CENTRO DE INVESTIGACION Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACION

Studies on Disk Encryption
A dissertation submitted by
Cuauhtemoc Mancillas Lépez
For the degree of

Doctor of Computer Science

Advisor:
Dr. Debrup Chakraborty

México, D.F. March, 2013

CENTRO DE INVESTIGACION Y DE ESTUDIOS
AVANZADOS DEL INSTITUTO POLITECNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACION

Esstudios sobre Cifradores de Disco
Tesis que presenta
Cuauhtemoc Mancillas Lépez
para obtener el grado de

Doctor en Ciencias de la Computacién

Director de tesis:
Dr. Debrup Chakraborty

México, D.F. March, 2013

Abstract

Security of data stored in bulk storage devices like hard disks, flash memories, CDs and
DVDs has gained a lot of importance in the current days. The importance of this topic is
reflected in recent standardizing activities and a variety of cryptographic schemes proposed
in the last decade as a solution to this problem. In this thesis we address several issues related
to the problem of encryption of stored data. Our main focus is on block oriented storage
medias like hard disks and flash memories. In the following paragraphs we summarize the
different problems that we address in this thesis along with our contributions.

There has been a consensus among researchers that a class of cryptographic algorithms
called tweakable enciphering schemes (TES) can be used in the application of encrypting
hard disks. In the last decade there have been many different proposals of TES each using
different philosophies of construction. As a first contribution of this thesis we provide the
first experimental performance data for (almost) all existing TES. The reported performance
data is based on optimized implementations of the schemes on several families of reconfig-
urable hardware. While working towards efficient implementations of existing schemes we
encountered some very interesting algorithmic and combinatorial problems. We present
solutions to these problems also in this thesis, and they can be of a more broad interest.

We also propose some new schemes suitable for the problem. Among others, we propose a
new TES called STES (Small TES) which is designed using a different philosophy compared
to the other existing TES. The design goal of STES is to make it suitable for encrypting
storage provided in devices which are constrained in terms of power consumption and area.
STES uses cryptographic primitives which when implemented would have a very low hard-
ware and power footprint in a novel way. We formally prove that STES provides adequate
security for the application and also provide performance data in two classes of FPGAs
which are suitable for low-power implementations. The performance of STES both in terms
of throughput per area and power consumption is very encouraging.

In real life, all computations run in some physical device. When a physical device performs
some computation it always emit or leak certain information. This leakage can be in the
form of timing information, electromagnetic radiation, power consumption information or

even sound. In the case of cryptographic computations, these leakages if measured properly
can be used to gain important information regarding secret quantities handled by the compu-
tational process. Analyzing cryptographic implementations in the light of these leakages is
collectively called side channel analysis. We provide some preliminary side channel analysis
on some TES. To our knowledge no such analysis has been done before on TES.

TES are length preserving schemes, in the sense that the length of the cipher text produced
by a TES is same as that of the plain text. This property of length preservation has been
considered very important for an encryption scheme to be suitable for encrypting hard disks.
In this thesis we contest this well established notion, and argue why it may be possible to
use encryption schemes which are not length preserving. We argue about this taking in
consideration the structure of modern day hard disk. Finally we propose a new scheme
called BRW-Counter mode (BCTR) which is not length preserving but provides the same
security of that of a TES. We also present an optimal hardware architecture for BCTR and
show that BCTR would outperform all other TES in terms of throughput.

Finally, we address the problem of securing backups by use of a new cryptographic scheme.
We propose a cryptographic primitive which we call as the double cipher text mode (DCM)
and discuss the general syntax and security definition of a DCM. We provide two efficient
constructions of DCM which we name as DCMG and DCM-BRW. We argue why DCM
would be suitable for the application of secure backup.

Resumen

En estos dias, la seguridad de la informacion contenida en dispositivos de almacenamiento
masivo como discos duros, memorias flash, CDs y DVDs ha ganado mucha importancia.
Dicha importancia se refleja en las recientes actividades de estandarizacion y la gran variedad
de esquemas criptograficos propuestos para dar soluciéon a este problema. En esta tesis
tratamos varios temas relacionados con este problema. Nuestro principal interés esté en los
medios de almacenamiento tales como discos duros y memorias flash que estan organizados en
sectores. En los proximos parrafos se resumen los diferentes problemas que fueron abordados
a lo largo de esta tesis.

Hay un consenso entre los investigadores de que una clase de algoritmos criptograficos cono-
cidos en inglés como Teakable Enciphering Schemes (TES), pueden ser usados para cifrar
discos duros. Como primera contribucién de esta tesis presentamos el primer reporte con
evidencia experimental acerca de la eficiencia para casi todos los TES existentes. Dicho
reporte estd basado en implementaciones optimizadas en diversas familias de dispositivos
de hardware reconfigurable. Mientras desarrollabamos las implementaciones encontramos
algunos problemas algoritmicos y combinatorios muy interesantes. Presentamos soluciones
a dichos problemas, que pueden ser de un interés mas amplio en otros contextros.

Asi mismo proponemos algunos esquemas novedosos que resultan ser adecuados para la
resolucion de este problema. Entre otros, proponemos un nuevo TES llamado STES (por
sus siglas en inglés provenientes de Small TES) el cual comparado con los TES existentes
fue disenado con una filosofia diferente. El objetivo de disefio de STES es de hacerlo apto
para cifrar medios de almacenamiento disponibles en dispositivos restringidos en términos
de area y consumo de potencia. STES esta construido con primitivas criptograficas que al
ser implementadas ocupan pocos recursos de hardware y consumen poca potencia. Ademaés
demostramos formalmente que STES provee la seguridad necesaria para la aplicacién de
cifrado de disco y también presentamos datos acerca del rendimiento usando dos familias
diferentes de FPGAs que son apropiados para implementaciones orientadas al bajo consumo
de potencia. El rendimiento de STES en términos de tasa de procesamiento de datos y
consumo de potencia es muy alentador.

En la vida real todos los algoritmos se ejecutan en algiin dispositivo fisico. Cuando un dispos-
itivo fisico realiza algiin calculo, siempre se produce la fuga de cierta informacién. Dicha fuga
puede ser en forma de informacién acerca del tiempo, radiacién electromagnética, informa-
cién del consumo de potencia e incluso ondas actsticas. En el caso de calculos criptograficos
cuando estas fugas de informacion son medidas apropiadamente pueden ser utilizadas para
obtener informacion muy sensible acerca de los parametros secretos manejados por el proceso
de céHmputo. El andlisis de las implementaciones criptograficas analizando la informaciAsn
fugada es llamado side channel analysis. FEn esta tesis presentamos ataques de este tipo
contra algunos TES existentes, de nuestro conocimiento, no se ha realizado antes este tipo
de analisis contra los TES.

Los TES son esquemas que preservan la longitud, ya que el tamano del texto cifrado pro-
ducido por ellos es exactamente el mismo que el tamano del texto plano. Esta propiedad
ha sido considerada como muy importante para que un esquema criptografico sea adecuado
para cifrar discos duros. En esta tesis, impugnamos esta nocién bien establecida, y argumen-
tamos el porqué puede ser posible utilizar algoritmos de cifrado de disco que no preservan
la longitud. Argumentamos esto tomando en consideracién la estructura fisica de los discos
duros modernos. Finalmente proponemos un nuevo esquema llamado BRW-Counter mode
(BCTR) que no preserva la longitud pero provee la misma seguridad que un TES. También
presentamos una arquitectura de hardware para BCTR y mostramos que mejora a los TES
en términos de tasa de procesamiento de datos.

Finalmente, tratamos el problema de respaldo seguro de informacién utilizando un nuevo
esquema criptografico. Proponemos una primitiva criptografica la cual llamamos doble texto
cifrado (DCM por sus siglas en inglés) y discutimos su sintaxis y definicién de seguridad.
Damos dos construcciones eficientes de DCM las cuales llamamos DCMG y DCM-BRW.
Argumentamos porqué DCM es conveniente para la aplicaciéon de respaldo seguro de infor-
macion.

Acknowledgments

This work was done under the supervision of Dr. Debrup Chakraborty. I want to acknowl-
edge his dedication and patience towards this project and the valuable friendship that he
extended to me during the course of this work. He showed me the way to do research.

[would like to thank Dr. Francisco Rodriguez Henriquez for his valuable collaboration in
the works related to hardware implementations. We had had many enlightening discussions
during the course of this work which helped me a lot to understand intricate issues of
hardware design.

[want to give a special thanks to Prof. Palash Sarkar of Indian Statistical Institute, Kolkata,
India, for receiving me as a visitor in the Cryptology Research Group (CRG). The discussions
with him have been very interesting and productive. Also an important part of the work
reported in this thesis have been done in collaboration with him. Also I would like to thank
the students and professors for their hospitality during my research visit.

I want to thank Dr. Gerardo Vega Hernandez, Dr. César Torres Huitzil and Dr. Guillermo
Morales Luna who were part of the committee of my pre-doctoral examination. Critical
comments and some subtle observations made by them during my pre-doctoral examination
helped a lot.

I would like to thank Jérémie Detrey for the very valuable discussions about digital design
and also for the good conversations about politics.

Dr. Luis Gerardo de la Fraga, Dr. Guillermo Morales Luna, Dr. Francisco Rodriguez
Henriquez, Dr. Gerardo Vega Hernandez and Dr. Rail Monroy Borja were part of my thesis
defence committee. I would like to thank them all for the time they spent in reading my
thesis and their suggestions.

I thank my family Yaucalli, Yollolxochitl, Baudelio, Eugenia and Ahuitz for their uncondi-
tional love and support.

I will always remember the time that I lived among great friends and companions at the
CINVESTAV: Saul Zapotecas, William de la Cruz, Ivonne Avila, Alejandro Garcia, Edgar
Ventura, Luis Julian Dominguez, Sandra Diaz, Lil Maria, Arturo Yee, Eduardo Vazquez,
Alfredo Arias, Anallely Olivares. And to all the professors, administrative staff and students
at Computer Science Department of CINVESTAV who in one way or another helped me in
my research.

A very special thanks to Elizabhet Cruz, that showed me that life is better and that one can
be truly happy.

I acknowledge the support from CONACyT project 166763 and the CONACyT scholarship
along these four years.

Contents

1 Introduction
1.1 The Disk Encryption Problem
1.2 Scope of the thesis

2 Preliminaries

2.1 General Notation
2.2 Fields
2.3 Block Ciphers
2.4 Pseudorandom Functions and Permutations
2.4.1 Pseudorandom Functionso
2.4.2 Pseudorandom Permutation
2.5 Block Cipher Mode of Operation
2.5.1 Privacy Only Modes
2.5.2 Authenticated Encryption L.
2.6 Game Based Security Proofs oo
2.6.1 An Example
2.7 SUMMAry

3 Reconfigurable Hardware
3.1 Reconfigurable Computing: A Brief History
3.2 Field Programmable Gates Arrays

10 Contents
3.2.1 Logic Elements 48

3.2.2 Interconnection Resources 49

3.3 Xilinx Spartan 3 FPGAs 53
3.3.1 Configurable Logic Blocks 54

3.3.2 Interconnection Resources 95

3.4 Xilinx Virtex 5 FPGAs 58
3.4.1 Configurable Logic Blocks 59

3.5 Lattice ICE40 FPGAs 62
3.5.1 Programmable Logic Block 63

3.6 Basics of FPGA Programming 64
3.6.1 Hardware Description Languages 65

3.6.2 Design Flow 67

3.7 Summary ... 69

4 Tweakable Enciphering Schemes 71
4.1 Tweakable Block Ciphers L 71
4.2 Tweakable Enciphering Schemes: Definitions and Security Notions 73

4.3 A Brief History of the Known Constructions of Tweakable Enciphering Schemes 75

4.4 Tweakable Enciphering Schemes and Disk Encryption 76
4.5 Description of some TES oo 7

4.5.1 Hash-Counter-Hash 7

4.5.2 Encrypt-Mask-Encrypto 79

4.5.3 Hash-Encrypt-Hash o oo 81
4.6 Activities of IEEE SISWG o 83
4.7 Final Remarkso 84
Baseline Hardware Implementations of TES 85
5.1 Design Decisions oo 86
5.2 Implementation of Basic Blocks 87

5.2.1 The AES Design 88

Contents 11

6

5.2.2 The Design of the Multiplier 89
5.3 The Design Overviews 91
5.4 TImplementation Aspects 97
5.5 TImplementation of HCH 100
5.6 Results 104
5.6.1 Main Building Blocks o0 104
5.6.2 Performance Comparison of the Six TES Modes 105
5.7 Discussions 107
Efficient Implementations of BRW Polynomials 111
6.1 BRW Polynomials 113
6.2 A Tree Based Analysis 114
6.3 Scheduling of Multiplications 119
6.3.1 Some examples on algorithm Schedule 122
6.4 Optimal Scheduling 123
6.5 The Issue of Extra Storageo L. 127
6.5.1 Determining the number of intermediate storage locations required
by Schedule 129
6.6 A Hardware Architecture for the Efficient Evaluation of BRW Polynomials . 129
6.6.1 The Multiplier 130
6.6.2 Hardware Architecture to Evaluate BRW Polynomials 131
6.6.3 Scalabilityo 135
6.7 Summary and Discussions 136
TES constructions based on BRW Polynomials 139
7.1 The Schemes 139
7.2 Analysis of the Schemes and Design Decisions 140
7.3 Analysis of the schemes 143
7.4 Architecture of HMCH[BRW| 144

741 The AES 144

12

Contents

742 Designof HMCH

7.4.3 HEH[Poly] and HMCH|Poly| Using Pipelined Multipliers

7.5 Experimental Results 0oL
7.5.1 Comparison with implementations in Chapter 5

7.6 Final Remarks

8 STES: A New TES Amenable to Low Area/Power
Implementation

8.1 Some Technical Preliminaries
8.1.1 Stream Ciphers with IV
8.1.2 Multilinear Universal Hash

8.2 Construction of STES
8.2.1 Some Characteristics of the Construction

8.3 Security of STES
8.3.1 Proof of Theorem 8.1
8.3.2 Collision Analysis

8.4 Hardware Implementation of STES
8.4.1 Basic Design Decisions
8.4.2 Implementation of Universal Hash
8.4.3 Implementation of stream ciphers
8.4.4 Implementation of STES
8.4.5 Data Flow and Timing Analysis

8.5 Experimental Results
8.5.1 Primitives
8.5.2 Experimental results on STES
8.5.3 Comparison with Block Cipher Based Constructions

8.5.4 DisScussions,

9 Side Channel Attacks on Some TES

9.1 Adversaries with Access to Side Channel Information

Contents 13
9.2 Side Channel Weakness in the ztimes operation 191
9.3 The Attack on EME 193

9.3.1 The Distinguishing Attack 194
9.3.2 The Stronger Attack 194
9.4 EME2 Mode of Operation, 198
9.5 A Distinguishing Attack on EME2 200
9.6 Final Remarks 201
10 A New Model for Disk Encryption 203
10.1 Deterministic Authenticated Encryption Schemes 204
10.1.1 Security of DAEs 205
10.2 In Support of Tagged Mode for disk Encryption 207
10.2.1 Which Encryption Scheme? 0L 207
10.2.2 Gains and Loses in using DAE for disk encryption. 209
10.3 BCTR: A new DAE suitable for disk encryption 210
10.4 Security of BCTR 212
10.5 Hardware Implementation 214
10.5.1 Proposed Architecture 214
10.5.2 Timing Analysis 215
10.5.3 Results 217
10.6 Deferred Proofs 218
10.7 Final Remarkso 224

11 A Proposal for Secure Backup 225

11.1 The Double Ciphertext Mode 227
11.1.1 Secure Backup Through DCM 227
11.1.2 Security of DCM 229
11.1.3 Discussions on the Adversarial Restrictions 230

11.2 DCMG: A generic construction of DCM 231

11.2.1 Characteristics of the construction

14 Contents

11.2.2 Security of DCMGo 234

11.3 Constructing a DCM Using BRW Polynomials 236
11.3.1 The Construction 236

11.3.2 Comparisons 237

11.3.3 Security of DCM-BRW 240

11.4 Proofs 240
11.5 Remarks o 250
12 Conclusions and Future Work 251
12.1 Conclusions and Summary of Contributions 251

12.2 Future Work 254

Contents

15

Notation

i
{0, 1}

{0, 13"
L]

A||B

al A
L <<k
L>>k
Lk
A =1

Adv¥(A)
bin,, (¢)

bits(7, 4, j)
Ex()
0
(M)

Ej¢
it
Fq
Func(m,n)
GF(q)
Isb(L)
msb(L
Perm(n)
Perm” (n)
Pr((

SCk
ztimes(A)

Undefined value.

The set of all binary strings.

The set of n-bit binary strings.

If L is a string |L| denotes its length, if A is a set then |A| denotes
its cardinality.

Concatenation of the string A and B.

a is an element drawn uniformly at random from the set A.
Left-shift of L by k bits.

Right-shift of L by k bits.

Left-circular rotation of L by k bits.

An adversary A, interacts with the oracle 07, and finally outputs
the bit 1.

Advantage of the adversary A in breaking F' in the sense U.

n bit binary representation of an integer ¢, where 0 < ¢ < 2" — 1.
A substring of 7 between bits i and j.

Block cipher with key K.

Tweakable block cipher, with key K and tweak T

Tweakable enciphering scheme.

A finite field with ¢ elements.

The set of all functions mapping from m bits to n bits.

A finite field with ¢ elements.

The least significant bit of L.

The most significant bit of L.

The set of all permutations from {0,1}" to {0, 1}".

The set of all tweak indexed permutations from {0,1}" to {0, 1}".
The probability of the event (.

Stream Cipher with key K.

Polynomial A(z) multiplied by the monomial z modulo an irre-
ducible polynomial.

16 Contents

Abbreviations
AE Authenticated Encryption.
AEAD Authenticated Encryption with Associated Data.
AES Advanced Encryption Standard.
ASIC Application Specific Integrated Circuit.
AXU Almost Xor Universal.
AU Almost Universal.
BRW Bernstein-Rabin-Winograd polynomials.
CLB Configurable Logic Block.
DAE Deterministic Authenticated Encryption.
FPGA Field Programmable Gate Array.
HDL Hardware Description Language.
v Initialization Vector.
LUT Lookup Table.
MAC Message Authentication Code.
MLUH Multilinear Universal Hash Function.
PD Pseudo dot product.
PRF Pseudorandom Funtion.
PRP Pseudorandom Permutation.
SCA Side Channel Analysis.
SPRP Strong Pseudorandom Permutation.
TBC Tweakable Block Cipher.
TES Tweakable Enciphering Scheme.
VHDL Very High Speed Integrated Circuits Hardware Description Lan-
guage.

VLSI Very Large Scale Integration.

Chapter

Introduction

The basic cﬁiﬂcmnce between an ordinar
man and a warrior is that a warrior takes
everyfhing as a cha“@nge, while an ord,inary
man takes w@ryﬂting as a bf@ssing or as a

curse.

1)071 guan /\/Lafus

These days we manage a lot of information and some of it is kept in storage devices such
as hard disks, flash memories, DVDs, CDs, etc. Independently of whether the data is for
personal use or corporate use, always there is sensitive information which we need to protect
against possible unauthorized accesses and modifications. In several ways an unwanted
person can gain access to our sensitive information. For example, it has been estimated that
the laptop loss rates are around 2% per year [54], which signifies that an organization with
100,000 laptops, may lose on average several of them per day. A stolen laptop amounts to
the loss of the hardware and the data stored in it. But, what is of more severe consequence
is that sensitive information gets into the hands of an unwanted person who can potentially
cause much greater damage than the one incurred by the mere physical loss of the hardware
and the data. A possible countermeasure of this important problem is to encrypt the data
being written in the hard disk or other kinds of storage media. Securing stored data has
received a lot of attention in the current days. In this thesis we study various aspects of this
problem, we would be particularly interested in securing information stored in hard disks
and flash memories. In this Chapter we provide an informal introduction to the problem of
disk encryption and later in Section 1.2 we provide a brief summary of the rest of the thesis.

1.1 The Disk Encryption Problem

To protect unauthorized access to stored information in hard disks one can apply encryption
to the stored data. Although there exist numerous encryption schemes meant for varied

18 Chapter 1. Introduction

scenarios, this special application brings with it specific design problems which cannot be
readily solved by traditional encryption schemes.

It has been argued that the best solution to this issue would be a hardware based scheme,
where the encryption algorithm resides in the disk controller, which has access to the disk
sectors but has no knowledge about the high-level logical partitions of the disk, such as files
and directories, which are maintained by the operating system. Under this scenario, the disk
controller encrypts the data before it writes a sector, and similarly after reading a sector, the
disk controller decrypts it before sending it to the operating system. This type of encryption
has been termed in the literature as low level disk encryption or in-place disk encryption, see
Figure 1.1.

The enc/dec
algorithms reside i
the disk controller

physical
storage

Figure 1.1: Disk Encryption Problem

A symmetric key cryptosystem with certain specific properties can serve as a solution to the
low level disk encryption problem. One particularly important property to achieve is length
preserving encryption, i.e., the length of the ciphertext should not be more than that of the
plaintext. This implies that the ciphertext itself must be enough to decrypt the enclosed
data, since there is no scope to store associated data like states, nonces, salts or initial-
ization vectors, which are common parameters in numerous symmetric key cryptosystems.
Furthermore, the schemes to be selected must be secure against adaptive chosen plaintext
and adaptive chosen ciphertext adversaries. Such schemes are generally called CCA secure
schemes (secure against chosen cipher text attacks). Achieving CCA security means that no
adversary can be able to distinguish the ciphertexts from random strings, and additionally
the attacker must not be able to modify the ciphertext so that it gets decrypted to something
meaningful.

The properties which we described above are all provided by a class of encryption schemes
called Tweakable Enciphering Schemes (TES). TES are length preserving, their security
model is a strong pseudorandom permutation indexed by a tweak. The tweak is an extra
public parameter that increases the variability of the cipertext, i.e., if two different plaintext
are encrypted using the same key but the tweaks are different the resulting ciphertexts will

1.2. Scope of the thesis 19

be different. Other important property of TES is that if any part of the ciphertext is changed
the plaintext obtained after decryption looks like random strings.

There have been a vigourous activity in designing tweakable enciphering schemes in the last
decade. To date there are more than ten different proposals for such schemes, additionally
there is an active standardization effort by the IEEE working group on security in storage
(SISWG) [2] which has been working for the past few years to formulating standards for
encryption algorithms suitable for various storage medias.

This thesis is largely devoted to the study of tweakable enciphering schemes. We study
various aspects of TES including their implementations, security in various situations and
their usability in various environments. We summarize the main contributions and the
contents of the rest of the thesis in the next section.

1.2 Scope of the thesis

This thesis aims to study various aspects of the problem of disk encryption. The thesis is
divided into twelve chapters and in each chapter we address some problem related to disk
encryption. Next we provide a brief summary of each chapter and discuss the important
contributions that are reported in each chapter.

Chapters 2 to 4 do not contain any new material they are supposed to provide the background
information necessary to appreciate the contributions that we present in the later chapters.

In Chapter 2 we describe some mathematical preliminaries. We begin with a brief exposi-
tion of fields with a focus on binary extension fields. Field operations are extensively used
in rest of the thesis. We then briefly discuss the syntax and use of a block-cipher which is
probably the most used symmetric key cryptographic primitive. We define the mathemat-
ical concepts of a pseudorandom function and permutation and describe how these objects
are used to define security of block ciphers. Finally, we give quite a detailed account of
the structure of reductionist security proofs which are used throughout the thesis to prove
security of proposed schemes. We also give a detailed example of a security proof to explain
the various techniques involved in it.

A big part of the thesis deals with efficient implementations of disk encryption schemes in
reconfigurable hardware of various families. We give a brief introduction to reconfigurable
computing in Chapter 3. In Chapter 3 we start with a brief history of reconfigurable
computing and then in the subsequent sections we describe the basic resources of a field
programable gate array (FPGA). We also give a detailed description of three FPGA families
namely Xilinx Spartan 3, Xilinx Virtex 5 and Lattice ICE40. These families of FPGAs have
been extensively used for prototypical implementations in this study. Finally, we describe
some issues involved in FPGA programming.

20 Chapter 1. Introduction

In Chapter 4 we discuss tweakable enciphering schemes. As stated earlier till now TESs are
considered to be the most suitable option for the application of disk encryption. In Chapter 4
we discuss the syntax and security definitions of TES and also give algorithmic descriptions
of some existing TES. This Chapter also contains discussions regarding the suitability of
TES for disk encryption and a detailed account of the activities IEEE Security in Storage
Working Group. For the past few years this working group has been working for formulating
standards for various aspects of storage encryption. The original contributions of this thesis
begins from Chapter 5.

We mentioned earlier that currently there are around ten different proposals for TES, but
before we started working on this problem there were no implementations reported in the
open literature. Thus, we were the first to report optimized hardware implementations
of (almost) all existing TES in different hardware platforms. In Chapter 5 we report the
baseline hardware performance of six TES. The designs presented in Chapter 5 are optimized
for Virtex 4 FPGAs but we also present place and route performance data for other FPGA
families. The designs are for 512-byte sector size , but they are scalable and the throughput
rates would be sustained if the designs are upgraded to support sector sizes of 4096 bytes.
The performance data of the TES in Chapter 5 indicates that they can be used in disk
controllers which have a data rate close to 3 Gbits/sec. The contents of this Chapter is
based on the paper [97].

Some of the schemes presented in Chapter 5 are constructed using polynomial hashes. In a
paper published in 2009 [125] it was noted that if a normal polynomial hash is replaced by a
special polynomial called Bernstein Rabin Winograd (BRW) polynomial then one can design
more efficient TES. In Chapter 6 we study the problem of designing an efficient circuit for
computing BRW polynomials. This goal led us to do an in-depth study of the structure of
BRW polynomials to find opportunities for exploiting parallelism. This study led us to some
very interesting combinatorial results involving the structure of BRW polynomials. In Chap-
ter 5 we provide a complete characterization of parallelism which is achievable for computing
BRW polynomials. In addition we present an algorithm which decides the order in which
different multiplications are to be performed given a certain level of allowed parallelism. We
show that the order of multiplication given by our algorithm is the optimal one (for cases
where the optimal is achievable). Furthermore, using these combinatorial properties of BRW
polynomials we design an efficient circuit to compute them.

Chapter 7 is devoted to the construction of hardware for the TESs reported in [125] which
uses BRW polynomials. The results obtained in the implementations in this Chapter are
far better than the ones reported in Chapter 5. For some designs we obtain throughput
greater than 10 Gbits per second, and this throughput is far above the data rate of any
commercially available disk controller till date. The contents of Chapters 6 and 7 are based
on the paper [27].

In Chapter 8 we focus on a different application of storage encryption. Now-a-days there

1.2. Scope of the thesis 21

are variety of small and mobile devices which provide a non-negligible amount of storage, for
example, mobile phones, tablets, cameras etc. The security of stored information in these
devices is more important than those in desktops/laptops, as the possibility that an user
loses this small device is far more than the loss of a laptop. These devices are all battery
powered and are thus constrained in terms of power utilization and also size. Moreover the
storage in these devices is provided through non-volatile flash memories. A class of flash
memories called NAND type memories have a similar block wise organization as in hard
disks. Thus the schemes which can be used to encrypt hard disks can also be applied here,
but two important considerations are the constrained environment in which these devices
work and the data rates in flash memories are far less than what is provided by modern disk
controllers. These considerations dictates that the constructions and architectures developed
in Chapters 5 and 7 are not suitable for these devices. Hence, in Chapter 8 we propose a
new TES which is very different from the existing ones, we call this new construction STES.
STES uses stream ciphers, the motivation of developing a TES using stream cipher is the
fact that there are many recent proposals of stream ciphers which can be implemented
with a very low hardware and power footprint and yet provide reasonable performance in
terms of speed. We discuss the details of STES and its philosophy of construction and also
formally prove that STES is a secure TES. Finally, we provide implementations of STES
with various instantiations of stream ciphers. Also we implement STES using various data-
paths to achieve a wide range of throughput. All these implementations provide a very good
time/area tradeoff and the range of speed, area and power consumption characteristics of
these implementations would be able to provide encryption functionality in a wide range of
commercially available non-volatile memory devices.

In Chapter 9 we give a brief discussion of side channel attacks against cryptographic imple-
mentations and explore side channel vulnerabilities in two TES schemes EME and EME-2.
Our analysis suggests that both EME and EME-2 are insecure if an adversary has access
to some side channel information. The study in this chapter is purely theoretical in nature,
we are yet to obtain experimental results which would show the extent of security weakness
that these modes have in a real implementation. The contents of this chapter have been
previously published in [96].

In Chapter 10 we investigate an established belief that only length preserving encryption
schemes can be applied for encrypting block oriented storage devices like hard disks. The
main argument which nurtures this belief is that hard disk sectors are of fixed length and
thus cannot accommodate expansions in the ciphertext. Though it is true that hard disk
sectors provide a fixed amount of space for user data, sectors are physically larger than the
amount of user data it can store, and it stores many more information other than the user
data for its proper functioning. This extra space in a sector is known as the format overhead
of a disk. Though the amount of format overhead in various commercially available hard
disks is a trade secret, it is estimated that in the modern disk the format overhead is around
15% of the user data. Our analysis reveals that the requirement of the length preserving

22 Chapter 1. Introduction

property may not be that important for disk encryption as disk sectors may be suitably
formatted to accommodate ciphertext expansion. In this Chapter we also propose that an
existing model of encryption called deterministic authenticated encryption (DAE) can be
suitably used for disk encryption. We argue that DAE would be a much efficient alternative
than TES, and DAESs can be suitably used to provide all security and usability characteristics
required for disk encryption. Finally we propose a new DAE scheme called BCTR which is
tailored to the application of disk encryption. We prove that BCTR is a secure DAE and
build a hardware circuit for BCTR which is far more efficient in terms of speed compared
to other implementations reported in this thesis.

In Chapter 11 we study a different problem related to storage encryption. We explore the
possibility of how one can maintain secure backups of the data, such that loss of a physical
device will mean neither loss of the data nor the fact that the data gets revealed to the
adversary. We propose an efficient solution to this problem through a new cryptographic
scheme which we call as the double ciphertext mode (DCM). In this Chapter we describe
the syntax of DCM, define security for it and give some efficient constructions. Moreover we
argue regarding the suitability of DCM for the secure backup application. The contents of
this Chapter is based on the paper [26].

In Chapter 12 we conclude the thesis and discuss some feasible future directions of research
related to the topic presented in this thesis.

Chapter

Preliminaries

The yevolution is not an apple that falls
when it is ri)o@‘ you have to make it fau.

Eynesto Guevara el Che

In this Chapter we introduce some important concepts necessary to follow this thesis. First
of all we give some general notation and then describe the concepts of finite fields, block
ciphers, pseudorandom functions and permutations. These mathematical objects are central
to the thesis. We also give brief descriptions about block cipher modes of operation and an
overview of the technique of game playing used to construct reductionist security proofs.

2.1 General Notation

We denote the set of all binary strings by {0, 1}* and the set of all n bit strings by {0, 1}".
If A, B € {0, 1}, then by A||B we mean concatenation of the strings A and B. By L << k
we shall mean left-shift of L by k bits; and L >> k will mean the right-shift of L by k bits.
takei (L) will mean the k most significant bits of L. msb(L) and Isb(L) will mean the most
significant and the least significant bits of L respectively. bits(L, i, 7) will mean a substring
of L from bit i to bit j. If b is a bit, then b will mean the complement of b. For a positive
integer ¢ < 2" by bin, (¢) we shall mean the n bit binary representation of ¢. If L € {0,1}*,
|L| will denote the length of L and when A is a set, |A| will denote the cardinality of A.

a & A will mean that a is an element drawn uniformly at random from the set A. For easy
reference a list of notation is provided in the beginning of the thesis.

2.2 Fields

We sometimes see bit strings as elements of a field and apply field operations on bit strings.
Here we discuss some relevant and elementary properties of fields which we shall require.

24 Chapter 2. Preliminaries

The discussion here is far from comprehensive, we refer the reader to relevant texts for a
comprehensive treatment [68,91].

Field: A field F = (S,+,-) is a set S, together with two binary operations + and - on S
satisfying the following axioms,

For any elements a,b,c € S:

(1) (a+b)+c=a+ (b+c). (Associativity of addition)

(it) a+b=>b+a. (Commutativity of addition)

(¢4) there exists 0 € S such that (Existence of additive identity)
a+0=a.

(tv) for every a € S there exists (—a) € S (Existence of additive inverse)
such that a + (—a) = 0.

(v) (a-b)-c=a-(b-c). (Associativity of multiplication)

(vi) a-(b+c¢)=a-b+a-cand (Distributivity)
(b+c)-a=b-a+c-a.

(vii) there exists 1 € S such that (Existence of multiplicative identity)

l-a=a-1=a.
(viii) a-b=10-a. (Commutativity of multiplication)
(1tz) for every nonzero a € S, there exists (Existence of multiplicative inverse)
a~! € S such that a- (a™') = 1.

Some examples of fields are the sets of rational, real and complex numbers with the usual
operations of addition and multiplications defined for those sets. If [F is a field we will also
use F to denote the set of elements in the field, i.e., for us F = (F, +, -).

A vector space can be defined over any field by the same properties that are used to define
a vector space over reals. Any vector space has a basis and the number of elements in its
basis is called its dimension. Let IF, IL be fields defined on the same binary operators and
let F C L, then [F is called the sub-field of L and L is said to be an extension of IF. Thus
an extension field L of F is a bigger field containing [F, and is automatically a vector space
over F. We call L to be a finite extension of F if L is a finite dimensional vector space. By
degree of a finite extension we mean the dimension of L over F. A common way to obtain
extension fields is to adjoin an element to F, i.e., we say we obtain F(«) by adjoining « to [F
where F(«) consists of all rational expressions that can be formed using o and elements of
F. It is easy to see that F(«) forms an extension of F.

We define a polynomial over a field F as a formal expression
q(z) = a2 + ... + asx® + a17 + ay, (2.1)

where a,, ..., as,a1,a9 € F. One can add and multiply polynomials over a field in the same

2.2. Fields 25

way as polynomials over reals, the operations over the coefficients are the operations in .
The set of all polynomials over a field I is denoted by F[X]. F[X] is a commutative ring with
identity (i.e., it follows all the field axioms except the existence of multiplicative inverse),
and is called the polynomial ring of F. The degree of a polynomial is the largest power of x
which occurs in the polynomial with a non zero coefficient. For example, if a,, # 0 then the
degree of ¢(x) (in Eq. 2.1) is n. A degree d polynomial is called monic if the coefficient of
2% is 1. So, if a, = 1 then ¢(z) is a monic polynomial of degree n.

For f, g € F[X], we say that f divides g if there exist h € F[X] such that g = fh. f € F[X]
is said to be irreducible if f is not divisible by any other polynomial in F[X] of lower degree
except constants. The irreducible polynomials plays the same role in polynomials as primes
play in the set of integers. The ring F[X| has the unique factorization property, i.e., a monic
polynomial in F[X] can be written in one and only one way (except for the order of the
factors) as a product of monic irreducible polynomials.

An element « in some extension L of F is called algebraic over [if it satisfies some polynomial
in F[X]. If « is algebraic over F then there exists an unique monic irreducible polynomial
in F[X] with « as the root (and any other polynomial which is satisfied by a must be
divisible by this monic irreducible polynomial). If this monic irreducible polynomial has
degree d then any element in F(a) can be expressed as linear combinations of the powers
of a, ie, 1,02, ..., a% . Thus {1,a,a?,...,a% !} forms a basis of the vector space F(a)
over I, thus the degree of extension of F(«) is same as the degree of the monic irreducible
polynomial.

If by adding the multiplicative identity 1 to itself in ' never gives zero, then we say that
F has characteristric zero. If otherwise, i.e., if F has a non-zero characteristic, then there
always exist a prime number p such that 1 +14...4 1 (p times) equals zero, and p is called
the characteristic of F. If F is a field of characteristic p then F always contains a copy of the
field Z, (the integers modulo p) in it.

Finite fields: A finite field is a field with finite number of elements. Let F, denote a field
with ¢ elements. Clearly a finite field cannot have a zero characteristic, so let p (a prime)
be the characteristic of F,. Thus, I, contains the prime field F, = Z, and thus, [, is a
finite dimensional vector space over Z,. Let f be the dimension of I, thus every element
of F, can be represented uniquely by a tuple of f elements in Z, and also each f tuple of
elements in Z, represents an unique element in [F,. Thus the number of elements in I, is
g = p/. Which shows that the number of elements in a finite field is always a power of a
prime. Additionally one can show that for every prime p and every positive integer f there
exists a unique field (up to isomorphisms) with p/ elements. A finite field is often called a
Galois field and a field with p/ elements is denoted as GF(p/).

It is clear from the field axioms that the set of non zero elements in F, forms a group under
multiplication. This group is denoted Fy. This group F} is cyclic and thus have a generator,
such a generator is sometimes called as a primitive element of the field.

26 Chapter 2. Preliminaries

Given a prime field F, = Z,, one can easily construct an extension field F,», as follows. Let
g(z) be a primitive irreducible polynomial of degree n in F,[X].! Let a be a root of g (surely
a ¢ IF, as g is irreducible). As discussed, F,(«) is an n degree extension of F,, i.e., it is a
vector space of dimension n over IF,, and has p" elements, thus F,(a) = Fyn.

The elements of F,» = F,(a) can be represented as linear combination of {1, o, @2, o®, ...,

a1} thus Fy» can be considered to be the set of all polynomials of degree less than n over
[F,. Note that we can represent the elements in this field even without knowing the specific
value of a, i.e., any polynomial f(z) with coefficients in F, and degree less than n represents
an element in F,». The addition in the field is defined as ordinary polynomial addition.
Multiplication is also defined as ordinary polynomial multiplication, but it is to be noted
that g(z) = 0. Thus, if a(z),b(x) € Fyn, then we define a(x) - b(z) = a(z) - b(z) mod g(z).

Binary Extension Fields and String Representations: The field F; = GF(2) has {0, 1}
as its elements hence it receives the name of binary field, the addition operation in this field
is simply an bit-xor operation and multiplication is a bit-and operation. Fon = GF(2") is
an extension field of the field GF(2) formed using an irreducible polynomial g(x) of degree
n in Fo[X, this field is called a binary extension field. The elements in Fyn can be viewed as
polynomials (with binary coefficients) of degree at most n — 1. In turn such polynomials can
be viewed as n bit strings. For example the set of all 8 bit strings can be viewed as the field
Fs. Like, the polynomial 27 + 2% + 2 + 2% + 1 corresponds to the binary string 10101101 or
in more general way as an hexadecimal number 155.

Quite often we shall consider the set {0,1}" as the binary extension field Fo.. Thus, if
A, B €{0,1}", we can consider A, B as bit strings of length n or as polynomials A(x), B(x)
of degree less than n and with binary coefficients. The addition of elements A, B € {0,1}" is
defined as A @ B, where the operation @& denotes the bit wise xor of the strings. For defining
multiplication of strings A and B we consider them as polynomials A(x), B(z) and define
AB = A(z) - B(xz) mod ¢(z) where ¢(z) is an irreducible polynomial of degree n.

If g is a n degree polynomial in Fy[X] such that its root @ € Fan is a primitive element of
Fon, then o, o2, ..., o™ ! are all distinct and o generates [So, given a non zero element
A € Fon, all Aa, Aa?, ..., Aa™! would also be distinct. This property would find many
applications in the schemes that we discuss. Thus if we consider A € {0,1}", we should be
interested in the quantity A which is computed as x A(x), i.e., the product of the polynomial
A(z) with the monomial z modulo the irreducible polynomial ¢(z) representing the field Fon.
This operation would be called ztimes and can be very efficiently realized by a bit shift and
a conditional xor.

Isuch a polynomial always exist for every n and p, and there exist efficient algorithms to find them.

2.3. Block Ciphers 27

2.3 Block Ciphers

Consider a message space M, a cipher space C and a key space I, then a block cipher can
be viewed as a function E : M x K — M, where M = C = {0,1}" and K = {0,1}*. So a
block cipher takes an n-bit input and produce an n-bit output under the action of a k-bit
key, the values of n and k varies for different block ciphers. For any K € K and P € M we
will denote a block cipher by Fi(P) instead of F(K, P). It is a requirement that for any
K € K, Ek(-) must be a permutation, i.e., the function Ex : {0,1}" — {0, 1} must be a
bijection. If Ff is a bijection then for every cipher text C' € {0, 1}", there exists only one
message P € {0,1}" such that C' = Ex(P). Ek(-) has an inverse function denoted as ' (+)
or Dk(-) such that P = Dy (Eg(P)).

In practice Ek(-) and Dg(-) are publicly known functions which are easy to compute, the
key is secret which is in general drawn uniformly at random from the key space K. Modern
block ciphers in general are constructed using several identical transforms called rounds and
iterating them. The structure of existing block ciphers can be classified into two types:
Substitution Permutation Networks (SPNetwork) and Feistel Networks [81]. The first block
cipher standardized was Data Encryption Standard (DES) [108]. DES is based on a Feis-
tel Network. Currently the standard is Rijndael which is widely known as the Advanced
Encryption Standard (AES) which is an SPNetwork [38].

2.4 Pseudorandom Functions and Permutations

In Section 2.3 we gave a syntactic definition of block-ciphers by specifying the domain and
range of such functions. But any function with these syntactic properties cannot provide
security that is expected of a block cipher. In this section we would try to give a security
definition of a block-cipher. Such a definition is given by the help of pseudorandom ob-
jects called pseudorandom functions/ permutations. These objects form the fundamental
building blocks of symmetric key cryptography, here we give an overview of these important
cryptographic objects.

Consider the map F': K x D — R where I, D, R (commonly called keys, domain and range
respectively) are all non-empty and IC and R are finite. We view this map as representing
a family of functions F = {Fk}ker, i.e., for each K € K, Fk is a function from D to R
defined as F(X) = F(K, X). For every K € IC, we call Fx to be a instance of the family
F.

Given a function family F' where the sets keys, domain and range are not specified we shall
often write Keys(F'), Dom(F"), Range(F) to specify them.

If F: KX xD — R is a function family where D = R, and for every K € K, Fx : D — D
is a bijection, then we say that F' is a permutation family. So, if F' is a permutation

28 Chapter 2. Preliminaries

family, then for every Fi(-), we have a F'(-), such that for all K € K and all X € D,
Fi'(Fr(X) = X. Note that, as per the definition of a block cipher in Section 2.3, a block-
cipher is a permutation family.

We would be interested in probability distributions over a function family F', in particular
we would often talk of sampling an instance at random from the family. By sampling an

instance f uniformly at random from F' we would mean K & K and f = Fk(), we will
denote this by f &F.

Random Function. Let Func(D,R) be the set of all functions mapping D to R, if D =
{0,1}™ and R = {0, 1}" then Func(m,n) is the set of all functions that map from m bits
to n bits. Note, there are exactly 2"2" of these functions. i.e., |Func(m,n)| = 2"%". If D
and R are specified, then by a random function with domain D and range R we mean a
function sampled uniformly at random from Func(D,R). Hence by a random function, we
are not talking of the "randomness" of a specific function but we are talking of a function
sampled from a probability distribution (specifically, the uniform distribution) over the set
of all possible functions with a specified domain and range.

To work with random functions a more intuitive way is necessary, we will consider the
procedure RndF described in Figure 2.1 which acts as a random function F'. The procedure
RndF maintains a table 7" indexed on the domain elements across invocations. It is assumed
that initially 7'[z] is undefined for every z € Dom(F'). Whenever RndF(z) is invoked, it
checks if T[z] contains a value, if T[x] is not undefined then it returns T[z], otherwise
it returns an element sampled uniformly at random from Range(F’) and stores the value
returned in T'[x].

RndF(z)

if T'[z] is not defined then
vy & Range(F);
Tz] «+ Y;

end if;

return T[x];

Gt N =

Figure 2.1: Simulation of a random function.

The behavior of the program RndF is as a random function because each assignation Y &
Range(F’) is independent to the all others, i.e., it constructs one member of the family F' in a
random way, and if it is invoked multiple times on the same domain element then it returns
the same value. Note that the procedure RndF is not meant to be a practical realization of
a random function, as even for functions from 128 bits to 128 bits it is infeasible to maintain
the table T also the procedure does not mention the source of its randomness. The procedure

2.4. Pseudorandom Functions and Permutations 29

just helps us to see a random function in a procedural way.

Random Permutations. Let Perm(D) be the set of all bijective maps from D to D. If
D = {0,1}", then we denote by Perm(n) the set of all permutations from {0, 1}" to {0, 1}™.
Similar to a random function, we define a random permutation with domain D to be a
function chosen uniformly at random from Perm(D). To get a more intuitive feeling of a
random permutation we describe a piece of code which implements a random permutation
with domain D in Figure 2.2. The program RndP(x) shown in Figure 2.2 maintains a table
T as in the procedure RndF, additionally it maintains a set S, through the information
stored in the set S the procedure keep tracks of the values that it has already returned and
thus ensures that the map it implements is a one-to-one map. The table T is indexed with
the elements of D and initially T'[z| is undefined for every x € D. The set S is initially
empty. When RndP is invoked with an element = € D, it first checks if T[z] is undefined,
if it is so then RndP has never been invoked on z, so it selects uniformly at random an
element from D — S (the set of elements which have not yet been returned by RndP) returns
it and stores it in T'[x] and also adds the returned value in the set S. If T[z] is not undefined
then the value T[z] is returned. This way RndP keep the correctness of the permutation,
i.e., all the values stored in 7" are different.

RndP(z)

if T'[z] is not defined then
vy & Dp_s;
Tlx] + Y;
S+ SU{T[X]};

end if;

return T[x];

S otk =

Figure 2.2: Simulation of a random permutation.

2.4.1 Pseudorandom Functions

Informally a pseudorandom function (PRF) is a family of functions whose behavior is
computationally indistinguishable from a random function. Consider the function family
F:KxD — R, and let f & Fand let p & Func(D,R). If F is a PRF family then
there should be no efficient procedure to distinguish between f and p. To formalize this goal
of distinguishing between a random instance of F' and a random instance of Func(D,R),
we introduce an entity which we call as a PRF adversary. A PRF adversary is considered
to be a probabilistic algorithm whose goal is to distinguish between f and p, and if it can
successfully do so then we say that the adversary has broken the PRF property of F'. The

30 Chapter 2. Preliminaries

adversary is not provided with the description of the functions but it has an oracle access
to a function g which is either f or p and it needs to decide whether g = f. By an oracle
access we mean that for any x € D of its choice, the adversary can obtain the value g(z) by
querying the oracle of g. The adversary has the ability to query its oracle g adaptively, i.e.,
it may be that first it wishes to query its oracle on x; and thus obtain g(z), seeing g(x1) it
decides its next query x5 and so on. The adversary can query its oracle as long as it wants
and finally it outputs a bit, say it outputs a 1 if it thinks that its oracle is f (a real instance
from the family F') and a zero if it thinks its oracle is p (a random function). An adversary
A interacting with an oracle © and outputting a 1 will be denoted by A® = 1.

The PRF advantage of an adversary A in distinguishing F' from a random function is defined
as

AdvB(A) = Pr (K & 0. AP0 1] - {p & Fune(D,R): AV = 1] (22)

Hence the PRF advantage of the adversary A is computed as a difference between two
probabilities, the adversary A is required to distinguish between two situations, the first
situation is where A is given a uniformly chosen member of the family F' (i.e., A has oracle
access to the procedure Fy, where K & K) and in the other A is given oracle access to
a uniformly chosen element of Func(D,R) (i.e., A is given oracle access to the procedure
RndF). If the adversary cannot tell apart these two situations then we consider I to be a
pseudorandom family. In other words F' is considered to be pseudorandom if for all efficient
adversaries A, Advgrf(A) is small.

In this definition we use efficient adversary with small advantage. We will never make this
more precise, and this is standard with the paradigm of "concrete security" where a precise
notion of efficiency and small advantage is never specified. What makes an adversary efficient
and its advantage small is left to be interpreted with respect to a specific application where
such an object would be used. 2

2.4.2 Pseudorandom Permutation

Let £ : K x D — D be a family of functions such that for every K € I, Ex : D — D is a
bijection. Analogous to the definition of PRF advantage, we define the PRP advantage of an

2There is also a notion of asymptotic security where efficiency is equated with a polynomial time adversary
and small advantage as a negligible function, but to use such an asymptotic notion we need an asymptotic
definition of a function family such that there is a infinite sequence of domains and ranges for a given function
and they are indexed with some countable set called the security parameter. Thus based on each security
parameter we get a different family of functions and the running time of the adversary is bounded by a
polynomial in the security parameter and its advantage is bounded above by a function negligible in the
security parameter. Such a notion works well for complexity theoretic studies but seems to be insufficient in
practical purposes where we talk of families with fixed domains and ranges.

2.4. Pseudorandom Functions and Permutations 31

adversary in distinguishing a random instance of the family £ from a random permutation
T as

AdvEP(A) = Pr |K & K APKO = 1} —Pr [7? & Perm(D) : A™0 = 1] .

And, F is considered to be a pseudorandom permutation family if for all efficient adversaries
A, AdvEP(A) is small.

As every member of a permutation family has an inverse, hence in case of permutations
we can define a stronger notion of pseudorandomness. Here we assume that the adversary
is given two oracles one of the permutation and other of its inverse and the adversary
can adaptively query both oracles. As before there are two possible scenarios, in the first
scenario the adversary is provided with the oracles Fx () and Ex'() where K & K and in

the other scenario the oracles 7(),7!() are provided where 7 & Perm(D). And the goal of
the adversary is to distinguish between these two scenarios. We define the advantage of an
adversary A in distinguishing a permutation family E from a random permutation in the
+prp sense as

Adv;P"P(4) = Pr|K &K APKOELO o 1] —Pr [71' & Perm(D) : A0 10 = 1] |

and if for all efficient adversaries A, Adviprp(A) is small then we say F is a strong pseu-
dorandom permutation (SPRP) family.

Security of Block Ciphers. As defined in Section 2.3, a block cipher is a permutation
family £ : {0,1}F x {0,1}* — {0,1}". Of course any such permutation family cannot
be considered as a block cipher, as a block cipher should have some security properties
associated with it which any permutation family will not have. Defining security of a block
cipher is tricky (as is true for all cryptographic primitives), if we consider that a block cipher
Ek() is used to encrypt n bit strings then ideally given Fx(X) one should not be able to
obtain any information regarding K or X, this property can be achieved if Ex(X) "looks
random" to any computationally bounded adversary. In practice we consider a block cipher
to be secure if it behaves like a strong pseudo-random permutation.

Unfortunately for the block ciphers that are in use we are not able to prove that they are
really SPRPs. So we assume that a secure block-cipher is a SPRP, the assumption is based
on our long term inability to find an efficient algorithm which can distinguish a block cipher
from a random permutation. If such an algorithm is discovered then the block cipher would
be broken. It is worth mentioning here that one can construct PRFs, PRPs and SPRPs
based on other mathematical assumptions, in particular if we assume that one way functions
exist then we can construct PRFs, PRPs and SPRPs using one way functions [80], such
constructions though theoretically are more appealing but are much inefficient compared to
the block ciphers in use.

32 Chapter 2. Preliminaries

2.5 Block Cipher Mode of Operation

With block ciphers we can encrypt messages of fixed length same as its block length, but
in practice we need to encrypt messages which are arbitrarily long, also we need to obtain
other kinds of security services which cannot be provided by a stand alone block cipher.
Informally, a mode of operation is a specific way to use a block cipher to enable it to encrypt
arbitrary long messages and to provide specific security services, such as data confidential-
ity /privacy, authentication or a combination of both. A mode of operation can be defined
as a procedure that takes as input a key K € {0,1}*, a message P € {0,1}* of arbitrary
length and sometimes an initialization vector or nonce IV € {0, 1}", and produces a cipher-
text C' € {0,1}* as its output. During the encryption process, some modes also produce a
tag 7 € {0,1}” which can be considered as a small footprint or hash value of the plaintext
message (explained in Section 2.5.2). The notion of a tag value is useful for offering the
security service of data integrity /authentication.

There can be various modes of operations which provides different kinds of security. Roughly
the modes of operations can be classified as follows:

e Privacy only modes.

e Authenticated Encryption.

e Authenticated encryption with associated data.
e Deterministic authenticated encryption.

e Tweakable enciphering schemes.

In the subsequent sub-sections we give an overview of privacy only and authenticated en-
cryption modes of operations. Tweakable enciphering schemes form an important component
of this thesis, hence they are treated in details in Chapter 4. Deterministic authenticated
encryption schemes are described in Chapter 10.

2.5.1 Privacy Only Modes

As the name suggests these modes are supposed to give privacy. A privacy only mode consists
of three algorithms P = (I, E, D) where K is the key generation algorithm (we will abuse
this notation to denote the key space by K also). The encryption algorithm is a function
E:KxZIV x{0,1}* — {0,1}*, where K and ZV are the key space and initialization vector
(IV) space respectively and {0, 1}* is the message and cipher space. And the decryption
algorithm is D : I x ZV x {0, 1}* — {0,1}*, and for any K € K, IV € ZV and M € {0, 1}",

2.5. Block Cipher Mode of Operation 33

D(K,IV,E(K,IV,M)) = M.

These modes are considered secure if they produce ciphertexts which are indistinguishable
from random strings by an adaptive chosen plain-text adversary. ® Let A be an adversary
attacking E, then we define the privacy advantage of A as

AdvE(A) = Pr K & K APE) 1] — Pr [A%C) = 1] (2:3)

The oracle $(., .,.) returns random strings of the size same as that of the ciphertext for every
query of A. E is considered secure if for all efficient adversaries A, Advh ' (A) is small.
Depending on the mode there may be certain restrictions imposed on the adversary, as in
case of most privacy only modes, it is required that the IVs are never repeated. Hence in
such modes, the adversary A would have the restriction that it cannot make two or more
queries with the same IV. In case where repetition of IVs are not allowed, the IV is called a
nonce.

Some important modes which are secure in the above sense are Cipher Block Chaining
(CBC), Counter, Cipher Feed Back (CFB) and Output Feedback (OFB).

2.5.2 Authenticated Encryption

The security provided by privacy only modes may not be enough in certain scenarios. Recall,
for defining privacy we assumed the adversary to be an adaptive chosen plaintext adversary
whose task was to distinguish the output of the mode from random strings. Thus, if an ad-
versary sees only ciphertexts from a secure privacy only mode, he cannot determine anything
meaningful from the ciphertexts. But, if we assume that the adversary wants to tamper the
ciphertexts which goes through the public channel he can always do so. In a privacy only
mode the receiver has no way to determine whether (s)he received the ciphertext that was
originally sent by the sender. This forms a major limitation of privacy only modes.

3 Adversaries, as described before are considered as probabilistic algorithms with access to oracles. They
are generally classified as (a) Cipher text only (b)Chosen plain text (¢) Chosen plain text and chosen
cipher text (d) Adaptive chosen plain text (e) Adaptive chosen plain text and adaptive chosen cipher text.
This classification is based on the resources that the adversary is provided. As the names suggests, a
cipher text only adversary has access to the cipher text only (these adversaries are also sometimes called
as eavesdropping adversaries), whereas a chosen plain text adversary has the capability of obtaining cipher
texts of the plain texts of its choice, and analogously a chosen cipher text adversary has the capability
of obtaining decryptions of the cipher texts of its choice. The adaptive versions of the chosen plain text
and chosen cipher text adversaries has the added capability of interacting with the encryption/decryption
algorithms in an adaptive manner, for example for an adaptive chosen plain text adversary the adversary
may ask for an encryption of a plain text of its choice and then after seeing the result may decide the next
message whose encryption it wants to see etc. The adaptive adversaries are considered more stronger than
the non-adaptive ones.

34 Chapter 2. Preliminaries

To overcome this limitation we need to add some other functionality to a mode so that
the receiver of a message can verify whether (s)he had obtained the ciphertext sent by the
sender. This is obtained by a tag. A tag can be considered as a checksum of the message that
was used to generate the ciphertext. A sender after decrypting the ciphertext can always
compute the tag and match the tag which (s)he computed using the decrypted message with
the tag that she received. If the tags do not match the receiver can know that a tampering of
the ciphertext has taken place during the transit. This functionality in the symmetric setting
is called authentication and the modes which provides both privacy and authentication are
called authenticated encryption modes.

Thus an authenticated encryption mode can be seen as a collection of three algorithms
II=(K,E,D)where E : CxN x{0,1}* = {0,1}*,and D : KxN x{0,1}* — {0, 1}*U{L}.
Where K and N are the key space and nonce space respectively. Nonce is an IV which is
never repeated. The ciphertext C produced by E can be parsed as C = (C,tag). Where
tag € {0,1}" is a fixed length string which is called the authentication tag. The decryption
algorithm D on an input C produces the corresponding plaintext P or outputs L if the
computed tag does not match tag.

The security of an authenticated encryption protocol consists of two parts — privacy and
authenticity. The adversary is given access to the encryption oracle and is assumed to be
nonce respecting, i.e., it does not repeat a nonce in its queries to the oracle. Following
Rogaway [118], the privacy of a encryption scheme IT = (K, £, D) against a nonce respecting
adversary A is defined in the sense of “indistinguishability from random strings” in the
following manner:

AAVET(A) = Pr(K & K0 APEC) 5 1] — Pr{A%C) = 1,

where $(-,-) is an oracle that takes (N, M) as input and returns |M| + |tag| many random
bits as output.

For defining authenticity, we stress that no adversary should be able to create a valid cipher-
text which gets decrypted. To put this formally, we allow the adversary an oracle access to
E () and finally it is required to output a pair (NN, (C,tag)) such that (C,tag) was not a re-
sponse of its oracle for some query (N, M). If the adversary outputs such a pair (N, (C, tag))
and Dk (N, (C,tag)) # L, then we say that the adversary has committed a forgery. Formally,
we define the authenticity advantage of an adversary A as

AdvAT(4) = Pr[K & K0 APXC) forges].

For a authenticated encryption scheme II to be secure, it is required that for all efficient
adversaries A, both Advl"V(A) and AdV%Uth(A) are small.

Some secure authenticated encryption schemes are OCB [118], IAPM [79], CCM [41], EAX

2.6. Game Based Security Proofs 35

[9], GCM [99] etc.

Another class of AE schemes are called Authenticated Encryption with Associated Data
(AEAD). These schemes can be useful in certain realistic scenarios. Like if we consider
network packets, we do not want to encrypt the headers but we want to authenticate the
headers so that they cannot be tampered. Such schemes takes as input the message and an
associated data (the packet header in this case), the message is only encrypted but the tag is
produced both with the message and the header. Most AE schemes can be easily converted
into AEADs. Another related type of modes are deterministic authenticated encryption
(DAE) schemes. DAEs are treated in Chapter 10 and Chapter 11.

2.6 Game Based Security Proofs

In the setting of "provable security" we provide a security proof for a cryptographic scheme.
Proving security of a cryptographic scheme generally involves the following steps:

1. Given a scheme ¥ we first precisely define what we mean by ¥ to be secure. Such
a definition is generally given in terms of an interaction between an adversary A and
the scheme W. Example of a typical security definition is as expressed in Eq. (2.3),
where the advantage of an adversary A in breaking a privacy only mode of operation
E is provided. Further it is stated that E is secure if the advantage of any efficient
adversary as defined in Eq. (2.3) is small. Thus, a security statement is tied with a
specific event involving the interaction of the scheme and the adversary A, and the
probability that such an event occurs for all efficient A should be small.

2. The security proof consists of arguments that shows that a scheme really have the
properties specified in the security definition. In computational security it is almost
never possible to show that a scheme satisfies a security definition unconditionally. The
security definition is satisfied by a cryptographic construction based on some assump-
tions. In general a scheme is constructed using some basic primitives, for example a
mode of operation is constructed using block ciphers. The primitives used to build the
scheme are assumed to be secure in some sense, and the security of W is proved based
on this assumption. The proof technique involves a reduction which shows that if the
scheme is insecure then the primitive is also insecure. Thus a security theorem is not
an absolute statement and needs to be interpreted carefully. *

The reductionist argument used to prove security of a scheme involves computing proba-
bilities in certain probability spaces which involves randomness of the scheme and also the

“In the recent years there have been some criticisms to the paradigm of provable security and there have
been proposals that given the relative nature of a security theorem and its proof they should not be called
as security proofs but as reductionist arguments [83,84].

36 Chapter 2. Preliminaries

adversary. Such computations becomes difficult if the arguments are not well structured. A
popular way of constructing such reductions is the game playing technique or sequence of
games. We have extensively used the game playing technique to prove security of our pro-
posals. In this section we will give a brief overview of the technique including an example.
The material in this section is mostly taken from [133], but we recast it according to our
needs using our notations. The reader is referred to [133] and [8] for more detailed examples
and discussions about the technique.

In the technique of sequence of games, the interaction of the adversary with a scheme is seen
as an attack game. The attack game can be written as an algorithmic procedure involving
the adversary and its oracles. The initial game (call it Gy) is the original attack game, and
this game specifies an event Sy whose probability is to be computed, and if the probability of
Sp is near to a target value then one can conclude that the scheme is secure. But computing
Pr[Sy] may sometimes be very difficult in the original attack game Gy. So, one does small
modifications to the original game to obtain a new game Gy, further one changes G; to
obtain G etc. and thus obtain a sequence of games Gy, G1,Gs, ..., G,. Similar to the
event Sy in Gy, we can specify an event S; associated with each game G;. The sequence of
games is designed in such a manner such that for each i, one can easily bound the quantity
| Pr[S;] — Pr[S;;1]| for 0 < i < n —1 and also easily find a bound on Pr[S,]. Further using
these bounds one can find a bound on Pr[S], as Sy is the event tied with the security of the
scheme hence proving a bound on Pr[Sy| proves the security of the scheme.

To construct proofs using games it is desirable that the changes between two consecutive
games are very small so that the analysis of that change becomes very simple. There can
be various types of transitions between two consecutive games as described in [133], among
them a transition called as "transition based on failure" is very interesting and useful, we
describe such transitions in more details next.

Transitions based on failure events. In this kind of transition, the two games proceed
identically unless some failure event F' occurs. The two games should be defined on the same
probability space and the unique difference between them are the rules to compute certain
random variables. To make things concrete let us consider two consecutive games G; and
Gi,1 in the game sequence, and let S; and 5;,1 be the events of interest tied to the respective
games. Moreover, we assume that the games G; and G; 1 proceed identically unless a failure
event F' occurs, which is equivalent to saying,

Si AN F <= S;,1 N F. (2.4)

As both events S; A =F and S;; 1 A —F are the same, so we can use the following lemma to
bound | Pr[S;] — Pr[S;41]| if the condition in Eq. (2.4) is satisfied.

Lemma 2.1. [The Difference Lemma or the Fundamental Lemma of Game Playing] Let A,
B and F be events defined in some probability distribution and suppose that A N\ —F <

2.6. Game Based Security Proofs 37

B A —F. Then |Pr[A] — Pr[B]| < Pr[F].

Proof.

| Pr[A] — Pr[B]| = |Pr[AA—-F]+Pr[AAF]—Pr[BA-F|—Pr[BAF]
| Pr[A A F] — Pr[B A FJ|
= | Pr[F|(Pr[A[F] — Pr[B|F])|
< Pr[F]

It is easy to see that Eq. (2.6) follows from Eq. (2.5) by the hypothesis. Equation (2.7)
follows from Eq. (2.6) by the definition of conditional probabilities, and the final inequality
uses the fact that the absolute value of the difference of two probabilities can be at most
1. O

Thus, using the difference lemma, it sometimes becomes very simple to bound the difference
| Pr[S;] — Pr[Si;1]| whenever Pr[S; A —=F| = Pr[S;;1 A =F], we will see a specific use of this
in the example that follows.

2.6.1 An Example

We now give a concrete example of a proof using the game playing technique. Suppose
we are given a PRF family F' : K; x {0,1}* — {0,1}* and another family of functions
H : Ky x {0,1}% — {0,1}*, where ¢; > £. Also we are told that family H is e—almost
universal (e—AU), which we define next

Definition 2.1. fe—almost universal] Let H : Ko x{0,1}** — {0, 1}* be a family of functions.
H is called a e—almost universal (e—AU) family if for all w,w' € {0,1}* where w # w’,

Pr[K & ICy : Hi(w) = Hy(w')] < e. (2.9)

Using the families H and F we wish to construct a new PRF family F' : Kx {0, 1} — {0, 1}*.
We claim the following:

Let K = Ky x ICy, if F': K x {0,1} — {0, 1}" is defined as
F(,K1,K2)(X) = Fg, (HKz(X))a

then I’ is a PRF family.

