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Resumen

Datalog es un lenguaje basado en lógica de primer orden que fue desarrollado

en los 80s como modelo de datos para bases de datos relacionales. Recientemente,

ha sido utilizado en nuevas áreas de aplicación, por lo que se han hecho propuestas

para ejecutar Datalog en nuevas plataformas tales como Unidades de Procesamiento

Gráfico (GPUs en inglés) y MapReduce. En ese entonces como hoy en d́ıa, el interés en

Datalog es el resultado de su habilidad para calcular el cierre transitivo de relaciones

por medio de consultas recursivas que, en efecto, transforman las bases de datos

relacionales en bases de datos deductivas o bases de conocimiento.

El tema de esta tesis es el diseño, implementación y evaluación de un motor

paralelo del lenguaje Datalog para GPUs. A nuestro conocimiento, es el primer

motor totalmente funcional de Datalog para GPUs. Consiste en: i) un compilador

que traduce los programas de Datalog en operadores de álgebra relacional (selección,

varios tipos de uniones y proyección); ii) un planificador que prepara y manda ejecutar

estas operaciones en la GPU desde la plataforma anfitrión; iii) los algoritmos paralelos

de dichas operaciones; y iv) un esquema de manejo de memoria que tiende a reducir

el numero de transferencias de memoria entre el anfitrión y la GPU. También incluye

varias optimizaciones que aprovechan las caracteŕısticas del lenguaje Datalog y la

arquitectura de las GPUs.

Nuestro motor de Datalog fue desarrollado en C utilizando la plataforma de

software de Nvidia CUDA. La evaluación de nuestro motor utilizando varias consultas

muestra un importante incremento en el rendimiento al compararla contra XSB y

YAP, famosos motores de Prolog, y el motor de Datalog de la corporación Mitre.

Para dos de las consultas, se obtuvo un incremento en el rendimiento de hasta 200

veces.
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Abstract

Datalog is a language based on first order logic that was investigated as a

data model for relational databases in the 1980s. It has recently been used in

various new application areas, prompting proposals to run Datalog programs on

new platforms such as Graphics Processing Units (GPUs) and MapReduce. Back

then and nowadays, interest in Datalog has stemmed from its ability to compute

the transitive closure of relations through recursive queries which, in effect, turns

relational databases into deductive databases, or knowledge bases.

This thesis presents the design, implementation and evaluation of a Datalog engine

for GPUs. It is the first fully functional Datalog engine for GPUs to the best of

our knowledge. It consists of: i) a compiler that translates Datalog programs into

relational algebra operations (select, various types of joins and project); ii) a scheduler

that plans and launches such operations into the GPU from the host platform; iii) the

GPU parallel algorithms of such operations; and iv) a memory management scheme

that tends to reduce the number of memory transfers between the host and the GPU.

It also includes various optimisations that capitalise on the characteristics of the

Datalog language and the GPU architecture.

Our Datalog engine was developed in C with the Nvidia CUDA software platform.

The evaluation of our engine using several queries shows a dramatic performance

improvement when compared against the well known Prolog engines XSB and YAP,

and the Datalog engine from Mitre Corporation. For two of the queries, a performance

increase of up to 200 times was achieved.
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Chapter 1

Introduction

The subject of this thesis is the design, implementation and evaluation of a Datalog

engine for Graphics Processing Units (GPUs). The specific objectives were:

• The design, implementation and evaluation of a new Datalog engine for GPUs,

capable of evaluating standard Datalog programs faster than any other CPU

Datalog engine.

• A compiler of Datalog programs that translates facts, rules and queries into

numbers, which are easier to work with in GPUs due to their constant processing

time (strings entail variable processing time due to their variable size).

• A memory management module that maintains data in GPU memory for as

long as possible in order to reduce data transfers between CPU and GPU.

• Relational algebra algorithms tuned to exploit the architecture of the GPU

thanks to the use of techniques like CSS-Trees, coalesced memory access, etc.

They also capitalise on the distinctive features of Datalog rule evaluation which

allows the use of simultaneous projections, operation fusing, etc.

• Publication of an international conference paper describing these contributions.

Datalog is a language based on first order logic that was widely investigated as

a data model for relational databases [1, 2]. A Datalog program consist of a finite
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number of facts and rules. Facts are statements about something relevant, for example

’John is Harry’s father’. Rules are sentences that allow the deduction of new facts

from known facts, for example ’If X is the father of Y and if Y is the father of Z,

then X is the grandfather of Z’. To represent rules and facts, Datalog uses clauses.

The left side of the clause is the head and the right size is the body, which can be

empty. Clauses without body are facts; clauses with at least one element in the body

are rules. For example:

edge(1,2). <-- Fact

edge(2,3). <-- Fact

path(X,Y) :- edge(X,Y). <-- Rule

path(X,Z) :- edge(X,Y), path(Y,Z). <-- Rule

Datalog programs can derive many new facts. Sometimes, only a subset of these

facts is of importance. To derive only the necessary fact subsets from the rules, a

query is used. Queries are specified as a single clause followed by a question mark.

For example:

path(1,Y)?

Datalog can also use recursive rules which facilitate specifying (querying for)

the transitive closure of relations, which is a key concept to many new applications

including data integration [3, 4], declarative networking [5, 6], program analysis [7],

information extraction [8, 9], network monitoring [10], security [11, 12], and cloud

computing [13]. With these new applications, Datalog has gained much renewed

interest, which include proposals to make use of GPUs and clusters composed of

multicore-GPU nodes in order to make it more efficient in terms of performance.

Graphics Processing Units (GPUs) are high-performance many-core processors

capable of very high computation and data throughput [14]. GPUs were designed

for computer graphics and could only be programmed through APIs like DirectX and

OpenGL. Nowadays, GPUs are general-purpose processors with specially designed

Cinvestav Departamento de Computación



Introduction 3

APIs like CUDA and OpenCL. Applications may obtain great speed-ups even when

compared against finely tuned CPU implementations.

CUDA (Compute Unified Device Architecture) is a software platform and

programming model created by NVIDIA [15] to make use of the GPUs as a highly

parallel general-purpose machine. CUDA extends C, C++ and Fortran [16] (other

languages are supported but are not part of the standard) with its own functions and

reserved words. It allows the definition of functions, called kernels, that are executed

in parallel by CUDA threads.

Scheduling GPU work is usually as follows. A thread in the host platform (e.g., a

multicore) first copies the data to be processed from CPU memory to GPU memory,

and then invokes GPU threads to run the kernel to process the data. Each GPU

thread has an unique id which is used by each thread to identify what part of the

data set it will process. When all GPU threads finish their work, the GPU signals

the host thread which will copy the results from GPU memory to host memory and

schedule new work.

GPUs can profitably be used to evaluate Datalog programs both because Datalog

programs can be expressed with the relational algebra operators selection, join and

projection, and because these operators are suitable for computations using massive

parallelism.

Selections are made when constants appear in the body of a rule. Then a join

is made between two or more elements in the body of a rule using the variables as

reference. The result of the join is then joined to other rest of the elements in the

body, if any, an so on. Finally, a projection is made of the variables in the head of

the rule. Figure 1.1 shows an example of the necessary operations to evaluate certain

rule.

The approach to evaluate Datalog programs implemented in this thesis work is

referred to as bottom-up. It consists, conceptually, in applying the rules to the

given facts, thereby deriving new facts, and repeating this process with the new facts

until no more facts are derivable. The query is considered only at the end, when

Cinvestav Departamento de Computación
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Figure 1.1: Rule evaluation.

the facts matching the query are selected. The benefits of this approach is that

rules can be evaluated in any order and, as stated above, in a highly parallel manner

based on equivalent relational operations. (This thesis also describes other approaches

and techniques to evaluate Datalog programs and how to combine them in order to

improve performance).

For recursive rules, fixed-point evaluation is used. The basic idea is to iterate

through the rules deriving new facts, then using this new facts to derive even more

facts until no new facts are derived.

Our Datalog engine processes Datalog programs as follows:

Compiling. Datalog programs are compiled using Flex [17] and Bison [18]. To

capitalise on the GPU capacity to process numbers and to have short and constant

processing time for each tuple (strings variable size entails varying processing time),

we identify and use facts and rules with/as numbers, keeping their corresponding

strings in a hashed dictionary.

Preprocessing. Preprocessing data before sending it to GPU is a key factor

for good performance. The most common form of preprocessing is the elimination

Cinvestav Departamento de Computación
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of redundant calculations in GPU threads. The preprocessing module analyses the

rules to determine both which relational operations to perform and on which columns

should they be performed.

Evaluation. The required relational algebra operators were implemented for the

GPU in the following way:

• Selection. Searches for constant values in determined columns, discarding the

rows that do not have these values. Uses three different kernel executions. The

first kernel marks all the rows that satisfy the selection predicate. The second

kernel performs a prefix sum [19] on the marks to determine the size of the

results buffer and the location where each GPU thread must write the results.

The last kernel writes the results.

• Projection. Simply involves taking all the elements of each required column

and store them in a new memory location. While it may seem pointless to

use the GPU to move data items, the higher memory bandwidth of the GPU,

compared to that of the host CPU/s, and the fact that the results remain in

GPU memory for further processing, make projection a suitable operation for

GPU processing.

• Join. Our Datalog engine uses these types of join: Single join, Multijoin and

Selfjoin. A single join is used when only two columns are to be joined, e.g.:

table1(X,Y) ./ table2(Y,Z). A multijoin is used when more than two columns are

to be joined: table1(X,Y) ./ table2(X,Y). A selfjoin is used when two columns

have the same variable in the same predicate: table1(X,X). The first two joins

create and search for elements to join on a tree specially designed for GPUs.

The Selfjoin is very similar to the selection operation, the main difference is

that instead of checking a constant value, it checks if the values of the columns

affected by the self join match.

To improve the performance of our engine, several optimizations were made:

Cinvestav Departamento de Computación



6 Chapter 1

• Additional projections are made to discard unnecessary columns earlier in the

computation.

• Some operations are applied together to a data set in a single read of the

data set, as opposed to one operation per read of the data set. This is called

fusion [20] and reduces the overall number of reads to data sets.

• Data transfers between GPU memory and host memory are costly. We designed

a memory management scheme that tries to minimize the number of such

transfers. Its purpose is to maintain facts and rule results in GPU memory

for as long as possible.

We tested our engine with computation intensive logic programming problems

against well known Prolog and Datalog CPU engines like XSB [21] and YAP [22].

With all problems, our engine showed the best results, with a performance increase

of up to 200x.

There is related work both on GPUs and Datalog. Regarding relational algebra

operators on GPUs, the core operators of our engine, Bingsheng He et al. proposed

GPUQP [23], an in-memory query co-processor focused on fully exploiting the

architectural features of the GPUs. Also, Gregory Diamos et al. are working on Red

Fox [24], an upcoming compilation and runtime environment for data warehousing

applications on GPU clusters using an extended Datalog developed by LogicBlox [25].

1.1 Thesis layout

The thesis layout is as follows:

Chapter 2 describes the architecture of the GPUs, its programming model based

on CUDA and the most important optimizations required for good performance in

all GPU applications.

Chapter 3 describes the syntax of Datalog programs, its equivalence to relational

algebra operations and the different approaches for their efficient evaluation.

Cinvestav Departamento de Computación
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Chapter 4 presents how we developed and optimized our Datalog engine, and

which solutions we applied to the issues encountered.

Chapter 5 shows our experimental platform. It describes the hardware we used,

the results we obtained with some common logic programming problems and compares

the performance of our engine against other well known Prolog and Datalog engines.

Chapter 6 presents our conclusions and the ideas we have to further improve our

Datalog engine.

Cinvestav Departamento de Computación
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Chapter 2

GPUs

Graphics Processing Units (GPUs) are high-performance many-core processors

capable of very high computation and data throughput [14]. They were designed

for computer graphics and could only be programmed through relatively complex

APIs like DirectX and OpenGL. Nowadays, GPUs are general-purpose processors

with specially designed APIs like CUDA and OpenCL. Applications may obtain great

speed-ups even when compared against finely tuned CPU implementations.

GPUs are now used in a wide array of applications [26], including gaming, data

mining, bioinformatics, chemistry, finance, numerical analysis, imaging, weather, etc.

Such applications are usually accelerated by at least an order of magnitude, but

accelerations of 10x or more are common.

Numerical applications are typical of science and engineering, wherein vast

amounts of integer and floating point operations are carried out in order to simulate

physical phenomena as close to reality as possible. It was for numerical applications

that GPUs were originally targeted, as the game industry has been pushing for

games to look the most real possible. Numerical applications are typically developed

in the high-level languages Fortran and C. In clusters composed of multicore-GPU

nodes, numerical applications use both OpenMP code and MPI (Message Passing

Interface) code in order to capitalise from both intra-node and inter-node parallelism

respectively.

9



10 Chapter 2

Symbolic applications are typical of artificial intelligence, which itself includes

the following areas: expert systems, automated reasoning, knowledge representation,

natural language processing, problem solving, planning, machine learning and data

mining. The main characteristic of these applications is that they perform vast

amounts of search and pattern matching operations. Work to use GPUs for these

applications is just beginning.

The GPUs used in this work were Nvidia GPUs [27], so all future mention of

GPUs refer to those of this particular brand. The examples and images used in this

chapter were taken from [16].

This chapter presents an overview of the GPU architecture, its programming

model and interface, and programming guidelines for good performance.

2.1 GPU Architecture

GPUs are SIMD machines: they consist of many processing elements that run all

a same program but on distinct data items. This same program, referred to as

the kernel, can be quite complex including control statements such as if and while

statements. However, a kernel is synchronised by hardware, i.e.: each instruction

within the kernel is executed across all the active processing elements running the

kernel. Thus, if the kernel involves comparing strings, the processing elements that

compare longer strings will take longer, making other processing elements to wait for

them. In contrast, an SPMD (single-program-multiple-data) program is synchronised

through message passing and/or shared memory synchronisation primitives specified

by the programmer.

GPUs usually have hundreds of processing units called CUDA cores, as shown in

Figure 2.1, which execute one thread each. A CUDA core has the following elements:

• Floating point unit compliant with IEEE floating-point standard.

• Integer unit.
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Figure 2.1: CUDA Core

• Logic unit.

• Move, compare unit.

• Branch unit.

CUDA cores are arranged in special hardware units called Streaming Multiproces-

sors(SM), each with 32 CUDA cores (low-end or old GPUs have 16 CUDA cores per

SM). An SM schedules threads to be executed in warps of size equal to the number

of CUDA cores it has (warp size). As shown in Figure 2.2, each SM has the following

components:

• Warp schedulers to handle thread concurrency.

