CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACION

Implementaciones Eficientes en Software de
Esquemas de Cifrado de Discos usando AES-NI

Tesis que presenta
Nallely Itzel Guadalupe Trejo Garcia
para obtener el Grado de
Maestro en Ciencias
en la Especialidad de

Computacion

Director de Tesis:

Dr. Debrup Chakraborty

México D.F. Febrero, 2012

CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE COMPUTACION

Efficient Software Implementations of Disk

Encryption Schemes Using AES-NI Support

by

Nallely Itzel Guadalupe Trejo (Garcia

Thesis Advisor:

Dr. Debrup Chakraborty

México D.F. February, 2012

Acknowledgements

This thesis would not have been possible without the guidance and the help of sev-
eral individuals who in one way or another contributed and extended their valuable
assistance in the preparation and completion of this work.

First of all I would like to express my gratitude to Dr. Debrup Chakraborty for
being an outstanding advisor and an excellent professor. His constant encouragement,
support, and suggestions made this work succeded. I would like to thank also to my
revisors for their time and effort in reviewing this document and their comments.

A very special thanks goes out to Prof. Palash Sarkar who adviced us to include
other disk encryption schemes: XTS and BitLocker, and also adviced us to look for
a concrete attack on XTS.

I would also acknowledge CONACYT which enabled me to undertake a master
program at CINVESTAV. I am also grateful to this institution. In particular to our
department secretaries, specially Sofy, whose assistance helped me along the way.

I wish to thank to all my colleagues and friends for helping me get through the
difficult times, and for all the emotional support, entertainment, and caring they
provided. I will never forget all the time we shared.

Finally, I would like to thank the people to whom I owe the most, my family.
Specially I want to thank to the Hernandez-Trejo who provided me a home, far from
home. And most importantly to my parents, Rogelio and Lupita and my sister,
Jimena, which have given me their unequivocal support throughout, as always, for

which my mere expression of thanks likewise does not suffice.

Resumen

Los TES (Tweakable Enciphering Schemes) son una clase de modos de operacién que
se ajustan al cifrado de informacién en dispositivos de almacenamiento como discos
duros y memorias flash. A la fecha hay aproximadamente diez propuestas diferentes
para TES y existe un esfuerzo de estandarizacién por parte del grupo de trabajo
de seguridad en almacenamiento del IEEE. En los tltimos anos ha habido actividad
considerable en el disefio de estos esquemas, sin embargo la cantidad de informacién
acerca del desempeno experimental reportada en la literatura es escasa. Existe in-
formacion acerca del desempeno en hardware, pero no hay informacién disponible de
ello en software. Esta tesis se enfoca en esa brecha.

En esta tesis presentamos implementaciones optimizadas en software de (casi)
todos los TES y comparamos su desempeno en terminos de velocidad. Nuestras
implementaciones utilizan el nuevo conjunto de instrucciones AES-NI que se encuen-
tran disponibles en algunos de los procesadores Intel y AMD actuales. También
presentamos implementaciones de los esquemas en paralelo enfocadas a procesadores
multi-nucleo.

Nuestro estudio de desempeno también incluye dos esquemas que no son TES
pero han sido propuestos para su uso en cifrado de discos: XTS es un esquema
que recientemente fue estandarizado por el NIST para ser usado como algoritmo de
cifrado de informacion en dispositivos de almacenamiento que guardan la informacion
en bloques; y el esquema llamado BitLocker que ha sido usado ampliamente como
algoritmo de cifrado de discos en el sistema operativo de Windows Vista. Presentamos
informacion de desempeno tanto para XTS como para BitLocker y describimos una
debilidad de seguridad que se encuentra en XTS.

Finalmente, se proponen dos nuevos TES llamados HCTR* y HMCH2 los cuales
son modificaciones de dos esquemas ya existentes. Nuestros datos experimentales
sugieren que tanto HCTR* como HMCH2 son més eficientes que sus predecesores,

ademds se demuestra que ambos esquemas son seguros.

II1

Abstract

Tweakable enciphering schemes (TES) are a class of block cipher modes of operation
which are suitable for encryption of block oriented storage media like hard disks, flash
memories etc. To date there are about ten different proposals for TES, and there is
an active standardization effort by the IEEE working group on security in storage.
In the last few years there have been an considerable activity involving designing
of such schemes, but there are very little experimental performance data of these
schemes reported in the literature. There are some performance data in hardware
available, but no software performance data has yet been reported. This thesis closes
this important gap.

In this thesis we present optimized implementations of (almost) all tweakable
enciphering schemes in software and compare their performance in terms of speed.
Our implementations utilizes a new instruction set extension called AES-NI which
is available in some current Intel and AMD processors. We also present parallel
implementations of the schemes directed towards multi-core processors.

Our performance study also includes two schemes which are not TES but has been
proposed for disk encryption. XTS is a scheme which has recently been standardized
by NIST for use as an encryption algorithm for block oriented storage devices, and
another scheme called BitLocker has seen wide deployment as a disk encryption al-
gorithm in the Windows Vista operating system. We present performance data for
both XTS and BitLocker and also point out a security weakness in XTS.

Furthermore, we propose two new tweakable enciphering schemes named HCTR*
and HMCH2 which are modifications of two existing schemes. The modifications were
done by keeping an eye on the efficiency. Our experimental results suggests that both
HCTR* and HMCH2 are more efficient than their predecessors. Through standard
reductionist arguments we also prove that HCTR* and HMCH?2 are secure TES.