This can be put more precisely as follows

38 Chapter 2. Preliminaries

Claim 2.1. Let A be an arbitrary PRF adversary attacking F' which makes at most q queries
to its oracle and runs for time t, then there exist a PRF adversary B , such that

2

AdvPa) < AdvPB) + % (2.10)

moreover B also makes q queries and runs for time O(t).

The statement of Claim 2.1 embodies a typical security statement. It would be worthwhile
to analyze a bit why the above claim is equivalent to saying that F” is a PRF if F'is a PRF
and H a e—AU. Note that the statement claims that for any arbitrary PRF adversary A for
the function F” there always exist a PRF adversary B for I’ such that their advantages are
related as in Eq. (2.10). As we assume that F' is a PRF hence the advantage of any efficient
adversary (including B) in attacking F' is bound to be small, and as € is also small hence the
bound for the advantage claimed in Eq. (2.10) indeed suggests that the advantage of any
efficient adversary (who uses reasonable number of queries and runs for a reasonable time)
would have a small advantage in breaking F”, which in turn suggests that F” is a PRF. Now
we construct a proof of the above claim using the sequence of games.

Proof of claim: We construct a PRF adversary B which runs A, the description of B is
given in Figure 2.3.

Adversary B°

1. Kk & K1;

2. While A queries z, do the following;:

2.1 Y HK2 (.%')

22 z+ 0O(y)

2.3 return z

3. Until A stops querying and returns a bit b
4. return b

Figure 2.3: The adversary B.

Note that B is a PRF adversary for the function F' and A is the same for the family F”.
Hence, B has an access to an oracle, which can be an instance of the family F' on a random
function chosen uniformly at random from Func(¢,¢). In Figure 2.3, B’s oracle is depicted
by O. B runs A in the sense that it provides answers to A’s oracle queries (this is depicted
in lines 2.1-2.3 in the description in Figure 2.3). When A finishes querying, it outputs a bit
b and B in turn outputs the same bit b. We will assume that A never repeats a query, as
it will not gain anything by repeating a query, as given either of the oracles the same query
would return the same answer. This assumption makes our description a bit simpler, but in
no way affects the generality of the result.

2.6. Game Based Security Proofs 39

If the oracle O of B is a uniform random instance of the family F' then B provides a perfect
simulation for a random instance of the family F” to A, also B outputs the same bit that A
outputs. Thus, we can say that

Pr K1 (i ’Cl . BFKl(') = 1] =Pr |:K1 (i lCl,KQ <i ICQ : AF}(I’KQ(') = 1f. (211)
Now we shall like consider the interaction of A with B with the help of a game. Assuming

that B is provided with a random instance of F', A’s interaction with B can be seen as in
the game Game0 shown in Figure 2.4.

Initialization:
K 1 g ’Cl;

K2 g ,CQ;
Respond to the s query w® of A as follows:

1. d® «+ Hg,(w®);
2. 1% Fg, (d°);
3. return r?;

Figure 2.4: Game GameO.

It is straight forward to see that

PI'[Kl — ’Cl,KQ — Ko AF}(I’KQ(.) =].] = Pr[AG’ameO =].], (212)
and using Eq. (2.11) we have

Pr (K & Ky Bf© = 1] = PrlA%eme = 1), (2.13)

Now we make a change in Game0, by substituting the function F, (), with a truly random
function, and we name the changed game as Gamel which is shown in Figure 2.5.

In Gamel the function F'is no more used, but it is replaced with a random function. The
functionality of a random function whose domain and range is the set {0,1} is provided
by the subroutine 6(). Note that the description of ¢ is similar as the description of the
random function RndF() as shown in Figure 2.1. The subroutine §(z) maintains a flag
called bad, which is set to true if the function is called on the same input more than once
also it maintains a table T, where T'[x] stores the value returned for x. In addition to the
subroutine §(z), the description in Figure 2.5 consists of a initialization procedure (lines
101-103) and the specific procedure with which a query w® of A is responded.

40 Chapter 2. Preliminaries

Subroutine §(x)
01. v & {01},
02. if x € Dom(§) then

03. bad < true;
04. Y « T[x]|,
05. end if;

06. T[x]<+Y;
07. Dom(d) + Dom(0) U{x};
8. return Y;

Initialization:

101. Ky & K

102. Dom(d) <« 0;

103. bad < false;

Respond to the s query w® of A as:

201. d° < Hp,(w®);
202. r® <+ §(d%);
203. return r°;

Figure 2.5: Games Gamel and Game2. The full description is of Gamel, Game2 is obtained
from Gamel by removing the boxed entry in line 04.

Given the description of Game 1 and the adversary B, we conclude that
Pr |p & Func(t,0) : BPO = 1| = Pr[A%mel = 1), (2.14)

as the game Gamel provides the same environment to A as B would have provided it if the
oracle O for B was a random function.

Now, using Eq. (2.13), Eq. (2.14) and the definition of the PRF advantage for the adversary
B we obtain
| Pr[AGame0 = 1] — Pr[AGemel - 1]| = AdvErL(B). (2.15)

Now, we make a small change to Gamel to obtain a new game Game2. Gamel is transformed
to Game2 by removing the instruction inside the box in line 04 of the subroutine 6(z). With
this change, () is no more a function, as it may produce two different outputs when called
on the same input twice. The interesting point to note is that Gamel and Game2 proceeds
in the same way if the bad flag is not set, in other words if the function ¢ is only called with
distinct inputs. The setting of the bad flag can be considered as a failure event, and thus
using Lemma 2.1, we obtain

2.6. Game Based Security Proofs 41

| Pr[A%emel = 1] — Pr[AC" ™2 = 1]| < Pr[A““™ sets bad]. (2.16)

Now, we do some syntactical changes to the game Game2 to obtain a new game Game3.
The Game3 is illustrated in Figure 2.6, in this game the function J(-) is eliminated, and
it runs in three distinct phases. In the initialization phase, a random key is selected from
KCo, a multiset D is initialized to the empty set and the bad flag is set to false. The query
w® is responded with a string drawn uniformly at random from {0,1}¢. Finally there is a
finalization stage which runs in two phases, in the first phase certain values are inserted in
the multiset D and in the second phase it is checked if there is any collision between the
values in D, if a collision is found then the bad flag is set to true.

Initialization:

01. Ky & Ky

02. D+« {;

03. bad « false;

Respond to a query w*® of A as follows:

101. 7%« {0,1}%;
102. return r®;

Finalization:

First Phase:
201. for s+ 1 to g,

202. d® < Hp,(w®);
202. D+ Du{d};
203. end for;

Second Phase:
if (some value occurs more than once in D) then
bad + true;

Figure 2.6: Game Game3.

It is easy to see that Game3 is just Game2 cast in a different way, the distribution of the
responses that A obtains in Game3 is exactly the same that it would get from Game2, thus

Pr[AGame2 = 1] — Pr[AGame3 = 1]’ (217)

also
Pr[A99m°2 sets bad] = Pr[A3 sets bad|. (2.18)

Also, as we have assumed that A does not repeat any query thus Game3 provides it with

42 Chapter 2. Preliminaries

an environment which is exactly same as the environment where A interacts with a random
function with domain {0, 1} and range {0, 1}¢, thus

Pr[A%mes = 1] = Pr[p & Func(fy, 0) : A7 = 1]. (2.19)
Thus, using Eq. (2.12), Eq. (2.19) and the definition of PRF advantage of A we have

rf

| Pr[A%eme0 = 1] — Pr[A%me = 1]] = Advh (A), (2.20)
and from eqgs. (2.15), (2.16), (2.17) and Eq. (2.18) it follows
| Pr[AGame0 — 1] _ pr[ACGemed o 1]| < AdvET{(B) + PrlASemes sets bad]. (2.21)
Finally, using egs. (2.20) and (2.21), we have
AdvP(A) < AdvP(B) + PrlA%ame3 sots bad). (2.22)

To get the desired bound we now need to compute Pr[A%m3 sets bad]. To compute this
probability we need to compute the probability of collisions in the multiset D in Game3.
According to the specification of Game3, the multiset D contains the following elements:

D ={Hg,(w*):1<s<q}.

Where w?* is the s query specified by A. Now, as A does not repeat queries hence we have
w® #w* for 1 < s<s <gq. As, H is an e-AU family, hence for all s # ', we have

Pr[Hpy, (w®) = Hy,(w*)] < e. (2.23)

Let COLD be the event that there is a collision in the set D, then using Eq. (2.23) and the
union bound we have

Pr[A“™ sets bad] = Pr[COLD]

(2

2
< % (2.24)

IN

Hence from Egs. (2.22) and (2.24)

2.7. Summary 43

2

AdvPTa) < AdvP(B) + < (2.25)
Moreover it is clear from the description of B that the number of queries asked by B and its
running time is as claimed.]

2.7 Summary

In this Chapter we discussed the basic mathematical objects which we would use through
out this thesis. In particular we discussed that binary strings of length n would be treated
as elements in a finite field Fo» and thus field operations would be applied to strings. We
also discussed syntax of a block cipher and two important block cipher modes of operation,
namely privacy only modes and authenticated encryption. We also discussed two important
mathematical objects called pseudorandom functions and permutations and discussed how
security of block ciphers can be defined with the use of pseudorandom permutations. Finally
we gave a detailed example of a security proof using the technique of game playing. This
technique would be repeatedly used later.

Chapter

Reconfigurable Hardware

H's better fo die on your feet than live on

yOUY 1(71665 '

Emiliano Zapafa

A significant part of the rest of the thesis deals with designing efficient hardware for storage
encryption schemes. All our designs are directed towards Field Programmable Gate Arrays
(FPGAs). To do a good use of FPGAs we need to know how they work, if we know the
internal structure of them we can better exploit their

specific structure to achieve good performance of our implementations both in area and
time. In this Chapter we give a brief introduction about the architecture of reconfigurable
hardware focused on FPGAs. We start with a brief history of reconfigurable computing and
then describe some basic architectural issues in FPGA. Finally we provide a description of
the characteristics of Xilinx Spartan 3 FPGAs and also discuss some main features of Xilinx
Virtex 5 and Lattice ICE40. Later in our work we have extensively used these families of
FPGAs for our implementations.

3.1 Reconfigurable Computing: A Brief History

In very general terms reconfigurable computing can be described as a kind of computer ar-
chitecture which combines the flexibility of software with the high performance of hardware.
We are familiar with general purpose computing machines which are constructed using mi-
croprocessors. These machines consists of a fixed circuitry which can be exploited for various
computing needs through the use of softwares. This paradigm provides a lot of flexibility
in terms of the various tasks that a single static circuit can be made to perform. But this
flexibility comes at the cost of low performance. On the other hand, one can have dedicated
circuits or customs hardware for a specific task, as is obtained by application specific in-
tegrated circuits (ASICS). Such custom hardware does not provide flexibility but one can

46 Chapter 3. Reconfigurable Hardware

obtain very high performance as the hardware can be constructed in a very optimized way
which only supports a specific task. In reconfigurable computing both high performance and
flexibility can be achieved. One of the most dominant paradigms of reconfigurable architec-
tures are the field programming gate arrays (FPGAs). The principal difference of FPGAs
compared to ordinary microprocessors is the ability to make substantial changes to the dat-
apath itself in addition to the control flow. On the other hand, the main difference with
custom hardware is the possibility to adapt the hardware during runtime by loading a new
circuit on the reconfigurable fabric.

The initial ideas of reconfigurable computing are credited to Gerald Estrin [1]. In [44],
Estrin himself talks about the circumstances which gave birth to this paradigm and the early
researchers who were responsible for nurturing these ideas. In particular, Estrin says that
the idea occurred to him as a response to a challenge posed by John Pasta in 1959. Pasta felt
that at that time the computer manufactures were more eager to serve the growing market
of computing machines by providing incremental improvements over the existing paradigm
of computer architecture. Estrin in [44] says

...he (John Pasta) challenged me to propose new ways to organize computer sys-
tems in the hope that research advances in the public domain would lead to a
surge of computer development in the private domain.

As a response to Pasta’s challenge Gerald Estrin published the initial ideas of reconfigurable
computing in 1960 [43]. The architecture proposed in [43] consisted of a general purpose
microprocessor interconnected with programmable logic devices, such that the entire system
may be temporarily distorted into a problem oriented special purpose computer. Thus, the
architecture achieved both the flexibility of software and the speed of hardware platforms.
The architecture described in [43] was called a Fixed plus Variable Structure Computer
(FpVSC). Immediately after publication of [43], Estrin and some of his students and col-
leagues published works describing various domains where a FpVSC can serve non-trivial
computing needs [23,45].

Though the ideas of reconfiguration were there from the early 1960s, they were not accepted
as a viable paradigm for computing for many years, in particular, until the mid 1980s there
were no significant impact of these ideas in the fast growing computing and semiconductor
devices market. In the mid 1970s a device named Programmable Array Logic (PAL) was
introduced commercially by Monolithic Memories Inc. The PALs can be considered as the
first Programmable Logic Device (PLD). PALs though programmable could be programmed
only once. The structure of earlier PALs consisted of logic gate arrays and they had no
clocked memory elements. PALs can be considered as an early member of the commercial
reconfigurable devices. PALs still continue in the market with some modifications and added
functionalities, an example of an existing family is the TIBPAL16 [137] manufactured by
Texas Instruments.

3.1. Reconfigurable Computing: A Brief History 47

Later Generic Array Logic (GAL) was introduced in 1983 by Lattice Semiconductors. GAL
appears as an improvement of PAL with the characteristic that they can be erased and
reprogrammed. GALs were the precursors to more useful devices called Complex PLD
(CPLD). A CPLD can emulate the computational power of hundreds of thousands of logic
gates, they are still popular mostly due to their low cost, some CPLD devices can be bought
for less than one dollar. Today’s CPLDs are non-volatile electrically-erasable programmable
devices which has a structure composed of several GAL blocks interconnected by a switching
matrix used for programming the interconnection and the input/outputs pins. Cool-Runner
II CPLD Family [143] is a CPLD still in use.

The rebirth of the reconfigurable computing paradigm took place in a big way in the mid
1980s. By that time the semiconductor industry has experienced considerable growth and
there were numerous companies manufacturing custom chips (ASICs) for diverse clients.
ASIC manufacturing as is today had always been a cost intensive business. If a company
wanted to create its own chips it had to be an integrated device manufacturer (IDM), i.e.,
it had not only to design them but also assume responsibility of fabrication (commonly
called fab). Fabrication requires a special facility in terms of complex material and human
resources. Thus manufacturing their own chips was really out of question for cost constrained
businesses. Moreover, as discussed in [3], in the mid 1980s Moore’s law was in full swing, i.e.,
to stay in business the chip manufacturers had to double the number of transistors in their
chips every 22 months. This meant frequent upgrade or complete change of the fabrication
facilities and equipments. Manufacturers were having a tough time to win this race. This
background along with the genius and far-sight of three engineers Ross Freeman, Jim Barnett
and Barnie Vonderschmitt lead to the foundation of Xilinx Inc. Xilinx wanted to offer to the
world a new way of seeing things, a "fab-less" chip which they called a Field Programmable
Logic Array (FPGA), a single chip which can be reprogrammed to perform various tasks.
The first commercial FPGA, the XC2064, was manufactured by Xilinx in 1985 [3]. Over
the years the FPGAs technology has had a very fast development. The first FPGAs had
just a matrix of Configurable Logic Blocks (CLBs) interconnected by an intricate array of
switch matrices, nowadays modern FPGAs have embedded modules such as dedicated units
for Digital Signal Processing, distributed RAM blocks etc. The advances in the integration
capacity allow to have in the same chip the reconfiguration part of an FPGA and one or
more microprocessors, this hybrid technology is called Configurable System on Chip (CSoC).
Xilinx Virtex 2 Pro (discontinued) [149], Virtex 4 [147] and Virtex 5 [146] which include one
or more embedded Power PC microprocessors are examples of CSoC technology. Actually
there are many manufacturers of FPGAs such as Achronix, Actel, Altera, Lattice, Quick
Logic and Xilinx. So the market of FPGAs is very large and the development of their
technology is advancing every day.

Currently FPGAs are widely used for many applications not only to make fast prototypes,
but are also used as components in embedded systems. Some areas where FPGAs are
used are industrial control applications [106], network infrastructure security [33], image

48 Chapter 3. Reconfigurable Hardware

processing [6], Video Processing [36] and cryptography [117].

3.2 Field Programmable Gates Arrays

Logic and interconnections are the main resources in an FPGA | even though modern FPGAs
contain more embedded components such as multipliers or memory blocks. The logic part
allow us to perform arithmetic and/or logical functions while interconnections consist of the
physical routing between logic blocks. In the following subsections we describe in details the
logic and interconnection elements in FPGAs.

3.2.1 Logic Elements

Every digital system, however complex it may be, can be represented using Boolean functions
which relates the system inputs to the outputs. The Boolean functions representing a digital
system can depend on their outputs (sequential circuit) or not (combinatorial circuit). A
common and simple way to represent Boolean functions is by its truth table. A truth table
of a Boolean function f is an enumeration of its outputs for all possible inputs. The truth
table representation of a digital system is the computational heart of a FPGA. Lookup tables
(LUTs) are hardware elements that can easily implement a truth table. LUTs have N inputs
and only one output, i.e, each LUT can represent one of the 22" possible Boolean functions
on N variables. Functions whose number of inputs are greater than N can be implemented
using several LUTs connected in cascade. The size of LUT has been widely studied [120],
empirical studies have shown that the 4-input LUT structure gives a better trade-off between
area and delay [15]. Traditionally the main computing elements in FPGAs have been 4 input
LUTs. This is true for many families of FPGAs like Spartan 3, Virtex 2 pro, Virtex 4 etc.
Recently Xilinx has released SRAM-based families of FPGAs such as Virtex 5, Virtex 6 [152]
and Virtex 7 [152] with 6-input LUT architecture.

Physically a LUT can be implemented simply using one multiplexer and one memory. Figure
3.1 shows two different ways to implement a 4 input LUT.

Inside the FPGA, LUTs are grouped into configurable logic blocks (CLB), the number of
LUTs in each logic block have also been investigated [35]. The organization of LUTS varies
among families and manufacturers of FPGAs, for example in Xilinx FPGAs the elementary
logic block is called slice, Altera FPGAs use logic blocks called Adaptive Logic Modules
(ALMs), Actel uses logic blocks called VersaTile and Lattice uses Logic Cells. In addition
to LUTs the logic blocks can contain more components like multiplexors, some additional
logic, carry inputs or registers. In Figure 3.2 an architecture for a very simple CLB is shown,
it has a single 4-input LUT and a D-type flip-flop (labeled as FFD1), the flip-flop serves
the purpose of synchronizing the output. The additional xor gate labeled as XOR__A is to

3.2. Field Programmable Gates Arrays 49

16-bit memmory — | 1-bit output SRAM | 1-bit output
element —_— 16x1
~—
4-bit input 4-bit input

Figure 3.1: Two different ways to implement a 4 input LUT.

allow to handle a carry, Mux1 selects from the output of LUT or the xor operation between
output of LUT and the carry and Mux2 is used to select an unregistered or registered output.

4-input
LUT g DFFDlQ g

i =
XOR_A
CIN

Figure 3.2: Simple Logic Block including a 4-input LUT, registered output and auxiliary
XOR gate for carry chain.

Nx C 2

PXxCZ

3.2.2 Interconnection Resources

Logic blocks need to be interconnected with each other in order to realize complex digital
systems, these interconnections within FPGAs are also configurable. Configurable blocks are
generally placed in matrix structure and many vertical and horizontal tracks run between
them. These tracks are used to make the interconnections. This specific placement is called
the island model and is depicted in Figure 3.3.

There can be many ways to interconnect the logic blocks, we will describe some of them
below.

Nearest neighbor

This is the simplest interconnection structure, it is illustrated in Figure 3.4. In this type of
interconnection, all logic block have bidirectional connection with its nearest neighbors in

50 Chapter 3. Reconfigurable Hardware

Logic Logic Logic
block block block
Logic Logic Logic
block block block
Logic Logic Logic
block block block

Figure 3.3: Island placement of logic block within an FPGA.

each direction: north, south, east and west. There are no interconnection resources which
are capable of by passing logic blocks, so the signals must go through each logic block. And
this increases the delay. Each CLB is connected to only one other CLB in each direction,
this impose a limitation on the interconnection capabilities. But this kind of structure has
the characteristic that logic blocks have direct connectivity between them. For that reason
it is actually used in commercial FPGAs but hybridized with some other complex techniques
that we explain next.

Logic " Logic " Logic
block block block

A A A

[
[

y A Y
Logic ™ Logic ™ Logic
block |« block |« block

A A Y

4 y Y
Logic " Logic ™ Logic
block |« block |« block

Figure 3.4: Nearest neighbor interconnection structure.

Segmented

This structure follows the model presented in Figure 3.3, i.e, in contrast to nearest neighbor,
it has tracks independent of the logic blocks. The segmented structure is shown in Figure
3.5, the main components in a segmented type interconnection are as follows:

e Tracks: There are vertical and horizontal tracks grouped as buses. These tracks are
connected with logic blocks through Connection Blocks (CBs), where the horizontal

3.2. Field Programmable Gates Arrays 51

e Switch o Switch - Switch
box box box
1T 1T 1T
Logic Logic Logic
block CB block CcB block CB
o Switch o Switch - Switch
box box box
1T 1T 1T
Logic Logic Logic

block block block

- Switch o Switch - Switch
box box box

T TIT T

Logic Logic Logic

block 3 CB | block 3 CB | block 3 CB |

Figure 3.5: Routing structure with logic blocks placed in islands and using connection blocks
and switch boxes.

and vertical tracks cross there are switch boxes to do interconnections between them.

e Connection Blocks (CBs): They allow inputs and outputs of logic blocks reach
both horizontal and vertical tracks, each input or output can be connected to several
tracks as is shown in the left side of Figure 3.6. We can see that inputs/outputs can be
connected to arbitrary tracks, one only have to select which connections are activated.

e Switch Boxes: These are located in the crossings between vertical and horizontal
tracks, in the right side of Figure 3.6 we present a detailed view of a switch box. Pro-
grammable switches allow to lay out routes between near on far logic blocks, depending
on their design for example a connection could be to turn the corner in either direction
or continue straight. Switch box design is a research area in itself, some interesting
work dealing with switch-box design can be found in [46-50].

Logic
block

© Programmable
connection ot

switches

Figure 3.6: Left side: Connection Block. Right side: Switch Box.

Segmented architecture can be hybridized with nearest neighbor structure to increase flex-
ibility and performance. Connection of CLBs using a segmented architecture requires the

52 Chapter 3. Reconfigurable Hardware

signal to go through connection and switch boxes which may increase delay, thus, in certain
scenarios having direct connections between logic blocks independent of tracks can be very
useful. In the Figure 3.7 a hybrid interconnection architecture is shown. In Figure 3.7 one
can see that the logic blocks are connected through tracks as in a segmented interconnection,
in addition it has two other kind of connections in the Figure labeled as "direct-connect" and
"long-interconnection". A direct-connect is a connection as in the nearest neighbor connection
which connects two neighboring logic blocks. The long interconnection wires between switch
boxes allow to by-pass intermediate switch boxes. An application of direct interconnection
between logic blocks is efficient carry propagation. In a direct connection architecture the
carry signal goes without passing through switch boxes or connections blocks, thus reducing
the delay of the carry signal. If the implementation requires to connect logics blocks far
apart, the long wires between switch boxes can be useful because they avoid some of the
intermediate switch boxes reducing the delay of the signals.

e Long interconnection lines

N\ / N\ /

— 7 — — 7 —
) Switch) Switch) Switch) Switch
box box box box
TIT TIT TIT TIT
Logic Logic Logic Logic
block EI CcB | block EI CB | block EI CB | block EI CB |
\ / \ / \ /

\\

Direct-connect between logic blocks

Figure 3.7: Segment structure hybridized with nearest neighbor structure.

Hierarchical

A proper grouping of logic blocks can improve the routing capabilities and reduce delays.
Some times the logic blocks are clustered in a hierarchical fashion, which is called the hi-
erarchical interconnection structure. The basic elements of this architecture are similar to
the segmented architecture, and include logic blocks into which logic is mapped and connec-
tion blocks and switch blocks through which connection is realized. The difference is that
the logic blocks and the connection forms a hierarchy. For example in Figure 3.8 a basic
hierarchical structure is shown. In the architecture shown in Figure 3.8 the basic cluster
consists of four logic blocks, we call this cluster of four logic block as a level 0 element. Four
of these level 0 elements forms a level 1 element. Thus, a level 1 element is composed of
sixteen logic blocks. Further, four level 1 elements are grouped to form a level 2 element
which contains 64 logic blocks. Theoretically such an hierarchy can be organized in different
ways, like a single logic block can be defined as a level 0 element and the whole FPGA can

3.3. Xilinx Spartan 3 FPGAs 53

be considered as a single element in level n, for some value of n. The connection resources
such as connection blocks, switch boxes, long wires, horizontal and vertical tracks and direct
connections between groping levels can be placed in any of the levels and their complexities
can vary on different levels. Intuitively the lower level elements require lower flexibility as
there are fewer connections to route. At each level routing is first performed locally. If a
signal has a connection with another element beyond its level then it is routed out through
its connection block. This architecture requires less switches to route and thus can imple-
ment much faster logic with much less interconnection resources as compared to the standard
segmented model. This interconnection structure has been widely studied [39,88] and has
been adopted in commercial FPGAs.

1x1 axa || 4x4
(4) Logic| || 1 l‘ LBs LBs %2
Blocks — "' (16) Logic
Blocks
* axa || 4xa
IB* LBs || LBs

4x4 (64) Logic Blocks

Figure 3.8: Hierarchical structure with basic cluster of four logic blocks.

In the three subsequent sections we shall describe some important characteristics of three
specific families of FPGAs namely Spartan 3, Virtex 5 and Lattice ICE40.

3.3 Xilinx Spartan 3 FPGAs

The information presented in this Section is an extract of the Spartan-3 FPGA Family Data
Sheet [145]. Spartan 3 FPGAs are low-cost devices, so they are a good option for developing
fast prototypes of hardware designs. The main features of this family are listed below:

1. Advanced 90-nanometer process technology.
2. Up to 633 Input/Output pins.

3. Logic resources:

54 Chapter 3. Reconfigurable Hardware

a

b

(a) 4-input LUTs.

(b) Abundant logic cells with shift register capability.
(
(d
(e) Dedicated 18 x 18 multipliers.

)
)
¢) Wide, fast multiplexers.
) Fast look-ahead carry logic.
)

4. Up to 1,872 Kbits of total block RAM.

3.3.1 Configurable Logic Blocks

In Spartan 3 the Configurable Logic Blocks (CLBs) are the main resource to implement both
combinatorial and synchronous circuits. Within each CLB there are four interconnected
slices as shown in Figure 3.9. As depicted in Figure 3.9, the slices are grouped in pairs
and are placed as columns with an independent carry chain whose input and output are
marked as CIN and COUT respectively. In Figure 3.9, the labels X and Y in the boxes
representing the slices indicates the row and column numbers of the of slices respectively
within the matrix of CLBs. X counts up from left side of the matrix to the right, Y starts
from bottom of the matrix. Figure 3.9 shows the CLB located in the lower left hand corner
of the matrix. The slices labeled with an even X number are called SLICEM (left-hand of
the figure) and the slices labeled with an odd X value are celled SLICEL (right-hand side of
the figure). The slices located in the same column have very fast carry propagation between
them. In the same Figure we also show the interconnection resources as an hybrid structure,
i.e, there are tracks and connections between CLBs in the neighborhood.

Left-Hand SLICEM Right-Hand SLICEL

1
:
(Logic or Distributed RAM 1 (Logic Only)
or Shift Register) H
i couT
H
CLB ‘Ar»
> SLICE
X1Y1

couTt

SLICE
——f s K
\SHIFTOUTL T H

| SHIFTIN
SLICE
X0Y0 <

Switch
Matrix

Interconnect
to Neighbors

[

Figure 3.9: CLB of Spartan 3 FPGAs.

3.3. Xilinx Spartan 3 FPGAs 55

Resources within an Slice

Both SLICEL and SLICEM have the following elements in common: two logic function gen-
erators (LUTS), two storage elements, wide-function multiplexers, carry logic and arithmetic
gates. In the Figure 3.10 a simplified diagram of SLICEM is shown. To convert the diagram
in Figure 3.10 to a SLICEL, one just need to eliminate the components and lines in blue.

LUTs in SLICEM also have the functionalities of storing data using distributed RAM and
shifting data with a 16-bit shift register. LUTs are RAM-based, in SLICEM they can be
configured as a function generator, 16-bit distributed memory or 16-bit shift register. The
storage element is a D-type Flip Flop which is programmable since one can choose registered
output YQ or non-registered output Y. Width-functions multiplexers combine LUTs to allow
the implementations of more complex Boolean functions, there is an F5MUX in each slice
accompanied by an FiIMUX which takes on the names F6MUX, FTMUX, FEMUX depending
of the position of the slice in CLB. Extra logic gates and control multiplexer to handle the
carry chain allow us to get fast and efficient implementations of math operations. For more
information of how use the components mentioned above refer to [148].

3.3.2 Interconnection Resources

Inside the Spartan 3 devices there are four types of interconnections: Long lines, Hex lines,
Double lines, and Direct lines. We will briefly described the interconnection resources below.

Switch Matrix

The main functional elements which are to be interconnected in a Spartan 3 FPGA are the
configurable logic blocks (CLB), the input/output buffers (IOB), the digital clock manager
(DCM), the block RAMs and the multipliers. The switch matrix (or the switch box) connects
the different kinds of these elements across the device. A single switch matrix connected to
a functional element such as CLB, IOB or DCM is defined as an interconnect tile. Elements
like block RAMs and multipliers may be connected to more than one switch matrix. In
such cases the interconnect tile consists of the functional element and all the switch matrices
attached to it. In Figure 3.11 the types of interconnect tiles are illustrated. As depicted in
the Figure the 18kB RAM along with the four switch boxes to which it is connected forms an
interconnect tile, similarly for the multiplier. An array of interconnect tiles defines a device.
The different interconnection resources like the tracks and the wires are located in between
each interconnect tile. This structure is depicted in Figure 3.12 where the bold lines shows
the channels of interconnection resources.

Spartan 3 contains the following interconnection resources: Horizontal and vertical long

56

Chapter 3. Reconfigurable Hardware

SHIFTIN

3
1
[

couTt

YBMUX
= YB
FXINA > N Finux(@
FXINB > LH > Fi
XORG GYMUX
\
4 —) —vy
G[4:1] “ Al4:1] D
i G-LUT DYMUX
N
Awe1 mets D of——T—va
— FFY
ws DI cE
——]ck
ALTDIG §Z23>=1- eV
1
GAND | T
0 1723 DIG
BY[>—— cvoe £~ BYOUT
Top Portion
CE>—
CLK>—+—
SRE>—— ¢
: WSG
-l WE
...... CK
WSGEN
SLICEWE1 iZ12>==~ WE1
WEO
WSF i
Common Logic
XBMUX
CYMUXF
i DIF_MUX 1 - __...'\l > x8
""" ™] F5MUX | |
/ i |CYSELF <l } —Fs
i XORF
A\
ws DI) —x
Fl4:1] Al4:1] D
FXMUX
F-LUT DXMUX= SR REV
A WF[4:1] MC15 D Q—T=>xa
P
— FFX
CE
CYOF CK
— L |
CYINIT
FAND T
o
BX > 423 BXOUT
Bottom Portion
LEGEND: Logic Functions A
----- Distributed RAM and SHIFTOUT CIN

Shift Register Functions

Figure 3.10: SLICEM of Spartan 3 FPGAs. Options to invert signal polarity as well as other
options that enable lines for various functions are not shown. The index i can be 6, 7, or 8,
depending on the slice. In this position, the upper right-hand slice has an FSMUX, and the
upper left-hand slice has an F7TMUX. The lower right-hand and left-hand slices both have

an F6MUX.

lines, Hex lines, Double lines and Direct lines. We describe briefly these resources next.

3.3. Xilinx Spartan 3 FPGAs 57

. Switch [
Switch ;
Matrix "1 CLB Matrix
Switch [~
. Matrix
Switeh | | o5 18Kb MULT
Matrix
Block 18x18
Switch RAM
Matrix
Switch
Matrix DCM Switch [
Matrix

Figure 3.11: Interconnect tiles available in Spartan 3 FPGAs.

e | | el P e P e S e | e
] S| | O] e P e S | e
i | | el e e P e S e | e
] S| | O] e P e S R | e
i | | el e e P e S e | e

Figure 3.12: Array of Interconnect Tiles in an FPGA.

Horizontal and Vertical Long Lines: There are 24-wire long lines that span both verti-
cally and horizontally and connects to one out of every six interconnect tiles (Figure 3.13).
At any tile, four of the long lines send or receive signals from a switch matrix. These lines
are well-suited for carrying high frequency signal with minimal loading effects due their low
capacitance.

24

CLB [-| CLB CLB [«-| CLB CLB [-+| CLB CLB [«+| CLB CLB [«-| CLB

6 6 6 6 6

Figure 3.13: Horizontal and Vertical Long Lines.

Hex Lines: Each set of eight hex lines are connected to one out of every three tiles, both
horizontally and vertically (Figure 3.14). Thirty-two hex lines are available between any

58 Chapter 3. Reconfigurable Hardware

given interconnect tile. Hex lines are only driven from one end of the route.

8

CLB J CLB CLB L CLB CLB CLB L CLB

Figure 3.14: Hex Lines.

Double Lines: They connect an interconnect tile to its neighbors in all four directions both
vertically and horizontally (Figure 3.15). There are thirty-two double lines available between
any given interconnect tile. Double lines add more flexibility compared to long lines and hex
lines.

CLB > CLB > CLB

Figure 3.15: Double Lines.

Direct Lines Direct connect lines route signals to neighboring tiles vertically, horizontally,
and diagonally (Figure 3.16). These lines most often drive a signal from a “source” tile to
a double, hex, or long line and conversely from the longer interconnect back to a direct line
accessing a “destination” tile.

CLB [<-—CLB{—(CLB
A A A
CLB |-—{ CLB [—»| CLB
Y Y Y
CLB [-—f'CLB-—>{ CLB

Figure 3.16: Direct Lines.

3.4 Xilinx Virtex 5 FPGAs

The information shown in this section was taken from Virtex-5 FPGA User Guide [150].
The main features of the Virtex 5 family of FPGAs are as follows:

3.4. Xilinx Virtex 5 FPGAs 59

e Built on a 65-nm state-of-the-art copper process technology.

e Logic resources:

Real 6-input look-up table (LUT) technology.
— Dual 5-LUT option.

— Improved reduced-hop routing.

64-bit distributed RAM option.

SRL32/Dual SRL16 option.

e True dual-port RAM blocks.

e Advanced DSP48E slices:

25 x 18, two’s complement, multiplication.

— Optional adder, subtracter, and accumulator.
— Optional pipelining.

— Optional bitwise logical functionality.

Dedicated cascade connection.

e PowerPC 440 Microprocessors (FXT Platform only).!

A glaring difference of Virtex 5 family compared to the Spartan 3 family is that the LUTs
are 6 input, in addition these FPGAs are equipped with some special slices called DSP slices
moreover a PowerPC microprocessor is embedded in the FPGA. In this Section we describe
the CLBs and the interconnection resources of a Virtex 5 FPGA.

3.4.1 Configurable Logic Blocks

In Virtex 5 FPGAs each CLB contains two slices placed in columns, they are labeled as
SLICE(0) for slice in the right side and SLICE(1) for slice in the left side, as is shown in
Figure 3.17. Each slice has an independent carry chain. To locate slices in the slices matrix,
all slices are labeled with an X followed by the column number and a Y followed by the row
number of the slice (Figure 3.18).

!The Vitex 5 family of FPGAs is divided into five platforms: LX high-performance general logic appli-
cations, LXT high-performance logic with advanced serial connectivity, SXT high-performance signal pro-
cessing applications with advanced serial connectivity, TXT high-performance systems with double density
advanced serial connectivity and FXT high-performance embedded systems with advanced serial connectiv-

ity.

60 Chapter 3. Reconfigurable Hardware

Switch
Matrix

cout couT cout couT

icLs | _ 1‘“‘: icLs | _ 1"“:
! Slice || Slice |
| X1 | 1 X3v1 | 1
I I I
I I I
I | Slice 1| slice |
| oxova R RAE |

| |
: CIN N 1 CIN CN
____|CouTr__ _|couT_ ____|couT__ _|couT_
I CLB I 1CLB |
: Slice : : Slice :
| X1Y0 | | | X3Y0 | |
| [|
| I I
: Slice I : Slice I
1 | xovo : | xavo :
| [|

—_———— e e e e e —

Figure 3.18: Slices position into the CLBs matrix.

Resources within an Slice

Every slice contains four 6-input LUTs, four storage elements, wide-function multiplexers
and carry logic. Same as Spartan 3, LUTs of slices of type SLICEM support two additional
functionalities: distributed RAM and shifting data with 32-bit registers. The function gen-
erators in Virtex 5 are constructed as is shown in Figure 3.19, they have six inputs, two
outputs and internally two 5-input LUTs and one multiplexer. These resources allow them
to compute any arbitrary 6-input Boolean function (combining the output of the two LUTs
and using the select input of the multiplexer as the most significant bit of the input of the
function) or two arbitrary defined 5-input Boolean functions (using 5-input LUTs indepen-
dently), as long as these two functions share common inputs and each of these functions

3.4. Xilinx Virtex 5 FPGAs 61

have their own output line (labeled in Figure 3.19 as D6 and D5). Signals from the function
generators can exit the slice (through A, B, C, D output for O6 or AMUX, BMUX, CMUX,
DMUX output for O5).

Al >
P>, Ih
A3 > A3
A4 > A4 LUTS D
A5 > A5
A6 > A6
D6

A2
A3
A4 LUTS D D5
A5
A6

Figure 3.19: Internal view of LUT of Virtex 5 FPGAs.

In Figure 3.20 an SLICEM is shown, we can see several multiplexers and an additional Xor
gates which allow to handle the carry chain. The multiplexer also can be used to construct
large multiplexers and functions with more than six inputs.

LUTs in SLICEM can be configured as a 32-bit shift register and using the internal multi-
plexers, one can implement even a 128-bit shift register using only one SLICEM using the
four available LUTs configured as a 32-bit shift register. Also using a single slice one can
implement a 16 x 1 multiplexer. For more information see Chapter 5 of [150].

DSP slices or DSP48E deserve an special mention, they are slices specialized in Digital
Signal Processing (DSP) and incorporate some tools such as an ALU specialized in DSP
operations. A general diagram of a DSP48E is shown in Figure 3.21, a DSP48E is very use-
ful to implement integer arithmetic insomuch as it contains a 25 x 18-bit signed multiplier
(or 24 x 17-bit unsigned multiplier), a 48-bit-two’s-complement adder and 48-bit logic unit
with Bit-wise logic operations two-input AND, OR, NOT, NAND, NOR, XOR, and XNOR.
Signal labeled with an * in Figure 3.21 refer to signals connected to a high speed bus which
interconnects DSP48E slices between them. More information about DSP48E slices can be
found in Virtez-5 FPGA XtremeDSP Design Considerations [151].

Interconnection Resources

The information available today about interconnection structure of Virtex 5 FPGAs is very
limited. They use a new diagonally symmetric interconnect pattern which enhances perfor-
mance by reaching more places in fewer hops. That pattern allows for more logic connections

62 Chapter 3. Reconfigurable Hardware

cout

[] Reset Type
oSync
ol j O Async
= —\ [DMUX
DI2 D —
D6 > A8 L DPRAMG4/32 F)
D5 [A5 [SPRAM64/32 5 —D
D4 > A4 OSRL32 (O : OFF
03 > a3 OSRLI6 05 l OLATCH
oLuT DX olNT | QL= Dba
D2 > A2 oRAM DN D giNITo
D1 [A1 OROM Mmc31 —]CE Dggt{lo?,\ll—{
—— wa1-was ck °
o SR REV
— was
x> -
P N
o= \ J > cMux
DI2 —
[of-) mws A6 ’)
0 DPRAM64/32 P L~
C5 [A5 0 SPRAM64/32 g —c
ca> A4 OSRL32 0p . NS OFF
OSRL16 O l OLATCH
c3I[> A3 OLUT cX oiNT1 | QL=>ca
2> A2 ORAM DI ’ D aiNiTo
C1 > A1 OROM ooy | N +—— CE DERH(I)GH
0 SRLOW
T | TH R
+ WAs
x> : [™
BI [‘ | > BMUX
DI2 O
B6 [A6 1 DPRAMB4/32 D -
B5 [A5 0 SPRAM64/32 a —B
B4 D[[A4 SSR%E 06 - ™ B CTcH
B3I [A3 gLuT S ©5 BX ot QTo8Q
=g NNk | Ce M,
Bl [At mcat 2 <€ 2
o SRLOW
|| a:;»WAG - 1K " “sm Rev
L]
+— WAs
BX [
P D
Al > ‘ J > AMUX
DI2 ”)]
A6 D> A6 f—
0 DPRAM64/32 L~
A5 [A5 0 SPRAM64/32 g A
M A4 Sgglﬁé 06 - NS o [;TCH
a
A3 D> s SSHL16 05 AX amr - QLoAQ
A2 A2 O Sg’\l\llll Di D DENF;L?GH
A A1 D MC31 tT|CE C
IR ok DSRLOW
m; WA6 - a SR REV
L] was A\
AX [
SR> o)
CED D
CLK D—SD
CLK
WSGEN D
WE
WE > CIN

Figure 3.20: SLICEM of Virtex 5 FPGAs.

to be made within two or three hops, information taken from Achieving Higher System Per-
formance with the Virtez-5 Family of FPGAs [142].

3.5 Lattice ICE40 FPGAs

The lattice ICE40 FPGAs were developed to deliver the lowest static and dynamic power
consumption of any comparable CPLD or FPGA device, hence there are suitable for mobile

3.5. Lattice ICE40 FPGAs 63

CARRYCASCOUT*

—————— o SOttt ettt i-i ety il b wE il |
I Hecoyr [acour- » AB MULTSIGNOUT f { PCOUT" |
1 18 [
30 |
1 48 |
s 18 ™ !
B > !
| iy = o
I
A 30 25 b I ouT :
| Al A
— L L 0 —| 1
I v .
| pl
I I "
! I
!C 48 o 0 — RNDETECT
: l 17-Bit Shift NBDETECT
30 |
|
| 17-Bit Shift] CREG/C Bypass/Mask :
I 3
. I
: GARRYIN L MULTSIGNIN |
| OPMODE Z CARRYCASCIN* :
| CARRYINSEL |
: 48 :
| ACIN* lPon: |

Figure 3.21: Slice DSP48E.

and battery powered applications. In this Section we will give a brief description of the
architecture and characteristics of ICE40 FPGAs starting with logic resources followed by
the routing resources available in them. The information about this family of FPGAs was
taken from ¢CE40 Family Handbook Ultra Low-Power mobileFPGATM LP, HX [89]. Some
general features of LATTICE ICE40 are:

e Proven, high-volume 40 nm, low-power CMOS technology.

Up to 7,680 Logic Cells (LUT+Flip-Flop).

Two-port 4Kbit RAM blocks (RAM4K).

Up to 206 Programmable [/0O.

4-input LUTs.

3.5.1 Programmable Logic Block

The basic logic resource in ICE40 FPGAs is the Logic Cell (LC), and a Programmable Logic
Block contains 8 LCs interconnected between them through the carry logic resources as is
shown in Figure 3.22. ICE40 devices contain up to 8000 LCs, each LC has three elements
as can be seen in Figure 3.22, these elements are:

e A 4-input LUT (LUT4) capable to build any combinatorial logic function of up to four
inputs, also it can behave as a 16 x 1 ROM. To construct wider functions several LUTs
should be combined and cascaded.

64 Chapter 3. Reconfigurable Hardware

e A D-type Flip-Flop with an optional clock enable and reset control input.

e Carry Logic, it accelerates the logic efficiency and performance of arithmetic functions
and some wide cascaded logic functions.

Shared Block-Level Controls

Programmable Logic Clock:
Block (PLB) Enable :
: N
i Set/ Reseto—_D.. Logic Cell
Carry Logic
o
. 10
0
9 11
s 12
3 13 *
9
(o)}
S
: ./ \
~ . o g
Four-input Flip-flop with
Look-Up Table optional enable and
(LUT4) set or reset controls
= Statically defined by configuration program

Figure 3.22: Programmable Logic Block and Logic Cell of Lattice ICE40 FPGAs.

Interconnection Resources

Same as Virtex 5 FPGAs the information about the connection resources for ICE40 is scarce.
In the Figure 3.23 we show the placement of PLBs within the device, the PLBs are accom-
modated in a matrix. The carry chain can span across multiple PLBs, as PLBs in the same
column are connected by the carry chain resources. PLBs can reach 1/O banks and block
RAMs through programmable interconnections.

3.6 Basics of FPGA Programming

For implementing a system in an FPGA the description of the digital system is first written
using a special type of programming language called a hardware description language (HDL).
This description can be processed by specialized tools to either map the design to a real
hardware or to obtain characteristics of the design in various hardware platforms using
simulations. In this section we briefly explain the various phases of design using FPGAs.

3.6. Basics of FPGA Programming 65

1/0Bank O

7
N

Programmable | nterconnect

PLB
Ll
Ll
Ll
Ll
Ll
Ll

PLB

4Kbit RAM

PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB

1/0Bank 1

PLB
PLB
PLB
PLB
PLB
PLB
PLB
PLB

Programmable I nterconnect

1/0Bank 3
Programmable | nterconnect

PLB
PLB

:

N

AN
Phase-Locked
Loop

Nonvolatile Configuration
Memory (NVCM)

Figure 3.23: Internal view of a Lattice ICE40.

3.6.1 Hardware Description Languages

A Hardware Description Language (HDL) is a language which allow us to describe digital
circuits, an HDL must satisfy the following requirements [109]:

1. Support for Design Hierarchy. A HDL must allow description of the hardware
including the functionalities of its subcomponents. Finally the design must look as a
hierarchy of components where each component of the hierarchy has its own subcom-
ponents until the lowest level. In lowest level the components are described using their
functionality. Designing using the hierarchy of components allow the reutilization of
components and the use of libraries.

2. Library Support. a HDL must have a mechanism for accessing various libraries. The
libraries can contain an interface description of a design, and when several descriptions
and models are correct and complete, they should be placed in to the library, and the
libraries should be accessible to different designers.

3. Sequential Statements. An important requirement of a HDL is the support for
concurrency operations but sometimes to describe the functionality of certain compo-
nents we need sofware-like sequential statements. Decisional statements like if then
else, case, when and loop statements as for do, while should be present in the specific
syntax of a HDL, the execution of these statements is procedural.

66

Chapter 3. Reconfigurable Hardware

Generic Design. The operation of the hardware components is also influenced by
the physical features of the target where the design is implemented, but it is desirable
that the description of the component using a HDL should be generic, i.e., it should
be functional, for example, for many families of different manufacturers of FPGAs.

. Type Declaration and Usage. The language must provide various data types. In

addition to the must used bit-wise and boolean types,a HDL should allow declaration of
other data types like floating point, integer, enumerate and also some data structures
vectors. If the HDL does not directly support these kind of types then the users
should be able to define them and put them into a library, so that other designers can
used them. The operations also can be redefined for the new data types (for example
addition, subtraction, AND,OR,ETC).

. Use of Subprograms. The possibility to handle functions and procedures is another

requirement for a HDL, it should allow to define functions and procedures, explicit type
conversions, logic unit definitions, operator redefinitions, new operation definitions, etc.

. Timing Control. The handling of the time at all levels of the design is a very

important requirement of a HDL. In synchronous digital system the clock is the heart
of the system. So the HDL should provide a way to fix the behavior of some signal to
the clock, for example assign some value when the clock transition from low level to
high level takes place.

In contrast to traditional programming languages the HDLs define specific instructions for
real parallelism as is intrinsic in hardware. A HDL allows us to define some things that are

not allowed in a programming language, such as the instantiation of multiple components

of the same type or specify manually the interconnections between components. Other

important feature of HDL is that the assignments can occur in parallel, and the propagation
of the signal takes time (propagation delay). When we are designing hardware every data
structure should be static because we are defining the hardware itself while in software we
are using the hardware.

Some existing HDLs are listed below:

AHPL. A hardware Programming Language.
CDL. Computer Design Language.
CONLAN. CONsensus LANguage.

IDL. Interactive Design Language.

ISPS. Instruction Set Processor Specification.

3.6. Basics of FPGA Programming

67

TEGAS. Test Generation and Simulation.

TI-HDL. Texas Instruments Hardware Description Language.

ABEL. Advance Boolean Expression Language.

VHDL. Very High Speed Integrated Circuits Hardware Description Language.

For the hardware implementations in this thesis we use VHDL because it is an IEEE standard
for HDLs and the manufacturers of FPGAs offer good support for it, which include tools and
VHDL libraries to their devices. For example the Xilinx ISE and Lattice iCEcube2 design

software.

3.6.2 Design Flow

The basic steps to implement circuits in FPGAs is shown in Figure 3.24, a more detailed
explanation about design flow can be found in Xilinz Synthesis and Simulation Design Guide
[144]. A brief description of each step is given below:

N

FPGA Synthesis

FPGA Place &

Functional
Simulation

Route

FPGA
Programming

Figure 3.24: Design Flow.

68

Chapter 3. Reconfigurable Hardware

. Design Entry: A design must be described using an HDL or some other schematic

tool. The description preferably must be modular and hierarchical. Generally, Register
Transfer Level (RTL) is the abstraction level used to describe circuits with a HDL.
RTL refers to how transfer of data happens between registers, logic units and buses.
Nowadays sometimes an Electronic System Level (ESL) is used as the abstraction
level [57]. In ESL a designer is only concerned with the functionality of the design
and describes the design that is going to be implemented. The algorithm is described
using a procedural language like C. In this abstraction level is not necessary that the
designer handles the clock, timing and other low level hardware details.

. Functional Simulation: The most basic simulation of a design is called the be-

havioural. It uses the VHDL code and verify its behaviour. It is recommendable to
do a simulation for each component present in the hierarchy of the design.To simulate
the components a test bench is done using VHDL. A test bench is a file with the de-
scription of wave forms to feed the component under testing. There are other kinds
of simulations, post synthesis and post place & route, they are more advanced than
behavioural simulations since these simulations include gate and wires delays. So the
kind of simulation performed depend of which steps of the Figure 3.24 have been done.

. Synthesis: Synthesis is a process which converts the design entry specifications to

electronic components (multiplexers, counters, registers, etc), and finally maps these
components to blocks of the FPGA device. A netlist of basic gates is prepared from
HDL/schematic design entry, which is further optimized at gate level.

. Place and Route: This phase decides the placement of logic cells on the target FPGA.

This also involves wiring input and output of these logic cells through wiring and
switch boxes available within FPGA. This phase needs the design description and the
information about the architecture of FPGA. This process uses heuristics algorithms
to find the best routing for a given design, the use of timing or area constraints is
an important in this phase issue to get a good performance. In this phase it is also
important to define the I/O pin constraints, i.e, to assign the inputs and outputs
defined in the design into the real pins available in FPGA.

. Circuit Analysis: It verifies the design using different performance metrics such as

throughput or throughput per area. Also a timing simulation can be performed, this
kind of simulation corroborates the correctness of the circuit taking into account the
intrinsic features of the device such as the delays of the component of a slice. There
are also some tools which allows estimation of the power consumption of the circuit.

3.7. Summary 69

3.7 Summary

In this Chapter we provided a brief introduction to the paradigm of the configurable
computing. Reconfigurable hardware, in particular FPGAs are currently widely used
for building prototypes of cryptographic systems and also in some cases FPGAs can
be widely deployed in commercial devices. In this Chapter we provided discussions
about the architecture of Virtex 5, Spartan 3 and Lattice ICE40 FPGAs. We have
extensively used these families to build prototypes of disk encryption schemes.

Chapter

Tweakable Enciphering
Schemes

The ykilosophws have onLy inf@r)or@f@i the
world, in various ways. The)ooinf, however,

is to change it

Karl Marx

Tweakable enciphering schemes are a block cipher mode of operation which provides adequate
security and functionality for its use in the application of encrypting block oriented storage
media. In this Chapter we present various aspects of tweakable enciphering schemes. In
Section 4.1 we introduce tweakable block ciphers which serves as basic motivation for tweak-
able encryption. In Section 4.2 we formally define the syntax and security of tweakable
enciphering schemes. In Section 4.4 we argue about the suitability of tweakable enciphering
schemes for the application of disk encryption. In Section 4.5 we describe the constructions
of some of the existing TES and finally in Section 4.6 we discuss some recent standardization
activities surrounding the application of disk encryption.

4.1 Tweakable Block Ciphers

Block ciphers as defined in Section 2.3 are deterministic algorithms which encrypt fixed
length strings. When block ciphers are put to use for real encryption by a mode of operation,
then the determinism inherent in a block cipher is broken using an initialization vector or a
nonce which helps in providing some kind of state information or randomness. Informally,
among other objectives, the use of IVs (or nonces) in modes serves to provide a functionality
that the same plain text when encrypted multiple times (using different 1Vs) yields different
ciphertexts. This variability obtained in ciphertexts serves better in achieving security.
Tweakable block ciphers are an attempt to achieve a similar functionality for stand alone
block ciphers. In a tweakable block cipher (TBC) the variability of the cipher produced is
gained by extending the usual syntax of a block cipher and allowing it to take an extra input
(other than the key and the message) called a tweak. Thus when the same plain text is

72 Chapter 4. Tweakable Enciphering Schemes

encrypted with a TBC with the same key and message but different tweaks then the outputs
are different. The notion of TBC was first introduced in [93], the extended version of this
work was also recently published in [94].

Formally a TBC is a map
E:KxT x{0,1}" = {0,1}",

where K is the key space and 7T is the tweak space, for each K € L and T € T, E};() is a
permutation of {0,1}". An n-bit message M is encrypted by a TBC under a secret key K
and a non-secret tweak 7' to obtain an n-bit ciphertext C' = EL(M). TBCs are constructed
using block ciphers and the tweak is used in some way such that the property of PRP or
SPRP are preserved.

There are several constructions available for TBCs. Let Ef : {0,1}" — {0,1}" be a secure
block cipher and T" € {0, 1}", then the four functions listed below are all secure TBCs

(a) ER(M) = Ex(T ® Ex(M))
(b) LRW construction: EE, . (M) = Ex(M @ hi,(T)) & hy, (T)
(¢) XE construction: EL(M) = Ex(M & Ex(T))

(d) XEX construction: ExL (M) = Ex(M & Ex(T)) ® Ex(T)

The constructions (a) and (b) were proposed in [93], whereas the constructions (b) and (c)
were proposed in [118]. In (b) in addition to the block cipher Ex() a function h is used,
which is required to be e—=AXU. The definition of an e—AXU is similar to e—AU as provided
in Definition 2.1.

Definition 4.1. Let h : K x {0,1}¢ — {0,1}" be a family of functions. h is called an
e—almost zor universal (e—AXU) family if for all w,w' € {0,1}* where w # w' and all
z € {0,1}",

Pr[K & IC: h(w) ® hie(w') = 2] < e.

If Ex() is secure in the sense of a PRP then, constructions (a) and (c) are tweakable PRPs
and if Fk() is secure in the sense of a SPRP then constructions (b) and (d) are secure as
tweakable SPRPs. Generalizations of some of these constructions were provided in [30,104].

One of the motivations to introduce TBC was to construct secure modes of operation starting
from them. This has been achieved to a great extent as some modes of operations like OCB,
PMAC etc. have been constructed using TBC as primitives [118]. In many cases use of a
TBC has helped to make both the description and analysis of modes much simpler.

4.2. Tweakable Enciphering Schemes: Definitions and Security Notions 73

4.2 Tweakable Enciphering Schemes: Definitions and Security No-
tions

TES are motivated by TBCs, TES can be seen as TBCs with a domain which contain
arbitrary long (possibly of variable lengths) strings. Formally, a Tweakable Enciphering
Scheme (TES) is a function E : K x T x M — M, where K # () and T #) are the
key space and the tweak space respectively. The message and the cipher spaces are M. In
general we assume that M = U;-0{0, 1}, but in certain scenarios M may be restricted to
contain strings of some predefined lengths.

We shall sometimes write EL(.) instead of E(K,T,.). The inverse of an enciphering scheme
is D = E~! where X = DL(Y) if and only if EL.(X) = Y. An important property of a
tweakable enciphering scheme is that it is length preserving, i.e., for every x € M and every
T €T, |EL(z)] = |z|. Same as in TBCs, the tweak, used in a TES is not the same as a
nonce, as the tweak can be repeated, it is only meant to provide variability in the ciphertext.

Security of TES: Let Perm” (M) denote the set of all functions w : 7 x M — M where
7(T,.) is a length preserving permutation. Such a 7w € Perm” (M) is called a tweak indexed
permutation. For a tweakable enciphering scheme E : L x T x M — M, we define the
advantage an adversary A has in distinguishing E and its inverse from a random tweak
indexed permutation and its inverse in the following manner.

AdviPP(4) =

Pr [K S ABKGOEL () 1} _

Pr [w & Perm” (M) : ATGITTH) = 1” (4.1)

We assume that an adversary never repeats a query, i.e., it does not ask the encryption oracle
with a particular value of (7, P) more than once and neither does it ask the decryption oracle
with a particular value of (7, C') more than once. Furthermore, an adversary never queries
its deciphering oracle with (7', C') if it got C' in response to an encipher query (7', P) for some
P. Similarly, the adversary never queries its enciphering oracle with (7', P) if it got P as a
response to a decipher query of (7, C') for some C. These queries are called pointless as the
adversary knows what it would get as responses for such queries.

TES are generally constructed using a block cipher as the basic primitive. Thus, the basic
construction goal is to extend the domain of the block cipher to a domain which can contain
arbitrary long strings of variable lengths, also one needs to incorporate the tweak. There
have also been attempts to design TES from scratch, i.e., to design a tweakable block cipher
with arbitrary block lengths. In this thesis we will concentrate only on the block-cipher
based constructions, as they have been widely studied and also are known to be secure.

A design of a TES is done keeping in mind the considerations of efficiency usability and

74 Chapter 4. Tweakable Enciphering Schemes

security. We elaborate on these considerations next:

1. Efficiency : As said before, most known TES constructions are block cipher based.
The block cipher based constructions also sometimes use certain kinds of hash functions
which are realized using finite field multiplications. Thus the basic efficiency is mea-
sured by the number of block cipher calls and finite field multiplications required in the
construction. The ease of parallel implementations is also an important consideration.
A scheme which is amenable to parallelization can have a pipelined implementation
in hardware (or can use instruction pipelining in software) thus giving rise to more
efficient schemes.

2. Usability : Various kinds of usability requirements are considered for designing TES.
An important consideration is the input message lengths. It turns out that a TES
which is designed for only fixed length messages is less complex (and hence more
efficient) than schemes which can handle variable lengths. Hence it is useful to have
specifications only meant for fixed length messages in application scenarios where this
restriction can be tolerated. Thus, some designers who have proposed schemes for
arbitrary long messages also have proposed some modifications which can be used only
for fixed length messages. Another usability consideration is the number of key bits
necessary. Keys in any application needs to be stored securely, thus it is assumed that
the more key bits a scheme requires it becomes more costly to use it, as one needs
to bear the cost of storing the key securely. Hence, one of the important goals in the
designs is to use minimal amount of key material.

3. Security: A block cipher based TES design is generally associated with a security
proof. The security proof proves an upper bound on the +prp advantage (see Eq.
4.1) of an arbitrary adversary. Generally two different bounds are proved, namely the
information theoretic bound and the complexity theoretic bound. While proving the in-
formation theoretic bound, the block cipher used in the construction is thought to be
secure in the sense of a random permutation/function.The information theoretic bound
generally depends on the query complexity® (o) of the adversary and is independent,
of its running time. For all TES, generally an information theoretic bound of the form
O(c?)/2™ is known, such a bound is commonly called a quadratic security bound. An
important goal is to design schemes where the security bound is small. The complexity
theoretic bound considers the block cipher as a pseudorandom permutation/function
and hence this bound is more than the information theoretic bound. Once the infor-
mation theoretic bound is known, the corresponding complexity theoretic bound can
be easily derived from it using some standard techniques [65].

!The query complexity (o) of an adversary is defined as the number of n blocks of queries made by the
adversary to its oracles, where n is the block length of the underlying block cipher used to construct the
TES.

4.3. A Brief History of the Known Constructions of Tweakable Enciphering
Schemes 75

4.3 A Brief History of the Known Constructions of Tweakable
Enciphering Schemes

In this section we provide a brief history of the TES constructions known till date. Later in
Section 4.5 we provide details of some existing constructions.

The first work to present a scheme which is very near to a TES was by Naor and Reingold
[107]. This work provides a construction of a strong pseudorandom permutation (SPRP)
on messages of arbitrary length. The construction consists of a single encryption layer in
between of two invertible universal hash functions. They did not provide a tweakable SPRP
(which is the requirement for a TES) since their work predates the notion of tweaks which
was introduced much later in [93].

The first construction of a tweakable SPRP was presented in [65] which was called the CMC
mode of operation. Also, in [65] it was first pointed out that tweakable SPRP is a suitable
model for low level disk encryption and thus TES should be used for this application. As
mentioned, in this application, the disk is encrypted sector-wise and the sector address
corresponds to the tweak (we elaborate more on this in Section 4.4). CMC consists of
two layers of CBC encryption along with a light weight masking layer. The sequential
nature of CBC encryption makes CMC less interesting from the perspective of efficient
implementations.

Using the same philosophy of CMC a parallel mode called EME was proposed in [66]. In
EME the CBC modes of CMC are replaced by electronic code book (ECB) layers which
are amenable to efficient parallelization. EME has an interesting limitation that it cannot
securely encrypt messages whose number of blocks are more than the block length of the
underlying block-cipher, for example, if AES is used as the block cipher in EME then it can
securely encrypt messages containing less than 128 blocks. This limitation was fixed in the
mode EME* [66].

The modes CMC, EME, EME* have been later classified as encrypt-mask-encrypt type
modes. As they use two encryption layers along with a masking layer. For encrypting
m blocks of messages, these modes require around 2m block cipher calls, and the block
cipher calls are the most expensive operation used by these modes.

A different class of constructions which have been named as the hash-counter-hash type, con-
sist of two universal hash functions with a counter mode of encryption in between. The first
known construction of this kind is XCB [101,102]. In [101] the security of the construction
was not proved, which was done later in [102].

HCTR [141] is another construction of this category which uses the same methodology of
XCB. A serious drawback of HCTR was that the security proof provided in [141] only
guaranteed that the security degrades by a cubic bound on the query complexity of the
adversary. As quadratic security bounds for TES were already known, so HCTR seemed

76 Chapter 4. Tweakable Enciphering Schemes

to provide very weak security guaranties compared to the then known constructions. In an
attempt to fix this situation HCH [31] was proposed, which modified HCTR in various ways
to produce a new mode which used one more block cipher call than HCTR but provided a
quadratic security guarantee. HCH offered some more advantages over HCTR in terms of
the number of keys used, etcetera. In [105] another variant of HCTR was proposed which
provides a quadratic security bound and later in [28] a quadratic security bound of the
original HCTR construction (as proposed in [141]) was proved.

ABL [100] is another construction of the hash-counter-hash type, but it is inefficient compared
to the other members of this category. The constructions of this type require both finite
field multiplications along with block cipher calls. The efficient members of this category
use about m block cipher calls along with 2m finite field multiplications for encrypting a m
block message.

The paradigm proposed for the original Naor and Reingold construction [107] has also been
further used to construct TES and they are categorized as hash-encrypt-hash type. Examples
of constructions of this category are PEP [29], TET [64], HEH [122]. Like the hash-counter-
hash constructions these modes also require about m block cipher calls and 2m finite field
multiplications for encrypting a m block message.

In [128] significant refinements of constructions of hash-counter-hash and hash-encrypt-hash
constructions were provided. The main idea in [125] is using a new class of universal hash
functions called the Bernstein-Rabin-Winnograd (BRW) polynomials. The BRW polynomi-
als provide a significant computational advantage, as they can hash a m block message using
about m /2 multiplications in contrast to usual polynomials which require m multiplications.
These new modes proposed in [125] are called HEH[BRW]| and HMCH[BRW]. These modes
can also be instantiated using usual polynomials, and such instantiations result in the modes
HEH|Poly|] and HMCH|[Poly|. The TES using BRW polynomials are discussed in Chapter 6.

