−2}
end if

end for

Second phase
bad = false;
if (some value occurs more than once in Di, i = 1, 2, 3) then bad = true end if;
if (some value occurs more than once in Ri, i = 1, 2, 3) then bad = true end if.

Figure 4.4: Game RAND2 for XCBv1.
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D1 = {P s
1 : 1 ≤ s ≤ q},

D2 =
⋃q
s=1{inc

j(Ss) : 0 ≤ j ≤ ms − 2},
D3 = {Cs

1 : 1 ≤ s ≤ q}.

R1 = {CCs : 1 ≤ s ≤ q},
R2 =

⋃q
s=1{Y s

j = Cs
j+2 ⊕ P s

j+2 : 0 ≤ j ≤ ms − 2},
R3 = {MM s : 1 ≤ s ≤ q}.

We consider T s as ts n-bit blocks. Thus, for any s, Hh1(P
s
2 || · · · ||P s

ms , T
s) or

Hh2(C
s
2 || · · · ||Cs

ms , T
s) has degree at most ms + ts. Let us write σ =

∑
s t
s +

∑
sm

s

and `s,s
′

= max{ms + ts,ms′ + ts
′}. Since `s,s

′ ≤ ms + ms′ + ts + ts
′
, we have the

following inequality∑
1≤s<s′≤q

`s,s
′ ≤

∑
1≤s<s′≤q

(ts + ts
′
) +

∑
1≤s<s′≤q

(ms +ms′)

≤ (q − 1)(σ −
∑
s

ms) + (q − 1)(σ −
∑
s

ts)

≤ (q − 1)σ.

We also note that the response of encryption or decryption query are completely
independent of h1 and h2 (the poly hash keys). Thus, inputs of Hh1(·) for each query
are independent with h1. So we can use the fundamental theorem of algebra to claim
that the probability that h1 is a root of a d degree polynomial is at most d/2n where h1

is chosen uniformly and independently from the coefficient of the polynomial, which
is true in case of Hh1 in RAND2 game (this scenario also applies to Hh2 and h2).

The following claims except Claim 4.7.4 and Claim 4.7.6 are similar to those of
Section 4.6.2.

Claim 4.7.1. The upper bound for the probability of collision in D1 is
(
q
2

)
/2n.

Claim 4.7.2. The upper bound for the probability of collision in D2 is(∑
sm

s − q
2

)
/2n +

(
q

2

)
222`2

max

2n−1
.

Claim 4.7.3. The upper bound for the probability of collision in D3 is
(
q
2

)
/2n.

Claim 4.7.4. The upper bound for the probability of collision in R1 is
(
q
2

)
/2n.

Proof. For the collision in R1 we have two cases: one for an encryption query and
another one for a decryption query.

• When the adversary does an encryption query, CCs is chosen at random from
{0, 1}n. Thus,

Pr[CCs = CCs′ : for some 1 ≤ s < s′ ≤ q] ≤
(
q
2

)
/2n. (4.33)
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• For the case of a decryption query, from RAND2 line 109 we have

CCs ←MM s ⊕Hh1(P
s
2 || . . . ||P s

ms , T
s)⊕Hh2(C

s
2 || . . . ||Cs

ms , T
s). (4.34)

Similar to the proof of Claim 4.6.2 we have two cases derived from the condition
in line 101.

– If Cs
1 6= Cs′

1 for s′ < s then MM s is chosen at random, thus

Pr[CCs = CCs′ : for some 1 ≤ s < s′ ≤ q] ≤
(
q

2

)
/2n. (4.35)

This case is covered in Eq. (4.33).

– Let Hs
h1

denote Hh1(P
s
2 || . . . ||P s

ms , T
s), Hs

h2
denote Hh2(C

s
2 || . . . ||Cs

ms , T
s),

Hs′

h1
denoteHh1(P

s′
2 || . . . ||P s′

ms′
, T s

′
) andHs′

h2
denoteHh2(C

s′
2 || . . . ||Cs′

ms′
, T s

′
).

For the case Cs
1 = Cs′

1 for s′ < s, both MM s and MM s′ are equal and
then CCs ⊕ CCs′ = Hs

h1
⊕Hs

h2
⊕Hs′

h1 ⊕Hs′

h2
. Recall that P s

2 , . . . , P
s
ms and

P s′
2 , . . . , P

s′

ms′
are chosen independently at random (line 22 of RAND2),

thus we consider Hs
h1

and Hs′

h1
as chosen independently at random and

Pr[CCs = CCs′ ] = 1/2n, hence

Pr[CCs = CCs′ : for some 1 ≤ s < s′ ≤ q] ≤
(
q

2

)
/2n. (4.36)

This case is also covered in Eq. (4.33).

Claim 4.7.5. The upper bound for the probability of collision in R2 is
(∑

sm
s−q

2

)
/2n.

Claim 4.7.6. The upper bound for the probability of collision in R3 is
(
q
2

)
/2n.

The proof of Claim 4.7.6 is similar to that of Claim 4.7.4.
Using Claims 4.7.1 to 4.7.6 and the union bound we have

3∑
i=1

(Pr[COLLRi] + Pr[COLLDi]) ≤ (222q2`2
max + 1.5σ2)/2n−1,

which give us an upper bound for Pr[ARAND2 sets bad] in Eq. (4.32), completing the
proof.
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5. Security of Encryption Schemes
on Key Dependent Messages

I have not received any
meaningful response to the issue
of grandma storing her keys on
an encrypted drive.

Email archives IEEE P1619

In this chapter we investigate the strange scenario where an encryption algorithm
encrypts its own key. This phenomenon has been named in the literature as a key
cycle, and it has always been seen as an abuse of encryption. Thus, traditionally it
has been implicitly assumed that an encryption algorithm will never encrypt its own
key. As such an assumption is widely accepted thus there have been very limited
analysis of encryption schemes in this scenario. In recent days, this question has
gained some attention in the context of the formulation of the standard IEEE Std
1619.2-2010, which is a standard for disk encryption. The phrase in the epigraph of
this chapter has been quoted from an email archive of the discussions of the working
group responsible for the standard. The working group of P1619 considered key cycles
to be a real threat, and it is supposed that they deleted one scheme called LRW from
their list of possible schemes in IEEE Std 1619-2007 as there was a glaring insecurity
of LRW if it was used to encrypt its own key.

The preliminary definitional work involving this paradigm was initiated in [BRS02],
where security of encryption schemes when queried on key dependent messages was
formalized. In [HK07] the security of tweakable enciphering schemes on key depen-
dent messages were defined, and the key dependent message insecurity of LRW was
also pointed out. Recently in [BCK11] some generic schemes were discussed to make
any secure TES secure in the KDM sense.

In this chapter we discuss the basic notions of KDM security following the work
of [BRS02] and [HK07]. We also demonstrate KDM insecurity of two TES namely
HCTR and XCB, these attacks were not known before. Finally we discuss two trans-
forms proposed in [BCK11] to convert a secure TES to a KDM secure TES.
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5.1 Definitions and Security Notions

Black, Rogaway and Shrimpton gave the notion of KDM in [BRS02]. The following
discussion of KDM is based on their work.

First we give an informal description of the KDM security notion. Consider an
encryption scheme E instantiated by a key K. We allow an adversary to obtain
encryptions of g(K), for any function g chosen by the adversary. We call E to be KDM
secure if the adversary cannot infer anything meaningful regarding the cipher given
this extra information. Note that the adversary here has access to some information
regarding the key through its encryption, and it is infeasible for any adversary to
obtain this information in the normal chosen plaintext attack scenario.

We formalize the notion of KDM security in the following definition.

Definition 5.1.1. [IND-KDM] [BRS02] Let Π = (K, E ,D) be a symmetric encryption
scheme and let A be an adversary. For K ∈ K,

• Let RealK be the oracle that on input g returns EK(g(K))

• Let FakeK be the oracle that on input g returns EK(0|g(K)|)

The IND-KDM advantage of an adversary A is defined as

Advkdm
Π (A) =

∣∣∣Pr
[
K

$← K : ARealK ⇒ 1
]
− Pr

[
K

$← K : AFakeK ⇒ 1
]∣∣∣ .

Π is KDM-secure if Advkdm
Π (A) is “small” for all “efficient” adversaries A.

The function g in the above definition is called a plaintext construction function.
For the above definition to be meaningful, it is required that the length of g(K)
(denoted by |g(K)|) does not depend on K, i.e., the plaintext construction function
g is required to be of fixed length. When this is not the case, KDM-secure schemes
would not exist. To see this, consider, for example, the function gi(K), defined as
gi(K) = 1 if the i-th bit of K is 1 and gi(K) = 00 if the i-th bit of K is zero. If
the encryption function E reveals the length of the plaintext (which most encryption
algorithms do) then an adversary can ask for gi(K)-values as a way to learn any key,
bit by bit.

KDM is a strong notion of security, it implies security in other senses, for example
given an encryption scheme that is prp-secure, one can trivially modify it to construct
a similar prp-secure encryption scheme that is completely insecure in the KDM sense.
Let EK() be a prp secure encryption scheme. We construct ẼK() from EK() as

ẼK(X) =

{
0||EK(M) if M 6= K
1||K otherwise.