• Instruction dispatchers that, ideally, issue the same instruction to all threads.

• Registers to store thread level variables and arrays.

• Load/Store units to handle memory reads/writes.
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Figure 2.2: Streaming Multiprocessor

• Special-function units designed for high speed execution of transcendental

instructions such as sin, cosine, square root, etc.

• L1 cache/shared memory whose size can be changed by the programmer to

adapt to his needs.

The compute capability of a GPU determines various characteristics like maximum

number of threads, amount of shared memory, etc. It is defined by a major revision

number and a minor revision number. The architectures corresponding to the major

revision numbers are:

• Kepler. The latest architecture; major revision number is 3.

• Fermi. The most widespread architecture; major revision number is 2.

• Tesla. The first architecture to support CUDA; major revision number is 1.

The minor revision number is a small improvement over the architecture, like

increasing the number of processing cores or the number of registers.

Cinvestav Departamento de Computación



GPUs 13

2.1.1 CUDA

CUDA (Compute Unified Device Architecture) is a software platform and

programming model created by Nvidia [15]. With CUDA, the GPU becomes a highly

parallel general-purpose machine.

CUDA is an extension to the programming languages C, C++ and Fortran [28]

(other languages are supported but are not part of the standard). It also includes

highly tuned libraries for a wide variety of applications like Thrust [29], a library of

parallel algorithms and data structures based on the Standard Template Library(STL)

library [30].

The current version of the CUDA SDK (5.5) is available for Microsoft Windows,

Linux and Mac OS through the NVIDIA Developer Zone website [31]. CUDA works

with all modern Nvidia GPUs. Programs developed for a particular GPU should also

work on all GPUs of the same or better arquitectures without modifying the source

code.

2.2 Programming model

This section describes the CUDA programming model for C, known as CUDA C [16].

The models for other languages are similar. We will refer to CUDA C as CUDA from

now on.

Figure 2.3 shows that CUDA threads are executed on a different device (GPU)

that serves as a coprocessor to the host (CPU). A host thread executes all serial

code (in the host), including memory management and work scheduling functions,

while the device executes parallel work using the most appropriate configuration of

threads. Both host and device maintain their own memory, called host memory and

device memory. GPUs usually have their own high speed on-chip memory, however,

low-end GPUs use a reserved portion of the host’s RAM.
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Figure 2.3: Heterogeneous Programming Model
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2.2.1 Kernels

CUDA extends C with its own functions and reserved words. It also allows the

definition of user functions, called kernels, that are executed in parallel by CUDA

threads.

Kernels are defined using the __global__ identifier before the return type of a

function. For example, consider the following sample code adds two vectors, A and

B, and stores the result into vector C:

// Kernel definition

__global__ void VecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x;

C[i] = A[i] + B[i];

}

The host thread invokes a kernel specifying the number of CUDA threads that

will execute the kernel using <<< ... >>>. For example, to call the kernel VecAdd

we do the following:

int main()

{

...

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

...

}

In this example, we invoke N threads with global identifiers from 0 to N-1. The

number 1 inside the <<< ... >>> refers to the number of blocks that will be invoked

to process the kernel. The following subsection explains more about thread identifiers

and blocks.
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Figure 2.4: Thread Hierarchy

2.2.2 Thread Hierarchy

Threads are organized into blocks, and blocks into a grid as shown in Figure 2.4.

To assign work to each thread and control their execution, threads are identified

with indexes that determine their position in a block. A thread may have the following

indexes depending on the “shape” of the block:

• Vector. The block has only one dimension and the thread is identified by one

index (x).

• Matrix. The block has two dimensions and the thread is identified by two

indexes (x, y).

• Volume. The block has three dimensions and the thread is identified by three

indexes (x, y, z).

Blocks also have their own indexes to identify them inside a grid. Grids, like

blocks, may have up to three dimensions, and thus, block indexes may have up to
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three values (x, y, z). To identify each of the threads and blocks running a kernel,

CUDA provides the programmer with the following reserved words as identifiers, each

with three components (x, y and z):

• threadIdx is the index of the thread in his block.

• blockIdx is the index of the block in the grid.

• blockDim is the size, in number of threads, of the block.

• gridDim is the size, in number of blocks, of the grid.

Using these identifiers, new identifiers can be derived with simple arithmetic

operations. For example, the global identifier of a thread in a three-dimensional

block would be:

unsigned int ID = threadIdx.x + threadIdx.y * blockDim.x +

threadIdx.z * blockDim.x * blockDim.z;

The number of threads per block and the number of blocks per grid are specified

using int or dim3 types. dim3 is a structure of three unsigned integers with

components x, y and z. An important characteristic of this structure is that any

unspecified component is initialized to one. Using the <<< ... >>> syntax, the

number of threads is specified as follows:

dim3 numBlocks(A, B, C);

dim3 threadsPerBlock(X, Y, Z);

kernel<<<numBlocks, threadsPerBlock>>>();

The total number of threads to be executed is equal to the number of threads

per block times the number of blocks. Because of that, there are many possible

combinations that yield the same total number of threads, for example, 32 blocks of

10 threads each would yield 320 threads in total and, apparently, it would be the

same as having 10 blocks of 32 threads each.
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Figure 2.5: Automatic Scalability

However, recall that each Streaming Multiprocessor has a certain number of

CUDA cores (usually 32), and schedules threads to be executed in warps of size

equal to this number of cores(warp size). Hence, if a block has less threads than the

warp size, some cores will be idle. On the other hand, if the block has more threads

than the warp size, some threads will have to wait their turn. This means that, for

each block, we should try to avoid using less threads than the warp size. However,

it does not mean that we should always use a number of threads equal to the warp

size because switching threads in a block is faster than switching entire blocks. There

is also a limit to the number of threads that can be specified for a block (1024 for

current GPUs, less for others), since all threads of a block are scheduled to the same

SM and must share registers and shared memory.

As shown in Figure 2.5, at hardware level, the GPU automatically assigns thread

blocks to SMs depending on the number of available SMs. This allows GPUs to

execute kernels according to their capabilities. This scheduling policy should be

considered when determining the number of blocks. If this number is less than the

number of available SMs, the computational power will not be fully exploited.
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To coordinate threads in the same block, the function synchthreads can be used

as a barrier. This function makes all the threads in a block to wait until all of them

have reached the function. Example:

if(threadIdx.x == 0)

a[0] = 5;

__syncthreads();

In this example, all the threads in the block will wait until thread 0 finishes writing

to memory and only then will they continue.

2.2.3 Memory Hierarchy

CUDA threads have access to different memory types as shown in Figure 2.6. Each

thread has a private local memory (registers) for stack and variables. Each thread

block has shared memory visible to all threads in the block. All threads have access

to the same global memory.

Global memory

Global memory is the medium of communication between host and device. Usually,

the host transfers to this memory the elements to be processed in the device and

obtains the result from this same memory.

Global memory is allocated with cudaMalloc which requires the address of a

pointer and the number of bytes to allocate. Example:

int *ptr;

/*Allocate memory for ten integers*/

cudaMalloc(&ptr, 10 * sizeof(int));

Once memory has been allocated, data can be transferred with cudaMemcpy which

requires a destination address, a source address, the number of bytes to transfer and

the “direction” of the transfer. For example:
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Figure 2.6: Memory Hierarchy

int *ptr, i = 5;

cudaMalloc(&ptr, sizeof(int));

/*Copy one integer from host to device*/

cudaMemcpy(ptr, &i, sizeof(int), cudaMemcpyHostToDevice);

There are four possible directions which indicate from where to where the data

transfer is to be made:

• cudaMemcpyHostToDevice. From the CPU to the GPU.

• cudaMemcpyDeviceToHost.: From the GPU to the CPU.

• cudaMemcpyHostToHost. Between two CPU addresses.

• cudaMemcpyDeviceToDevice. Between two GPU addresses. No CPU

interaction is required.
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Memory can be freed with cudaFree which requires the address to be freed.

Example:

int *ptr;

cudaMalloc(&ptr, sizeof(int));

cudaFree(ptr);

Shared Memory

Shared memory is declared in kernels by using the __shared__ reserved word before

the type of the desired memory. It is usually initialized by the first threads of each

block. Example:

__shared__ int a;

if(threadIdx.x == 0)

a = 5;

A variable sized array of shared memory can be allocated by creating a shared

pointer in the kernel and using the third argument of the kernel call to specify the

size in bytes. Example:

//Host code to create an array of ten integers in shared memory

kernel<<<numBlocks, threadsPerBlock, 10 * sizeof(int)>>>();

/*Device code to have the first ten threads of each block initialize

the array with their thread ID*/

__shared__ int array[];

if(threadIdx.x < 10)

array[threadIdx.x] = threadIdx.x;

Shared memory is much faster than global memory. If an element in global

memory has to be read or written more than once, it is a good idea to transfer

it to registers or shared memory if possible.
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2.3 Programming Interface

CUDA provides functions that execute on the host to perform tasks like timing, error

checking, device handling, etc. To compile CUDA programs, a compiler tool called

nvcc is also provided.

2.3.1 Compilation with nvcc

Nvcc is a compiler that simplifies the process of compiling CUDA code [32]. It

uses command line options similar to those of GCC [33] and automatically calls the

necessary programs for each compilation stage.

CUDA programs usually include kernels and C code for input/output and memory

management operations. The compilation stages for these programs are as follows:

1. Kernels (device code) are separated from the C host code.

2. Device code is compiled by nvcc into the assembly language for GPUs called

PTX [34].

3. Device code can then be left in assembly form or compiled into binary form by

the graphics driver.

4. Host code is modified by changing kernel calls into the appropriate CUDA

functions that prepare and launch kernels.

5. Host code is then compiled into object code by the designated C compiler

(usually gcc).

6. Both codes are linked to produce the executable program

2.3.2 Concurrent Execution between Host and Device

Some CUDA function calls are asynchronous. It means that the host thread calls

one such function and then continues its work, instead of waiting for the function to

return. The following functions are asynchronous:
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• Kernel launches.

• Memory copies between two addresses in device memory.

• Memory copies of 64 KB or less from host to device.

• All functions whose name starts with async.

• Memory set functions (this function is equivalent to Unix function memset which

sets the bytes of a block of memory to an specific value).

These functions are asynchronous to the host because they are performed by the

device. However, their execution in the device is serialized. For example:

int *ptr, var;

//Allocate memory for ptr

cudaMalloc(&ptr, sizeof(int));

//Call of a kernel that will store its result in ptr

kernel<<<numBlocks, threadsPerBlock>>>(ptr);

//Copy the result to var in host memory from device memory

cudaMemcpy(&var, ptr, sizeof(int), cudaMemcpyDeviceToHost);

//Print the result

printf("%d", var);

Here the call to the kernel will immediately return control to the host and the

host will execute a synchronous cudaMemcpy — the host will block waiting for the

result of the copy. The device will execute the kernel and, once finished, will execute

the memory copy the host is waiting for.

2.3.3 Events

Events allow programmers to monitor the device and perform accurate timing. Events

can be asynchronously started and ended at any point in the host code. An event is
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completed when all host and device tasks between its starting and ending positions

are completed. At this point, it is possible to check the elapsed time. The following

code sample shows how to measure the elapsed time of a code section using events:

//Event creation

cudaEvent_t start, stop;

cudaEventCreate(&start);

cudaEventCreate(&stop);

//Start timer

cudaEventRecord(start, 0);

...

//Code to measure

...

//Stop timer

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

//Show elapsed time

float elapsedTime;

cudaEventElapsedTime(&elapsedTime, start, stop);

printf("%f", elapsedTime);

//Event destruction

cudaEventDestroy(start);

cudaEventDestroy(stop);

2.3.4 Device handling

A host system can have more than one GPU. Host threads can set the current device

at any time by using cudaSetDevice. Any device memory management functions,

kernel launches and events are executed only for the current device. By default, the

current device is always device 0. The following code sample shows how to enumerate
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these devices, query their compute capability, and change the current device:

//Get the number of devices

int deviceCount;

cudaGetDeviceCount(&deviceCount);

//For each device

int device;

for(device = 0; device < deviceCount; device++)

{

//Show the device properties

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp, device);

printf("Device %d has compute capability %d.%d.\n",

device, deviceProp.major, deviceProp.minor);

}

//Set device 0 as current

cudaSetDevice(0);

2.3.5 Error Checking

All runtime functions return an error code. However, for asynchronous functions, this

error cannot be retrieved by the return value of the function (as control is returned to

the host before the device finishes executing the function). When an error happens

in an asynchronous function, the next runtime function, asynchronous or not, will

return this error.

When it is necessary to immediately check for errors in an asynchronous function,

the host must be blocked until the device finishes executing the function. The

function cudaDeviceSynchronize blocks the host until the device finishes executing

the last function invoked; its return value has any error associated with the last

CUDA function execution.
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Since kernels do not return anything, the runtime environment has an error

variable initialized to cudaSuccess which is overwritten with an error code when

an error occurs. CudaPeekAtLastError and cudaGetLastError return this variable.

Then, to get kernel errors, the kernel has to be launched, the host has to be blocked

with cudaDeviceSynchronize, and cudaPeekAtLastError or cudaGetLastError have to

be called to obtain any kernel errors.

2.3.6 Compatibility

While newer GPUs support all the instructions of older GPUs, instructions introduced

for newer architectures cannot possibly be supported by older architectures. For

example, double-precision is only available on devices of compute capability 1.3 and

above. To compile CUDA code for a certain compute capability, the -arch compiler

flag can be used. This option can be specified regardless of the current hardware in the

machine doing the compiling (it can even be a machine with no GPUs). For example,

code with double-precision instructions must be compiled with -arch=sm 13 (or

higher), otherwise any double-precision instructions will automatically be transformed

into single-precision instructions by the compiler.

There are two versions of the nvcc compiler, for 64-bit and 32-bit host

architectures. Any version can be installed, regardless of the host architecture.

However, device code compiled for 64-bit can only work with 64-bit host code, and

32-bit device code can only works with 32-bit host code. By default, nvcc compiles

code for 64-bit if the 64-bit version is installed, but it can also compile in 32-bit mode

with the -m32 compiler flag if the 32-bit CUDA libraries are installed. The 32-bit

version can compile to 64-bit mode with the -m64 flag if the necessary libraries are

installed.
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2.4 Performance Guidelines

To maximize GPU performance, the CUDA Best Practices Guide [35] suggests the

following strategies:

• Maximize parallel execution to achieve maximum device utilization.

• Optimize memory usage to achieve maximum memory throughput.

• Optimize instruction usage to achieve maximum instruction throughput.