4.4 'Tweakable Enciphering Schemes and Disk Encryption

The problem of low level disk encryption, as introduced in Chapter 1 consists of encrypting
individual sectors/blocks in a block oriented storage media. As the sector length is fixed
(generally 512 or 4096 bytes), thus, a length preserving deterministic encryption scheme
should be used. 2

TESs has all these required properties, also as TES are tweakable it can provide ample cipher
text variability which makes them more suitable for the application. The sector address is
generally considered to be the tweak, hence when two different sectors are encrypted with

2Though the restriction of length preserving encryption scheme has been stressed in the literature and
standards till date, in Chapter 10 of this thesis we argue that this requirement may not be that necessary
as is thought of.

4.5. Description of some TES 77

two different tweaks, this makes the cipher texts in two different sectors different even if
they store the encryption of the same information. This property can thwart many kinds of
attacks.

TESs provide security in the sense of a strong pseudorandom permutation on the whole
sector. This is quite a strong notion of security for deterministic ciphers. The security
definition guarantees that the cipher texts produced by a TES are indistinguishable from
random strings, moreover the security definition suggests that if a single bit in the ciphertext
is changed then on decryption a string indistinguishable from a random string is produced.
The second property serves as a form of authentication, as there is no way for an adversary to
change a ciphertext stored in a sector so that it would get decrypted to something meaningful.
It is to be noted that in a length preserving encryption scheme it is not possible to provide
the service of data authentication as is provided by authenticated encryption (AE) schemes.
As discussed in Section 2.5.2, an AE scheme outputs a tag which serves as a footprint of
the message encrypted, and on decryption this tag can be checked to see if any adversarial
tampering of the ciphertext has taken place. This though is the most preferred form of
authentication, but as is obvious the tag adds to the length of the ciphertext and always
makes the ciphertext longer than the plaintext. Thus, authentication as provided by AE
schemes cannot be provided by any length preserving encryption scheme. So though TES
do not provide true authentication an in AEs but as stated above, ciphertext tampering in
TES can be detected by the high level applications which uses the data.

4.5 Description of some TES

In this section we provide detailed a description of some of the existing TES. Most of the
algorithms in their original proposals are stated in the highest possible generality, i.e., the
designers of some of the proposals have tried to incorporate messages and tweaks of arbitrary
lengths. However this generality is not required in practice for the disk encryption problem,
as the message in this case is always of fixed length (512 bytes or 4096 bytes), which is again
a multiple of the most used block length (128 bits) of a block cipher. The tweak, which is
the sector address, is also of fixed length and it can be restricted to one block. Hence, the
description of the algorithms provided in this Section assume above length restrictions for
both the plaintexts and the tweaks.

4.5.1 Hash-Counter-Hash

We begin with the description of the Hash-Counter-Hash type algorithms. We describe in
details three schemes, namely, HCTR [141], HCH [31], XCB [101].

This class of TES constructions utilize a variant of the Wegman-Carter polynomial hash [24]

78 Chapter 4. Tweakable Enciphering Schemes

combined with a counter mode of operation. The scheme described in Fig. 4.1 is the
encryption procedure using HCTR. Lines 1 and 5 of the HCTR algorithm compute the
Hy(.) hash function. For a plaintext string P = Py||P||- - - || P, where P; € {0,1}", Hy(P)
is defined as

Hy(P) = Ph™ " @ PBR™ & ... @ P,h* @ bin, (| P|)h, (4.2)

where h is an n-bit hash key. In addition to the two hash layers, HCTR performs a counter
mode of operation in line 4. Given an n-bit string S, a key K and m blocks of plain-
text /ciphertext Aj, A, ..., A, (A; € {0,1}"), the counter mode is defined as,

Ctrgs(Ar, ..., An) = (A1 @ Ex(S @ bin,(1)),..., A, ®

Ex (S & bin, (m))). (4.3)
P+ T P2 Pm
[X X J
\ -
N o Hn .
Algorithm HCTR.EncryptlT(yh(Pl, coy P) MM
2. CC + Ex(MM); v S
3. S« MMeaCC E<| @—Ccin
4. (Cg,...,Cm_l,Cm) f
« Ctries(Pay. .., Pr); ce T
5. C1 + CC @ Hp(Co||Cs]|...]|Cn|T); v B
6. t Ci,...,Cn);)
return (C;) e H.) :
[X X J
A J A) A J
Ci C: Cm

Figure 4.1: HCTR, encryption algorithm and block diagram.

The HCH algorithm is described in Figure 4.2. As we can see in Figure 4.2 the HCH
algorithm is very similar to that of HCTR. The main difference is the way the tweak is
handled and an extra encryption before the counter mode. The structural difference can be
easily observed by comparing Figure 4.2 and Figure 4.1. HCH also uses a polynomial hash
similar to that of HCTR. For P = P||Ps||---||Pn, where P; € {0,1}" the hash function
Hpo(-) is defined as

Hpo(P)=QoP®o RR"'® BR"*® - ® P, 1R*® P,R. (4.4)

The counter mode of HCH is same as that described in Eq. (4.3). HCHfp is an improvement
over HCH which works only for messages whose lengths are multiple of n (the block size

4.5. Description of some TES 79

of the block cipher). Compared to HCH, HCHfp saves one block cipher call but require an
extra key for the polynomial hash as in HCTR. To obtain HCHfp from the algorithm of
HCH presented in Figure 4.2 we just eliminate the computation of R and it is obtained as
an input. Moreover, as all the blocks in the messages are complete (all the blocks in the
message have n bits) padding is not necessary for the last block. The computation of @) is
changed as) < Ex(T). Following these changes HCHfp is obtained. The net saving that
HCHfp gets over HCH is the block cipher call to produce R, but this saving is obtained at
the cost of the key size, as in HCHfp R is obtained as an input key.

The XCB scheme is illustrated in Figure 4.3. XCB uses the hash hy,(P,T), where P is as
defined above and 7' is an n bit string. The hash hy,() is defined as

hi(P,T) = P™ @ PA™ @ - - Puh® @ TH* @ (bins (| P|)]|bins (|T]))A, (4.5)

The counter mode in XCB is a bit different from the one in Eq. (4.3). Let us define a function
incr;(S), where 7 is a positive integer and S an n-bit string. Let S = 5)||.S,, where S, is 32
bits long and S; is (n — 32) bits long. Then we define

incr;(S) = S)||[(S- +1i) (mod 2%)].

The counter mode of line 6 of the XCB algorithm is defined as

Ctrrgs(Ar, ..., An) = (A1 @ Ex(incri(S)), ..., A, @ Ex(incr,,(S)) (4.6)

4.5.2 Encrypt-Mask-Encrypt

The candidate for the Encrypt-Mask-Encrypt category that we describe here is called EME
which stands for ECB-Mask-ECB. As the name suggests, the EME algorithm consists of two
ECB layers with a layer of masking in-between. The description of the EME algorithm is
provided in Figure 4.4. This TES uses the variants of ECB described in the algorithm in
Fig. 4.4 as First-ECB and Last-ECB. These functions are defined as follows:

FiTSt—ECB(Xl,. .. >Xm : L) = (EK(Xl @L)aEK(X2 @xL)’ o aEK(Xm @xmflL))
Last—ECB(Xl, e, X L) = (EK(Xl) D L,EK(XQ) ®xl,... ,EK(Xm) D xmilL)

EME has some message length restrictions. If the block length of the underlying block
cipher is n, then the message length should always be a multiple of n. Moreover, EME
cannot encrypt more than n blocks of messages. This means that if an AES-128 is used
as the underlying block-cipher, then EME cannot encrypt more than 2048 bytes (2 KB) of
data. This message length restriction was removed in a construction called EME* [63] which

80 Chapter 4. Tweakable Enciphering Schemes

P+ P P
[X X J
\ h
Algorithm H(]H.Encryptg(Pl7 vy Pr) 6 Hra E
1. R+ Ex(T); Q + Ex(R® bin,(|P])); M, <
2. 1<« |Pnl; My, < pad,,_,.(Pn);
3. My Hrq(Pi,..., Pn-1, Mp); y ! v
4 Ul%EK(]\/Il),I%Afl@Ul Ex Ex s
S« Ex(I); EA?I. Citrk
5. (Cg,...7CT,L_1,Dm) U1
— CtrK_’S(PQ, - ,mel, Afm);
6. Cp, < drop,,_,.(Dm); Un < pad,,_,.(Chn);) 4 -
7. C HR-,EQ(Ulv CQ; ceey Cmfla Um); E Hrxa :
8. return (Cy,...,Ch); <
L X X J
A \/ \
(oF C: Cn

Figure 4.2: HCH, encryption algorithm and block diagram. The function pad, ,.(F,,) adds
(n — r) zeros to the end of P,,.

P+ P. P
[X 1]
Algorithm XCB.EncryptT;((P17 ey Pr)
1. KO — EK(OTL); K1 — EK(OTL_1||1);
2. K<+ Eg(0"2|10); K3 + Ex (0" 2||11);
3. K4+ Ex(0"3||100); '
4. A<+ Eg,(P); -~ otr
5. Hl%A@hKl(PQHHPm,T), ¥ o :
6. (Cay...,Cm-1,Cn) E <5
— CtrKLHl(PQ,...,Pm); F Hk P :
7. HQ%Hl@hKS(CQHC(gH||Cm,T) v -
8. Ci + Ey.(Hy); ; T
9. return (Cy,...,Ch); Ex
o®®
* Y vV
Ci C. Cn

Figure 4.3: XCB, encryption algorithm and block diagram.

requires more block-cipher calls than EME. In [123] the EME mode was further generalized.

4.5. Description of some TES 81

Algorithm EME.Encrypty (Pr, Py, ..., Py);
1. L+ 2Bk (0™);
2. (PPPy,...,PPP,)
+First-ECB(Py, Pa, ..., Py; L);
MP < (PPP, ® PPP;®...® PPP,)®T;
MC + Ex(MP); M + MP @& MC;
for i < 2 tom do
CCC; + PPP; @ x'~'M;
end for
CCCy + MC
BCCC; CCC3D ... CCCy,) BT
9. (C1,Cyq,...,Cy)
+Last-ECB(CCCh4,...,CCC,y,; L);
10. return C1,Cs,...,Cy;

© NG W

Figure 4.4: EME, encryption algorithm and block diagram.

4.5.3 Hash-Encrypt-Hash

TET and HEH, fall under the category Hash-Encrypt-Hash. As described in the corre-
sponding algorithms in Figure 4.5 and Figure 4.6, these two schemes also use polynomial
hash functions similar to the ones included in HCH and HCTR. TET uses two layers of block-
wise invertible universal hash functions with an ECB layer of encryption between them. To
compute the hash function, TET requires a hash key 7 which must meet certain properties.
To ensure invertibility of the hash function, 7 must be such that for an m block message,
o=" 1 #0, with 0 € GF(2"). For this to be true one requires different hash keys
for different message lengths. The authors propose a way to generate the hash key 7 from
a master key. The encryption algorithm also requires the value of ¢~!. This makes TET
rather complicated for applications which require encryption of variable length messages. In
this Section, we only present a fixed length version of the TET algorithm. Also we assume
a fixed value of 7 and that ¢~! has been pre-computed offline.

HEH is a significant improvement over TET, where the requirement of the inverse compu-
tation has been completely removed. The algorithm for HEH as described in Figure 4.6, is
also meant for fixed length messages. The specific version of HEH that we present in Figure
4.6 has been named by the authors in [122] as HEHfp.

We summarize in Table 4.1 the characteristics of the various modes that we described. Table
4.1 shows the number of basic operations required by each TES, and also the number of keys
associated to them. The security provided by each mode is similar in nature, i.e. every

82 Chapter 4. Tweakable Enciphering Schemes

Algorithm TET.EncryptIT(l7K27T70(P17 Po,. ..
L« |P];
X Eig, (L)
B Ex, (T ® zX); P, P,
SP — 0"; SC <+ 07
for i+ 1tom
SP+ (SP& P)T ;
end for
SP ¢+ SPo!
for i< 1tom
PP, < P, & SP;
PPP, « PP, @2~ 18;
CCC; « Ey,(PPP); -
CC; + CCC; @ x~1p
SC + (SCa CCy)T
. end for
. SC « SCo~ 1 C
.for i+ 1tom
Ci+ CC; e SC
. Return (1, ...,C)y;

7PT)'L)

@O NG WD

©

H
e

— = = e
CUR o=

— = = =
© 0~ o

Figure 4.5: TET, encryption algorithm and block diagram.

mode depicted in Table 4.1 has a quadratic security bound. 3

Table 4.1: Summary of the characteristics of the TES described. We consider a fixed length
m-block message for all the schemes.

‘ Mode ‘ Type ‘ BC Calls ‘ Field Mult. ‘ no. of keys ‘
HCH Hash-Counter-Hash m+3 2(m —1) 1
HCHfp | Hash-Counter-Hash m+ 2 2(m—1) 2
HCTR | Hash-Counter-Hash m 2(m+1) 2
XCB Hash-Counter-Hash m+ 6 2(m+1) 1
EME | Encrypt-Mask-Encrypt | 2(m + 1) 0 1
TET Hash-Encrypt-Hash m+ 2 2m + 2 3
HEH Hash-Encrypt-Hash m+ 1 2m 2

3Note that in the original paper [141] where HCTR was proposed, the author showed a cubic bound which
was improved in [28]. The original paper [101], where XCB was proposed did not have a security proof. The
security proof of XCB was recently reported in [102].

4.6. Activities of IEEE SISWG 83

Algorithm HEH.EncryptIT(yT(Pl7 Py,...,Pp)
B1 < Ex(T); B2 < xb1;
U(*Pl;
for i =1 to m,
end for
Q + Bi;
fori=1tom—1
Q < 20
PP+ PoU®Q;
. end for
. PP, U ® py; CCy, < Ex(PPy);
V= CCr & B2; Q < xf;
.for i+ 2tom—1
Q+—2Q 0+~ CC;,oQBV;
W Wro G
. end for
O~ VaoeWr
. Return C1, ...,C)y;

@O NS TR D

— = = e e = O
T WO

N = = = =
S ©w-o

Figure 4.6: HEH, encryption algorithm and block diagram.

4.6 Activities of IEEE SISWG

The current activities surrounding the problem of storage encryption have been broadly di-
rected by an active standardization procedure being performed by IEEE working group on
security in storage (SISWG). SISWG has been working towards security solutions in various
storage media. SISWG has four task groups: 1619 which deals with narrow block encryp-
tion, 1619.1 which deals with tape encryption, 1619.2 deals with wide block encryption and
1619.3 which deals with key management. The task groups 1619 and 1619.2 are responsible
for standardizing encryption algorithms for fixed-block storage devices and hard disks fall
under this category. Both the task groups (1619 and 1619.2) have concentrated only on
length preserving encryption stressing this to be an important criteria for disk encryption.
The task group 1629.1 has standardized authenticated encryption for the purpose of tape
encryption, as in tapes there exist extra space for the authentication tag.

The task of 1619 has been completed and they have come up with the standard document
1619-2007 which specifies a mode called XTS-AES [42]. XTS is derived from a previous con-
struction of Rogaway [118] which was called XEX. As we mentioned in Section 4.1 XEX is a
tweakable block cipher and in [118] it was shown how such a tweakable blockcipher can be
used to construct authenticated encryption schemes and message authentication codes. XTS

84 Chapter 4. Tweakable Enciphering Schemes

is different from XEX by the fact that it uses two keys and later it was pointed out in [92]
that the usage of two keys was unnecessary. The XTS can be seen as an electronic code
book mode of tweakable block-ciphers where each block uses a different tweak, hence the
name “narrow block mode". XTS is efficient, fully parallelizable, and possibly does not have
any patent claims. But it is questionable whether XTS provides adequate security for the
disk encryption problem. XTS is deterministic and there is no scope of authentication, also
trivial mix and match attacks are applicable to XT'S. These weaknesses are acknowledged
in the standard document itself. The document gives a proof of the security of XTS (the
validity of the proof has also been contested in [92], where a better proof has been provided),
but it only proves XTS as a secure tweakable block-cipher, this assurance is possibly not
enough to use XTS for the disk encryption application. This concern has been voiced in
other public comments like in [136]. In spite of these criticisms XTS has been standardized
by NIST [42].

1619.2 is working on wide block modes, which means they would standardize a mode of
operation which behaves like a (tweakable) block-cipher with a block length equal to the
data length of a sector. This notion is satisfied by tweakable enciphering schemes (TES),
and the security guarantees provided by TES seem adequate for the disk encryption scheme
as the ciphertexts produced by them are indistinguishable from random strings and are also
non-malleable [65]. Thus, the wide block modes would be much more interesting in terms
of security than the XTS mode. But, TES are much more inefficient than XTS. 1612.2
has chosen two modes EME2 (a variant of EME [66]), and XCB [101] for standardization,
but the final standard document is not yet out. Among many available TES the reason for
choosing EME2 and XCB is not clear. At least the studies presented in this thesis show
XCB to be the least efficient mode and both XCB and EME are covered by patent claims.

4.7 Final Remarks

In this Chapter we introduced various aspects of TES including their definition, security and
some existing constructions. We also argued about the suitability of TES for the application
of disk encryption and the recent standardization activities related to disk encryption. In
the next Chapter we provide detailed analysis of some TES from the perspective of hardware
implementations and also provide some hard experimental results on the implementations.

Chapter

Baseline Hardware
Implementations of

Tweakable Enciphering
Schemes

Emancipaf@ yoursdf from m@nfa(SL“U@Ty,

none but ourselves can free owr mind.

Bob /\/Lar(@y

In spite of numerous activities directed towards design of efficient and secure TES and
an active standardization effort [71], little experimental data regarding these schemes were
known prior to this work. Authors had mostly used heuristic efficiency arguments based
on operation counts to compare between different modes. Such arguments based solely on
operation counts, however, are only valid if one assumes a software implementation of the
mode. In hardware efficiency estimates based only on operation counts are inadequate, as
in hardware there is a possibility of using parallelism which cannot be captured by only
operation counts. In this Chapter we present optimized hardware implementation of six
TES. The modes we chose are HCH, HCTR, XCB, EME, TET and HEH. Also we provide
performance data for a variant of HCH, called HCHfp, which is particularly useful for disk
encryption. The rationale behind the choice of these specific modes is discussed next.

The modes that we left out in this study are CMC, PEP and ABL. CMC which use two
layers of CBC type encryption cannot be pipelined. PEP and ABL are particularly inefficient
compared to their counterparts. We also do not present the implementation of EME* which
is a modification over EME, the structure of EME and EME* are same from the hardware
implementation perspective. There have been some recent proposals of TES which uses
specialized polynomials, these schemes HMCH[BRW] and HEH[BRW] [128] have been dealt
with separately in Chapter 6.

For all the implementations we use AES-128 [38] as the underlying block-cipher. Whenever
required we use a fully parallel Karatsuba multiplier to compute the hash functions. We
carefully analyze and present our design decisions and finally report hardware performance
data of the six modes. Our implementations show that in terms of area HCTR, HCH, TET,
HEH and XCB require more area than EME. HCTR performs the best in terms of speed
followed by HEH, HCHfp, EME, TET, HCH and XCB.

86 Chapter 5. Baseline Hardware Implementations of TES

Most of the material presented in this Chapter have been published in a concise form in [97].
As per our knowledge [97] is the first work which reports extensive performance data of TES
in various platforms.

5.1 Design Decisions

For implementing all six schemes we chose the underlying block cipher as AES-128. As it
was mentioned before, the designs that we present here are directed towards the application
of disk sector encryption. In this specific application the messages are all of fixed length and
we consider them to be multiples of 128 bits. In particular, our designs are optimized for
applications where the sector length is fixed to 512 bytes. As the sector address is considered
to be the tweak, thus the tweak length itself is considered to be fixed and equal to one block
length of the block cipher.

The speed of a low level disk encryption algorithm must meet the current possible data
rates of disk controllers. With emerging technologies like serial ATA and Native Command
Queuing (NCQ) the modern day disks can provide data rates around 3Giga-bits per second
[130]. Thus, the design objective should be to achieve an encryption/decryption speed which
matches this data rate.

The modes HCH, HCTR, XCB, TET and HEH use two basic building blocks, namely, a
polynomial xor universal hash and the block-cipher. EME requires only a block-cipher.
Since AES-128 was our selection for the underlying block-cipher, proper design decisions
for the AES structure must meet the desired speed. Out of many possible designs reported
in the literature [55,60,69] we decided to design the AES core so that a 10-stage pipeline
architecture could be used to implement the different functionalities of the counter mode,
the electronic code book (ECB) mode and the encryption of one single block that we will
call in the rest of this work single mode.

This decision was taken based on the fact that the structure of the AES algorithm admits
to a natural ten-stage pipeline design, where after 11 clock cycles one can get an encrypted
block in each subsequent clock-cycle. It is worth mentioning that in the literature, several
efficient designs with up to 70 pipeline stages have been reported [76], but such designs would
increase the latency, i.e., the total delay before a single block of cipher-text can be produced.
As the message lengths in the target application are specifically small (in particular the
most used sector size is of 512 bytes), such pipeline designs are not suitable for our target
application.

The main building block needed in the polynomial hash included in the specification of the
HCH, HCTR, XCB and TET modes, is an efficient multiplier in the field GF(2'%®). Out of
many possible choices we selected a fully parallel Karatsuba multiplier which can multiply
two 128-bit strings in a single clock-cycle at a sub-quadratic computational cost [116]. This

5.2. Implementation of Basic Blocks 87

time efficient multiplier occupies about 1.4 times the hardware resources required by one
single AES round.!. Because of this, the total hardware area of EME (which does not
require multipliers) is significantly lesser than that required by the other modes that we
study. A more compact multiplier selection would yield significantly lower speeds which
violates the design objective of optimizing for speed.

It is noted that the specifications of HCTR, XCB, TET and HCHfp algorithms imply that one
multiplicand is always fixed, thus allowing the usage of pre-computed look up tables that can
significantly speed up the multiplication operation. Techniques to speed up multiplication
by look-up tables are discussed in [12,99,103,132] for the software platform scenario. These
techniques can be somehow be extended to hardware implementations also. However, there
is a tradeoff in the amount of speed that can be obtained by means of pre-computation and
the amount of data that needs to be stored in tables. Significantly higher speeds can be
obtained if one stores large tables. This speedup thus comes with an additional cost of area
and also the potentially devastating penalty of secure storage. Moreover, if pre-computation
is used in a hardware design then the key needs to be hardwired in the circuit which can
lead to numerous difficulties in key setup phases and result in lack of flexibility for changing
keys. Because of the above considerations, we chose not to store key related tables for our
implementations. Thus the use of an efficient but large multiplier is justified in the scenario
under analysis. 2 Regarding storage of key related materials we make an exception to this
in case of TET. TET requires computation of a inverse, which is a particularly expensive
arithmetic operation. In case of TET we store the hash key 7 along with the pre-computed
value of o~!, this storage helps us to get rid of a field inversion circuit but does not help us
to speed up multiplications.

We implemented the schemes on a FPGA device which operates at lower frequencies than
true VLSI circuits. Thus the throughput that we obtain probably can be much improved if
we use the same design strategies on a CMOS VLSI technology. Our target device was a
XILINX Virtex 4, xc4v1x100-12FF1148.

5.2 Implementation of Basic Blocks

In this Section we describe how the basics building blocks TES were implemented, i.e., the
AES and polynomial hash using a Karatsuba multiplier.

IFor specific experimental details see Table 5.1.
2The same design decision was taken in [99].

88 Chapter 5. Baseline Hardware Implementations of TES

cd inAES Initial Key
|
Key
i Generator
BS T
L
SR Po Rand1 = ko1 J<
Pl M
Me _-~7 777 Round2 w
ADDRK | _-~ Lo
777 Ronds [<— key3 f<—
i
=== Ronda = Keya J=
| E——

|

== Rounds
"L Row [ers ||
i’” Round 7 M(—
7= Ronds < keys =]
Airém(__/»ﬂ_‘:f’ Round 10 < Key10 [<—

outAES

Figure 5.1: AES Pipeline Architecture

5.2.1 The AES Design

In general terms, the AES algorithm is a sequence of pre-defined transformations which
process the input data, depending on the key length used, in 10, 12 or 14 iterations called
rounds. The last round differs from the others. AES uses one of three cipher key-lenghts
128, 192 or 256 bits, and has a fixed block length of 128 bits. For our implementations we
choose the AES with key length of 128 bits, such an AES operates in ten rounds. Each
round can be further sub-divided into four basic steps, namely, shift rows, byte substitution,
mix columns and add round key. The last round is different from the others in the sense that
in this round the mix columns operation is not performed. In addition to the rounds AES
requires a key expansion algorithm which expands the input 128 bit key to more key bits to
be used independently in each round.

We implemented two AES, one sequential architecture that yields a valid output after 11
clock cycles and another based on a 10-stage pipeline structure able to encrypt one block
per cycle after eleven cycles of latency. Both implementations utilized double port memories
for computing the AES Byte Substitution (BS) transformation.

For the sequential design, we implemented only one round that contains the four AES steps
along with a multiplexer block that eliminates the MixColumn step in the tenth round as
is shown in Figure 5.1. The control circuit consists of one 4-bit ascending/descending order
counter for encryption/decryption, respectively. The counter output points to the correct
address where the keys are stored and it controls the multiplexer M1 that feedbacks the
round or it allows that a new input data comes in, and the multiplexor M2 that controls
the omission of the MC transformation in the tenth AES round. For decryption we followed
the procedure described in [38]. It is worth mentioning that the key schedule process is
accomplished after 10 clock cycles. Each round key so generated is stored in a 128x32 RAM
memory.

5.2. Implementation of Basic Blocks 89

readyAES
: AES
s .
key A OUAES
P Q
Counter N :
T
CAES S inAES mas

Figure 5.2: AES Architecture in sequential and Counter Modes

In the AES pipeline implementation the 10 AES rounds are unrolled, while the key genera-
tion is computed sequentially and each one of the round keys is stored in a register directly
connected to the corresponding round as is shown in Figure 5.1. Because of synchronization
purposes, each AES round is isolated from the preceding one by a latch circuit. This imple-
mentation does not use a control unit, since this is added with the help of outside circuitry
whenever the AES core will be used in simple or counter mode. In this design, starting from
cycle eleven, valid outputs will be produced every clock cycle.

In the designs of the modes we need to use the AES in different ways. For example, in case
of HCTR and HCH we require to encrypt the bulk information using a counter mode and
also at times only a single block of message is required to be encrypted. In case of TET and
HEH we need an electronic code book (ECB) mode along with the capability of encrypting
single blocks. This different functionalities can be easily obtained by two different encryption
cores one suited for one block encryption (the single mode) and the other for encryption of
multiple blocks. But, for most applications, the implementation of two separate AES cores
is prohibitive in terms of cost. Therefore, we decided to use a single AES core that can
be programmed for implementing both functionalities, namely, the counter mode (or ECB
mode) and the single mode computation. This is realized by the circuit shown in Figure 5.2.

5.2.2 The Design of the Multiplier

Our strategy for multiplication is based on the Karatsuba multiplier as it was presented
in [116]. The Karatsuba multiplier enjoys a superb sub-quadratic complexity of O(n!°923)
bit operations for multiplying two polynomials of degree less than n as we will briefly ex-
plain next. Let the field GF(2'*®) be constructed using the irreducible polynomial ¢(x) =
212 + 27 + 22 + 2+ 1. Let A, B be two elements in GF(2!%). Both elements can be repre-
sented in the polynomial basis as,

90 Chapter 5. Baseline Hardware Implementations of TES

N N Ny
Mul 64 | Mul 64 | Mul 64 |
I
| Mul 32 | | Mul 32 | | Mul 32 |
I
N N Ny
Mul 16 | | Mul 16 Mul 16 |
|Mu|8 | |Mu|8 | |Mu|8 |
I
N A Ny
|Mu|4 | |Mu|4 | |Mu|4 |

Figure 5.3: Structure of the Karatsuba Multiplier

127 127 63
A= D ar =) ar'+) axa
=0 =64 =0

63 63
= % Z Qi st + Z a;xt = %A 4 AL
=0 i=0

and

127) 127) 63)
B = Z bil’l = Z bil’l + bil’l
=0 =64 =0
63] 63]
— x64zbi+64xz + szxz — .’1764BH 4 BL
=0 =0

Then, using last two equations, the polynomial product is given as

AB = o'BATBH 1 (AR B 4 AFB)2% + AFBE (5.1)

Karatsuba algorithm is based on the idea that the product of last equation can be equiva-
lently written as

C = .T128AHBH—|—ALBL—|—

(ATBH 1 ALBE 4 (A" + ALY (BE + BH))a5 (5.2)
= 807 4 CL.

It is easy to see that Eq. (5.2) can be used to compute the product at a cost of four

5.3. The Design Overviews 91

Mul128 5 out

=)
K¢
X

Figure 5.4: Horner’s rule main Architecture

polynomial additions and three polynomial multiplications. In contrast, when using Eq.
(5.1), one needs to compute four polynomial multiplications and three polynomial additions.
Karatsuba algorithm can be applied recursively to the three polynomial multiplications in
(5.2). Hence, we can postpone the computations of the polynomial products A¥ B ALBL
and (A" + AL)(BY + B), and instead we can split again each one of these three factors
into three polynomial products. By applying this strategy recursively, in each iteration each
degree polynomial multiplication is transformed into three polynomial multiplications with
their degrees reduced to about half of its previous value.

Figure 5.3 shows the typical tree structure of a GF(2'?®) Karatsuba multiplier. The polyno-
mial multiplier shown in Figure 5.3 returns a 256-bit polynomial which we need to reduce
back to 128 bit using the irreducible polynomial, ¢(z) = x'* + 2" + 2% + x + 1.

For implementing the hash functions required in the modes we need to evaluate polinomials
in GF(2") we use the Horner’s rule to evaluate polynomials. The field multiplier is the
main building block for implementing the Horner’s rule Algorithm described in Fig 5.5. The
corresponding hardware architecture is shown in Figure 5.4. The implementation of the
hash functions required in the modes are based on this module.

5.3 The Design Overviews

In this Section we give a careful analysis of the modes’ data dependencies and we explain
how the parallelism present in the algorithms can be exploited. In the analysis which follows
we assume the message to be of 512 bytes (32 AES blocks). Furthermore, we assume a single
AES core designed with a 10 stage pipeline and a fully parallel single clock cycle multiplier.
We also calculate the key schedules for AES on the fly, this computation can be parallelized
with the AES rounds. The polynomial universal hash functions are computed using the
Horner’s rule shown in the algorithm of Figure 5.5:

92 Chapter 5. Baseline Hardware Implementations of TES

Algorithm HORN,(X1,..., X,,)
Y <07,
for i =1 to m,
Y «— (Y @ X;)h;
end for
return Y

Figure 5.5: The Horner’s Rule

HCH mode of Operation

Referring to the Algorithm of Figure 5.6 (a) the algorithm starts with the computation of the
parameter R in Step 1. For computing R the AES pipeline cannot be utilized and must be
accomplished in simple mode, implying that 11 clock cycles will be required for computing
R. At the same time, the AES round keys can be computed by executing concurrently the
AES key schedule algorithm. The hash function of Step 3 can be written as

Hro(Py, Py, ... P) =P oQ®Z

where Z = HORNR(Ps, ... P3). So, Z and () can be computed in parallel. For computing
Z, 31 multiplications are required and computation of) takes 11 clock cycles. So the
computation of the hash in step 2 takes 31 clock cycles. Then, the computation of Step
4 requires two simple mode encryption which implies 22 more clock cycles. So we need to
wait 64 clock cycles before the counter mode starts. The counter mode in step 5 requires
31 blockcipher calls which can be pipelined. So computation of step 5 requires a total of
30 + 11 = 41 clock cycles. The first cipher block C is produced 11 clock cycles after the
counter starts. The second hash function computation of Step 7 can start as soon as C is
available in the clock cycle 75. Hence the computation of the hash function can be completed
at the same time that the last cipher block (C,,) of Step 5 is produced. Figure 5.6 (b) depicts
above analysis. It can be seen that a valid output will be ready after the cycle 75 and a
whole disk sector will be ready in the cycle 106.

In case of HCHfp the computation of () is not required, and it uses a hash key which is
different from R. Thus R and the hash function can be computed in parallel, which gives
rise to a savings of 11 clock cycles. So HCHfp will produce a valid output in 64 clocks and
it will take 95 clock-cycles to encrypt the 32 block message (see 5.7(b)).

HCTR Mode of Operation

Referring to the Algorithm of Figure 5.8 (a), the computation of the hash function of Step
1 requires 33 clock cycles. At the same time, the design can derive the AES round keys

5.3. The Design Overviews 93

Key Schedule
R
Algorithm HCH.EncL (Pi, ..., Pum) Rl
1. R+ Eg(T); Q + Ex (R ®biny(1)); Q [
2. My, < pad,, _,.(Pm); M,
3. My « Hp,o(P1,. .., Pr_1, Mm); ; - Ui
4. Ui« Ep (M) I < My @ Uy; S « Ex(I); : : [
5 (Cor oot Do) : P P
<« Ctrg (P2, ..., Pp_1, Mm); : : Y |
o m T gepn D) Um o padn o (s L L G,
7. C14 HR2QU1,C2,...,Cp—1,Um); : : : Ziotm
8. return (C1,..., Cin). : : : : | C I
0 11 22 43 54 65 76 106
Clock Cycles

(a) (b)

Figure 5.6: (a) Encryption using HCH. The tweak is 7" and the key is K. For 1 <i <m—1,
|P;| =n and |P,,| = r where < n. (b) Timing diagram for HCH.

Algorithm HCHfp.Enc} , (P1,. .., Pm)
1. R+ Eg(T); ; Ul
2 My e (P Pons =
3. Uy + Eg(My); I + M1 & Uy; S+ Eg(I); 1]
4. (C2,...,Cpm—1,Dm) S
— Ctrig s (P2, ..,y Pm); -
5. C1+ Hpaq(U1,C2,...,Cm); i O [
6. return (Cq,..., Cm). : C]_
0 11 31 42 53 63 95
Clock Cycles

(a) (b)

Figure 5.7: (a) Encryption using HCHfp. The tweak is 7" and the key is (K,h). For
1 <i<m, |P|=n. (b) Timing diagram for HCHfp.

by executing concurrently the AES key schedule algorithm. Then, the computation of the
parameter C'C' in Step 2, must be accomplished in simple AES mode, implying that 11 clock
cycles will be required for completing that calculation. As in HCH mode, the m — 1 block
cipher calls included in Step 4 are performed in counter mode, which once again can be
computed in parallel via the pipeline architecture. Hence, the computation of all the C; for
i=2,...,m =32, can be computed in (32 — 1) + 11 = 42 clock cycles. At the same time,
the second hash function computation of Step 7 can start as soon as (5 is available in the
clock cycle 56. Hence the computation of the hash function can be completed at the same
time that the last block cipher (C,,) of Step 5 is produced. Figure 5.8(b) depicts the timing
analysis just given. It can be seen that a valid output will be ready after the cycle 55 and a
whole disk sector will be ready in the cycle 88.

94 Chapter 5. Baseline Hardware Implementations of TES

=Ke% :
{Schedule :
Algorithm HCTR.Enck , (P1,. .., Pm) ; MMI
1. MM « Py @ Hp(P2||...||Pm||T); : CC_
2. CC «+ Eg(MM); : -
3. S« MM®CC : | |
4. (Co,..., C1,Cm) : :
« Ctrie (P2, ..., Pm); : : |
5. Cl‘*?CEBHh(CZHCSH-HHCmHT); : : :
6. return (Cq,..., Cm). ! :
f L all
0 10 34 44 55 85 88
Clock Cycles

(a) (b)

Figure 5.8: (a) Encryption using HCTR. The tweak is 7" and K is the block-cipher key and
h the hash key. (b) Timing diagram for HCTR.

XCB Mode of operation

The computation of XCB starts with the derivation of the five keys (see Figure 5.9 (a)).
Derivation of each key requires a block-cipher call. These five block-cipher calls can be
parallelized thus requiring 15 clock cycles. The computation of the first hash requires 33
clock cycles and in the mean time the computation of the two key schedules and A can be
completed. The computation of the first hash which require 33 clock cycles can thus be
completed within clock-cycle 49. Then the counter mode starts, which requires 41 clock
cycles to complete. The second hash can start at clock cycle 59 and thus it is completed
in clock-cycle 93. For computing the last block, an AES decryption call is required with a
different key. Hence, completing the key schedule and the decryption requires another 21
clock cycles, and a reset operation is necessary before computing the new key schedule. This
thus gives rise to a requirement of 115 clock cycles to encrypt the whole sector. But the first
cipher block would be ready in case of XCB after clock cycle 59.

Algorithm XCB.EncL (Py, ..., Pp) F
1. Ko« 0" Ke :
2 Ky e 0" L ESci)w’edule :
3. Ko+ 0™ 2||10; : MMI
4. K3+ 0" 2||11; : CC-
5. K4 < 0" 3||100; : ;
6. A< Ex,(P1); ; sl
7. Hi < ADhg, (Pall...||Pm,T); : :
8. (C2,...,Cnm_1,Cm) : : :
— Ctrgey Hy (P2, .00, Prm); : : : .
9. Hz + H1 ®hg,(C2||C3]]...[|Cm,T); : : : : «all
10. Cq «+ E;i(Hg); : : : : H
11. return (Cq, ..., Cm); 0 10 34 C‘IM'kC |55 85 88
ock Cycles

(a) (b)

Figure 5.9: (a) Encryption using XCB. The tweak is 7" and K is the key from which two
different hash keys and 3 different block-cipher keys are derived. (b) Timing diagram for
XCB.

5.3. The Design Overviews 95

EME mode of Operation

Referring to the Algorithm of Figure 5.10 (a), the computation of the parameter L in Step 2,
must be accomplished in a sequential fashion, implying that 11 clock cycles will be required
for completing that calculation. Thereafter, the 32 block cipher calls included in Steps
3-6 can be accomplished using the benefits of the parallelism associated to the pipeline
approach. So, the computation of all the PPP; for i = 1,2,...,m = 32, can be computed
in (32 — 1) + 11 = 42 clock cycles. On the contrary, the cipher call in Step 9 for obtaining
MC must be performed in a sequential fashion, which implies 11 extra clock cycles. The
second layer of encryption can also be performed in 42 clock cycles and the operations z¢M
and 'L in steps 12 and 18 can be parallelized with the block-cipher calls. So to complete
encryption of 32 blocks EME should require 11 + 42 + 11 4 42 = 106 clock cycles. And the
first block of valid output would be produced after 75 clock cycles. Some pre-computations
may save some of the EME costs. For example, L in Step 2 is a quantity only dependent
on the key K, thus, L can be pre-computed yielding the saving of 11 clock cycles. But this
will require storage of key materials. Figure 5.10 (b) shows the EME operations that are
suitable for being computed in parallel.

Ke!
Algorithm EME.Enc };(P) Sc%edme
. Partition P into Py, Pa, ..., P, L
L+ zEg(0™)

for i + 1 to m do _
PRt Lo F; [—
PPP; + Ei(PP;) !

end for SP_

SP «+ PPPy ® PPP3® ... PPP,, : : MPll

MP «+ PPP, ®SP®T : : d

MC « Ex(MP) I MC [

10. M < MP @ MC : : : M

11. for 7 < 2 to m do H H N

12. CCC; + PPP;, @z~ M : : CoCce

13. end for P | sc I

14. SC + CCCy & CCC3 @ ...CCCy : : : :

15. CCCy « MC ® SC O T P Lo ccafl

16. for i 1 to m do N ‘e, [

17. CC; «+ Ex(CCC;) : : : ;

18. ¢+« Lecc; : : : : Cl—

19. end for g 5 g S ; y (

20. return C1,C2, ..., Cm 0 1 22 C?(?Ck (?;cles75 95 106

(a) (b)
Figure 5.10: (a) Encryption using EME. (b) Timing diagram for EME.

©ENDGE W

TET mode of Operation

Referring to the algorithm of Figure 5.11, the computation of the parameter 8 requires two
AES calls in the simple mode, which can be accomplished in 22 clock cycles. The computa-
tion of SP can be done in parallel. Computation of S P will require 32 multiplications which
can be completed in 33 clock cycles. In encryption it requires an extra multiplication with
o~!, Thus the computation of SP would be complete in 34 clock cycles. In the mean-time

96 Chapter 5. Baseline Hardware Implementations of TES

the key schedule for the second block-cipher key can also be completed. The computation
of PP; and PP P; can be parallelized and they can be computed in 33 clock cycles. As soon
as PP P, is available (which would be available at clock cycle 35), computation of CCC; can
start. Computation of CCC;, 1 = 1,...,32 will take a total of 32 block cipher calls which
can be completed in 42 (32 4 10) clock cycles. Thus, after clock-cycle 78 all CCC; s would
be ready. The computation of the final cipher texts C;-s would take another 32 clock cycles.
Thus, the whole disk would be ready after 110 clock cycles. And the first cipher block would
be ready after 79 clock cycles. Note that in this analysis we do not consider computation of
the inverse, which may give rise to a significant increase in the number of the required clock
cycles.

Algorithm TET.EncIT;I, (P)

Ko,m,0

1. Partition P into P = Py, ..., Py
2. L Pl; Ke:
2 X:‘EI‘(* @ Schedule 1
. L(L);
4. B+ Bx, (T ®aX); B |
5. SP —0"; SC « 0" SP
6. for i<+ 1tom i Ke
7. SP « (SP@® P;)T ; - Sqﬁedule2
8. end for : PPi
o b she] ' prei [
10. for i+ 1tom PPPi i :
11. PP+ P;®SP; . CCCi _
12 PP PP ol ls, oo e
13. CCC; + Eg, (PPP;); ! :
14. CC; «+ CCC; @'~ 1p SC_
15 SC'C(scaccyr s
16. end for ; ; i i : !
17. SC « SCo—1: 0 22 34 44 66 78 110

18. for i<+ 1tom Clock cycles
19. C; + CC; & SC ;
20. Return C1q, ..., Cpy;

(a) (b)

Figure 5.11: (a) Encryption using TET. K; and Ks both are block cipher key, 7 is the hash
key and o is its multiplicative inverse. (b) Timing diagram for TET.

HEH mode of Operation

HEH is a significant improvement over TET, where the requirement of the inverse computa-
tion has been completely removed. The algorithm for HEH as described in Figure 5.12(a), is
also meant for fixed length messages. The specific version of HEH that we present in Figure
5.12(a) has been named by the authors in [122] as HEHfp. HEHfp receives a hash key 7 as an
input, the computation of polynomial hash U is performed in parallel with the computation
of f; and (5. After 11 clock cycles 7 and [y are ready, U is finished in 31 clock cycles.
Having the value of U PP, is computed, then the computation of C'C), is performed and
after 11 clock cycles we obtain the values V. After one clock cycle the computation of PP,
is started and each PP; feed the AES to generate values C'C;. In clock cycle 42 we obtain V/
and we can compute the C;s in parallel with W that represents the second polynomial hash,
after 31 clock cycles C,, can be computed. Finally after 74 clock cycles the total sector of

5.4. Implementation Aspects 97

the disk will be encrypt. The improvement of TET achieved by HEH is also in the efficiency
while TET takes 110 clock cycles to encrypt 512 bytes, HEH takes only 74. The reason is
that the second hash in HEH can be parallelized with the computation of cipher text Cj;, in
TET that is impossible.

Algorithm HEHAEncg,T(Pl, Po,..., Pn)
B1 + Ex(T); B2 + zb1;

U + Pq;

for i = 1 to m,

U+ Ura P u
end for b1, 82
Q «+ B :
fori=1tom —1 H .

Q <+ zQ; H PP, |
PP« P, o UG Q; i CC,..CCp [
10. CC,; + Eg(PP;);

11. end for

12. PPy, <+ U @ B1; CCyy < Ex(PPp);
13. V «+ CCy, @ B2; Q <+ zB2;

14. C1 « CC1 D QD V; W « CCy;

©OND oA 0N

15. for i<+ 2tom —1 - : -

16. Q+2Q;C; + CC,®»Q®V; 0 11 31 42

17. W+ WrdC; Clock Cycles
18. end for

19. Cpp <+ VO WT

20. Return (Cq, ..., Cm);

(a) (b)
Figure 5.12: (a) Encryption using HEH. (b) Timing diagram for HEH.

5.4 Implementation Aspects

In practice, the timing performance of a generic hardware design will be determined by its
associated critical path and the number of clocks required to complete the computation. In
addition to the time, another important aspect which is required to be considered is the area.
As for the area utilization of a given design, some of the factors that have impact in hardware
resource utilization include: the number of temporary variables involved in the design (which
implies extra registers) and the number of possible inputs that the main building blocks may
have (which translates in extra multiplexer blocks).

Table 5.1: Performance of an Encryption/Decryption AES round and a 128-bit Fully-parallel
Karatsuba multiplier

Design Slices || B-RAM || Critical Path(nS)
Full AES round 1215 8 10.998
Encryption-only AES round 298 8 6.71
multiplier 3223 - 9.85

In order to give a rough estimation of the critical path associated to each one of the modes,
we show in Table 5.1 the performance of the architectures’ main building blocks, namely,

98 Chapter 5. Baseline Hardware Implementations of TES

a key generation/encryption/decryption AES round, an encryption-only AES round, and a
128-bit fully-parallel Karatsuba multiplier. 3

Considering the utilization of B-RAMs and slices, the size of one full AES round in our
design is about 30% smaller than that of the Karatsuba multiplier. However, the critical
path delay associated to an encryption/decryption AES round, is longer than that of the
multiplier block by about 10%.

Table 5.2: Hardware Resources Utilized by the Six TES

Modo Mux Extra Mul Registers Mux Mux
inAES || B-RAM || ztime 128 bits 2x 128 || 3 x 128
HCTR || 3 x 128 - - 3 2 1
HCHfp || 4 x 128 - 1 5 5 -
HCH 5 x 128 - 1 6 5 -
EME 4 x 128 2 3 5 5 -
TET 3 x 128 2 3 2 4 -
XCB 4 x 128 - - 8 6 2
HEH 3 x 128 - 4 4 1 -

Table 5.2 shows the hardware resource usage by each of the six TES modes of operation.
Besides an obvious impact in the area complexity of the modes, the resources occupied by
each TES tend to increase its critical path. In the rest of this Section, we briefly analyze the
resource utilization and timing potential performance of the five TES modes under analysis.

HCH and HCHfp

For HCH and HCHfp the critical path will be also lower bounded by the minimum critical
path between the AES core and the hash function. Considering the values given in Table 5.1
the maximum throughputs that we can expect for these two modes when using the full and
the encryption-only AES cores is 3.8 Gbps and 4.24 Gbps, respectively. However, we should
expect that HCH and HCHfp timing performances will be appreciably lower than those
bounds, because these modes requires six and five extra registers for temporary variables,
respectively. Moreover as shown in Table 5.2, the possible inputs for the AES core and the
hash function is more than that of HCTR, which will force us to use multiplexer blocks with
more inputs.

HCTR

As shown in Table 5.2, HCTR requires three extra 128-bit registers in order to allocate
temporary computation values and also the possible inputs for the AES core and the hash

3The experimental results shown in Table 5.1 correspond to a place &route simulations using Modelsim
XE IIT 6.0d and Xilinx ISE 8.3 and a Xilinx Virtex4 XC4VLX100-12FF1148 FPGA as a target device.

5.4. Implementation Aspects 99

function is three. This feature makes HCTR both, a fast an economical TES mode. The
critical path of HCTR will be lower bounded by the one associated to either the hash function
or the AES core, whichever is larger. Therefore, and according to the critical paths reported
in Table 5.1, we can expect that an implementation of HCTR will have a critical path of
at least 10.9987S when using the full AES core and 9.85 7S when using the encryption-only
AES round. In terms of throughput, this translates to a maximum of 4.185 Gbps and 4.672
Gbps, respectively.

XCB

Out of the six modes analyzed, XCB is both, the most expensive in terms of hardware
resource utilization, and the slowest. XCB’s latency however, is relatively low but the total
time required is quite high. Among other factors, XCB’s total time is high because in its final
step the calculation of E;' cannot start till a key schedule computation of C; has finished.
In total, 21 clock cycles are consumed in that final step. As shown in Table 5.2, storage of
XCB temporary variables requires eight extra 128-bit registers and one 128-bit four-to-one
multiplexer. Thus, the maximum throughput that one can expect for XCB when using the
full and the encryption-only AES cores should be significantly lower than 3.21 Gbps and
3.59 Gbps, respectively.

EME

In the case of EME, its most notorious building block is the AES core. However, other
smaller components that have some impact in the EME performance are the ztime multi-
plication algorithm along with the chain additions characteristic of this mode. Since the
xtime operation can be performed efficiently in hardware, the critical path of EME is mainly
given by that of the AES core utilized. Hence, we can expect that an implementation of
EME will have a critical path of at least 10.9987S when using the full AES core and 6.71
1S when using the encryption-only AES round. In terms of throughput, this translates to
a maximum of 3.48 Gbps and 5.71 Gbps, respectively. Regarding area utilization, EME is
consistently the most economical TES mode. However, the computation of EME requires
to store all the PPP; values for : = 2,...,m. This issue was solved by utilizing two extra

FPGA block RAMs as reported in Table 5.2.

TET

Once again, the critical path of TET will be lower bounded by the minimum critical path
between the AES core and the hash function. According to Table 5.1, the maximum through-
put that we can expect for TET when using the full and the encryption-only AES cores is

100 Chapter 5. Baseline Hardware Implementations of TES

AES counter

% maes and s
simple ouaes

key
/ CAES c/d mcms readyAES

N/

+ Control Unit
—

1

T+

outh cH readyH inH

%R Hash Qe

Figure 5.13: HCH Main Architecture

3.36 Gbps and 3.75 Gbps, respectively. As reported in Table 5.2, the computation of TET
requires the allocation of two extra FPGA block RAMs. Moreover, two 128-bit registers and
four 128-bit two-to-one multiplexers blocks are required.

HEH

In HEH the same resources like TET would be required. But HEH does not require compu-
tation of the inverse, which is a good advantage over TET. HEH do not require extra storage
elements (BRAMs) like TET.

5.5 Implementation of HCH

As a representative design example we shall discuss the architecture of HCH in details. The
architectures for the other modes are quite similar and we do not discuss them here, but we
shall discuss the experimental results of all the modes in Section 5.6.

Figure 5.13 shows the general architecture of the HCH mode of operation. It can be seen
that AES must be implemented both, in counter and in simple mode. Moreover a hash
function is also required as one of the main building blocks. The architecture operation is
synchronized through a control unit that performs the adequate sequence of operations in
order to obtain a valid output.

The HCH control unit architecture is shown in Figure 5.14. It controls the AES block by
means of four 1-bit signals, namely: cAES that initializes the round counter, the c/d signal
that selects between encryption or decryption mode, the msms signal that indicates whether
one single block must be processed or rather, multiple blocks by means of the counter mode.
Finally, ready AES indicates whenever the architecture has just computed a valid output.

5.5. Implementation of HCH 101

inH resetH outH readyH

inHCH ,
7 o
fen NV N
Reg M A
States i : : ORI SR :
i dyHCH
Machine rea
L e (e A N 57, N I N DR e
I_ outHCH
B B B . L T
c/d” mcms CAES readyAES inAES OUtAES s

Figure 5.14: HCH Control Unit Architecture

The AES dataflow is carried out through the usage of three 128-bit busses, namely, inAES
that receives the blocks to be encrypted, out AES that sends the encrypted blocks and S
that receives the initialization parameter for the counter mode. The communication with the
hash function block is done using two signals: cH for initializing the accumulator register and
the counter of blocks already processed and readyH that indicates that the hash function
computation is ready. The data input/output is carried by the inH and outH busses,
respectively. The parameters R and Q are calculated in the control unit and send through
the busses to the hash function.

The HCH control unit implements a finite state automaton that executes the HCH sequence
of operations. It defines the following eight states: RESET, AES1, AES2, HASH1, AESS,
AES}, ECOUNTER and HASH2. In each state, an appropriate control word is generated in
order to perform the required operations. The correct algorithm execution requires storing
the R, Q, S, I, U; and M; values. Thus, six extra 128-bit registers are needed. In particular
the hash function input inH can come from the system input or from the output of the AES
counter mode. Therefore, a multiplexer is needed for addressing the correct input, where the
multiplexer signals are handled by the state machine’s control word. We compute the xQ
signal by means of an ztimes operation in the finite field GF(2'?®), which was implemented
as described in for example [38,118].

The sequence of operations described in algorithm in the Figure 5.6(a) is performed through
the execution of the state machine diagram shown in Figure 5.15. The state transition among
states is controlled by two signals, namely, ready AES, which indicates that the current
output in the bus out AES is valid and; readyH that indicates that the computation of the
hash function has just been completed.

In RESET the AES key schedule process starts and the value in T is assigned to inAES.

102 Chapter 5. Baseline Hardware Implementations of TES

readyAES=0 readyAES=0 readyH=0

readyAES=1 readyAES=1

-
readyAES=1 readyAES=1 readyAES=1

readyH=0 readyAES=0 readyAES=0 readyAES=0

Figure 5.15: HCH State Machine Diagram

Then, the control is transferred to AESI. In AESI1, the value R = Ey(T) is computed
concurrently with the key generation process and when the signal ready AES becomes active
the value in out AES is transferred to the register regR, the round counter is re-initialized,
the value R @ len is computed and the control is transferred to the state AES2. In AES2
the value Q = Ei(R @ len) is computed and at the same time the computation of the
hash value M; starts. When the signal ready AES becomes active the round counter is
re-initialized, the value in Q is transferred to the register regQ, xQ is computed and the
automaton switches to state HASHI. In state HASHI the computation of the hash value M;
is completed, and when the signal readyH is active the hash result is stored in the register
M, and the automaton transitions to AES3. In the state AES3 the value U; = Ey (M)
is computed, and when the signal readyAES becomes ready, the value I = M; & U; is
computed and stored in Regl and the control is transferred to the state AES/. In AES/,
the value S = Fj([) is computed and when the signal readyAES is ready that value is
stored in RegS and then we arrive to the state FCOUNTER. In the state ECOUNTER
the AES multiple block encryption in counter mode starts, when the signal ready AES is
activated the hash function initiates and the automaton switches to the state HASH2. When
in state HASH2, the encryption of Cs, ..., C,, in counter mode is performed in parallel with
the computation of the hash function. Finally, when the signal readyH is activated we have
the hash result in C}.

En each one of the states mentioned above, a 14-bit control word cword that orchestrates
all the architecture modules is continuously updated. The organization of the control word
is summarized in Table 5.3.

The dataflow for encryption and decryption is essentially the same. The only modification is
to determine whether Q or xQ should be used in the two hash function calls. This decision
is taken in our architecture with the help of a multiplexer block whose output is the input
hash signal Q (se Figure 5.15). In the first call to the hash function block, and when the
state is HASH1 and the mode signal is off that multiplexer selects Q, otherwise, it selects
xQ. In the second hash function call, xQ is selected if the automaton is in the state HASH2
and the mode signal is off, otherwise, it selects Q.

5.5. Implementation of HCH 103

Table 5.3: Control word Specification permutation.

Control Word bits Functionality
cword Synchronizes the input dataflow
cword, Indicates whether the hash function

input comes from the system input or rather,
from the output of the AES in counter mode

cwords hash function reset

cwordy round counter reset

cwords AES in simple or counter mode

cwordg AES counter mode ready forcomputing a
new plaintext

cwordz Load signal for register R

cwordg Load signal for register Q

cwordyg Load signal for register Uy

cwordy Load signal for register M,

cwordyy Load signal for register S

cwordys Determines if the AES will be working

according to the stipulated in the input
signal or in encryption mode
cwordys Load signal for register I

104 Chapter 5. Baseline Hardware Implementations of TES

Fixed Length HCH

In the specific case of the disk encryption application, it is known in advance that the
plaintext messages will be of exactly 512 bytes. Taking advantage of this fact, we can
optimize the implementation of the HCH mode of operation even further as shown in the
algorithm of Figure 5.6(a). The modification implies a total saving of 11 clock cycles as
is shown in Figure 5.6(b). The initial encryption of R is omitted since this parameter is
substituted by a second key, while Q is substituted by R «. This modification also implies
a saving in area resources as it will be seen in the next Section.

We do not present the details of the other designs as they follow the same strategy, but in
Table 5.2 we show the extra hardware resources required by each architecture of the TES
modes of operation. Besides an obvious impact in the area complexity of the modes, the
resources occupied by each TES tend to increase its critical path, a fact that will become
more explicit from the experimental results presented in the next Section.

5.6 Results

In this Section we present the experimental results obtained from our implementations. We
measure the performances of our designs based on the following criteria: total time required
for encrypting 32 blocks of data; latency, i.e. the time needed to produce the first output
block; the size of the circuit in slices; the number of B-RAMs used and the throughput. The
rest of this Section is organized as follows. In Subsection 5.6.1 we report the area and timing
performance obtained in the implementation of the main building blocks required for the
TES modes. Then, Subsection 5.6.2 reports the performance achieved by the TES modes
analyzed in this Chapter. The comparison was carried out using a fully pipelined AES core,
a sequential AES core and a pipelined encryption-only AES core.

5.6.1 Main Building Blocks

Table 5.4: Performance of the AES and Hash implementations

Method Slices || B-RAM || Frequency || Clock || Throughput
(MHz) Cycles (Gbps)
Full-core AES-Sequential 1301 18 81.97 10 1.05
Full-core AES-Pipeline 6368 85 83.88 1 10.74
Encryption-Only AES-Pipeline 2468 85 149.00 1 19.07
Hash function 4014 - 101.45 1 12.99

The two building blocks shown in Table 5.1, were used for implementing a full AES core
(i.e. a key generation/encryption/decryption core) in sequential and pipelined architecture;

5.6. Results 105

an encryption-only pipeline AES core and a hash function for the HCH, HCTR, TET, XCB
and HEH modes. Table 5.4 summarizes the performance obtained in the implementation of
those blocks. Note that the sequential AES core gives significantly poor throughput, while
the hash function has better throughput than the full AES-pipeline but smaller throughput
than the encryption-only AES core.

5.6.2 Performance Comparison of the Six TES Modes

In Table 5.5 the experimental results for the six modes of operation implemented with an
underlying full pipelined AES core are shown. Note that the number of clock-cycles reported
in Table 5.5 are one more than those estimated in Section 5.3. This is because in our actual
implementation, one clock cycle is wasted on the initial reset operation. The critical path of
the designs shown in Table 5.5 is mainly determined by the AES core, which as it was shown
in Table 5.4, has a longer path than the hash function utilized in all six HCTR, HCH, HEH,
TET,HEH and XCB modes.

From Table 5.5 it is evident that EME is the most economical mode in terms of area resources,
mainly due to the fact that this mode does not utilize a hash function. Hence, the critical path
of EME is given by the AES full core plus a chain of three layers of additions. Out of the six
modes analyzed, HEH is both the fastest and the mode that shows lowest latency to produce
the first block. XCB is the second most expensive mode in terms of hardware resource
utilization, and the slowest. HCH requires more hardware resources than HCTR. TET is
slower than HCH even assuming that its parameter o~! has been previously precomputed.

In terms of speed, the fastest mode is HEH since it only utilizes one AES block cipher call
in sequential mode that can be computed concurrently with the hash function computation,
whereas HCTR requires one AES call in the single mode which cannot be parallelized and
HCH requires a total of four such calls (although only three have consequences in terms
of clock cycles since the fourth one is masked with the computation of the hash function).
Under this scenario, ordered from the fastest to the slowest we have, HEH, HCTR, HCHfp,
EME, HCH, TET and XCB.

In Table 5.6 we show the six TES modes of operation when using a sequential implementation
of the AES core. In a sequential architecture, EME is the slowest mode in terms of latency
due to the two costly block cipher passes that requires eleven clock cycles per block. Hence,
a significant increment in the total number of clock cycles is observed for the EME mode.
This situation does not occur in the other modes since they only need one encryption pass.
The hash function computation is not affected in this scenario due to the fact that we use a
fully-parallel multiplier block able to produce a result in one clock cycle. Using a sequential
AES core the best throughput is obtained by HCTR and HEH in that order.

While performing a sector encryption, all modes considered here, except for XCB, require

106

Chapter 5. Baseline Hardware Implementations of TES

Table 5.5: Hardware costs of the modes with an underlying full 10-stage pipelined 128-bit

AES core when processing one sector of 32 AES blocks: Virtex 4 Implementation

Mode || Slices | B-RAM | Frequency | Clock | Time | Latency | Throughput
(MHz) Cycles | (uS) (uS) GBits/Sec
HCTR || 12068 85 79.65 89 1.117 0.703 3.665
HCH 13622 85 65.94 107 1.623 0.801 2.524
HCHfp || 12970 85 66.50 96 1.443 0.990 2.837
XCB 13418 85 54.02 116 2.147 1.114 1.907
EME 10120 87 67.84 107 1.577 1.123 2.597
TET 12072 87 60.51 111 1.834 1.301 2.232
HEH 11545 85 72.44 75 1.035 0.591 3.956

Table 5.6: Hardware costs of the modes with an underlying sequential 128-bit AES core

when processing one sector of 32 AES blocks: Virtex 4 Implementation

Mode || Slices | B-RAM | Frequency | Clock | Time | Throughput
(MHz) Cycles | (uS) (Gbits/sec)

HCTR 6000 18 76.46 398 5.205 0.786
HCH 6805 18 63.36 416 6.565 0.624

HCHfp 6481 18 63.84 405 6.339 0.645
XCB 6706 18 51.86 455 8.773 0.466
EME 2958 20 80.00 716 8.950 0.457
TET 6518 20 58.08 421 7.248 0.565
HEH 6128 18 69.36 384 5.536 0.739

Table 5.7: Hardware costs of the HCH, HCTR, EME, TET and HEH modes with an under-
lying encryption-only 10-stage pipelined 128-bit AES core when processing one sector of 32

AES blocks: Virtex 4 Implementation

Mode || Slices | B-RAM | Frequency | Clock | Time | Latency | Throughput
(MHz) Cycles | (uS) (uS) GBits/Sec
HCTR 6996 85 98.58 89 0.902 0.557 4.540
HCHfp 7513 85 95.80 98 1.022 0.678 4.000
EME 4200 87 149.09 107 0.717 0.496 5.710
TET 7165 87 93.04 111 1.193 0.849 3.430
HEH 7494 85 93.70 75 0.800 0.458 5.117

5.7. Discussions 107

AES calls in encryption mode only. Hence, we just need an encryption-only AES core for
performing a sector encryption in those modes. It was this observation that motivated
us to investigate the performance of all modes except XCB using an encryption-only AES
underlying block cipher. The results of this experiment are summarized in Table 5.7. The
fastest throughput in this scenario is achieved by EME (the only mode that does not use
a Karatsuba multiplier). In fact, in this case EME essentially achieves the same maximum
clock frequency as that of the encryption-only AES core (see Table 5.4). EME is closely
followed by HEH, and TET turns out to be the slowest.

Although our designs were optimized for their implementation on the Xilinx Virtex 4 device
xcdvlx100-12£f1148, in order to provide the reader with a better comparison spectrum we
performed additional simulations on some other FPGA families such as the state-of-the-art
Xilinx Virtex 5 and cheaper FPGA families like Virtex 2 pro and Spartan 3E. The obtained
place-and-route simulation results are summarized in Table 5.8. *

Let us recall that Tables 5.5-5.7 present the Virtex 4 implementation results achieved by the
TES modes when using a full pipelined, sequential and encryption-only AES core designs,
respectively. The first three portions of Table 5.8 show the performances obtained by those
three designs when implemented on theds among the modes already observed in the Virtex
4 and Virtex 5 implementations. On the other hand, in the case of the encryption-only AES
core design, HCTR outperformed EME in the Virtex 5 implementation, whereas EME was
the clear winner in the Virtex 4 device simulation (see Table 5.7). Finally we implemented
the two fastest TES under the sequential-core scenario in the Spartan 3E device xc3s1600e-
5fgd84.

5.7 Discussions

As we stated in Section 5.1, the design objective was to match the data rates of modern
day disk controllers which are of the order of 3Gbits/sec. Table 5.6 shows that using a
sequential design it is not possible to achieve such data rates, although this strategy provides
more compact designs. If we are interested in encrypting hard disks of desktop or laptop
computers the area constraint is not that high, but speed would be the main concern. So, a
pipelined AES will probably be the best choice for designing disk encryption schemes.

From Table 5.5 we see that while using an encryption/decryption pipeline AES core the
most efficient mode in terms of speed is HEH followed by HCTR, HCHfp, EME, HCH, TET
and XCB. Thus we can conclude based on the experiments in this Chapter that HEH and
HCTR are the best modes to use for this application.