ẼK() is trivially insecure in the KDM sense though it is prp-secure. This shows that
KDM security implies prp-security but KDM security is not implied by prp-security.
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Black, Rogaway and Shrimpton worked on KDM security in the context of ran-
domized encryption, their study does not include deterministic encryption schemes
such as TES. In a later work, Halevi and Krawczyk [HK07] extend the study of KDM
in the context of deterministic symmetric schemes and rename the security notion as
Key Dependent Inputs (KDI) security. The renaming was necessary as KDI does not
only consider key dependent messages (which KDM does) but it also considers key
dependent ciphertexts.

An important observation in [HK07] is that for the KDI notion to be meaningful
in case of deterministic schemes, one needs to put a restriction on the functions g
which an adversary can query. In particular they proved the following

Theorem 5.1.1 (No single construction for all g [HK07]). There exists no determin-
istic construction of a pseudo-random function family that is KDI-secure with respect
to all functions g.

In practical terms, Theorem 5.1.1 implies that an application must restrict the
types of information on the key that can be securely encrypted under the key itself.

The definition of KDI considered by Halevi and Krawczyk is more general than
the KDM notion in Definition 5.1.1. In particular the KDI notion also encompasses
the case of key dependent chosen ciphertext. As we mainly concentrate our study on
TES, hence we state the definition of KDI security for TES.

Definition 5.1.2 (KDI-secure tweakable SPRPs). [HK07] A tweakable enciphering
scheme E : K × T ×M → M is KDI-secure with respect to a class Φ of functions
if no feasible adversary A can distinguish with non-negligible advantage between the
following two cases:

1. The key K ∈ K is chosen at random, and for any T ∈ T , X ∈ M, g ∈
Φ the oracles are set as, Fn(T,X) = EK(T,X), Fn−1(T,X) = E−1

K (T,X),
KDFn(T, g) = EK(T, g(K)) and KDFn−1(T, g) = E−1

K (T, g(K)) where T is the
tweak space and M is the message space;

2. The key K ∈ K is chosen at random, for every T ∈ T we set Fn(T, ·) to
a random permutation and Fn−1(T, ·) to its inverse, and then KDFn(T, g) =
Fn(T, g(K)), and KDFn−1(T, g) = Fn−1(T, g(K)).

In this work we will not consider security against key dependent ciphertexts. When
we will be talking about KDM security, we will be referring to Φ-KDM security. We
can think of Φ-KDM security as KDI security without the KDFn−1 oracle.

For convenience and compatibility with our notation, we would denote Φ-KDM
advantage of an adversary A in distinguishing a TES E as

Adv
±p̃rp
E,Φ (A) = Pr

[
K

$← K : AEK(·,·),E−1
K (·,·),KDFnEK (·,·) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(·,·),πππ−1(·,·),KDFnπππ(·,·) ⇒ 1
]
, (5.1)

where KDFnEK (T, g) returns EK(T, g(K)) and KDFnπππ(T, g) returns πππ(T, g(K)). Note
g is queried by A and it is required that g ∈ Φ.
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5.2 KDM Attacks on some TES

As stated in the previous section, prp-security does not imply KDM security. In this
section we show attacks on some encryption schemes that have been proved secure
in the sense of SPRP but are KDM insecure. Concrete attacks in the KDM sense
are rare. Though KDM insecurity of TES have received some attention and also
in [BCK11] some transforms have been designed which makes an arbitrary secure
TES, KDM secure. But concrete attacks on existing TES were not known. Here for
the first time we show attacks against HCTR and XCB. The attack on LRW described
here is taken from [HK07].

5.2.1 LRW attack

Recall from Section 3.1 that LRW is a tweakable block cipher proposed by Liskov,
Rivest and Wagner. LRW was considered as a possible encryption standard for the
IEEE P1619 standard group, but some members objected, citing an attack that can
be mounted when the scheme is applied to its own secret key. The group rejected
LRW when it was informed that the implementation of disk encryption in Windows
Vista can store to the disk an encryption of its own secret keys in some situations.
Consequently the group switched to a different scheme, for which the particular attack
in question does not seem to apply.

Halevi and Krawczyk [HK07] described the attack on LRW. Let E be a block
cipher, LRW construction is defined as follows:

ẼK1,K2(T,M) = EK1(M ⊕ hK2(T ))⊕ hK2(T ).

Liskov et al. [LRW02] proved that Ẽ is a secure tweakable cipher when h is an
Almost Xor Universal (AXU) hash function. In P1619 the following instantiation of
h was used. Let hK2(T ) = TK2, where T,K2 ∈ GF (2n). With this instantiation
LRW can be described as

ẼK1,K2(T,M) = EK1((TK2)⊕M)⊕ (TK2).

In [HK07] it was shown that the above construction is not KDM-secure with respect
to the function g(K1, K2) = K2.

The adversary can query KDFn(0, g) (i.e, using tweak value 0 and plaintext K2)
and also Fn(1, 0) (i.e, tweak value 1 and plaintext 0), thus getting

c1 = ẼK1,K2(0, K2) = EK1(K2) and c2 = ẼK1,K2(1, 0) = EK1(K2)⊕K2.

Next the adversary can compute K2 = c1⊕ c2 and then verify this value by asking to
decrypt the value of c1 ⊕ 2K2 with respect to the tweak value 2.
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5.2.2 HCTR attack

HCTR uses two keys, denoted by K,h. K is used as a key for the underlying block
cipher E and h the key for the polynomial hash is an n-bit string and it is treated
as an element of GF (2n). HCTR is not KDM-secure with respect to the function
g(K,h) = X||0n||h, where X ∈ {0, 1}n (i.e., when encrypting a message that depends
on the element h of the secret key). The attacker can query KDFn(T, g), where T ∈ T ;
and also Fn(T, Y ), where Y = X||binn(1)||0n, thus getting:

In case of KDFn(T, g), from the construction of HCTR (see Fig. 3.5) we have:

MM (1) ← X ⊕Hh(0
n||h||T )

CC(1) ← EK(X ⊕ h4 ⊕ Th2 ⊕ binn(3n)h)
S(1) ← (X ⊕ h4 ⊕ Th2 ⊕ binn(3n)h)⊕ EK(X ⊕ h4 ⊕ Th2 ⊕ binn(3n)h)

C
(1)
2 ← EK(S ⊕ binn(1))

C
(1)
3 ← h⊕ EK(S ⊕ binn(2))

C
(1)
1 ← CC(1) ⊕Hh(C

(1)
2 ||C

(1)
3 ||T )

In case of Fn(T, Y ), from the construction of HCTR we have:

MM (2) ← X ⊕Hh(binn(1)||0n||T )
CC(2) ← EK(X ⊕ h4 ⊕ Th2 ⊕ binn(3n)h)
S(2) ← (X ⊕ h4 ⊕ Th2 ⊕ binn(3n)h)⊕ EK(X ⊕ h4 ⊕ Th2 ⊕ binn(3n)h)

C
(2)
2 ← binn(1)⊕ EK(S ⊕ binn(1))

C
(2)
3 ← EK(S ⊕ binn(2))

C
(2)
1 ← CC(2) ⊕Hh(C

(2)
2 ||C

(2)
3 ||T )

It is easy to see that S(1) = S(2). Thus C
(1)
3 ⊕ C

(2)
3 = h. Which shows that any

adversary can obtain the hash key for HCTR with only two queries.
In general if we can make the value S the same for two different queries then we

can mount an attack on HCTR. From the construction of HCTR we can see that it
is sufficient to make the value of MM the same for two different queries. This can
be easily done if a collision for H can be found. It is easy to find a collision on H if
we allow the input to depend on the hash key h. Note that this is not related with
the almost universality of the hash function H.

Now, we give a general way to find a collision in H.
Recall the definition of H from Section 3.4.2.

Hh(X) = X1h
m+1 ⊕X2h

m ⊕ . . .⊕Xmh
2 ⊕ binn(|X|)h.

For X,X ′ ∈ M such that X 6= X ′ and |X| = |X ′| = m. Let X = X1|| . . . ||Xm

and X ′ = X ′1|| . . . ||X ′m, then we have

Hh(X)⊕Hh(X
′) = (X1 ⊕X ′1)hm+1 ⊕ (X2 ⊕X ′2)hm ⊕ . . .⊕ (Xm ⊕X ′m)h2.
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Fix any i, such that 2 ≤ i ≤ m. Set Xi = h and Xi−1 = 1, and Xj = 0 for
1 ≤ j ≤ m and j 6= i, j 6= i− 1. Set X ′j = 0 for 1 ≤ j ≤ m. Then we have

Hh(X)⊕Hh(X
′) = Xi−1h

m+3−i ⊕Xih
m+2−i = hm+3−i ⊕ hm+3−i = 0.

Now, we can mount an attack on HCTR usingX andX ′. By querying KDFn(T,X)
and Fn(T,X ′), and then xoring the i-th block of both answers we can recover the key
h.

5.2.3 XCB attack

In the description of XCBv1 and XCBv2 it is defined just one input key whose pur-
pose is to derive the key material used by the scheme. This key material can be
precomputed and stored in some place avoiding the processes of deriving it every
time an encryption or decryption operation needs to be performed. With this sce-
nario in mind we allow the adversary get access to the key h through the function
g ∈ Φ, mounting a similar attack to that of HCTR.