It is important to correctly choose which strategies to pursue depending on how

much they improve the code. For example, optimizing instruction usage for a kernel

with memory access problems will not show great performance increase.

2.4.1 Maximize Utilization

To maximize utilization, programmers must be familiar with the massive parallelism

the GPUs provide and try to make full use of it.

Application Level

Thanks to the asynchronous nature of kernels calls, programmers should try not to

leave the host idle while it waits for the result of a kernel. Simple or non-parallelizable

tasks should be executed by the host, while highly parallel tasks should be sent to

the device.

Device Level

Kernels should be executed with at least as many threads per block as there are cores

in each SM. The number of blocks should at least be equal to the number of SMs in

the GPU. If a kernel requires less blocks than the number of available SMs, two or

more small kernels should be run at the same time (using streams), thus fully utilizing

the GPUs capabilities.
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2.4.2 Maximize Memory Throughput

One of the most important optimizations to any CUDA program is to minimize data

transfers between the host and the device. These transfers are done through the PCIe

bridge and have the lowest bandwidth when compared to other types of transfers.

Excessive use of these transfers may even cause applications to be slower than their

CPU-only counterpart versions.

Minimizing access (reads and writes) to global memory by kernels with the help

of shared memory and registers also improves performance — although it tends to

complicate programming. To use shared memory for this purpose, each thread in a

block has to do the following:

• Move its corresponding data from global memory to shared memory.

• If this data is to be accessed by other threads, then we must synchronize with

all the other threads of the block using the function synchthreads.

• Process the data in shared memory.

• Synchronize again if data was used by other threads to allow them to finish

processing.

• Write the results back to global memory.

Data Transfer between Host and Device

To minimize data transfers between host and device, code that is executed in the

host could be executed in the device. Even if such code is not very parallelizable,

performance may increase due to the reduced number of memory transfers. Joining

small data transfers into a single, large transfer also increases performance.

Device Memory Accesses

When all threads in a warp execute a load instruction, the best global memory access

occurs when the same all threads in a warp accesses consecutive global memory
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Figure 2.7: Coalesced access.

locations [36]. When this happens, the hardware coalesces (combines) all memory

accesses into a single access to consecutive locations. For example:

If thread 0 accesses location n, thread 1 accesses location n + 1, ..., thread 31

accesses location n + 31, then all these accesses are coalesced. Figure 2.7 shows an

example of coalesced access.

Global Memory

When global memory is accessed by an instruction in a warp, one or more memory

transactions are issued. This depends on which memory locations are to be accessed

by each thread. More transactions means less performance. The worst case would be

a number of transactions equal to the warp size.

For devices of compute capability 1.0 and 1.1, access has to be completely

coalesced, else the number of transactions will be equal to the warp size (the worst case

scenario). For devices of higher compute capability, memory transactions are cached

(using L1 or L2 cache), so a single transaction might be issued even if accessing

non-contiguous memory locations.

Size and Alignment Requirement

Global memory instructions read or write words of 1, 2, 4, 8, or 16 bytes. Coalesced

access to global memory also requires the data to have one of these sizes and to

be naturally aligned (i.e., its address is a multiple of its size). The alignment is

automatically fulfilled for most built-in types.
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Local Memory

Local memory is a section of global memory automatically reserved by the compiler.

It is used to store the following variables found inside a kernel:

• Large structures or arrays that would consume too much register space.

• Any variable if the kernel uses more registers than available (known as register

spilling).

Since local memory resides in global memory, it has the same disadvantages (i.e.

slow reads and writes, slow transfers, etc.). Use of this memory should be avoided by

splitting structures or arrays into smaller ones and by using less registers or launching

fewer threads per block.

2.4.3 Maximize Instruction Throughput

To maximize instruction throughput the following strategies are suggested:

• Use single-precision instead of double-precision if this change does not affect

the required result.

• Avoid any control flow instructions.

• Remove synchronization points wherever possible.

Control Flow Instructions

Control flow instructions (if, switch, do, for, while) tend to make threads of the same

warp to diverge (i.e., to follow different execution paths). The different executions

paths are serialized and instructions for each of them have to be issued, thus increasing

the total number of instructions. When all execution paths are completed, threads

converge back to the same execution path.
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2.5 Summary

Graphics Processing Units (GPUs) are high-performance many-core processors

capable of very high computation and data throughput. With CUDA, a software

platform and programming model created by Nvidia, GPUs have become highly

parallel general-purpose machines.

CUDA is an extension to the programming languages C, C++ and Fortran with

its own functions and reserved words. It allows the definition of user functions, called

kernels, that are executed in parallel by CUDA threads. These threads are organized

in blocks and these blocks are, in turn, organized in a grid. To assign work to each

thread and control their execution, threads and blocks are identified with indexes

that determine their positions.

CUDA threads have access to different memory types. Each thread has a private

local memory for stack and variables. Each thread block has shared memory visible

to all threads in the block. All threads have access to the same global memory.

CUDA applications are compiled using nvcc and can be optimized using several

techniques like coalesced memory access or additional shared memory use.
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Datalog

Datalog is a language based on first order logic that has been used as a data model

for relational databases [1, 2]; syntactically it is a subset of Prolog [37]. A Datalog

program consist of facts about a subject of interest and rules to deduce new facts.

Facts can be seen as rows in a relational database table, while rules can be used as

queries.

Datalog received its name from David Maier [38]. Datalog started in 1977 at a

workshop on logic and databases with a simple but powerful idea: to add recursion

to positive first order logic queries. In the 80’s and early 90’s, logic programming

was a very active research domain and, as a result, Datalog flourished. However,

industry useful applications were non-existent, as Hellerstein and Stonebraker wrote

in 1998 [39]: “No practical applications of recursive query theory ... have been found

to date”. This caused Datalog research to be almost completely abandoned [40].

In recent years, Datalog has returned as part of new applications in the following

domains: data integration, declarative networking, program analysis, information

extraction, network monitoring, security, and cloud computing [40]. The interest

in Datalog for these new applications, as in the past, is the ability of Datalog to

compute the transitive closure of relations through recursive queries which, in effect,

turns relational databases into deductive databases, or knowledge bases.

This renewed interest in Datalog has in turn prompted new designs of Datalog
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targeting computing architectures such as GPUs, Field-programmable Gate Arrays

(FPGAs) [40] and cloud computing based on Google’s Mapreduce programming

model [41].

This chapter presents various aspects of the Datalog language: its syntax and

semantics, its relation to and translation into relational algebra operations, the

approaches to evaluate Datalog programs and optimisations. Finally, the chapter

briefly describes some of the recent new applications where Datalog is being used.

3.1 Applications

Recently, Datalog has been used as part of new applications in the following domains:

Data Integration

Data integration is the combining of heterogeneous data sources into an unified query

and view schema. In the work of Green et al. [3], Datalog is used to calculate

provenance information when a datasource is to be modified by a query. Since

provenance information may not be complete, they extend Datalog with Skolem

functions [42] to represent unknown values.

In another work by Lenzerini [4], the power of Datalog to express queries and

views of heterogeneous data is compared against other languages. These languages

include conjunctive queries, positive queries and first-order queries.

Declarative Networking

Declarative networking is a programming methodology to specify network protocols

and services using high-level declarative languages. These languages are, in turn,

compiled into lower level languages that implement these protocols and/or services.

Boon Thau Loo et al. [5] propose NDlog, an extension of Datalog, as the high-level

language for declarative networking. It differs from traditional network protocol

languages in the absence of communication primitives like “send” or “receive”. It
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is also different from traditional Datalog because it considers networking specifics

such as distribution, linklayer constraints, etc.

Boon Thau Loo et al. [6] extend their NDlog language with Overlog. With Overlog,

it is possible to implement the soft-state approach common in network protocols. The

idea is that data has a lifetime or time-to-live (TTL); data has to be refreshed every

certain amount of time or it is deleted. Overlog accomplishes this by a special keyword

at the beginning of each program that specifies the TTL of each predicate in seconds.

Program Analysis

Program analysis is the automatic analysis of computer programs. This analysis can

be static (without executing the program) or dynamic (by executing the program).

The applications of program analysis are program correctness (every input must

return the correct output) and program optimization (to reduce resource utilization

or increase efficiency).

Martin Bravenboer and Yannis Smaragdakis [7] implemented the Doop framework,

a points-to (or pointer) analyser for Java programs [43] based on Datalog. Points-to

analysis determines “What objects can a program variable point to?”. By using their

highly optimized Datalog recursion, they are able to perform this analysis with a

speedup of up to 15x when compared to other well-known analysers.

Information Extraction

Information extraction (IE) is the automatic extraction of structured information

from documents, web pages, annotations, etc. Lixto is a web data extraction project

by Gottlob et al. [8] based on Elog and XML [44]. Elog is an extension of monadic

Datalog with conditions to detect “false positives” while extracting data, among other

things. Monadic Datalog requires all rules to have arity one in their heads. The special

properties of this particular Datalog over trees make it an efficient data extraction

language.

Another Datalog IE tool was created by Shen et al. [9]. Compared to Perl [45] or

Cinvestav Departamento de Computación



36 Chapter 3

C++ information extraction programs, their Datalog extension called XLog provides

smaller and easier to understand programs. An interesting addition to Datalog by

Xlog are procedural predicates (note that Datalog is a truly declarative language).

These predicates receive a set of tuples, perform some computations over the tuples

using Java or C++ and return another set of tuples back to the Datalog rule.

Network Monitoring

Network monitoring is the continuous analysis of a computer network to obtain

traffic information, component failure, etc. For peer-to-peer (P2P) applications,

Abiteboul et al. [10] use an extension of Datalog called dDatalog. This Datalog

distributes its rules over the peers in the network according to the information each

of them possesses. To efficiently evaluate dDatalog, a distributed version of the query-

subquery (QSQ) top-down evaluation strategy, called dQSQ, is used (SQS is described

in Section 3.4.3).

Security

Marczak et al. [11] implemented SecureBlox a distributed query processor with

security policies. SecureBlox is an enhancement of LogicBlox with additional

predicates to define write permissions, cryptography, etc. LogicBlox is a platform

based on an extension of Datalog called DatalogLB. This Datalog extension allows

the declaration of integrity constraints (e.g. functional dependencies). The difference

between these constraints and Datalog rules is that a constraint ensures, for the data

in its head, that its body is true (in contrast, a rule uses its body to derive data for

the head).

Trevor Jim [12] created the Secure Dynamically Distributed Datalog (SD3)

platform. It includes a trust manager system, a policy evaluator and a certificate

retrieval system. SD3 extends Datalog’s predicate names with an additional value

that helps determine who is in control of the relation defined by the predicate. This

means that a predicate will be true only if its controller (the one that has the relation)

Cinvestav Departamento de Computación



Datalog 37

says it is true. The advantages of this platform over other trust management systems

are its high-level language which abstracts many complex details and its ability to

quickly create security policies from scratch or by modifing existing ones.

Cloud Computing

Cloud computing is the execution of programs over many computers connected in a

network. Alvaro et al. [13] presented a distributed data analytic stack implemented

using Overlog. Since Overlog was developed for networking, they implemented a new

Java-based runtime called JOL. This runtime allows Java objects to be stored in

tuples and Java functions to be called from Overlog. Their system was tested against

Hadoop [46] showing a slightly worse but still competitive performance. While they

attribute many of the benefits of their system to Overlog, they also note that Overlog

has many bugs related to ambiguities in its semantics.

3.2 Datalog Syntax and Semantics

In this section we define the syntax of Datalog programs with some examples. We also

describe the characteristics of facts and rules that allow their parsing and analysis.

3.2.1 Syntax

A Datalog program consist of a finite number of facts and rules. Facts are statements

about something relevant, for example ’John is Harry’s father’. Rules are sentences

that allow the deduction of new facts from known facts, for example ’If X is the father

of Y and if Y is the father of Z, then X is the grandfather of Z’. To represent rules

and facts, Datalog uses clauses which are a finite set of literals. These literals, also

called predicates, are an atomic formulas (atoms) or their negations. An atom is the

smallest unit in Datalog and has the following structure: A(x1, ..., xn), where A is the

name of the atom and xi is either a variable or a constant.
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The left side of a clause is called head and the right size is called body, which

can be empty. Clauses without body are facts; clauses with at least one literal in

the body are rules (literals in the body are also called subgoals). Datalog can also

use recursive rules which facilitate specifying (querying for) the transitive closure of

relations, which is a key concept to many applications [40].

For example, the facts ’John is Harry’s father’ and ’David is John’s father’, can

be represented as:

father(harry, john).

father(john, david).

The rule ’If X is the father of Y and if Y is the father of Z, then X is the grandfather

of Z’, is represented as:

grandfather(Z, X) :- father(Y, X), father(Z, Y).

Datalog programs can derive many new facts. Sometimes, only a subset of these

facts is of importance. To derive only the necessary fact subsets from the rules, a

query is used. Queries are specified as a single clause followed by a question mark.

For example, the query ’Who is the grandfather of harry’, is defined as:

grandfather(harry, X)?

3.2.2 Parsing

Datalog programs are usually read from a file and must be parsed into data and

instructions that machines can process. While all Datalog engines follow a similar

syntax based on Prolog, slight variations are possible. For example, in our engine, we

use a question mark at the end of a clause to represent a query, while other engines

use the question mark at the beginning of the clause.
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Figure 3.1: Fact structure.

Facts

To parse a fact, the following properties must be considered:

• All the characters before the parentheses compose the name of the fact.

• Two or more facts can have the same name but they must also have the same

arity (number of subgoals).

• The name of a fact and a rule cannot be the same.

• Inside the parentheses all elements are separated by commas.

• After the closing parentheses, a dot is used to specify the end of the fact.

Figure 3.1 shows an example of these properties.

Rules

All rules have the following in common:

• Rules can have variables and constants.

• Variables start with a capital letter.

• Constants starting with capital letters should be within single quotes.

• Constants do not appear in the head of the rule.

• The head of the rule is separated by a colon followed by a hyphen.
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Figure 3.2: Rule structure.

• The name of the rule and the elements that compose the result of the rule are

in the head.

• Two or more rules can have the same name and same or different arity.

• The name of a fact and a rule cannot be the same.

• Each clause of a rule has a name and a set of elements of its own.

• The name of each clause must refer to an existing fact or rule.

• The arity of each clause must match the arity of the fact or rule it refers to.

• After the last closing parentheses, a dot is used to specify the end of the rule.

As an example, consider the program of Figure 3.2.

Queries

When parsing a query, the following should be considered:

• Queries can have variables and constants.

• Two or more queries can have the same name.

• A query must have the same name of an existing fact or rule.
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Figure 3.3: Query structure.

• A query must have the same arity of the clause it refers to.