4We note that the architecture of Xilinx Virtex 5 is substantially different than the ones of previous
generations. Specifically, each Virtex-5 slice contains four 6-input 2-output LUTs and four flip-flops, whereas
slices in previous families have two 4-input 1-output LUTs and two flip-flops.

108 Chapter 5. Baseline Hardware Implementations of TES

Table 5.8: Performance of the modes in other FPGA families of devices

Mode Slices | B-RAM | Frequ- Clock Time | Late- Thro-
ency Cycles (wS) ncy ughput
(MHz) (1S) GBits/Sec
Full 10-Stage HCTR 5865 85 107.93 89 0.824 0.519 4.965
pipelined HCH 5667 85 91.24 107 1.172 0.832 3.452
AES-128 core HCHfp 5640 85 92.38 96 1.039 0.692 3.941
in Virtex 5 XCB 5854 85 92.69 116 1.251 0.647 3.272
EME 4518 87 90.19 107 1.186 0.831 3.450
TET 5554 87 89.91 111 1.234 0.878 3.317
HEH 5139 85 89.65 75 0.836 0.479 4.896
Sequential HCTR 2735 18 103.75 398 3.836 1.06
AES in HCH 2986 18 87.59 416 4.749 0.862
Virtex 5 HCHfp 2976 18 88.68 405 4.566 0.896
XCB 3057 18 88.97 455 5.114 0.800
EME 1274 20 107.00 716 6.691 0.612
TET 2968 20 86.50 421 4.867 0.841
HEH 2940 18 86.07 384 4.461 0.918
Encryption HCTR 3192 85 147.44 89 0.603 0.379 6.785
only AES-128 HCHfp 3324 85 118.30 96 0.811 0.642 5.047
in Virtex 5 EME 2005 87 173.80 107 0.615 0.431 6.653
TET 2979 87 125.30 111 8.885 0.630 4.623
HEH 3695 85 120.54 75 0.622 0.356 6.583
Full 10-Stage HCTR 10946 85 73.06 89 1.218 0.752 3.360
pipelined HCH 11718 85 50.30 107 2.127 1.490 1.920
AES-128 core HCHfp 11227 85 63.52 96 1.511 1.180 2.710
in Virtex 2 pro XCB 11685 85 50.11 116 2.315 1.177 1.769
EME 9423 87 62.57 107 1.710 1.182 2.390
TET 11163 87 50.58 111 2.194 1.540 1.860
HEH 11539 85 72.44 85 1.173 0.579 3.490
Sequential HCTR 5783 18 32.05 398 12.410 0.330
AES-128 core HEH 6254 18 30.72 384 12.500 0.327
in Spartan 3E

5.7. Discussions 109

In the case of the Virtex 5 family of devices, authors in [17] reported a fast and efficient AES
design with an associated critical path smaller than the one corresponding to the Karatsuba
multiplier used in this work. Since EME is the only TES mode that does not require a field
multiplier block, one can conclude that if that AES design and technology is adopted, then
EME will probably emerge as the fastest of the TES modes of operation studied here.

From Table 5.7 we see that the encryption operation of all the modes considered here except
XCB can be significantly improved if an encryption only AES core is implemented. So, in
certain scenarios, it may be possible to have two different circuits for encryption and decryp-
tion where the encryption operation would be considerably faster. For the disk encryption
scenario, it is probable that a sector would be written once and would be read many times.
So it is better to have a faster decryption circuit, as the decryption operation is likely to be
performed more frequently.

Since the TES are length preserving encryption schemes, i.e. they are permutations, one can
process data by encrypting-then-decrypting or by decrypting-then-encrypting without affect-
ing the security guarantees provided by the modes. However, from the practical perspective,
this subtle change can improve the total throughput of a disk-encryption considerably. If an
encryption only AES core is used then EME gives the best throughput and other modes are
far behind it.

In this Chapter we presented the implementation on reconfigurable hardware on some TES,
the efficiency of each of them were carefully analyzed and an specific architecture for HCH
was explained in detail. These implementations would serve as the starting point and provide
us with the baseline data for comparisons with other interesting designs that we provide in
the following three Chapters.

Chapter

Efficient Implementations of
BRW Polynomials

The walls are the publishers of the poor.

Edvardo Galeano

Polynomial hashes formed an important part of most of the modes that we implemented in
the previous Chapter. In most modes discussed before we require the computation of an
univariate polynomial of degree m — 1 defined over a finite field F, as,

Poly,(X) = 21h™ " + h™ 2 + - - 4 Ty 1h + T, (6.1)

where X = (z1,...,7,) € F)" and h € F,. Traditionally, the evaluation of Poly,(X) has
been done using Horner’s rule, which requires (m — 1) multiplications and m — 1 additions
in F,. In the rest of this Chapter, we will refer to Poly,() as a normal polynomial.

Bernstein [10] introduced a new class of polynomials which were later named in [125] as
Bernstein-Rabin-Winograd (BRW) polynomials. BRW polynomials on m message blocks
defined over F, have the interesting property that they can be used to provide authentication,
but, unlike the normal polynomial they can be evaluated using only | % | multiplications in [,
and [log, m| squarings. Thus, these polynomials potentially offer a computational advantage
over the normal ones. Further, in [125] BRW polynomials were used to construct new TESs
named HEH[BRW] and HMCH [BRW]. Our focus would be to develop hardware architectures
for these modes.

The use of BRW polynomials in hardware has not been addressed till date. As will be
clear from discussions later, the structure of a BRW polynomial is fundamentally different
from the normal ones, and there are some subtleties associated to their efficient implemen-
tation that are worthy of further analysis. In particular, the recursive definition of a BRW
polynomial gives it a certain structure which is amenable to parallelization. It turns out
that to take advantage of this parallel structure one needs to carefully schedule the order
of multiplications involved in the polynomial evaluation. The scheduling is determined by
the dependencies in the multiplications and also by the desired level of parallelization and

112 Chapter 6. Efficient Implementations of BRW Polynomials

hardware resources available.

In this Chapter we present a hardware architecture for efficient evaluation of BRW polynomi-
als. The hardware design heavily depends on the careful analysis of the inherent parallelism
in the structure of a BRW polynomial. This leads to a method to determine the order
in which the different multiplications are to be performed. We present an algorithm that
schedules in an efficient fashion, all the || multiplications required for the evaluation of a
BRW polynomial keeping in mind the amount of parallelism desired. This algorithm leads
to a hardware architecture that can perform an optimal computation of BRW polynomials
in the sense that the evaluation is achieved using a minimum number of clock cycles. This
analysis and architecture would be used to construct architectures for the modes HEH[BRW]|

and HMCH[BRW], we discuss these architectures separately in the next Chapter.

From the point of view of hardware realizations, the most crucial building block of a poly-
nomial hash function is a field multiplier. Digit-serial multipliers yield compact designs in
terms of area and enjoy short critical paths but they require several clock cycles in order to
compute a single field multiplication. In contrast, fully-parallel multipliers as used in the
previous Chapter are able to compute one field multiplication every clock cycle. However,
due to their large critical path, these multipliers seriously compromise the design’s maximum
achievable clock frequency.

Since polynomial hash blocks require the batch computation of a relatively large number
of products, it makes sense to utilize pipelined multiplier architectures. In this Chapter,
we decided to utilize a k-stage pipeline multiplier with £ = 2,3. After a latency period
required to fill up the pipe, these architectures are able to perform one field multiplication
every clock cycle. The advantage is a much shorter critical path than the one associated with
fully parallel multiplier schemes [11]. This change in the multiplier is a major deviation from
the design philosophy adopted in the previous Chapter. Also, the choice of the pipelined
multiplier opens up the interesting problem of efficient scheduling to reduce pipeline delays.
We adequately address this scheduling problem for BRW polynomials in this Chapter.

The organization of the rest of the Chapter is as follows. In Section 6.1, we define the BRW
polynomials and present a tree based analysis of such polynomials. Using the tree struc-
ture of the BRW polynomials we develop a scheduling algorithm and provide analysis of the
scheduling algorithm. Finally, based on the scheduling algorithm we present the hardware
architecture for computing BRW polynomials. In Section 6.6 we provide implementation de-
tails of the hardware architecture used for evaluating a BRW polynomial. We do not provide
experimental results in this Chapter. The results using BRW polynomials are presented in
Chapter 7. A large part of the discussions in this Chapter appear in [27].

6.1. BRW Polynomials 113

6.1 BRW Polynomials

A special class of polynomials was introduced in [10] for fast polynomial hashing and sub-
sequent use in message authentication codes. In [10] the origin of these polynomials were
traced back to Rabin and Winograd [113], but the construction presented in [10] has subtle
differences compared to the construction in [113]. The modifications were made keeping an
eye to the issue of computational efficiency. Later in [125] these polynomials were used in
the construction of tweakable enciphering schemes and the class of polynomials were named
as Bernstein-Rabin-Winograd (BRW) polynomials.

Let X3, Xs, ..., X,,, h € F,, then the BRW polynomial Hy,(Xj, ..., X,,) is defined recursively
as follows.

L] Hh() =0

[J Hh(Xl) = X1

Hin(X1, X2) = Xoh + X3

[] Hh<X1,X2,X3) == <h+X1)(h2 +X2) +X3

Hiy(Xy, Xoy .o, X)) = H(Xq, oo, Xe) (W X)) +Hp (X, -, Xon), if t € {4,8,16,32, ...}
and t < m < 2t.

Note, the additions and multiplications are all in [,

Computationally the most important property is that for m > 2, H,(Xi,..., X,,) can be
computed using |m /2| multiplications and [lg m| squarings. In the rest of the Chapter, we
will use either Hy,() or BRW,,() to denote a BRW polynomial.

Our objective here is to device a way to compute Hy(Xq,...,X,,) efficiently in hardware.
An important issue we address here is how one can exploit the parallelism inherent in the
definition of the polynomial to enable construction of a circuit for computing Hy (X7, ..., X,,)
using a pipelined field multiplier for any (but fixed) values of m. For constructing such a
circuit we need to identify the multiplications that can be performed in parallel and thus
devising a method to schedule the multiplications in such a manner that the delay in the
pipeline is minimized. To design such a scheduling method we view a given BRW polynomial
as a tree which enables us to identify the dependencies in the various multiplications involved
and thus schedule the multiplications appropriately with the aim of keeping the pipeline
always full. The procedure is described in the next section.

114 Chapter 6. Efficient Implementations of BRW Polynomials

(+) (+)
& (e
x) (o) g &
%) (h) ONCRORO
(a) (b)

Figure 6.1: Trees corresponding to m = 2,3. The nodes labeled with © and & represent a
multiplication node and an addition node respectively. (a) Tree corresponding to Hy, (X7, X5).
(b) Tree corresponding to Hj (X7, Xa, X3).

6.2 A Tree Based Analysis

A BRW polynomial H,(Xy,...,X,,) can be represented as a tree T,, which contains three
types of nodes, namely, multiplication nodes, addition nodes and leaf nodes. The tree T, will
be called a BRW tree and can be recursively constructed using the following rules:

1. For m = 2,3 it is easy to construct 7,, directly as shown in Figure 6.1.

2. If m = 2%, for some s > 2, the root of T}, is a multiplication node. The left subtree of
the root consists of a single addition node which in turn has the leaf nodes h™ and X,
as its left and right child, respectively. The right subtree of the root is the tree T}, ;.

3. If 28 < m < 2°%! for some s > 2, the root is an addition node with its left subtree as
Tss and the right subtree as T}, _os.

A construction of the BRW tree T corresponding to the polynomial Hj (X, ..., Xig) is
shown in Figure 6.2. According to this construction, the following two properties hold.

e Any leaf node is either a message block X; or it is h*, for some j, k.

e For a multiplication node, either, its left child is labeled by a message block X; and
the right child is labeled by h; or, its left child is an addition node which in turn has
a message block X; and h” as its children for some j and k. As a consequence, for a
multiplication node, there is exactly one leaf node in its left subtree which is labeled
by a message block.

As we are only interested in multiplications, we can ignore the addition nodes and thus
simplify the BRW tree by deleting the addition nodes from it. We shall address the issue
of addition later when we describe our specific design in Section 6.6, and we would then
see that ignoring the additions as we do now will not have any significant consequences

6.2. A Tree Based Analysis 115

from the efficient implementation perspective. We reduce the tree T;, corresponding to the
polynomial Hy (X, ..., X,,) to a new tree by applying the following steps in sequence.

1. Label each multiplication node v by j where X; is the leaf node of the left subtree
rooted at v.

2. Remove all nodes and edges in the tree 7}, other than the multiplication nodes.

3. If u and v are two multiplication nodes, then add an edge between u and v if u is the
most recent ancestor of v in 7,,.

The procedure above will delete all the addition nodes from the tree 7),. We shall call the
resulting structure a collapsed forest (as the new structure may not be always connected,
but its connected components would be trees) and denote it by F,,. Note that for every m,
there is a unique BRW tree 7T;,, and hence a unique collapsed forest F},,. The collapsed forests
corresponding to polynomials Hy (X7, ..., Xi6) and H, (X7, ..., X3) are shown in Figure 6.3.

By construction, the number of nodes in a collapsed forest [, is equal to the number of
multiplication nodes in T},. The nodes of F,, are labeled with integers. Label j of a node
in F,, signifies that either the multiplicands are X; and h; or, one of the multiplicands is
(X, + h*) for some k. As a result, there is a unique multiplication associated with each node
of a collapsed forest.

For example, the multiplication (X, + h?) * (X1 + h) is associated to the node labeled 2 in
Figure 6.3. Refer to Figure 6.1 to see this. Similarly, if the outputs of nodes labeled 4 and
6 are A and B respectively, then the multiplication associated with the node labeled § is

(Xg + h®) x (A+ B+ X7).

This procedure easily generalizes and it is possible to explicitly write down the unique mul-
tiplication associated with any node of a collapsed forest. So, the problem of scheduling the
multiplication in T, reduces to obtaining an appropriate sequencing (linear ordering) of the
nodes of F,,.

The structure of the collapsed forest corresponding to a polynomial Hy(-) helps us to visualize
the dependencies of the various multiplications involved in the computation of Hy(-). The
following definitions would help us to characterize dependencies among those operations.

Definition 6.1. Let v be a node in a collapsed forest F', the level of v in F denoted by
levelp(v) is the number of nodes present in the longest path from v to a leaf node. A node
v in F' such that levelp(v) = 0 is said to be independent. Any node v with levelg(v) > 0 is
said to be dependent.

116 Chapter 6. Efficient Implementations of BRW Polynomials

A O O ®® ® O
H © @ O O g

ONJOR RO NI Sh-Iars
ogC
O OO ®

Figure 6.2: The BRW tree representing Hy, (X1, ..., Xig).

Definition 6.2. Suppose u,v are nodes in a collapsed forest F' such that levelp(u) > levelp(v)
and u is an ancestor of v in F, then we say that u is dependent on v.

In the following proposition, we state some important properties of collapsed forests.

Proposition 6.1. Let F,, be a collapsed forest corresponding to the BRW polynomial
Hy(Xq, ..., X0n).

1. The number of nodes in F,, is |75 |.

2. The nodes in F,, are labeled by integers 2i, 1 <1 < |7].

3. If m is even then F,, and F,,.1 are same.

4. The number of connected components in I, is equal to the Hamming weight of |5].

5. Let p = |m/2] and bit;(p) denote the i™ bit of p where 0 < i < len(p). If bit;(p) = 1
then F,, contains a tree of size 2°.

6. If x is a label of a node and x =2 (mod 4) then the node is an independent node.

7. If x is a label of a node and x =0 (mod 8) then x has at least x — 2 and x — 4 as its
children.

8. If x is the label of a node and x = 4 (mod 8), then x — 2 is the only child of x.

6.2. A Tree Based Analysis 117

Proof. (1)-(3) directly follows from the definition of the BRW polynomial and the construc-
tion of the collapsed forest.

Proof of 4: Observe that for m > 3,
Hh(X17 o 7Xm) - Hh(X17 L 7Xt—1)(ht + Xt) + Hh(Xt+17 CE 7Xm)7

where ¢ is a power of 2 and t < m < 2t. Let F,, be the collapsed forest corresponding to
Hy(.), then by construction F,, would have one connected component corresponding to the
polynomial Hy (X7, ..., X;_1)(h' + X;), in which the node labeled with ¢ would be the root,
and would have other components corresponding to Hy,(X;11,...,X,,). Thus, if C,, denotes
the number of connected components of F,,, we have the following recurrence for C,,

Cp=14+C,,_; form >3

and by inspection we have Cy = C} = 0, Cy = C5 = 1. Now, let m be an (¢ + 1)-bit number
and m =mg+my -2+ ...+ my- 2% where m; € {0,1} for 0 <i < ¢ —1 and my; = 1. Then
the above recurrence becomes

Cm = 1 + Cm,QZ
= 1414 C,,_9i_ox where k is the largest integer smaller than ¢ such that m; =1

¢
= 1+1+...+1+C}, Wherej€{1,273}>,u:zmi
N———

u times !

This along with the initial conditions proves (4).
Proof of 5: Following the same arguments as above we see that number of connected com-

ponents in F), is equal to 3.¢_, m;, which is the Hamming weight of [m/2]. For each m; = 1
(1 > 0) we have a connected component which is associated with the polynomial

pi = Hy(Xyi1, s Xyyoio1)(Xy + B2,

where J = m — Z;ZO 2Im;. By (1), the tree corresponding to p; contains 2°~! nodes. This
proves (5).

Proofs of (6), (7) and (8) are by induction on m and is based on the structure of F,,,. We
provide the proof of (6). The proofs of (7) and (8) are similar.

118 Chapter 6. Efficient Implementations of BRW Polynomials

;.

(a)

Figure 6.3: (a) Collapsed forest corresponding to Hj(X7,...Xi6). (b) Collapsed forest
corresponding to Hy (X7, ... X30).

Proof of 6: First we prove by induction that (6) is true for any Fj, where m = 2¢. The cases
fori =1,...,4 can be easily verified from Figure 6.3(a). Assuming (6) to be true for m = 2°
(i > 4) we will show it to be true for m = 2!, Following the construction of the collapsed
forest, Fhi+1 can be constructed from F,: as follows. Construct a new tree I’ from F,: by
adding 2¢ to the label of each node of Fy. Join Fh and F' by making the root of Fh: the
rightmost child of the root of F’. The new tree thus constructed is Fyi+1. The nodes which
were independent in Fy and F’ remain so in Fyi+1 also the only labels which were congruent
to 2 modulo 4 in Fy remains so in F’. Hence (6) is true for m = 27+1.

To prove for any m we use the following observations which follow from (4) and the con-
struction of the collapsed forest.

e [, for any m, consists of trees, where the number of nodes in each tree is a distinct
power of 2.

e The component trees occur in descending order of sizes from left to right.

e If the size of the j™ tree is 2 and S; be the set of the sizes of trees preceding the ;%
tree then the j* tree is constructed by adding J = 2 > zes; T to each label of Fyi. So,
for j > 0, J =0 mod 4.

The proofs of (7) and (8) are similar to the proof of (6).

6.3. Scheduling of Multiplications 119

6.3 Scheduling of Multiplications

Our goal, as stated earlier, is to design a circuit for computing BRW polynomials using a
pipelined multiplier. If we use a pipelined multiplier with N stages, then N clock cycles
would be required to complete one multiplication, but in each clock cycle N different mul-
tiplications can be processed, as long as these N multiplications happen to be independent
of each other, i.e., none of these N multiplications should depend on the results of the oth-
ers. Thus, if it can be guaranteed that N independent multiplications are available in each
clock then the circuit will require m + N clock cycles to complete m multiplications (there
would be an initial latency of N clocks for filling the pipe and thereafter the result of one
multiplication would be produced in each subsequent clock cycle).

A collapsed forest is a convenient way to view the dependencies among the various multipli-
cations which are required to compute a BRW polynomial. In this section, we propose an
algorithm Schedule which uses a collapsed forest to output a multiplication schedule. The
aim of the algorithm is to minimize the number of clock cycles.

For designing the scheduling algorithm we require two lists L; and L,. For a list L and an
element x of L, we shall require the following operations.

1. Pop(L): returns the first element in L; or, returns NULL if L is empty.
2. Delete(L): deletes the first element in L.

3. Insert(x, L): inserts x in L and x becomes the last element in L.

Note that Pop(L) does not delete the first element from L. Two successive pop operations
from L without any intermediate delete operation will result in the same element.

Each node in the collapsed forest is given two fields NC and ST associated with it. If x is
a node in the collapsed forest then x.NC represents the number of children of node x, and
x.ST denotes the time at which the node x was inserted into the list Ly (the requirement of
ST will become evident soon). Let Parent(z) denote the parent of node z in the collapsed
forest.

The algorithm for scheduling is described in Figure 6.4. The algorithm uses a function
Process which is also depicted in Figure 6.4. The inputs to the algorithm are m and a
variable NS which represents the number of pipeline stages. The outputs from Step 103 of

120 Chapter 6. Efficient Implementations of BRW Polynomials

Process form a sequence of integers. This provides the desired sequence of multiplications.

Before the main while loop begins (in line 11) the list L; contains all the independent nodes
in the collapsed forest corresponding to the given polynomial and Ly is empty. Within the
while loop no nodes are inserted in L;, but new nodes are inserted into and get deleted from
Lo. Lo is a queue, i.e., the nodes get deleted from L, in the same order as they enter it. The
way we define the operations Pop(),Delete() and Insert() guarantee this.

At any given clock-cycle, the nodes in the forest can be in four possible states: wunready,
ready, scheduled and completed. A node x is unready if there exist a node y on which x is
dependent but y has not been completed yet. A node becomes ready if all nodes on which
it depends are completed. A node can only be scheduled after it is ready. Once a node is
scheduled it takes NS clock cycles to get completed.

In the beginning, the nodes with level zero, i.e., the independent nodes are the only nodes
in the ready state all others being in the unready state. These independent nodes are listed
in L, at the beginning, no more nodes are further added to L;. Thus, the nodes in L; can
be scheduled at any time. As the algorithm proceeds, nodes get scheduled in line 103 of the
function Process.

After a node is scheduled the algorithm updates the field NC (number of children) of its
parent. When the last child of a given node x is scheduled then x is inserted into the list
Lo, and in the field ST of = a record of the time when its last child was scheduled is kept.

If a node is in Ly then it is sure that all its children have been scheduled but not nec-
essarily completed. The condition in line 12 checks if the last child of a given node in Lo
has already been completed and if a node x passes this check then it is ready to be scheduled.

For each execution of the while loop (lines 10 to 20) at most one node gets scheduled and
once a node is scheduled it is deleted from the corresponding list. The condition on the
while loop (line 10) checks whether both the lists are empty and the condition on line 12
checks whether the first element of L, is ready, in the next two propositions we state why
these checks would be sufficient.

Proposition 6.2. If Ly and Ly are both empty then there are no nodes left to be scheduled.
Further, the algorithm terminates, i.e., the condition that L, and Lo are both empty is
eventually attained.

Proof. Suppose both L; and Ly are empty but there is a node v which is left to be scheduled.

6.3. Scheduling of Multiplications

121

P NG

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Algorithm Schedule(m,NS)

Construct the collapsed forest F,;
for each node x in F,
2.NC < number of children of x;
x.ST < undefined;
if levelp, (x) =0,
Insert(x, L1);
end for
Lo < Empty;
clock < 1;
while (L; and Lo are both not empty)
x < Pop(La);
if (z # NULL and clock — 2.ST > NS)
Process(x, La, clock);
else
x < Pop(L1);
if (x # NULL))
Process(x, L1, clock);
end if;
clock < clock + 1;
end while

Function Process(z, L,clock)
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.

Delete(L);
y Parent(z);
Output z;
if y £ NULL
y.NC < y.NC—1;
if (y.NC = 0)
y.ST = clock;
Insert(y, La);
end if;
end if;

return

Figure 6.4: The algorithm Schedule

122 Chapter 6. Efficient Implementations of BRW Polynomials

As L; contains all independent nodes in the beginning and it is empty thus v is not an in-
dependent node. As v has not been scheduled and it is not in Ly thus there must be a child
of v which has not been scheduled. As there must exist a path from v to some independent
node z, applying the same argument repeatedly we would conclude that there exist some
independent node x which has not been scheduled. This give rise to a contradiction as L; is
empty.

For the second statement, note that as long as L; is non-empty, each iteration of the while
loop results in exactly one node of F,, been added to the schedule. This node is either a
node in Ly (if there is one such node), or, it is a node of L;.

Once L; becomes empty, if Lo is also empty, then by the first part, the scheduling is complete.
If Ly is non-empty, then let v be the first element of L,. It may be possible that an
iteration of the while loop does not add a node to the existing schedule. This happens
if clock — v.ST < NS. But, the value of v.ST does not change while the value of clock
increases. So, at some iteration, the condition clock — v.ST > NS will be reached and the
node v will be output as part of the call Process(v, L, clock).

O

Proposition 6.3. If the first element of Ly is not ready to be scheduled then no other
elements in Lo would be ready.

Proof. Let v be the first element in Lo, as v is not ready to be scheduled, hence clock—v.ST <
NS. Let u be any other node in Ly, as u was added to Lo later than v thus «.ST > v.ST and
so clock — u.ST < clock — v.ST < NS. Thus, u is also not ready to be scheduled. O

In the next Subsection some examples about the running of the algorithm Schedule are
provided.

6.3.1 Some examples on algorithm Schedule

We give an example of the running the algorithm for m = 16 and NS = 2. The collapsed
tree corresponding to the BRW polynomial Hj, (X, Xs, ..., Xi6) is shown in Figure 6.3(a).
The independent nodes in the tree are 2, 6, 10, 14 and according to line 6 of the algorithm
Schedule these nodes are inserted in the list Ly, and initially Lo is empty. The contents of
the two lists along with the output in each clock is shown in Figure 6.5. The entries in the
list Ly are listed as x(y), where x is the label of the node and z.ST = y. Figure 6.5 shows
that after clock 9 both the lists L; and Ly become empty and thus the algorithm stops.
There is no output produced in clock 8 as in clock 8 Ly is empty and the only node in L is
not ready as its start time is 7, which means that its ultimate child got scheduled in clock 7

6.4. Optimal Scheduling 123

and thus is yet to be completed. The following sequence of nodes is produced as output of
Schedule.
2,6, 4, 10, 8, 12, 14, 16.

We describe the scheduling of multiplications corresponding to this sequence. Again refer to
Figure 6.2.

My: Ry = (Xy+ B2)(X) + h);

My: Ry = (Xg + h2) (X5 + h);

Mgl Rg (X4 + h4)(X3 + Rl),

M4Z R4 = (X10 + h2)(X9 + h)7

Ms: Rs = (Xg+ h®)(Rs + Ry + X7);

Meg: R = (X1 + h*)(X11 + Ry);

My: Ro = (X1g + h2)(Xis + h);

Mgi Rg = (X16 + h 6)(R5 + RG + R7 + X15).

The 8 multiplications are My, ..., Mg. In this example, we have not tried to minimize the
number of intermediate storage registers that are required. A method for doing this will be
discussed later. Note the following points.

1. In each of the multiplications, the subscript of X in the first multiplicand is the label
of the corresponding node in Fig.

2. The scheduling is compatible with NS = 2, i.e.; a 2-stage pipeline: M3 and M, depend
on the output of M; and so start 2 clocks after M; starts; M5 depends on the output
of M, and Mj3 and starts 2 clocks after Ms; and so on.

The output of the algorithm Schedule for various number of blocks for NS = 2 and 3 are
shown in Tables 6.1 and 6.2. The entries — in those Tables means that no multiplication
was scheduled in the corresponding clock. The last column (total clocks) is the clock when
the last multiplication was scheduled.

6.4 Optimal Scheduling

Given a BRW polynomial on m message blocks, the number of nodes in the corresponding
collapsed tree is p = |m/2]. The scheduling of these nodes is said to be optimal if one node
can be scheduled in each clock-cycle thus requiring p clock-cycles to schedule all the nodes.
If such a scheduling is possible for a given value of the number of stages (NS) we say that the
scheduling admits a full pipeline, as such a scheduling will not give rise to any pipeline delays.

124 Chapter 6. Efficient Implementations of BRW Polynomials

Blocks Clock Total
(m) |1]2]3[4]5]6[7][8]9]10]11]12]13]14]15] clocks
2 |2 1
4 12|-14 3
6 |2]6]4 3
8 216|418 5
10 [2]6|4]10]s 5
12 [2]6|4]10]8]12 6
14 [2]6|4]10]8]12] 14 7
16 |2]6|4]10]8]12]14]—1]16 9
18 |2]6|4]10]8]12]14]18] 16 9
20 [2| 6| 4]10]8]12]14]18]16] 20 10
22 2|6 410)8]12]14]18]16]20] 22 11
24 2|6 410]8]12]14]18]16]20] 22| — | 24 13
26 |26 [4]10|8]12]14]18]16]20]22]26] 24 13
28 |26]4]10|8]12]14]18]16]20]22]26]24] 28 14
30 |26 |4]10]8|12]14]18]16]20]22]26[24]28]30] 15

Table 6.1: The output of Schedule for NS = 2 for small number of blocks

Blocks Clock Total
(m) |1]2]3 456|789]10]11]12]13]14]15] clocks
2 2 1
4 21 =1 =14 4
6 2161 =14 4
8 2l 6] =141 —-1—-18 7
10 (26|04 =-1-18 7
12 2l 6l10l4] —1]12]8 7
14 |2]l6l10)4]14]12]8 7
16 |2|l6l10)l4]14]12]8] 1116 10
18 21610 414]12]8]18] -1 16 10
20 |2l6l10]4]14]11218]18] - 116120 11
22 2l 6104141121818 22161 20 11
24 |2l 6l10] 414121818 22]16]20] — | — |24 14
26 |21 610] 414121818 22)16]20] 26| — | 24 14
28 |21 6l10] 4141121818221 16] 20|26 — 24128 15
30 [2]6]z10] 4141218182216 2026|301 24] 28] 15

Table 6.2: The output of Schedule for NS = 3 for small number of blocks

6.4. Optimal Scheduling 125

L1]26 10 14

Initial _
L2
L1]| 6 10 14

clock=1 (——= Output=2
L2 | 4(1)
L1] 10 14

clock=2 : y Output=6
L2 | 4(1)
L1] 10 14

clock=3 H ' Output =4
L2]8(3)
L1] 14

clock=4 Output =10
L2 | 8(3) 12(4)
L1] 14

clock=5 ———— Output=8
L2 | 12(4)
L1)] 14

clock=6 : 1 Output =12
L2
L1

clock=7 ——= Output=14
L2 | 16(7)
L1

clock=8 —_—
L2 | 16(7)
L1

clock=9 H 1 Output =16
L2

Figure 6.5: The states of the lists L; and Ly when Schedule(16, 2) is run. The entries in the
list are denoted as x(y) where z is the label of a node and y = x.ST

The above notion of optimality is a strong one and an optimal scheduling will not exist for
all values of m and NS. Existence of an optimal scheduling for NS stages means that in each
clock cycle NS independent nodes are available.

If m is a power of two then it is easy to see that the collapsed forest would contain a single
tree and the root would be dependent on all other nodes (as is the case in Figure 6.3(a)),
thus no scheduling procedure can yield an optimal scheduling for such an m for any NS > 1.

Also, as the number of pipeline stages increases, for an optimal scheduling to be possible,
more independent multiplications are required. For small values of NS, however, the following
theorem gives the conditions for which Schedule gives an optimal scheduling for NS = 2 and 3.

Theorem 6.1. Let H,(X1, Xo, ..., X;n) be a BRW polynomial and let p = |m/2] be the
number of nodes in the corresponding collapsed forest. Let clks be the number of clock cycles
taken by Schedule to schedule all nodes, then,

1. If NS =2, and p > 3, then

ks — p+1 zprQ (mod 4);
P otherwise.

126 Chapter 6. Efficient Implementations of BRW Polynomials

2. IfNS=3andp > 17, then

p+2 ifp=0 (mod 4);

) p+1 ifp=1 (mod4);
clhs = p+1 ifp=2 (mod4);
D ifp=3 (mod 4)

Proof. Both the proofs are by induction. We present the proof only for NS = 2 as the other
case is similar. For p = 3 (i.e. m = 6) the explicit output of the algorithm is 2, 6, 4, and
it takes 3 clock cycles to schedule the three nodes, this proves that the base case is true.
Suppose the results hold for some p > 3 and we wish to show the results for p + 1. There
are the following cases to consider:

1. p+1=1 (mod 4). Then p =0 (mod 4), hence by induction hypothesis the p nodes
were scheduled in p + 1 cycles, signifying that there was one cycle when no node was
scheduled. The last node in this case has label 2(p + 1) and as 2(p+ 1) = 2 (mod 4),
hence the last node is an independent node (from Proposition 6.1), hence the last node
can be scheduled in the missed cycle, thus the total clocks required for p + 1 nodes
would be p + 1.

2. p+1=2 (mod 4). Then, p=1 (mod 4), hence by induction hypothesis p nodes were
scheduled in p cycles, the last node to be scheduled has label 2(p+ 1) and 2(p+1) =4
(mod 8) and hence by Proposition 6.1, has only one child and the label of the child is
2p. Considering the previous case, 2p was not the last node to be scheduled; hence,
the node 2(p + 1) can be scheduled in the p + 1-th cycle.

3. p+1=3 (mod 4). Then, p =2 (mod 4), hence p nodes were scheduled in p cycles,
the last node to be scheduled has label 2(p+1) and 2(p+1) = 2 (mod 4) and hence by
following the same arguments as in case 1 the nodes can be scheduled in p + 1 cycles.

4. p+1 =0 (mod 4). Then, p = 3 (mod 4), hence by induction hypothesis p nodes
were scheduled in p cycles. The last node to be scheduled has label 2(p + 1), and
by Proposition 1 it would have nodes with labels 2p and 2(p — 1) as its children.
Considering cases 2 and 3 if p nodes are scheduled then the last node to be scheduled
has label 2(p — 1) which is a child of the node 2(p+ 1), hence the node 2(p+ 1) cannot
be scheduled in the p+ 1-th cycle. Thus the number of cycles required would be p + 2.

This completes the proof. O

From the proof above one can obtain a recursive description of the output of the scheduling
algorithm for NS = 2. Let p > 4, and z4,...,z, be the sequence for p, where z4,...,z, €
{2,4,...,2p}. Then, the following is the construction of the sequence for p + 1:

6.5. The Issue of Extra Storage 127

If p+1=0 (mod 2) then output the sequence z1,...,z,,2(p+ 1);
If p+1=3 (mod 4), then output the sequence xy,...,x,,2(p+ 1);

If p+1=1 (mod 4), then output the sequence xy,...,2,_1,2(p+ 1), z,.

Similarly if NS = 3, and if z4,...,2, be the sequence for p > 6, then the following is the
construction of the sequence for p + 1:

If p+1=0 (mod 2), then output the sequence xy,...,x,,2(p+ 1);
if p+1=1 (mod 4), then output the sequence z1, ..., 2,2, 7,-1,2(p + 1), x,;

if p4+1=3 (mod 4), then output the sequence z1,...,2,2,2(p+ 1), xp_1, Tp.

As stated, our definition of optimality is a strong one. It is possible to define optimality in a
weaker sense as follows: Given a BRW polynomial and number of stages NS a scheduling of
the multiplication nodes is called weakly optimal if it takes the minimum number of clock
cycles among all possible schedules for the given polynomial and the given value of NS. Using
this weaker definition of optimality it would be guaranteed that for any polynomial and any
value of NS a optimal schedule will always exist. Moreover, if a schedule is optimal in the
stronger sense that we formulated it would also be optimal in the weaker sense. Character-
izing weak optimality seems to be combinatorially a difficult task and is not required for our
case, as for our work, we mostly can show strong optimality or small deviations from it.

6.5 The Issue of Extra Storage

Optimizing the number of clock cycles should not be the only goal for a scheduling algorithm.
An important resource associated with a pipelined architecture is the requirement of extra
storages for storing the intermediate results. The issue of storage in the case of computing
BRW polynomials is simple, we illustrate the issue with an example. Refer to the diagram
of the collapsed tree in Figure 6.3(b), suppose for a two-stage pipeline we schedule the
multiplications in the following order:

2,6, 10, 14, 18, 22, 26, 30, 4, 12, 20, 28, 8, 24, 16 (6.2)

This schedule requires 15 clock cycles and is thus optimal, but this is very different from
the order of the multiplications given by the algorithm Schedule. This ordering, though
it is optimal in the terms of number of clock cycles required, requires more extra storage
for storing the intermediate results. Recall that the dependence of the nodes in the BRW
tree shows that multiplication operation represented by a node z may be started when all its

128 Chapter 6. Efficient Implementations of BRW Polynomials

children have been completed. In each clock cycle at most one multiplication gets completed,
thus the intermediate results computed for the children of z have to be stored, as they will
be required for the computing of z. If the scheduling is done as in Eq. (6.2) then the starting
times and finishing times (in clocks) of the nodes would be as below.

Nodes 21610 141822126 30| 4 | 12|20 28| 8 | 24| 16
Starting Time: || 1 3141516 |7]8]9 (101112131415
Finishing Time || 34| 5 | 6 | 7 | 8 | 9 |10 11|12 13|14 |15 |16 |17

[\]

Note that the results of the multiplications in nodes 2, 10, 18, 26 which are completed in
the clocks 3, 5, 7 and 9, are further used to compute the multiplications in the nodes 4, 12,
20 and 28 which are started in the clocks 9, 10, 11 and 12 respectively. Hence, the results
obtained in the clocks 3, 5, 7 and 9 are all needed to be stored. If we continue in this manner
we shall see that the scheduling in Eq. (6.2) would require a significant amount of extra
storage for storing the intermediate results.

In contrast to the scheduling in Eq. 6.2, if we follow the algorithm Schedule, then the starting
and the finishing time of the nodes would be as:

Nodes 216|410 8|12 14| 18| 16| 20| 22| 26| 24 | 28 | 30
Starting Time: || 1 23| 4 |56 | 7|8 |9 1011|1213]14]15
Finishing Time |3 (4|5 | 6 | 7| 8 | 9 |10 |11 |12 | 13|14 | 15|16 | 17

Number of intermediate storages for this schedule is just one and can be seen from the
following considerations.

e Node 2is completed in clock 3 and in the same clock node 4 gets started which requires
the result of the multiplication in clock 3 thus the result of node 2 is not required to
be stored.

e In clock 4 node 6 is completed and 10 is started, as 10 does not depend on 6, hence
the result of node 6 needs to be stored.

e Continuing in this way we see that only the results of nodes 6, 8, 12 and 20 are needed
to be stored (they are underlined in the table above).

e But, this does not mean that four distinct storage locations are required, as the storage
locations can be reused.

e Note that node §is ready in clock 7 and it is required to be stored. Node 6 was stored
previously, and the result was already utilized when node § started in clock 5. Thus
the location used for storing 6 can be used to store 8.

6.6. A Hardware Architecture for the Efficient Evaluation of BRW
Polynomials 129

e Arguing in this manner the total number of storage locations required in this case is
just 1.

6.5.1 Determining the number of intermediate storage locations
required by Schedule

The design of the algorithm Schedule tries to minimize the requirement of extra storage by
trying to use the intermediate results as quickly as possible. For any given input, the extra
storage requirements of Schedule can be easily determined from the following two simple
principles.

1. A result x is required to be stored if it is completed in a certain clock ¢ and the node
y which starts at ¢t is not a parent of x.

2. If there exists a storage location which stores results that have been already used, then
the location can be reused, otherwise a new storage location must be defined.

The extra storage requirement for Schedule grows very slowly with the increase in the number
of message blocks. Figure 6.6 shows the number of storage for various number of message
blocks for NS = 3.

The values reported in Figure 6.6 are obtained by the procedure described above. It may
be possible to come up with a closed form formula which shows the amount of extra storage
required for each configuration. This combinatorial problem is not straightforward and
remains open. For all practical purposes the procedure depicted above can give an exact
count of the extra amount of storage required.

6.6 A Hardware Architecture for the Efficient Evaluation of BRW
Polynomials

Utilizing the nice properties of the BRW polynomials as discussed in the previous sections
we propose a hardware architecture for computing such polynomials. We “show-case” our
architecture for 31 blocks of messages using a three-stage pipelined multiplier. The number
of message blocks of the polynomial and the pipeline stages of the multiplier can be varied
without hampering the design philosophy. This issue of scalability is discussed later.

Each block is 128 bits long, and so the multiplication, addition and squaring operations take
place in the field Fai2s generated by the irreducible polynomial 7(z) = 22 + 27 + 22 + z + 1.
This specific design would be also useful for the designing of tweakable enciphering schemes

130 Chapter 6. Efficient Implementations of BRW Polynomials

3-Stages

Extra Storages

L L L L
200 300 400 500 600
Number of Blocks

Figure 6.6: The growth of number of extra storage locations required with the number of

blocks for NS = 3.

which are discussed in Section 4.2. We describe the design of the multiplier followed by the
hardware architecture for the polynomial hash using BRW polynomials.

6.6.1 The Multiplier

Karatsuba multipliers as discussed in Section 5.2.2 computes the polynomial product ¢ =
A-B, for A=Al + A28 and B = BY + BH 25 € Foi2s as,

C = ALBL 4+ [(AH_|_AL)(BL+BH> _ (AHBH_'_ALBL))} 264 - AH BH 128

With a computational cost of three 64-bit polynomial multiplications and 4 additions/subtractions.
By applying this strategy recursively, in each iteration each degree polynomial multiplica-

tion is transformed into three polynomial multiplications with their degrees reduced to half

of its previous value. After 7 iterations of applying this recursive strategy, all the polyno-

mial operands collapse into single coefficients. However, it is common practice to stop the
Karatsuba recursion earlier, performing multiplications with small operands using alterna-

tive techniques that are more compact and/or faster.

The Karatsuba multiplier block implemented here is different from the one described in
Section 5.2.2 by the fact that we apply a pipelining strategy here. The three-stage pipelined
design adopted in this work is shown in Figure 6.7.

The multiplier shown in Figure 6.7 uses three 64-bit Karatsuba multipliers, and in turn,

6.6. A Hardware Architecture for the Efficient Evaluation of BRW
Polynomials 131

each one of them are composed by three 32-bit multipliers and successively we implemented
16-bit and 8-bit multiplier blocks. We decided to stop the Karatsuba recursion at 4-bit level,
where we used a school-book multiplier. After a careful timing analysis we decided to place
registers at the output of the three 64-bit multipliers, at the output of the 8-bit multiplier
and finally, after the 128-bit reduction block. This gives us a three-stage pipelined multiplier
with each one of its three stages balanced in terms of their critical path. In fact, the critical
path of the first stage is shorter than the other two stages because we wanted to include
the critical path associated to the input multiplexer block (see Figure 6.8) as a part of the
critical path associated with the other two stages of our Karatsuba multiplier architecture.

KOM 128 bits . . .
KOM 64 bits KOM 32 bits KOM 16 bits
Ay By AyBy A4, B, 4, B, A4, B, 4, B, / 4, B, 4, B,
(4,©4,)(B,®B,) (44@4,)(B,®B,) (4,©4,)(B,©B,) (4,04,)(B,®B,)
koM || kom || kom koM || kom || kom koM || kom || kom
KOM | | KOM | | KOM 32 bits | | 32 bits | {32 bits 16 bits| | 16 bits| | 16 bits 8 bits | | 8 bits | | 8 bits
64 bits| |64 bits| |64 bits l l l l l l
l l l [overlapping] [overlapping] [dverlapping\]
| overlapping | J L

| reduction | 4 bits multiplier

J L

KOM 8 bits

AII BII AII BII

(4,04,)(By©B,)

KOM KOM KOM
4 bits | | 4 bits || 4 bits

Pl

[overlapping]

4L

Figure 6.7: Architecture of the three-stage pipelined Karatsuba multiplier

6.6.2 Hardware Architecture to Evaluate BRW Polynomials

The schematic diagram of the proposed architecture is shown in Figure 6.8, where the prin-
cipal component is a three-stage pipelined Karatsuba multiplier denoted as KOM. At the
output of the multiplier, we placed two accumulators, ACC1 and ACC2, which are used to
accumulate intermediate results.

Figure 6.8 also includes two blocks for computing squares in the field Fai2s. These circuits
are depicted in the diagram as Sqrl and Sqr2. Computing squares in binary extension fields

132

Chapter 6. Efficient Implementations of BRW Polynomials

) 4 Y
Y3+ Ya.
10 ?7 utput 0
cct LACC2)
@ 00
h 1 o1 M1
> L 10 inMa 3-StageS
L Sart e inA Pipelined
A4 r > 00 KOM
% 01 M2 -
_ ” inMb
"o
Sy Sarzre inB
A

Figure 6.8: Architecture for computing the BRW polynomial for m = 31.

are much easier than multiplications. The strategy used for computing squares is as follows.

Let o € Fai2s. Then, o can be seen as a polynomial o« = Z}ﬂ) biz', where each b; € {0,1}.

Then

127 \? 127 '
o’ = (Z bl-xl) mod 7(z) = Y b;z* mod 7(x).
i=0 i=0

Both squaring blocks in Figure 6.8 are equipped with output registers that allow to save the
last field squaring computation. The multiplier block KOM has two inputs designated as
inMa and inMb.

The first multiplier input (inMa) is the field addition of three values. Explanations of these
values are as follows.

3.

. The first of these values is the output of a multiplexer block M1 that selects between

the key h or any one of the two accumulators.

. The second value is the output of another multiplexer that selects between the last

output produced by the multiplier or zero.

Finally, the third value is the input signal inA.

The second multiplier input (inMb) consists of the field addition of two values. Explanations

6.6. A Hardware Architecture for the Efficient Evaluation of BRW
Polynomials 133

of these values are as follows.

1. The first one is taken from the output of a multiplexer M2 that selects either the
output of Sqrl, or Sqr2 or the key h.

2. The second value is the input inB.

As was discussed in Section 6.1, the computation of a 31-block BRW polynomial denoted as,
Hy(Pi, ..., Py), requires the calculation of |2l] = 15 multiplications. We give in Figure 6.9
the time diagram that specifies the way that these fifteen multiplications were scheduled.
The final value of the polynomial H, (P, ..., Ps;) is obtained in just eighteen clock cycles.

The dataflow specifics of the architecture in Figure 6.8 is shown in the time diagram of
Figure 6.9. This figure shows the different data stored/produced in the various blocks at each
clock cycle along with the order in which the multiplications were performed. My, ..., M
denote the fifteen multiplications to be computed and the multiplicands are depicted in the
rows designated inMa and inMb, which are the two inputs of the KOM block. The row
designated C denotes the output of the multiplier. As a three-stage pipelined multiplier is
being used, a multiplication scheduled at clock 7 can be obtained at C in clock 7 + 3.

The rows ACC1 and ACC2 denote the values which are accumulated in the accumulators
in the various clock cycles. Note that an entry M; in any of the rows representing the state
of the two accumulators signify that the value M; gets xor-ed to the current value in the
accumulator, and an entry xM; denotes that the accumulator gets initialized by M;.

The rows squaringl and squaring2 show the state of the squaring circuits output register.
Each of the circuits for squaring can compute the square of the current content of the output
register in one clock cycle, maintain its current state, or initialize its value with h? taking h
as a fresh input.

As depicted in Figure 6.9, the computation of the polynomial Hy, (X7, ..., X3) can be com-
pleted in 18 clock cycles and the final value can be obtained from the accumulator ACC2.

reset

multiplication
inMa 3

inMb !

C

ACC1:
ACC2:
squaringl :

squaring2

,,,

| | | | | | R | | co | | | co | |
1(heP,) i (heP;) | (h@Py) i (M,®P,): (h&P;) ((M,®P,)i(ACC®P,): (h@P,;) i (h®P,) (ACCeP) (M ®P,) (h®Py) i(h®P,) iaccer,) (h®P,)

(HPoP,) | (BPeP,) | (WePy) | (i'eP,) | (FeP,)! ("'ePy,)] (eP,) | (ReP,) (WePy) (WoP,) (h'eP,) (lFeP,) (KeP,) | (FFeP,) (K'eP,)!

fff

10
"M,
e MlO
R n? B2 n?

h4

,,,

M, M, |
0 M,
0
h? h? h? h? h h*
h? h? h? h? h? h?

M, } Mg
R* 0 R® 0 R® RS
'S S S &

h2 3 h4 3 h4 3 h4

hB

Figure 6.9:

Time diagram of the

circuit in Figure 6.8.

VET

srerwouA[od MY Jo suorjejuawadwi] juaIys 9 J1ojdey)

6.6. A Hardware Architecture for the Efficient Evaluation of BRW
Polynomials 135

The circuit shown in Figure 6.8 uses the strategy of computing the squares as required on
the fly. An alternative strategy would be to pre-compute the required powers of h and store
them in registers. By using this strategy we can get rid of the squaring circuits at the cost
of some extra storage, and come up with a circuit which would be very similar to the circuit
described in Figure 6.8.

If the pre-computing strategy is adopted, then for computing Hy (P, ..., P3;1) we need to
store h%, h*, h®, h1® in registers. The multiplexer which feeds inMb in this case would be a
five-input multiplexed, where four of the inputs come from the registers where the squares
were stored and the fifth input is the input line h. As squaring in binary extension fields is
easy, these two strategies do not provide significantly different performances. This becomes
evident from the experimental results.

Irrespective of the way in which squarings are performed, the construction of the circuit
follows the scheduling strategy as dictated by the algorithm Schedule. According to Theorem
6.1, if a three-stage pipelined multiplier is used, then for computing Hy (P, ..., P3;) the 15
multiplications can be scheduled in 15 clock cycles without any pipeline bubbles.

Figure 6.9 shows that this is indeed the case as starting from clock 1 to 15, in each clock,
a multiplication gets scheduled without any pipeline delays. The extra storage required to
store the intermediate products is provided by the accumulator ACC1, which stores the
products My, My, Mg and M,.

ACC2 is used to accumulate the final result, note that the products Mg, M3, M4 and M;s
are accumulated in order in the accumulator ACC2. These multiplications corresponds to
the nodes 16, 30, 24, 28 of the collapsed forest (see Figure 6.3(b)).

6.6.3 Scalability

The architecture presented previously is meant for 31-block messages. But the same design
philosophy can be used for k-block messages for any fixed k.

Here we give a short description of how the circuit for computing Hy, (P, ..., P,,) grows with
the growth of m. A 3-stage pipelined multiplier is assumed. For ease of exposition, we shall
only consider the case where the powers of h are pre-computed.

The main components of the circuit will be the two multiplexers which are connected to
the inputs of the multiplier, the accumulators and the registers to store the powers of h.
If H,(Py,...,Py,) is to be computed, then we will require to store h? h* ... h* where
25 <'m < 2571 This will require s registers.

M?2 would thus be a (s+ 1)-input multiplexer. The number of accumulators required would
be at most one more than the number of extra storages required. For a given polynomial
Hy (P, ..., P,), the number of extra storages required by Schedule can be determined using

136 Chapter 6. Efficient Implementations of BRW Polynomials

the procedure described in Section 6.5.

If the number of accumulators required is a then M1 would be substituted by an (a + 1)-
input multiplexer, where « inputs come from the accumulators and the last one is the input
line h. The dataflow specifics can be automatically obtained from the algorithm Schedule.

6.7 Summary and Discussions

In this Chapter we explored the possibility of applying pipelined multipliers for computing
BRW polynomials. To achieve this we analyzed the structure of the BRW polynomial.
Our analysis viewed the polynomial as a tree where addition and multiplication nodes are
interconnected with each other. Viewing the BRW polynomial as a tree immediately gives
us information about the dependence of the various operations required for its computation.
We discovered some interesting properties of the tree, and used these properties to design a
scheduling algorithm. The scheduling algorithm takes as input a BRW polynomial and the
desired number of pipeline stages and outputs the schedule (or order) in which the different
multiplications are to be performed. This schedule has several attractive features.

1. For pipeline structures with two or three stages, we give a full characterization of the
number of clock cycles that is required for computing the polynomial.

2. The schedule ensures that the pipeline delays would be minimal.

3. The scheduling algorithm greedily attempts to minimize the storage. We show that
the requirement of extra storage grows very slowly with the increase in the number of

blocks.

Utilizing the schedule produced by the scheduling algorithm we came out with a hardware
architecture that is meant for computing BRW polynomials with a fixed number of message
blocks. We show-cased a specific architecture which uses 31 blocks of messages and a 3-stage
pipelined Karatsuba multiplier. Two variants of the architecture are discussed. In the first
one, the field squaring operations are computed on the fly, whereas in the second variant the
field squarings are pre-computed. Advantages and disadvantages of the two approaches are
compared. Finally, we show that the design philosophy is scalable and can be utilized for
different pipeline stages and different number of message blocks.

In spite of the comprehensive study that we present in this Chapter, we think that the
following interesting problems which are left open are worth studying in the near future:

1. We provided a full characterization of the a behavior of the algorithm Schedule for small
values of m. Though for our and all other practical purposes this would be enough but
a full characterization for arbitrary values of m may be an interesting combinatorial

6.7. Summary and Discussions 137

exercise. Such a characterization may also tell us which configurations of the collapsed
forest would admit a full pipeline given a number of pipeline stages. This study can
help is defining a weaker form of optimality (as mentioned in Section 7.3), which would
be achievable in all cases.

2. We provide a method for counting the number of extra storage locations for each config-
uration of the collapsed forest and a given number of pipeline stages. A combinatorial
analysis may yield a closed form formula for counting the extra storage locations.

In the following Chapter we use the BRW architecture developed here to implement two
TES namely HEH[BRW] and HMCH[BRW].

Chapter

TES constructions based on

BRW Polynomials

you may say Im a dreamer, but Im not
the onﬁy one. J hoy@ someday youu join us.
And the world will live as one.

zohn L@nnon

We shall devote this Chapter to two constructions of TES which uses BRW polynomials.
In [125] it was first suggested that BRW polynomials can be used instead of normal polyno-
mials to design tweakable enciphering schemes of the hash-ECB-hash and hash-counter-hash
family. In [125] it was also claimed that TES constructions using BRW polynomials would
be far more efficient than their counter parts which use normal polynomials. The claim
was justified using operation counts, as a BRW polynomial requires about half the amount
of multiplications than the normal polynomials. But, in [125] real design issues were not
considered and thus there exist no hard experimental data to demonstrate the amount of
speedups which can be achieved by the use of such polynomials. Here we concentrate on the
real design issues for hardware implementation of some of the schemes described in [125],
and ultimately provide experimental results which justifies that TES with BRW polynomials
would have higher throughput than the ones using the normal ones.

The material of this Chapter have have been previously published in [27].

7.1 The Schemes

There are two basic schemes described in [125], which are named as HEH and HMCH. The
schemes can be instantiated in different ways for different applications. The encryption and
decryption algorithms for HEH and HMCH are described in Figures 7.1 and 7.2 respectively
! The descriptions are for a specific instantiation which is suitable for the purpose of disk

!Note that we already gave a description of HEH in Chapter 4, Figure 4.6. The description in Figure 4.6
assumes a normal polynomial for the hash. Figure 7.1 provides a more general description.

140 Chapter 7. TES constructions based on BRW Polynomials

Figure 7.1: Encryption and decryption using HEH.

Algorithm HEH.Encrypt{yK(Pl, coy P) Algorithm HEH.Decryptg,K(Cl7 oo C)
1. ﬁl %EK(T);ﬁQF.I’Bl; 1. Bl (*EK(T),ﬂQF$51,
2. U(*Pm@’(/)h(Pl,...,mel); 2. U%Cm@wh(Cl,...,Cm_l);
3. PP, + U®&p; 3. CCp +U®® Boy
4. COC,, + Ex(PP,,);V < CC,, ® Bo; 4. PP, + EZ'(CCy,); V + PP, @ f1;
5. fori<+ 1tom—1, 5. fori<+ 1tom—1,
6. PPi:PiEBU@xiﬁl; 6. CCl:Cl@U@J}lBQ,
7. CC; «+ Ex(PP); 7. PP, «+ E ' (CCy);
8. Ci«+ CCiaz'paV; 8. P+ PP arpaV,;
9. end for 9. end for
10. Cpp + V& Yp(Cy, ..., Cr1); 10. Py, < V@& Y(Pry..., Ppno1);
11. return (C1,...,Cp); 11. return (Py,..., Py);
encryption.

In the description of the algorithms we assume that Ex : {0,1}" — {0, 1}" is a block cipher,
whose inverse is Fi' : {0,1}" — {0,1}". The additions and multiplications are all in the
field Fyn represented by a irreducible polynomial 7(x) of degree n which is primitive. For
our implementations we use the field Fyizs and 7(z) = 2" + 2"+ 2* + 2 +1. An A € {0,1}"
can be seen as a polynomial ag + ayz + - - - + a,2" "' where each a; € {0,1}, thus every n
bit string A can be treated as an element in Fyn. By zA we mean the n bit binary string
corresponding to the polynomial z(ag+ a1z + - - - +a,z" ') mod 7(x). This operation can be
performed easily by a shift and a conditional xor. In the description v, (.) can be instantiated
in two different ways, it can either be hPoly, (.) or hH}(.), where Hp(.) is a BRW polynomial.
From now onwards to avoid confusion we shall represent a BRW polynomial by BRW,(.),
and for the two different instantiations we shall call the schemes as HEH[BRW/|, HEH[Poly]

and HMCH[BRW], HMCH|Poly].

7.2 Analysis of the Schemes and Design Decisions

We analyze here the schemes presented in Section 7.1 from the perspective of efficient hard-
ware implementations and thus come up with some basic strategies for designing them. As
always, the implementation is targeted towards the disk encryption application, thus in the
following discussions we shall only consider messages of fixed lengths which are 512 byte
long, i.e. 32 blocks of 128 bits. Our primary design goal is speed, but we shall try to keep
the area metric reasonable. The basic components of both schemes are a block cipher (which
we chose to instantiate using AES-128) and the polynomial hash (either Poly or BRW). Thus,

7.2. Analysis of the Schemes and Design Decisions 141

Figure 7.2: Encryption and decryption using HMCH.

Algorithm HMCH.Encrypt! (Pi,..., Py) Algorithm HMCH.Decrypt;K(C17 oo Cn)

B1 <+ Ex(T); B2 < xP;
M1 %Pl @wh(PQ,...,Pm);
Uy < Ex(My) ; S < My @ Uy @ b1 @ Bo;
for i = 2 to m,
Ci < P,® Ex(z' 2518 S) ;
end for
Cy + U @wh(CQ, .. .,Cm);
return (Cy,...,Ch);

p1 = Ex(T); B2 = 2P1;
Up + C1 ®p(Cy,...,Cn);
My« BN (U1) 5 8+ My @ Uy @ B1 @ Bo;
for i =2 to m,
P+ CidEx(x281®9);
end for
P1 %Ml@l/]h(Pg,...,Pm);
return (P, P, ..., Py);

P NG W
O NG LN

in terms of hardware the basic components required would be an AES (both encryption and
decryption cores) and an efficient finite-field multiplier. As the focus of this work is in BRW
polynomials, in the rest of this Section we shall discuss about the instantiation with only
BRW polynomials here, the instantiation with Poly, () is briefly discussed in Section 7.4.3.

Referring to the algorithm HEH.Encrypti i of Figure 7.1, we see that irrespective of the
choice of ¥,(.), (m+1) encryption calls to the block-cipher are required, whereas HEH.Decryptr‘,g N
requires one encryption call and m decryption calls to the block cipher. The encryp-
tion/decryption calls in lines 4 and 7 of both HEH.Encrypt and HEH.Decrypt procedures are
independent of each other and thus can be suitably parallelized. Algorithm HMCH.Encrypti K
of Figure 7.2, requires (m+1) encryption calls to the block-cipher, and for HMCH.Decrypt .,
m encryption calls and one decryption call to the block-cipher are required. The (m — 1)
block-cipher calls required by both encryption and decryption procedures of HMCH can be
parallelized. Thus, for both modes the bulk amount of block-cipher calls can be parallelized.
This suggests that a pipelined implementation of AES would be useful for implementing the
ECB mode in HEH and the counter type mode in HMCH. Computation of the BRW,(.) can
also be suitably parallelized (as discussed in Section 6.6). Thus we also decided to use a
pipelined multiplier to compute the BRW hash.

As a target device for the implementation we choose FPGAs of the Virtex 5 family. These are
one of the most efficient devices available in market. In [17] a highly optimized AES design
suitable for Virtex 5 FPGAs was reported. One important design decision taken in [17]
was to implement the byte substitution table using the LUT fabric, this is in contrast to
previous AES designs (including the one presented in Chapter 5) where extra block RAMs
were used for the storage of the look up tables. This change has a positive impact both
in area and the length of the critical path, given rise to better performance. The design
described in [17] is sequential. The AES design implemented in this work closely follows the
techniques used in [17], but we suitably adapt and extend the techniques in [17] to a pipelined

142 Chapter 7. TES constructions based on BRW Polynomials

Table 7.1: The permutation 7(x)

x (|1)2|3}14]5|6| 7 | 8 |9|]10(11|12|13|14/15|16[17|18|19|20|21|22|23|24|25|26|27]28|29(30|31
m(x)|[1]2|7|8|3|4|13|14[5] 6 [11]12] 9 |10[19|20[15|16|21|22(17|18|27|28|23|24/29|30(25|26|31

design of ten stages. Moreover, another important characteristic of our AES design is that
we do not attempt to design a single core for the encryption and decryption functionalities
as was done in Chapter 5 but instead, we chose to design separate cores for encryption
and decryption. This gives us better throughput and also provides some extra flexibility
in terms of optimization. For one of the schemes we required a sequential AES decryption
core. In our experiments we were unable to obtain good performance for the decryption
core using strategies used in [17]. The design of the sequential decryption core uses ideas
from [56],where operations inverse byte substitution (IBS) and inverse mixcolumn (IMC) are
combined together in a single module which are called inverse T-Boxes. We implemented
the T-boxes using large multiplexors and avoided the use of memories, for this reason our
designs occupies more slices. Details about our AES implementation is provided in Section
7.4.1.

As it has been mentioned, in the case of the field multiplier we decided to use a three
stage pipelined Karatsuba multiplier. The number of stages was fixed keeping an eye to the
critical path of the circuit. Once we fixed our design for AES we selected the pipeline stages
for the multiplier in such a manner that it matches the critical path of the AES. As both
components would be used in the circuit, hence if a very high number of pipeline stages for
the multiplier is selected then, the critical path would be given by the AES but the latency
for multiplication would increase. Several exploratory experiments suggested that a three
stage pipeline would be optimal as the critical path of such a circuit would just match that
of the AES circuit.

Both HEH[¢)] and HMCH[)] were proved to be secure as tweakable enciphering schemes
in [125]. The security proof requires () to be a almost xor universal (AXU) hash func-
tion. Both hnBRW(X1,..., X,,—1) and hPoly(Xy,..., X, 1) are AXU. If 7 : {1,...,m—1} —
{1,...,m—1} be a fixed permutation then it is easy to see that ABRW(X (1), Xz(2), - - s Xrm-1))
would also be AXU. Thus, using any fixed ordering of the messages for evaluating each of the
BRW polynomials in the modes will not hamper their security properties. This observation
is important in the context of hardware implementations of HEH[BRW] and HMCH[BRW].
As, for optimal computation of BRW polynomials we require a different order of the mes-
sages than the normal order. In our case, the permutation 7() is dictated by the algorithm
Schedule. If m = 31 and the number of pipeline stages of the multiplier is 3 the permutation
7 as dictated by Schedule is shown in Table 7.1.

7.3. Analysis of the schemes 143

Thus, for implementing HEH[BRW].Encrypt we replace ¢, (P, . .., P31) in line 2 of Figure 7.1
by hBRW(PW(l), e Pﬂ(gﬂ)). Similar change is done in line 10 of the encryption algorithm
and lines 2 and 10 of the decryption algorithm. For implementing HMCH[BRW)| we replace
Up(Py, ..., Psp) inline 2 of Figure 7.2 by hBRW(Pr(1)41, Pr(2)+15 - - - » Pr(31)41). Similar change
is done in line 10 of the encryption algorithm and lines 2 and 10 of the decryption algorithm.