Recall the hash function used in XCB from Section 3.4.1. In case of XCBv1 we
have

Hh(X,T ) =X1h
m+p+1 ⊕X2h

m+p ⊕ . . .⊕Xmh
p+2 ⊕ T1h

p+1

⊕ T2h
p ⊕ . . .⊕ Tph2 ⊕ (binn

2
(|X|)||binn

2
(|T |))h

and in case of XCBv2 we have

H ′h(T,X) =T1h
p+m+1 ⊕ T2h

p+m ⊕ . . .⊕ Tphm+2 ⊕X1h
m+1

⊕X2h
m ⊕ . . .⊕Xmh

2 ⊕ (binn
2
(|T |)||binn

2
(|X|))h.

Let Xi be equal to h and Xi−1 = 1 for 2 ≤ i ≤ m, Xj = 0, j 6= i; then

Hh(X, 0
n) = (binn

2
(|X|)||binn

2
(n))h

and

H ′h(0
n, X) = (binn

2
(n)||binn

2
(|X|))h.

Let X ′ = 0|X|, we have

Hh(X
′, 0n) = (binn

2
(|X|)||binn

2
(n))h

and

H ′h(0
n, X ′) = (binn

2
(n)||binn

2
(|X|))h.

As in the case of HCTR the attack would consist of the queries KDFn(0n, X) and
Fn(0n, X ′). Obtaining the key h as a result of this attack.
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F (K,T,M)

λ← E(K, γ, α)
if M = K then Y ← E(K,T, λ)
else if M = λ then Y ← E(K,T,K)
else Y ← E(K,T,M)
return Y

F−1(K,T,C)

Y ← E−1(K,T,C)
λ← E(K, γ, α)
if Y = K then M ← λ
else if Y = λ then M ← K
return M

Figure 5.1: Swap then Encipher transform.

5.3 Ciphers that Securely Encipher their own Keys

Bellare, Cash and Keelveedhi [BCK11] in 2011 proposed two transformations in or-
der to turn a secure tweakable SPRP into a secure tweakable SPRP for KDM. One
transformation is performed in the narrow block case, and the other one is performed
in the wide block case. Let E : K × T × {0, 1}mn → {0, 1}mn be a TES, we say that
the E is narrow block if m = 1 and wide block if m > 1.

5.3.1 KDM security for narrow block case

In narrow block case, Bellare, Cash and Keelveedhi provide a transform StE (Swap
then Encipher) that turns a given secure TES into a secure {id}-KDM TES. Where
{id} denotes the identity function on the key, i.e, the transformation guarantees the
security of the TES when the only allowed key dependent message is equal to the key.

The idea of the transformation is to swap the key for a “hidden point” (λ in
Fig. 5.1), determined by encryption of a constant under the key. The hidden point is
defined via a tweak not used for anything else.

Given a TES E : {0, 1}n×T ×{0, 1}n → {0, 1}n assumed to have SPRP security.
We pick an arbitrary γ ∈ T and also an arbitrary point α ∈ {0, 1}n. Both α and γ
are public and known to the adversary. The StE transform, described in Fig. 5.1,
turns E into another TES F : {0, 1}n×T \{γ}×{0, 1}n → {0, 1}n whose tweakspace
T \ {γ} is that of E with γ removed, meaning γ is not allowed as a tweak for F . The
following theorem gives the security for StE transform.

Theorem 5.3.1 ([BCK11]). Let E : {0, 1}n × T × {0, 1}n → {0, 1}n be a tweakable
block cipher. Let γ ∈ T and α ∈ {0, 1}n. Let F = StEγ,α[E] : {0, 1}n × T \ {γ} ×
{0, 1}n → {0, 1}n be a tweakable block cipher associated to E via the StEγ,α transform
as defined above. Let Φ = {id} consist of the identity function. Let A be an adversary
making at most q oracle queries. Then there exists an adversary B such that

Adv
±p̃rp
F,Φ (A) < 2 ·Adv

±p̃rp
E (B) +

3q

2n − 1
.
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J(K,T,M)

X ← ECB[F (K, γ1, ·)](M)
Y ← E[F (K, γ2, ·)](T,X)
return Y

J−1(K,T, Y )

X ← E−1[F−1(K, γ2, ·)](T, Y )
M ← ECB[F−1(K, γ1, ·)](X)
return X

Figure 5.2: ECB then Encipher transform.

5.3.2 KDM security for wide block case

EtE (ECB then Encipher) transform turns a secure SPRP TES into a secure IDm-
KDM TES. Where IDm refers to the class of functions which when given K as input
returns a message where one or more blocks contain the key. The key can be present
in multiple blocks but not overlapping between blocks.

We formally define the class IDm next.

The class IDm. We formally define the class capturing occurrence of the key in
any block of the message. Let IDm be the class of functions which maps an n-bit
key to a message of m blocks. Each function idM in IDm is indexed by M , where
M is a vector with m components where each component is either in {0, 1}n or is
⊥. Let M = (M1,M2, . . . ,Mm) where either Mi ∈ {0, 1}n or Mi = ⊥. Hence
idM : {0, 1}n → {0, 1}mn maps the input key to m many n-bit blocks in the following
manner:

idM(K) = (M ′
1,M

′
2, . . . ,M

′
m)

where

M ′
i =

{
Mi if Mi ∈ {0, 1}n
K if Mi = ⊥

EtE makes an ECB pass through the data using F = StE[E] under one tweak.
Then applies a secure wide block SPRP TES E[F ] with another tweak. By E[F ] we
denote TES E using F as underlying block cipher. EtE transform associates to E and
F a tweakable wide block cipher J = EtE[E, F ] where J : {0, 1}n × T × {0, 1}mn →
{0, 1}mn. Fig. 5.2 describes EtE transform. The following theorem gives the security
for EtE transform.

Theorem 5.3.2 ([BCK11]). Let E be a wide block tweakable block cipher, with
tweakspace T , blocklength n and number of blocks m. Let F : {0, 1}n × {γ1, γ2} ×
{0, 1}n → {0, 1}n be a secure {id}-KDM narrow tweakable block cipher. Let J =
EtE[E, F ] be the wide block tweakable cipher associated to E and F via the EtE
transform as defined above. Let Φ = IDm. Let A be an adversary making at most q
oracle queries with the tweak argument in each query having length at most nt. Then
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there is an adversary B such that

Adv
±p̃rp
J,Φ (A) < 2 ·Adv

±p̃rp
F,{id}(B) + 2 ·Adv

±p̃rp
E (q, n,m, t) +

2q2(m2 + 2)

2n+2
.

5.3.3 Drawbacks of StE and EtE

StE and EtE transformations consider that the underlying scheme uses only one key.
This can be inconvenient because it limits the use of the transformations to those
TES where there is only a single key. TES with this feature are the minority of the
all known TES.

For example, one can imagine that if we apply StE transformation to LRW then
it will be KDM secure. The problem is that LRW uses two keys and it is not clear
which key is going to be swapped with the hidden point. A natural choice could be
to pick the key of the underlying block cipher to be swapped. We show that if we do
so the scheme remains KDM insecure.

Recall from Section 5.2.1 the LRW construction when instantiated with hK2(T ) =
TK2, where T,K2 ∈ GF (2n).

ẼK1,K2(T,M) = EK1(M ⊕ hK2(T ))⊕ hK2(T ).

If we apply StE to LRW we obtain the following scheme F

FK1,K2(T,M)

H ← ẼK1,K2(γ, α)

if M = K1 then Y ← ẼK1,K2(T,H)

else if M = H then Y ← ẼK1,K2(T,K1)

else Y ← ẼK1,K2(T,M)
return Y

Then F is not KDM-secure with respect to the function g(K1, K2) = K2. We use
the same attack presented in Section 5.2.1. The adversary queries KDFn(0, g) (i.e,
tweak value 0 and plaintext K2) and also Fn(1, 0) (i.e, tweak value 1 and plaintext
0), thus getting

c1 = FK1,K2(0, K2) = EK1(K2) and c2 = FK1,K2(1, 0) = EK1(K2)⊕K2.

Next the adversary computes K2 = c1⊕ c2 and then verify this value by asking to
decrypt the value of c1 ⊕ 2K2 with respect to the tweak value 2.

In case of EtE it is not easy to see an attack when we apply this transformation
to a TES which uses more than one key. The latter is due to the ECB layer added by
EtE. Despite this fact, we must remark that the design of EtE and its security proof
consider that the underlying TES uses only one key.

In the following chapter we show a transformation which solves this problem of
StE and EtE. This transformation considers that the underlying TES uses a set K of
keys.
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6. MStE: A Generic KDM Secure
TES

Few false ideas have more firmly
gripped the minds of so many
intelligent men than the one
that, if they just tried, they
could invent a cipher that no
one could break.

The Codebreakers, David Kahn

In this chapter we present a transformation that turns a SPRP-secure TES into a
KDM-secure TES. We call this transformation as Meta Swap-then-Encipher (MStE),
it receives its name because it first swaps the underlying secret keys of the TES and
then it continues with the enciphering procedure as specified by the TES.

First in Section 6.1 we show the construction of MStE, then in Section 6.2 we
present the proof of security for MStE and finally in Section 6.3 we compare MStE
with EtE and StE.

6.1 Construction of MStE

MStE is based on the work of Bellare, Cash and Keelveedhi [BCK11], particularly
in their Swap-then-Encipher (StE) transformation. MStE converts a tweakable block
cipher into another one which can securely encipher its own key.

As stated by Bellare et al. [BCK11], the idea behind StE is a suggestion of Boneh,
Halevi, Hamburg and Ostrovsky [BHHO08] to securely encrypt keys with a random-
ized encryption scheme by exchanging the key with another point. To make this work
for deterministic encryption the key is exchanged with a “hidden” point determined
by encryption of a constant under the key. A crucial idea is to use tweaks, defining
the hidden point via a tweak which is not used for anything else.