• After the closing parentheses, a question mark is used to specify the end of the

query.

Figure 3.3 gives an example of a query.

3.3 Datalog Programs and Relational Algebra

Every Datalog program can be translated into a series of positive relational algebra

(RA+) operations [47] (RA+ is relational algebra without set difference). Any query

that can be answered using RA+ can also be answered using a Datalog program.

Thanks to recursion, Datalog may even evaluate queries which cannot be evaluated

in RA+. Due to lack of negation (difference in relational algebra), Datalog cannot

answer all the queries that classic relational algebra can.

3.3.1 Relational Algebra

Relational algebra [48] is the combination of first-order logic and set algebra that

operates over finite relations (tables). It has many operations, but only the following

are part of our Datalog engine:

• Selection. Selection is a unary operator that takes all the tuples that

comply with a certain condition and discards the rest. It is represented as

σcondition(R), where R is a relation and condition is usually a formula that
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includes comparison (<,>,=, 6=) and logical operators (∧,∨,¬) over attributes

(columns) and constants (e.g. c1 > c2 ∧ c2 6= c3 where c1 c2 and c3 are the

attributes of a relation).

• Projection. Projection is a unary operator that leaves the required columns

and discards the rest. It is written as Πcolumns(R), where columns are the name

of the attributes to conserve.

• Equijoin. An equijoin is the combination of all tuples in two relations that have

equal values over some defined attributes. It is represented as R ./columns S,

where R and S are the two relations and columns are pairs of equalities over

attributes joined together by ands (e.g. c1 = c2 ∧ c4 = c5, where cn are

attributes). In this work, we call an equijoin over only one pair of values (e.g.

R ./c1=c2 S) a join or single join. We also call an equijoin over two or more

pairs of values (e.g. R ./c1=c2∧c3=c4... S) a multijoin. Finally, an equijoin over

the same relation (e.g. R ./c1=c2∧c3=c4... R) is called a selfjoin.

Section 3.3.2 has examples of these operations.

3.3.2 Translating Datalog Programs into Relational Algebra

To understand the transition from Datalog programs to relational algebra operations,

we start by showing how each element of a Datalog program can be seen as an element

in a relational database. First, each fact in a Datalog program can be seen as a row

on a table: the head represents the name of the table and the body represents the

elements of that row. For example, consider the following facts:

father(Harry, John).

father(John, David).

Their corresponding table would be Table 3.1.

Rules can be seen as virtual views [38], i.e., they represent operations over facts

and rule results that are executed each time the rule is evaluated. Their results can
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father
Harry John
John David

Table 3.1: Datalog facts as a table.

be seen as tables that have the lifetime of the program. For example, consider the

following rule:

grandfather(Z, X) :- father(Y, X), father(Z, Y).

This rule performs a join and a projection (as described shortly), generating the

view represented by Table 3.2.

grandfather
Harry David

Table 3.2: Result of a Datalog rule as a view.

Now, consider a Datalog rule r. All predicates p1, ..., pn in the body of rule r

represent relations P1, ..., Pn, where each Pi consists of all the tuples t1, ..., tm that

make predicate pi true. This means that subgoals in the body of a rule are made

true, by a certain set of tuples, based on the variables and constants in the body. If

all subgoals in the body are true, then the head of the rule is also true. To obtain

the set of tuples that make the head true, we must transform the Datalog program

into relational algebra equations by following these translation rules:

• Selection. Selection is applied when constant values appear in a predicate.

(e.g. a(constant,X), Figure 3.5).

• Join. A join is made between two subgoals in the body of a rule using a pair

of variables as reference. The result of the join can be seen as a temporary

predicate that has to be joined in turn to the rest of the subgoals of the body.

(e.g. a(X, Y ), b(Y, Z), Figure 3.6).

• Multijoin. Two or more pairs of common variables between two predicates

represent multijoins (e.g. a(X, Y ), b(X, Y ), Figure 3.9). Its result is also a

temporary subgoal.
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Figure 3.4: Rule evaluation based on relational algebra operations.

• Selfjoin. If two or more common variables are found in the same subgoal, a

seljoin is applied (e.g. a(X,X), Figure 3.8).

• Projection. Determined by the variables in the head of the rule (e.g. r(X, Y ) :

−a(X, Y, Z), Figure 3.7).

As a general example, consider the rule of Figure 3.4 and the relational algebra

operations required to solve it.

Rule translation

As a complete, step by step translation example, consider following Datalog program:

rule(X, Z) :- rel1(constant, X), rel2(X, Y, Y, Z), rule(Z).

rule(X, X) :- rel3(X).

To translate this program to relational algebra, first we translate each subgoal in

the body of these rules as follows:
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Figure 3.5: Selection. Figure 3.6: Single Join.

Figure 3.7: Projection. Figure 3.8: Selfjoin.

Figure 3.9: Multijoin.
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A(X) = Π2(σ1=constant(rel1)) (3.1)

B(X,Z) = Π1,4(σ2=3(rel2)) (3.2)

C(X) = Π1,1(rel3) (3.3)

Note that the elements of each subgoal are changed to numbers depending on their

position (e.g. variables X and Y in q(X,Y) would be 1 and 2 respectively). The first

equation A(X) is a selection on column 1 with value ’constant’ and then a projection

to get only the second column. B(X,Z) is a selfjoin over columns 2 and 3 followed

by a projection to get columns 1 and 4. rule(Z) requires no operation and is left as

it is. Finally, although rel3(X) requires no additional operation per se, the variable

in the head of the rule is repeated, so a projection on rel3(X) is necessary to have

the correct result.

Once we have each subgoal as a relational algebra equation, we build the

translation of each rule as a series of joins over the subgoals:

A(X) ./ B(X,Z) ./ rule(Z) ⊆ rule (3.4)

C(X) ⊆ rule (3.5)

All rules with the same name are then fused together into a single equation having

the rule name as left-hand side (LHS), and the union of all the left-hand sides of the

rules as right-hand side (RHS). For instance, from the above equations we obtain the

following equation:

rule = A(X) ./ B(X,Z) ./ rule(Z) ∪ C(X) (3.6)
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Query translation

Datalog queries are also translated into relational algebra queries using projections

and selections. For example, the Datalog query rule(a,X) to the program presented

above, is equivalent to the algebraic query Π2(σ1=a(rule)).

3.4 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-up

approach. Which method is better has been object of much debate [49, 50], since both

approaches have their advantages and disadvantages. Worse yet, there are programs

that perform well with one approach but poorly on the other. Both evaluation

strategies must satisfy three important properties:

• Soundness. The result of a program must not have tuples which do not belong

to it.

• Completeness. All tuples of the result must be found.

• Termination. The program must be evaluated in finite time.

3.4.1 Datalog and Prolog

The syntax of Datalog is a subset of Prolog, so it can be parsed by a Prolog

engine. However, there are several differences in the evaluation of Datalog and Prolog

programs:

• Prolog respects the order of the rules and the subgoals in each rule. Datalog do

not requires a certain order in neither rules nor subgoals.

• Prolog termination depends on proper rule and subgoals ordering. The

termination of Datalog programs is unaffected by rule and subgoals ordering.
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• Prolog works by retrieving data from memory one-tuple-at-a-time. Some

Datalog evaluation strategies are set-oriented (i.e. take entire relations from

memory). The reduced number of memory transactions make set-oriented

methods a more efficient approach.

3.4.2 Bottom-Up Evaluation

The bottom-up approach works by applying the rules to the given facts, thereby

deriving new facts, and repeating this process with until a fixed point is reached (i.e.

no more new facts are derivable). This approach has several benefits:

• It can avoid infinite loops by correctly evaluating repeated or cyclic

subgoals [49].

• Rules can be evaluated in any order and even in parallel.

• It works on sets of tuples, instead of one-tuple-at-a-time like most top-down

implementations, thus decreasing the required number of memory transactions.

One disadvantage of this approach is that, at each iteration, facts we have already

used in the computation of other facts are used again, deriving nothing new from this

repeated use. This problem is solved by the semi-naive bottom-up approach which,

at each iteration, considers only the newly derived facts.

Another disadvantages is that it is not goal-oriented. This means that rule

evaluation generates many unnecessary tuples and performs additional computations

because the queries are considered only at the end.

To improve the bottom-up approach, several methods have been proposed such as

the magic sets transformation [51] or the subsumptive demand transformation [52].

Basically, these methods transform a set of rules and a query into a new set of rules

such that the set of facts that can be inferred from the new set of rules contains only

the facts that would be inferred during a top-down evaluation.

Cinvestav Departamento de Computación



Datalog 49

3.4.3 Top-Down Evaluation

The top-down approach, which is the one used by the Prolog language, starts with

the goal which is reduced to subgoals, or simpler problems, until a trivial problem is

reached. Then, the solution of larger problems is composed of the solutions of simpler

problems until the solution of the original problem is obtained.

The advantage of top-down algorithms is that they are goal-oriented. That means

that the query is considered early in the computation, thus ignoring facts that are not

necessary to generate the result. This translates into a reduced number of unnecessary

computations.

The disadvantage of these algorithms is that answers are computed a-tuple-at-a-

time, i.e. only a small subset of the data is accessed each time a subgoal is to be

answered. These small accesses are due to the simpler nature of subgoals. From the

computational point of view, this means that additional memory transactions have

to be performed. For massive parallelism this is an undesirable feature.

A top-down evaluation algorithm that solves the a-tuple-at-a-time problem is the

query-subquery (QSQ) algorithm [53]. The idea is to consider both a goal and a

Datalog program as a query. All predicates in the body of the rules that answer the

goal are subgoals. Subgoals, together with the Datalog program, define subqueries.

These subqueries are in turn expanded into more subqueries until the answer to each

subquery requires only ground facts (facts that were not derived from rules).

The most common strategy to improve the performance of top-down methods is

known as tabling [52]. The idea is to reuse the answers of subgoals to answer other

subgoals, and thus, reduce the number of computations.

3.5 Extensions and Optimizations

In this section we present the most important extensions and optimizations to

Datalog. These extensions increase Datalog’s expressive power, allowing additional

types of queries to be evaluated. Optimizations usually increase the performance of
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Datalog programs.

3.5.1 Extensions

Datalog can be extended with built-in predicates, negation, complex objects, etc.

These extensions have their own syntax and usually require changes to the entire

implementation of rule evaluation.

Built-in predicates

Built-in predicates are special symbols such as =, 6=, >,<, that force variables to take

certain values, e. g. the predicate Y > 5 would force Y to only take values greater

than 5. They can appear in the right-hand side of a rule and are written in infix

notation. Two important restrictions must be enforced when working with these

predicates: a) to guarantee a finite output of the Datalog program (also known as

safety), each variable involved in a built-in predicate must also appear in a nonbuilt-in

predicate of the same rule body; and b) the evaluation of built-in predicates must be

delayed until all variables involved are bound to constants, otherwise it is impossible

to know which tuples are part of the computation of these predicates.

A detailed description of these predicates can be found in [54, 47]. In relational

algebra, most of these predicates can be seen as join conditions. For example, consider

the following rule:

rule(X) :- fact1(X, Y), fact2(X, Z), Y < Z.

This rule can be translated into the following relational algebra equation:

rule = Π1(fact1 ./1=1 and 2<2 fact2) (3.7)

where 1 = 1 represents the join over X and 2 < 2 is the built-in predicate

transformed into a join condition. This means that the rows of fact1 will only be

joined to the rows of fact2 if both rows are equal on the first column and if the second

column of fact1 is less that the second column fact2.
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Negation

To increase its expressive power, Datalog can be extended with the addition of

negation in predicates [38, 55]. It is usually represented by the symbol ¬ and can

appear in both the body and the head of a rule (e. g. ¬A(X) :- B(X, Y), ¬C(Y).).

In relational algebra, negation is equivalent to the difference operator (−). Negation

with recursion, as is required by Datalog, is a difficult task with several possible

implementations:

• Stratification. The idea is to compute all rules defining a negative predicate

before it is used. This can be done by analysing the program and properly

organizing the rules in it. This approach works only if all rules defining a

negative predicate can be completely evaluated before the predicate is used.

Programs that fulfil this condition are called stratified.

• Well-founded Semantics. Are based on the idea that a program may not

derive every fact as true or false. It uses a three-value logic: true, false and

unknown or undefined. It can be used for all Datalog programs but the answers

are not guaranteed to provide the entire information. See [56] for details.

• Inflationary Semantics. Its name comes from the idea that once a fact has

been inferred, it is always considered to be true. The evaluation is similar to the

fixed-point method: all rules are used at each step to infer new facts until no

new facts can be inferred. If a negative fact is not yet derived, it is considered

to be true. The disadvantage of this method is that the answer is not minimal

(e.g. under inflationary evaluation, a program may return (a, b, c) as answers,

while the same program under other evaluations may return (a, b) or (a, c)).

• Noninflationary Semantics. Similar to inflationary semantics, rules are

iterated until no new facts are inferred. However, two possible improvements

make it noninflationary: the retaining of only new inferred facts at each iteration

or the removal of an already inferred fact if found to be false. Its disadvantage
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is that termination is not guaranteed. Both inflationary and noninflationary

semantics are well described in [38].

3.5.2 Optimizations

These optimizations described below can be implemented without compromising the

semantics of the language. The examples presented in this section where taken

from [57].

Magic Sets

Refer to a logical rewriting method used in many deductive database systems to

improve the performance of bottom-up evaluation. It transforms a program by adding

new rules which represent the query under consideration. The result of the new

program is equivalent to that of the original one. By doing this transformation, the

variables in the rules are restricted to take only certain values in a way similar to

the top-down approach. This reduces the number of unnecessary facts, and thus the

required amount of memory and computations. This method is well documented in

logic programming literature [57, 51]. As an example, consider the following Datalog

program to compute the same generation cousins:

sg(X, X).

sg(X, Y) :- par(X, X1), par(Y, Y1), sg(X1, Y1).

sg(a, W)?

Where par is a series of facts that define who is the parent of who, e.g. par(A, B).

would mean that B is a parent of A. The magic sets method is applied by adding two

new rules and rewriting the other two:

magic(a).

magic(U) :- magic(V), par(V, U).

sg(X, X) :- magic(X).

sg(X, Y) :- magic(X), par(X, X1), par(Y, Y1), sg(X1, Y1).
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The first rule adds a to the magic relation. With a in this relation, the second rule

will take the second column of all facts of relation par that have a in the first column

(i.e., it will take all the parents of a). Since relation magic has derived facts (a and

his parents), the magic predicate in the third and fourth rules will force them to start

their recursive search with these derived facts. By doing this, all facts in relation par

that are not related to a will not be considered.