7.3 Analysis of the schemes

With these basic design decisions as described above, we shall analyze HEH and HMCH to
exploit the maximum parallelization possible. The following discussion assumes the use of
hBRW(.) in place of ¥4 (.) and the number of blocks to be 32 for both the schemes. First
we analyze HEH which is described in Fig. 7.1. In Line 2 of the encryption algorithm the
computation of the BRW polynomial on 31 blocks takes place. Using a 3 stage pipelined
multiplier and the design described in Section 6.6, BRW(P,, ..., P3;) can be completed in 18
clock cycles and computation of hBRW(Py, ..., P3;) would thus require 21 clock cycles for
the extra multiplication with h. Thus the computation of U (as in line 2) can be completed
in 21 clock cycles. The computation of 5; and S, (in line 1) can be done in parallel with the
computation of U.

Then in lines 4 to 9 the main operations required are 32 calls to AES. Following our design
these 32 calls can be completed in 43 cycles, and after an initial delay of 11 cycles we shall
obtain one value of C; (i < m) in each cycle. For computing C,, we again need to compute
the BRW polynomial which would take 21 cycles. The computation of the BRW polynomial
can be parallelized with the block cipher calls, as soon as we start getting outputs of the
AES calls we can start computing the BRW polynomial necessary in line 10. The specific
architecture that we have designed for the BRW polynomials requires the availability of
two input blocks per each clock cycle. For this reason we decided to have two AES cores
running in parallel which can feed the circuit for computing the BRW polynomials and thus
can reduce the total latency of the circuit. Using this strategy, all values of C'C; would be
produced in 27 cycles instead of 43. After 11 of these 27 cycles we can start computing the
BRW polynomial and would require a total of 21 cycles to complete. The total computation
can be completed in 55 cycles if two AES cores are used. This description is summarized in
the time diagram in Figure 7.3 (a). Decryption would be similar, but we need to implement
two AES decryption cores for obtaining the same latency as encryption.

If we use a single AES core, then we would not be able to do the BRW computation in line
11 in 21 cycles as in each cycle we shall not be able to obtain two blocks of data as required,
thus for each multiplication we need to wait two cycles, and thus the total computation
for the second hash (in line 11) would require 35 cycles, and the total computation would
require 69 cycles.

144 Chapter 7. TES constructions based on BRW Polynomials

RRAIIKRIRAXA
02020200 %% %0
s key schedule

U By, B,

! PP,, PP, .., PP, M,
i | ‘ ‘
| CC,,iCC, .., CCy, ; |
i ' ! 1
I I I | ! I
1 ' , i ! "
! ! i L’E ' ; ! !
I I | " ! '
i ! sl T R | ' '
1 I ' O G R R ! 1
! ! H T 762626262262 % 4 %% %% eSSttt tets ! I I
! ! i : - | : i !
! | ; € Gy ! 1 1 |
I ' | ' ! I '
| | - | H ! ! | C, RRERREREEERRRRRLRZE
H v 0 i 1000 0o 20 0e O 0 0 0 0 0 % %o
! ' ; Co i ! ! ! ' e
y * y ! j i '
01 12 22 33 34 50 55 01 12 22 34
clock cycles clock cycles

(a) (b)
Figure 7.3: Time diagram of HEH and HMCH: (a) HEH (b) HMCH.

The time diagram for HMCH is shown in Figure 7.3(b). In case of HMCH also line 2 can be
completed in 21 cycles and line 1 can be performed in parallel with line 2. For computing
line 3 which involves a single AES call we would need to wait 11 cycles. Again, using two
ten staged pipelined AES encryption cores the computation in line 5, which involves 31 calls
to the AES in counter mode can be completed in 27 cycles. After 11 of these 27 cycles,
the BRW hash can be started and it would require 21 cycles to compute. Thus, the total
computation could be done in 66 cycles. In case of decryption there is only one inverse
call to the AES as in line 3. Thus, for decryption there is no need to implement two AES
decryption cores as is required in case of HEH. Only one decryption core is sufficient in this
case and also as there is only one call, a pipelined design for this core is also un-necessary.
Hence, we designed a sequential decryption core which saved us some area. If a single AES
core is used, as in the case of HEH in HMCH also an additional 14 cycles would be required
for computing the second hash.

7.4 Architecture of HMCH[BRW]

We implemented the modes HEH[BRW] and HMCH[BRW]. For both the modes both en-
cryption and decryption functionality were implemented in a single chip. In this section we
shall only describe the architecture for HMCH[BRW| which uses two pipelined encryption
cores and a single sequential decryption core, first at all we will describe the AES designs.

7.4.1 The AES

We designed the AES encryption and decryption cores separately. For HEH[BRW] we
used two pipelined AES encryption cores and two pipelined AES decryption cores and for

7.4. Architecture of HMCH[BRW]| 145

HMCH[BRW)] we used two pipelined AES encryption core and one sequential decryption
core. The AES design closely follows the techniques used in [17]. In [17] the S-boxes were
implemented as 256 x 8 multiplexers. This was possible due to special six input lookup tables
(LUT) available in Virtex 5 devices. One S-box fits in 32 six inputs LUTs available in Virtex
5 FPGA devices. In [17] the authors presented a sequential core, we extended their idea to a
10 — stages pipelined core. Initially, both the encryption and decryption cores take 10 clock
cycles to produce a valid output, and produces one block as output in subsequent cycles.
AES encryption/decryption consist of 10 rounds, the rounds 1 to 9 has four transformations:
SubBytes (BS), ShiftRows (SR), MixColumns (MC) and AddRoundKey (ADDRK). The
last round has only three transformations BS, SR and ADDRK. The decryption core looks
similar to figure 7.4, where each transformation is replaced by its inverse and the order of
rounds are inverted (i.e., the computation starts at round 10 and the final output is given
by the xor of initial key and output of round 1).

inAES Initial Key
Generator
BS Tl
SR L Round1 w
AD[/)IERK T | Roend 2|
- Round 3
e Round 4
Round 5

BS Round 9
SR T~ . I
ADDRK I Round 10 : -Kcy 10 =

outAES

Figure 7.4: Architecture for 10-stages pipelined encryption AES core.

plaintext ciphertext
A
K, » é"} E) " K
> A
Y
[srR] [1srR]
A
Y
[ITBOXes] | 1BS |
A
invK, ,) 4

Figure 7.5: Architecture for sequential decryption AES core.

146 Chapter 7. TES constructions based on BRW Polynomials

The sequential decryption core in HMCH[BRW] was implemented using the techniques in
[56]. In [56] the operations BS and MC are combined in a substitution operation which
the authors call as T-boxes. In our implementation for the decryption core we used inverse
T-boxes (ITbox) which combines the operations inverse byte substitution (IBS) and inverse
mixcolumn (IMC). We implemented the T-boxes using large multiplexers and avoided the
use of memories. As a sequential core was only required hence we needed to implement only
two rounds (see Fig. 7.5). Irrespective of the number of cores used we used a single key
generator and the S-boxes for the key generator were also implemented using multiplexors.

7.4.2 Design of HMCH

The simplified architecture for HMCH[BRW] is depicted in Fig. 7.6. For ease of exposi-
tion in Fig. 7.6 we only show the encryption part of the circuit, an additional component
of the circuit is the sequential decryption core which we omit for the sake of simplicity.
The main components of the general architecture depicted in Fig. 7.6 are the following: A
BRW polynomial hash block (which corresponds to the circuit shown in Fig. 6.8), two AES
cores (equipped with both electronic code book and counter mode functionalities), and two
22 Times blocks. The z?Times blocks compute 224, where A € Fqi2s. The architecture
also includes five registers to store the values My, 51, [, U; and S, and makes use of six
multiplexer blocks labeled 1 to 6 in the figure and we shall refer to them as mux1 to mux6.
When the 22 Times block is first activated, it simply outputs the value placed at its input
(for the circuit of Fig. 7.6, this input value will correspond to either 3, or f35). Thereafter,
at each clock cycle the field element 22A will be produced as an output, where A € F, is
the last value computed by this block. The control unit of this architecture consists of a
ROM memory where a microprogram with sixty seven micro-instructions has been stored,
each microinstruction consisting of 28-bit control words. Additionally, the control unit uses
a counter that gives the address of the next instruction to be executed.

The general dataflow of Fig. 7.6 can be described as follows. First the parameter f; is
computed as ; = Ex(T). This is done by properly selecting muxl and mux2 so that
the tweak T gets encrypted in single mode by the AES.,., core. The value so obtained
is stored in the register regf; and also [y = x5 is computed and stored in reg,. Then,
the plaintext blocks Ps,..., P, are fed into the BRW hash block through the inputs inA
and inB and the proper selection of mux4 and muxb. After 21 clock cycles, the hash of
the plaintext blocks is available at outHash, allowing the computation of the parameter M;
as, My = outHash @ Py, where P; is taken from the input signal inB. The parameter U; is
computed as F (M) by selecting the third input of mux1 as the input value for the AES,,.;,
core. The value so computed is stored in regU;. At this point the circuit of Fig. 7.6 is ready
to compute the encryption in counter mode of m — 1 plaintext blocks (corresponding to line

7.4. Architecture of HMCH[BRW]| 147

N
- o
exnuw

2

P

'—>‘ reg By }fﬂxtimes‘
|

reg B
St

e
C
X
Dol o
o=
=
-
[0]
Q |-
wn

mux5 N ;’ egM,

inHashA inHashB

BRW Hash

outHash

Figure 7.6: Architecture for performing the HMCH[BRW] Encryption Scheme in hardware.

5 of the HMCH[BRW] encryption algorithm shown in Fig. 7.2) as,

AEScyen Cz<_Pz@EK<~TZ_26@S), fori=2,4,...,31.
AESpqa: Ci+ P,® Eg(228®S), fori=3,5,...,32.

It is noticed that this last computation is achieved in 28 clock cycles using the two AES cores
in parallel. The encryption blocks C; for ¢ = 2,...,m are simultaneously sent to circuit’s
outputs outA and outB, and to the BRW hash block through a proper selection of mux4 and
muxb. After 21 clock cycles, the cipher blocks’ hash is available at outHash, allowing the
computation of the encryption block C; as, Cy = outHash & Uy, where U; was previously
computed and stored as explained above.

Fig. 7.3(b) shows the time diagram of the sequence of operations required for computing
the HMCH[BRW] encryption of a sector that has a size of thirty-two AES blocks. We
first compute in parallel the BRW polynomial hash function M; along with the AES round
key generation and the computation of 1, [5. After eleven clock cycles we thus obtain
p1 = Ex(T) and 5 = z3;, whereas the computation of M; is completed after twenty one
clock cycles. Hence, we can start at cycle 22 the computation of U;. We are able to obtain
the parameter S at clock cycle 34, which is required to start the counter mode encryption.
Then, from clock cycle forty-four up to sixty, the counter mode encryption is able to deliver
two valid input data that will be used for computing the second hash function Ms. The last
value ('} that corresponds to the final result of the hash function M, is delivered at clock
cycle sixty-seven. This completes the encryption of the 32 AES block sector.

148 Chapter 7. TES constructions based on BRW Polynomials

7.4.3 HEH[Poly] and HMCH|Poly] Using Pipelined Multipliers

For the sake of comparison we also implemented HEH[Poly] and HMCH][Poly|. As stated in
Section 4.2 these schemes can be obtained by replacing v,() by Poly, () in the algorithms of
Figures 7.1 and 7.2. When a normal polynomial is used for the constructions then the usual
Horner’s rule is the most efficient way to compute it. At first glance, the advantages of a
pipelined multiplier cannot be used due to the sequential nature of the Horner’s rule. In [129]
A three way parallelization strategy was proposed to evaluate a normal polynomial using
three different multipliers and thus running three different instances of the Horner’s rule
in parallel. We adopt the strategy presented in [129] by utilizing a three staged pipelined
multiplier as a tool to evaluate a normal polynomial using Horner’s rule.

As we are interested in encrypting 32 blocks of messages hence in case of both HEH[Poly]
and HMCH[Poly| the polynomial to be computed is

’l/}h<P1,...,P31) = hPOth(Pl,PQ,...,Pgl)

31)

_ hZPZ_h?)l—z
i=1

= h(p1 +p2 +p3)

where

11
p1o= ZP&‘—Q(hg)H_Z
i=1

10
p2 = h*Y] Py (b))

i=1

10
p3 = thgi(hg)lo_i.

i=1

Note that the multiplications in p; does not depend on the multiplications in p, and ps, etc.
Hence, a three staged pipelined multiplier can be used to compute hPoly, (P, P, ..., Ps).
If h? and h3 are pre-computed then the computation of the polynomial can be completed in
35 clock cycles.

For HEH[BRW!] we used two pipelined AES encryption and decryption cores and for HMCH[BRW]
we used two pipelined encryption core and a single sequential decryption core. The usage
of two AES cores gave us considerable savings in the number of clock cycles as discussed

7.5. Experimental Results 149

Table 7.2: Primitive operations on Virtex-5 device.

Core Slices | Cycles | Frequency | Throughput | Throughput/Slice
MHz Gbits/Sec

AES pipelined 2859 1 300.56 38.47 0.0134
encryption (AES-PEC)

AES pipelined 3110 1 239.34 30.72 0.0098
decryption (AES-PDC)

AES sequential 1075 11 292.48 3.40 0.0031
decryption (AES-SDC)

hPoly, (P1, ..., Ps1) 1886 35 251.38 28.50 0.0151
hBRW, (P, ..., P3) 2086 21 243.49 46.01 0.0220

in Section 7.3, as h.BRW(.) could be computed in only 21 cycles. But h.Poly(.) requires 35
clock cycles to complete, and hence dedicating two cores for this task does not give rise to
any savings. Hence, while implementing HEH|[Poly], we used one pipelined AES encryption
core and one pipelined AES decryption core and for HMCH[Poly| we used one pipelined AES
encryption core and one sequential AES decryption core.

7.5 Experimental Results

In this section we present the experimental results obtained from our implementations. All
reported results were obtained from place and route simulations, where the target device is
XILINX Virtex 5 xc5vlx330-2ff1760. Table 7.2 shows the performance of the basic primi-
tives. Table 7.2 clearly shows that BRW(.) is far better in performance than Poly,(.), but
BRW,,(.) occupies more slices than Poly,(.). We note that only the pipelined AES decryption
core achieved lower frequency than the hash blocks. Thus in case of HMCH[BRW], which
does not use the pipelined decryption core, the critical path is given by the hash block and
in case of HEH[BRW] the critical path is given by the pipelined decryption core.

For both HEH[BRW| and HMCH[BRW | we implemented three variants, we name these
variants as 1, 2 and 3. The naming conventions along with the performance of the variants
are described in Table 7.3. Table 7.3 also shows the variants using Poly. From the results
shown in Table 7.3 we can infer the following:

1. BRW versus Poly: The variants using BRW give better throughput but occupies more
area than the variants using Poly.

2. Single core versus double core: When two AES cores are used for HEH[BRW]| and
HMCH[BRW] the throughput is much higher than the case when one AES core is used,

150 Chapter 7. TES constructions based on BRW Polynomials

as using two AES cores we can accommodate more parallelization. In particular, the
following observations can be made:

e For the two core implementations we gain 14 clock cycles against the one core
implementations. The improvement in clock cycles (66 versus 80 in case of
HMCH[BRW] ; or 55 versus 69 in case of HEH[BRW]) is not reflected to that
extent in the throughput (13 versus 11 in case of HMCH[BRW]; or 15 versus 13
in case of HEH[BRW)])). This is due to operation at lower frequencies for the
double-core implementations.

e Increase in hardware for HMCH[BRW]-1 over HMCH[BRW]-3 is probably not
significant, but, for HEH[BRW] the increase is marked. The reason behind this
is for HEH[BRW]|-1 two pipelined AES decryption cores are also necessary for
achieving the desired parallelization.

3. Pre-computing squares versus computing squares on the fly: Pre-computing
squares for BRW polynomials gives a negligible improvement on throughput and the
circuits using pre-computation utilizes a few slices more than the circuits where squares
are computed on the fly.

4. HEH versus HMCH:

e HEH[BRW]| gives better throughput than HMCH[BRW]. The reason being the
increased latency in case of HMCH[BRW]|. HMCH[BRW] has an AES call (the
one in line 3 of Figure 7.2) which cannot be parallelized. This results in an
additional latency of 11 cycles in HMCH[BRW)] compared to HEH[BRW].

e For the same reason HEH[Poly] gives better throughput than HMCH[Poly].

e HEH[BRW)| requires pipelined AES decryption cores for the required paralleliza-
tion in decryption but for HMCH[BRW] decryption a sequential AES decryption
core is sufficient. Thus, HMCH[BRW] occupy lesser area than HEH[BRW].

e HEH[BRW]-3 is comparable to HMCH[BRW|-1 and HMCH[BRW]-2 both in terms
of number of slices and throughput.
5. Recommendation:
e For best speed performance, use double-core HEH[BRW]; in particular, HEH[BRW]-
2.
e For smallest area, use HMCH[Poly].

e For best area-time measure, use single-core HMCH[BRW], i.e., HMCH[BRW]-3.
The area time measure for HMCH|[Poly] is very close to HMCH[BRW]-3.

7.5. Experimental Results 151

Table 7.3: Modes of operation on Virtex-5 device. AES-PEC: AES pipelined encryption
core, AES-PDC: AES pipelined decryption core, AES-SDC: AES sequential decryption core,
SOF : squares computed on the fly, SPC: squares pre-computed

Mode Implementation | Slices | Frequency Clock Time | Throughput 1
Detalils (SlicexTime)
(MHz) Cycles (nS) (Gbits/Sec)
HMCH[BRW]-1 2 AES-PEC, 8040 211.79 66 311.64 13.14 399.11
1 AES-SDC, SOF
HMCH[BRW]-2 2 AES-PEC, 8140 212.59 66 310.46 13.19 395.71
1 AES-SDC, SPC
HMCH[BRW]-3 1 AES-PEC, 6112 223.36 80 358.16 11.44 456.81
1 AES-SDC, SOF
HEH[BRW]-1 2 AES-PEC, 11850 202.86 55 271.13 15.17 311.25
2 AES-PDC, SOF
HEH[BRW]-2 2 AES-PEC, 12002 203.89 55 269.75 15.18 308.88
2 AES-PDC, SPC
HEH[BRW]-3 1 AES-PEC, 8012 218.38 69 315.96 12.96 395.02
1 AES-PDC, SOF
HMCH][Poly] 1 AES-PEC, 5345 225.49 94 416.88 9.83 448.79
1 AES-SDC
HEH[Poly] 1 AES-PEC, 6962 218.19 83 380.39 10.77 377.61
1 AES-PDC

7.5.1 Comparison with implementations in Chapter 5

There are no published data regarding the performance of HEH[BRW]| and HMCH[BRW]|
available in the literature. The closest work with which our designs can be compared is the
designs presented in Chapter 5. In Chapter 5, implementations of HEH and HCHfp were
provided which are very similar to HEH[Poly] and HMCH[Poly]. The designs in Chapter 5
were optimized for Virtex 4 family of devices, but the performance of the same design for
other devices like Virtex II pro and Virtex 5 were also reported. The throughput for HEH
and HCHfp reported in Chapter 5 were 5.11 GBits/sec and 4.00 GBits/sec respectively with
area overheads of 7494 and 7513 Virtex 4 slices respectively. Our designs of HEH[Poly] and
HMCH poly] achieves much better throughput using lesser area. But, one needs to be careful
in comparing the area metric as the structure of the slices in Virtex 4 and Virtex 5 are very
different. But our designs achieve much better throughput than the designs in Chapter 5
because of the following reasons:

e Due to better technology used in Virtex 5 higher frequencies are achievable.

e Our design of the AES is specially suited for Virtex 5 and uses the special slice structure
of such devices and thus can achieve much better frequencies than the designs reported
in Chapter 5.

e The multiplier used in Chapter 5 is a combinatorial circuit which produces one product
in each clock cycle, this design gives a much longer critical path than our pipelined

152 Chapter 7. TES constructions based on BRW Polynomials

multiplier. Hence our circuits for HEH[Poly] and HMCH|[Poly] operates at much higher
frequencies and thus give better throughput.

7.6 Final Remarks

Using the architecture of BRW polynomials developed in Chapter 6, we implemented two
TES HEH[BRW] and HMCH[BRW], the experiments suggests that BRW polynomials are a
far better alternative than normal polynomials in terms of speed for design of TES.

Out designs for HEH and HMCH exploits the parallelism assuming the messages are 32
blocks long, which is the size of a disk sector. In a practical application multiple sectors may
be written or read at the same time from a disk. This opens up the possibility of identifying
ways of parallelizing across sectors. The structure of both HEH and HMCH would allow
such parallelism and such parallelization may yield architectures which would be much more
efficient than those reported here. We plan to consider such designs in future.

Chapter

STES: A New TES

Amenable to Low
Area/Power

Implementation

}Cow many y@m‘s can some }3@0}3‘@ @%isf

Before ﬂwy’re allowed to be free?

Bob Dy(an

In the previous three Chapters we discussed in details some highly efficient architectures
for tweakable enciphering schemes. The results obtained are very encouraging as prototyp-
ical studies and they demonstrate that TES can match the data rates of modern day disk
controllers (which operates around 3Gbits/sec). The studies are targeted towards high end
FPGAs hence it may not be cost efficient for large scale deployments in commercial hard
disks etc, but the design philosophies adopted in these works can be easily adopted for de-
sign of ASICs where it is expected that the throughput rates would be higher as ASICs are
capable of operating in much higher frequencies than FPGAs.

Storage is an integral part of numerous modern devices which are constrained in terms of
area and power consumption. For example, non-trivial storage is provided in modern mobile
phones, cameras etc. Most of these devices do not have hard disks but rely on flash memories.
NAND type flash memory has a similar organization as hard disks and it seems that the
algorithms that are applicable for hard disks can also be applied here. But one needs to
keep in mind the constraints in these devices in terms of area and power utilization. Due
to the availability of low cost yet performant FPGAs, now it may be possible to put an
FPGA in a personal device like a mobile phone. Using FPGAs in such devices gives a better
competitive edge to the manufacturer, as FPGAs have lower development time and also the
reconfigurability options allows the manufacturers to add more features to a given device even
after the devices have been released in the market or already owned by a customer. These
considerations have led to the ideas of replacing a processor in such a device with an FPGA,
or to use a hybrid design consisting of both a FPGA and a processor. Such possibilities hints
the need for cost efficient FPGA circuits which can be directly deployed to small devices and
perform some cryptographic functionalities. In the last few years there have been numerous
proposals for light weight cryptographic primitives which when implemented would have a

Chapter 8. STES: A New TES Amenable to Low Area/Power
154 Implementation

very small hardware footprint and be very efficient in terms of power consumption [19,61,95].
In this Chapter we aim to address this issue of light weight circuits for storage encryption
in constrained devices.

The application that we have in mind is to encrypt flash memories which have a block-wise
organization (same as hard disks) and are used in small and/or mobile devices. Our target
application includes memory cards like those specified in the SD standard [4]. The data rates
for such storage components are much less than that of modern hard disks. For example
the SD standard classifies memory cards into four categories based on their speeds. These
categories are named as normal speed, high speed, ultra high speed-I1 (UHS I) and ultra high
speed II. They required bus speeds for these categories are specified in the Table below.

Category Speed range
Normal Speed || 12.5 MB/sec
High Speed 25 MB/sec
UHS-I 50 - 104 MB/sec
UHS-II 156-312 MB/sec

It is evident from the above Table that the speed requirements for SD cards are much less
than that of modern hard disks, where with the modern technologies like serial ATA and
native command queuing, the data rates achieved are more than 3 Gigabits/sec. Also, the
UHS-II category of devices are only recommended for special applications like storing high
quality streaming video etc. Hence for encryption of SD cards the speed of encryption is not
much demanding, and is much less than the speed achieved by the implementations reported
in Chapters 5 and 7.

In this Chapter we explore the development of a TES which can be implemented with small
area and power consumption. As a starting point we take an algorithm presented in [128§]
which aims to design more efficient TES. The focus of [128] was to design a TES which
would not require block-cipher decryption. It was argued that such a construction would
be more efficient than a construction which requires both encryption and decryption. The
construction in [128] uses a Feistel network in a novel way to remove the inverse call of the
block-cipher. In [128] it is also mentioned that the basic strategy of using a Feistel network
can also be adopted to construct a mode which uses stream ciphers with initialization vector
(IV) instead of the block cipher. We further develop the strategy in [128] and propose a
new TES which uses stream ciphers with IV and some special universal hash functions.
We call the new construction as STES. We formally prove that STES is a secure TES and
analyze STES extensively from an implementational perspective. Finally we come up with
various hardware designs which offer a very good time /area trade-off. We argue that these
architectures can be suitable for encryption of flash memories of various classes and can be
deployed in area/power constrained environments.

8.1. Some Technical Preliminaries 155

8.1 Some Technical Preliminaries

The new construction of TES that is reported in this Chapter is fundamentally different from
the constructions introduced till now by the fact that they do not use block ciphers, but use
stream ciphers. Additionally the hash function that this construction uses is structurally
different from a normal or a BRW polynomial. In this Section we give some overview of
these basic primitives used for the new construction

8.1.1 Stream Ciphers with IV

Like block ciphers stream ciphers are an important symmetric key primitive. A stream cipher
takes as input a key and outputs a "long" stream of random bits. The theoretical object that
a stream cipher models is a pseudorandom generator, which (informally) converts a "short"
random string to a "long" string which looks random to any efficient adversary. Stream
ciphers can be used as stand alone ciphers to do symmetric encryption.

Modern stream ciphers are designed to incorporate initialization vectors (IV), which helps in
increasing variability of the ciphertexts. A stream cipher with IV is a function which takes
as input two strings, namely, the key and the IV, and produces a stream of random (looking)
bits as output.

Let SCx : {0,1}* — {0,1}* be a stream cipher with IV i.e., for every choice of K from
a certain pre-defined key space IC, SCx maps a ¢ bit IV to a string of length L bits. The
length L is assumed to be long enough for practical sized messages to be encrypted. Actual
encryption of a plaintext P is done by XORing the first |P| bits of SCx(IV) with P. By
SCY(IV) we shall denote the first £ bits of the output of SCx(IV).

For proving the security of our scheme we we will assume that SC : K x {0,1}¢ — {0, 1}* to
be a pseudorandom function family with domain {0, 1}* and range {0, 1}£. This is indeed a
design goal for modern stream ciphers [127].

8.1.2 Multilinear Universal Hash

A MLUH (Multilinear Universal Hash) with data path d takes in a message M = M || Msl| - - - || M,, €
{0,1}%™ where each |M;| = d. MLUH produces a bd bit output for some b > 1. To do this
MLUH requires (m+b— 1)d bits of key material. Assuming that K = Ki||Ks||... || Knip-1,

where each |K;| = d we define

MLUHZ (M) = hallho]| - - ||,

where

Chapter 8. STES: A New TES Amenable to Low Area/Power
156 Implementation

hy = M -Ki® M, Ky®...® M, K,
h2 - Ml'KQEBMQ'Kg@...EBMm'Kerl

hy = M -Ky® My Kyi1 @ ® My, - Kpyn1, (8.1)

and the additions and multiplications are in the field GF(2¢). We will often call the parameter
d as the data-path of the MLUH. We define the MLUH?&I)(.) in such a way that the valid
key lengths and message lengths are always multiples of d. Cases where the message length
and/or key length are not multiples of d can be handled with appropriate padding, but it
makes the notation and description much complex. Moreover in the application that we
have in mind this property regarding the length of the message and the key would always
be satisfied.

A MLUH is a xor universal (XU) hash function, more specifically for a randomly chosen key
K from the key space {0,1}¥F7=1 and any pair of distinct messages M, M, € {0,1}™¢
and any ¢ € {0,1}%,

1

Pr[MLUHE(M;) @ MLUHE(M,) = 6] < T (8.2)

where the probability is taken over the uniform random choice of the key K. See [124] for a
proof of this.

A variant of MLUH is the pseudo-dot construction, which we will denote by PD. As-
suming m to be even, similar to the MLUH construction, the PD takes in a input M =
My|| M| - - || My, € {0,1}% and a key K = Ki||Kyl|. .. || Kpnsop—2, where M;, K; € {0,1}4,
and we define PD2(M) = hy||hol|...||hs, where

hy = (My® Ky)(My® K) © (My @ K3)(My ® Ka) ® ... & (M1 & K1) (M, © Kpp)
hy = (Mi® K3)(My® Ky) @ (M3 @ K5)(My® Kg) @ ... ® (M1 @ K1) (M, @ Kppy)

hy = (M;® Kop1)(Ma® Kop) B ... B (M1 & Kppyop—3) (M, & Kipop—2) (8.3)

The PD function is also a XU hash function [10].

8.2. Construction of STES 157

8.2 Construction of STES

The description of the encryption algorithm using STES is given in Figure 8.2 and the block
diagram in Figure 8.1. The construction is parameterised by a stream cipher SC supporting
(-bit 1Vs, a hash function MLUH with data path d and a fixed ¢-bit string fStr. This is
emphasized by writing STES[SC, MLUH, fStr]. When one or more of the parameters are
clear from the context, we drop these for simplicity of notation; if all three parameters
are clear, then we simply write STES. We assume that d | ¢. Plaintexts and tweaks are
fixed length messages. If P is any plaintext and T is any tweak, then we also assume that
d | (|P|+ |T| — 2¢). For practical implementations, the restrictions on d are easy to ensure
as we discuss later.

) MLUH

Z| MLUH

Cl CZ C3

Figure 8.1: Block diagram of STES.

The algorithm takes an IV of length ¢ which is a random element in {0,1}*, and a key K
which is again a random element in the key space of the stream cipher. Both I'V and K are
kept secret. Other than the key and IV it takes in the plain text P and the tweak 7'

The secret key for STES is the secret key K of the underlying stream cipher. In this context,
we would like to mention the role that the parameter fStr can play. From the point of view of
the formal security analysis, there is no restriction on fStr. Thus, this can be used as a secret
customisation option. In other words, for actual deployment, one may choose a uniform
random value for fStr and keep it secret. This provides an additional layer of obscurity over

Chapter 8. STES: A New TES Amenable to Low Area/Power

158

Implementation

Figure 8.2: STES: A TES using a stream cipher and a MLUH.

Uk o

N

9.

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
ret

STES.Encrypt!.(P)
b+ %
by LeLETI2

El < (bl +b— l)d,
0y (20— 1)d;

Py < bits(P, 1,0); /* |P| =4) */
Py < bits(P, 0 + 1,20); /* |Py| =0 */
P3 + bits(P,20 + 1, |P|); /* |Py| = 45 */

T SCLTET(fStr);

7'« bits(7, 1, 41);

B < bits(1, 01 + 1,01 + £);

7" bitS(T,fl +€+ l,fl ‘|‘€+£2),

Zy + MLUHE (P||T) @ ;

Ay~ P ® Zy;

Ay~ P ® Zy;

(By, By) < Feistely? ,(A;, As);

M, < Ay ® By;

M; < Ay @ Boy;

M + M1 () MQ,

Cs+ P33 SC%(M);

Zy + MLUHZY(C3]|T) & (B < 1);

Cy < By @© Zy;

Cy < By @ Zy;
urn(01||Cg||Cg);

and above the provable security analysis that we perform. There is another advantage to

using fStr as part of the secret key. The security bound that is obtained is in terms of the IV
length ¢ and the number of queries for which security holds can be obtained as a function
of 2¢. The key length | K| should be at least ¢ for the analysis to be meaningful. If the key
length is equal to ¢, then certain “out of model” attacks may apply as has been pointed
out in [32]. Increasing the key length by keeping fStr as part of the secret key will help in

preventing such attacks.

Apart from the secret key K, the input to the encryption algorithm of STES is the tweak T’

8.2. Construction of STES 159

Figure 8.3: Feistel network constructed using a stream cipher and a MLUH.

Feisteli’(CfT// (A1, As) InvFeisteIi’élT,, (By1,B3)
Lob+ [4] Lob+ L)
2. Hy + MLUH%Y(A1); | 2. Hy = MLUH%(By);
3. F1 + H|{® As; 3. Fy,=Hy® By;
4. Gy + SC4(Fy); 4. Gy = SCh(Fy);
5. Fy+ A1 DGy 5. I = By & Gy;
6. Go + SC4(Fy); 6. Gy =SC4L(F));
7. By <+ I & Go; 7. AL =F e Gy
8. Hy <+ MLUH®Y(B,); | 8. Hy = MLUH®?(A));
9. By + Hy® Fy; 9. Ay« Hi o Iy,
10. return(By, Bs); 10. return(A;, As);

and a plaintext P. Similarly, the input to the decryption algorithm of STES consists of T’
and the ciphertext C'.

The algorithm begins with some length calculations, and fixes values for the variables ¢, /5
and (3. ¢; and ¢y contains the key lengths necessary for the MLUH which are called later
in the algorithm. Next, it parses the input plaintext into three parts P, P, and P; where
Py and P, are both ¢ bits long and Ps is |P| — 2¢ bits long. In line 9, (¢; + ¢5) bits are
generated from the stream cipher SCx using the fStr as input. This output of the stream
cipher is again parsed into three strings 7/, 8 and 7”7, 7" and 7" are later used as keys for
the MLUH and f§ is xored with the output of MLUH. The part P; of the message and the
tweak T is hashed using the MLUH and mixed with the message parts P, and P, to generate
two strings A; and Ay. These strings are used as an input to the function Feistel() which
is described in Figure 8.3. The function Feistel() receives two keys K and 7" and it mixes
the input strings A; and Ay by appropriate use of the hash MLUH and the stream cipher
SC. Note that the function Feistel has a structure similar to the Feistel network, and it is
invertible. The inverse function for Feistel is also shown in Figure 8.3. The output of the
function Feistel is mixed with its input to create a ¢ bit string M. This M is used as an
initialization vector for the stream cipher to generate | P;| many bits which are XORed with
P; to get the ciphertext corresponding to P, the other parts of the ciphertext € and Cs
are generated using the output of the Feistel and the hash of the cipher ('3 and the tweak T'.

The description of the algorithm STES can be modified by using the pseudo dot-product
hash PD which is described in Section 8.1.2. If PD is used instead of MLUH the key lengths
required are to be suitably changed. For hashing m blocks (where each block is d bits long)
of message the PD construction requires m + 2b — 2 blocks of keys, where bd is the length of
the output. Hence the parameter ¢; in line 4 must be fixed to b; +2b— 2 and (5 to (4b— 2)d,

Chapter 8. STES: A New TES Amenable to Low Area/Power
160 Implementation

and all the calls to MLUH should be replaced by PD in the algorithm STES and the function
Feistel with the same parameters as it appears in the descriptions.

8.2.1 Some Characteristics of the Construction

e Key lengths: The only secret values used in the construction is the key K for the
stream cipher and the IV. The other keys 7" and 7" used for the hash are generated
using the stream cipher. In certain usages it may be possible to store 7" and 7" as keys
and give them as input to the algorithm. In that case the stream cipher call in line 9
would not be required. But as the key 7/ is much larger in size compared to K and
1V, hence for most applications it would be convenient to generate it on the fly.

e Message lengths: STES works only for fixed length messages. It is possible to extend
the construction to accommodate variable length messages but for the application of
block wise encryption of flash memories such generalization is not required.

e Efficiency: The costly operations that take place in the algorithm are the calls to the
stream cipher and the hash functions. In the main body of the algorithm the stream
cipher is called twice in lines 9 and 19, and in the function Feistel it is also called twice
in lines 4 and 6. It is to be noted that in real life, stream ciphers are quite fast in
generation of the outputs, but when a stream cipher is called on a different initialization
vector then there is a significant time required for initialization. Note that the four calls
to the stream cipher required in STES are all on different initialization vectors. Hence
stream cipher initialization occupies a significant amount of the time required for STES.
The MLUH and PD can be implemented very efficiently in hardware with a proper
choice of the data path d. The choice of d dictates the amount of parallelism possible.
Recall that the main goal of the construction is to enable a hardware realization which
uses small amount of hardware resources. A proper choice of the stream cipher and the
data path can help in realizing a circuit with adequate throughput but with a small
hardware footprint. These issues would be discussed in details when we describe in
Section 8.4 the hardware realization of a circuit for STES, and we would demonstrate
that STES meets the expected efficiency requirements both in terms of time and circuit
size.

e Security: The main objective of the construction is to achieve the property of a strong
pseudorandom permutation (SPRP). This construction do achieves it and we prove it
formally in Section 8.3, but here we informally argue that in this construction each
cipher bit depends on each plaintext bit and vice versa, which is a necessary property
of a SPRP. Note that the main enciphering operation takes place in line 19 of the
algorithm with the help of the stream cipher. The initialization vector M used in
the stream cipher depends on the whole message, also the parts C'; and (5 are mixed

8.3. Security of STES 161

with the hash of the whole message and the tweak making each bit of the ciphertext
dependent on each bit of the plaintext.

8.3 Security of STES

The security of tweakable enciphering schemes have been described in Section 4.2. To prove
that a TES is secure in the SPRP sense we show that the advantage of any adversary in
distinguishing the TES from a uniform random tweak indexed permutation is small.

The following theorem specifies the security of STES.

Theorem 8.1. Let § & Func(¢, L) and STESI[d] be STES instantiated with the function &
in place of the stream cipher. Then, for any arbitrary adversary A which asks at most q
queries we have

biD 10¢> + 3
+prp q q
AV regirunc(r, £y (A) < or (8.4)

The theorem guarantees that if the stream cipher acts like a random function then, for any
arbitrary adversary who asks a reasonable number of queries the advantage of distinguishing
sTes[d] and a uniform random tweak indexed permutation would be small.

The proof of the theorem consists of a standard game transition argument and a combinato-
rial analysis of some collision probabilities, we provide the full proof in the next subsection.

The bound in Eq. (8.4) decreases with increase in £. Thus the bound would be better when
stream ciphers with lager IVs are used.

8.3.1 Proof of Theorem 8.1

In the proof, the string fStr will be fixed and so we will not explicitly mention this as a
parameter to STES. The analysis of the proof will be done assuming the hash function H to
be MLUH. Essentially the same analysis also holds when H is instantiated as MLUH.

Let 6 be a uniform random function from {0,1}* to {0,1}%, i.e., § is chosen uniformly at
random from the set of all functions from {0,1}* to {0,1}*. This means that for distinct
inputs X1, ..., X,, the values §(X;),...,d(X,) are independent and uniform random. This
property will be used in the argument below. In the first step of the proof, the stream
cipher SC is replaced by . Note that this is only a conceptual step and there is no need to
obtain the acutal construction. In fact, there is no need to even chose the whole of § and
its behaviour can be simulated in an incremental fashion as follows. Keep a list of hitherto
generated pairs of inputs and outputs; for any input, one needs to check whether it has
already occurred and if so, return the corresponding output, if not, return an independent
and uniform random string.

Chapter 8. STES: A New TES Amenable to Low Area/Power
162 Implementation

Denote by STES[0, H] the corresponding construction. It is quite standard to argue that the
following inequality holds.

+PTp rf +pIp
AdVS1PEsp[sc,H](t7q,0) < AdVgc(tla%U)"‘AdVSTPEsp[a,H](taqao')- (8.5)

The idea is that if there is an adversary which can distinguish between STES[SC] and STES|[4],
then that adversary can be used to distinguish between SC and a uniform random function
and so breaks the PRF-property of SC. The parameters ¢ and o carry over directly whereas
the parameter ¢ increases to t’ since during the simulation, each query has to be processed
using either the encryption or the decryption algorithm of STES[SC, H].

The construction STES[J] is parameterized by the uniform random function §. Unlike SC,
there is no computational assumption on d. Basically, the computational aspect is taken
care of by the bound on the PRF-advantage of SC. So, the rest of the proof poceeds in an
information theoretic manner. The time parameter in AdvgtTpErSp[é](t, q,0) is redundant, since
allowing unlimited time does not help the adversary. So, we drop ¢t and use the notation

Advétggfﬂ (¢, o). The main part of the proof is to show the following.

5T 10¢* + 3¢
AdVS'IPErSp[(S} (tv q, J) < o . (86)
We have (see [65])
£prp +rnd q\ 1
AdVTES[5]<q’ o) < AdVTES[é] (o) + <2> 5 (8.7)

So, the task reduces to upper bounding Advﬁ%c[ié]. In other words, this is to show that

the advantage of an adversary in distinguishing STES[SC] from oracles which simply return
independent and uniform random strings is small. The proof now proceeds via a sequence
of games as described below.

In each game, the adversary A makes a total of ¢ queries. For convenience of description,
we introduce a variable ty® for each s = 1,...,¢. The value of ty* = enc (resp. ty® = dec)
denotes the corresponding query to be an encryption (resp. decryption) query. At the end
of each game, the adversary outputs a bit. By Pr[A% = 1] we denote the event that the
adversary outputs 1 in Game G where G is one of GO, G1 or G2.

The first game GO is depicted in Figure 8.4. Game GO is just the rewrite of the algorithm of
STES in Fig. 8.2, but we replace the stream cipher SC by a uniform random function d. The
random function is constructed on the fly using the subroutine ¢(), which is also shown in
Figure 8.4. The subroutine §() maintains a table T', indexed on the strings in {0, 1}¢ and is
initially undefined everywhere. In the table T[] the subroutine keeps information regarding
the values returned by it corresponding to the inputs. When called on an input X € {0, 1}¢,
() checks if T[X] is undefined; if so, then it returns a random string in {0, 1}* and stores

8.3. Security of STES

163

the returned value in T X]; otherwise, it returns 7'[X| and sets a flag labeled bad to true.
Note that game GO is a perfect simulation of STES instantiated with the random function

0. Hence if A is the adversary interacting with GO, and if we denote the encryption and
decryption procedures of STES[6] as IIs and II; ! respectively, then we have

Pr[A% = 1] = Pr{A™ 160 = 1),

Subroutine §(X)

for all X € {0,1}*, T[X] « undef; endfor
bad « false; D < {fStr};

T < 6(fStr);

7'+ bits(7, 1, 41);

B+ bitS(T,Zl + 1,01 + Z);

T/ — bits(’r,fl + 04+ 1,00 + €4 42);

0. v & {0,115

02. if X € D then bad < true; | Y + T[X] |, end if;
03. TX|«Y; D+ DU{X};

04. return Y;

Initialization:

FeistelKT// (A‘i, AS)
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.

b* [£]
Hj + MLUH®%?(A3);
Ff « HS @ AS;

G « bits(6(FF), 0);
FS « A3 ® G5,
G5+ bits(8(F3), 0);
BS « F7 @ G3;

Hj + MLUH®%?(Bs);
BS « H$ @ F3;
return (B3, BS);

InvFeistel ;- . (B, B3)

201.

202.
203.
204.
205.
206.
207.
208.
209.
210.

b* 415

Hy = MLUH%? (B3);
F3 = HS & BS;

G5 = bits(6(F3), 0);
F} = B} ® G3;

G5 = bits(8(F?), £);
AS = F§ & GS;

Hj = MLUH?? (A$);
A3« H? @ Fy,
return(Aj, A3);

Response to the s'™ query:

103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
return(C3||C5||C3);

Case ty® = enc:
100.
101.
102.

Pg bits(P*,1,0); /* |P1| = £) */
P§ < bits(P*, 0+ 1,20); /* |Po| = £ %/
PS < bits(P*, 20+ 1,|P|); /* |Pa| = €3 */

Z§ « MLUHZ(P3(|T*) & B;
AS «— PP @ Z3;

AS — P5 @ Z5;

(B, BS) + Feisteling,,(A; LAS);
M$ « AS @ BS;

M3 « A3 @ BS;

M*® + My ® Ms;

C3 + P5 @ bits(§(M*), £3);

Z5 + MLUHZ?(C3[|T%) & (8 << 1);
Cs « B @ Z3;

CS < B5® Z5;

Case ty° = dec:

100.
101.
102.

103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.

C$ < bits(C*,1,£); /* |P1| = £) */
C3 « bits(C, 0+ 1,20); /* |Pa| = £ %/
C3 < bits(C*, 20+ 1,|P|); /* |P2| = 3 */

Z5 + MLUHEY(C3||T%) & (B << 1);
B « C: o Z5;

Bj + C5 © Z5;

(A3, A3) + InvFeistelt? ,
M; + B @ AS; '

M; < B ® A3;

M* « M$ @ Ms;

P§ + C5 @ bits(6(M*), £3);
Z§ < MLUH%®(P3||T*) @ B;
PP AS & Z5;

P5 — AS @ Z5;

(A1, A3);

return(P}]||PS||P3);

(8.8)

Figure 8.4: Games GO and G1. The full description is of Game GO; Game G1 is obtained
by removing the boxed entry in Line 02.

Chapter 8. STES: A New TES Amenable to Low Area/Power
164 Implementation

We change game GO to game G1 by eliminating the boxed entry in game GO. G1 is shown
in Figure 8.4. With this change, the games GO and G1 executes in the same manner unless
the bad flag is set to true. Hence, using the difference Lemma (see [8,133])

| Pr[AS° = 1] — Pr[A®! = 1]| < Pr[A®" sets bad]. (8.9)

In Game G1, the responses received by A are random strings as C4, Cy and C3 are all
outputs of §() xor-ed with other independent strings. Also, in Game G1, §() responds with
random strings irrespective of the inputs it receives.

Now, we do a purely syntactic change to G1 to obtain G2 which is shown in Figure 8.5.
In G2, when an encryption or decryption query from A is received, a random string of
the length equal to that of the message/cipher length is returned immediately. After all
the g queries of the adversary have been answered, the game enters the finalization phase.
The finalization of G2 runs in two phases. In the first phase, based on the query and the
response, the internal random variables in the algorithm are adjusted and these values are
inserted in the D. In Phase 2, if there is a collision within D, i.e., two random variables in
D take the same value, then the bad flag is set to true.

As G1 and G2 provide the same view to the adversary and differ only in the way they are
written, we have
Pr[AS! = 1] = Pr[A%% = 1]. (8.10)

and
Pr[AS! sets bad] = Pr[.A%? sets bad]. (8.11)

Moreover, when A interacts with G2 it gets random strings as responses to all its queries,

and so

Hence, using (8.9), (8.10), (8.11) and (8.12), we have

AdvERL (4) = Prs & Func(t, L) : ATSCITE0) o 1] - PrASC)S0) =5 1
< Pr[A®? sets bad|. (8.13)

8.3.2 Collision Analysis

The rest of the proof is devoted to computing a bound on Pr[A%? sets bad]. Here A is an
arbitrary adversary which asks ¢ queries each consisting of a message/cipher of length m/¢
bits and a tweak of ¢ bits. If COLLD denotes the event that there is a collision in D as

8.3. Security of STES

165
Initialization:
D& (fsu); & {0,130, & {0,1)2; 8 & (0,1},
Response to the sth query:
Case ty® = enc: Case ty® = dec:
101. ¢ & {0,1}/7 101, Ps & {0,130
102. Cf + bits(C*, 1, 0); 102. P§ « bits(P?,1,4);
103. C5 + bits(C*, £+ 1, 20); 103. P§ < bits(P*®, €+ 1,26);
104. O <+ bits(C®,2¢ +1,|P|); | 104. P35 < bits(P*,2¢ + 1,|C|);
return(C7||C3||C3); return(P}||PJ|| P3);
Finalization:
FIRST PHASE
for s + 1 to g do
Case ty° = enc:
F§ « Ps ® B ® MLUH®" (P3||T*)®
MLUH®? (P @ B & MLUHE? (P3| T));
F5 « C; ® (B << 1) ® MLUH%? (C3||T)®
MLUH®%?(Cs & (8 << 1) & MLUH®(C3||T9));
M* « Pf @ Ps ®Cs @ C5;
D+ DU{FTU{Fs}U{Ms};
Case ty® = dec:
F5 + C; ® MLUH%?(C3||T%)®
MLUH®?(Cs @ MLUHE (C3||T9));
F§ + Ps ® MLUH®"(P3[|T)®
MLUH®?(P§ & MLUH® (Ps || T));
M* « Pf @ Ps ®Cs @ C5;
D+ DU{FYU{Fs}U{M5);
endfor;
SECOND PHASE
bad < false;
if (two variables in D are equal) then bad « true;
Figure 8.5: Game G2.
described in the Game G2, then
Pr[A®? sets bad] = Pr[COLLD]. (8.14)

We shall now concentrate on finding an upper bound for Pr[COLLD]. The following simple

result states a property of rotation that we will

require later.

Lemma 8.1. If 3 is chosen uniformly at random from {0,1}* and X is any (-bit string,

then Pr[f @ (B < 1) = X] =1/2""1.

The set D is as follows:

D={FFj,M*:1<s<q}U{fStr}.

All variables in D are distributed over {0,1}*. As mentioned earlier, the proof is using
MLUH®**(X) to instantiate H,(X), Essentially the same arguments hold when the PD con-

Chapter 8. STES: A New TES Amenable to Low Area/Power
166 Implementation

struction is used to instantiate H. The variables in D can be expressed in terms of the
plaintext and ciphertext blocks as follows.

FY = P pe H.(P||T°) @ Ho(PY @ B8 & He(F5[|T7)),
F = C(8<< 1)@ Ha(GYIT) & HorlC5 & (8 << 1) @ Hp(C3IT*)),
M = PP P, C]ads.

Noting the following points will help in following the analysis.

1. In Game G2, the string 7 = 7'||7"||5 is selected uniformly at random and is indepen-
dent of all other variables.

2. If ty®* = enc, then (CF,Cs5,C%) is uniform and independent of all other variables; if
ty® = dec, then (P7, Py, P§) is uniform and independent of all other variables.

3. In response to each query, A receives either (C7,C5,C5) or (P}, Py, P§). These vari-
ables are independent of 7 and so the queries made by A are also independent of
T.

Using the randomness of 3, or of P, or of C7%, the following immediately holds.

Claim 8.1. For any X € D\ {fStr}, Pr[X = fStr] = .

This disposes off the cases of fStr colliding with any variable in D. From the second point
mentioned above, the following result is easily obtained.

Claim 8.2. 1. For any pair of queries s,t,
Pr[M*® = M!: s #t] = Pr[M* = F!] = Pr[M* = Fi] = &%

2t

2. Let s,t be queries such that at least one is a decryption query and s # t, then
Pr[Ff = Fl] = Pr[F5 = Fl| = 2—1Z

3. If the s query is an encryption query or the t'" query is a decryption query, then
Pr[Fs = Fl] = 5.

By the above claims, we are left only with the following cases to settle.

1. s #t, ty* = ty' = enc and possible collision between F} and FY.
2. s #t, ty* = ty' = dec and possible collision between Fj and F.

3. ty® = enc, ty' = dec and possible collision between F} and Fj.

These are settled by the following two claims.

8.3. Security of STES 167

Claim 8.3. 1. If s #t and ty® = ty' = enc, then Pr[F{ = F{] <

2. If s # t and ty* = ty" = dec, then Pr[Fy = Fi] < 5.
Proof. We provide the details of only the first point, the second point being similar. Consider
two encryption queries (P*,7%) and (P',T"), where P* = P||Ps||P; and P' = P}||P}|| P
Then (P5,T%) # (P',T") as A is not allowed to repeat queries. Recall

A =Py @B Ha(P5||T3); Ay = P ® 8 ® Ho(Ps||TY);
F5 = AS @ Hon(A3); Fi =AY @ Hon(AY).

We compute as follows.

Pr[Fy = FY] = Pr[F}y = FY|A] = A} Pr[A} = Aj] + Pr[F} = Fy|A] # A} Pr[A] # Aj]
< Pr(Fy = FY|A} = Aj] + Pr[F} = FY|A} # Aj]
= Pr[FY = Fj|A] = Aj] + Pr[Ho (A7) ® Hon(A)) = A5 + A A} # A
S S 1
< PilFy = FjAT = Al + 5 (8.15)

The last inequality follows from the xor universality of H. From the expressions for Fj and
F}, it follows that Pr[F} = Ff|A5 = Al] = Pr[A5 = AL]. The computation of Pr[A = A}
has two cases:

Case 1: P§||T® + Pi||T"

Pr[Fy = Fi|A] = Aj] = Pr[A] = Aj]
= Pr[H.(P5||T") © Ho(P[|T") = Py & P]
1

S?-

The last inequality again follows from the xor universality of H.

Case 2: P§||T® = P}||T"

As A5 = A!, this implies that P = P. Further, since the queries must be distinct, it follows
that Ps5 # Pi. So, we have Pr[F} = F}|Aj = Al] = Pr[A§ = AL] = Pr[P5 = P3| = 0.

Hence, in both cases, we have Pr[F} = F{|A$ = Al] < 1/2°. Substituting this value in (8.15)

the claim follows. O

So far, we have used the randomness of 7/ to argue about the xor universality of H. The
role of 77 and that of S becomes clear in the following result.

Claim 8.4. If ty® = enc and ty' = dec, then Pr[F} = Fi] <

2¢—1"+

Proof. We consider an encryption query (P* T%) and a decryption query (C*, T"), where
P = P{||P5[|P5 and C* = C1||CY]|C5.

Chapter 8. STES: A New TES Amenable to Low Area/Power
168 Implementation

Let rest; = P @ H.(P§||T*) and resty = C5 ® H,.(C5||T*). Recall that F} and F} can be
written in terms of the plaintext and ciphertext variables in the following manner.

Y = PFefe Hoy(P||T°) @ Hoo (PP & 8 & He(P5]|T7))
= P®8® H.(P||T?) ® H.n(B @ rest);

Fy = Cla (< 1)® Ha(CY|T*) & Ho (Cy & (8 << 1) & Ho(CS|T))
= e (B l)® Hy (CY|T") @ Ho((B << 1) @ resty).

T

Let X = B@rest;, Y = (8 <« 1) Dresty and Z = Py @ & H(P||T%) @ Ct & (B <
1) & H(C3[[T*). So,

Pr[Fy = Fl] = Pr[Hq(X)® H.(Y) = 7]
Pr[X = Y] + Pr[H.(X)® H.(Y) = Z|X # Y]

IN

IA
a
<
[

=

+

|

The last inequality follows from the xor universality of H with 7”7 as the key. The event
X =Y is equivalent to f @ (f <« 1) = rest; @ resty. By Lemma 8.1, this holds with
probability 1/2¢. From this the claim follows.]

Based on the Claims 8.1 to 8.4, we can conclude that for distinct X,Y € D, Pr[X =Y] <
1/21. As |D| = 3¢ + 1, by the union bound,

2
Pr[COLLD] < <3‘-’“> L _ 9 +sg

9 oU—1 o
(8.16)
Using (8.7), (8.13), (8.14) and (8.16)
. 2 2
+DID 9¢* + 3¢q q\ 1 10¢* + 3¢
AdVeresy (A) < T F (2) ¥ o
Since A is an arbitrary adversary making ¢ queries, the theorem follows. O

8.4 Hardware Implementation of STES

8.4.1 Basic Design Decisions

We implemented various architectural variants of STES. The main goal of all the designs is
to obtain circuits which utilizes minimal hardware and power resources, but still we want to
obtain reasonable throughput so that it matches the target application of block-wise flash

8.4. Hardware Implementation of STES 169

memory encryption. The important design decisions are described next.

1. Message Lengths: The designs presented here are all meant for fixed length mes-
sages, in particular we consider messages which are 512 byte long. This particular size
matches the current size of memory blocks. The design philosophies are quite general
and can be scaled suitably for other message lengths. For the application we consider,
the generality of variable message lengths is not required.

2. The Stream Ciphers: The basic building blocks of the algorithm are a stream
cipher and a xor universal hash function. In the algorithm STES presented in Figure
8.2 it is possible to plug in any secure stream cipher. For the implementations we
choose three different instances: Grainl28 [67], Trivium [21] and Mickey128 2.0 [5]. As
these are the eStream finalists of hardware based stream ciphers and there are many
works in the existing literature which reports compact hardware implementations of
these ciphers [16,52,59]. There can be various ways to implement these ciphers with
varying amount of hardware cost. In particular, Grain128 and Trivium is amenable
to parallelization and one can adopt strategies to design hardware which can give an
output of only one bit per clock as in [16] or exploit the parallelization and increase the
data-path to give more throughput at the cost of more hardware as in [67] and [21]. For
instantiations with Grain128 and Trivium we tried different data paths for the stream
ciphers and thus realized multiple implementations which provides a wide range of
throughput. As said in [70] there exist no trivial way to parallelize Mickey, hence the
instantiations with Mickey are all with a data path of one bit. The various parameters
considered for implementing the stream ciphers are depicted in Table 8.1.

3. The Multipliers: Other than the stream cipher the other important component of
the algorithm is the universal hash function MLUH. The main component required to
implement the MLUH are finite field multipliers. In Section 8.1.2 we describe MLUH
parameterized on the data path d, which signifies that the multiplications in a MLUH
with data path d takes place in the field GF(2¢). We consider data paths of 4 bits, 8
bits, 16 bits, 32 bits and 40 bits, the corresponding irreducible polynomials used for
the implementations are provided in Table 8.2. The number of multipliers used for
implementing the MLUH for each data path varies.

4. Target FPGA: We target our designs for Xilinx Spartan 3 and Lattice ICE40 FPGAs,
as these are considered suitable for implementing hardware/power constrained designs
and moreover they are cheap and one can consider deploying these FPGAs directly
into a commercial device. The basic architectural overviews of these families have
already been presented in Chapter 3. In particular in Spartan III the LUTs within
SLICEM can be used as a 16 x 1-bit distributed RAM or as a 16-bit shift register
(SRL16 primitive). This functionality of a 16-bit shift register have been previously
exploited to achieve compact implementations of stream ciphers [16] and we also do so.

Chapter 8. STES: A New TES Amenable to Low Area/Power
Implementation

170

The ICE40 FPGAs though do not provide such functionalities, but their architectural
design specifically supports low power implementations and our experimental results

also suggest that they are much more competitive in this respect compared to Spartan

3 devices.

Field |1V |K| | Data paths used
(bits) | (bits) (bits)
Trivium 80 80 1,4,8,16,40,64
Grainl28 96 128 1,4,8, 16, 32
Mickey128-2.0 96 128 1

Table 8.1: Specific parameters used to implement Trivium, Grain128 and Mickey128 2.0.

Field Irreducible Field Irreducible
Polynomial Polynomial
GF(2%) rt+r+1 GF2%) | 22+ 2"+ 23 +2+1
GF2®) | 2%+t +23+2+1 | GFRYO) | 2V + 2 + 2t + 23 + 1
GF2Y) |2+ a5+ 23+ +1 | GF(2%) | 2% +2° + 2t + 23 + 1

Table 8.2: Irreducible Polynomials.

8.4.2 Implementation of Universal Hash

An important part of the STES is the xor universal hash function. In this work two different
kind of hash functions were implemented: Multilinear Universal Hash (MLUH) and Pseudo
dot Product (PD). The basic component of both design is a finite field multiplier. The
description of both MLUH and PD as provided in Section 8.1.2 is parameterized by d which
denotes that the multiplications are performed in the field GF(2¢) and the size of the output

of the hash functions is same as the size of the initialization vector of the stream cipher
which we denote as ¢. We considered various values of d with the restriction that d|¢. Let
b = {/d, for convenience of exposition we rewrite the description of MLUH% (M) (which is

already described in

Eq. 8.1)

hy = M -Ki® M- Ky®...6 My, - Ky,
hy = M;-Ko@® My -K3® ... 0 M, - Kpiq

hy = My -Ky® My Ky 1@ ... ® My, - Kpyon—1.-

(8.17)

8.4. Hardware Implementation of STES 171

Our basic strategy of computing the MLUH is to apply b different multipliers, i.e., when d
becomes larger the number of multipliers required becomes smaller. We compute column-
wise, i.e., we begin by performing the b multiplications M- Ky, M;-Ks, ..., M;- K,, these can
be done in parallel as we are using b multipliers. We store the results of these multiplications
separately and then in the next step we compute the products My - Ko, My- K3, ..., M- Ky,
again in parallel and these results are xor-ed with the previous results. We continue this
until we have computed all the columns. We showcase this strategy of computing the MLUH
when d = 8 and ¢ = 80 with a specific architecture next.

The architecture of MLUH for d = 8, and ¢ = 80 (which makes b = 10) is shown in Figure
8.6. Hence our design uses 10 multipliers, and each multiplier can multiply two elements in
GF(2%). The architecture is composed of ten 8-bit registers, ten multipliers and ten 8-bit
accumulators. All the registers are connected in cascade forming a 10-stage first in first out
(FIFO) structure with parallel access to all states. In Figure 8.6 the registers are labeled
as regkl, regk2,...regkl10. These registers are used to store ten 8-bit blocks of the key.
Each multiplier takes one of its input from FIFO and the other directly from the input line
m;. Initially all registers in the FIFO and accumulators have zero value. The FIFO is fed
with the key blocks Ky, Ky, ..., etc., one in each cycle through the input line depicted k;
in the figure. After ten clock cycles the FIFO is full, i.e, the registers contains the key
blocks K, Ko, ..., Ky respectively and the input line m; contains the message block M;
and the multiplications in the first column of MLUH is performed, then each product is
accumulated in the respective accumulators. In the next clock, the FIFO contains the key
blocks K5, ... K, and the input line m; contains the message block M,, and thus the second
column of multiplications are computed and these results are accumulated in the respective
registers. This is continued until all the columns have been processed. The final output
of MULH is obtained by concatenating the final values in the accumulators. The control
unit is not shown in the figure, it consist of a counter and some comparators. When the
computation of the hash has finished a ready signal is put into 1.

regkl multiplier GF' ACC1

h,

)

y ;
bl ACC3 2
9 hy
°)

°)

regk2 multiplier GF' ACC2

regk3 multiplier GF

regk4 multiplier GF'

Acca
hs

hg
h,
hy

regk5 multiplier GF ACC5

2
2
2
2
2
2

ACC6

multiplier GF(2°) ACC7

regk7)

8

o » Multiplier GF ACC8

o » Multiplier GF|

(
(
(
(
(
multiplier GF(
(
(
(
(

29)
29 ACC9
5 hyo

8

regk10

multiplier GF ACC10

e

M[%%{%{HH

Figure 8.6: Architecture of MLUH

Chapter 8. STES: A New TES Amenable to Low Area/Power
172 Implementation

The PD Construction

We mentioned in Section 8.1.2 that PD (pseudo dot construction) is a variant of MLUH
with some interesting differences. For hashing a m block message to a b block output, where
each block in d bit long, the MLUH requires mb multiplications in GF(2%), but PD requires
only me multiplications (assuming m is even). Though the total number of multiplications
in PD is lesser than in MLUH, obtaining an advantage with PD in the hardware realization
of STES is a bit difficult. Note that each multiplication in case of PD is of the form
(M; & Kj)(M;11 & Kj11), hence performing one multiplication PD requires two blocks of
message and key materials which is not the case in MLUH. This issue is important in a
proper design of PD as our design would be used in conjunction with a stream cipher in
STES, and at times the message and key blocks used by the PD would be obtained as an
output from the stream cipher. To keep this balance, we decided to construct a PD with
d /2 bit multipliers when the message and key blocks are considered to be d bit blocks. Here
we showcase an architecture for PD with 4 bit multipliers which produces a 80 bit output.
Later, we use this PD construction with a stream cipher with a 8 bit data path to construct

STES.

We implement the PD as is shown in Figure 8.7. The methodology adopted is the same as
in case of the architecture of MLUH (shown in Figure 8.6), in the sense that here also we
compute column wise. But as we use 4 bit multipliers, to get a 80 bit output we require 20
multipliers. We assume that the key blocks (K;) and message blocks (1/;) are obtained as 8
bit blocks, but we treat each multiplication as (M? @ KJ')(M} ® K[), where M; = M™||M}
and K; = KJ'||K} and |M[| = |[M}'| = |[K['| = |K]| = 4. Here we have twenty registers
named regK1 regK2, ... regK20, each of length 8 bits connected in a cascade forming
a FIFO as in case of MLUH architecture. These registers contains the key blocks, and the
message blocks are obtained from the input lines m# and m?’.

This 4 bit design of the PD is not more efficient than the MLUH architecture. Though the 4
bit multipliers used in PD are smaller than the 8 bit multipliers but we require the double of
them and also the double amount of registers and the extra xors required at the input of the
multipliers makes this PD architecture more costly than the MLUH architecture. Moreover
the number of clock cycles required in this case is also same as in case of MLUH.

The multipliers used in both PD and MLUH are Karatsuba multipliers, they were imple-
mented following the same design strategy as presented in Section 6.6.1. The irreducible
polynomials used to implement the multipliers are listed in the Table 8.2, also these multi-
pliers are smaller than the one presented in Section 6.6.1 as they operates on smaller numbers.
To keep the speed high and seeing that there are no dependencies between multiplications
in MLUH and PD, after a careful re-timing process the multipliers for d > 4 were divided
into almost balanced pipeline stages.