We consider a set K of underlying keys (we think of a set of keys because the
assumption that there is just a single key would seem to entail a loss of generality).
Let K = {K1, K2, . . . , Kp} be a set of keys which consists of p many different elements.
By siz(K) we denote the sum of the lengths of each element of K, such that siz(K) =
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|K1| + |K2| + . . . + |Kp|. for the scheme we assume |K1| = |K2| = · · · = |Kp| = n
where n is the block length of the block cipher.

Given a SPRP-secure TES E : K × T ×M →M, MStE first picks an arbitrary
tweak γ ∈ T and also an arbitrary point α ∈ {0, 1}siz(K). The length of α is determined
by the sum of the lengths of the underlying keys used by E. Both α and γ are
public and known to the adversary. MStE transformation turns E into another TES
F : K× T \ {γ} ×M→M whose tweak space is T \ {γ}, meaning γ is not allowed
as a tweak for F.

Encryption and decryption operations using MStE are described in Fig. 6.1. In
Fig. 6.1 the sets λ and K have the same number of elements and siz(λ) = siz(K).

EncryptionTK(P1, . . . , Pm)
1. λ1||λ2|| . . . ||λp ← EγK(α); λ = {λ1, λ2, . . . , λp}
2. for i = 1 to m,
3. if Pi = Kj for some Kj ∈ K then
4. Pi ← λj
5. else if Pi = λj for some λj ∈ λ then
6. Pi ← Kj

7. end if
8. end for

9. C1, . . . , Cm ← ETK(P1, . . . , Pm)
10. return C1, . . . , Cm

DecryptionTK(C1, . . . , Cm)
λ1||λ2|| . . . ||λp ← EγK(α); λ = {λ1, λ2, . . . , λp}
P1, . . . , Pm ← ETK

−1
(C1, . . . , Cm)

for i = 1 to m,
if Pi = Kj for some Kj ∈ K then

Pi ← λj
else if Pi = λj for some λj ∈ λ then

Pi ← Kj

end if
end for
return P1, . . . , Pm

Figure 6.1: Encryption and decryption using MStE[E], E is a TES, K is a set of keys,
T ∈ T \ {γ} the tweak, and α is a public parameter.

6.2 Security of MStE

MStE is Jm-KDM secure. The class Jm is similar to the class IDm discussed in
Section 5.3.2. First we define the class Jm.
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The class Jm: Let Jm be the class of functions which maps p many n bit keys to a
message of m blocks. Each function idP in Jm is indexed by P , where P is a vector
with m components where each component is either in {0, 1}n or in {⊥1,⊥2, . . . ,⊥p}.
Let P = (P1, P2, . . . , Pm) where either Pi ∈ {0, 1}n or Pi = ⊥j for 1 ≤ j ≤ p. Hence
idP : {0, 1}pn → {0, 1}mn maps p keys to m many n bit blocks in the following manner:

idP (K1, . . . , Kp) = (P ′1, P
′
2, . . . , P

′
m)

where

P ′i =

{
Pi if Pi ∈ {0, 1}n
Kj if Pi = ⊥j, 1 ≤ j ≤ p

The following theorem specifies the security of MStE.

Theorem 6.2.1. Fix n, σ to be positive integers. Let E be a tweakable enciphering
scheme. Let F = MStE[E] be the tweakable block cipher associated to E via the MStE
transform as defined above. Then

Adv
±p̃rp
MStE[E],Jm

(σ) ≤ 2 ·Adv
±p̃rp
E (σ) +

pσ

2n−1
, (6.1)

where p is the number of keys in the set K.

6.2.1 Proof of theorem 6.2.1

The discussion in this section is based on [BCK11]. We prove Theorem 6.2.1 by
modeling the interaction of an adversary with MStE by a sequence of games. We
bound the advantage of an adversary in distinguishing between games G0 and G1.
Game G0 describes MStE and game G1 represents a random tweak index permutation.

The advantage of an adversary in distinguishing F = MStE[E] is defined in the
following manner

Adv
±p̃rp
F,Jm (A) = Pr

[
K

$← {0, 1}n : AFK(·,·),F−1
K (·,·),KDFnFK (·,idP ) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(·,·),πππ−1(·,·),KDFnπππ(·,idP ) ⇒ 1
]
, (6.2)

where idP ∈ Jm.
Consider the games in Fig. 6.2. Games G0 and G1 accurately represent the fol-

lowing:

Pr[AG0 ] = Pr
[
K

$← {0, 1}n : AFK(·,·),F−1
K (·,·),KDFnFK (·,idP ) ⇒ 1

]
.

Pr[AG1 ] = Pr
[
πππ

$← PermT (M) : Aπππ(·,·),πππ−1(·,·),KDFnπππ(·,idP ) ⇒ 1
]
.
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Initialize // G0 , G2

001. K1||K2|| . . . ||Kp
$← {0, 1}pn

002. K = {K1, K2, . . . , Kp}
003. λ1||λ2|| . . . ||λp ← E

γ
K

(α)
004. λ = {λ1, λ2, . . . , λp}

Fn(T, P1, . . . , Pm)
101. for i = 1 to m,
102. if Pi = Kj

for some Kj ∈ K then

103. bad← true; Pi ← λj

104. else if Pi = λj
for some λj ∈ λ then

105. bad← true; Pi ← Kj

106. end if
107. end for

108. C1, . . . , Cm ← ETK(P1, . . . , Pm)
109. return C1, . . . , Cm

Fn−1(T,C1, . . . , Cm)

201. P1, . . . , Pm ← ETK
−1

(C1, . . . , Cm)
201. for i = 1 to m,
202. if Pi = Kj

for some Kj ∈ K then

203. bad← true; Pi ← λj

204. else if Pi = λj
for some λj ∈ λ then

205. bad← true; Pi ← Kj

206. end if
207. end for
209. return P1, . . . , Pm

KDFn(T, idP )
301. for i = 1 to m,
302. if Pi = ⊥j then
303. Pi ← λj
304. else if Pi = λj

for some λj ∈ λ then

305. bad← true; Pi ← Kj

306. end if
307. end for

308. C1, . . . , Cm ← ETK(P1, . . . , Pm)
309. return C1, . . . , Cm

Initialize // G1

001. K1||K2|| . . . ||Kp
$← {0, 1}pn

002. K = {K1, K2, . . . , Kp}

003. π
$← PermT (M)

004. λ1||λ2|| . . . ||λp ← π(γ, α)
005. λ = {λ1, λ2, . . . , λp}

Fn(T, P1, . . . , Pm)
101. return π(T, P1, . . . , Pm)

Fn−1(T,C1, . . . , Cm)

201. return π−1(T,C1, . . . , Cm)

KDFn(T, idP )
301. for i = 1 to m,
302. if Pi = ⊥j then
303. Pi ← λj
304. else if Pi = λj

for some λj ∈ λ then
305. Pi ← K
306. end if
307. end for
308. return π(T, P1, . . . , Pm)

Figure 6.2: Games G0, G1 and G2. In G2 the boxed entries are removed.
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Thus

Adv
±p̃rp
F,Jm (A) = Pr

[
AG0 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
=

(
Pr
[
AG2 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

])
+
(
Pr
[
AG0 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

])
≤

(
Pr
[
AG2 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

])
+ Pr[AG2 sets bad]. (6.3)

The inequality is by the fundamental lemma of game playing since G0 and G2 are
identical until bad. Game G2 does not include the boxed entries.

For bounding Eq. (6.3) we use the following Claims which we shall prove later in
Section 6.2.1.

Claim 6.2.1. There exists an adversary B1 for E such that

Pr
[
AG2 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Adv

±p̃rp
E (B1). (6.4)

From Eq. (6.3) and Claim 6.2.1 we have that

Adv
±p̃rp
F,Jm (A) ≤ Adv

±p̃rp
E (B1) + Pr[AG2 sets bad]. (6.5)

Next we bound Pr[AG2 sets bad], considering separately the probability of setting
bad1 and bad2 in game G3 of Fig. 6.3.

Pr
[
AG2 sets bad

]
≤ Pr

[
AG3 sets bad1

]
+ Pr

[
AG3 sets bad2

]
. (6.6)

For bounding Pr
[
AG3 sets bad1

]
, we observe that each element of K is chosen

uniformly at random, so

Pr
[
AG3 sets bad1

]
≤ pσ

2n
. (6.7)

For bounding Pr
[
AG3 sets bad2

]
, we use the following Claim.

Claim 6.2.2. There exists an adversary B2 for E such that

Pr
[
AG3 sets bad2

]
≤ Adv

±p̃rp
E (B2) +

pσ

2n
. (6.8)

From Eq. (6.5), Eq. (6.6), Eq. (6.7) and Claim 6.2.2 we obtain

Adv
±p̃rp
MStE[E],Jm

(σ) ≤ 2 ·Adv
±p̃rp
E (σ) +

pσ

2n−1
,

as desired. We are thus left with proving Claims 6.2.1 and 6.2.2 which we do next.
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Proofs of claims 6.2.1 and 6.2.2

Proof of Claim 6.2.1. We design an adversary B1 so that

Pr
[
AG2 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Adv

±p̃rp
E (B1).