Counting

Counting is an extension of the Magic Sets method that complements each element

of the magic set with an index. This index represents the “distance” to the goal

constants, allowing the evaluation to consider only those tuples that have the correct

“distance”. While this method further reduces the number of computations, it can

only be used in linear programs with acyclic databases, otherwise termination is

not guaranteed. This method is described in [58, 59]. As an example, consider the

counting transformation of the same program described in the magic sets method:

ancestor(a, 0).

ancestor(X, I) :- par(Y, X), ancestor(Y, J), I = J + 1.

cousin(X, I) :- ancestor(X, I).

cousin(X, I) :- par(X, Y), cousin(Y, J), I = J - 1, I >= 0.

sg(X) :- cousin(X, 0).

The first rule establishes a as the origin (hence the zero). The second rule

recursively obtains all the ancestors of a and assigns them their corresponding distance

to a (e.g. the parents of a would have a one, his grandparents would have a two and

so forth). The third rule stores all the ancestors of a into relation cousin so they can

be used recursively by the forth rule. Starting with the ancestors of a, the fourth

rule recursively computes the cousins of a. The fifth rule returns the desired result

by restricting the search to the same generation cousins of a.
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3.6 Summary

Datalog is a language based on first order logic that has been used as a data model

for relational databases. A Datalog program consist of a finite number of facts and

rules. Facts are statements about something relevant. Rules allow the deduction of

new facts from known facts.

Recently, Datalog has been used in new applications, including data integration,

declarative networking, etc. This interest in Datalog has in turn prompted new

designs of Datalog targeting computing architectures such as GPUs, FPGAs and

cloud computing based on Google’s Mapreduce programming model.

Every Datalog program can be translated into a series of relational algebra

operations. The following relational algebra operations are used in Datalog: selections

are made when constants appear in the body of a rule. Then a join is made between

two or more elements in the body of a rule using the variables as reference. Finally,

a projection is made according to the variables in the head of the rule.

Datalog evaluation can be performed bottom-up, starting from the existing facts

and inferring new facts, or top-down, reducing the goal into simpler subgoals and

solving them. Datalog can be extended to evaluate other types of queries, e.g. with

negation, and optimize in various ways to improve performance.
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A Datalog engine for GPUs

In this chapter we present the design of our Datalog engine for GPUs.

As mentioned in Chapter 3, Datalog is being used in a wide array of applications

other than as a data model of relational databases. This renewed interest in Datalog

has in turn prompted new designs of Datalog targeting computing architectures such

as GPUs, Field-programmable Gate Arrays (FPGAs) [40] and cloud computing based

on Google’s Mapreduce programming model [41].

Our work is one of those new Datalog designs targeted at GPUs. Yet it is the first

fully functional Datalog engine for GPUs to the best of our knowledge.

GPUs can substantially improve performance of data-intensive, highly parallel

applications such as database relational operations, substantially in many cases [60,

61, 62]. However, the communication-to-computation ratio may become a factor.

This ratio must be relatively low for applications to show good performance, i.e.: the

cost of moving data from the host memory to the GPU memory and vice versa must

be low relative to the cost of the computation performed by the GPU on that data.

The Datalog engine presented here was designed including various optimisations

aimed to reduce the communication-to-computation ratio. Data is preprocessed in

the host (a multicore) in order both for data transfers between the host and the GPU

to take less time and for data to be processed more efficiently by the GPU. Also, a
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memory management scheme automatically swaps data between memory in the host

platform multicore and memory in the GPU in order to reduce the number of such

transfers.

Datalog queries, recursive and non-recursive, are evaluated using typical relational

operators, select, join and project, which are also optimised in various ways in order

to capitalise better on the GPU architecture.

This chapter presents first an overview of the organisation and functioning of our

Datalog engine, and then some detail of the functioning of its main modules: the

compiler, the scheduler, the relational algebra operations and support operations.

Finally, we present related work, after our design in order to more easily contrast it

with our work.

4.1 Architecture

Figure 4.1 shows the main components of our Datalog engine. The engine represents

a hybrid solution in that both GPU and CPU are used. Highly parallel code (i.e.

relational algebra operators) is executed on the GPU while secuential code (i.e.

input/output operations, control) is executed on the GPU. Our engine is organized

into three stages with a single host thread executing the first and third stages, and

scheduling work to the GPU during the second stage. These stages are called the

Preparation stage, the Evaluation stage and the Termination stage, respectively, and

will be outlined shortly.

All data sent to the GPU is organized into arrays that are stored in global memory.

The results of rule evaluations are also stored in global memory.

A memory management module, not shown in Figure 4.1 is always active during

the evaluation and termination stages to help identify the most recently used data

within the GPU in order to maintain it in global memory and discard sections of data

that are no longer necessary.
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Figure 4.1: GPU Datalog engine organisation.
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4.1.1 Preparation Stage

The preparation stage begins with the compiling of the Datalog program to store it in

memory with an appropriate format. Once compiling is completed, the preprocessor

analyses each rule to determine which operations to perform and over which tables

and columns they will be performed. Finally, the query is analysed to determine

which rules are to be evaluated. A queue is created with these rules.

Compiler

To capitalise on the GPU capacity to process numbers and to have short and constant

processing time for each tuple (strings variable size entails varying processing time),

we identify and use facts and rules with/as numbers, keeping their corresponding

strings in a hashed dictionary. Each unique string is assigned a unique id, equal

strings are assigned the same id. The GPU thus works with numbers only; the

dictionary is used at the very end when the final results are to be displayed.

As mention in Chapter 3, facts with the same name can be seen as a table. We

store tables in contiguous linear arrays. This allows us to transfer arrays directly to

the GPU without additional modification. To determine the beginning and end of

each fact in the array, we use the number of columns of the table (arity of facts) and

the total number of rows (total number of facts). For example, consider the following

facts:

father(Harry, John).

father(John, David).

The strings of these facts are stored into the hashed dictionary as show in Table 4.1

and into the linear array as in Table 4.2. Notice that the number of rows is two (two

facts with the same name) and that the number of columns is also two (the arity of

both facts is two). Thus, we know that the first fact in the array starts at position 0

and ends at 1. The second fact starts at position 2, ends at 3 and the array ends at

3 too.
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String ID
father 1
Harry 2
John 3
David 4

Table 4.1: Datalog facts in hashed
dictionary.

1 2 2 3

Table 4.2: Datalog facts as an array
according to the hashed dictionary.

String ID
grandfather 4

X 6
father 1

Y 7
Harry 2

Table 4.3: Datalog rule in hashed
dictionary.

4 6 0 1 7 6 0 1 -2 7 0

Table 4.4: Datalog rule as an array.

Rules are also stored in a linear array. However, unlike facts, they cannot be

grouped together by name and their size is variable. This requires that we use one

array per rule and that we separate each element in the rule with a special character

(0). This special character also helps us determine the name of each predicate in

the rule. Finally, rules include both constants and variables. To distinguish between

them, we use positive numbers for variables and negative numbers for constants. For

example, consider the following rule:

grandfather(X) :- father(Y, X), father(Harry, Y).

The strings of the rule are stored into the hashed dictionary as show in Table 4.3

and into the linear array as in Table 4.4. A zero is placed at the end of each predicate

as separator. The last zero also serves to indicate the end of the rule. Predicate

names will always be at the beginning of the array and after each zero except the last

one. Thus, the predicate names are at positions 0, 3 and 7. It can also be seen that

variables and predicate names use positive numbers, while the constant (Harry), has

the same number assigned by the hash dictionary but negative (-2).

To keep track of additional information regarding facts and rules (name, arity,

number of subgoals, etc.), we store this information in a list of structures. The
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structure used is as follows:

struct predicates{

int name;

int num_rows;

int num_columns;

int is_fact;

int *address_host_table;

}

Where name is the name of the predicate as assigned by the hashed dictionary. If a

table is stored in the structure, num rows represents the number of rows, otherwise it

represents the number of predicates. num columns represents the number of columns

when storing table information, and the arity of the rule head when storing rule

information. To determine what we are storing, we set is fact to 1 when storing

tables and 0 when storing rules. Finally, address host table stores a pointer to the

arrays described above.

Preprocessor

A key factor for good performance is preprocessing data before sending it to the GPU.

As mentioned in Chapter 3, Datalog rules are evaluated through a series of relational

algebra operations: selections, joins and projections. For the evaluation of each rule,

the specification of what operations to perform, including constants, variables, facts

and other rules involved, is carried out in the host (as opposed to be carried out in

the GPU by each kernel thread), and sent to the GPU for all GPU threads to use it.

Examples:

• Selection is specified with two values, column number to search and the

constant value to search; the two values are sent as an array which can include

more than one selection (more than one pair of values), as in the following
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example, where columns 0, 2, and 5 will be searched for the constants a, b and

c, respectively:

fact1(’a’,X,’b’,Y,Z,’c’). -> [0, ’a’, 2, ’b’, 5, ’c’]

• Join is specified with two values, column number in the first relation to join

and column number in the second relation to join; the two values are sent as an

array which can include more than one join, as in the following example where

the following columns are joined in pairs: column 1 in fact1 (X) with column 1

in fact2, column 2 in fact1 with column 4 in fact2, and column 3 in fact1 with

column 0 in fact2.

fact1(A,X,Y,Z), fact2(Z,X,B,C,Y). -> [1, 1, 2, 4, 3, 0]

• Selfjoin can be performed over two or more columns and more than one selfjoin

can be performed in the same subgoal. Two or more values represent the

column numbers required for a selfjoin, followed by a negative number (-1). The

following example has two selfjoins: the first one is performed over columns 0,

1 and 2 (X), the second over columns 4 and 6 (Y). The first -1 separates the

two selfjoins, and the second -1 indicates the end of the array.

fact1(X,X,X,A,Y,B,Y). -> [0, 1, 2, -1, 4, 6, -1]

• Projection is performed after each join as specified in Section 4.3. Because of

this, we use two series of values, one for each subgoal to be joined, representing

the columns that will remain after the projection. They are also separated by

a negative number (-1). In the following example, the first series represents the

columns of fact1 and has column 0 (X) and column 2 (Y) as required by the rule

head; the second series represents the columns of fact2 and has only column 1

(Z). Separators (-1) are used at the end of each series.

rule(X,Y,Z) :- fact1(X,A,Y), fact2(A,Z). -> [0, 2, -1, 1, -1]
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Along with each array, a counter to track the number of operations to perform is

used. For instance, consider the array [0, ’a’, 2, ’b’, 5, ’c’] in the selection

example, the counter associated with this array will have its value set to 3, because

three selections are to be performed. These counters also allow us to calculate the size

of the array by multiplying its value times two (in the selection and join operations)

or by counting the number of separators (in the selfjoin and projection operations).

4.1.2 Evaluation Stage

The evaluation stage takes the rule queue and evaluates each rule at a time. If the

rule has only one subgoal, any selections required by this subgoal are performed first,

followed by any selfjoins and, finally, a projection to obtain the result. If the rule has

two or more subgoals, the first two subgoals are taken and any necessary selections

and projections are performed. Next, the two subgoals are joined (using single or

multijoin depending on the variables in the subgoals) and a projection is performed

to create a temporary table with the result. If there are more subgoals in the rule,

we take the next subgoal, perform any needed selections and selfjoins, and then it

is joined with the temporary table. We then perform a projection to create a new

temporary table that either has to be joined to the next subgoal or is returned as the

result of the rule. Finally, once we have the result of the rule, duplicate elimination

is performed to reduce memory and computation requirements.

All relational algebra operations are performed in the GPU and are described in

detail in Section 4.2.

4.1.3 Termination Stage

Once all the rules in the queue have been evaluated, we proceed to the termination

stage. This stage removes from the queue those rules which will not yield new facts

if evaluated again. To remove rules, we consider the following:

• Rules with only facts as subgoals finish their evaluation in the first iteration.
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• Rules with facts and other rules who have already finished as subgoals will finish

their evaluation in the next iteration (we say in the next iteration because the

result of one or more rule subgoals has yet to be considered by the main rule).

• Recursive rules finish when no new facts are generated by their evaluation.

Once the finished rules are removed, if the queue does not become empty, each rule

in it is evaluated again. This process is repeated until the rules queue becomes empty.

Once it is empty, we take all the results required by the query in order to answer it

(i.e., we perform any selections and/or projections as required by the variables and

constants in the query). Finally, any columns in the query result are returned to their

original string form.

4.1.4 Memory Management

As mentioned in Chapter 2, global memory is limited by hardware and cannot be

expanded using virtual memory. More often than not, it will be impossible for all

tables to fit in global memory at the same time. Worse still, it is possible for one

table to be so big that it cannot fit in global memory at all. In addition, operations

like sort and join, among others, need global memory for temporary arrays.

Since data transfers, i.e. moving tables, between GPU and CPU memory is costly

in all CUDA applications [35], an efficient memory management policy that addresses

most of the above issues will tend to improve performance.

For this reason, we designed a memory management scheme that tries to minimize

the number of such transfers. Its purpose is to maintain facts and rule results in GPU

memory for as long as possible. To do so, it keeps track of GPU memory available

and GPU memory used, and maintains a list with information about each fact and

rule result that is resident in GPU memory. Such information includes its size, the

fact or rule it represents and the pointer to its location in GPU memory.

When some data (facts or rule results) is requested to be loaded into GPU memory,

it is first looked up in that list. If found, its entry in the list is moved at the beginning
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of the list; otherwise, memory is allocated for the data and a list entry is created at

the beginning of the list for it. In either case, its address in memory is returned.

If allocating memory for the data requires deallocating other facts and rule results,

those at the end of the list are deallocated first until enough memory is obtained —

rule results are written to CPU memory before deallocating them. By so doing, most

recently used fact and rule results are kept in GPU memory.

Without our scheme, programming would be similar to that based on memory

overlays before virtual memory was invented. Most data used or produced by an

operation would have to be discarded from GPU memory unless it is known that it

will be used by following operations. This not only complicates the coding, but is

also dependant on the amount of memory available, which in turn depends on the

amount of data being processed.

Our scheme works well for processing many rules that depend on each other or

rules that use many different facts. It is very similar to the Demand Paging and Not

Recently Used (NRU) Page Replacement algorithm described in [63]; but it works

with memory sections as opposed to pages. The most important policies of our

scheme are as follows:

• Loading tables. Tables are loaded into global memory as needed by an

operation.

• Unloading tables. Tables are not unloaded until there is not enough space

to load a table. When this happens, the table that has the longest time since

it was last used will be unloaded, then the one with the second longest time.

This process continues until there’s enough space to load the required table.

• Memory for temporary arrays. Similar to ’unloading’, tables with the

longest time since they were last used will be unloaded until there’s space for

the temporary array.