8.4. Hardware Implementation of STES 173

m— —m;
Ki" M . \ \ hy
regkl EP__“ .ﬁ ‘ multiplier GF(2°) | ‘ ACC1 |
K r
Lol B ra N \ h,
regk2 EPH, 'ﬁ | multiplier GF(2") | | AcC2 |
K2" r
H
= D uttioier GF2°)] \ hs
regk3 %, .ﬁ ‘ multiplier GF(2) | ‘ ACC3 |
K3"
k4 K H } ‘ Itiplier GF(2°) ‘ ‘ ACC4 ‘ hy
reg > ¢ multiplier ‘ ‘ ‘
K4" % ’LT F.‘
L ° ° °
®)))
L ° ° °
T K20" D T \ \ hy,
K regk20) .ﬁ multiplier GF(2°) ‘ ‘ ACCZO‘
i K20"

Figure 8.7: Architecture of PD.

8.4.3 Implementation of stream ciphers

In this work we consider three stream ciphers: Trivium, Grain128 and Mickey128-2.0. These
stream ciphers are the eStream hardware based stream ciphers and are in general very easy
to implement in hardware as they are constructed using lite simple structures shift registers
and some simple boolean functions. All these three stream ciphers can be implemented using
a shift register as a basic primitive.

We implement the stream cipher using various data paths, here by a data path we mean
the number of bits of output the stream cipher can produce in each clock cycle. A lower
data path uses less parallelism and thus can be implemented with fewer hardware resources.
The various data paths that we consider for the three stream ciphers along with some other
important parameters are depicted in Table 8.1.

For all the three stream ciphers, the bit-wise versions (i.e. the ones with data path of one
bit) can be implemented in a very compact way in Spartan-3 devices. Spartan-3 FPGAs can
configure the Look-Up Table (LUT) in a SLICEM slice as a 16-bit shift register without using
the flip-flops available in each slice. Shift-in operations are synchronous with the clock, and
output length is dynamically selectable. A separate dedicated output allows the cascading
of any number of 16-bit shift registers to create whatever size shift register is needed. Each
configurable logic block can be configured using four of the eight LUTs as a 64-bit shift
register. Such an usage of the LUT in Spartan-3 is called a SRL16 primitive [145]. This
SRL16 primitive can be used to implement the shift registers of the stream ciphers [16].
SRL16 supports only a single entry and a single bit shift, so if the data path is more than 1
then this primitive cannot be used and then the shift registers must be implemented using
simple LUTs. We implemented bit-wise versions of Trivium and Grainl128 using SRL16

Chapter 8. STES: A New TES Amenable to Low Area/Power
174 Implementation

primitive. A bit-wise version of Mickey128 2.0 was also implemented, but the structure of
Mickey128 2.0 does not allow efficient use of SRL16. Also, we did not implement Mickey128-
2.0 with data paths more than 1, as such parallelization in Mickey is not straight forward to
obtain.

Here, as an example we will explain in details the a specific architecture of Trivium with a
2-bit datapath. The internal state of Trivium is a 288-bit shift register, for implementation
purposes it is divided into a three registers SR1, SR2 and SR3 as shown in Figure 8.8.
All the three shift registers have two inputs and two outputs and in each clock cycle their
internal states are shifted by two positions. Initially SR1 and SR2 are initialized with the
80 bit key K and the 80 bit IV respectively. SR3 has as initial value the string 13|]01°8.
In the Figure 8.8 it can be seen that for each shift register its feedback functions depends
on some bits from it and a function computed with some bits from the previous register.
For example, the feedback of shift register SR3 depends on some bits of SR2 and two bits
from itself. It is easy to see in Figure 8.8 that the feedback functions for all registers and
the function to compute the final outputs Seyen, and S,qq are replicated two times, just they
have different inputs. In the case of Gran128 the way to increment the datapath also consist
of replicating the feedback functions of shift registers and the output function. Increasing
the datapath of Grain128 and Trivum brings a significant increase in throughput since it
reduces the time used for setup and give a parallel output for the stream.

e IVeyen Koaa Keven

o SR2

Lo SR3 * % w.x‘.a o

Figure 8.8: Architecture for Trivium.

8.4.4 Implementation of STES

We implemented STES with all the three stream ciphers with the data-paths specified in
Table 8.1. When we consider a stream cipher with data path d in implementing STES then
we use the hash function with the same value of the data path, i.e., in the hash function we
use multipliers in GF(2¢) if the hash function is MLUH, and if it is PD then the multipliers
are in GF(2§).

We will explain in details a 8-bit data path implementation using Trivium and MLUH, but
for other instantiations of stream ciphers and hash the basic design remains the same. Note

8.4. Hardware Implementation of STES 175

that Trivium uses a a 80 bit /V and a 80 bit key.

In the Figure 8.9 we show the generic architecture for encrypting with STES, we shall explain
the architecture with reference to the algorithm of STES (Figure 8.2) and the Feistel network
(Figure 8.3).

The circuit presented in Figure 8.9 consists of the following basic elements:

1. The MLUH constructed with 8 bit multipliers as discussed in Section 8.1.2. In the
diagram this component is labeled MLUH.

2. Two stream cipher cores labeled SC1 and SC2.
3. Two 80 bit registers RegH1 and RegH?2 which are used to store the output of MLUH.

4. Nine registers labeled regA11, regA12, regA22, regKH, regF1, regF2, regBl1,
regB21, regB2. All these registers are 80 bit long and are formed by ten registers
each of eight bits connected in cascade, so that they can be used as a FIFO queue.
The same structure was used in the design of MLUH and PD. When implemented in
Spartan 3, these registers are implemented using the SL16 primitive.

5. Five multiplexers labeled 1, 2, 3, 4, 5.
6. The control unit whose details are not shown in the Figure.

7. All data connections except the connections which connects MLUH with RegH1 and
RegH?2 have a data path of 8 bits. The connections between MLUH and the registers
RegH1, RegH2 have a data path of 80 bits.

8. The input lines M;, IV and K which receives the data and tweak, the initialization
vector and the key respectively.

9. The output line C; which outputs the cipher.

The MLUH computes the MLUH, it receives as inputs message blocks M;, tweak blocks
T; and key blocks K; and give as output the result of MLUH in its output port S. The
register RegH1 and RegH2 receive the output from S as input, in this case |S| = 80 bits.
The registers RegH1 and RegH2 are designed to give eight bit blocks as outputs in each
clock cycle in their output port BO. The MLUH receives its input from the 4x1 multiplexer
labeled 1. Notice, that in the algorithm of STES, the MLUH is called on four different
inputs. Multiplexer 1 helps in selecting these inputs. In the algorithm MLUH is called on
two different keys 7/ and 7", thus, MLUH can receive the key from two different sources:
the key 7' is received directly from the output of the stream cipher SC1. The key 7”7 is
received from the register regKKh which is used to store 7. To accommodate these selection
of keys the input port Ki of MLUH receives the input from the 2 x 1 multiplexer 5.

Chapter 8. STES: A New TES Amenable to Low Area/Power
176 Implementation

We use two stream ciphers SC1 and SC2. Both take the key from the input line K of the
circuit. SC1 receives the IV from multiplexer 2, it selects between input line I'V or Fj.
Multiplexer 3 feeds the IV to the stream cipher SC2; it selects between F, or M.

Next we explain the data-flow of the architecture of the Figure 8.9 with reference to the
algorithm in Figure 8.2.

) 4
M,T, J . ><) —4 C
> Fan iy
= by
Ca3
\) 4
(k (@Y >0 o
AH HH g TegA22
) 4 J
» (Do Q
\J regF1 W
5 ol
Cu
\Y gpé
N 3 xo,
. SCL, - > v s NI regB21°
¢ K dy B d oy ce
Kin g SC2
e in b d,
N ‘regB22’
K ol
2
I
\
c_word _d_word
P c/d d -
Control . >
- Unit Kin >

Figure 8.9: General Architecture of TES.

8.4.5 Data Flow and Timing Analysis

In this section we shall discuss the data flow in the circuit presented in Figure 8.9 and
also discuss the parallelism that we achieve using the circuit and the latency of the various
operations, we present a time diagram depicting the time taken by each operation in terms of
clock cycles in Figure 8.10. In Figure 8.10 the basic operations are depicted with rectangles
and the numbers inside the rectangles denotes the time required for the operation in clock

8.4. Hardware Implementation of STES 177

cycles.

We consider encryption of a message P of length 4096 bits. As per the algorithm P is parsed
into three blocks Py, P, P3, where |Py| = |P2| = ¢ = 80 and | Ps||T| = 4016. The encryption
procedure starts with the computation of the key bits 7 = 7/||3||7” using the stream cipher
SC1. It is required to generate 530 bytes of key material using the stream cipher. Our
implementation for Trivium takes 154 cycles for key setup, and to generate 540 bytes it
again takes 540 cycles. The key bytes generated by SC1 is parsed as 7/, and 7”. The key
bytes 7/ are not stored and are immediately fed to the MLUH as it gets generated. Note,
that these key bytes are used again and then they are again generated using SC1. Storage of
this huge key material would amount to more area of the circuit in terms of extra registers
hence we decided against the option of storing it. 5 also is not stored because it can be used
while it is generated by SC'1 and xored with the value in RegH1. 7" is used twice inside the
Feistel network, and the size of 77 is much smaller than 7/, hence it is stored in regKh.

As soon as the key set up phase of SC1 is over, in each clock it generates one byte of key
material and these key materials gets stored in the FIFO register of MLUH one byte per
cycle. After 10 cycles the FIFO is full and thus the MLUH can start computing Z;. It takes
524 cycles to complete the computation of Z; and it runs in parallel with the stream cipher,
note that 7" and f are required to compute Z;. The value of Z; is stored in the register
RegH1.

Next, using Z; and the message blocks P, and P, obtained from the input line the values
Aj and A, are computed. A; is stored in both the registers regA11 and regA12, and A,
is stored in regA2.

Once A; have been computed, the stream cipher SC1 has already started generating the
7" part of the key. Thus 7”7 and A; are fed to MLUH to compute H; (line 2 of Fig. 8.3),
H; is stored in the register RegH2. Using the value of H; in RegH2 and the value of A,
in regA2 Fj is computed and stored in regF1. The value of F} is then fed to SC1 as an
initialization vector to compute GG;. After the initialization of SC1 is completed and it starts
producing G, then computation of Fy is started and is fed to SC2 in parallel to compute
G5. When the initialization process of SC2 ends, G, starts getting computed and it is used
with the value stored in regF1 to compute B, which is stored in regB21 and regB22. Also
Bs is fed to the MLUH to compute H, using the key stored in regKh. When H, is ready
it is stored in RegH2 and is used with the value stored in regF2 F, to compute By, B; is
stored in regB1. This completes the evaluation of the Feistel in line 17 of the algorithm in
Fig. 8.2. The total computation of this phase takes 372 cycles as depicted in Fig. 8.10.

In parallel with the computation of By, M is computed using the values stored in regA12,
regA2 and regB2 which stores the variables A;, Ay, By respectively. M is fed as IV to the
SC2 in parallel to its computation, when the initialization process of SC2 ends the stream
cipher is ready to produce C3y. When the first eight bits of cipher text C5 are ready, then
it is fed to the MLUH to compute Z,, for doing this we run the SC1 in parallel to SC2

Chapter 8. STES: A New TES Amenable to Low Area/Power
178 Implementation

to generate the key 7/. When Z, is ready it is stored in RegH2, and it is used with the
values stored in regB1 and regB22 B;, By to compute C and Cs. As shown in Fig. 8.10,
for producing C5 a total of 492 cycles are required after initialization of the stream cipher.
Zy is computed in parallel to C3. After Zs is complete, computation of C; and Cy takes 20
more cycles.

The total time taken to encrypt 512 bytes is 1748 cycles and the delay called latency before
the first bit of the cipher text is produced is 1204 cycles.

T s 540 |
A
Feistel

SCy(M) 492
C3 492
Z, 524

Cl, c,

Total clock cyles = 1748

Lattency = 1204

Figure 8.10: Implementation of complete TES

8.5 Experimental Results

We implemented STES on two different families of FPGAs: Lattice ICE40 and Xilinx Spar-
tan 3. For Spartan 3 we we used the device zc3s400-fg456 and in case of Lattice ICE40
we selected LPSKCM225. The place and route results in case of Spartan 3 were gener-
ated using Xilinaz-ISE version 10.1. For ICE40 we used Silicon Blue Tech iCEcube release
2011.12.19577. We measured the power consumption of the circuits using Xilinx Xpower
Analyzer for Spartan 3 and Power Estimator of iCEcube for ICE40.

For our implementations we report performance in terms of throughput, area and power-
consumption. In case of Spartan 3 we report area in terms of number of slices and for ICE40
we report in terms of number of logic cells. It is to be noted that size of a Spartan 3 slice is
almost equal to twice the size of a ICE40 logic cell.

In this section we present the experimental results in two parts. First in Section 8.5.1 we
report performance data of the primitives, i.e., the stream ciphers and the hash function and
in Section 8.5.2 we report results of STES using various instantiations of the primitives.

8.5. Experimental Results 179

8.5.1 Primitives

In the Tables 8.3 and 8.4 we show the performance results of MLUH and PD implementations.
For all the cases, we consider hashing a message of 4016 bits to 80 bits. In the Tables MLUH-
db represents an MLUH with a d bit data path. And PD-4b8b represents a PD construction
where the multipliers are in GF(2*) but they receive inputs and outputs as 8 bit streams
(see the architecture discussed in Section 8.4.2).

It is clear from the Tables that in both Spartan 3 and ICE40 with the increase in data path the
throughput increases at the cost of area. For MLUH-1b, we obtain a very high frequency,
as in this case the multiplier multiplies two one bit numbers which can be implemented
only using a 2 x 1 multiplexer. As the data path increases, the complexity of the circuit
implementing the multiplication grows which increases the critical path of the circuit. For 16,
32 and 40 bit implementations we break the critical path of the multiplier by dividing it into
balanced pipeline stages, the number of pipeline stages were carefully selected to maintain
a high operating frequency. This is the reason why all 8, 16, 32 and 40 bit implementations
operate on similar frequencies on both Spartan 3 and 1CE40.

PD4b8b is an implementation of PD using 4-bit multipliers but the key and message entries
have eight bytes and internally they are divided into 4-bit, so this implementation emulates
an 8-bit data-path implementation. PD4b8b use twenty 4-bit multipliers which is double the
number of multipliers used by MLUH-8b. But the multipliers in PD4b8b have the half of
data-path of those in MLUHS8b, hence the area occupied by PD4b8b is almost same as that
of MLUH-8b and gives almost the same throughput. Hence using PD over MLUH does not
seem to have much advantage in hardware, hence we do not present the PD construction
with different data paths as we do for MLUH.

Primitive | Slices | Frequency | Pipeline | Throughput
(MHz) Stages (Mbps)
MLUH-1b 158 215.11 0 210.90
MLUH-4b 247 183.76 0 719.26
MLUH-8b 452 177.46 1 1386.51
MLUH-16b | 737 175.24 2 2717.25
MLUH-32b | 1259 176.97 2 5425.28
MLUH-40b | 1410 173.89 3 6588.13
| PD4b8b [415 | 17927 [0 | 140069 |

Table 8.3: MLUH on Spartan 3.

From Table 8.4 we can see that the number of logic cells required for ICE40 FPGA is almost
double than the slices required in Spartan 3. We explained in Chapter 3 that a logic cell in

Chapter 8. STES: A New TES Amenable to Low Area/Power
180 Implementation

ICE40 has much lesser components than in a Spartan 3 slice, which explains the difference
in area in the two families. Moreover, the ICE40 implementations operate at a little lower
frequencies compared to the Spartan 3 implementations, this can also be explained by the
fact that as a ICE40 has lesser components so the critical path of the implementations in
ICEA40 are more complex in terms of logic resources.

Primitive | Logic | Frequency | Pipeline | Throughput
blocks (MHz) Stages (Mbps)
MLUH 1b 325 189.78 0 189.78
MLUH 4b 461 180.85 0 707.89
MLUH 8b 810 171.24 1 1337.84
MLUH 16b | 1638 170.52 2 2644.05
MLUH 32b | 2531 173.90 2 5331.16
MLUH 40b | 2756 174.80 3 6622.31

Table 8.4: MLUH on Lattice ICE40.

The results of the stream ciphers are shown in Tables 8.5 and 8.6. In these Tables we present
the performance data of Trivium, Grain and Mickey with various data paths. In the Tables
the names of the stream ciphers are suffixed with the data path.

The bit-wise implementation of Trivium and Grainl28 on Spartan 3 were done using SRL16
primitives and this allowed us to obtain very compact designs: 49 Slices for Trivium-1b and
67 Slices for Grain128-1b. Grain128-1b is larger than Trivium-1b due to the complexity of
its output and feedback functions. Mickey128 was implemented only with a one bit data
path because there is no direct way to parallelize it.

Tables 8.5 and 8.6 shows that the increase in data path does not have much effect on the total
area of Grainl128 and Trivium. For example, Trivium-8b requires 148 slices and Trivium-16b
requires 203 slices. Though one would expect that doubling the data path would require
double the hardware resources, that is not the case. The growth in area is small because in
Trivium the state is stored in a 288-bit shift register independent of the size of data-path.
For wider data paths we only require to replicate the output and the feedback functions a
suitable number of times.

Wider data path implementations of Grain128 also have the same behavior as implementa-
tions of Trivium. As Grainl28 has a 96 bit IV hence for our requirement that the data path
must divide the IV length we do not implement grain with a 40 bit data path which we do
for Trivium.

8.5. Experimental Results

181

Primitive Slices | Frequency | Setup | Throughput
(MHz) (cycles) (Mbps)
Trivium-1b 49 201.02 1232 201.02
Trivium-4b 120 197.38 308 789.52
Trivium-8b 148 193.49 154 1547.93
Trivium-16b 203 189.32 7 3029.16
Trivium-40b 278 187.83 31 6010.60
Trivium-64b 435 186.95 20 11964.26
Grain128-1b 67 193.00 384 193.00
Grain128-4b 175 182.54 96 730.17
Grain128-8b 232 178.80 48 1430.42
Grainl128-16b | 320 179.73 24 2875.64
| Grain128-32b | 490 | 173.58 | 6 | 5554.56
| Mickey128-1b | 182 | 20280 | 286 [202.80

Table 8.5: Stream ciphers on Spartan3.

Primitive Logic | Frequency | Setup | Throughput
cells (MHz) (cycles) (Mbps)
Trivium-1b 313 190.26 1232 190.26
Trivium-4b 329 188.54 308 754.15
Trivium-8b 347 186.13 154 1489.04
Trivium-16b | 398 176.10 77 217.60
Trivium-40b | 530 166.73 31 6669.20
Grainl28-1b | 297 192.59 384 192,58
Grainl28-4b | 360 162.41 96 649.64
Grainl28-8b [434 145.73 48 1165.84
Grain128-16b | 592 137.72 24 2203.53
| Grain128-32b | 997 | 13684 | 12 | 437888
| Mickey128-1b | 420 | 169.74 [288 | 169.74

Table 8.6: Stream ciphers on Lattice ICE40.

8.5.2 Experimental results on STES

Using the primitives described in Section8.5.1 we construct STES. The performance results
are shown in Tables 8.7 and 8.8. The Tables shows data for STES implemented with various
stream cipher instantiations and data paths. The Tables also show the power consumption
characteristics for the implementations.

In Figures 8.11 and 8.12 we present the data in Tables 8.7 and 8.8 for STES instantiated with

Chapter 8. STES: A New TES Amenable to Low Area/Power
182 Implementation

Trivium and Grainl28 in a pictorial form. Figure 8.11 shows the growth of area, throughput
and total power for STES using Trivium and Figure 8.12 shows the same for STES using
Grain. Note that the plots are in logarithmic scale. We can observe that with increase in
data path the growth of throughput is much faster than the growth of area, this reflects the
characteristic of Trivium as shown in Table 8.5. The growth of power consumption is the
slowest.

The implementations which use Grainl28 are faster than the ones using Trivium, because
the implementations with Grain needs less clock cycles in comparison with implementations
with Trivium.

" Area (Slices) —— " Area (Slices) ——
Throghput (Mbps) > | Throghput (Mbps) - |
10000 Total power (MW) % 10000 Total power (MW) %
N T M—”*”/ﬁ/
/A/// ,,,,, e K S—
1000 D e B 1000 B -
// e o
e X X
X ’ = x 23
100 e 100 F-t o
*;,..vyg g -
10 10
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Data-path Data-path

(a) (b)

Figure 8.11: Growth of Area, Throughput and Total power for STES-T: (a) Spartan 3 (b)
Lattice ICE40

Area (Sl‘ices) —— ‘ Area (Siices) ——
Throghput (Mbps) —->- | Throghput (Mbps) - |
10000 Total power (MW) - 10000 Total power (mW) - K
S
T D +/+/*’/
T X -X
A e - B
1000 g e 1000 S
100 | o Ko 100 i :
10 10
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Data-path Data-path

(a) (b)

Figure 8.12: Growth of Area, Throughput and Total power for STES-G: (a) Spartan 3 (b)
Lattice ICE40

STES-T-PD4b8b is comparable with STES-T-8b in terms of area and throughout hence we
can conclude that for this application the use of Pseudo Dot Product is not very useful, as

8.5. Experimental Results 183
Mode Slices | Cycles | Frequ- | Throu- | TPA | Static | Dyn- | Tolal
ency ghput power | amic | power
(MHz) | (Mbps) (mW) | power | (mW)
(mW)
STES-T-1b 493 13765 | 145.00 43.18 21.37 38 29 67
STES-T-4b 766 3449 144.05 171.07 | 54.52 38 41 79
STES-T-8b 1038 1749 143.71 336.56 | 80.07 38 55 93
STES-T-16b 1672 871 141.51 665.46 | 97.17 38 153 191
STES-T-40b 2400 355 139.65 | 1611.31 | 133.15 59 247 306
STES-G-1b 512 10501 135.58 52.88 25.22 37 28 65
STES-G-4b 912 2633 131.66 204.81 | 54.83 37 50 87
STES-G-8b 1302 1321 130.39 | 404.29 | 75.81 38 69 107
STES-G-16b 1879 667 122.32 751.16 | 97.60 57 115 172
STES-G-32b 2439 339 120.18 | 1452.06 | 145.35 58 141 199
STES-M-1b 755 10117 | 132.76 53.75 17.38 38 34 72
STES-T-PD4b8b | 1012 1729 143.90 342.79 | 82.70 38 56 94

Table 8.7: STES on Spartan 3.

STES-T: STES using Trivium, STES-G: STES using

Grainl128, STES-M: STES using Mickey128, all with MLUH with the specified data path.
STES-T-PD4b8b: Small TES using Trivium and PD4b8b as a hash function.

a significant improvement of area or throughput is not seen in this case. For this reason we
do not implement this version in ICE40.

In the Table 8.8 we can see the experimental results for implementations of STES on ICEA40.
The comparative behavior reflected in the Table 8.8 is almost the same as the behavior of
implementation on Spartan 3 shown in Table 8.7. In general the implementation on ICE40
are slower than the implementations on Spartan 3, but the power consumption on ICE20 is
much better. In particular we observed that the static power consumption in ICE40 remains
constant for all variants. This is probably due to the fact that ICE40 was specifically designed
to be used in low power applications, hence its architecture has special characteristics which
allows it to run with a very low power consumption.

As the implementations on ICE40 performs the best in terms of power consumption, hence
we measured the performance of all our designs when the operating frequency was fixed to
100MHz. The ICECube software allows such simulations. In the Table 8.9 we show the
power consumption of all implementations in ICE40 when operating at a fixed frequency of
100 Mhz. In Figure 8.13 we show the data in Table 8.9 graphically. As expected, if we lower
the operating frequency the circuits consume considerably lesser amount of power.

Chapter 8. STES: A New TES Amenable to Low Area/Power

184 Implementation
Mode Logic | Cycles | Frequ- | Throu- | TPA | Static | Dynamic | Tolal
cells ency ghput power power power
(MHz) | (Mbps) (mW) (mW) (mW)
STES-T-1b 2013 13765 140.29 41.75 5.06 0.16 38.49 38.65
STES-T-4b 2379 3449 138.15 164.07 | 16.84 | 0.16 49.60 49.76
STES-T-8b 2676 1729 165.78 321.66 | 29.35 | 0.16 58.45 58.61
STES-T-16b | 3402 871 133.07 625.78 | 44.91 | 0.16 95.17 95.33
STES-T-40b | 5252 355 128.08 | 1477.79 | 68.65 | 0.16 156.27 156.42
STES-G-1b 2165 10501 135.26 52.76 5.95 0.16 42.55 42.91
STES-G-4b 2708 2633 130.87 203.59 | 18.35 | 0.16 49.63 49.78
STES-G-8b 3242 1321 128.59 398.71 | 30.03 | 0.16 67.26 67.42
STES-G-16b | 4204 667 120.76 741.58 | 43.07 | 0.16 92.77 92.93
STES-G-32b | 6092 339 118.66 | 1434.81 | 57.50 | 0.16 119.19 119.35
STES-M-1b 1720 10117 | 130.75 52.94 7.51 0.16 42.49 42.65

Table 8.8: STES in Lattice ICE40. STES-T: STES using Trivium, STES-G: STES using
Grain128, STES-M: STES using Mickey128, all with MLUH with the specified data path.

Mode Trough- | Static | Dynamic | Tolal
put power power power
(Mbps) | (mW) | (mW) (mW)
STES-T-1b 29.76 0.16 27.44 27.60
STES-T-4b 118.76 0.16 33.71 33.87
STES-T-8b 236.90 0.16 43.07 43.23
STES-T-16b | 470.27 0.16 71.52 71.68
STES-T-40b | 1153.80 0.16 122.08 122.08
STES-G-1b 39.01 0.16 32.35 32.51
STES-G-4b 155.57 0.16 37.92 38.08
STES-G-8b 310.07 0.16 52.31 52.47
STES-G-16b | 614.09 0.16 76.81 76.97
STES-G-32b | 1208.26 0.16 100.35 100.51
STES-M-1b 40.49 0.16 35.69 35.85

Table 8.9: STES in Lattice ICE40 at a frequency of 100 Mhz.

8.5.3 Comparison with Block Cipher Based Constructions

As mentioned earlier STES is highly motivated by the construction presented in [128], here

we present some results and estimations on the construction in [128].

The construction in [128] does not use stream cipher, it uses a block cipher in counter mode

8.5. Experimental Results 185

10000

Area (Slices) ——
Throghput (Mbps) —-><—-
J//‘\/‘\/WWEM‘F%
1000 | .
e ”%
100 p ks -
// ’% “““ L
//, » ke
10 | ‘ ‘ ‘ L L
0 5 10 " - N . |
Data-path

Figure 8.13: Growth of Area, Throughput and Total power for STES-T operating at 100
Mhz in ICE40

to do the bulk encryption, and the suggested hash functions are either normal polynomial
hashes or BRW polynomials. The performance of the construction in [128] when implemented
using a AES with 128 bit key and a normal polynomial hash is shown in Table 8.10. The
Table reports four implementations, which are described below:

TES-sAESs-1s: TES in [128] implemented with a sequential AES128 and a fully
parallel 128 bit Karatsuba Multiplier (the same AES and multiplier as used in the last
row of Table 5.8) in Spartan 3.

TES-AESs-4s: Sequential AES with one 4 stage pipelined 128 bit multiplier imple-
mented in Spartan 3.

TES-AESp-4s: 10 stage pipelined AES with 4 stage pipelined 128 bit multiplier
implemented in Virtex 5.

TES-sAES-1s: This is an estimation based on a very compact AES reported in [121],
and a polynomial hash which uses four 32 bit multipliers as used in case of MLUH-
32b. The estimation is based on the data in [121] that the AES occupies 167 slices and
takes 42 cycles to produce a single block of cipher. The estimated slices is obtained by
summing the slices of the components and the frequency is estimated by considering
that the critical path of the circuit would be given by the component with the highest
critical path. Real implementations may change these data.

The results in Table 8.10 shows that the implementations of the TES described in [128] with
a sequential AES in Spartan 3 takes up much more area than our designs with stream cipher

Chapter 8. STES: A New TES Amenable to Low Area/Power

186 Implementation
Mode Slices | Cycles | Frequ- | Throu- B- Static | Dynamic | Tolal
ency ghput | RAMS | power power power

(MHz) | (Mbps) (mW) (mW) (mW)

TES-AESs-1s 6170 388 45.58 480.70 11 191 182 372

Spartan 3

TES-AESs-4s 6389 403 74.07 752.10 11 192 245 437

Spartan 3

TES-AESp-4s | 4902 111 287.44 | 10596.44 0 1243 2276 3519

Virtex 5

TES-sAESs-1s | 2800 2694 71.51 108.62 3 - -

Spartan 3 *

Table 8.10: . TES implemented using AES-128 and a polynomial hash on different platforms.
TES-AESs-1s: Sequential AES with one fully parallel 128 bit multiplier, TES-AESs-4s:
Sequential AES with one 4 stage pipelined 128 bit multiplier, TES-AESp-4s: Ten staged
pipelined AES encryption core with 4 stage pipelined 128 bit multiplier. TES-sAESs-1s
(estimation): A small AES (167 slices, 3 block RAMs, with latency of 42 cycles per block)
and four 32-bit multipliers.

and our designs with data path of more than 8 bits achieves higher throughput at the cost
of smaller area and lower power consumption.

TES-AESp-4s is a huge design and it does not fit in a Spartan 3 device (note the slices in
Virtex 5 have much more resources than the slices in Spartan 3 and the of slices in these
two families are not quite comparable). TES-AESp-4s achieves throughput similar to the
designs of HMCH]|Poly] and HEH[Poly] reported in Chapter 7, but it cannot be in any sense
considered as a light weight design. But the performance TES-AESp-4s do show that the
TES in [128] can achieve quite high throughput.

The design philosophy adopted in TES-sAESs-1s is probably best comparable to our stream
cipher based designs. As in TES-sAESs-1s we intend to use a very compact AES. The
estimation shows that such an implementation would also occupy quite a large area but not
achieve a good throughput.

Use of light weight Block Ciphers: In the current days there have been numerous propos-
als for light weight block ciphers like PRESENT [13], KATAN, KTANTAN [20], KLEIN [58],
LED [62] etc. These block ciphers are designed to optimize the hardware resources required
to implement them. In a generic description of a TES any secure block cipher can be used,
thus there is no technical difficulty in plugging in a light weight block cipher in an exist-
ing description of a TES and this would lead to a low cost design compared to the AES
alternatives that we just discussed. But a thing to note is the light weight block ciphers
which we mentioned are mainly designed to be used in specific applications like in RFID

8.5. Experimental Results 187

| | Read Speed (Mb/s) | Write Speed (Mb/s) |

Class 4 323.77 32.77
Class 10 163.84 131.07
Class 10 778.24 368.64
extreme

USB 3.0 819.2 409.6
USB 2.0 245.76 163.84

Table 8.11: Highest speed rates of SD cards and USB memories of different types which are
currently sold by Kingston

authentication etc., and are not designed for bulk encryption in a mode. The light weight
block ciphers have small block lengths, for example all the schemes mentioned above have
a block length of 64 bits of lower. Such small block lengths would restrict their use in TES
as the block length of the block cipher used in a block cipher based TES is an important
security parameter. Recall that all existing block cipher based TES enjoys a security lower
bound of co? /2", where ¢ is the query complexity of the adversary, ¢ is a small constant and
n the block length of the underlying block cipher. Thus, the security guarantees provided by
the known reductions are not sufficient if n has a value less or equal to 64. Thus we feel that
given our current state of knowledge it would not be advisable to use block ciphers of small
block lengths for constructing TES. It may be so that the current reductions are not tight,
or there exist possibility of new constructions with better than quadratic security bounds,
existing light weight block ciphers can be useful in such scenarios.

8.5.4 Discussions

The main design goal of STES was to obtain a TES which can be implemented in a compact
form and would have low power consumption. Our experiments validate that STES do
achieve these goals to a large extent.

In the Introduction we presented a Table of the speeds recommended by the SD standard.
The commercially available memories does not achieve the values specified in the standard.
In Table 8.11 we present the maximum speed of the various classes of memories sold by
Kingston. The first three rows corresponds to SD cards and the last two rows gives data of
USB memories. Our implementations with 16 bit or higher data paths can surpass the read
speeds of all these types of memories, and such speed would be achieved with a very low
hardware footprint and power consumption.

Chapter

Side Channel Attacks on
Some TES

Marcos is 99y in San Francisco, black in
South /ifrica, an Asian in Ewoy@, a
Chicano in San Jsidro, an anarchist in
Spain, a pafesﬁnian in Jsracl, a Mayan

Indian in the strects of San Cristobal, ..., a

Za)oafisfa m the mountains.

Subcomandandante Jnsurgen{e Marcos

Till now we have focused on constructions of secure and efficients TES and their hardware
implementations. In this Chapter we would for the first time deviate a bit from the previous
theme. Here we would focus on a class of attacks called side channel attacks which are
applicable to any cryptographic implementation.

The art of science of analyzing crypto-systems to find various vulnerabilities in it is collec-
tively called cryptanalysis. Classical cryptanalysis considers that a cryptographic algorithm
runs in an abstract device like the Turing machine. Thus, in classical cryptanalysis the only
focus is on the algorithm itself and it is independent of the way in which an algorithm is
implemented. But in real life any algorithm has to be implemented in a physical device to
make it useful. Real physical devices are different from abstract machines in the sense that
they always emit (or leak) certain types of information related to the computation being
performed. It has been noted that a computing device may leak electromagnetic radiation,
timing information, sound etc. as a product of computation, and these leaked signals may
be used to predict the type of computation going on in a machine. Utilizing these leaked
information for the purpose of cryptanalysis is now called side channel analysis. Side channel
analysis has gained a lot of importance in the current days and it has been demonstrated that
careless implementation of algorithms which are otherwise considered secure in the light of
classical cryptanalysis can be trivially broken if certain side channel information is available
to an adversary.

Most of the proposed TES have a security proof attached to it, these proofs gives us confi-

190 Chapter 9. Side Channel Attacks on Some TES

dence regarding the security of the algorithm, but the guarantee against side channel vul-
nerabilities are not provided by such security proofs. To our knowledge, a systematic study
of side channel vulnerabilities in TES have not be done yet and it is a promising research
area which may be practically very useful. In this Chapter we aim to address this issue a
little bit by trying to analyze side channel weaknesses of some TES. The modes that we
choose here are EME and EME-2. We show that these modes do not provide the claimed
security guarantees if we consider adversaries with access to some side channel information.
The possible side channel weakness of EME and two of its derivatives EMET and EME*
were pointed out in an appendix of [110], but the true vulnerabilities were not analyzed in
details. Thus, the work presented in this Chapter can be considered as an extension of that
reported in [110], but our analysis is substantially different from that in [110].

The study presented here can be seen as the first step towards analyzing side channel vul-
nerabilities in TES, as our study is only theoretical in nature and is not backed by real
experiments and measurements. Such experiments would be necessary to judge the extent
of the weakness and to design proper counter measures, but in the study presented in this
Chapter we do not cover this aspects. The material in this Chapter have been previously
published in [96]

9.1 Adversaries with Access to Side Channel Information

Modern security guarantees provided by security proofs, are based on complexity theoretic
arguments and assumptions on abstract notions of computations. For security definitions,
one models the adversary as a probabilistic polynomial time algorithm with access to in-
puts/outputs of a protocol. The adversary knows the algorithm which produces the outputs
for his chosen inputs, but has no knowledge of a secret quantity which is called the key.
Moreover, as the computation model is assumed to be an abstract one, hence the state of
the algorithm is also assumed to be invisible to an adversary, who cannot know the branches
taken, subroutines called, etc. by the algorithm during its execution.

However, this is not a realistic scenario, since computations must be done on a physical
device, and that device can leak various kinds of information. This can motivate attacks
from the adversary who by applying measurements on the leaked information may be able
to gain access to sensitive data related to the computation being performed. In the past
few years there have been numerous studies which point out insecurity of many established
cryptographic algorithms if certain side channel information is available to the adversary.

Researchers have considered the possibilities of using different types of side channel informa-
tion for breaking crypto-systems. Some of the categories of side channel attacks are timing
attacks [85], power analysis attacks, differential power analysis attacks [86], electromagnetic
radiation attacks [112], fault attacks [14] etc. These attacks utilize the leakages that are

9.2. Side Channel Weakness in the rtimes operation 191

Algorithm ztimes(L)

b <+ msb(L)

L+ L<<1

ifb=1,
L+—LaQ

return L

Ol Wi

Figure 9.1: The algorithm ztimes.

associated with any type of computation that takes place in a physical device. Interested
readers can consult [98] and [78] for more details on these techniques.

9.2 Side Channel Weakness in the xtimes operation

Recall that for L € GF(2"), we treat L as a polynomial of degree less than n with coefficients
in {0,1}. By atimes(L) we mean the multiplication of the monomial x € GF(2") with the
polynomial L modulo the irreducible polynomial ¢(z) representing the field.

The implementation of the ztimes operation is very efficient. Let g(x) denote the n degree
irreducible polynomial representing the field GF'(2"), let () be the n bit representation of
the polynomial ¢(x) @ 2". Then 2L can be realized by the algorithm in Figure 9.1.

This is the most efficient (and the usual) way of implementing ztimes where the basic opera-
tions involved are a left shift and a conditional xor. As it is obvious from the algorithm that
line 4 gets executed only when the most significant bit (MSB) of L is a one. The power uti-
lization in this algorithm would be different in the cases where msb(L) = 0 and msb(L) = 1.

This difference of power consumption if measured can give information regarding the MSB
of L.

The above described weakness of the ztimes operation is widely known. The ztimes opera-
tion on an n bit string can also be implemented by linear feedback shift registers (LFSR).
The vulnerability of LFSRs to side channel attacks has been extensively studied and also
there are experimental evidences that such systems leak a lot of information [77] [18]. Thus
with the support of the evidence as found in the literature and without going into techni-
cal /experimental details of side channel attacks in the rest of this chapter we shall make the
following assumption:

Assumption 9.1. If the operation xL is implemented according to the algorithm xtimes as
shown in Figure 9.1 then the MSB of L can be obtained as a side channel information.

Repeated application of ztimes on L can reveal much more information about L. In partic-
ular, based on Assumption 1 we can state the following proposition.

192 Chapter 9. Side Channel Attacks on Some TES

Algorithm Recover(Q, k)

1. D<+<d, 1,d, o,...,dy >+ 0"
2. B < Empty String;

3. fori=1t%ok,

4. b < SCNL(Ly < xL) ;(SCNL(L; < xL) gives the MSB of L)
5. ifd, 1 =0,

6. B < Bl|b;

7. else,

8. B <« B||b

9. end if

10. D+ D<<1;

11. ifb=1,

12. D+—DoqQ

13. end if

14. L+ L

15. end for

16. return B

Figure 9.2: The algorithm to recover k bits of L.

Proposition 9.1. If ztimes is applied k (k < n) times successively on L then the k most
significant bits of L can be recovered.

In lieu of proof of the above proposition we present the procedure to recover the k bits of L
in the algorithm in Figure 9.2.

The algorithm Recover as shown in Figure 9.2 takes in as input the number of bits to be
recovered k along with another n bit string () which encodes the polynomial ™ @ ¢(z). The
algorithm also have access to some side-channel information, which gives it the information
of the MSB of L, this is shown as SCNL(L; < zL) in line 4. The algorithm, initializes an n
bit string D with all zeros (d; represents the i-th bit of D in the algorithm) and initializes
B by an empty string. The output of the algorithm is a k bit string B whose bits would
be the same as the k most significant bits of L. It is not difficult to see the correctness of
the algorithm. Note that we simulate in D the same changes that takes place in L. After
executing the i-th iteration of the for loop we obtain in line 4 the most significant bit of
21 L. This bit would be equal to the i-th bit of L if the MSB of D is zero, otherwise the
i-th bit of L would be the complement of the most significant bit of 2'~!L.

9.3. The Attack on EME 193
Algorithm EME.Encrypt% (P) Algorithm EME.Decrypt% (C)
1. Partition P into Py, P>, ..., P, 1. Partition C' into Cy,Cs,...,Cy,
2. L+ zEr(0™) 2. L+ zEx(0™)
3. fori+ 1tomdo 3. for i<+ 1tomdo
4. PP, «— " 'La P 4. CC; 'L C
5. PPP, + Ex(PP) 5. COC; + EZ'(CCy)
6. end for 6. end for
7. SP+ PPP,® PPP3;®...PPP,, | 7. SC+ CCCoCCC3&...06CCC,,
8. MP <+ PPP,&SP®T 8. MC <+ CCCidSCaoT
9. MC < Ex(MP) 9. MP <+ EZ'(MC)
10. M <~ MP o MC 10. M+ MP&® MC
11. for i < 2 to m do 11. for i < 2 to m do
12. CCC; + PPP, @ 'M 12. PPP; + CCC; @z~ 'M
13. end for 13. end for
14. SC+~ CCCy®CCCs @ ...CCCY, | 14. SP + PPP, & PPP3;& ... PPP,
15. CCCL+~ MCeae SCaT 15. PPP, + MP® SP®T
16. for i < 1 to m do 16. for i < 1 to m do
17. CC; + Eg(CCCy) 17. PP« E'(PPP)
19. end for 19. end for
20. return C1,Cy, ..., Cy, 20. return P, P,..., P,

Figure 9.3: Encryption and Decryption using EME.

9.3 The Attack on EME

Based on Assumption 9.1 and Proposition 9.1, we shall develop an attack on the EME mode.
The EME mode have already been described in Chapter 4, but for convenience we again
describe the detailed encryption and decryption algorithms in Figure 9.3.

According to the description in Figure 9.3, EME uses three layers of xztimes operation. These
operations can leak information about the internal variables L and M. Utilizing this leaked
information one can attack the mode. We show two attacks. One attack is a distinguishing
attack, which shows that an adversary with oracle access to only the encryption oracle of
the mode and the side channel information can distinguish with probability 1 between the
real oracle from the one which produces only random strings. We also show a stronger at-
tack, where the adversary can successfully decrypt any given ciphertext C' by querying the
decryption oracle with ciphertexts other than C'. Similarly, without knowledge of the key an
adversary can produce a valid cipher text from a given plaintext P and tweak T by querying
the encryption oracle (but not at P).

The main observation that makes these attacks possible is Proposition 1. From the algorithm
of EME in Figure 9.3 it is clear that on encryption or decryption of m plaintext or ciphertext
blocks ztimes is applied m times on Ex(0") and m — 1 times on M. This information would
be crucial in mounting the attacks. For an m block query the side channel information that

194 Chapter 9. Side Channel Attacks on Some TES

we are interested in is the information regarding M and Ex(0") further we shall say that
the M-side-channel and L-side-channel gives the side channel information regarding M and
Ex(0™). So after an m block encryption or decryption query the M-side-channel and the
L-side-channel will give the (m — 1) significant bits of M and m significant bits of Ex(0™)
respectively.

9.3.1 The Distinguishing Attack

First we note down the basic steps followed by the adversary:

1. Apply an arbitrary encryption query of n blocks with an arbitrary tweak.

e Obtain the n bits of Ex(0") from the L-side-channel .
e Compute L = zEx(0").

2. Apply an encryption query with plaintext L and tweak x7'L. Let C be the response
of this query.

3. If Cis equal to (1 ® z)z~ 'L output EME otherwise output random.

It is easy to see why this attack works. When applying the query in step 1, the adversary
recovers the n bits of Ex(0"). From line 2 of the algorithm of EME in Figure 9.3 we can see
that L = xFg(0™), thus the adversary can compute L. Following the algorithm of EME in
Figure 9.3 we see that for the second query (in step 2) the value of PP, would be 0™ hence
the value of PPP; would be Fk(0"). As the query consists of only one block, so values
of both SP and SC would be zero. So, MP would be computed as PPP; & T. Note that
T =a2'L = Ex(0"). So MP would be 0" and CCC; would also be 0". Thus, we would
obtain the output as

C = Ex(0")®L=Eg(0")®zE(0")
= (1®z)s ' (zEk(0") = (1@ a)z 'L

9.3.2 The Stronger Attack

Here we describe a stronger attack, in which assuming that the adversary has access to the
M-side-channel and L-side-channel can decrypt any given ciphertext by querying the decryp-
tion oracle with ciphertexts other than the ciphertext in question. Before we present the
attack we note down an important but obvious characteristics of EME in the proposition
below:

9.3. The Attack on EME 195

Proposition 9.2. An oracle access to the blockcipher Ex is enough to encrypt any plaintext
Py||B]] ... ||Py with arbitrary tweak T wusing the EME mode of operation which uses the
key K. Similarly, with an oracle access to both Ey' and Ex one can decrypt any arbitrary
ciphertext Cy,Cs, ..., Cy with an arbitrary tweak T which has been produced by the EME
mode of operation with key K.

The truth of the above proposition can be easily verified from the algorithm of EME in
Figure 9.3. Following the algorithm of EME in Figure 9.3, if we write the dependence of the
ciphertext (resp. plaintext) with the plaintext (resp. ciphertext), then the only unknown
terms would be of the form E(X), for some X, which can be obtained by querying the
oracle Fx at X. Similar argument hold for the decryption oracle.

In the attack that follows we shall show that given access to the encryption algorithm of
EME along with the L-side-channel and M-side-channel, an adversary can use it as an oracle
for the blockcipher Ek (). Similarly given an access to the decryption algorithm of EME
along with the M-side-channel and L-side-channel, the adversary can use it as an oracle for
Ex'. So, by Proposition 9.2 the adversary can compute ciphertext (plaintext) corresponding
to any plaintext (ciphertext) for EME. We describe the steps undertaken by the adversary to
obtain Ex(X) given an oracle access to the encryption algorithm of EME in Figure 9.4. We
assume that the procedure AdvSCAFMEx()(X) has an access to to the EME encryption

algorithm, we also assume that n (the block length of the block cipher E) is even !.

Proposition 9.3. The procedure AdvSCAPME()(X) as shown in Figure 9.4 outputs the
first n-1 bits of Fx(X) (which we denote by take, 1(Ex(X))).

Proof. In step 1 the information regarding L is obtained. For the query in step 2 according
to the algorithm (see algorithm of EME in Figure 9.3), we obtain PP; =Y. Thus,

SP = PPP,® PPP;®---® PPP,
Eg(Y)® (Ex(Y)® - @ Ex(Y)) = Ex(Y)

n—2

So we have,
MP=PPP &SP X =Ex(Y)DExg(Y)d X =X

Thus, MC = Ex(X), and M = MP & MC = X & Ex(X). Hence M & X = Ex(X). In
step 2, only n — 1 bits of M would be obtained, hence the procedure AdvSCAFMFx(-)(X)
outputs n — 1 bits of Fx(X). O

Now we design another adversary which on given access to the EME encryption algorithm
and X and take,_1(Ex (X)) can produce Ex(X) with high probability. We call this proce-
dure as AdvSCBPMEx() (X take, 1(Ex(X))), which is shown in Figure 9.5.

!This assumption is not strong, as we do not know of any blockcipher whose block length is odd.

196 Chapter 9. Side Channel Attacks on Some TES

AdvSCAEMEK()(X)

1. Apply an arbitrary encryption query of
n blocks with an arbitrary tweak.

e Obtain the n bits of L using the
L-side-channel .

2. Apply an encryption query with tweak
X and the following plaintext:

YeLY®&zL,....Y ®a" L.
n blocks

where Y € {0, 1}" is chosen arbitrarily.

e Obtain (n — 1) significant bits of
M using the M-side-channel , call
this as M;.

3. Output M; @ take,_1(X)

Figure 9.4: The side channel adversary with access to EME encryption algorithm producing
n — 1 bits of Ex(X) for arbitrary X € {0, 1}

9.3. The Attack on EME 197

AdvSCBPMEx() (X take, 1(Ex(X)))

1. Apply an arbitrary encryption query of
n blocks with an arbitrary tweak.

e Obtain the n bits of L using the
L-side-channel .

PARVAR S taken_l(EK(X))
3. S +AdvSCAFMERG)(Z||1 @z~ ' L)

4. Apply a query with tweak Z||1 and
plaintext X & L

e Get the output as C'

5. If take,_1(C' & L) = S output Z||1
else output Z|(0

Figure 9.5: The side channel adversary with access to EME encryption algorithm producing
Ex(X).

Proposition 9.4. Let the procedure AdvSCBFMEx() (X take, 1(Ex(X))) be as described
in Figure 9.5, then

1
2n71

Pr[AdvSCB™MEx()(X take, 1 (Ex(X)) = Ex(X)] > 1 —

Proof. Let us first see what is done in the procedure described in Figure 9.5. The adversary
knows X and the (n — 1) significant bits of Ex(X). He wants to predict the missing bit of
Er(X). We call the (n — 1) bits of Ex(X) as Z. He guesses that the missing bit is 1 and
tries to verify if his guess is correct. First let us concentrate on the query made at step 4.
The query is made with a tweak Z||1 and a single block of plaintext X @& L. If his guess
regarding the last bit of Ex(X) is correct, then Z||1 would be Fk(X), and in such a case
the response C' obtained would be

C=L3FEg(Ex(X)® Ex(0") =L@ Ex(Ex(X)@a'L). (9.1)

This can be easily verified from the algorithm of EME in Figure 9.3. In the third step
of the procedure, S is the output of AdvSCAFMEx() on Z||1 @ 27'L. So according to

Proposition 9.3
S = take,_1(Ex(Z||1 ® 7 L)). (9.2)

198 Chapter 9. Side Channel Attacks on Some TES

So if the guess is correct then from eq. (9.1) and eq. (9.2) we get that

take, 1(C @ L) = S.

Thus, if the last bit of Ex(X) is 1, then the procedure will always output the correct value
of Ex(X). On the other hand if the guess is wrong, i.e., the last bit of Ex(X) is zero, then
the response to the query in step 4 would be as

C = L@ Eg(Ex(X)® Ex(0" 1))

And in this case the check in step 5 will pass with a probability less than % Thus, the

n—1

probability with which a correct guess can be made is greater than (1 — 2,%1) Ol

So using the procedures described in Fig 9.4 and Fig 9.5 the side channel adversary can
compute F(X) for a X of his choice with very high probability. Using the same technique
the adversary can compute Ex'(X) for any X given access to the decryption algorithm of

EME.

Thus, we can conclude that given access to the encryption and decryption algorithms of
EME and the relevant side channel information, an adversary can compute the encryption
of a plain-text P of his choice without querying the encryption algorithm at P. Similarly,
(s)he can decrypt any ciphertext C' without querying the decryption algorithm at C'

9.4 EME2 Mode of Operation

EME2 adds certain functionalities which are not present in EME, for example, EME2 can
handle arbitrary long messages (recall that EME cannot securely encrypt messages larger
than n blocks long). Additionally EME2 can handle arbitrarily long tweaks (EME can only
handle n bit tweaks, where n is the block length of the block cipher). The description of
EME2 is a bit different from that of EME, the primary difference being that it encrypts the
tweak. The description of EME2 is given in Figure 9.6. The description given in Fig 9.6 is
not the full description, if we assume that both the tweak length and the block length are
multiples of the block length of the block cipher and the number of blocks are less less or
equal to the block length of the block cipher, then the original description of EME2 translates
to the description given in Figure 9.6. But the above stated restrictions are not valid for the
EME2 mode, the full description of the mode can handle plaintexts which do not satisfies
these restrictions. For the full description of the mode see [131].

The main difference of the restricted description of EME2 compared to EME is in the
handling of the tweak, as it can handle arbitrarily long tweaks and converts an arbitrary
long tweak to a n bit value which is used in the mode. Also, EME2 uses three n bit keys,

9.4. EME2 Mode of Operation

199

1
2
3
4.
D.
6
7
8

9

23

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

24.
25.
26.
27.
28.

Algorithm EME2 Encrypty, r, x.,(P)

Partition P into Py, Ps,..., Py,
if len(T)= 0 then T* = Fk, (K3)
else
Partition the tweak T to 11,75, ..., T,
fori=1tor
K3+ K3
TT; «+ Eg, (K3 & T;) ® K
T* =TT &TTo, d---DTT,
endif
L+ KQ
fori=1tom
PPP; « Ex,(L® P)
L+ xL
end for
MP «+ PPP, ® PPP,®---® PPP,,®T"*
MC + Ek,(MP)
M+~ MPo®MC
for i < 2tom
M <« xM
CCCl — PPPZ' e M
end for
CCCy +~ MCaCCCy®---pCCC,,&T™
L+ Kg
for i< 1tom
Ci — E‘K1 (CCCl) e L
L+ zL
end for
return Cy,Cs,...,C)y

Figure 9.6: Encryption using EME2.

200 Chapter 9. Side Channel Attacks on Some TES

for processing the tweak it uses the key K3, and the value of L which is used to mask the
plain-texts and the ultimate outputs is first set to the value of Ky and the bulk encryption
is done by the key Kj.

9.5 A Distinguishing Attack on EME2

As evident from the algorithm in Figure 9.6 there are four layers of xtimes operations per-
formed in the algorithm. Thus, based on Assumption 9.1 and Proposition 9.1 one can get in-
formation about Ky, K3 and M from the algorithm. We will call them as the K2-side-channel,
K3-side-channel and M-side-channel respectively. Using these side-channel information one
can mount a distinguishing attack on EME2. The adversary performs the following steps:

1. Apply an n block encryption query with a no tweak.
e Obtain K5 using the K2-side-channel.

2. Apply an arbitrary encryption query with a n block tweak.
e Obtain K3 using the K3-side-channel.

3. Apply an encryption query with a one block tweak where T' = 0, and a n — 1 block
message P = Pi||Ps]||...||P,_1, where P, = 2" Ky @ 2 K3

e Obtain (n — 2)-bits of M using the M-side-channel . Call this as M.

4. Apply an encryption query with a one block tweak 7" = 0, and one block of message
P = P1 = .CUK3 ® K2

e Obtain the corresponding ciphertext and call it C].

5. If the first (n — 2) bits of Cy @ K3 @ K is equal to M; output "EME2" otherwise
"random".

To see why this attack works, according to the algorithm in Figure 9.6, for query 3 we have
the following;:

Firstly, as there is a single block of tweak and the tweak is zero hence we get

further, from line 12 of Figure 9.6 we have, for all i =1,... ,n — 1,

PPP, = Ex(2" 'Ky ® P) = Ex (27 'Ky @ 07 Ky @ 1K) = Ex(vKs)

9.6. Final Remarks 201

Now, according to lines 15 of the algorithm in Figure 9.6 we have

MP = PPP@&PPP,®... & PPP, 1T (9.4)
= Ex(zky) @ T (9.5)
= Fx(zK3) ® Ex, (vK;3) ® xK; (9.6)
= zKj (9.7)

Equation (9.5) follows from eq. (9.4) because the PPP;s are all equal and we assume that
n is even. Equation (9.6) follows from eq. (9.5) by substituting the value of 7" in eq. (9.3).
Thus, the value of M gets computed as

M = MP & Ex,(MP) = 2K5 & Eg, (zK3) (9.8)

Thus the value M; obtained in step 3 is the first (n — 1) bits of M as in eq. (9.8).

In the query in step 4, the tweak is again single block and its value is zero, thus the value
of T* would be same as in eq. (9.3), and PPP, = Ek,(vK3). Thus we would have M =
rK3® Ex(2K3), which is same as the value of M obtained as side channel information from
query 3 (eq. (9.8)). Continuing, according to the algorithm in Figure 9.6 we would have the
cipher text € computed as C; = Fg, (vK3) ® Ks.

So, we have
Cl D I‘Kg D K2 = I‘Kg D EK1 (I‘Kg) (99)

So comparing eq. (9.9) and eq. (9.8), we obtain Cy & 2 K3 & Ky = M.

The (n — 2) significant bits of M has been obtained from the side channel information in
query 3. So if the check in step 5 is successful then with overwhelming probability the
adversary can say that he is communicating with EME2.

The strong attack discussed in Section 9.3.2 for EME cannot be applied in the case of EME2.
The strong attack for EME utilizes the fact that by obtaining the value of M one can obtain
the block-cipher encryption of the tweak. As in EME the tweak can be freely chosen, hence
one can get encryption of any string by suitably choosing the tweak. In EME2, the tweak is
encrypted, this prevents one to apply the strong attack applicable to EME.

9.6 Final Remarks

We presented some attacks on EME and EME2 assuming that ztimes leaks some information.
These attacks does not contradict the claimed security of the modes, as the security definition

202 Chapter 9. Side Channel Attacks on Some TES

and the security proofs for these modes does not assume any side-channel information being
available to the adversary. Also the consequences of these attacks shown are not immediate.
But, it points out that using ztimes indiscriminately may give rise to security weakness in
true implementations.

This Chapter can be seen as a starting point for the study of side channel vulnerabilities of
TES. The theoretical evidence presented here needs to be backed by experimental support
to know about the severity of the weaknesses and also to design proper counter measures.
We believe that the same techniques can be possibly applied to other modes, and we plan
to explore such possibilities in near future.

Chapter

A New Model for Disk
Encryption

We start from different id@o(ogical positions.
For you fo be a Communist or a Socialist is

to be totalitarian; for me no. On the

confmry , Jd think Socialism fr@@s man.

Salvador Allende

Till now it has been argued that length preservation is one of the most important charac-
teristic required for an encryption scheme to be suitable for the application of low level disk
encryption. We already described that the reason for this is the assumption that the disk
sectors are of fixed length and there is no extra space to accommodate any length expansion
of the cipher text. In this Chapter we look into this requirement more closely. We argue
that the size of a sector is always bigger than the user data that it stores, as it requires to
store more information other than the user data for its proper functioning. The user data
always under goes an error correction coding before it is stored. This transform obviously
adds to the original length of the data, and the sectors are equipped to accommodate this
expansion. As we are unable to think of a disk without the capacity of error correction, we
think that in the coming years a hard disk without encryption capabilities would become
un-thinkable. It is not unrealistic to think of a scenario where a disk is suitably formatted to
accommodate a specific encryption scheme which results in cipher-text expansion. In partic-
ular in this Chapter we argue that a special class of authenticated encryption schemes called
Deterministic Authenticated Encryption (DAE) schemes can be suitable for the application
of disk encryption, and they would be a much more efficient alternative compared to the
existing tweakable enciphering schemes. Furthermore we propose a new DAE which we call
BCTR. BCTR is designed specifically to be used in the application of disk encryption. We
prove security of BCTR and also provide a very efficient hardware implementation of BCTR.
The experimental results show that BCTR is far more efficient than the TES that we report
in this thesis.

The rest of this Chapter is organized as follows. In Section 10.1 we present the syntax of DAE
along with a generic construction and the security definition. In Section 10.2 we analyze

204 Chapter 10. A New Model for Disk Encryption

the length preserving requirement for a disk encryption scheme in details and argue the pros
and cons for using a DAE for this application. In Section 10.3 we describe the encryption
and decryption algorithm for BCTR and compare operation counts of BCTR with existing
DAEs and TESs. In Section 10.4 we state the security theorems of BCTR. In Section 10.5 we
provide description of a FPGA circuit which implements BCTR and provide experimental
performance data for BCTR along with comparisons with other efficient implementations of
disk encryption schemes reported in this thesis. In Section 10.6 we provide complete proofs
of the security theorems stated in Section 10.4.

10.1 Deterministic Authenticated Encryption Schemes

We already discussed in Section 2.5.2 that authenticated encryption schemes are a class of
encryption schemes which provide security both in terms of privacy and authentication. The
ciphertext produced by these schemes includes an authentication tag, and this authentication
tag can be used to verify the authenticity of the ciphertext, i.e., to check if the ciphertext
was altered. There have been many proposals for authenticated encryption schemes. Among
them, some are very efficient and require a little more than one block-cipher call per block
of message, and they provide security against chosen cipher text attacks. These schemes are
nonce based, they require a quantity called nonce, which is non-repeating i.e., each plaintext
needs to be encrypted with a different nonce for the purpose of security.

Deterministic authenticated encryption schemes are a class of authenticated encryption
schemes which does not require nonces. They were first proposed in [119]. There were
two principal motivations behind DAEs. Firstly, it was argued that DAEs may be suitable
for encrypting keys, this problem is formally called the key wrap problem. The other moti-
vation was to use DAEs where there is a possibility of "nonce misuse', i.e., where there is a
possibility of accidental or adversarial nonce repetition. Note that in a nonce based AE, if
a nonce is repeated then the security of the scheme is completely compromised.

There have been numerous proposals of AEs, among them there are a class of block cipher
based proposals which can provide the services of both privacy and authentication for a
message of m blocks by using about m block cipher calls. These schemes are called one
pass AE schemes and there are many instances of such schemes as IAPM [79], OCB [118],
OCB3 [87] etc. DAE schemes are inherently slower than one pass AE schemes, as in DAE
two separate passes over the data is always required.

Formally, a DAE is a tuple ¥ = (K, &, D), where K is the key space (also viewed as the
key generation algorithm, which is a randomized algorithm which samples a key from the
key space), and £ and D are deterministic algorithms called as encryption and decryption
algorithms respectively. Let X',), H be the message space, cipher space and the header
space respectively associated with a DAE W. The encryption algorithm &£ takes an input

10.1. Deterministic Authenticated Encryption Schemes 205

in K x H x X and returns an element in)/, and the decryption algorithm takes an input
in L x H x) and returns either an element in X or a special symbol L. As usual, we
shall often write £ (X) or Ex(H,X) to denote £(K, H, X), and DE(Y) or Dx(H,Y) to
denote D(K, H,Y'). The message space and the cipher space are non-empty sets containing
binary strings, i.e., X, C {0,1}*, and the header space H contains vectors whose elements
are binary strings, i.e., H C {0,1}**. Tt is required that DZ(Y) = X if EZ(X) = Y and
DHE(Y) = L it nosuch H € H and X € X exist such that F¥(X) =Y. It is assumed that
forany K € K, X € X and H € H, |EL(X)| = | X|+e(X, H), where ¢ : X x H — N is called
the expansion function of the DAE scheme and depends only on the length of X, the number
of components of H and the length of each component of H. s = minyex gey{e(X, H} is
called the stretch of the DAE scheme. A DAE is length preserving if e¢(X, H) = 0 for all
X € X and H € H. Note that the header in a DAE is the same as a tweak in a tweakable
enciphering scheme, thus a length preserving DAE is a tweakable enciphering scheme.

The first proposed DAE was Synthetic Initialization Vector (SIV) by Rogaway and Shrimp-
ton [119]. The SIV mode construction uses a secure IV based privacy only encryption mode
like the counter mode or the CBC mode along with a special type of pseudorandom func-
tion which takes as input a vector of binary strings. Let {0,1}** denote the space for all
vectors of binary strings, and if X and Y are vectors such that X = (Xi,...,X,,) and
Y =(Y1,...,Y), then [X, Y]] = (X4,..., X, Y1,..., Yow). The SIV mode SIV[F, Priv| is
constructed using a pseudo-random function F : K x {0,1}** — {0,1}™ and a privacy only
encryption scheme Priv = (Ky, E, D) where Ky is the key space, E : Ky x {0,1}" x {0,1}* —
{0,1}* is the encryption algorithm and D : Ky x {0,1}"™ x {0,1}* — {0, 1}* is the decryp-
tion algorithm. For an initialization vector IV, and key K the encryption and decryption
algorithms are written as E%/(.) and DY (.) respectively.

The SIV[F, Priv] construction is shown in Figure 10.1. The construction in Figure 10.1 takes
in two keys K7 and K, which are used in the pseudorandom function F' and the IV based
encryption scheme E respectively. In addition it takes in the header T' (the header can be
treated as a tweak, and in the further discussion we shall consider the header as a tweak)
and the message P. In the procedure the tweak and the message are converted into 7 using
the pseudorandom function F' and this 7 is used as an IV for the privacy only encryption
scheme E. The encryption of the message P is done using E. The ciphertext produced by
E and 7 are together considered as the ciphertext for SIV.

10.1.1 Security of DAEs

Let U = (K, &, D) be a DAE scheme. Let A be an adversary attacking W. The adversary has
access to the oracle O. O can either be Ek(.,.), where K is generated uniformly at random
from /C or it can be $(.,.) which returns random strings of length equal to the length of the
ciphertext. The adversary can query the oracle with a query of the form (7, M), where M,

206 Chapter 10. A New Model for Disk Encryption

Algorithm SIV.Encrypt};hK2 (P) Algorithm SIV.Decrypt};hKQ(C, T)

I 7 P (IP,T)): I P=D},(0)
2. O« EL,(P); 2. 7 =Fg ([P, T1);
3. return C||; 4. if 7' = 7 return P else return |;

Figure 10.1: Encryption and decryption using SIV[F, Priv]. K; is the key for the PRF and
K5 the key for the privacy only encryption scheme E. The header T is a vector of binary
strings.