Adversary B1 is an adversary for TES E. Assume that B1 has as its oracles O and
O−1. It runs A in the following manner. First it starts by letting λ1||λ2|| . . . ||λp ←
O(γ, α). When A makes a query (T, P ) to its Fn oracle, B1 queries its oracle O with
(T, P ) and forwards the response to A. Similarly when A makes a query (T,C) to its
Fn−1, B1 queries its O−1 oracle with (T,C) and forwards the response to A. When
A queries its KDFn oracle with (T, idP ) adversary B1 does the following:

for i = 1 to m,
if Pi = ⊥j then

Pi ← λj
end if

end for
return O(T, P1, . . . , Pm)

When A halts with output b′. B1 also halts and outputs b′. We have

Pr
[
K

$← {0, 1}n : B
EK(·,·),E−1

K (·,·)
1 ⇒ 1

]
= Pr[AG2 ⇒ 1]

Pr
[
πππ

$← PermT (M) : B
πππ(.,.),πππ−1(.,.)
1 ⇒ 1

]
= Pr[AG1 ⇒ 1].

We recall that

Adv
±p̃rp
E (B1) =

∣∣∣Pr
[
K

$← K : AEK(.,.),E−1
K (.,.) ⇒ 1

]
−Pr

[
πππ

$← PermT (M) : Aπππ(.,.),πππ−1(.,.) ⇒ 1
]∣∣∣ .

So, we obtain

Pr
[
AG2 ⇒ 1

]
− Pr

[
AG1 ⇒ 1

]
≤ Adv

±p̃rp
E (B1).

Proof of Claim 6.2.2. As in the previous proof B2 is an adversary for E. We design
adversary B2 which has oracles O and O−1. It starts by letting λ1||λ2|| . . . ||λp ←
O(γ, α) and λ = {λ1, λ2, . . . , λp}. It then runs A. When A makes a query (T, P ) to
its Fn oracle, B2 does the following:
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Initialize // G3

001.K1||K2|| . . . ||Kp
$← {0, 1}pn

002. K = {K1,K2, . . . ,Kp}
003. λ1||λ2|| . . . ||λp ← EγK(α)
004. λ = {λ1, λ2, . . . , λp}

Fn(T, P1, . . . , Pm)
101. for i = 1 to m,
102. if Pi = Kj

for some Kj ∈ K then
103. bad1 ← true
104. else if Pi = λj

for some λj ∈ λ then
105. bad2 ← true
106. end if
107. end for

108. C1, . . . , Cm ← ETK(P1, . . . , Pm)
109. return C1, . . . , Cm

Fn−1(T,C1, . . . , Cm)

201. P1, . . . , Pm ← ETK
−1

(C1, . . . , Cm)
201. for i = 1 to m,
202. if Pi = Kj

for some Kj ∈ K then
203. bad1 ← true
204. else if Pi = λj

for some λj ∈ λ then
205. bad2 ← true
206. end if
207. end for
209. return P1, . . . , Pm

KDFn(T, idP )
301. for i = 1 to m,
302. if Pi = ⊥j then
303. Pi ← λj
304. else if Pi = λj

for some λj ∈ λ then
305. bad2 ← true
306. end if
307. end for

308. C1, . . . , Cm ← ETK(P1, . . . , Pm)
309. return C1, . . . , Cm

Initialize // G4

001. π
$← PermT (M)

002. λ1||λ2|| . . . ||λp ← π(γ, α)
003. λ = {λ1, λ2, . . . , λp}

Fn(T, P1, . . . , Pm)
101. for i = 1 to m,
102. if Pi = λj

for some λj ∈ λ then
103. bad2 ← true
104. end if
105. end for
106. C1, . . . , Cm ← π(T, P1, . . . , Pm)
107. return C1, . . . , Cm

Fn−1(T,C1, . . . , Cm)
201. P1, . . . , Pm ← π−1(T,C1, . . . , Cm)
202. for i = 1 to m,
203. if Pi = λj

for some λj ∈ λ then
204. bad2 ← true
205. end if
206. end for
207. return P1, . . . , Pm

KDFn(T, idP )
301. for i = 1 to m,
302. if Pi = ⊥j then
303. Pi ← λj
204. else if Pi = λj

for some λj ∈ λ then
305. bad2 ← true
306. end if
307. end for
308. C1, . . . , Cm ← π(T, P1, . . . , Pm)
309. return C1, . . . , Cm

Figure 6.3: Games G3 and G4.
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for i = 1 to m,
if Pi = λj for some λj ∈ λ then

bad2 ← true
end if

end for
C1, . . . , Cm ← O(T, P1, . . . , Pm)
return C1, . . . , Cm

Similarly when A makes a query (T,C) to its Fn−1 oracle, B2 does the following:

P1, . . . , Pm ← O−1(T,C1, . . . , Cm)
for i = 1 to m,

if Pi = λj for some λj ∈ λ then
bad2 ← true

end if
end for
return P1, . . . , Pm

When A queries its KDFn oracle with (T, idP ), adversary B2 does the following:

for i = 1 to m,
if Pi = ⊥j then

Pi ← λj
else if Pi = λj for some λj ∈ λ then

bad2 ← true
end if

end for
C1, . . . , Cm ← O(T, P1, . . . , Pm)
return C1, . . . , Cm

When A halts with output b′, adversary B2 halts with output 1 if bad2 has value true
and 0 otherwise. Considering the games in Fig. 6.3 we have

Pr
[
K

$← {0, 1}n : B
EK(·,·),E−1

K (·,·)
2 ⇒ 1

]
= Pr[AG3 sets bad2]

Pr
[
πππ

$← PermT (M) : B
πππ(.,.),πππ−1(.,.)
2 ⇒ 1

]
= Pr[AG4 sets bad2]. (6.9)

Thus

Pr[AG3 sets bad2] = Pr[AG3 sets bad2]− Pr[AG4 sets bad2]

+ Pr[AG4 sets bad2]

≤ Adv
±p̃rp
E (B2) + Pr

[
AG4 sets bad2

]
.

For bounding Pr
[
AG4 sets bad2

]
we move to gameG5 in Fig. 6.4, where λ1, λ2, . . . , λp

are not referred to in replying to adversary oracle queries. Since γ is not in the tweak
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space of MStE[E], in game G5 λ1, λ2, . . . , λp are chosen uniformly at random. Thus
we have

Pr[AG4 sets bad2] = Pr[AG5 sets bad2]

≤ pσ

2n
. (6.10)

This completes the proof.

6.3 Comparison

In this section we compare MStE with the transformations StE and EtE, the last two
resulted of the work of Bellare et al. [BCK11]. We begin with MStE and StE. For an
easier comparison in Fig. 6.5 we show the encryption procedures of MStE and StE.

StE was proposed for narrow block tweakable block cipher where the message is
equal to one block, i.e, the message space M = {0, 1}n. MStE is proposed for wide
block tweakable block ciphers where the message is a bit string of arbitrary length, i.e,
the message space M = {0, 1}∗. We can see MStE as a generalization of StE, if the
underlying scheme uses only one key and we use the transformation for encrypting
only one block then there is no difference between MStE and StE.

In Section 5.3.3 we show that when we apply StE to LRW the resulted scheme
can remain KDM insecure. Here we show that the attack not longer holds when we
apply MStE to LRW.

Recall from Section 5.2.1 the LRW construction when instantiated with hK2(T ) =
TK2, T,K2 ∈ GF (2n).

ẼK1,K2(T,M) = EK1(M ⊕ hK2(T ))⊕ hK2(T ).

If we apply MStE to LRW we obtain the following scheme F.

F T
K1,K2

(P )
λ← Eγ

K1,K2
(α)

if P = K1 then P ← λ1

else if P = λ1 then P ← K1

else if P = K2 then P ← λ2

else if P = λ2 then P ← K2

end if
C ← ET

K1,K2
(P )

return C

The attack presented in Section 5.2.1 consisted of querying KDFn(0, g) where
g(K1, K2) = K2 and Fn(1, 0), getting

c1 = FK1,K2(0, K2) = EK1(λ2) and c2 = FK1,K2(1, 0) = EK1(K2)⊕K2.
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Initialize // G5

001. π
$← PermT (M)

002. S ← ∅

Fn(T, P1, . . . , Pm)
101. for i = 1 to m,
102. S ← S ∪ {Pi}
103. end for
104. C1, . . . , Cm ← π(T, P1, . . . , Pm)
105. return C1, . . . , Cm

Fn−1(T,C1, . . . , Cm)
201. P1, . . . , Pm ← π−1(T,C1, . . . , Cm)
202. for i = 1 to m,
203. S ← S ∪ {Pi}
204. end for
205. return P1, . . . , Pm

KDFn(T, idP )
301. for i = 1 to m,
302. if Pi 6= ⊥j then
303. S ← S ∪ {Pi}
304. end if
305. end for
306. C1, . . . , Cm ← π(T, P1, . . . , Pm)
307. return C1, . . . , Cm

Finalize
401. for i = 1 to p,

402. λi
$← {0, 1}n

403. if λi ∈ S then
404. bad2 ← true
405. end if
406. end for

Figure 6.4: Game G5.
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Encryption under MStETK(P1, . . . , Pm)
1. λ← EγK(α)
2. for i = 1 to m,
3. if Pi = Kj for some 1 ≤ j ≤ p s.t. Kj ∈ K then
4. Pi ← λj
5. else if Pi = λj for some 1 ≤ j ≤ p s.t. λj ∈ λ then
6. Pi ← Kj

7. end if
8. end for

9. C1, . . . , Cm ← ETK(P1, . . . , Pm)
10. return C1, . . . , Cm

Encryption under StETK(P )
1. H ← EγK(α)
2. if P = K then Y ← ETK(H)
3. else if P = H then Y ← ETK(K)
4. else Y ← ETK(P )
5. return Y

Figure 6.5: Encryption using MStE and StE.