• Transfers between CPU and GPU. Transfers are only needed when a table

is not loaded or when results are sent to the CPU in order to free memory.
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• Control. It’s necessary to check if a table is loaded or not, counters to keep

track of the last time a table was used are also needed and the amount of

available memory must be monitored.

4.2 GPU Relational Algebra Operators

This section presents the design decisions we made for the relational algebra

operations we use in our Datalog engine: select, join and project operations for

GPUs. The GPU kernels that implement these operations access (read/write) tables

from GPU global memory.

Selection and join represent dynamic problems: the size of the solution depends

on the input and cannot be known beforehand. For single threaded implementations,

this problem can be solved with dynamic storage (i.e. vectors, lists, queues). The

idea is to increase the resulting array each time a solution is found. However, for

GPUs, dynamic storage is not possible (since there is no function to increase the size

of an array), or very costly (since using pointers require additional global memory

reads and may lead to memory fragmentation). Allocating a relatively big result

array is also a bad idea due to the required coordination to have each thread write

at a different location.

To avoid these issues altogether, we make use of additional kernels that calculate

the exact size of the result before writing it on memory, thus leading to a static

problem.

4.2.1 Selection

Selection has two main issues when designed for running in GPUs. The first issue

is that the size of the result is not known beforehand, and dynamically increasing

the size of the results buffer is not convenient performance-wise because it may

involve reallocating its contents. The other issue is that, for efficiency, each GPU

thread must know onto which global memory location it will write its result without
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communicating with other GPU threads.

To avoid those issues, our selection uses three different kernels. The first kernel

marks all the rows that satisfy the selection predicate with a value one. The second

kernel performs a prefix sum on the marks to determine the size of the results buffer

and the location where each GPU thread must write the results. The last kernel

writes the results.

4.2.2 Projection

Projection requires little computation, as it simply involves taking all the elements

of each required column and store them in a new memory location. While it may

seem pointless to use the GPU to move memory, the higher memory bandwidth of the

GPU, compared to that of the host CPU/s, and the fact that the results remain in

GPU memory for further processing, make projection a suitable operation for GPU

processing.

4.2.3 Join

Our Datalog engine uses these types of join: Single join, Multijoin and Selfjoin.

A single join is used when only two columns are to be joined, e.g.: table1(X,Y)

./ table2(Y,Z). A multijoin is used when more than two columns are to be joined:

table1(X,Y) ./ table2(X,Y). A selfjoin is used when two columns have the same

variable in the same predicate: table1(X,X).

Single join.

We use a modified version of the Indexed Nested Loop Join described in [61], which

is as follows:

Make an array for each of the two columns to be joined

Sort one of them

Create a CSS-Tree for the sorted column
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Search the tree to determine the join positions

Do a first join to determine the size of the result

Do a second join to write the result

The CSS-Tree [64] (Cache Sensitive Search Tree) is a special B+-Tree that is very

adequate for the GPU because it can be quickly constructed in parallel and because

tree traversal is performed via address arithmetic instead of the traditional memory

pointers. The tree is adapted for GPUs by setting the size of each node to be equal to

the warp size, thus maintaining some degree of coalesced memory access and reducing

cache misses. To speed-up the initial stages of the search, the upper levels of the tree

are stored in shared memory.

While the tree allows us to know the location of an element, it does not tell

us how many times each element is going to be joined with other elements nor in

which memory location must each thread write the result. Hence, we must perform

a “preliminary” join. This join counts the number of times each element has to be

joined and returns an array that, as in the select operation, allows us to determine

the size of the result and the write locations when a prefix sum is applied this array.

With the size and write locations known, a second join writes the results.

Multijoin.

To perform a join over more than two columns, for example table1(X,Y) ./

table2(X,Y), we first take a pair of columns say (X,X) to create and search in the

CSS-Tree as described in the single join algorithm. Then, in the first join, after

performing the counting but before writing it to global memory, we check if the

values of the remaining columns are equal (in our example we check if Y = Y) and

reduce the count accordingly to discard the rows that do not comply. In the second

join, before writting the result, we check these columns again to decide if we write

the element or not.

This requires additional reads to global memory but, when compared to the other

common technique of hashing the columns to join into a single column (e.g., example
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Z1 = hash(X,X), Z2 = hash(Y,Y) then Z1 ./ Z2), it eliminates the cost of creating

and storing the hash table.

Selfjoin.

The selfjoin operation is very similar to the selection operation. The main difference

is that, instead of each thread checking a constant value on its corresponding row, it

checks if the values of the columns affected by the self join match.

4.3 Optimisations

Our relational algebra operations make use of the following optimisations in order to

improve performance. The purpose of these optimisations is to reduce memory use

and in principle processing time — the cost of the optimisations themselves is not yet

evaluated.

4.3.1 Optimising projections.

Running a projection at the end of each join, as described below, allows us to discard

unnecessary columns earlier in the computation of a rule. For example, consider the

following rule:

rule1(Y, W) :- fact1(X, Y), fact2(Y, Z), fact3(Z,W).

The evaluation of the first join, fact1 ./Y fact2, generates a temporary table with

columns (X,Y,Y,Z), not all of which are necessary. One of the two Y columns can be

discarded; and column X can also be discarded because it is not used again in the

body nor in the head of the rule.

4.3.2 Fusing operations.

Fusing operations consists of applying two or more operations to a data set in a single

read of the data set, as opposed to applying only one operation, which involves as
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many reads of the data set as the number of operations to be applied. We fuse the

following operations.

• All selections required by constant arguments in a subgoal of a rule are

performed at the same time.

• All selfjoins are also performed at the same time.

• Join and projection are always performed together at the same time.

To illustrate these fusings consider the following rule:

rule1(X,Z):- fact1(X,’const1’,Y,’const2’),fact2(Y,’const3’,Y,Z,Z).

This rule will be evaluated as follows. fact1 is processed first: the selections

required by ’const1’ and ’const2’ are performed at the same time — fact1 does

not require selfjoins. fact2 is processed second: the selection required by ’const3’

is performed first, and then the selfjoins between Ys and Zs are performed at the

same time. Finally, a join is performed between the third column of fact1 and the

first column of fact2 and, at the same time, a projection is made (as required by the

arguments in the rule head) to leave only the first column of fact1 and the fourth

column of fact2.

4.4 Support Operators

Our relational algebra operations make use of the support operators sort, scan and

duplicate elimination. These operations are performed on the GPU to reduce the

number of GPU to CPU memory transfers. We use the efficient implementations of

these functions provided by the Thrust library [29]. This library is a C++ template

library for GPUs based on the Standard Template Library (STL) [30] and provided

as part of the CUDA SDK (Software Development Kit).

In this section, we describe the support operators and how they are implemented

in the Thrust library.
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4.4.1 Sorts

Sorting is required for the single join, multijoin and duplicate elimination operations.

Thrust implements two sorting sorting algorithms, merge sort and radix sort. Thrust

automatically applies radix sort when sorting built-in types (char, int, float, etc.)

with the comparison operator less (<). Otherwise, merge sort is used.

Radix Sort.

The Radix sort [65] works by grouping together integer keys by the individual digits

which share the same position and value. The method iterates over digits from least-

significant to most-significant. For each digit, it performs a distribution sort of the

keys based upon the digit in order to create partitions of R distinct buckets.

The distribution sort (a.k.a. counting sort) is fundamental to the radix sorting

method. This sorting algorithm works by having each processor gather its key, obtain

the digit at the given position and work with other processors to determine where to

place the key.

Merge Sort.

Merge sort [66] is a divide and conquer sorting algorithm invented by John von

Neumann in 1945. It divides the unsorted array into n smaller arrays, and then

divides these smaller arrays into n even smaller arrays. This process is repeated until

each array has one element.

Once we have one element arrays, we merge them back into n bigger arrays by

placing each element in its correct position according to its value. These bigger arrays

are, in turn, merged together into n even bigger arrays. The process is repeated until

we have a single array with all the elements in order.
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Input numbers 1 2 3 4 5 6 ...
Prefix sum 1 3 6 10 15 21 ...

Table 4.5: Prefix sum of natural numbers.

4.4.2 Prefix sums

The prefix sum [19], also known as scan or cumulative sum, is a sequence of numbers

(y, y1, y2, ...) created by adding the elements of an input sequence (x, x1, x2, ...):

y = x

y1 = x+ x1

y2 = x+ x1 + x2

...

For example, the prefix sum of the natural numbers are the triangular numbers

as shown in Table 4.5.

The Thrust library includes many different prefix sums, however, we use only

exclusive scan and inclusive scan. Both functions receive the start and end positions

of the array to scan and the start position of the array which will store the result.

This output array can be the same as the input array to perform the prefix sum

in-place. The only difference between these functions is that exclusive scan starts the

sum at zero, while inclusive scan begins with the first element of the input array.

4.4.3 Duplicate Elimination

Join operations may generate duplicates, a great deal of them in some cases. These

duplicates could, in turn, be used as input to other join operations, thus generating

many more duplicates. To avoid wasting memory and computations on duplicates,

duplicate elimination must be implemented in the GPU. However, it is not a simple

task because the presence and location of duplicates is not known beforehand.
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To implement it in our engine, we use the unique function of the Thrust library. It

takes an array and a function to compare two elements in the array, and returns the

same array with the unique elements at the beginning. We apply duplicate elimination

to the result of each rule: when a rule is finished, its result is sorted and the unique

function is applied.

4.5 Related Work

One of the most important aspects of our work is the efficient implementation of

relational algebra operators on GPUs. Thus, in this section we present the approach

followed by Bingsheng He et al. [67, 61, 62] in the implementation of GPUQP and

Gregory Diamos et al. [60, 68, 20, 69] with Red Fox.

GPUQP: Query Co-Processing Using Graphics Processors

GPUQP [23] is an in-memory query co-processor focused on fully exploiting the

architectural features of the GPUs. Their GPU engine is designed in four bottom

up layers that allow one layer to be modified without altering the others. The four

layers, from top to bottom are: operators, access methods, primitives and storage.

Storage refers to the way the relations to be processed are stored and how these

relations are indexed.

Primitives are common operations aimed to exploit the GPU hardware features,

especially thread parallelism and the fast local memory. They are also scalable to any

number of processors because they are designed without locks and the synchronization

cost is low. Their primitives include:

• Map. Applies a given function to every tuple in an array. Uses thread groups,

each responsible for a segment of the relation. The access pattern is designed

to exploit the coalesced memory access.

• Scatter and Gather. A scatter performs indexed writes to a relation, while a
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gather performs indexed reads. Using the multi-pass optimization scheme [70],

in each pass, the scatter writes to a certain region in the output array; the

gather reads the data from a certain region in the input array.

• Prefix scan. Applies a binary operator to the input relation (e.g. prefix sum).

They adopt the implementation from CUDPP [71, 72].

• Split. Divides a relation into a number of partitions according to a given

partitioning function. They use the lock-free implementation in [61], which

uses histograms to compute the write location for each tuple. Write conflicts

are avoided because each thread knows its target position to write.

• Sort. Transforms an unordered array into an ordered one. They adopt the

quick sort from [61], which has two steps. First, given a set of random pivots,

the relation is split into multiple chunks. The split process continues until each

chunk is smaller than the shared memory. Then, multiple chunks are sorted in

parallel using bitonic sort.

• Reduce. Computes a value based on the input relation (e.g. the sum of all

key values in a relation). They implement it as a multi-pass algorithm. In each

pass, the data is divided into multiple chunks and evaluated in parallel. Each

chunk has the size of the shared memory. The result of each chunk forms the

input for the next pass.

• Filter. Selects a subset of elements from a relation, and discards the rest.

It works in three steps. First, the map primitive processes the input array

returning a 0-1 result array. Then, a prefix sum is performed on this array.

Finally, the results is scattered according to the map and prefix sum output

arrays.

Their engine supports the following three access methods:

• Table scan. Each row of the table is read in a sequential order and the columns

are checked for a condition. Implemented using the map primitive.
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• B+-trees. They adopt a Cache Sensitive Search Tree (CSS-Tree) specially

designed for GPUs described in detail in Section 4.2.3.

• Hash indexes. Consist of two arrays, headers and buckets [70]. The header

array maintains the starting positions of the buckets. Each bucket stores the

key values of the records that have the same hash value, and the pointers to

the records. Hash search is performed in four steps. First, for each search key,

the map primitive is used to compute its corresponding bucket and the gather

primitive to fetch the start and end locations for the bucket. Second, it scans

the bucket and determines the number of matching results. Third, based on the

number of results for each key, a prefix sum is computed on these numbers to

determine the start location at which the results are written. Fourth, a gather

is performed to fetch the actual result records.

They implemented the following common query processing operators:

• Selection. Without indexes, selection is implemented using the filter primitive.

With indexes, if selectivity is high, the filter primitive is also used. Otherwise,

B+-tree index or hash index are used.

• Projection. Implemented using the gather primitive. If duplicate elimination

is required, sorting is used to eliminate the duplicates.

• Ordering. Implemented using the sort primitive.

• Grouping and aggregation. The sort primitive performs grouping and the

reduce primitive performs aggregation.

The join operation is implemented using the following four algorithms:

• Non-indexed Nested Loop Join (NINLJ). Both input relations are split

into chunks. Each thread group takes two chunks and joins each tuple in one

chunk to all tuples in the other.
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• Indexed Nested Loop Join (INLJ). Creates a CSS-Tree in parallel using

one input relation. The tuples of the other relation are then searched in the tree

to determine join results. A detailed description can be found in Section 4.2.3.

• Sort-Merge Join (SMJ). The two relations are sorted and then merged

together. The smaller relation is divided in chunks of size equal to the shared

memory. Then, the first and last tuples of each chunk in shared memory are used

to determine the corresponding chunks in the other relation. Finally, matching

tuples are merged in parallel.

• Hash joins (HJ). They implemented a parallel version of the radix hash join.

Both relations are split using log2(||S||/M) radix bits where M is the size of the

shared memory. By doing this, the join is transformed into smaller joins over

partitions of a relation with its correspondig partition in the other relation. The

actual tuple matching is done by storing one partition in shared memory and

searching it with binary or sequential searches.

In order to have an effective use of the hardware resources, they created a co-

processing scheme that determines where an operator should be evaluated using a

cost-based approach. An operator can be evalued in the CPU, in the GPU or in

both. To use both CPU and GPU, data needs to be particioned, processed and then

merged. In their benchmark, the performance of this co-processing scheme is similar

to or better than both a GPU-only and a CPU-only schemes.

Their experiments also show that, while the GPU provides a good performance

increase for most cases, simple queries are much slower in the GPU than in the CPU.