T denotes the message and tweak respectively and and thus get back the responses from
the oracle. A has the restriction that it cannot repeat a query. The privacy advantage of
adversary A is defined as

AdviPIY () — pr (K &0 AT = 1] — Pr [A%) = 1] (10.1)

To define the authentication advantage we consider that A is given access to the encryption
oracle Ek(.,.) and queries it with plaintexts of his choice and obtains the corresponding
ciphertexts. Finally, A outputs a forgery, which consists of a tweak and a ciphertext (7,C).
A is said to be successful if Dg(T,C) # L. For querying the encryption oracle A follows the
same restriction that the adversary does not repeat a query additionally A cannot output
(T,C) as a forgery if he obtained C as a response for his query (7, X) to the encryption
oracle. The last restriction is to rule out trivial win. The authentication advantage of the
adversary A is defined as the probability that A does a successful forgery, in other words

Advgae—auth(A) _ PI[ASK(-M-) forges] (10.2)

We consider W to be secure, if both Advgae_priV(A) and Advgae_auth (A) are small for every
computationally bounded adversary .A.

In [119] the two notions of privacy and authentication as depicted in equations (10.1) and
(10.2) were combined to give a unified security definition where the advantage of an adversary
A in breaking a DAE scheme ¥ was defined as

Adv3a€(4) = Pr | K & K2 ARG o 1] = Pr [AX) 40D =] (10.3)

where the oracle L(.,.) always returns L. In [119] it was shown that the unified definition
of security is equivalent to the separate notions of privacy and authenticity. In our case we

10.2. In Support of Tagged Mode for disk Encryption 207

would stick to the separate definitions of privacy and authenticity, as that makes our proofs
simpler.

10.2 In Support of Tagged Mode for disk Encryption

Traditionally disk sectors were 512 bytes long, which means that each sector can store 512
bytes of user data, but this does not mean that each sector is physically 512 bytes long.
The user data is not stored in the format provided by the operating system to the disk.
An important transformation that the data written in a sector undergoes is error correction
coding and this obviously creates an expansion in length of the original data. So the 512
byte data which an operating system sends to the disk controller for writing occupies more
than 512 bytes in the physical disk as it is appropriately coded for error correction within
the disk controller. Moreover, each sector stores other data and gaps which are necessary
for data recovery and functioning of the disk.

The formatted capacity of a hard disk is the amount of user data it can hold, but physically
a hard disk has more space than its formatted capacity. This extra space required for error
correction and for storing other information for functioning of the disk is called the format
overhead of the disk. The manufacturers generally does not publish the format overhead
of the disks that are available commercially in the market, the type and amount of extra
data they store in the sectors is a trade secret. A letter by Fujitsu Corporation in 2003
declared that the then format overhead of their commercial hard disks were approximately
15% of the sector size, and in the letter it was predicted that maintaining hard disks with
512 byte sector sizes would make the format overhead to grow to 30% within 2006 [34](Page
15.). Thus, the modern day disks do allow data expansion, and in fact data expansion is
inevitable as storage without error correction coding is not acceptable.

10.2.1 Which Encryption Scheme?

Till today the need of a tag less encryption scheme (length preserving) for the application
of disk encryption has been emphasized, and as a solution two basic strategies have been
proposed. These strategies as described in Section 4.6 have been classified as wide block
modes and narrow block modes by the IEEE working group on storage security who are in
the process of formulating a standard for disk encryption. The wide block modes are realized
by a cryptographic primitive called tweakable enciphering scheme and they are well accepted
as they provide the highest form of security possible for length preserving encryption schemes.
If the need for a length preserving encryption scheme is relaxed then there exist numerous
other schemes which are not length preserving that can be considered.

Authenticated encryption schemes are a class of encryption schemes which provide security

208 Chapter 10. A New Model for Disk Encryption

both in terms of privacy and authentication. The ciphertext produced by these schemes
includes an authentication tag, and this authentication tag can be used to verify the authen-
ticity of the ciphertext, i.e., if the ciphertext was altered. There have been many proposals
for authenticated encryption schemes. Among them, some are very efficient and require a
little more than one block-cipher call per block of message, and they provide security against
chosen cipher text attacks. These schemes are nonce based, they require a quantity called
nonce, which is non-repeating i.e., each plaintext needs to be encrypted with a different
nonce for the purpose of security.

Deterministic authenticated encryption schemes were developed as a solution to the key
wrap problem. They are a class of authenticated encryption schemes which does not require
nonces. They are not length preserving, but they provide the same security as that of
tweakable enciphering schemes. Tweakable enciphering schemes are secure in the sense of
strong pseudorandom permutations, whereas deterministic authenticated encryption schemes
are pseudorandom injections [119].

Authenticated encryption schemes require nonces for security. Thus, in a ciphertext produced
by an authenticated encryption scheme, the nonce is also a part of the ciphertext thus making
the ciphertext further long. In a real life scenario where one uses a 128 bit nonce and a 128
bit tag, the expansion of the ciphertext would be 256 bits for an AE scheme but 128 bits for
a DAE scheme. Though the security provided by a AE is stronger than that provided by
a DAE, but DAE security is same as in a TES [119], which is well accepted in case of disk
encryption. Thus, we propose the use of deterministic authenticated encryption schemes as
a possible solution to the disk encryption problem. In the next subsection we discuss about
the advantages and disadvantages for using such a scheme.

It is to be noted that the way hard disks are formatted today, it does not provide extra
space for cryptographic materials like authentication tags. Thus, to build an encryption
functionality over a disk which is available today one needs to stick to length preserving
schemes like TES. The discussion that follows tries to argue on the suitability of DAE as
an encryption mechanism when hard disks are formatted in a way so that it provides space
for the ciphertext expansion, and we already argued that this is not physically impossible.
Thus, our proposal of using DAE does not come as an alternative to the use of TES in the
currently available hard disks. Our study tries to make a realistic future proposal considering
the fact that efficient cryptographic functionalities on storage medias are a call of the day,
and in near future storage media would be manufactured with the consideration of easy
use of efficient cryptographic algorithms on them. Another point to note is that if length
expansion is allowed then it would be better to use a scheme which results in minimal
ciphertext expansion, in this context DAEs are better than AEs as DAEs would not require
storage of nonces, though DAEs are inherently two pass schemes and are less efficient than
many existing one pass AEs.

10.2. In Support of Tagged Mode for disk Encryption 209

Table 10.1: Extra format overhead

Sector size Tag size (in bits)

(in bytes) 64 | 96 | 128
512 1.56% | 2.34% | 3.13%
4096 0.19% | 0.29% | 0.39%
8192 0.09% | 0.14% | 0.19 %

10.2.2 Gains and Loses in using DAE for disk encryption.

Loss of space: As we argued that disk sectors are technically capable of accommodating
extra information, but of course the extra information stored in form of a tag would mean
loss of space. A DAE scheme produces a tag of fixed length for each plaintext encrypted.
Thus if one fix the tag length to 7 bits then for each plaintext of ¢ bits the ciphertext would
be (£+7) bits long. So the more the length of the plaintext the less would be the percentage
loss of space. In case of disk encryption the length of the plaintext is also fixed and same
as the length of a disk sector. Till last year disk sectors were 512 bytes long. 512 byte long
sectors are not optimal anymore as the the aerial density of disk are ever increasing, the
industries have decided to increase the length of disk sectors to 4096 bytes, and starting
from this year all leading disk manufacturers are supposed to supply disks with the bigger
sector sizes (4096 bytes) [34]. This increase in the sector size would make the use of DAE
as a disk encryption algorithm more appealing, as the bigger the sector size the total loss
incurred in space for storing the tags would be lesser. In Table 10.1 we show the amount of
loss in space that would take place taking into account various disk sizes and tag lengths.

Table 10.1 shows that the extra format overhead for using a DAE with tag length 128 bits
would be a negligible 0.4% given the sectors are 4096 bytes long. This is negligible considering
modern disks probably needs to tolerate around 15% of format overhead (according to the
letter by Fujitsu Corporation, which was stated before).

Gain in efficiency: We have discussed in details that current constructions of tweakable
enciphering schemes fall into three basic categories: Encrypt-Mask-Encrypt type, Hash-
ECB-Hash type, and Hash-Counter-Hash type. CMC [65], EME [66], and EME* [63] fall
under the Encrypt-Mask-Encrypt group. PEP [29], TET [64], and HEH [122] fall under
the Hash-ECB-Hash type; and XCB [101], HCTR [141], HCH [31], HMCH [125] fall under
the Hash-Counter-Hash type. These constructions use a block cipher as the basic primitive,
and in addition, some schemes utilize a universal hash function which is a Wegman-Carter
type polynomial hash or a more efficient variant known as Bernstein-Rabin-Winnograd poly-
nomials [125]. The constructions of the Hash- Counter-Hash and Hash-Encrypt-Hash type
invoke two polynomial hash functions and a layer of encryption in-between. The Encrypt-
Mask-Encrypt structure consists of two layers of encryption with a light weight masking

210 Chapter 10. A New Model for Disk Encryption

layer in-between. So, the main computational overhead of the Encrypt-Mask-Encrypt archi-
tecture is given by the block cipher calls, whereas for the other two classes of constructions,
both block cipher calls and finite field multiplications amount for a significant portion of
the total computational cost. Known DAE constructions require less computational over-
head. As with a single layer of polynomial hashing and a layer of encryption it is possible
to realize a DAE, whereas in case of TES constructions of the Hash-ECB-Hash type and
Hash-Counter-Hash type require two layers of hashing (the operation counts of the existing
TES and DAE constructions are provided in Tables 10.2 and 10.3 respectively).

True Authentication: DAE are authenticated encryption schemes and ciphertext pro-
duced by such schemes have authentication tags, using these tags the authenticity of the
ciphertext can be verified. As TES are length preserving they cannot provide true authenti-
cation, the only guarantee that these schemes can provide is that an invalid ciphertext would
get decrypted to a random plaintext and thus a high level application which uses the data
would be able to detect that the cipher text was tampered. In practical terms this may have
some difficulty as if the plaintext was truly random then there would be no way to detect
tampering in the ciphertext. Thus, a TES is unable to provide true authentication and the
type of authentication that they provide has been termed as "poor man’s authentication"
in [54].

10.3 BCTR: A new DAE suitable for disk encryption

We present a new DAE named BCTR. BCTR is designed so that it is suitable for low
level disk encryption. In particular, the message space of BCTR is {0, 1}" where n is the
block length of the underlying block cipher. Hence a message for BCTR is of fixed length
containing m blocks of n bits. The tweak space is {0,1}" and the cipher space is {0, 1}
where ¢ is the desired tag length. Thus, the construction inherently has restrictions on the
message length and the tweak length. But these restrictions are not of any significance
for the disk encryption application as the messages are always of fixed length which is the
formatted size of the sector and which in turn is either 512 bytes or in the coming days
would be 4096 bytes. The sector address is treated as the tweak, thus the restriction in the
tweak length is also of no consequence.

The encryption and decryption algorithms using BCTR are shown in Figure 10.2. The
construction requires two keys, a key h for the BRW polynomial and a key K for the block-
cipher. Other than the keys the encryption algorithm takes in the plain text and the tweak
and returns a cipher text and the decryption algorithm takes in the cipher text and tweak
and returns the plaintext. The details of the working of the algorithm are self explanatory as
depicted in Figure 10.2. For this construction it is required that the irreducible polynomial
representing the field Fy» be primitive.

10.3. BCTR: A new DAE suitable for disk encryption 211

Algorithm BCTR.E,{ w(Pry. . P) Algorithm BCTR.D} ;(Ch,...,Cp, 7)

1. a=Ek(0); 8= Ex(1); L. a=Ekg(0); B+ Ek(1);

2. v < h-BRWL(Pi||P2||...||Pn]|T) 2. for j =1 tom,

3. T« Ex(v®a); 3. Rj «+ Ex(t & 27B);

4. for j=1tom 4. P; <+ C; ® R;

5. Rj + Ex(tr ®2p) 5. endfor

6. Cj< R;® P 6. ~ < h-BRW,(PL||Py|...[|Pn||T);
7. endfor 7. 7+ Ex(v® «)

8. 8.

return (C1]|Cal] ... [|Cnl||T) if 7/ = 7 return (P,..., Py,) else return 1;

Figure 10.2: Encryption and decryption using BCTR.

As evident the construction of BCTR depends on BRW polynomials. Structural properties
of BRW polynomials were extensively studied in Chapter 6, in particular it was said that
for m > 2, BRW,(Xq,...,X,,) can be computed using |[m/2] multiplications and lgm
squarings. Thus one can infer that to encrypt m block of messages BCTR requires LmTHJ +1
multiplications and lg(m + 1) squarings. Computing squares in binary fields are much more
efficient than multiplication. In addition it requires (m + 3) block-cipher calls. Out of these
(m+3) block-cipher calls two can be pre-computed, but this would amount to the requirement
of storage of key related materials which is not recommended. The construction requires two
keys, h the key for the BRW polynomial and K the block-cipher key. Requirement of a single
block-cipher key is what is important, as for multiple block-cipher keys one needs to have
different key schedules which may make an implementation inefficient when implemented in
hardware. One can probably generate the key h using the block-cipher key and still obtain
a secure construction, but this would generally mean one more block-cipher call or a storage
of key related material which is same as storage of an extra key. So, we decided to keep
the block-cipher key independent of the key for the BRW polynomial. The constructions
requires two passes over the data, one for computing the tag 7 and other for generating the
ciphertext. The ciphertext is generated using a counter type mode of operation which can
be parallelized, also « and 8 can be computed in parallel with the BRW polynomial. Thus
the construction offers flexibility for efficient pipelined implementation. Also, for an efficient
hardware implementation the only non-trivial blocks that are needed to be implemented
are a finite field multiplier and an encryption only block-cipher. So, it is expected that a
hardware implementation will have a small footprint.

Comparisons: In Table 10.2 we compare the number of operations required for tweakable
enciphering schemes for fixed length messages which uses n bit tweaks with the number of
operations required for BCTR.

From Table 10.2 we can see that encrypting with BCTR would be much more efficient than

212 Chapter 10. A New Model for Disk Encryption

Table 10.2: Comparison of BCTR with tweakable enciphering schemes for fixed length mes-
sages which uses n bit tweak. [BC]: Number of block-cipher calls; [M]: Number of multipli-
cations, [BCK]: Number of blockcipher keys, [OK]: Other keys, including hash keys.

| Mode | [BC] | [M] | [BCK] | [OK] |
CMC [65] 2m +1 — 1 —
EME [66] 2m + 2 — 1 —
XCB [101] m+1 2(m + 3) 3 2
HCTR [141] m (2m+1) 1 1
HCHfp [31] m + 2 2(m—1) 1 1
TET [64] m+1 2m 2 3
Constructions
in [125] using m+1 2(m —1) 1 1
normal polynomials
Constructions
in [125] using m+1 | 2+2[(m—1)/2] 1
BRW polynomials

| BCTR | m+3 | 1+[m+1)/2] | 1 | 1 |

encrypting by the existing tweakable enciphering schemes which uses polynomial hashing.
But, it is to be noted that the computational efficiency comes at the cost of more space
requirement, but as discussed in Section 10.2.2 the extra space requirement would be in-
significant in case of sectors of 4096 bytes.

In Table 10.3 we compare BCTR with the existing DAE schemes. SIV is a DAE which uses
CMAC (which is a block cipher based algorithm for message authentication) along with the
CBC or CTR mode of operation. This construction is fully block cipher based and does
not require any multiplications. But as seen from Table 10.3 SIV requires twice the number
of block cipher calls compared to BCTR. HBS and BTM are DAEs which requires both
polynomial multiplications and block cipher calls. The number of block cipher calls required
for BCTR is comparable to the number of block cipher calls in HBS and BTM, but BCTR
requires about half the number of multiplications compared to both HBS and BTM.

10.4 Security of BCTR

The following theorems suggests that BC'T'R is a secure DAE.

Theorem 10.1. Let IT = Perm(n). Let A be an adversary attacking BCTRIII] who asks q
queries, then

10.4. Security of BCTR 213

Table 10.3: Comparison between BCTR and DAE schemes for encrypting m blocks of mes-
sages. In the DAE schemes the operation counts are based on only one block of tweak. [BC]:
Number of block-cipher calls; [M]: Number of multiplications, [BCK]: Number of blockcipher
keys, [OK]: Other keys, including hash keys.

| Mode | [BC] | [M] | [BCK] | [OK] |
SIV [119] | 2m +3 — 2 —
HBS [75] | m +2 m+ 3 1 —
BTM [74] | m +3 m 1 —

|BCTR [m+3 |1+ [m+D/2]] 1 | 1 |

14m?2q?

AdviRePiY (A) < o (10.4)
_ 1 18m2qg?
Adviacanth 4y < TR d (10.5)

Theorem 10.2. Let E : I x {0,1}" — {0,1}" be a block-cipher secure in the PRP sense.
Let A be an adversary attacking BCTRI[E] who asks q queries, then their exists an adversary

A" such that
14m?2q®

Adv%%%‘ﬁﬁif(A) < = AdvPP(4) (10.6)
_ 1 18m%¢?
AdvAR(4) < 28dvBP(A) + o+ =01 (10.7)

where A" asks O(q) queries and run for time t + O(q) where t is the running time of A.

Theorem 10.1 depicts the information theoretic bound, i.e., it shows the behavior of BCTR
when the block cipher is replaced by a permutation selected uniformly at random from
Perm(n). Theorem 10.2 shows the complexity theoretic bound, where the block cipher is
a pseudorandom permutation. The transition from Theorem 10.1 to Theorem 10.2 is quite
standard and we shall not show it here. The proof of Theorem 10.1 is also done using the
standard game playing technique and it does not bring in any new ideas. For completeness
we do provide a complete proof of Theorem 10.1, we defer it to Section 10.6.

214 Chapter 10. A New Model for Disk Encryption

10.5 Hardware Implementation

We claimed that our proposal BCTR is more efficient than existing TES, in this Section we
will show experimental evidences of that. First we give a detailed description of the proposed
architecture followed by a careful timing analysis and the experimental results.

T
0_,f
] 1—m in ouf
& D 1’ AZES e % Comparator Vi
T . odd
T =,
e
PN AES round
keys generator -B
ﬂ D — C1
AES OUIAES ‘—P@__> inA__ outHf—
82 BRW
. AESeven EF:@{::B Hash
— C2
A B H

Figure 10.3: Architecture of BCTR-2

10.5.1 Proposed Architecture

A detailed study of implementations of TES were presented in Chapter 5 where the hash
layers were polynomial type. BCTR uses BRW polynomial to construct a hash layer, in
Chapter 6 a methodology to implement them is given taking into account the scheduling of
multiplications and the storage required. For design of BCTR we consider sector sizes of
4096 bytes instead 512 bytes which was used in the previous implementations. The 4096
bytes can be seen as 256 128-bit blocks, to compute the tag (7) in the algorithm shown
in Table 10.2 all the message and tweak are used, hence the number of blocks which are
hashed using the BRW polynomials is 257. We designed the architecture to compute the
BRW polynomial of 256 blocks following the methodology presented in Chapter 7 and then
the tweak is added and the result is multiplied by h, the powers of h are computed on the
fly.

We use the same AES which was used in the implementation presented in Section 7.5. In
the case of multiplier we decided to use a 4-stage-pipelined Karatsuba-Ofman multiplier, the
registers were placed after a meticulous re-timing process to create balanced pipeline stages.
Note that in Chapter 6 for designing the modes using BRW polynomials we used a multiplier
of 3 stage. The choice was made to match the critical path of others components. In designs

10.5. Hardware Implementation 215

of HEH[BRW| and HMCH[BRW] presented in Chapter 7 the critical path was given by AES
decryption. But as this component is absent in BCTR using a 4-stage pipelined multiplier
is better choice as it matches the critical path of AES encryption.

Two architectures were developed one using two AES cores which we call as BCTR-2 and
another using a single AES core which we call as BCTR-1. We will only describe in detail
the architecture of BCTR-2, but we will present the results of both architectures in Section
10.5.3.

The complete architecture of BCTR-2 using two AES cores is shown in Figure 10.3. The
figure shows two AES cores labeled AES,,., and AES,;; and the block for computing the
BRW polynomials. The input lines A and B receive the plaintext and the line H receives
the key h for the BRW polynomial. When used for decryption, the circuit receives the tag 7
from the port labeled 7;. If the circuit is used or encryption then the ciphertext is produced
in the lines C, C5 and the tag in 7. When used for decryption the ciphertexts are received
as input from C7, Cs and the plaintext output is produced in Py, P, In case of decryption,
the port V f is set to a zero or one depending on whether the decryption was successful or
not.

We now describe the basic data flow in the circuit with reference to the algorithm in Figure
10.2. The block AES,4q is use to compute «, 3, v and R; for odd values of j, while AEScep,
is used to produce R; for even values of j. The values of «, 3, v have to be stored, for
that purpose three registers are used which are labeled by the names of their contents in
the figure. The block Xntimes generates the stream 27 - 8 for j = 1,...,256. Xntimes has
two outputs, the output connected to AES,44 gives values computed using odd values of j
and the output connected to AES.,., gives values computed using even values of j. The
inputs of BRW Hash can be from the input lines A and B for encryption or from C'1 or Cj
for decryption, the selection of correct input is done using multiplexers 2 and 3. Only one
key generator is used by both AES cores which results in some saving in area. The block
BRW Hash has its own control unit composed of a ROM memory and a counter, this circuit
activates a ready signal when the computation of BRW Polynomial has been completed
meanwhile the control of the architecture in Figure 10.3 was constructed using a finite states
machine.

10.5.2 Timing Analysis

Now we analyze the behavior of the circuit of BCTR-2 in time. In Figure 10.4 a time
diagram for encryption process is shown, which clearly shows the possible parallelization.
The computation of BRW polynomial and the computation of @ and [can be parallelized.
For computing the value v a BRW polynomial on 256 blocks is to be computed which takes
135 cycles, further this result has to be multiplied by h which takes an additional 4 cycles
(as we use a four staged pipelined multiplier), hence the total number of clocks required

216 Chapter 10. A New Model for Disk Encryption

for producing 7 is 140 (this includes an additional cycle for synchronization). We use a
pipelined AES whose latency is 11 cycles. When + is ready it is fed to AES then after 11
clock cycles 7 is produced which stored in the register 7 which is connected to the output 7,.
After 7 has been generated then the generation of the stream R; is started by the two AES
cores simultaneously. The first block of the stream R; is ready after 11 cycles. After this,
in each cycle two cipher blocks are produced. The first valid block of cipher text appear in
the output after a latency of 164 clock cycles. All the ciphertext are given after 128 clock
cycles hence the complete encryption of a 4096-bytes is achieved after 292 clock cycles.

Latency 164 clock cycles

Reset
g
Wp
\ 140 | ¥
[11 [
R, [11] 128
(] 128

Total time 292 clock cycles

Figure 10.4: Timing diagram for BCTR-2 encryption.

In the encryption process the computation of v cannot be parallelized with the encryption
with AES, but this is not the case for decryption. This makes the decryption and verification
process very different from the encryption process. The time diagram for decryption process
is shown in Figure 10.5. As shown in the diagram, the circuit begins with the computation
of a and and as soon as « and [are computed then the AES cores are used to produce
the plaintext blocks. As soon as two plaintext blocks are available the computation of 7 can
be started. The first valid block of plaintext is produced after 24 clock cycles. The total
process, i.e, encryption and verification is done using only 176 clock cycles which is much
less than the encryption process. This characteristic of the circuit can be very useful in the
disk encryption application, as generally the number of reads from a sector is much more
than the number of writes in it.

[1] Reset
o
s
R, [11] 128 |
P, 128 |
\ 140 |

o
-
[

=)

e ——
Latency 24 clock cycles
I

|

Total time 176 clock cycles

Figure 10.5: Time diagram for BCTR-2 decryption.

10.5. Hardware Implementation 217

Table 10.4: Performance of BCTR on Virtex-5 device. AES-PEC: AES pipelined encryption
core, AES-PDC: AES pipelined decryption core, AES-SDC: AES sequential decryption core,
SOF : squares computed on the fly.

Mode Implementation | Slices | Frequency | Throughput TPA
Details (MHz) (Gbits/Sec) | (Mbits/Sec)/Slice
BCTR-2 2 AES-PEC, SOF 7876 291.29 32.69/54.23 4.15/6.88
BCTR-1 1 AES-PEC, SOF 5517 292.56 17.12/30.34 3.10/5.49
HMCH[BRW]-1 2 AES-PEC, 8040 211.79 13.14 1.63
Chapter6 1 AES-SDC, SOF
HMCH[BRW]-2 1 AES-PEC, 6112 223.36 11.44 1.86
Chapter6 1 AES-SDC, SOF
HEH[BRW|-1 2 AES-PEC, 11850 202.86 15.17 1.28
Chapter6 2 AES-PDC, SOF
HEH[BRW]-2 1 AES-PEC, 8012 218.38 12.96 1.61
Chapter6 1 AES-PDC, SOF

10.5.3 Results

We implemented both BCTR-1 and BCTR-2 in Virtex 5 xchHvIx330-2ff1760. The results
reported in Table 10.4 for BCTR were obtained after place and route simulation using
Xilinx ISE 10.1. In Table 10.4 we compare performance of BCTR with the implementations
of HMCH[BRW]| and HEH[BRW)| presented in Section 7.5. The performance is measured
in terms of slices, frequency, throughput and throughput per area (TPA). For BCTR-1
and BCTR-2 there are two values specified for throughput and TPA, these values are for
encryption/decryption.

In HMCH[BRW]-1 and HEH[BRW/-1 two pipelined AES encryption cores were used, so they
are comparable to BCTR-2. Both HMCH[BRW]|-1 and HEH[BRW]-1 are larger in size than
BCTR-2 as they require a AES decryption core which is not required in case of BCTR. The
higher frequency achieved by both BCTR-1 and BCTR-2 is due to the use of the 4 staged
pipelined multiplier, the multipliers used in case of HMCH and HEH are 3 stage pipelined.
We explained before that using higher than 3 stages for HEH and HMCH does not help as
the critical path for these circuits is given by the AES decryption core, thus adding more
pipeline stages in the multiplier only adds on to the latency without any improvement in
frequency. The frequencies achieved in both BCTR-1 and BCTR-2 are close to the frequency
of the AES encryption core.

For encryption the throughput achieved by BCTR-2 is more than two times of that both
HMCH|[BRW]-1 and HEH[BRW/|-1, and for decryption it is more than four times. The TPA
metric for both BCTR-1 and BCTR-2 is also far better than the other implementations. So,
it is beyond doubt that BCTR achieves better throughput and also better time/area tradeoff
than any existing TES.

218 Chapter 10. A New Model for Disk Encryption

10.6 Deferred Proofs

For proving Theorem 10.1 we use the following lemmas.

Lemma 10.1. Let X = (X1, X, ..., X,,), X' = (X], X5,..., X)) € [GF(2™)]™ such that
X # X'. Let Y = hBRWy (X4, Xs,..., X;n) and Y = hBRW, (X1, XY, ..., X].). Then for
every fized 6 € GF(2™)

2m

PI'[YEBY/ = 5] S 2—71’

The probability is taken over the random choice of h.

See [125] for a proof of this.

Lemma 10.2. Let m & Perm(n), and h & {0,1}". Let fr(.,.) be a function such that
given an input (X, T) € {0,1}"™ x {0,1}", it returns m(hBRW,(X||T) @ 7(0)). Let B be an
prf adversary attacking fn-(.,.) and B asks a total of q queries. Then

Adv?rf(B) = Pr {th’”("') = 1} —Pr [p & Func(mn +n,n) : AV =1

4mg?
n

Proof. We use the game playing technique. Consider the games FO and F1 as shown in
Figure 10.6. The difference between the two games is that in FO outputs of the permutation
7 is used which is constructed in the fly by the subroutine Ch-7(). In game F1, the boxed
entries of Ch-7() are removed. These games run in the same way until the bad flag is set.
Hence,

Pr [BFO = 1} — Pr [BFI = 1} < Pr[B"! sets bad]
Also, the responses obtained by B in game F1 are elements selected uniformly at random
from {0,1}". As B does not repeat a query, hence the outputs received by B in game

F1 would be indistinguishable from those obtained from a function sampled uniformly at
random from Func(mn + n,n). Thus,

Pr [BFl = 1} =Pr {p & Func(mn +n,n) : APO = 1] .
Hence we have

AdvP™(B) < Pr[B™ sets bad].

10.6. Deferred Proofs 219

Subroutine Ch-m(X)
0. v & {0,1}"; if Y € Range, then bad « true;| YV & Range, |; endif;

02. if X € Domain, then bad < true; |Y «+ 7(X)|; endif
03. 7w(X) < Y; Domain, < Domain, U{X}; Range, <— Range, U{Y }; return(Y);

Initialization:
11. for all X € {0,1}" 7n(X) = undefined endfor
12. Fz & {0,1}"; Domain, < Domain, U {0}; Range, < Range, U{EZ}
13. bad < false

Respond to the s query (X{[|X5]|...||X2,T°) of B as follows:
3L 0« BRW,(X71X3]) .. | X IT°):

32. 7+ Chrn(t°® EZ)

33. Return (7%)

Figure 10.6: Games F0O and F1. In game FO the subroutine Ch-7() with the boxed entries
is used while in game F1 without these.

Following the construction of Ch-7(), the bad flag in game F1 is set when there is a collision
in the set Domain, or the set Range,. Let us list all the values that gets in the domain and
range sets in the multisets SS and RR. Then we would have, S§ = {0} U{t* B EZ : 1 <
s<qtand RR={EZ}U{r®:1<s <q}. Let COL be the event that there is a collision
in 8§ or in RR. Then,

Pr[B*! sets bad] = Pr[COL].

Note that for two distinct queries u, v, we have t* = hBRW,, (X{|| X¥|| ... || X%||T"), and t¥ =
BBRW, (X{ |31 .|| X3 T") where X|IXSI...|[XAIT* # XYIXSI] ... [[Xg/|T. Thus
from Lemma 10.1 we have Pr[t" = t"] = 2(m + 1)/2". Also Pr[t*® EZ = 0] =1/2" as EZ
is a random element of {0,1}", and Pr[r* = 7%] = Pr[t" = EZ] = 1/2", as all 7%, 7 and

EZ are selected uniformly at random from {0, 1}". Hence combining the above facts we get

Pr[COL] = (Q>M+i+<q“>i

2n 2n 2)2n

Thus, we have

(10.8)

which completes the proof. O

220 Chapter 10. A New Model for Disk Encryption

Proof of Theorem 1: To prove the security of BCTRI[II| we replace the the block cipher
E in the construction of Figure 10.2 by a permutation 7 chosen uniformly at random from

IT = Perm(n). We call the encryption function of BCTRIII] as &, where h & {0,1}™ is
the key for the BRW polynomial. We prove the privacy bound first. We use the usual game
playing technique. We briefly discuss the games below:

1. Game GO: In GO (shown in Figure 10.7) the block-cipher is replaced by the random
permutation m. The permutation 7 is constructed on the fly keeping record of the
domain and range sets as done in the sub-routine Ch-7 in Figure 10.7. Thus, GO
provide the proper encryption oracle to A. Thus we have:

Pr [Af=() = 1] = Pr[A% = 1], (10.9)

2. Game G1: Figure 10.7 with the boxed entries removed represents the game G1. In
G1 it is not guaranteed that Ch-m behaves like a permutation, but the games GO and
G1 are identical until the bad flag is set. Thus we have

Pr[A%° = 1] — Pr[A%! = 1] < Pr[A®" sets bad] (10.10)

Note that in G1 the adversary gets random strings as output irrespective of his queries.
Hence,

Pr[A% = 1] = Pr[A%C+) = 1] (10.11)

3. Game G2: In Game G2 (shown in Figure 10.8) we do not use the subroutine Ch-7
any more but return random strings immediately after the A asks a query. Later we
keep track of the elements that would have got in the domain and range sets of the

permutation 7 in multi-sets S and R. We set the bad flag when there is a collision in
either S or R. For the adversary the games G1 and G2 are identical. So,

Pr[A%! = 1] = Pr[4%% = 1] (10.12)

and
Pr[A%! sets bad] = Pr[A“? sets bad] (10.13)
Hence, using Egs. (10.9), (10.10), (10.11), (10.12) and (10.13), we have

Pr {Agh’"(""') = 1} — Pr[A%C¢) = 1] < Pr[.A®? sets bad).

10.6. Deferred Proofs 221

Subroutine Ch-7(X)

0. v& {0,1}"; if Y € Range, then bad < true; | Y & Range, |; endif;
02. if X € Domain, then bad < true; |Y + 7(X) |, endif
03. m(X) «Y; Domaing < Domain, U{X}; Ranger <— Range, U{Y }; return(Y);

Initialization:
11. for all X € {0,1}" n(X) = undefined endfor
12 EZ & {013 7(0) = BEZ;
13. Domain, < {0}; Range, < {EZ};
14. EO & {0,1y"\{EZ}; n(1) = EO;
15. Domaing; <— Domain, U{1}; Range, < Range, U{EO};
16. bad = false

Respond to the s encryption query (7% P¢, Ps, ..., P3) as follows:
101. 7° < h- BRW (P} ||B5]] ... ||PS||T%);

102. 7° <= Ch-w(~* & EZ);

103. for ¢ =1 to m,

104. R{ < Ch-n(7* @ 2'EO);

105. C? «+ R} & P7,

106. endfor

107. Return (C{||Cs||...||Cis|T%)

Figure 10.7: Games GO and G1

According to the definition of the privacy advantage of A, we have

Advg?fr_gﬁlv(A) < Pr[A®? sets bad] (10.14)

Now we need to bound Pr[A%? sets bad]. The elements in the multi-sets S and R would be

S={0,1}JU{*PEZ:1<s<q}U{rf@r'EO:1<i<m,1<s<q} (10.15)

R={FZ,EO}U{r*:1<s<qtU{CieP’:1<i<m,1<s<gq}, (10.16)

Let COLLD be the event that there is a collision in & and COLLR be the event that there is
a collision in R Using the facts that v* = hBRW,(P||Ps|| ... ||P5||T°) and EZ, EO, 75, C?
are random elements of {0, 1}", we have

222 Chapter 10. A New Model for Disk Encryption

2
Pr{COLLD] < 29 2m4 <‘-’>M N <m61>2in L 2mg*(m+ 1)

on " on 9] on 2 on
on \ 2 2
and
2\ 1
Pi{COLLR] = ((Matat2)L
p n
(M +2mq® + 3mg + ¢* + 3¢ +2)
o 2n+1

Then we have

Pr[A%% sets bad] = Pr[COLLD] + Pr[COLLR]
14m?2q¢?
2n

(10.17)

This completes the proof of the privacy bound. O

Proving the authentication bound: Before proving the authentication bound we will
introduce a necessary concept of forgery of psudorandom functions.

For pseudorandom functions another adversarial goal beside indistinguishability from ran-
dom functions is known as forgery. For defining forgery for a pseudorandom function
F: KxX —), an adversary A is given oracle access to Fg(.), where K &K Sup-
pose A makes ¢ queries X;, 1 < i < ¢ to its oracle and gets back V; = Fg(X;), 1 <i <gq.
At the end A attempts a forgery by producing a pair (X ,t) such that A never obtained ¢
as a response to any of his previous queries X; (1 < i < ¢q). A is said to be successful if

Fr(X) =t. It is well known that (for example see [126])

1
Pr[AFEC) forges] < Advgrf(/l) + & (10.18)
To prove the authenticity bound, let A be an adversary which tries to break authenticity
of BCTRIII]. Let B be an adversary attacking authenticity of f; . (see Lemma 10.2 for
the description of f). B has an oracle access to fi«(.,.), additionally let it have access

10.6. Deferred Proofs 223

Initialization:
S R+ 0
Ez & {0,137 BO & {0,1y"\ {EZ};
S+ SuU{0,1}; R+ RU{EZ,EO};

For an encryption query (T°%; P§, Ps, ..., P5) respond as follows:

bl ms
C31|C3]]. .. 11O L[| & {0, 1} (mH+ D,
Return CF[|C3]] ... [|Cs [

Finalization:
FIrsT PHASE
for s =1 to ¢,
75— h- BRW(P||PS| .. | P IT°);
S+ SU{Y} R+ RU{T®};
for : =1 to m,
S+ SU{r*®2'EO0}; R+ RU{C! @ P’}
end for
end for

SECOND PHASE
bad = false;
if (some value occurs more than once in §) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

Figure 10.8: Game G2: § and R are multisets.

to another oracle P(.,.) which on input (X,4) returns 7(X @ z'm(1)). With access to these
two oracles B can run A by answering its queries in the usual manner. When A outputs a
forgery (T, Y1||Ya| ... ||Yml||T), B computes X; = P(7,1), 1 <i < m, using the oracle P(.,.),
and outputs (Xi||Xa||...[|Xn||T,7) as its forgery. B is always successful if A is successful,
hence we have

AGESTENA) = P o
< Pr[B/OP6) forges] (10.19)

Now, we replace this oracle P(.,.) with an oracle $(., .) which returns strings chosen uniformly
at random from {0, 1}" on a query (X, 7). The difference of the real oracle P and the oracle
$(.,.) can be detected by B only if the queries of B can produce a collision in the domain or
range of the permutation 7. This means that the difference can be detected by B if there is a
collision in the multisets S or R as represented in equations (10.15) and (10.16) respectively.

224 Chapter 10. A New Model for Disk Encryption

The event of a collision in these sets were represented by COLLD and COLLR respectively.
Thus we have

Pr[B/rr(P() forges] — Pr[B/m(80) forges] < Pr[COLLD] + Pr[COLLR]. (10.20)

Now, the oracle $(.,.) is of no help to B as the random strings that it returns can be generated
by B itself hence,
Pr[B/hx (80 forges] = Pr[B/h=0) forges). (10.21)

Putting together equations (10.20), (10.21) and (10.17) we have

14m?2¢?
2n

Pr[B/rr(PC) forges] < Pr[B/m=0) forges] +

1 dmaqg® 14m2q?
< 4L g

10.22
2n 2n 2n (10.22)

The last inequality follows from Lemma 10.2 and eq. (10.18). From eq. (10.19) and eq.
(10.22) we have

2

dac-auth 1 18m%g
Advpérrin (A) < o7+ ——

as desired.]

10.7 Final Remarks

In this Chapter we explored the possibility of the use of DAEs for disk encryption and
argued that their use can lead to more efficient solutions to the disk encryption problem.
The experimental results provided in this Chapter clearly shows that BCTR can be a option
for disk encryption if length expansion in the cipher text is allowed.

Chapter

A Proposal for Secure
Backup

Freedom is indivisible. The chains on any
one of my people were the chains on all of
them, the chains on all of my people were

the chains on me.

Nelson Mandela

We have reached the last technical Chapter of this thesis. In this Chapter we shall discuss
another problem related to security of stored data which is quite different from the problems
that we have addressed so far. In the introduction of this thesis we tried to motivate the
problem of securing stored data by the example of a lost laptop, we mentioned that the laptop
loss rates are around 2% per year [54]. A lost laptop amounts to two severe consequences: (1)
the loss of the data stored in it (2) the stored data getting revealed to an adversary. The later
problem has been identified to be more severe than the former one, as it is rightly argued
that if sensitive data gets into the hands of an unwanted person he/she can potentially cause
much greater damage than the one incurred by the mere loss of the data.

The preceding Chapters of this thesis have been mostly devoted to various aspects of problem
(2). Problem (1) has not been adequately addressed in the literature. A trivial solution of
problem (1) is to maintain backups of the data securely. With the advent of cheap storages
and backup technologies which allows synchronous read/write operations even from remote
storage devices, keeping backup is easy. So one may think that the data always gets written to
two storage devices both equipped with a low level disk encryption algorithm (as provided
by tweakable enciphering schemes), thus loss of one device does not result in any of the
consequences stated before. In this Chapter we handle the problem of backup but in a bit
different way than the trivial solution. In the trivial solution, as stated, each plain text
will have associated with it two cipher texts (possibly different as one can use two different
algorithms or two different keys for encryption in the two different devices), and in a normal
scenario both these ciphertexts would be available to the user. We suggest a scheme which
can exploit this redundancy and thus give rise to more efficient ways to solve this problem.

226 Chapter 11. A Proposal for Secure Backup

Our goal in this Chapter is to design a symmetric key encryption scheme which produces
two ciphertexts Ct and CR (L and R can be read as local and remote) and a tag 7 for a
given plaintext P with the action of one or more secret keys. The requirements on Ct and
CR would be the following:

1. Ct, CR and P must be of same length.

2. There should exist a very efficient function g such that g(C', C®) = P and g should
not require any secret parameter.

3. One must be able to recover P from either C* or CR by using the secret key and the
tag.

The rationale behind such a goal is as follows. For the secure backup scenario, we assume
plaintexts to be disk sectors and the corresponding ciphers would also get written in disk
sectors, hence the two ciphertexts must be of the same length of that of the plaintext. When
a user has acces to both Ct and CR then (s)he can very efficiently produce the plain text
which produced them using the function g. If one of C* or CR is lost then with the knowledge
of the secret key and the tag, P can be recovered from one of C* or CR. The function g
should be such that obtaining P through it should be much more efficient than obtaining P
by decryption of either Ct or CR.

Additionally, we require the scheme to be secure in some sense. For arguing about security,
given plaintext P, we rule out the possibility of adversarial access to both Ct and CR. This
is not very un-natural as we may assume that C' is stored in the laptop of an user where as
CR gets stored in a trusted location provided by his/her employer. It may be difficult for an
adversary to have access to both versions of the ciphertext. The security goal for the scheme
is that, it should be difficult for any computationally bounded adversary to distinguish
between the outputs of the encryption scheme from random strings when the adversary can
see either Ot or CR along with the tag for messages of his choice. Additionally by looking
at either Ct or CR along with the tag for messages of his/her choice, (s)he should be unable
to produce a new ciphertext tag pair which would get decrypted.

We analyze the above stated problem and propose a solution to it. Our solution is a special
encryption algorithm which we call the double ciphertext mode (DCM). We describe the
syntax of a DCM and define security for it. We provide a generic construction for a DCM
using a pseudorandom function and a block-cipher, and also a specific construction which
requires only one block-cipher key. We prove security for both the constructions. The
material presented in this Chapter have been previously published in [26].

11.1. The Double Ciphertext Mode 227

11.1 The Double Ciphertext Mode

We fix m, n, £ as positive integers. Let, M = {0,1}"™, C = {0,1}""** T = {0,1}" be the
message space and cipher space and tweak space respectively. A double ciphertext mode
(DCM) is a set of four algorithms (K, &, D, g), where K is the key generation algorithm
(we shall also denote the key space with), £ the encryption algorithm, D the decryption
algorithm, and ¢ a special function which we call the recovery function.

The encryption function € : I x T x M x {R,L} — C takes in a key, a tweak, a message
and type (which can be either R or L)to produce a cipher. For any given M € M, K € K,
T € T, and ty € {R,L} we shall write E(K,T, M,ty) as Ex(T, M, ty) or sometimes as
517;’ty(M). Any cipher C produced by the encryption function from a message M can be
parsed as C = C||7, where |C| = |M| and || = . We define functions cipher and tag, such
that given C = C||7 € C, cipher(C) = C and tag(C) = 7. Also, for any M € M, K € K,
T €T, tag(Ex (M) = tag(Ex"(M)).

D:KxTxCx{R,L} - MU{L} is the decryption algorithm, D(K,T,C,ty) is denoted
as Dy (T, C,ty) or sometimes as DY (M). And,

Di(T.Coty) = M, if C = Ex(T, M, ty),

= 1, otherwise.

The function g is a public function which does not use any key. Let Ct = Ex(T, M, L)
and CR = &k (T, M,R), then g(cipher(Cl),cipher(CR)) = M. The existence of this special
recovery function g makes a DCM scheme different from other encryption schemes. This
function g enables decryption of a ciphertext given the two versions of it (i.e., both the L
and R versions) without the key. For a DCM to be practically useful, it is required that the
recovery function g can be computed much more efficiently than the decryption function D.

We define DCM with fixed values of m, n and ¢, where n can be seen as the block-length
of the block-cipher. Thus, the message length is fixed to some multiple of n and the tweak
length is always n. We define in this manner keeping in mind the specific application, where
a more general definition is not required. But a DCM can be defined more generally where
the message length, tweak length and tag length are not fixed.

11.1.1 Secure Backup Through DCM

The above syntax of a DCM has been constructed keeping in mind the specific need of a
secure backup scheme. In what follows we try to describe how a DCM can be used for
keeping secure backup using an example. This example is meant to be motivational, we do

228 Chapter 11. A Proposal for Secure Backup

not try to detail technical concerns for a true implementation of a DCM.

A user (U) works with sensitive data in his office which (s)he stores in his laptop. U cannot
afford to lose the data or to reveal the data to an adversary. The employer of U has a server
(S), where U can keep backups. Let us consider that U mirrors the disk of his laptop with
that of the server S'. The disk controllers of the laptop and the server are both equipped
with a DCM instantiated with the same keys. The type ty is set to L and R in the laptop
and the server respectively, i.e., in the laptop the encryption algorithm E(., ., L) runs and in
the server the encryption algorithm Ex (., ., R) runs. When a plaintext M is to be written in
the sector with address 7', then cipher(Ex (T, M, L)) and cipher(Ex (T, M, R)) gets written in
the sector with address T of the laptop and the server respectively. The tag produced by the
encryption algorithms in both the server and the laptop would be the same and one of it have
to be stored. Without loss of generality we consider that in the server, the tag(Ex (T, M, R))
is communicated to the operating system which stores it in another disk indexed with the
address T. Note that the tag produced for the ciphertext stored in address 7' is not stored
in the sector, but it is stored in a different location. The operating system maintains the
tags with the related disk sector addresses through a software solution. Note, that the tags
can be public as this is a part of the ciphertext and need not be stored securely.

Now let us discuss about decryption. In the normal scenario, when nothing unnatural has
happened to the laptop of U, then to recover the contents of sector 7', U requests a read from
both the disks of his laptop and the server to get cipher(Ex (T, M, L)) and cipher(Ex (T, M, R)),
and recovers M by the recovery function ¢g. In an un-natural scenario when data in one of
the disks is lost then U applies the decryption function on the disk sector along with the tag
to get back the plaintext.

When a plaintext is recovered using the function g then the tag is not used, so the integrity
of the message is not checked. But U can check for the integrity of the messages in the
disk sectors at any point (s)he wants. He can schedule regular integrity checks similar to
virus scans even if (s)he believes that the scenario is normal. But, this functionality does
not amount to the type of authentication which is provided by schemes like authenticated
encryption as the authenticity check in case of DCM can only be done in an off-line manner.
But this should not be seen as an weakness for DCM, as in other proposals for sector wise
disk encryption like in tweakable enciphering schemes also true authentication cannot be
obtained. A tweakable enciphering scheme provides authenticity in the sense that if the
ciphertext is tampered then upon decryption the resulting ciphertext is random. This does
not amount to true authentication.

The security of a DCM (which is discussed in details in the next section) guarantees that
an adversary who does not have access to both versions of the ciphertext cannot forge a

!The laptop server analogy is purely motivational, but two physically identical disks can be mirrored so
that the sector addresses of them match and same data gets written and read simultaneously from the same
addresses of the two disks. This can be physically achieved for other devices also.

11.1. The Double Ciphertext Mode 229

ciphertext. This implies that if the server has access to only the cipher stored in it then
U need not trust the server in which his backup is being kept in the sense that a forgery
created by the server can be easily detected by U.

An important parameter of the application would be the communication cost between the
server and the laptop. To gain from the feature of avoiding decryption in the normal scenario
the communication cost should be low. The communication cost would depend on many
factors including the remoteness of the server from the laptop, the communication technology
being used etc.

11.1.2 Security of DCM

We want to make DCM secure in two ways, in terms of privacy and authentication. Firstly,
as stated earlier, we assume that an adversary attacking DCM should have access to only one
of the versions of the ciphertext, i.e., either the L or the R version. We give the adversary the
liberty to see one version (either L or R) of the ciphertext along with the tag for plaintexts
of his choice and we say that the adversary breaks DCM in the sense of privacy if the
adversary can distinguish between the obtained ciphertexts and random strings. This is
the usual notion of privacy as applicable to symmetric key encryption schemes but here the
adversary is restricted in the sense that it can only view one version of the ciphertext. The
other form of security that we want is that of authentication, that is an adversary must
not be able to modify ciphertexts such that the modified ones gets decrypted, i.e., it should
be difficult for an adversary to create a new version of ciphertext and tag pair which will
get decrypted even if (s)he has seen ciphertexts tag pairs of plaintexts of his choice. We
formalize these notions of security next.

Let ¥ = (K,&,D, g) be a DCM scheme. Let A be an adversary attacking W. The adversary
has access to the oracle O. O can either be Ek(.,.,.), where K is generated uniformly at
random from K or it can be $(.,.,.) which returns random strings of length equal to the
length of the ciphertext. The adversary can query the oracle with a query of the form
(T, M,ty), where M, T" denotes the message and tweak respectively and ty € {L,R}, and
thus get back the responses from the oracle. A has the following query restrictions:

P1. A cannot query the encryption oracle with the same message and tweak on both values
of ty, i.e., A is not allowed to see both the L and R versions of the ciphertext, for the
same message tweak pair.

P2. The adversary does not repeat a query.

We define the privacy advantage of adversary A as follows:

AdVyTPT) = Pr K& s AT 51| S PrAKe) 51

230 Chapter 11. A Proposal for Secure Backup

To define the authentication advantage we consider that A is given access to the encryption
oracle Ek(.,.,.) and queries it with plaintexts of his choice and obtains the corresponding
ciphertexts. Finally, A outputs a forgery, which consists of a tweak, a ciphertext and a
type (7,C,ty). A is said to be successful if D (T,C,ty) # L. For querying the encryption
oracle A follows the same restrictions as described above additionally A have the following
restrictions:

Al. A cannot output (T',C,ty) as a forgery if (s)he obtained C as a response for his query
(T, X, ty) to the encryption oracle.

A2. A cannot output (7,C,ty) as a forgery if g(cipher(C),cipher(C)) = X where C was
obtained as a response to his encryption query (7', X ty).

Both restrictions are to rule out trivial wins. The second restriction is particularly inter-
esting, note that if C||7 = Ex(T, X,R) then it may be easy for an adversary to guess (or
compute) C, where C||7 = Ex(T, X, L) without querying the encryption oracle, as ¢ is a
public function and ¢(C,C) = X. Thus A may trivially produce the forgery (T, C||r,L)
knowing that C||7 = Ex(T, X,R) and ¢(C,C) = X. This restriction does not lead to a
practical attack, this is discussed in details in Section 11.1.3.

The authentication advantage of the adversary A is defined as the probability that A does
a successful forgery, in other words

Advgcm'auth(./l) = Pr[.AgK () forges]

We consider ¥ to be secure, if both Advgcm_priv(/l) and Advgcm'aUth(A) are small for
every computationally bounded adversary A.

11.1.3 Discussions on the Adversarial Restrictions

The security definition of DCM resembles the standard definition of security for privacy and
authentication with the important difference of the adversarial restrictions. In particular the
restriction P1 in case of privacy and A2 in case of authentication are peculiar to a DCM.
Here we argue that these restrictions does not lead to a practical attack.

The adversarial restrictions arise from the fact that in a practical scenario we rule out the
possibility that an adversary can get access to both the local and remote storage at the same
time. For privacy this means that (s)he gets to see the cipher texts of only of L type or of
R type, but not both. In case of authentication, this means that seeing some ciphertext tag
pairs of the same type the adversary tries to forge a ciphertext tag pair of the same type.
For example, if the adversary has access to type L storage then (s)he can see the ciphertexts

11.2. DCMG: A generic construction of DCM 231

of the L type and ultimately produce a forgery consisting of a ciphertext of the L type and a
tag. In this case, for the adversary there is no point in producing a forgery with ciphertext of
R type as the adversary does not have access to that storage and thus would not be able to
store his/her forged ciphertext. To translate this restriction to the adversary we could have
made the adversary select and declare a type from {L, R} before (s)he begins the queries, and
stick to that for the whole session of queries and responses. More precisely the restrictions
for privacy and authentication could have been as follows:

For privacy:
1. The adversary chooses ty € {L, R}, before (s)he begins the queries.
2. All queries of the adversary would be of type (T, M, ty), where ty is chosen in step 1.

3. The adversary cannot repeat a query.
For authentication:

1. The adversary chooses ty € {L, R} before (s)he begins the queries.
2. All queries of the adversary would be of type (T, M, ty), where ty is chosen in step 1.

3. A cannot output (7T',C,ty) as a forgery if (s)he obtained C as a response for his query
(T, X, ty) to the encryption oracle.

4. A cannot output (7',C,ty) as a forgery.

The above stated restrictions are most natural for a practical scenario. The above re-
strictions implies the restrictions that we impose on the adversary, but our restrictions are
weaker. In case of privacy we only restrict the adversary to make both the queries (T, X, ty)
and (7T, X,ty) and in case of authentication we restrict a forgery attempt of (7,C,ty) if
g(cipher(C), cipher(C)) = X where C was obtained as a response to the encryption query
(T, X,ty). Note, both these cases involves mixing of the types in the queries and responses.
Thus, with the assumption that the both versions of the storage are in accessible to the
adversary, the restrictions that we impose will not lead to any practical attack.

11.2 DCMG: A generic construction of DCM

We construct an DCM scheme using two basic primitives a pseudo-random function and a
block-cipher secure in the sense of a pseudo-random permutation. We call our construction

as DCMG.

232 Chapter 11. A Proposal for Secure Backup

Algorithm DCMG % (Pi|... ||Pn) Algorithm DCMG. Dy (Ci|... [|Cpal|7)
1. 7 Fg,(P||Pa]] .- ||Pnl|T); 1. forj=1tom;
2. forj=1tom; 2. R; + Ex, (7 @ bin,(j));
3. Rj — EK2 (T &) binn(j)); 3. if ty = L
4. ifty =1L 4. P+ (C;jeR)(1®x)™?
5. C;«+~ R;® (1 x)Pj 5. else P; + (Cj S¥ Ri)wfl
6. else C; < R; ® xP; 6. endif
7. endif 7. endfor
8. endfor 8. 7'« Fi,(P||P]|...||Pnl|T);
9. return (C1]|Csl| - [|Cml|7); 9. if 7/ =7 return (Py||---||Py) else return L;

Figure 11.1: Encryption and decryption using DCMGJ[F, E]. K is the key for the PRF and
K, the block-cipher key. len(P;) =len(C;) =n, 1 <i < m.

Let F : Ky x {0,1}™* — {0,1}" be a pseudo-random function and E : Ky x {0,1}" —
{0,1}" be a blockcipher secure in the sense of a pseudo-random permutation. We construct
a DCM scheme using F' and F which we call as DCMG[F, E]. The message space of DCMG
is {0,1}™" and the tweak space is {0,1}". We describe the encryption and decryption
algorithms using DCMG in Figure 11.1. A schematic diagram of DCMG is shown in Figure
11.2.

The algorithms in Figure 11.1 are self explanatory. Using the pseudo-random function F' a
tag 7 is produced which acts as the initialization vector of a counter type mode of operation.
The counter mode produces blocks of pseudo-random strings, which are mixed with the
plaintext. For producing ciphertexts of two different types the output of the counter mode
are mixed in two different way. The specific way in which this mixing is done is to enable
the existence of an efficient function ¢g. In this case the function ¢ is simple, we define ¢ as
g(X.Y) = X @Y. Let CH||7 = £, (Pr,..., Py) and CR||7 = EL5 (Pr,..., Py, Tt is
easy to verify that O @ C% = Py||...||P,.

11.2.1 Characteristics of the construction

1. Efficiency: The construction requires a pseudo-random function (PRF) which can be
replaced by a secure keyed message authentication code. Other than the call to the
PRF, the scheme requires m block-cipher calls to encrypt a m block message.

Decryption is costlier than encryption as decryption requires all the operations nec-
essary for encryption plus a multiplication by 27 or (1 @ x)~! per block of message
depending on whether we are decrypting the R version or the L version. For decrypting

11.2. DCMG: A generic construction of DCM 233

R P
'
-
i 5 000
K1 °
t t+<1> t+<m>
v |
Bz ooo | K
. .
D D
~E ~E
Y Y
cy c, cn c,

Figure 11.2: A schematic diagram of DCMG. In this diagram the tag produced by the
pseudorandom function F'is denoted by ¢, and < m > denotes the n bit binary representation
of m.

the R version we need to compute 7' X for some X € GF(2"). Multiplication by 2~

can be easily done in GF'(2"), we illustrate this by an example. Let us consider the field
G F(2'%8) represented by the irreducible polynomial 7(x) = z'®®2"®r?@r®1, let Q be
the n bit binary string representation of the polynomial z71(7(z)®1) = 2'*" ®25®r®1.
Then, for any X € GF(2"), z7'X can be realized as follows,

1 X>>1 if Isb(X) =0
X =
(X >>1)® @ otherwise.

Where X >> 1 represents right shift of X by one bit and Isb(X) denotes the least
significant bit of X. Thus, decryption of the R version of a ciphertext has a little
overhead more than the encryption.

Multiplication by (1 @ z)~! amounts to a full multiplication. So, decryption of the L
version requires m block cipher calls and m finite field multiplications in addition to
the call to the PRF. Here, (1 ® 2)~! can be pre-computed, thus explicit computation
of the inverse would not be required. Also note that the multiplication required can
be performed quite efficiently using pre-computation as one of the operands is fixed,
and this operand ((1®z)™!) does not contain any key related materials. As required,
the function g can be computed much more efficiently than the decryption function,
as for recovering a m block message with g, one needs to perform only m xors of n bit
strings.

234

Chapter 11. A Proposal for Secure Backup

. Number of keys: This generic construction requires more than one key, one for the

block-cipher and another (or more) for the PRF depending on the number of keys
required by the PRF. This requirement can be reduced, later we describe a particular
construction which requires only one block-cipher key.

. Message length restrictions: The construction only works for fixed length messages

which are multiples of the block length of the block-cipher. We do not know any trivial
way to remove this restriction from DCMG, as if there is a broken block (a block of
length less than the block length of the block-cipher)then there could be a ciphertext
expansion (see lines 5 and 6 of the encryption algorithm in Figure 11.1). But this
restriction is not severe keeping in mind the application, as it is assumed that the two
ciphertexts produced would be disk sectors to be stored in two different disk volumes.

. The tweak length: The construction is specified for fixed length tweaks, where the

tweak length is the same as the block length of the underlying blockcipher. For the
application of the disk sector encryption, the sector address is considered as the tweak
which is likely to be of fixed length.

. Similarity with DAE: One can note the similarity between the generic construction

of a DCM with that of the SIV scheme described in Figure 10.1. A SIV scheme which
uses the counter-mode for the secure privacy only scheme can be suitably re-worked to
make a DCM following the construction in Section 11.2. The stream of random bits
which would be generated by the counter mode needs to be xor-ed with the plaintext
in two different ways to get the two different versions of the ciphertext. But in the
generic DAE scheme as described in [119] any privacy only scheme can be used and
also have the provision of vector headers (headers are equivalent to the tweak), so we
do not use the syntax of a DAE to define DCM, but we just note the similarity.

The security of DAE as described in Section 10.1.1 is also similar to that of a DCM,
but a DAE adversary does not query a type to its oracle, as there is no such possibility
in case of a DAE. In [119] a combined advantage for both security and authentication
was proposed, which is elegant, but we feel that the proofs are still simpler if the
privacy and authenticity advantages are stated separately, so we define the privacy
and authentication advantages separately.

11.2.2 Security of DCMG

The following theorems suggests the security of DCMG

Theorem 11.1. Let T = Func(mn + n,n) and II = Perm(n). Let A be an adversary

11.2. DCMG: A generic construction of DCM 235

attacking DCMG[Y, 1] who asks q queries, then

2.9
dem-pri m~q
Adv DChrlg[TYH} (A) < on (11.1)
dem-auth 1
AdVD%ﬁ(%%,H](A) < on (11.2)

Theorem 11.2. Let F : Ky x{0,1}*" — {0,1}" be a PRF and E : Ko x{0,1}" — {0,1}"
be a block-cipher secure in the PRP sense. Let A be an adversary attacking DCMGI[F, E]
who asks q queries, then there exist adversaries A" and A" such that

2.2

AdVEERI (A) < 50+ AdvE! (4) + AdvEP(A) (11.3)
1 2.2
AV (A) < o + 0+ AdVE () + AdvETP(A7) (11.4)

where A" and A" asks O(q) queries and run for time t + O(q) where t is the running time of
A.

Theorem 11.1 depicts the information theoretic bound where as Theorem 11.2 shows the
complexity theoretic bound. Transition from Theorem 11.1 to 11.2 is quite standard and we
shall not present it. We provide the full proof of Theorem 11.1 in Section 11.4. But here we
shall provide some motivation regarding why Theorem 11.1 is true.

In the construction which is being referred to in Theorem 11.1 the pseudorandom function F'
is replaced by a function p chosen uniformly at random from T = Func(mn + n,n) and the
blockcipher E is replaced by a permutation 7 chosen uniformly at random from IT = Perm(n).
To prove the privacy bound note that the inputs to the function p would be all new, as the
adversary is not allowed to repeat a query. Also, as p is a random function so the tag (which
is the output of p) would be random. The only way the adversary can distinguish the output
of DCMG][Y,II] from random strings if there is a collision in the domain or the range sets
of the permutation 7, the probability of this collision in m?¢?/2", which suggests the bound
in eq. (11.1). For proving authenticity we give access of the random permutation 7 to the
adversary, as this permutation 7 is independent of the random function p the adversary have
no added advantage of forgery. With access to m the adversary will know what would be the
input to the random function p for the forgery (s)he produces. Given his query restrictions,
the probability that the adversary can produce a successful forgery would be less than 1/2"
(for details see the full proof in Section 11.4).

236 Chapter 11. A Proposal for Secure Backup

11.3 Constructing a DCM Using BRW Polynomials

Here we provide a particular construction of a DCM, where we design the pseudorandom
function using a special type of polynomial called the BRW polynomial. Also our con-
struction requires only one blockcipher key. We call the construction as DCM-BRW. BRW
polynomials have been proposed for use in message authentication codes and tweakable en-
ciphering schemes [10, 125], where significant performance gains are obtained as computing
these polynomials requires about half the number of multiplications compared to computing
an usual polynomial. Usage of a BRW polynomial in construction of a DCM also gives us
significant gain in performance by reducing the number of multiplications required.

11.3.1 The Construction

The generic construction DCMG that we proposed in Section 11.2 uses a pseudorandom
function along with a block-cipher in a counter type mode of operation. In the specific con-
struction DCM-BRW we replace the general pseudorandom function with a specific pseudo-
random function which uses a BRW polynomial. The encryption and decryption algorithms
using DCM-BRW are shown in Figure 11.3. The construction requires two keys, a key h for
the BRW polynomial and a key K for the block-cipher. Other than the keys the encryption
algorithm takes in the plaintext, the tweak and the type and returns a ciphertext and the
decryption algorithm takes in the ciphertext, tweak and type and returns the plaintext. The
details of the working of the algorithm are self explanatory as depicted in Figure 11.3. For
this construction it is required that the irreducible polynomial representing the field G F'(2")
is primitive.

From Chapter 6 we can say that to encrypt m block of messages DCM-BRW requires LmTHJ +
1 multiplications and lg(m+1) squarings. Computing squares in binary fields are much more
efficient than multiplication. In addition it requires (m + 3) block-cipher calls. Out of these
(m+3) block-cipher calls two can be pre-computed, but this would amount to the requirement
of storage of key related materials which is not recommended. The construction requires two
keys, h the key for the BRW polynomial and K the block-cipher key. Requirement of a single
block-cipher key is what is important, as for multiple block-cipher keys one needs to have
different key schedules which may make an implementation inefficient when implemented in
hardware. One can probably generate the key h using the block-cipher key and still obtain
a secure construction, but this would generally mean one more block-cipher call or a storage
of key related material which is same as storage of an extra key. Also having a different key
for the polynomial provides more flexibility during changing of keys. So, we decided to keep
the block-cipher key independent of the key for the BRW polynomial.