From c1 and c2 is not longer possible to obtain K2. This is also true for similar
attacks, this lies in the fact that it is not possible for the adversary to obtain the
hidden points in λ.

In [BCK11], Bellare et al. proposed an Encrypt-then-Encipher (EtE) transforma-
tion for TES. The conversion results in a TES E : {0, 1}n × T × {0, 1}m → {0, 1}m,
with the restriction that m must be a multiple of n. The latter is because of the ECB
layer added at the beginning of the cipher. In MStE this is not the case, i.e., MStE
can cipher arbitrary length messages.

The addition of the ECB layer in EtE impacts the performance of the TES. While
in MStE it is sufficient to compute the λ set and then make the swap of the keys.

In both transformations, StE and EtE, it is only protected one secret key. MStE
is more general in this sense because it considers a set K of underlying secret keys.
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7. Implementation Results

We reject: kings, presidents and
voting. We believe in: rough
consensus and running code.

IETF, David D. Clark

In this chapter we show the results of implementing MStE. In Section 7.1 we give
a brief description of the basic building blocks for TES. Then in Section 7.2 we give
a description of the technology used for the implementation, Intel AES-NI. And then
in Section 7.3 we continue with the implementation of HCTR, XCB and EME2, and
the instantiation of MStE and EtE with those TES. We also show in Section 7.3.3
that MStE performs better than EtE.

7.1 Basic Building Blocks

The basic building blocks for TES are block ciphers. A TES can be instantiated
with any block cipher. For our implementations we choose the Advanced Encryption
Standard (AES) with 128 bit key. Other than the block cipher calls some TES uses
some operators on a finite field. In particular XCB and HCTR require finite field
multiplications for computation of the hash function, and EME2 requires a special
operation called xtimes. In this section we briefly describe the required finite field
operators and the way we implemented them. Also we give a brief description of the
AES block cipher.

7.1.1 Field operations

We sometimes view an n-bit string as a polynomial in GF (2n). An n-bit string
an−1 . . . a1a0 ∈ {0, 1}n corresponds to a formal polynomial A(x) = an−1 + an−2x +
. . .+ a1x

n−2 + a0x
n−1.

Because it is possible to perform well defined operations on the elements of the
field, encryption schemes often use the polynomial representation of bit strings to
scramble the input messages.

Let A(x), B(x) ∈ GF (2)[x] be elements of the field GF (2n). The common opera-
tions performed on the elements of the field are:
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Karatsuba multiplication(A,B)
1. parse A as (A1||A0) where A1, A0 are 64− bit words
2. parse B as (B1||B0) where B1, B0 are 64− bit words
3. (C1||C0)← A1B1

4. (D1||D0)← A0B0

5. (E1||E0)← (A0 ⊕A1)(B0 ⊕B1)
6. S ← C1||(C0 ⊕ C1 ⊕D1 ⊕ E1)||(D1 ⊕ C0 ⊕D0 ⊕ E0)||D0

7. return S

Figure 7.1: Karatsuba multiplication.

• Addition: The addition is performed by xoring the string representations of
A(x) and B(x).

• Multiplication: In order to perform the multiplication of two elements of
the field, we must fix an n degree irreducible polynomial. For n = 128 we
choose p(x) = 1 + x + x2 + x7 + x128 as the irreducible polynomial, so the
operation in this field is defined as A(x)B(x) = A(x)B(x) mod p(x). In our
implementation we do the multiplication using the Karatsuba technique. The
specific algorithm that we use is presented in Fig. 7.1. The algorithm in Fig. 7.1
shows that the multiplication of two 128 bit strings is obtained by computing the
multiplication of 64 bit strings. This specific partitioning is used because new
Intel machines have a dedicated instruction to perform carry less multiplication
of 64 bit strings. The result S produced by the algorithm in Fig. 7.1 can
be 256 bit long, hence we need to reduce it with the irreducible polynomial.
The reduction is performed using a method proposed by Gueron and Kounavis
in [GK10]. The particularity of this reduction technique is that it uses just
shifts and xor operations. The algorithm is presented in Fig. 7.2.

• xtimes: The operation xtimes is the multiplication of an element of the field
times the polynomial representation in the field of the integer 2. Which will
always have order 2n − 1 in the multiplicative group of GF (2n), meaning that
2, 22, 23, . . . , 22n−1 are all distinct. In Fig. 7.3 is given an easy way to compute
this operation. In our implementations we use 128 bit SSE registers where
performing a 1 bit shift is not possible. Hence we use the algorithm shown in
Fig. 7.4 to achieve this.

7.1.2 Advanced encryption standard

The Advanced Encryption Standard (AES) is a specification for the encryption of
electronic data adopted by the U.S. government in 2001. AES is a symmetric block
cipher used worldwide and thus a key ingredient in the implementations of many
cryptographic systems.
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Fast Reduction modulo p(x)(A)
1. parse A as (A3||A2||A1||A0) where A3, A2, A1, A0 are 64− bit words
2. X0 ← A3 >> 63
3. X1 ← A3 >> 62
4. X2 ← A3 >> 57
5. X3 ← A2 ⊕X0 ⊕X1 ⊕X2

6. (B1||B0)← (A3||X3) << 1
7. (C1||C0)← (A3||X3) << 2
8. (D1||D0)← (A3||X3) << 7
9. (E1||E0)← (A3 ⊕B1 ⊕ C1 ⊕D1)||(X3 ⊕B0 ⊕ C0 ⊕D0)
10. S ← (A1 ⊕ E1)||(A0 ⊕ E0)
11. return S

Figure 7.2: Reduction modulo p(x) = 1 + x+ x2 + x7 + x128.

xtimes(A)
1. b← msb(A)
2. A← A << 1
3. if b = 1
4. A← A⊕ 0x87
5. return A

Figure 7.3: The xtimes operation.

xtimes(A)
1. parse A as (A3||A2||A1||A0) where A3, A2, A1, A0 are 32-bit words, and

Ai = ai,31ai,30 . . . ai,0
2. R← a3,31||a2,31||a1,31||a3,31 where a means a repeated 32 times.

(R can be obtained from A by the instruction PSRAD)
3. S ← a1,31||a1,31||a1,31||a3,31

(S can be obtained from R by using PSHUFD instruction)
4. S ← S ∧ (0x00||0x01||0x00||0x87)
5. S ← S ⊕ [(A3||A2) << 1||(A1||A0) << 1]
6. return S

Figure 7.4: The xtimes operation with 128 bit registers.
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AES algorithm is based on the substitution-permutation design and it can process
data blocks of 128 bits using cipher keys of length of 128, 192 and 256 bits. AES is
described in FIPS-197 [FIP01].

AES operates on a 4 × 4 matrix of bytes (128 bits) termed the state. For the
cipher procedure, AES uses a round function that is composed of four different trans-
formations or functions:

• SubBytes: A non-linear substitution function where each byte is replaced with
another according to a lookup table.

• ShiftRows: A transposition function where the i-th row of the state is shifted
left circular by i− 1 bytes.

• MixColumns: A mixing function which operates on the columns of the state,
combining the four bytes in each column.

• AddRoundKey: Each byte of the state is combined with the round key using
bitwise xor.

The key size used in AES specifies the numbers of transformation rounds will be
applied. The number of rounds are as follows.

• For the 128 bits key length 10 rounds are applied.

• For the 192 bits key length 12 rounds are applied.

• For the 256 bits key length 14 rounds are applied.

Depending of the key length AES algorithm is referred as AES-128, AES-192 and
AES 256. AES uses a KeyExpansion routine to generate a series of round keys from
the cipher key.

A high level description of the cipher procedure using AES-128 is shown in Fig. 7.5.
The cipher transformations can be inverted and then implemented in reverse order

to produce a straight forward inverse cipher for AES. The following functions are
defined in case of inverse cipher.

• InvMixColumns. Inverse of MixColumns.

• InvShiftRows. Inverse of ShiftRows.

• InvSubBytes. Inverse of SubBytes.

However, due to properties of the functions SubBytes, ShiftRows and MixColumns in
the AES algorithm; it is possible to have an Equivalent Inverse Cipher which offers
a more efficient structure than the straightforward inverse cipher. The Equivalent
Inverse Cipher is defined by reversing the order of the InvSubBytes and InvShiftRows
transformations, and by reversing the order of the AddRoundKey and InvMixColumns
transformations after first modifying the decryption key schedule using the InvMix-
Columns transformation. The first and last round keys of the decryption key schedule
are not modified in this manner. A high level description of the Equivalent Inverse
Cipher procedure using AES-128 is shown in Fig. 7.6.
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Cipher

1. KeyExpansion
2. AddRoundKey
3. for round = 1 to 9,
4. SubBytes
5. ShiftRows
6. MixColumns
7. AddRoundKey
8. end for
9. SubBytes
10. ShiftRows
11. AddRoundKey

Figure 7.5: Cipher procedure using AES-128.