This is mainly because data transfer time between host memory and device memory.

The evaluation of the four types of join algorithms determined that the INLJ is the

best in terms of performance.
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Red Fox

Red Fox [24] is an upcoming compilation and runtime environment for data

warehousing applications on GPU clusters. It is being developed in collaboration

with NVIDIA and LogicBlox. Its main elements are a LB-Datalog front-end, the

Harmony [73] run-time and the Ocelot [74] compiler.

While not yet completed, they have already implemented the relational algebra

operators using algorithm skeletons. These skeletons allow easy adaptation of

algorithms to different data types. They are executed in Cooperative Thread Arrays

(CTAs), each of them mapped to a GPU’s Streaming Multiprocessor. Input data is

partitioned according to the number of CTAs available.

Relations are stored in arrays of compressed tuples which are sorted according to

the tuple attributes. To compress tuples, the first bits are used to store the tuple key,

the next bits store the value and the final bits are used as padding to have complete

words. This allows good array partition and tuple search. The algorithm skeletons

maintain this sorting through the execution. Their relational algebra skeletons are as

follows:

• Projection. Decompresses the tuples, removes the unnecessary ones and

recompresses them.

• Product. Since the size of the result is the product of the inputs, the product

is implemented in a single pass. This pass combines the tuples and writes them

to memory.

• Selection. It is divided in three kernels. The first kernel reads the input and

marks with 1 all elements that comply with the selection condition. Once a CTA

has finished marking, it performs a local prefix sum to determine the result size

and to store the results in the correct positions. The second kernel performs a

global prefix sum to, once again, determine total result size and result positions.

The last kernel takes the partial results generated by each CTA and writes the

final result.
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• Set Operators. Include Set Intersection, Set Union and Set Difference. They

are divided into three stages. The first stage partitions the data using a parallel

implementation of the double-sided binary search by Baeza-Yates et al. [75].

The second stage implements a merge operation that loads two partitions and

compares their elements according to the operation being performed. Once all

elements are compared, a partition is swapped with a new one and the process

repeated. Any resulting elements are stored in shared memory and offloaded

to global memory when a threshold is reached. The last stage takes all partial

results and writes them to a contiguous array.

Their join operation is similar to the set operations in the first and last stages.

For the second stage (merge) they present the following strategies:

• Binary-Search. Each thread takes a tuple from a relation and computes its

lower and upper bounds in the other relation. This approach presents bank

conflicts and instruction replays.

• Register Blocked Binary-Search. Improves the binary-search by having

each thread access a set of consecutive tuples to obtain their corresponding

upper and lower bounds.

• Brute-Force. Compares each tuple in a relation against all the tuples in the

other relation. It has terrible computational complexity but is highly parallel.

• Hash Join. Implements a hash table in shared memory with one relation. Then

the tuples of the other relation are searched in the hash table. Any collisions

during creation of the table are marked and solved by repeating the process

without the entries that where correctly inserted. Once marking is finished,

a local prefix sum is performed to determine the result size and to store the

results in the correct positions. The second kernel performs a global prefix sum

to, once again, determine total result size and result positions. The last kernel

takes the partial results generated by each CTA and writes the final result.
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• Join-Network. Implements a comparator network. In order to reduce the

number of comparisons, side-exits are used. The idea is to remove groups of

tuples from the network when the comparison of their pivot elements determines

that they can be joined.

To improve the performance of relational algebra operators, they implemented

kernel fusion and fission. These optimisations are implemented automatically by

transforming the source code before sending it to the compiler. They can also be

performed together: fission can be applied to a fused kernel or vice versa.

Kernel fusion is the transformation of two or more kernels into a single kernel.

The idea is to reduce global memory access by reading input data only once in the

fused kernel instead of one read per kernel. Other benefits include reduction in

memory traffic and more available memory thanks to the reduction of intermediate

data. However, not all kernels can be fused together and fusing too many kernels

may downgrade performance due to the limited registers and shared memory of the

GPU. Some of the commonly fused relational algebra kernels include: selections, joins,

selection then projection, join then projection, etc.

Kernel fission is the partition of a single kernel into two or more smaller kernels.

This approach hides memory transfer times by processing one kernel in the GPU while

the results of another are being offloaded to the CPU. The main disadvantage of kernel

fission is that two concurrent kernels have access to half the computational resources

each. For operations over big input data, performance decreases when compared to

the single kernel approach.

They evaluated their relational algebra operators against GPUQP. Their results

show that selection is 3.54x faster than GPUQP and join is 1.69x faster. The fastest

join algorithm was the Join-Network because all comparisons and move operations

are determined statically, thus allowing many optimisations to be performed like

loop unrolling and proper shared memory access. The evaluation of kernel fusion

and fission show good performance increase using kernel fusion and a slightly better

increase using both fusion and fission.
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4.5.1 Comparison with our work

We modified the Indexed Nested Loop Join (INLJ) of GDB for our single join and

multijoin, so that more than two columns can be joined and a projection performed

at the same time. Their selection operation and ours are similar too; but ours takes

advantage of GPU shared memory and uses the Prefix Sum of the Thrust Library.

Our projection is fused into the join and does not perform duplicate elimination, while

they do not use fusion at all.

Diamos et. al compared their join algorithm to that of GDB in [60], showing

a 1.69x performance improvement. Since our join is based on that of GDB, similar

results are likely. However, our algorithm works for joins over more than two columns.

Selection is slightly different; our algorithm performs only one prefix sum instead of

two, and the result is written once instead of written and then moved to eliminate

gaps.

They discuss kernel fusion and fission in [69]. We applied fusion (e.g., simultaneous

selections, selection then join, etc.) at source code, while they implement it

automatically through the compiler. Kernel fission, the parallel execution of kernels

and memory transfers, is not yet adopted in our work.

4.6 Summary

Our Datalog engine is implemented into three stages. In the first stage, a Datalog

program is compiled and stored in memory with an appropriate numeric format,

followed by a preprocessing of the rules to determine which operations to perform

and over which columns. Finally, a queue of rules is created based on the query.

The second stage corresponds to the evaluation of the rules with a bottom-up

approach using the following relational algebra operations:

• Selection. It is performed by three kernels, one marks the tuples that match

the selection values, another performs a prefix sum to determine key positions,

and the last one writes the result.
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• Joins. Single and multijoins are performed by building a CSS-Tree with one

of the tables to join and searching for join positions over this tree. Selfjoin

is similar to the selection, with the difference that columns are compared one

against the other (instead of comparing columns against given values).

• Projection. It is performed as part of the single and multijoin operations by

writing in the result only the necessary columns and discarding the rest.

The third stage involves removing from the queue those rules which will not yield

new facts if evaluated again. If the queue does not become empty, each rule in it is

evaluated again. This process is repeated until the rules queue becomes empty. Once

it is empty, we answer the query and return each column in the answer to its original

string form.

To improve the performance of our engine, several optimisations where made like

duplicate elimination, additional projections, etc.
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Experimental Evaluation

This chapter describes our platform, applications and experiments to evaluate the

performance of our Datalog engine. We are at this stage interested in the performance

benefit of using GPUs for the evaluation of Datalog queries, as opposed to using a

CPU only. Hence we present results that show the performance of 4 Datalog queries

running on our engine compared to the performance of the same queries running on a

single CPU in the host platform. We plan to compare our Datalog engine the related

work discussed in Section 4.5.1.

Performance is the main focus of our work. However, we have briefly considered

other metrics:

• Energy consumption. Due to their higher bandwidth and number of

processors, GPUs consume much more energy than CPUs. As an example, the

GPU used in this work consumes a maximum of 244W, while the used processor

consumes a maximum of 95W. However, for highly parallel applications,

the shorter execution time on the GPU actually reduces the overall energy

consumption when compared to CPU only implementations [76]. In our work,

for 2 of the queries the execution time was greatly reduced and thus, executing

this queries on the GPU is an energy efficient solution. The other 2 queries

showed little or no performance gain, so using the GPU is not energy efficient.

As a result, we suggest in Section 6.2 a rule analyser that evaluates the
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characteristics of each rule (input size, number of subgoals, etc.) and sends

them to the appropriate processing unit.

• Memory efficiency. As mentioned in Section 2.4, memory efficiency is

very important for a GPU application. We have applied, to the best of our

knowledge, all possible memory optimizations techniques. For this reason,

we believe that the poor performance on two of our queries is not a memory

efficiency problem, but rather a computational one as discussed in Section 5.4.

On a single CPU in the host platform, 4 queries were run with the Prolog systems

YAP [22] and XSB [21], and the Datalog system from the MITRE Corporation [77].

As the four queries showed the best performance with YAP, our results plots below

show the performance of the queries with YAP and with our Datalog engine only. YAP

is a high-performance Prolog compiler developed at LIACC/Universidade do Porto

and at COPPE Sistemas/UFRJ. Its Prolog engine is based on the WAM (Warren

Abstract Machine) [21], extended with some optimizations to improve performance.

5.1 Experimental Platform

The queries were run on this platform:

Hardware. Host platform: Intel Core 2 Quad CPU Q9400 2.66GHz (4 cores in

total), Kingston RAM DDR2 6GB 800 MHz. GPU platform: Fermi GeForce GTX

580 - 512 cores - 1536 MB GDDR5 memory.

Software. Ubuntu 12.04.1 LTS 64bits. CUDA 5.0 Production Release, gcc 4.5,

g++ 4.5. YAP 6.3.3 Development Version, Datalog 2.4, XSB 3.4.0.

Our Datalog engine is written in CUDA C with some data structures (lists and

vectors) borrowed from the Standard Template Library [30] of C++. It also includes

various functions from the CUDA Thrust library [29].
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5.2 Applications

To evaluate our engine, we executed four Datalog programs that test different aspects

of our engine.

5.2.1 Join over four big tables

This application is our design and its purpose is to test all the different operations of

our engine. The rule and query used are:

join(X,Z) :- table1(X), table2(X,4,Y), table3(Y,Z,Z), table4(Y,Z).

join(X,Z)?

The operations are tested in the following parts of the rule:

• The join over X between table1 and table2 is a single join operation.

• The 4 in table2 is a selection.

• The two Zs in table3 represent a selfjoin.

• The join over Y and Z between table3 and table4 represents a multijoin.

• The head of the rule (join) represents a projection to remove Y and maintain

X and Z.

We used four tables with 1, 3 and 5 million rows each filled with random numbers.

5.2.2 Path Finder

Path finder is a recursive query and a very good example of the power of Datalog to

compute the transitive closure of a graph (TCG) [78] and, in general, the transitive

closure of relations.

Given the set of edges in a directed graph, each connecting two (adjacent)

nodes, the application finds all the nodes that can be reached if we start from a
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particular node. This query is very demanding because recursive queries involve

various iterations over the relational operations that solve the query. The rules and

the query are:

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Y)?

We use a table with two columns and 1, 5 and 10 million rows filled with random

numbers that represent the edges of a graph.

5.2.3 Same-Generation program

This is a well-known program in the Datalog literature to compute the transitive

closure of a relation. Among the various versions of this application, we use the one

described in [38]. Because of the initial tables and the way the rules are written, it

generates lots of new tuples in each iteration. The three required tables are created

with the following equations:

up = {(a, bi)|iε[1, n]} ∪ {(bi, cj)|i, jε[1, n]}. (5.1)

flat = {(ci, dj)|i, jε[1, n]}. (5.2)

down = {(di, ej)|i, jε[1, n]} ∪ {(ei, f)|iε[1, n]}. (5.3)

Where a and f are two known numbers and b, c, d and e are series of n random

numbers. Figure 5.1 taken from [38] shows an example of the input for n = 2.

The rules and query are as follows:

sg(X,Y) :- flat(X,Y).

sg(X,Y) :- up(X,X1), sg(X1,Y1), down(Y1,Y).
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Figure 5.1: Same-Generation input for n = 2.

sg(a,Y)?

The three tables up, flat and down were generated with random numbers for n =

25, 50 and 75. This means 650, 2550 and 5700 rows for tables up and down; 625,

2500 and 5625 for table flat.

5.2.4 Tumour detection

Correctly determining if a tumour is malignant or not requires the analysis and

comparison of a great deal of information provided by medical studies. If we consider

each characteristic of a tumour as a fact, then it is possible define a rule to determine

for each patient, if his or her tumour is malignant or not. The rules and query are

defined as follows:

is_malignant(A):-

same_study(A,B),

’HO_BreastCA’(B,hxDCorLC),

’MassPAO’(B,present),

’ArchDistortion’(A,notPresent),

’Sp_AsymmetricDensity’(A,notPresent),
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’Calc_Round’(A,notPresent),

’SkinRetraction’(B,notPresent),

’Calc_Popcorn’(A,notPresent),

’FH_DCNOS’(B,none).

same_study(Id,OldId) :-

’IDnum’(Id,X),

’MammoStudyDate’(Id,D0),

’IDnum’(OldId,X),

’MammoStudyDate’(OldId,D0),

OldId \= Id.

is_malignant(A)?

The query asks for those studies which detect a malignant tumor. However, some

of these characteristics are taken from the most recent study, while others must be

taken from past studies. This restriction requires the definition of an additional rule

(same_study) to determine if two studies belong to the same person and if they have

different dates. The last subgoal of same_study (OldId \= Id) is used to prevent an

study from referencing to itself, thus avoiding incorrect results in the query.

We evaluated this program with 65800 studies. This means that each table is

composed of 65800 rows.

5.3 Results

This section presents the results of our engine and compares them against YAP. Both

results show the evaluation of each query once all data is in CPU memory —I/O cost

is not considered.

5.3.1 Join over four big tables

Figure 5.2 shows the performance of the join with YAP and our engine, in both

normal and logarithmic scales to better appreciate details. Our engine is clearly
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Figure 5.2: Performance of join over four big tables.

faster, roughly 200x times. Note that due to this sheer performance difference, the

line representing our engine in the left plot can barely be seen at the bottom.

Both YAP and our engine take proportionally more time as the size of the tables

grow. Our engine took just above two seconds to process tables with five million rows

each, while YAP took about two minutes process tables with one million rows each.

The time taken by each operation was as follows: joins were the most costly

operations with the Multijoin alone taking more than 70% of the total time; the

duplicate elimination and the sorting operations were also time consuming but within

acceptable values; prefix sums and selections were the fastest operations.

5.3.2 Path Finder

Figure 5.3 shows the performance of TCG with YAP and our engine. Similar

observations can be made as for the previous experiment. Our engine is 40x times

faster than YAP for TCG. Our engine took less than a second to process a table of

10 million rows while YAP took 3.5 seconds to process 1 million rows.