The constructions requires two passes over the data, one for computing the tag 7 and other
for generating the ciphertext. The ciphertext is generated using a counter type mode of

11.3. Constructing a DCM Using BRW Polynomials 237

Algorithm DCM-BRW.&, (P, ..., Py) Algorithm DCM-BRW.D, (Cy, ..., Cpy, 7)

1. a=Ek(0); B = Ex(1); L. a=Ek(0); B+ Ek(1);

2. v < h-BRWL(PL||P2||...||Pn]|T) 2. for j=1tom,

3. T+ Ex(v®a); 3. Rj + Eg(r ® 27 B);

4. for j=1tom 4. ifty=1L

5. Rj < Eg(t ®273) 5. P+ (C;®R)(1@x)™!

6. ifty=1L 6. else P + (C; @ R])m

7. Ci+< Rij®(1®x)P; 7. endif

8. else C; + R; ® xP; 8. endfor

9. endif 9. 7 h BRW,,(P1||P| ... || Pn||T);
10. endfor 10. 7/ + Ex(y®)

11. return (C1]|Cy||. .. ||Cnl|T) 11. if 7/ = 7 return (P, ..., P,,) else return 1;

Figure 11.3: Encryption and decryption using DCM-BRW.

operation which can be parallelized, also o and 5 can be computed in parallel with the BRW
polynomial. Thus the construction offers flexibility for efficient pipelined implementation.
Also, for an efficient hardware implementation the only non-trivial blocks that are needed
to be implemented are a finite field multiplier and a encryption only block-cipher. So, it is
expected that a hardware implementation will have a small footprint.

11.3.2 Comparisons

To our knowledge we do not know of any other existing cryptographic scheme which provides
the same functionality that is provided by a DCM. As mentioned before one can use a
tweakable enciphering scheme to do secure backup, by writing the cipher in two different
locations. Also, a certain class of DAE schemes can be used for constructing a DCM. Hence,
we compare the efficiency of DAE-BRW with existing tweakable enciphering schemes (TES)
and DAE constructions. As DCM is completely a different primitive compared to either a
TES or a DAE so these comparisons should be interpreted carefully, in particular we want
to make explicit the following points before we present the real comparisons:

1. Any DCM scheme is not meant to be a competitor for any existing TES. The secu-
rity guarantees that a TES provides are completely different from that of DCM. A
TES is tag-less, but one needs to store a tag for any DCM scheme which amounts to
extra storage. Moreover, the property of key-less recovery using the function g can-
not be provided by a TES. Thus the comparison only point out the case of efficiency,
but the difference in functionality and security guarantees should be considered while

238 Chapter 11. A Proposal for Secure Backup

interpreting the efficiency comparisons.

2. Similarly, a DAE scheme which was proposed as a solution for the key-wrap problem
[119] does not provide the security or functionality of a DCM. But as we mentioned, a
certain class of DAE schemes can be modified to obtain a DCM. Also the DCM-BRW
can be modified to make it a DAE, the only modification required would be to output
R; @ P, (refer to the encryption algorithm in Figure 11.3) instead of mixing R; in
two different ways with the plaintext to obtain two ciphertext. With this modification
DCM-BRW would be converted into a secure DAE scheme which works on single block
headers. But this is not the point that we are trying to focus here. The comparisons
with DAE are meant to show that how efficient DCM-BRW would be compared to other
possible constructions of DCM which can be easily derived by modifying existing DAE
constructions. The efficiency in our construction compared to other DAE constructions
comes from the use of BRW polynomials which require less multiplications.

3. The way we present the algorithms for DCM-BRW (also DCMG) one may think that to
produce the two versions of the ciphertexts one need two invocations of the algorithm,
we presented in this way to make it clear that depending on the parameter ty the
algorithm produces different ciphertexts for different messages, this way of presentation
helps us to argue about the security in a better manner in the proofs. But it is
clear from the algorithms that from a single invocation of the algorithm both versions
of the ciphertext can be produced and this would not involve any significant extra
computational overhead (except a few xors).

Comparison with Tweakable Enciphering Schemes: In Table 11.1 we compare the
number of operations required for tweakable enciphering schemes for fixed length messages
which uses n bit tweaks with the number of operations required for DCM-BRW.

From Table 11.1 we can see that encrypting with DCM-BRW would be much more efficient
than encrypting by any of the existing tweakable enciphering schemes. But, it is to be noted
that the security guarantee that a tweakable enciphering scheme provides is very different
from that provided by a DCM, hence this comparison needs to be appropriately interpreted.

Comparison with Deterministic Authenticated Encryption Schemes: As we have
mentioned, deterministic authenticated encryption (DAE) schemes which uses counter mode
of operation can be easily converted into a DCM scheme by only using additional xor oper-
ations. There are three DAE schemes reported till date. The SIV mode [119] uses CMAC
along with the counter mode, and [74,75] uses a variant of a polynomial hash with a counter
mode. All these schemes can be reworked to construct a DCM. But as evident from Table
11.2 DCM-BRW would be much more efficient than any of them. For the DAE schemes the
operation counts shown in Table 11.2 are based on only one block of tweak.

There are striking structural similarities between DCM-BRW and BCTR though DCM-BRW
provides a completely different functionality. But an implementation of BCTR can be very

11.3. Constructing a DCM Using BRW Polynomials 239

Table 11.1: Comparison of DCM-BRW with tweakable enciphering schemes for fixed length
messages which uses n bit tweak. [BC]: Number of block-cipher calls; [M]: Number of
multiplications, [BCK]: Number of blockcipher keys, [OK]: Other keys, including hash keys.

| Mode | [BC] | [M] | [BCK] | [OK] |
CMC [65] 2m +1 — 1 —
EME [66] 2m +1 — 1 —
XCB [101] m+1 2(m + 3) 3 2
HCTR [141] m (2m+1) 1 1
HCHfp [31] m + 2 2(m—1) 1 1
TET [64] m+ 1 2m 2 3
Constructions
in [125] using m+1 2(m —1) 1 1
normal polynomials
Constructions
in [125] using m+1 | 2+2[(m—1)/2] 1
BRW polynomials

| DCM-BRW | m+3 | 1+[m+1)/2] | 1 [1 |

Table 11.2: Comparison between DCM-BRW and DAE schemes for encrypting m blocks
of messages. In the DAE schemes the operation counts are based on only one block of
tweak. [BC]: Number of block-cipher calls; [M]: Number of multiplications, [BCK]: Number
of blockcipher keys, [OK]: Other keys, including hash keys.

| Mode | [BC] | [M] | [BCK] | [OK] |
SIV [119] [2m +3 — 2 —
HBS [75] m+ 2 m+3 1 —
BTM [74] | m +3 m 1 —

| DCM-BRW | m+3 [1+[(m+1)/2]] 1 | 1 |

240 Chapter 11. A Proposal for Secure Backup

easily converted to that of DCM-BRW and DCM-BRW will have the same performance in
hardware as BCTR. For this reason, we do not provide separate description of implementa-
tions of DCM-BRW.

11.3.3 Security of DCM-BRW

The following theorem specifies the security of DCM-BRW.

Theorem 11.3. Let Il = Perm(n). Let A be an adversary attacking DCM-BRW/II] who
asks q queries, then

dem-pri 14m?q?
Adngﬁ_gng,[H}(A) <~ (11.5)
dcm-auth 1 18m?q?
Advp ey prwm (A) < on + on (11.6)

Theorem 11.4. Let £ : K x {0,1}" — {0, 1}" be a block-cipher secure in the PRP sense.
Let A be an adversary attacking DCM-BRWI/E] who asks q queries, then there exists an
adversary A" such that

-pri 14m?2q®
AV DN (A) € - + AdvEP () (11.7)
B} 1 18m?2¢?
AdVER (A) < 2AdvEP () + 4 (11.8)

where A" asks O(q) queries and run for time t + O(q) where t is the running time of A.

The authentication and privacy bounds for DCM-BRW are same as in BCTR, this is because
of their structural similarities, and the proof of Theorem 11.3 also closely resembles the proof
for BCTR, with some subtle differences. We provide the full proof of Theorem 11.3 in the
next section.

11.4 Proofs

Proof of Theorem 1

To prove the security of DCM we replace the pseudorandom function F' in Figure 11.1 by a
function p chosen uniformly at random from T = Func(mn + n,n), and the block cipher E
by a permutation 7 chosen uniformly at random from IT = Perm(n). We call the encryption
function of DCM[Y,II] as &,.. We consider that A interacts with the game DCMI as
depicted in Figure 11.4. Notice that in DCM1, the proper oracles for A are provided,

11.4. Proofs 241

the random function p and the random permutation 7 are constructed on the fly using the
subroutines Ch-7(.) and Ch-p(.) respectively. The domain and range sets of the permutation
7 are maintained in the sets Domain, and Range, respectively, and appropriate checks are
made so that the subroutine Ch-7(X) indeed behaves like a permutation. No checks are
necessary in case of Ch-p(X), as according to the query restrictions of A, Ch-p(.) is always
called with a fresh (new) input.

For a game G, let Pr[A% = 1] denote the probability that A outputs 1 by interacting with
the game GG. Then we have,

Pr [A%n() = 1] = Pr{APOM = 1], (11.9)

We modify game DCM1 by deleting the boxes entries in Figure 11.4 and call the modified
game as DCM2. By deleting the boxed entries it cannot be guaranteed that Ch-7 is a
permutation as though we do the consistency checks but we do not reset the values of Y in
Ch-7(.). Then the games DCM1 and DCM2 are identical except when the bad flag is set,
thus we have

PriAPM = 1] — Pr[APM2 = 1] < Pr[APM? sets bad] (11.10)

In the game DCM2, A always gets random strings as a response to an encryption query.
This can be seen in lines 101 and 103 of the game DCM2, where 7% and R} (1 < i < m) gets
set to a random n bit strings. Thus,

Pr[APCM2 — 1] = Py {A$(""') = 1. (11.11)

So using Equations (11.9), (11.10) and (11.11) we have

AdvEREIY (A) = Pr[Afet) 1] - Pr[A%0) = 1]
< Pr[APM2 gets bad] (11.12)

Now, we make a game which no more use subroutines Ch-m and Ch-p, and immediately
returns random strings to the adversary in response to his encryptions queries. Later we
maintain the multi-sets D, and R, where we list the elements that were supposed to be
inputs and outputs of the permutation. Finally we check the collisions in the multi-sets D,
and R, and if there is any collision we set the bad flag to true. We call this game as DCM3,
which is shown in Figure 11.5. The games DCM2 and DCM3 are indistinguishable to the
adversary, because in both cases it gets random strings in response to his queries. Hence the
probability with which DCM2 sets bad is same as the probability with which DCM3 sets
bad. Thus we get,

242 Chapter 11. A Proposal for Secure Backup

Subroutine Ch-m(X)

1. v {0,1}"; if Y € Range, then bad < true;| Y & Range, |; endif;
12. if X € Domain, then bad < true; |Y + 7(X) |, endif
13. 7w(X) < Y; Domain, < Domain, U{X}; Range, <— Range, U{Y}; return(Y);

Subroutine Ch-p(M)
14. v & {013
15. return(Y);

Initialization:
16. Domain, < Range, < 0;
17. for all X € {0,1}", 7(X) = undefined endfor
18. bad « false

Respond to the s encryption query of A, (T°; P¢||Ps|| ... ||P:;ty®) as follows:
101 7+ p(PEITEET . I PLIIT):

102. for i =1 to m,

103. Rj < m(7° @ bin,(7));
104. if ty* =L then

105. C!+ R (lex)P?
106. else

107. C$ « R & aP?;

108. endif

109. endfor

110. return (C7||C5]| ... ||Cs,s

75)

Figure 11.4: Games DCM1 and DCM2: DCM2 is the game without the boxed entries in the
subroutine Ch-7()

11.4. Proofs 243

Respond to the s encryption query (T°%; P¢||Ps|| .. .|| Pss;ty®) as follows
CHIIC3]] ... ||C |7 & {0, 1} tntbm
Return C}||C3]| ... ||C2.||7°
Finalization:
FIRST PHASE
for s=1toq
for i =1 tom,
D, < D, U{7r® @ bin, (i)}
if ty* = L, then §; < (1 @ z)P?;
else 67 < xPf
end if
R, < R, U{C; ® 67}
end for
end for
SECOND PHASE
bad « false;
if (some value occurs more than once in D,) then bad = true end if;
if (some value occurs more than once in R,) then bad = true end if.

Figure 11.5: Game DCM3: D, and R, are multisets, which are initially empty. We assume
that A makes ¢ queries.

244 Chapter 11. A Proposal for Secure Backup

Pr[APM? sets bad] = Pr[AP“M3 sets bad] (11.13)

Thus from equations (11.12) and (11.13) we obtain

Adv%&}gﬁfm (A) < Pr[APM3 sets bad] (11.14)

Now our goal would be to bound Pr[AP“M3 sets bad]. We can see in Game DCM3 that the
bad flag is set when there is a collision in either D, or R,. So if COLD, and COLR, denote
the events of a collision in D, and R, respectively then we have

Pr[AP“M3 sets bad] = Pr[COLD,] + Pr[COLR,]. (11.15)

Now, we shall bound the collision probabilities in the domain and range sets. From Figure
11.5 we see that D, = {7° @ bin, (i) : 1 <i <m,1 < s < ¢}, where 7° is an element chosen
uniformly at random from {0,1}". And, R, = {Cf &6 : 1 <i <m,1 < s < ¢}, where
07 = (1 ® x)P; when ty® = L and 6] = 2P, when ty* = R, and C} is chosen uniformly at
random from {0, 1}".

Thus, the probability of collisions between two elements in D, is given by Pr[COLD,| =
Pr[m® @ bin, (i) = 7" @ bin,(j)] where s and ¢ are two different queries; 1 < 4,5 < m, this
probability is at most 27", as 7° is always a string chosen uniformly at random from {0, 1}".
The number of elements in D, is equal to ¢gm, thus we have

1 m2 q2

mq
Pr[COLD,] < ())27 < i

(11.16)

As each C¥ is chosen uniformly at random from {0, 1}" and R, contains mgq elements, hence
we have

m2q?
2n+1

Pr[COLR,] < (11.17)

Finally we have

2.2

Adv IR (A) < P{COLD,] + Pr[COLR,] < “2 1 (11.18)

which completes the proof for the privacy bound.

Proving the authentication bound: To bound the authentication advantage, we give
an oracle access of the random permutation 7 to the adversary A. We denote the adversary

11.4. Proofs 245

A with an oracle access to 7 as A(m). Thus we can say that
dcm-auth dcm-auth
Adv Dc(rjrllw%l[lr,m (A) < Adv DCCIJIIIVI%L[lT,H] (A(m)),

as A without oracle access to 7 can do no better than A(7). Advc}%%}%%%} (A(m)) is bounded
by the probability that A(m) produces a forgery (C,T,ty), such that D,.(C,T,ty) # L. A
forgery (Cy| ... ||Cpn||7, T, ty) can be successtul if p(X||T) = 7, where X = X1||Xs|| ... || Xm,
and X; = (1®z)7C; ®7(7 @ bin,(i))] when ty = L and X; = 27 [C; ® 7(7 @ bin,,(i))] when
ty =R.

As A(m) has an oracle access to m, so it can compute X for any chosen C. Thus, when it
produces a forgery (T, C,ty) it knows what would be the input to the function p and also the
target output for his forgery. But according to the query restrictions, the adversary never
produces (T, C||7,ty) as a forgery if it obtained C||r as an reply to an encryption query of
the form (7', X, ty). Also it does not produce (T, C||T,ty) as a forgery if it obtained C||7 as
a response to its query (T, X,ty), where ¢(C,C) = X. Thus either the input X||T to p is
new or the output 7 is new, thus the probability that p(X||T) = 7 is at most 1/2", hence
we have

IN

dcm-auth dcm-auth
Adv Sé%,ri%;l[lr,n} (A) < Adv Sé?w%l[lr,n} (A(m)) (11.19)

1
n’
Which completes the proof. O

Proof of Theorem 3

Proof of Theorem 3: To prove the security of DCM-BRWI/II| we replace the the block
cipher E in the construction of Figure 11.3 by a permutation 7 chosen uniformly at random
from IT = Perm(n). We call the encryption function of DCM-BRWI[II] as &, , where h &
{0, 1}" is the key for the BRW polynomial. We prove the privacy bound first. We consider
the same game playing technique as used in the proof of Theorem 1. We briefly discuss the
games below:

1. Game GO: In GO (shown in Figure 11.6) the block-cipher is replaced by the random
permutation . The permutation 7 is constructed on the fly keeping record of the
domain and range sets as done in the sub-routine Ch-7 in Figure 11.6. Thus, GO
provide the proper encryption oracle to A. Thus we have:

Pr [Af=(o) = 1] = Pr[A% = 1], (11.20)

2. Game G1: Figure 11.6 with the boxed entries removed represents the game G1. In
G1 it is not guaranteed that Ch-m behaves like a permutation, but the games GO and
G1 are identical until the bad flag is set. Thus we have

246 Chapter 11. A Proposal for Secure Backup

Pr[A%Y = 1] — Pr[A%! = 1] < Pr[A®" sets bad] (11.21)

Note that in G1 the adversary gets random strings as output irrespective of his queries.
Hence,

Pr[A%! = 1] = Pr[A%G) = 1] (11.22)

3. Game G2: In Game G2 (shown in Figure 11.8) we do not use the subroutine Ch-7
any more but return random strings immediately after the A asks a query. Later we
keep track of the elements that would have got in the domain and range sets of the
permutation 7 in multi-sets S and R. We set the bad flag when there is a collision in
either S or R. For the adversary the games G1 and G2 are identical. So,

Pr[AS! = 1] = Pr[A%? = 1] (11.23)

and
Pr[A®! sets bad] = Pr[A“? sets bad] (11.24)

Hence, using Eqs. (11.20), (11.21), (11.22), (11.23) and (11.24), we have

Pr {Ag’“”(-----) = 1} — Pr[A%C) = 1] < Pr[A®? sets bad].

According to the definition of the privacy advantage of A, we have

Adv%%ﬁﬁﬁ%m (A) < Pr[A%? sets bad] (11.25)

Now we need to bound Pr[.A%? sets bad]. The elements in the multi-sets S and R would be
S={0,1}JU{V*PEZ:1<s<q}U{rf@r'EO:1<i<m,1<s<q} (11.26)

R={EZ,EO}U{r*:1<s<qtU{C;®6:1<i<m,1<s<q}, (11.27)

where 07 = zP; when ty* = L and] = (z & 1)P, when ty* = R. Let COLLD be the event
that there is a collision in & and COLLR be the event that there is a collision in R Using
the facts that v° = hBRW,(P}||Ps|| ... ||P:||T?%) and EZ, EO,7°,C¥ are random elements
of {0,1}", we have

2% 2 2m 4 2 L o2 o1
pr(COLLD] < 44 mq+(q>w+<mq>2_n+m

2n - 2n 2 2n 2 2n
= 1 (§mzq2 + 3maq® + d +q+ q2)
27 \2 2

11.4. Proofs 247
Subroutine Ch-7(X)
0. v& {0,1}"; if Y € Range, then bad < true; | Y & Range, |; endif;
02. if X € Domain, then bad < true; |Y + 7(X) |, endif
03. m(X) «Y; Domaing < Domain, U{X}; Ranger <— Range, U{Y }; return(Y);
Initialization:
11. for all X € {0,1}" n(X) = undefined endfor
12 EZ & {013 7(0) = BEZ;
13. Domain, < {0}; Range, < {EZ};
14. EO & {0,1y"\{EZ}; n(1) = EO;
15. Domain, < Domain, U {1}; Range, < Range, U{FEO};
16. bad = false
Respond to the s encryption query (7% P¢||Ps|| ... || PS;ty®) as follows:
101. v° « h- BRW(P}|| B3] [P IT™);
102. 7° <= Ch-w(~* & EZ);
103. for ¢ =1 to m,
104. R{ < Ch-n(7* @ 2'EO);
105. if ty® = L then C% « R} & 2%
106. else C7 <~ R; ® (v @ 1) P/,
107. endif
108. endfor
109. Return (C7||C5||...||Cas|T%)
Figure 11.6: Games GO and G1
and
m 2)\ 1
Pi{COLLR] = ((MaTat2)L
2 2n
 (mP¢*+2mg® +3mg + ¢* 4+ 3¢+ 2)
o on+1
Then we have
Pr[A%? sets bad] = Pr[COLLD] + Pr[COLLD]
14m?2q?
o a (11.28)

This completes the proof of the privacy bound.

248 Chapter 11. A Proposal for Secure Backup

Subroutine Ch-7(X)

0. v& {0,1}™; if Y € Range, then bad < true; | Y & Range, |; endif;

02. if X € Domain, then bad < true; |Y < 7(X) |; endif

03. m(X) < Y; Domaing < Domain, U{X}; Ranger <— Ranger U{Y }; return(Y);
Initialization:

11. for all X € {0,1}" n(X) = undefined endfor

12. EZ & {0,137 (0) = EZ;

13. Domain, < {0}; Range, < {EZ};

4. EO & {0,1}"\{EZ}; =(1) = EO;

15. Domaing; <— Domain, U{1}; Range, < Range, U{EO};

16. bad = false

Respond to the s encryption query (7% P¢||Ps|| ... || PS;ty®) as follows:

101. +* « h- BRW(P}|| B3] [P IT™);

102. 7° <= Ch-w(~* @& EZ);

103. for ¢ =1 to m,

104. R{ < Ch-n(* @ 2'EO);

105. if ty* = L then C¥ « R @ 2P*

106. else C; <~ R; ® (v @ 1) P/,

107. endif

108. endfor

109. Return (C5||C5||...||Cis|T%)

Figure 11.7: Game G2: § and R are multisets.

Proving the authentication bound: To prove the authenticity bound, let A be an
adversary which tries to break authenticity of DCM-BRWI/II|. Let B be an adversary
attacking authenticity of f;; (see Lemma 10.2 for the description of f;). B has an oracle
access to fnr(.,.), additionally let it have access to another oracle P(.,.) which on input
(X,4) returns 7(X @ z'm(1)). With access to these two oracles B can run A by answering
its queries in the usual manner. When A outputs a forgery (7, Y1||Y2||...||Yml||7,ty), B
computes X;, 1 <i < m, using the oracle P(.,.) as follows

X, - { (Pt,) @ Y)(1 o)™ ifty=L

(P(t,i) & Y;)z~! if ty = R

and outputs (X1||Xsl|...||Xm||T, 7) as its forgery. Thus we have that

11.4. Proofs 249

Initialization:
S R+ 0
Ez & {0,137 BO & {0,1y"\ {EZ};
S+ SuU{0,1}; R+ RU{EZ,EO};

For an encryption query (T°%; P{||Ps]| ... ||P3s; ty®) respond as follows:
CHI|GI| .| [7* £ {0,1)0m+1",
Return C}||C5||. .. ||Cs |75
Finalization:
FIRST PHASE
for s =1 to ¢,

¥ ¢ h- BRW (P§||P5|| ... || P5s|IT%); 7 & {0,1}™;
S+ SU{y} R+ RU{T}
for i =1 to m,
if ty* = L then ¢} = 2P}
else §7 = (x + 1) P?;
end if
S+ SU{r* @ 2'EO}; R+ RU{C? @5}
end for
end for

SECOND PHASE
bad = false;
if (some value occurs more than once in §) then bad = true endif;
if (some value occurs more than once in R) then bad = true endif.

Figure 11.8: Game G2: § and R are multisets.

Advg%ﬁt%%wm](A) = Pr[Afn=() forges]
< Pr[BhaPE) forges) (11.29)

Now, we replace this oracle P(.,.) with an oracle $(., .) which returns strings chosen uniformly
at random from {0, 1}" on a query (X, 7). The difference of the real oracle P and the oracle
$(.,.) can be detected by B only if the queries of B can produce a collision in the domain or
range of the permutation 7. This means that the difference can be detected by B if there is a
collision in the multisets S or R as represented in equations (11.26) and (11.27) respectively.
The event of a collision in these sets were represented by COLLD and COLLR respectively.

250 Chapter 11. A Proposal for Secure Backup

Thus we have
Pr[B/rr(P() forges] — Pr[B/m(80) forges] < Pr[COLLD] + Pr[COLLR]. (11.30)

Now, the oracle $(.,.) is of no help to B as the random strings that it returns can be generated
by B itself hence,
Pr[B/rr():80) forges] = Pr[B/h=() forges|. (11.31)

Putting together equations (11.30), (11.31) and (11.28) we have

14m?g?

Pr[B/r=() P forges] < Pr[B=0) forges) + on

4maq? 14m?2q?
q I q.

RTINS on

(11.32)

The last inequality follows from Lemma 10.2 and eq. 10.18 (forgery of a pseudorandom
function). From eq. (11.29) and eq. (11.32) we have

2

dem-auth 1 18m?q
AdVD%rﬁ-aB%W[H] (A) < on + o

as desired.]

11.5 Remarks

We studied a new type of cryptographic scheme called the Double Ciphertext Mode. We
gave a generic construction and a particular construction using BRW polynomials. We also
explored an application where this mode can be useful.

The proposal of DCM first appeared in [25], there we posed the problem of generalizing
DCM to a multi-cipher text mode where the ciphertext gets divided into more than two
shares. Later in [135] DCM was generalized for multiple ciphertexts.

Chapter

Conclusions and Future
Work

Jf you don't feel that this is your time yef,
dont heep your appointment. /Vofhing is
3ain@i by forcing the issue. Jf you want to
swrvive you must be crysfaﬁ clear and

d@a&ﬂy sure of yoursdf

Don zuan /\/Lafus

Starting from Chapter 5 to Chapter 11 we presented original research covering several aspects
of disk encryption and related problems. In each chapter we have made some final remarks
where we drew our conclusion regarding the work presented in that chapter. In this chapter
we again summarize our conclusions. This Chapter is divided into two sections. In Section
12.1 we present our conclusions and summarize the contributions and in Section 12.2 we list
some topics and problems of immediate interest which were not considered in this thesis.

12.1 Conclusions and Summary of Contributions

The primary contribution of this thesis can be categorized into three different types: hard-
ware implementations, new constructions of schemes for disk encryption and side channel
analysis. We will summarize the principal contributions of this thesis along with the conclu-
sions in these three parts separately.

Hardware Implementations

In Chapter 5 we presented optimized hardware implementations of six existing proposals
of TES. Our choice of the schemes covers all reported “efficient” schemes. We analyzed the
potential for parallelism for each of the chosen modes and discussed the achieved performance
and hardware costs. We also provided experimental data regarding hardware resources
and throughput. Our study confirms for the first time that many proposed modes can be
efficiently used for the in-place disk encryption application. This study of performance of

252 Chapter 12. Conclusions and Future Work

TES is the first of its kind in the literature, and we hope that this performance data would
help the community for comparative evaluation of TES when they get deployed widely in
commercial devices in the near future.

The implementations in Chapter 5 uses as basic blocks a 10-stages pipelined AES core and a
fully-parallel Karatsuba multiplier. We did a rigorous study to find opportunities to exploit
parallelism in the algorithms considered. We think, that given the basic design decisions the
clock cycle counts that we achieve in the reported architectures cannot be further reduced.
Thus, our architectures can be considered to be highly optimal. Our target device for these
architectures were Virtex 4 FPGAs but the same philosophy of design can be applied to
other families of FPGAs and even for ASICs.

Based on the different experiments reported in Chapter 5, we concluded that the HEH
scheme outperformed the other five TES in most scenarios except when considering what we
called, the encryption-only AES core scenario, where EME emerged as the best of all the
modes studied. On the other side of the spectrum, the XCB was the TES that consistently
occupied the last place with respect to all important metrics, namely, area, time and the
throughput per area. It is worthwhile to mention here that XCB is a candidate for a standard
for wide block modes, our experimental data puts us in doubt regarding the basis for which
XCB was chosen as a candidate for standardization.

In Chapter 6 we studied BRW polynomials from a hardware implementation perspective and
designed an efficient architecture to evaluate BRW polynomials. The design of the architec-
ture was based on a combinatorial analysis of the structural properties of BRW polynomials.
Our experiments show that BRW polynomials are an efficient alternative over normal poly-
nomials. Moreover in Chapter 7 we explored constructions of hardware architectures for
tweakable enciphering schemes using BRW polynomials and the results show that using
BRW polynomials are a far better alternative to normal polynomials in terms of speed for
design of TES.

The implementations of TES presented in Chapters 5 and 7 were developed with the goal of
obtaining the best speed and we did not consider to minimize the area (hardware resources)
occupied by the implementations. Finally the implementations obtained in Chapters 5 can be
used to encrypt /decrypt hard disks with 3 Gb/s SATA technology while the implementations
presented in Chapter 7 can be easily used in the new 6 Gb/s SATA technology. So these
implementations are suitable to encrypt/decrypt hard disks of various categories.

Side Channel Vulnerabilities

In Chapter 9 we explored the side channel vulnerabilities of EME and EME2 and we found
some attacks against them assuming that ztimes leaks some information. These attacks
do not contradict the claimed security of the modes, as the security definition and the
security proofs for these modes so not assume any side-channel information being available
to the adversary. Also the consequences of these attacks shown are not immediate. But,

12.1. Conclusions and Summary of Contributions 253

it points out that using ztimes indiscriminately may give rise to security weakness in true
implementations.

New Constructions

In this thesis we propose three new constructions STES (Chapter 8), BCTR (Chapter 10)
and DCM (Chapter 11).

STES is a unique construction of a TES in the sense that it uses a stream cipher in place of
a block cipher. The motivation behind designing STES was to design a TES which would be
suitable for use in constrained devices like mobile phones. We succesfully used lightweight
cryptographic primitives like stream cipher and a special types of universal hashes called
multilinear universal hashes to construct STES. The security of STES was formally proved,
and the obtained security bound is competitive with the security of the existing TESs.
We also implemented several variants of STES using different stream ciphers and different
data paths. Our experimental results show that STES can be used in constrained devices
due to its small hardware footprint and its low power consumption. STES is the first
proposal of lightweight disk encryption, we showed that our implementations can be useful
to encrypt/decrypt almost all commercially available SD-Cards and USB pen-drives.

After a thorough review of the physical structure of a hard disk, we concluded that the
size of a physical sector is larger than its storage capacity because it has extra space to
enable implementation of error correction codes and also more extra space to store informa-
tion necessary for the functionality of the disk. Knowing that there is extra space in the
physical sector we proposed to use a non length preserving cryptographic algorithm for disk
encryption. In particular we suggested the use of deterministic authenticated encryption
schemes. By using such schemes we need to pay as a cost the extra space to store a tag,
but among other things we gain a lot in terms of efficiency. In Chapter 10 We proposed a
new DAE suitable for disk encryption application called BCTR. BCTR uses a polynomial
hash based on BRW polynomials and a modified counter mode. We prove that BCTR is
a secure DAE. We also show that BCTR is more efficient than any existing TES. We also
implemented BCTR in hardware using the same techniques presented in Chapters 6 and 7.
Our experimental results provide strong evidence that DAEs are more efficient than TES
and our analysis of the physical sector shows that DAEs can be used instead of TES for
disk encryption application if disks are formatted properly to accommodate cryptographic
materials.

In Chapter 11 we propose a new cryptographic primitive called double ciphertext mode
(DCM). DCM has the curious property that from a single plaintext it produces two related
ciphertexts, and if these two ciphertexts are available then they can be used to recover the
plaintext from them without the use of the key. We feel that this property of DCM can find
use in the application of designing secure backup systems. We present two constructions
of the DCM primitive namely DCMG and DCM-BRW, we prove security of both these
constructions and argue abut their efficiency.

254 Chapter 12. Conclusions and Future Work

12.2 Future Work

Though this thesis presents comprehensive study of disk encryption schemes, there are many
issues which have not been adequately treated in this work and require further investigation,
we present some such issues chronologically next.

1. Exploiting Parallelism: The architectures presented in Chapters 5 and 7 exploits
the parallelism of the algorithms to the fullest possible extent assuming the message
lengths are same as the length of the sector, thus these architectures are optimal when
a single sector is encrypted. In a practical application multiple sectors may be written
or read at the same time from a disk. This opens up the possibility of identifying ways
of parallelizing across sectors. The structure of almost all algorithms studied in this
thesis would allow such parallelism and such parallelization may yield architectures
which would be much more efficient than those reported here.

2. BRW Polynomials: In Chapter 6 we studied the structural properties of BRW poly-
nomials in details to construct an efficient hardware to compute them. An interesting
product of our study is the algorithm Schedule which gives a linear ordering of the
multiplications that are to be computed to evaluate a BRW polynomial. We provided
a full characterization of the behaviour of the algorithm Schedule for small values of
m. Though for our and all other practical purposes this would be enough but a full
characterization for arbitrary values of m may be an interesting combinatorial exercise.
Such a characterization may also tell us which configurations of the collapsed forest
would admit a full pipeline given a number of pipeline stages. This study can help in
defining a weaker form of optimality (as mentioned in Section 7.3), which would be
achievable in all cases. We provide a method for counting the number of extra storage
locations for each configuration of the collapsed forest and a given number of pipeline
stages. A combinatorial analysis may yield a closed form formula for counting the
extra storage locations. These theoretical exercises are worth doing, and we plan to
do it in near future.

3. Real Life Deployments: The implementations presented in this thesis are all pro-
totypical. A real life deployment may open up new problems. A low level encryption
algorithm would be a part of a hard disk, and given that the commercial hard disks
available today have a closed design, hence a real deployment in an academic institu-
tion looks difficult. We plan to design an USB hub with the capability of encryption,
which can be used for USB memories. Such a real implementation would involve many
issues which we did not take care. One important issue which we have identified is
regarding key management, and this requires special attention.

4. Side Channel Analysis: As we have already mentioned, the study on side channel
vulnerabilities of TES presented in Chapter 9 is far from complete. We plan to design

12.2. Future Work 255

some experiments to measure real leakages in TES implementations. In the recent days
there have been some activities involving attempts to develop a theoretical model of
leakages in cryptographic algorithms/implementations [51,111]. Though these studies
are in nascent form and does not say much about real life situations, but we plan to
study these models with the goal of developing a TES which would be theoretically
leakage resistant.

5. Out of Model Attacks: In designing of modes, the goal is to attain security in
accordance to a strict security definition. For example in case of TES the construction
should behave like a tweakable strong pseudorandom permutation under certain weak
assumptions, or in case of a DAE the construction should provide security both against
distinguishing attacks or forgeries. In the current days, there have been some interest
in analyzing the vulnerabilities of modes against "out of model" attacks. They are
called out of model as the security definition does not gives any guarantees that the
modes can resist such attacks. For example, in the security model of DAE (or AE) it
is guaranteed that ciphertext generated using a secure DAE can be forged only with
a negligible probability using reasonable computational resources. But further one
can ask, what happens if an adversary succeeds in making a forgery, some interesting
questions that one may ask in this regard can be the following:

e Will this forgery help him/her to commit more forgeries much easily?

e (Can this forgery help the adversary to recover the key?

Of course the above list is not exhaustive. Note that in the standard security model
of DAE the first forgery is very difficult to obtain, hence the above questions becomes
irrelevant from a theoretical point of view. But these questions may have practical
significance in some scenarios and finding answers to such questions involves analyzing
the modes beyond the security model and its proof. Such analysis always helps in
better evaluation of the security characteristic of a mode. Such out of model attacks
for modes though have been known to the community for long in the context of various
modes [53, 138], and there have been a renewed interest in such attacks as in the
newly designed competition for authenticated ciphers [40], some such attacks have
been pointed out as important research agenda. The study presented in this thesis
does not contain any analysis of the schemes beyond the standard security model. We
would like to address these issues in near future.

Note that side channel attacks are also a class of "out of model" attacks, but the goal
of side channel analysis is to analyze implementations of cryptographic algorithms for
information leakages. The out of model attacks that we state here are independent of
implementations.

Regarding TES an immediate question that arises is their security characteristic in
the multi user setting. In a recent work [32] security issues of message authentication

256

Chapter 12. Conclusions and Future Work

codes in the multi user settings was analyzed, we believe that these techniques can be
used or extended to study other modes, and we plan to do it.

. Better Security Bounds: In case of TES, all existing block cipher based construc-

tions have a quadratic security bound of the form co?/2", where ¢ is a small constant.
Such a bound though seems enough for the currently available computing and storage
resources, but in future one may like to have schemes with better security bounds.
Designing modes with better than quadratic security bounds have been an active re-
search area and schemes with better than quadratic security bounds for authenticated
encryption, message authentication codes and some other modes are known [72,73,153].
Constructing TES with better than quadratic security bound is an open research area
and we wish to contribute in this direction.

Other Security Notions: There are other security notions of TES which are being
currently studied. One interesting question which was raised in the IEEE SISWG was
the following;:

What happens if a disk encryption scheme encrypts its own key?

This may happen in real life when the key itself is stored in the disk and is encrypted
by the disk encryption algorithm. So if an adversary has access to the encryption of
the key, then can she get some extra advantage? If the knowledge of the encryption of
the key does not give an adversary any extra advantage then the encryption algorithm
is called key dependent message (KDM) secure. The status of KDM security for TES
is mostly unknown. There have been a recent study [7] which proposes modification
of EME against a class of KDM attacks, but the real insecurity of EME against such
attacks is not known. We want to do a systematic study in this direction for TES.

Publications of the Author
Related to the Thesis

Al.

A2.

A3.

A4.

Debrup Chakraborty, Cuauhtemoc Mancillas-Lopez, Francisco Rodriguez-Henriquez,
Palash Sarkar,“ Hardware implementations of BRW polynomials and tweakable enci-
phering schemes. ITEEE Transactions on Computers, vol.62, no.2, pp.279-294,
February 2013.

Debrup Chakraborty, Cuauhtemoc Mancillas-Lopez, “Double ciphertext mode: a
proposal for secure backup', International Journal of Applied Cryptography
vol. 2, no. 3, pp. 271-287, 2012.

Cuauhtemoc Mancillas-Lépez, Debrup Chakraborty and Francisco Rodriguez-Henriquez,
“Reconfigurable Hardware Implementations of Tweakable Enciphering Schemes', IEEE
Transactions on Computers, vol. 59, no. 11, pp. 1547-1561, November 2010.

Cuauhtemoc Mancillas-Lépez, Debrup Chakraborty and Francisco Rodriguez-Henriquez,
“On some weaknesses in the disc encryption schemes EME and EME2", Proceedings

of the International Conference on Information Systems Security, ICISS 2009,
Lecture Notes in Computer Science 5905, pp. 265-279, Kolkata, India, 2009.

Bibliography

1]
2]

[10]

[11]

Reconfigurable Systems Undergo Revival. The Economist, 351(8120):89, 1999.

IEEE P1619 Security in Storage Working Group (SISWG). IEEE Computer Society,
March 2007. Available at: http://siswg.org/.

P. Alfke, I. Bolsens, B. Carter, M. Santarini, and S. Trimberger. It’s an FPGA!: The
birth of a fabless model. Solid-State Circuits Magazine, IEEFE, 3(4):15 —20, fall 2011.

SD Association. www.sdcard.org.

Steve Babbage and Matthew Dodd. The MICKEY Stream Ciphers. In Robshaw and
Billet [115], pages 191-200.

Donald G. Bailey. Design for Embedded Image Processing on FPGAs. John Wiley &
Sons, Ltd, 2011.

Mihir Bellare, David Cash, and Sriram Keelveedhi. Ciphers that securely encipher
their own keys. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM
Conference on Computer and Communications Security, pages 423-432. ACM, 2011.

Mihir Bellare and Phillip Rogaway. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In Vaudenay [139], pages 409-426.

Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX Mode of Operation.
In FSE, volume 3017 of Lecture Notes in Computer Science, pages 389-407. Springer,
2004.

Daniel J. Bernstein. Polynomial Evaluation and Message Authentication, 2007. http:
//cr.yp.to/papers.html\#pema.

Jean-Luc Beuchat, Jérémie Detrey, Nicolas Estibals, Eiji Okamoto, and Francisco
Rodriguez-Henriquez. Fast Architectures for the ny Pairing over Small-Characteristic
Supersingular Elliptic Curves. Computers, IEEE Transactions on, 60(2):266 —281, feb.
2011.

260

Bibliography

[12]

[13]

[20]

[21]

22]

Ramesh Karri Bo Yang, Sambit Mishra. A High Speed Architecture for Galois/Counter
Mode of Operation (GCM). Cryptology ePrint Archive, Report 2005/146, 2005. http:
//eprint.iacr.org/.

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An ultra-
lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, CHES,
volume 4727 of Lecture Notes in Computer Science, pages 450-466. Springer, 2007.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of Check-
ing Cryptographic Protocols for Faults (Extended Abstract). In EUROCRYPT, pages
37-51, 1997.

S. Brown. FPGA Architectural Research: A Survey. Design Test of Computers, IEEFE,
13(4):9 —15, winter 1996.

Philippe Bulens, Kassem Kalach, FranAgois-Xavier Standaert, and Jean-Jacques
Quisquater. FPGA Implementations of eSTREAM Phase-2 Focus Candidates with
Hardware Profile. 1 2007. http://sasc.cry.

Philippe Bulens, Francois-Xavier Standaert, Jean-Jacques Quisquater, Pascal Pelle-
grin, and Gaél Rouvroy. Implementation of the AES-128 on Virtex-5 FPGAs. In
Vaudenay [140], pages 16-26.

Sanjay Burman, Debdeep Mukhopadhyay, and Kamakoti Veezhinathan. LFSR Based
Stream Ciphers Are Vulnerable to Power Attacks. In Srinathan et al. [134], pages
384-392.

Christophe De Canniere, Orr Dunkelman, and Miroslav Knezevic. Katan and ktantan -
a family of small and efficient hardware-oriented block ciphers. In Clavier and Gaj [37],
pages 272-288.

Christophe De Canniere, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTAN-
TAN - a family of small and efficient hardware-oriented block ciphers. In Clavier and
Gaj [37], pages 272-288.

Christophe De Canniére and Bart Preneel. Trivium. In Robshaw and Billet [115],
pages 244-266.

Anne Canteaut and Kapalee Viswanathan, editors. Progress in Cryptology - IN-
DOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, In-
dia, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer
Science. Springer, 2004.

Bibliography 261

23]

[24]

[25]

[26]

[27]

[33]

[34]

D.G. Cantor, G. Estrin, and R. Turn. Logarithmic and Exponential Function Eval-
uations in a Variable Structure Digital Computer, journal = IRE Trans. Electronic
Computers. EC- 11:155-164, 1962.

Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions (Extended
Abstract). In John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison, editors,
STOC, pages 106-112. ACM, 1977.

Debrup Chakraborty and Cuauhtemoc Mancillas-Lépez. Double ciphertext mode : A
proposal for secure backup. TACR Cryptology ePrint Archive, 2010:369, 2010.

Debrup Chakraborty and Cuauhtemoc Mancillas-Lopez. Double ciphertext mode: a
proposal for secure backup. IJACT, 2(3):271-287, 2012.

Debrup Chakraborty, Cuauhtemoc Mancillas-Lépez, Francisco Rodriguez-Henriquez,
and Palash Sarkar. Efficient hardware implementations of brw polynomials and tweak-
able enciphering schemes. IEEE Transactions on Computers (to appear), 2013. Avail-
able as IACR ePrint report 2011/161.

Debrup Chakraborty and Mridul Nandi. An Improved Security Bound for HCTR. In
Kaisa Nyberg, editor, FISE, volume 5086 of Lecture Notes in Computer Science, pages
289-302. Springer, 2008.

Debrup Chakraborty and Palash Sarkar. A New Mode of Encryption Providing a
Tweakable Strong Pseudo-random Permutation. In Robshaw [114], pages 293-3009.

Debrup Chakraborty and Palash Sarkar. A General Construction of Tweakable Block
Ciphers and Different Modes of Operations. IEEE Transactions on Information The-
ory, 54(5):1991-2006, 2008.

Debrup Chakraborty and Palash Sarkar. HCH: A New Tweakable Enciphering Scheme
Using the Hash-Counter-Hash Approach. IEEE Transactions on Information Theory,
54(4):1683-1699, 2008.

Sanjit Chatterjee, Alfred Menezes, and Palash Sarkar. Another look at tightness. In
Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography, volume 7118 of
Lecture Notes in Computer Science, pages 293-319. Springer, 2011.

Hao Chen, Yu Chen, and D.H. Summerville. A Survey on the Application of FPGAs for
Network Infrastructure Security. Communications Surveys Tutorials, IEEE, 13(4):541
—061, quarter 2011.

P. Chicoine, M. Hassner, M. Noblitt, G. Silvus, B. Weber, and E. Grochowski.
Hard Disk Drive Long Data Sector White Paper. The International Disk Drive
Equipments and Materials Association, 2007. http://www.idema.org/wp-content/
plugins/download-monitor/download.php?id=1184.

262

Bibliography

[35]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

[45]

P. Chow, Soon Ong Seo, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja. The
Design of an SRAM-Based Field-Programmable Gate Array. I. Architecture. IFEE
Trans. VLSI Syst., 7(2):191-197, 1999.

C. Claus, W. Stechele, M. Kovatsch, J. Angermeier, and J. Teich. A Comparison
of Embedded Reconfigurable Video-Processing Architectures. In Field Programmable
Logic and Applications, 2008. FPL 2008. International Conference on, pages 587 =590,
sept. 2008.

Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embedded Sys-
tems - CHES 2009, 11th International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer Science. Springer,
2009.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

Zhibin Dai and Dilip K. Banerji. Routability Prediction for Field Programmable Gate
Arrays with a Routing Hierarchy. In VLSI Design, pages 85-90. IEEE Computer
Society, 2003.

Tanja Lange Daniel J. Bernstein. Authenticated ciphers, 2012. http://cr.yp.to/
talks/2012.01.16/slides.pdf.

Doug Whiting, Russ Housley, Niels Ferguson. Counter with CBC-MAC (CCM). In
Submission to NIST, 2002.

Dworkin, Morris J. SP 800-38E. Recommendation for Block Cipher Modes of Oper-
ation: the XTS-AES Mode for Confidentiality on Storage Devices. Technical report,
Gaithersburg, MD, United States, 2010.

Gerald Estrin. Organization of Computer Systems-the Fixed Plus Variable Structure
Computer. Managing Requirements Knowledge, International Workshop on, 0:33, 1960.

Gerald Estrin. Reconfigurable Computer Origins: The UCLA Fixed-Plus-Variable
(F+V) Structure Computer. IEEE Annals of the History of Computing, 24(4):3-9,
2002.

Gerald Estrin and C. R. Viswanathan. Organization of a “Fixed-Plus-Variable” Struc-
ture Computer for Computation of Eigenvalues and Eigenvectors of Real Symmetric
Matrices. J. ACM, 9(1):41-60, 1962.

Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. On Optimum
Switch Box Designs for 2-D FPGAs. In DAC, pages 203-208. ACM, 2001.

Bibliography 263

[47]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. On Optimum
Designs of Universal Switch Blocks. In Manfred Glesner, Peter Zipf, and Michel Ren-
ovell, editors, FPL, volume 2438 of Lecture Notes in Computer Science, pages 142—151.
Springer, 2002.

Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. On Optimal
Hyperuniversal and Rearrangeable Switch Box Designs. [EFEE Trans. on CAD of
Integrated Circuits and Systems, 22(12):1637-1649, 2003.

Hongbing Fan, Jiping Liu, Yu-Liang Wu, and Chak-Chung Cheung. The Exact Chan-
nel Density and Compound Design for Generic Universal Switch Blocks. ACM Trans.
Design Autom. Electr. Syst., 12(2), 2007.

Hongbing Fan, Yu-Liang Wu, and Chak-Chung Cheung. Design Automation for Recon-
figurable Interconnection Networks. In Phaophak Sirisuk, Fearghal Morgan, Tarek A.
El-Ghazawi, and Hideharu Amano, editors, ARC, volume 5992 of Lecture Notes in
Computer Science, pages 244-256. Springer, 2010.

Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical leakage-resilient
symmetric cryptography. In Emmanuel Prouff and Patrick Schaumont, editors, CHES,
volume 7428 of Lecture Notes in Computer Science, pages 213-232. Springer, 2012.

Martin Feldhofer. Comparison of low-power implementations of trivium and grain. In
The State of the Art of Stream Ciphers, Workshop Record, pages 236 — 246, 2007.

Neils Ferguson. Authentication weaknesses in GCM. National Institute of Standards
and Technologies (NIST), 2005. http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/comments/CWC-GCM/Ferguson2.pdf.

Niels Ferguson. AES-CBC + Elephant diffuser: A Disk Encryption Algo-
rithm for Windows Vista. Microsoft white paper, 2006. http://download.
microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0albedbbb36e/
BitLockerCipher200608.pdf.

Y. Fu, L. Hao, and X. Zhang. Design of an Extremely High Performance Counter Mode
AES Reconfigurable Processor. In Proceedings of the Second International Conference
on Embedded Software and Systems (ICESS’05), pages 262-268. IEEE Computer So-
ciety, 2005.

Kris Gaj and Pawel Chodowiec. FPGA and ASIC Implementations of AES. In
Cetin Kaya Koc, editor, Cryptographic Engineering, pages 235-294. Springer, 2009.

Andreas Gerstlauer, Christian Haubelt, Andy D. Pimentel, Todor Stefanov, Daniel D.
Gajski, and Jirgen Teich. FElectronic System-Level Synthesis Methodologies. IEEE
Trans. on CAD of Integrated Circuits and Systems, 28(10):1517-1530, 2009.

264

Bibliography

[58]

[59]

[60]

[61]

[62]

[67]

[68]

[69]

Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of lightweight
block ciphers. In Ari Juels and Christof Paar, editors, REIDSec, volume 7055 of Lecture
Notes in Computer Science, pages 1-18. Springer, 2011.

T. Good and M. Benaissa. Hardware Results for Selected Stream Cipher Candidates.
In The State of the Art of Stream Cliphers, Workshop Record, pages 191-204, 2007.

Tim Good and Mohammed Benaissa. AES on FPGA from the Fastest to the Smallest.
In Josyula R. Rao and Berk Sunar, editors, CHES, volume 3659 of Lecture Notes in
Computer Science, pages 427-440. Springer, 2005.

Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight
hash functions. In Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes
in Computer Science, pages 222-239. Springer, 2011.

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED
block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES, volume 6917 of
Lecture Notes in Computer Science, pages 326-341. Springer, 2011.

Shai Halevi. EME": Extending EME to Handle Arbitrary-Length Messages with
Associated Data. In Canteaut and Viswanathan [22], pages 315-327.

Shai Halevi. Invertible Universal Hashing and the TET Encryption Mode. In Alfred
Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages
412-429. Springer, 2007.

Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode. In Dan Boneh,
editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 482-499.
Springer, 2003.

Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In Tatsuaki
Okamoto, editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages
292-304. Springer, 2004.

Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The Grain
Family of Stream Ciphers. In Robshaw and Billet [115], pages 179-190.

LLN. Hersten. Topics in Algebra. Wiley India Pvt. Limited, 2006.

S. F. Hsiao and M. C. Chen. Efficient Substructure Sharing Methods for Optimis-
ing the Inner-Product Operations in Rijndael Advanced Encryption Standard. [FE
Proceedings on Computer and Digital Technology, 152(5):653-665, September 2005.

Bibliography 265

[70]

[71]

[72]

73]

[74]

[77]

78]

[79]

[30]

[81]

[82]

David Hwang, Mark Chaney, Shashi Karanam, Nick Ton, and Kris Gaj. Comparison
of FPGA-targeted hardware implementations of eSTREAM stream cipher candidates.
In State of the Art of Stream Ciphers Workshop, SASC 2008, Lausanne, Switzerland,
pages 151-162, Feb 2008.

IEEE Security in Storage Working Group (SISWG). PRP Modes Comparison, Novem-
ber 2007. http://siswg.org/. IEEE p1619.2.

Tetsu Iwata. New blockcipher modes of operation with beyond the birthday bound
security. In Robshaw [114], pages 310-327.

Tetsu Iwata. Authenticated encryption mode for beyond the birthday bound security.
In Vaudenay [140], pages 125-142.

Tetsu Iwata and Kan Yasuda. BTM: A Single-Key, Inverse-Cipher-Free Mode for
Deterministic Authenticated Encryption. In Michael J. Jacobson Jr., Vincent Rijmen,
and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume 5867 of
Lecture Notes in Computer Science, pages 313-330. Springer, 2009.

Tetsu Iwata and Kan Yasuda. HBS: A Single-Key Mode of Operation for Deterministic
Authenticated Encryption. In Orr Dunkelman, editor, FISE, volume 5665 of Lecture
Notes in Computer Science, pages 394-415. Springer, 2009.

K. Jarvinen, M. Tommiska, and J. Skyttd. Comparative Survey of High-Performance
Cryptographic Algorithm Implementations on FPGAs. Information Security, IEE
Proceedings, 152(1):3-12, October 2005.

Antoine Joux and Pascal Delaunay. Galois LFSR, Embedded Devices and Side Channel
Weaknesses. In Rana Barua and Tanja Lange, editors, INDOCRYPT, volume 4329 of
Lecture Notes in Computer Science, pages 436-451. Springer, 2006.

Marc Joye. Basics of Side-Channel Analysis. In Cetin Kaya Kog, editor, Cryptographic
Engineering, pages 365-380. Springer US, 2009. 10.1007/978-0-387-71817-0_ 13.

Charanjit S. Jutla. Encryption Modes with Almost Free Message Integrity. J. Cryp-
tology, 21(4):547-578, 2008.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman
& Hall/ CRC, 2008.

Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Information
security and cryptography. Springer, 2011.

Neal Koblitz, editor. Advances in Cryptology - CRYPTO 96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science. Springer, 1996.

266

Bibliography

[83]

[84]

[85]

[36]

[87]

[33]

[39]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Neal Koblitz and Alfred Menezes. Another Look at "Provable Security'. 1. TACR
Cryptology ePrint Archive, 2006:229, 2006.

Neal Koblitz and Alfred Menezes. Another Look at "Provable Security". J. Cryptology,
20(1):3-37, 2007.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Koblitz [82], pages 104-113.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 388-397. Springer, 1999.

Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, FSFE, volume 6733 of Lecture Notes in
Computer Science, pages 306-327. Springer, 2011.

Yen-Tai Lai and Ping-Tsung Wang. Hierarchical Interconnection Structures for Field
Programmable Gate Arrays. IEEE Trans. VLSI Syst., 5(2):186-196, 1997.

Lattice, Inc. iCE40 Family Handbook Ultra Low-Power mobile FPGA LP, HX, March
2012.

Pil Joong Lee, editor. Advances in Cryptology - ASIACRYPT 2004, 10th International
Conference on the Theory and Application of Cryptology and Information Security,
Jeju Island, Korea, December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in
Computer Science. Springer, 2004.

Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and their Applica-
tions. Cambridge University Press, 1984.

Moses Liskov and Kazuhiko Minematsu. Comments on XTS-AES. Comments On The
Proposal To Approve XTS-AES. Technical report, 2008.

Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In
Yung [154], pages 31-46.

Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. J.
Cryptology, 24(3):588-613, 2011.

Yiyuan Luo, Qi Chai, Guang Gong, and Xuejia Lai. A lightweight stream cipher wg-7
for rfid encryption and authentication. In GLOBECOM, pages 1-6. IEEE, 2010.

Cuauhtemoc Mancillas-Lopez, Debrup Chakraborty, and Francisco Rodriguez-
Henriquez. On some weaknesses in the disk encryption schemes eme and eme2. In

Bibliography 267

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Atul Prakash and Indranil Gupta, editors, ICISS, volume 5905 of Lecture Notes in
Computer Science, pages 265-279. Springer, 2009.

Cuauhtemoc Mancillas-Lopez, Debrup Chakraborty, and Francisco Rodriguez-
Henriquez. Reconfigurable hardware implementations of tweakable enciphering
schemes. IEEE Trans. Computers, 59(11):1547-1561, 2010.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks -
Revealing the Secrets of Smart Cards. Springer, 2007.

D. McGrew and J. Viega. The Galois/Counter Mode of Operation (GCM),
Submission to NIST Modes of Operation Process, January 2004. Available
at: http://csre.nist.gov/CryptoToolkit /modes/proposedmodes/gem /gem-revised-
spec.pdf.

David A. McGrew and Scott R. Fluhrer. Arbitrary Block Length Mode, 2004.

David A. McGrew and Scott R. Fluhrer. The Extended Codebook (XCB) Mode of
Operation. Cryptology ePrint Archive, Report 2004/278, 2004. http://eprint.iacr.
org/.

David A. McGrew and Scott R. Fluhrer. The Security of the Extended Codebook
(XCB) Mode of Operation. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes in Computer
Science, pages 311-327. Springer, 2007.

David A. McGrew and John Viega. The Security and Performance of the Ga-
lois/Counter Mode (GCM) of Operation. In Canteaut and Viswanathan [22], pages
343-355.

Kazuhiko Minematsu. Improved security analysis of XEX and LRW modes. In Eli
Biham and Amr M. Youssef, editors, Selected Areas in Cryptography, volume 4356 of
Lecture Notes in Computer Science, pages 96-113. Springer, 2006.

Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable Enciphering Schemes
from Hash-Sum-Expansion. In Srinathan et al. [134], pages 252-267.

E. Monmasson, L. Idkhajine, M.N. Cirstea, I. Bahri, A. Tisan, and M.W. Naouar.
FPGAs in Industrial Control Applications. Industrial Informatics, IEEE Transactions
on, 7(2):224-243, may 2011.

Moni Naor and Omer Reingold. A Pseudo-Random Encryption Mode. Technical re-
port, UNPUBLISHED, 1997. http://www.wisdom.weizmann.ac.il/ naor/PAPERS /nr-
mode.ps.gz.

268

Bibliography

[108]

109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption
Standard (DES). pub-NIST, pub-NIST:adr, oct 1999. supersedes FIPS 46-2.

Z. Navabi. VHDL:Modular Design and Synthesis of Cores and Systems, Third Edition.
McGraw-Hill, 2007.

Raphael Chung-Wei Phan and Bok-Min Goi. On the Security Bounds of CMC, EME;,

EMET and EME" Modes of Operation. In Sihan Qing, Wenbo Mao, Javier Lopez,
and Guilin Wang, editors, ICICS, volume 3783 of Lecture Notes in Computer Science,
pages 136-146. Springer, 2005.

Krzysztof Pietrzak. A leakage-resilient mode of operation. In Antoine Joux, editor,
EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 462-482.
Springer, 2009.

Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Mea-
sures and Counter-Measures for Smart Cards. In Isabelle Attali and Thomas P. Jensen,
editors, E-smart, volume 2140 of Lecture Notes in Computer Science, pages 200-210.
Springer, 2001.

Michael O. Rabin and Shmuel Winograd. Fast Evaluation of Polynomials by Rational
Preparation. Communications on Pure and Applied Mathematics, 25:433-458, 1972.

Matthew J. B. Robshaw, editor. Fast Software Encryption, 13th International Work-
shop, FSE 2000, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume
4047 of Lecture Notes in Computer Science. Springer, 2006.

Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Clipher Designs - The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science. Springer,
2008.

F. Rodriguez-Henriquez and (. K. Ko¢. On Fully Parallel Karatsuba Multipliers for
GF(2™). In International Conference on Computer Science and Technology CST 2003,
May 19-21 2003, Canciun, México, Lecture Notes in Computer Science, pages 405-410.
Acta Press, May 2003.

Rodriguez-Henriquez, Francisco and Saqib, N. A. and Diaz-Perez, A. and Koc, Cetin
Kaya. Cryptographic Algorithms on Reconfigurable Hardware (Signals and Communi-
cation Technology). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In Lee [90], pages 16-31.

Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-
Wrap Problem. In Vaudenay [139], pages 373-390.

Bibliography 269

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

[132]

J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of Field-
Programmable Gate Arrays. Proceedings of the IEEE, 81(7):1013 —1029, jul 1993.

Gaél Rouvroy, Francois-Xavier Standaert, Jean-Jacques Quisquater, and Jean-Didier
Legat. Compact and efficient encryption/decryption module for fpga implementation
of the aes rijndael very well suited for small embedded applications. In ITCC (2),
pages 583-587. IEEE Computer Society, 2004.

Palash Sarkar. Improving Upon the TET Mode of Operation. In Kil-Hyun Nam and
Gwangsoo Rhee, editors, ICISC, volume 4817 of Lecture Notes in Computer Science,
pages 180-192. Springer, 2007.

Palash Sarkar. A General Mixing Strategy for the ECB-Mix-ECB Mode of Operation.
Inf. Process. Lett., 109(2):121-123, 2008.

Palash Sarkar. A New Multi-Linear Universal Hash Family. TACR Cryptology ePrint
Archive, 2008:216, 2008.

Palash Sarkar. Efficient Tweakable Enciphering Schemes from (Block-Wise) Universal
Hash Functions. IEEE Transactions on Information Theory., 55(10):4749-4760, 2009.

Palash Sarkar. Pseudo-Random Functions and Parallelizable Modes of Operations of
a Block Cipher. Cryptology ePrint Archive, Report 2009/217, 2009. http://eprint.
iacr.org/.

Palash Sarkar. Tweakable Enciphering Schemes From Stream Ciphers With IV. Cryp-
tology ePrint Archive, Report 2009/321, 2009. http://eprint.iacr.org/.

Palash Sarkar. Tweakable Enciphering Schemes Using Only the Encryption Function
of a Block Cipher. Inf. Process. Lett., 111(19):945-955, 2011.

Akashi Satoh, Takeshi Sugawara, and Takafumi Aoki. High-Performance Hardware
Architectures for Galois Counter Mode. IEEE Trans. Computers, 58(7):917-930, 2009.

Seagate Technology. Internal 3.5-inch (SATA) Data Sheet. Available
at:http://www.seagate.com/docs/pdf/datasheet /disc/ds_internal sata.pdf.

Security in Storage Workgroup of the IEEE Computer Society. Draft standard ar-
chitecture for wide-block encryption for shared storage media. Institute of Electri-
cal and Electronics Engineers, 2008. http://siswg.net/index2.php?option=com_
docman&task=doc_view&gid=84&Itemid=41.

Victor Shoup. On Fast and Provably Secure Message Authentication Based on Uni-
versal Hashing. In Koblitz [82], pages 313-328.

270

Bibliography

[133]

134]

[135]

[136]

[137]

[138]

[139]

[140]

141]

142]

[143]
144]
145

[146]

Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, 2004:332, 2004.

K. Srinathan, C. Pandu Rangan, and Moti Yung, editors. Progress in Cryptology -
INDOCRYPT 2007, 8th International Conference on Cryptology in India, Chennai,
India, December 9-13, 2007, Proceedings, volume 4859 of Lecture Notes in Computer
Science. Springer, 2007.

Martin Stanek. Threshold Encryption into Multiple Ciphertexts. In Joaquin Garcia-
Alfaro and Pascal Lafourcade, editors, F'PS, volume 6888 of Lecture Notes in Computer
Science, pages 62—-72. Springer, 2011.

Seagate Technology. Comments on XTS-AES. Comments On The Proposal To Approve
XTS-AES. Technical report, 2008.

Texas Instruments. Low-Power High-Performance Impact TM PAL Circuits, Decem-
ber 2010.

Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL, IPSEC,
WTLS ... In Lars R. Knudsen, editor, EFUROCRYPT, volume 2332 of Lecture Notes
in Computer Science, pages 534-546. Springer, 2002.

Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture
Notes in Computer Science. Springer, 2006.

Serge Vaudenay, editor. Progress in Cryptology - AFRICACRYPT 2008, First Inter-
national Conference on Cryptology in Africa, Casablanca, Morocco, June 11-14, 2008.
Proceedings, volume 5023 of Lecture Notes in Computer Science. Springer, 2008.

Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A Variable-Input-Length Enci-
phering Mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume
3822 of Lecture Notes in Computer Science, pages 175-188. Springer, 2005.

Xilinx, Inc. Achieving Higher System Performance with the Virtex-5 Family of FPGAs,
July 2006.

Xilinx, Inc. CoolRunner-I1I CPLD Family, September 2008.
Xilinx, Inc. Synthesis and Simulation Design Guide , 2008.
Xilinx, Inc. Spartan-3 FPGA Family Data Sheet, December 2009.

Xilinx, Inc. Virtez-5 Family Overview, February 2009.

Bibliography 271

[147] Xilinx, Inc. Virtez-4 Family Overview, August 2010.
[148] Xilinx, Inc. Spartan3 Generation FPGA User Guide, June 2011.

[149] Xilinx, Inc. Virtex-II Pro and Virtez-I1I Pro X Platform FPGAs: Complete Data Sheet,
June 2011.

[150] Xilinx, Inc. Virtez-5 FPGA User Guide, March 2012.
[151] Xilinx, Inc. Virtez-5 FPGA XtremeDSP Design Considerations, January 2012.
[152] Xilinx, Inc. Virtez-6 Family Overview, January 2012.

[153] Kan Yasuda. A parallelizable PRF-based MAC algorithm: Well beyond the birthday
bound. [EICE Transactions, 96-A(1):237-241, 2013.

[154] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002,
Proceedings, volume 2442 of Lecture Notes in Computer Science. Springer, 2002.