Equivalent Inverse Cipher

1. KeyExpansion
//apply InvMixColumns to the round keys

2. for i = 1 to 9,
3. MixColumns
4. end for
5. AddRoundKey
6. for round = 1 to 9,
7. InvSubBytes
8. InvShiftRows
9. InvMixColumns
10. AddRoundKey
11. end for
12. InvSubBytes
13. InvShiftRows
14. AddRoundKey

Figure 7.6: Equivalent inverse cipher procedure using AES-128.
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7.2 Using Intel SIMD instructions

There exists a classification of computers architectures based on the number of con-
current instructions and data streams available. Most modern computers implements
the Single Instruction Multiple Data (SIMD) instruction set. Using these instruc-
tions one can perform the same operation simultaneously on a set of independent
data. This amounts to a certain type of parallelization which is called data level
parallelism.

Since 1999, Intel’s processors implement the set of instructions Streaming SIMD
Extensions (SSE) which gives the processors the capacity to perform the same op-
eration on multiple data. This was achieved by adding sixteen new registers of 128
bits. This registers can store one value of 128 bits, 2 values of 64 bits, 4 values of 32
bits, 8 values of 16 bits or 16 values of 8 bits. The instructions performed on these
registers can be seen as vectorial instructions, as these instructions are performed on
consecutive memory locations. In our implementations we use the SSE instructions
wherever possible.

7.2.1 Intel AES new instructions architecture

In the Intel Core processor family based on the 32nm micro-architecture named West-
mere, Intel introduced a set of instructions for the computation of the AES algorithm.

The AES-NI instruction set [Gue10] is comprised of six new instructions that
perform several parts of the AES algorithm. These instructions can be executed using
significantly less clock cycles than a software solution. Four of the new instructions
are for accelerating the encryption/decryption of a round and two new instructions
are for round key generation. Decryption using AES-NI instructions is done via the
Equivalent Inverse Cipher of the AES algorithm. The following is a description of the
new instructions.

• AESENC: This instruction performs a single round of encryption. The in-
struction combines the four transformations of the AES algorithm (ShiftRows,
SubBytes, MixColumns and AddRoundKey) into a single instruction.

• AESENCLAST: Instruction for the last round of encryption. Combines the
ShiftRows, SubBytes and AddRoundKey transformations into one instruction.

• AESDEC: Instruction for a single round of decryption. This combines the
four transformations of AES (InvShiftRows, InvSubBytes, InvMixColumns and
AddRoundKey) into a single instruction.

• AESDECLAST: Performs last round of decryption. It combines InvShiftRows,
InvSubBytes and AddRoundKey into one instruction.

• AESKEYGENASSIST: It is used for generating the round keys used for en-
cryption.
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• AESMIC: It is used for converting the encryption round keys to a form usable
for decryption using the Equivalent Inverse Cipher.

Beyond improving performance, the AES instructions provide important security
benefits. These instructions are resistant to side channel leakages. More over, using
these instructions code sizes are drastically reduced.

PCLMULQDQ. The seventh instruction of AES-NI is called PCLMULQDQ. This
instruction performs a carry free multiplication of two 64 bit integers, which can be
used for efficient implementation of multipliers in GF (2n). We use this instruction to
multiply in GF (2128) with the help of the Karatsuba algorithm (described in Fig. 7.1)
and the reduction technique (described in Fig. 7.2).

7.3 Implementation

We implemented XCB, HCTR and EME2 for message length of 4096 bytes and tweak
length of 128 bits. We implemented for message length of 4096 because this is the
size of a sector for the currently available hard disks.

For all the implementations we use AES-128 as the underlying block cipher, and
the finite field operations are in the field GF (2128). Implementations were developed
in C using the Intel Intrinsics. Where ever possible we used the SSE instructions to
achieve parallelization and also we use the AES-NI for AES and PCLMULQDQ for
multiplication in the field.

Gueron [Gue09] shown that it is possible to increase the performance for encryp-
tion using the AES instructions by re-ordering the code. This is because the hardware
that supports the four AES round instructions is pipelined. This allows independent
AES instructions to be dispatched theoretically every 1-2 CPU clock cycles, if data
can be provided sufficiently fast. As a result, the AES throughput can be signifi-
cantly enhanced for parallel modes of operation, if the order of the loop is reversed:
instead of completing the encryption of one data block and then continuing to the
subsequent block, it is preferable to write software sequences that compute one AES
round on multiple blocks, using one round key, and only then continue to computing
the subsequent round on for multiple blocks (using another round key). This turns
out to be very convenient when we use the AES block cipher in parallel modes of
operation as the CTR mode in case of XCB and HCTR, or the ECB mode in case
of EME2. For such optimization it is necessary to choose the number of blocks that
will be processed in parallel. We process 4 blocks in parallel, in order to achieve high
throughput.

7.3.1 System information

The constructions were implemented on a computer with the following specifications:

• CPU: Intel Core i5-661 @ 3.33 GHz, 4M Cache (2 cores, 4 logical threads)
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#define BENCHMARK(x) \

for(i = 0; i < WARMUP; i++){ \

x \

} \

start_cycles = get_cycles(); \

for(i = 0; i < BENCH; i++){ \

x \

} \

end_cycles = get_cycles(); \

total = (double)(end_cycles - start_cycles)/BENCH;

Figure 7.7: Basic benchmark procedure.

• Memory: 4GB DDR3

• Operating System: GNU/Linux Fedora release 16

• Compilers: GCC 4.6.2 and ICC 12.0.1

For icc compiler we use the following compiling options -xSSE4.2 -finline-functions

-fast. In case of gcc we use -finline-functions -maes -msse4 -mpclmul -O3.

7.3.2 Testing methodology

A benchmark procedure for performance evaluation was developed in [Tre12]. We
use the same procedure, its skeleton is shown in Fig. 7.7. Where x represents the set
of instructions used for the implementation of a specific scheme. To obtain the cycle
counts for a specific set of instructions it is important to reduce the cache effects, the
effects of transition from memory to data cache and memory to instruction cache. The
first loop in Fig. 7.7 handles these cache effects using a technique known as “cache
warming”. Warming up the cache requires passing through the entire data set which
is going to be used, so that it will be moved into the cache. Warming the instruction
cache requires a first pass through all instructions before the timing begins. After the
warm up, the cycle counts are computed as an average over 1,000,000 runs of the set
of instructions.

In [Tre12] it is also shown the code used to obtain the number of cycles, We used
the same code, and it is shown in Fig. 7.8.

7.3.3 Results

The results presented are an average over 1,000,000 calls to the encryption procedure.
We present the performance comparison of the various modes in cycles per bytes (cpb).
The number of CPU cycles needed to encrypt a message is divided by the length of
the message to derive the cost per byte to encrypt messages of that length.
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static __inline uint64_t get_cycles(void){

uint64_t tmp;

__asm__ volatile(

"rdtsc\n\t\

mov %%eax,(%0)\n\t\

mov %%edx,4(%0)"::"rm"(&tmp):"eax","edx");

return tmp;

}

Figure 7.8: Code used to measure time.

gcc icc
(cpb) (cpb)

HCTR 8.27 7.97
XCBv2 9.71 9.25
EME2 6.92 5.08

Table 7.1: Encryption implementation results in cycles per byte, for a message of 4096 bytes
and a tweak of 128 bits.

Performance results of the implementations of HCTR, XCBv2 and EME2 are
shown in Table 7.1. We did not implement XCBv1 because of its close similarity with
XCBv2. For all the implementation we consider the computation of the AES key
expansion.

As we saw in Section 5.3.2, in page 62, EtE was proposed to secure TES when
encrypting their own key at a cost of adding a layer of encryption. EtE requires that
the underlying block cipher be secure when encrypting its own key, which adds some
extra operations. In the proposal of EtE [BCK11], XEX a tweakable block cipher
which uses AES at the bottom was used as the underlying block cipher.

For the sake of comparison we did not implement the full specification of EtE.
Instead we implemented EtE*1 which adds a layer of ECB encryption using AES as
the underlying block cipher. In this sense EtE* has a better performance of that of
EtE. The latter is also reported in the original description of EtE [BCK11]. Table 7.2
reports the performance of EtE* when instantiated with HCTR, XCBv2 and EME2.

EtE assumes that the TES which will be secured only use one key. However TES
we are considering use more than one key. In the implementations we consider h
as the key for HCTR and XCBv2, and K for EME2. These keys are also used to
construct the message that will be encrypted using EtE*.

We also implemented MStE, our proposal to secure TES when encrypting their
own set of keys. Results are shown in Table 7.3. For HCTR we considered two
keys. For XCBv2 we considered four keys (although in the specification of XCBv2 is

1The name EtE* was not given by its proposers. We use this nomenclature to separate the
difference with EtE.
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gcc icc
(cpb) (cpb)

EtE*[HCTR] 9.44 9.06
EtE*[XCBv2] 11.29 10.63
EtE*[EME2] 8.13 6.44

Table 7.2: Encryption implementation results when instantiated EtE* with HCTR, XCBv2
and EME2.

No. keys
gcc icc

(cpb) (cpb)
MStE[HCTR] 2 8.93 8.45
MStE[XCBv2] 4 10.90 10.19
MStE[EME2] 3 7.46 5.68

Table 7.3: Encryption implementation results when instantiated MStE with HCTR, XCBv2
and EME2.

considered as an input only one key XCBv2 actually uses four keys, see Fig. 3.3) and
for EME2 we considered three keys. For the implementations we considered messages
of 4096 bytes where each block of 128 bits equals one of the keys of the respective
TES.