For the first few iterations, duplicate elimination was the most costly operation

of each iteration, and the join second but closely. As the number of rows to process

in each iteration decreased, the join became by far the most costly operation.
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Figure 5.3: Performance of the path finder application.
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Figure 5.4: Same-Generation program performance.

5.3.3 Same-Generation program

The results show (Figure 5.4) very little gain in performance, with our engine taking

an average of 827ms and YAP 1600ms for n = 75. Furthermore, our engine cannot

process this application for n > 90 due to lack of memory.

The analysis of each operation revealed that duplicate elimination takes more than

80% of the total time and is also the cause of the memory problem. The reason of

this behaviour is that the join creates far too many new tuples, but most of these

tuples are duplicates (as an example, for n = 75 the first join creates some 30 million

rows and, after duplicate elimination, less than 10 thousand rows remain).
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5.3.4 Tumour detection

The performance of YAP and our engine for this program is shown in Figure 5.5.

To evaluate this application with different sizes of input data, we duplicated and

triplicated each table (e.g. table ’IDnum’ had 65800 rows for the first test, 131600

for the second and 197400 for the last one). This increase in input data allows us

to increase processing time while maintaining the same results thanks to duplicate

elimination.

Our engine performs best for the first and second evaluations; however, it is

surpassed in the final evaluation by YAP with tabling. A detailed analysis of the

times of each operation show that the multijoin required by same study consumed

almost 90% of the total execution time.

Once again, we have concluded that the main reason for this behaviour is due to

duplicates. For example, the problem with thrice the number of tuples (197400 rows

in each table) generates 4095036 duplicated rows in the same_study function and

after duplicate elimination only 50556 rows remain. For the is_malignant function

the result is similar: 4881384 rows are generated and only 550 remain after duplicate

elimination.

As can be seen, duplicates create far too many rows that have to be joined using a

multijoin, the slowest of the join operations (it is the slowest because of the additional

columns it has to consider). YAP without tabling is so affected by these duplicates

that it simply terminates after throwing an error —shown in the plot as zero execution

time. In contrast, YAP with tabling avoids performing duplicate work and thus,

performs very well.

5.4 Discussion

Our engine performed very well for the first two applications thanks to the following

factors:

• The great difference in the number of cores and memory bandwidth between
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Figure 5.5: Performance of tumour detection.

CPU and GPU.

• The parallel nature of both the relational algebra operators and the support

operators, and their finelly tuned implementations.

• The memory management module that reduces memory traffic.

• The translation of strings into numbers and the preprocessing of each rule.

However, the performance of the other two applications was adversely affected

by the creation of duplicated tuples each time a join operation was carried out.

Worse yet, these duplicates may, in turn, generate many more duplicates, eventually

filling all available memory and forcing the application to an erroneous termination.

These duplicates also require additional computations to evaluate and store them

that ultimately cause a very noticeable performance decrease.

Our approach of eliminating duplicates at the end of the evaluation of a rule is

clearly not enough. Duplicates should be eliminated after each join or they should not

be generated at all. However, these approaches are not easy to implement or require

additional computation that may slow down applications with few or no duplicates.

Suggestions for the implementation of these approaches can be found in Section 6.2.

Cinvestav Departamento de Computación



Experimental Evaluation 91

5.5 Summary

We evaluated our engine using four queries and compared our results against the

Prolog systems YAP and XSB, and the Datalog system from the MITRE Corporation.

All these systems run on a single CPU, while our engine runs in both a single CPU

and a GPU.

For the first two queries, our engine shows a dramatic performance increase

(between 200x and 40x). However, the other two queries show only a small

performance increase. We have determined that duplicates are the cause of these

small increases. While our engine eliminates duplicates after each rule evaluation, it

is clearly not enough as the number of duplicates greatly increases before the end of

the rule is reached. YAP uses a method called tabling to avoid processing duplicates,

thus eliminating many unnecessary computations.

A detailed analysis of each operation shows that the joins, specially the multijoins,

are the slowest operations, sometimes taking more than 50% of the total execution

time. Sorting and duplicate elimination are also very time consuming.
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Conclusions and Future Work

6.1 Conclusions

We have presented the design and evaluation of a Datalog engine for GPUs. GPUs

are high-performance many-core processors capable of very high computation and

data throughput. GPUs are programmed using CUDA which extends C to allow the

definition of kernels, code procedures that are executed in parallel by hundreds of

threads within the GPU.

Datalog is a language based on first order logic that has been used as a data model

for relational databases; syntactically it is a subset of Prolog. A Datalog program

consist of facts about a subject of interest and rules to deduce new facts. Facts can

be seen as rows in a relational database table, while rules can be used as queries.

Our engine evaluates Datalog rules using the relational algebra operations

selection, projection and join, with the help of the support operators sort, prefix

sum, and duplicate elimination. Rule evaluation is carried out using a bottom-up

semi-naive approach, which means that rules are applied to the given facts in order

to derive new facts, repeating this process with the new facts until no more facts are

derived.

The engine includes a compiler that reads Datalog programs and translates them
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into a numeric representation easier to work with on GPUs. Once rule evaluation

is completed, these numbers are returned to their corresponding strings with the

help of a dictionary created during the compiling. After the compiling is done, a

preprocessing module analyses the rules to determine which relational operations to

perform and on which data elements should they be performed.

The engine also includes a memory management scheme whose purpose is to

maintain facts and rule results in GPU memory for as long as possible in order

to reduce memory transfers between host and device. When memory allocation is

necessary but there is not enough available memory, the module automatically takes

the least recently used data and swaps it to the CPU or discards it, depending on

the necessity of the data for further calculations. Without our memory management

scheme, input data would have to be transferred each time an operation is to be

performed and results would have to be sent to the CPU immediately after an

operation is completed.

To improve the performance of rule evaluation, various optimisations were

performed to the engine. A projection and a duplicate elimination are carried out

after each join to eliminate unnecessary columns and tuples. Some operations, e. g.

selections and joins with projections, are fused together (performed at the same time)

to read the input data only once, instead of reading it for each operation.

The evaluation of our engine using 4 queries shows a dramatic performance

improvement when compared against the well known Prolog engines XSB and YAP,

and the Datalog engine from the Mitre Corporation. For two of the queries, a

performance increase of up to 200 times was achieved. The performance of the

same-generation problem is improved twice only, but we believe it can be further

improved.

The contributions of this thesis are as follows:

• The design, implementation and evaluation of a new Datalog engine for GPUs,

capable of evaluating standard Datalog programs faster than any other CPU

Datalog engine.
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• A compiler of Datalog programs that translates facts, rules and queries into

numbers, which are easier to work with in GPUs due to their constant processing

time (strings entail variable processing time due to their variable size).

• A memory management module that maintains data in GPU memory for as

long as possible in order to reduce data transfers between CPU and GPU.

• Relational algebra algorithms tuned to exploit the architecture of the GPU

thanks to the use of techniques like CSS-Trees, coalesced memory access, etc.

They also capitalise on the distinctive features of Datalog rule evaluation which

allows the use of simultaneous projections, operation fusing, etc., as described

in Section 4.3.

• Publication of an international conference paper describing these contributions.

Clearly, there is room for improvement in most parts of our engine as described

in the following section.

6.2 Future Work

Our engine can be extended with the following additions:

Magic Sets

Refer to a logical rewriting method used in many deductive database systems to

improve the performance of bottom-up evaluation. It transforms a program by adding

new rules which represent the query under consideration. The result of the new

program is equivalent to that of the original one. By doing this transformation, the

variables in the rules are restricted to take only certain values in a way similar to

the top-down approach. This reduces the number of unnecessary facts, and thus the

required amount of memory and computations.

This method could be implemented in our engine as part of the preprocessor by

doing the rewriting before the analysis of the rules. Since this method changes the
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way rules are written, and not the way they are evaluated, no additional modifications

to the engine should be needed.

Counting

Counting is an extension of the Magic Sets method that complements each element

of the magic set with an index. This index represents the “distance” to the goal

constants, allowing the evaluation to consider only those tuples that have the correct

“distance”. While this method further reduces the number of computations, it can

only be used in linear programs with acyclic databases, otherwise termination is not

guaranteed.

Since it is an extension of the Magic Sets method, it could be implemented into

our engine in a similar way.

Built-in predicates

Built-in predicates are special symbols such as =, 6=, >,<,+, that force variables to

take certain values, e. g. the predicate Y > 5 would force Y to only take values

greater than 5. They can appear in the right-hand side of a rule and are written in

infix notation. Two important restrictions must be enforced when working with these

predicates: a) to guarantee a finite output of the Datalog program (also known as

safety), each variable involved in a built-in predicate must also appear in a nonbuilt-in

predicate of the same rule body; and b) the evaluation of built-in predicates must be

delayed until all variables involved are bound to constants, otherwise it is impossible

to know which tuples are part of the computation of these predicates.

In our engine, comparison built-in predicates (=, 6=, >,<,≤,≥) can only be

evaluated if they appear at the end of the rule and are performed together using

three kernels. Like the selection operator, the first kernel marks the rows that satisfy

all the built-in predicates with a value one. The second kernel performs a prefix sum

on the marks to determine the size of the results buffer and the location where each

GPU thread must write the results. The last kernel writes the results. Other built-in
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predicates (+,−, ∗, etc.) are not implemented.

To better evaluate built-in predicates, they should be implemented as extra

conditions for the single and multijoin operations. They could be considered in the

joins as follows:

• Single join. The extra conditions should be considered in both join kernels,

similar to the way the multijoin checks for additional columns. In the first

join, they should be considered after counting the number of times an element

has to be joined but before writing this result to global memory. The idea

is to subtract from this number each time an element fails to meet the extra

conditions. In the second join, conditions should be checked before writing an

element into the result array. If the conditions are not satisfied, the element is

not written.

• Multijoin. In the first join kernel, these conditions could be considered along

with the additional columns comparison, also reducing the count for element

that do not comply. In the second join kernel, they could also be considered at

the column comparison to determine if an element is written or not.

• Selfjoin. Since the purpose of the selfjoin is to check for equality between

columns, the extra conditions could also be checked at the same time the

equality is considered.

Any built-in predicate that cannot be seen as a join condition (+,−, etc.) would

have to be implemented as a complete operator, similar to the selection and join

operators.

Negation

To increase its expressive power, Datalog can be extended with the addition of

negation in predicates [38, 55]. It is usually represented by the symbol ¬ and can

appear in both the body and the head of a rule (e. g. ¬A(X) :- B(X, Y), ¬C(Y).).
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In relational algebra, negation is equivalent to the difference operator (−). Negation

with recursion, as is required by Datalog, is a difficult task with several possible

implementations.

To add negation to our engine, our compiler must first be modified to accept the

negation symbol ¬ and to mark predicates as negative. Stratification analysis could

be implemented at preprocessing and rule evaluation could be extended to accept

negative predicates. Inflationary and noninflationary semantics could be implemented

as part of rule evaluation.

Memory management to handle tables larger than the total amount of

GPU memory

To handle tables larger than the total amount of GPU memory, we propose splitting

each table into smaller chunks and then applying the necessary operations on these

chunks. Basically, with this addition our memory management scheme would become

an all-software paged virtual memory.

Selection can be easily split because the size of the results of all three kernels

involved are known beforehand, and because each chunk has to be processed only

once. Joins and projections (projections are part of the joins in our engine) are

harder to split because they involve two tables and each chunk of one table has to

be compared against all chunks of the other table. One alternative is to split GPU

memory in three, using two sections to store table chunks and the other to store join

results, alternating the table chunks and sending the results to CPU memory at the

end of each pass. To illustrate this, consider the following example:

Suppose we have table1 split into chunks (a, b), table2 split into chunks (x, y, z)

and memory sections (m1, m2, m3). We store chunk a in m1, chunk x in m2 and then

we perform the join over these chunks, storing the result in m3. Next, we send m3

to CPU memory, store chunk b in m1, perform the join and store the result in m3.

Once again, we send m3 to CPU memory, store chunk y in m2, join and store in m3.

This process continues until all chunks are processed.
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The disadvantage of this approach is the high memory traffic between CPU and

GPU. To reduce memory transfer times, streams and page-locked host memory [16]

could be used. Streams are sequences of instructions that are executed in order.

Instructions from different streams may be executed concurrently depending on the

type of instruction and the resources it requires. Page-locked host memory is host

memory that will not be paged out by the operating system. It can be used to extend

the amount of global memory available to the device, to increase the speed of device

to host transfers, among others. To reduce memory traffic, the idea is to create two

streams and a section of page-locked host memory, and overlap kernel executions in

one stream with memory transfers to page-locked host memory in the other stream.

Mixed processing of rules both on the GPU and the host multicore

Thanks to our bottom-up approach, rules can be evaluated in any order and even in

parallel. To extend our engine to capitalize on this, relational algebra operators for

the CPU must be implemented. These implementations should take into account the

different architecture of the CPU (plenty of memory, fewer processing units, different

memory model, etc.) and try to fully capitalise on it.

Once these operators are implemented, we suggest the implementation of a rule

analyser that considers the approximate number of input and output tuples and the

number of predicates in each rule. The idea is that the GPU processes rules with lots

of tuples and the CPU processes rules with few tuples and/or predicates. Since it is

possible for a rule on the CPU to require the results of a rule on the GPU or vice

versa, the analyser should also try to assign related rules to the same processing unit.

Unfortunately, it may not always be possible to do this assignment, so the memory

management module should also be extended to keep copies of these results in both

memories and to hide memory transfers using streams and page-locked host memory.

Cinvestav Departamento de Computación



100 Chapter 6

Improved join operations to eliminate duplicates

As shown by the evaluation of the third Datalog program in Chapter 6, many

duplicate tuples may be inferred with each join operation. To improve performance,

these duplicate tuples should be removed as early as possible in the computation.

One approach would be to use the duplicate elimination operation after each join.

However, duplicate elimination is a costly operation because it involves sorting the

table. For queries with few duplicates this approach would actually increase the

computation time and does not guarantee an important improvement even in queries

with lots of duplicates.

Another alternative would be to perform the duplicate elimination as part of the

join operation. However, determining if an element is duplicated would require, to

our knowledge, a great deal of comparisons. Therefore, it is recommended to start

by investigating efficient implementation of duplicate elimination.

In summary, our work provides the design, implementation and evaluation of a

Datalog engine for GPUs. It includes efficient relational algebra operators optimised

to capitalize on both the architecture of the GPU and the opportunities the Datalog

language allows. It also includes a Datalog compiler, a rule analyser and preprocessing

module and a memory management module. Finally, for the four Datalog programs

considered in this work, our engine showed a performance increase of up to 200 times

when compared to other Prolog and Datalog engines.
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