Table 7.4 shows the comparison between MStE and EtE*. Shaded cells show
the least overhead when instantiated either MStE or EtE*. In the experiments we
obtained that MStE has a better performance than EtE in all the TES we considered.

As we can see from the results, the percentage the instance of MStE is slower
compared with the implementation of the TES depends on the number of keys the
TES use. We can see that the overhead of XCB for MStE is maximum, this is because
XCB has four keys.

MStE EtE*
gcc icc gcc icc

cpb % cpb % cpb % cpb %
HCTR 0.66 7.98 0.48 6.02 1.17 14.14 1.09 13.67
XCB 1.19 12.25 0.94 10.16 1.58 16.27 1.38 14.91
EME2 0.54 7.80 0.60 11.81 1.21 17.48 1.36 26.77

Table 7.4: Overhead involved in MStE and EtE* transformations.
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8. Conclusions and Future Work

I hope we’ll be able to solve
these problems before we leave.

Paul Erdős

In this chapter we present our conclusions and summarize the contributions. At
the end of the chapter we list some related topics of interest which were not considered
in this work.

8.1 Conclusions and Summary of Contributions

In this thesis we considered two different problems related to security of TES.

Security of XCB: We carefully analyzed the two versions of the TES named XCB.
The result of our analysis were the following:

1. XCBv2 as specified in [MF07] is not secure as a TES. We found an easy dis-
tinguishing attack on XCBv2. The attack works because of a faulty padding
scheme, and there seems to be no easy way to fix this problem. However, if the
inputs to XCBv2 are such that their lengths are multiples of the block length of
the block cipher, then our attack does not work, and for this restricted message
space XCBv2 is secure.

2. Even for the restricted message space, XCBv2 (possibly) does not have the
security bound as claimed in [MF07]. This is due to the fact that the proof
of the security theorem in [MF07] is wrong. The error stems from a faulty
calculation of collision probabilities in the incr function. We point out the
mistake by showing concrete examples where that the bound on the collision
probabilities in the incr function as given in [MF07] are violated. We use heavily
some combinatorial techniques and results presented in [IOM12] for constructing
these examples.

3. We provide a corrected security bound for XCBv2 in the restricted message
space scenario. Also we provide a detailed proof which demonstrate why the
bound is correct. Our bound is worse than that claimed in [MF07].
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4. XCBv1 does not suffer from the weaknesses as in XCBv2. The distinguishing
attack which we present for XCBv2 does not work for XCBv1. XCBv1 (as
specified in [MF04]) is a secure TES. There was no proof of the fact that XCBv1
is secure. We for the first time provide a proof of security for XCBv1 along with
a concrete security bound.

5. XCBv2 was derived as a small modification of XCBv1. The authors said that the
modifications were made to enable easy analysis [MF07]. Though it is not very
clear to us, how these modifications help in the analysis. Our analysis reveals
that any modification in an existing cryptographic scheme should be done with
utmost care, even an innocent looking change may have a grave impact on the
security of the scheme.

6. XCBv2 is a part of the standard IEEE Std 1619.2-2010. Our analysis puts into
serious doubts the methodology adopted by the working group for formulating
the standard. We are surprised that an international standardization committee
for a cryptographic scheme overlooked some important security issues, which
were not so difficult to detect. Thus, our analysis on XCB also says that out-
comes of standards should also be critically analyzed before deploying them in
a real application.

KDM security of TES: KDM security of TES is not well studied, we add on to
the scant literature in the following ways:

1. We point out KDM insecurity in two concrete schemes HCTR and XCB. Prior to
our work no specific attacks were known on existing TES in the KDM sense. We
think that our attacks can be extended to other schemes which uses polynomial
hashes.

2. There exists a transform EtE [BCK11], which converts a SPRP secure TES to
a KDM secure TES. We point out some deficiencies in the construction. In
particular, EtE can only be applied to those schemes which have a single key.
Most TES reported in the literature uses multiple keys, hence EtE cannot be
suitably applied in such cases.

3. We propose a new transformation MStE which converts a SPRP secure TES
to a KDM secure TES. MStE does not suffer from the limitation of EtE. i.e.,
it can work for schemes which uses multiple keys. We also formally prove the
security of MStE.

4. Finally, we implement MStE for some existing TES. In our implementation we
use the special instruction set extensions of Intel for implementing AES and
finite field multiplication. Also we use the SIMD instructions in our implemen-
tations wherever possible. We implement EtE also using the same paradigm,
and compare the running times for EtE and MStE. Our experimental results
suggest that MStE is faster than EtE.
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8.2 Future Work

We mention some of the issues and problems that we did not consider in this thesis,
but can be of immediate interest.

1. We showed new security bounds for both XCBv1 and XCBv2. But we are not
sure whether these bounds are tight. One way to be sure about the tightness
of the bounds is to search for some matching attacks for the schemes, i.e., to
construct adversaries which would achieve the upper bound. We tried to think
in this direction, but as of now we do not have any idea how such adversaries
can be constructed for XCBv1 or XCBv2.

2. There are some secure TES, where there are no known attacks in the KDM
sense. One such example is EME2. It would be an interesting project to prove
that EME2 is secure (or insecure) in the KDM sense.

3. MStE is a generic scheme, and it works for all TES. Such a generic scheme
is always interesting from a theoretical viewpoint. But in most cases, generic
schemes are not efficient enough. KDM insecurity of TES should be analyzed
on a case to case basis. Such an analysis may help to point out specific reasons
for KDM insecurity for different TES and then fixes can also be designed on a
case to case basis. It is expected that such particular fixes can be obtained with
minor changes to the original construction and thus would be more efficient.

4. MStE has a restriction that it only works for schemes where the length of the
key(s) is same as the block length of the block cipher. For example MStE cannot
be used with say EME2 with AES-192 as the underlying block cipher. It would
be nice to overcome this limitation. But again, it may need a scheme completely
different from MStE to achieve this. We plan to explore in this direction.
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A. Properties of the Hash Function
in XCBv2

In this section we prove the properties of the hash function which were included in
the changes made to XCBv2.

Proof of Theorem 4.1.1. From the definition of H

Hh(T, P ) =T1h
p+m+1 ⊕ T2h

p+m ⊕ . . .⊕ pad (Tp)h
m+2

⊕ P1h
m+1 ⊕ P2h

m ⊕ . . .⊕ pad(Pm)h2

⊕ (binn
2
(|T |)||binn

2
(|P |))h

Hh(T
′, P ′) =T ′1h

p+m+1 ⊕ T ′2hp+m ⊕ . . .⊕ pad
(
T ′p
)
hm+2

⊕ P ′1hm+1 ⊕ P ′2hm ⊕ . . .⊕ pad(P ′m)h2

⊕ (binn
2
(|T |)||binn

2
(|P |))h

Hh(T, P )⊕Hh(T
′, P ′) =(T1 ⊕ T ′1)hp+m+1 ⊕ (T2 ⊕ T ′2)hp+m ⊕ . . .

⊕ pad
(
Tp ⊕ T ′p

)
hm+2 ⊕ (P1 ⊕ P ′1)hm+1 ⊕ (P2 ⊕ P ′2)hm ⊕ . . .

⊕ pad(Pm ⊕ P ′m)h2 ⊕ (binn
2
(|T |)||binn

2
(|P |))h

⊕ (binn
2
(|T ′|)||binn

2
(|P ′|))h,

as |T | = |T ′| and |P | = |P ′|

Hh(T, P )⊕Hh(T
′, P ′) = Hh(T ⊕ T ′, P ⊕ P ′)⊕ (binn

2
(|T |)||binn

2
(|P |))h

In the proof of Theorem 4.1.2 it is implicit that the padding must be computed
before the hash function. For proving Theorem 4.1.2 we need to show that

CC = MM ⊕Hh(Z,EKc(inc
0(S))|| . . . ||drop(EKc(inc

m−2(S))))h,

where Z = (T ||0n)⊕ (0n||T ).
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Proof of Theorem 4.1.2. From Algorithm 3.3

MM = S ⊕Hh(T ||0n, C1|| . . . ||pad(Cm−1)||(binn
2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|)))

and
S = CC ⊕Hh(0

n||T, P1|| . . . ||pad(Pm−1)||0n).

Then using Theorem 4.1.1

MM = CC⊕ Hh((T ||0n)⊕ (0n||T ), C1 ⊕ P1|| . . . ||pad(Cm−1 ⊕ Pm−1)

||(binn
2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|)))

⊕ (binn
2
(|T ||0n|)||binn

2
(|P1|| . . . ||Pm−1||0n|))h.

Recall that Ci is obtained from EKc(inc
i−1(S))⊕ Pi. Thus

MM = CC⊕ Hh((T ||0n)⊕ (0n||T ), EKc(inc
0(S))|| . . . ||drop(EKc(inc

m−2(S))

||(binn
2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|)))

⊕ (binn
2
(|T ||0n|)||binn

2
(|P1|| . . . ||Pm−1||0n|))h.

The last two terms of the above hash function would be

(binn
2
(|T ||0n|)||binn

2
(|C1|| . . . ||Cm−1|))h2 ⊕ (binn

2
(|T ||0n|)||binn

2
(|P1|| . . . ||Pm−1||0n|))h.

Then

MM = CC ⊕Hh((T ||0n)⊕ (0n||T ), EKc(inc
0(S))|| . . . ||drop(EKc(inc

m−2(S))))h.

This is why we need the padding be computed before the hash function, otherwise
the terms would not cancel.
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