Contents

(1 Introduction|

(1.1 Some Notions of Disk Encryption|
(1.2 Contribution and Scope of the Thesis

Exploiting Parallelism in Modern Processors

[2.3.1 ~ SIMD instructions in modern processors|

[2.5 Notes on Programming Languages and Tools|

[2.5.1 Basics of parallel programmingl

Schemes for Disk Encryption|

[3.3 Tweakable Enciphering Schemes|
[3.3.1 A briet history ot the known constructions of TES|.
[3.3.2 The schemes considered for this study|]

[3.3.3 Description of some schemes|

[3.4.1 Wide Block Block Ciphers|.
3.42 XTS| . .

11
12
15
15
17

[4 Two new Tweakable Enciphering Schemes|

4.1 Description of HC'TR* and HMCH2

4.2 Security of the constructions|

(B Experimental Results|

41
41
43
43
45
46

57
57
58
59
61
62
66

71
71
73
73
75
81

89
92

103

105

List of Algorithms

[3.1 Encryption using EME2|o 000000000 30
[3.2 Encryption using XCB|. L. 31
[3.3 Encryption using HCTR}. 32
[3.4 Encryption using HEH| 33
[3.5 Encryption using HMCH|o 00000 33
[3.6 Encryption and Decryption XT'S| 35
[3.7 Encryption LRW| o000 38
[3.8 Encryption BitLocker|o 39
[£.9 Encryption and Decryption using HCTRY 42
[4.10 Encryption and Decryption using HMCH2[. 43
[>.11 Karatsuba Multipler|. 59
[5.12 Fast Reduction modulo g(z)[. 60
BI3ZHmes] o oo 61
[5.14 Squaring in Fons |. 000 62

IX

List of Tables

[3.1 List of existing TES| 29

[6.1 Total clock cycles for computing the basic binary field operations over |
| 5128 in M2 using the [CC compiler.|. 75

[6.2 Counter mode variants tor a 4KB buffer using [CC compiler in machine |

[6.3 Encryption and decryption implementation results in clock cycles |
| per byte (ccpb), for a 4KB buffer and a 128-bit tweak using both |
| machines M1 and M2. (a) includes Key Expansion procedure and (b) |

[does not mclude 1t 77

[6.4 Encryption and decryption performance results of other disk encryp- |

| tion schemes: XTS, BitLocker in clock cycles per byte (ccpb), for |
| a 4KB bufter using both machines M1 and M2.| 7

[6.5 Hardware implementation results presented in [10, 47] which show the |

| number of clock cycles and its corresponding throughput tor various |

| TES constructions to encrypt a whole disk sector of 512 bytes| 82

(6.6 Encryption implementation throughput GBit/Sec, for a 4KB buffer |
| and a 128-bit tweak using machine M2 and ICC compiler, including |

| Key Expansion procedure| 82

(6.7 Encryption implementation throughput GBit/Sec, for a 512-bytes |

| buffer and a 128-bit tweak using machine M2 and [ICC compiler, |

| including Key Expansion procedure| 83

[6.8 Parallel encryption and decryption implementation results with 2 threads |
| in clock cycles per byte (ccpb), for (a) 200 and (b) 1000 sectors of |
| 4KB and a 128-bit tweak using both machines M1 and M2.| 85

XI

[6.9 Parallel encryption and decryption implementation results with 4 threads |

in clock cycles per byte (ccpb), for 1000 sectors of 4KB and a 128- |

bit tweak using machine M2.|o 000 85

[(B.1 Encryption and decryption implementation throughput results in Gbit /sec, |

for a 4KB buffer and a 128-bit tweak using both machines M1 and |

M2. (a) includes Key Expansion procedure and (b) does not include it.| 105

List of Figures

[3.1 The decryption of the ciphertext generated by adversary A 36
M1 Games HCTR*I and RANDI o ... 54
M2 Game RAND2 o 55
M3 Game G2 56
[>.1 The xtimes operation|, 60
5.2 AES encryption algorithm using FIPS-197 notation| 66
(5.3 AES encryption algorithm using AES-NI instructions set| 68
(6.1 Encryption (ENC) and decryption (DEC) implementation results in |
clock cycles per byte (ccpb), for a 4KB buffer and a 128-bit tweak |
using both machines M1, figure (a) includes Key Expansion procedure |
and (b) does not include it.| oL 78
(6.2 Encryption (ENC) and decryption (DEC) implementation results in |
clock cycles per byte (ccpb), for a 4KB buffer and a 128-bit tweak |
using both machines M2, figure (a) includes Key Expansion procedure |
and (b) does not includeit.| o oL 79
[6.3 Encryption and decryption comparison ot other disk encryption schemes |
with some TES modes in clock cycles per byte (ccpb), for a 4KB |
buffer using both machines M1 and M2. Results include key schedule.| 80
[6.4 Comparison of parallel encryption and decryption implementation re- |
sults with 2 threads in clock cycles per byte (ccpb), for (a) 200 |
and (b) 1000 sectors of 4KB and a 128-bit tweak using machine M1.| 86
[6.5 Comparison ot parallel encryption and decryption implementation re- |

sults with 2 threads in clock cycles per byte (ccpb), for (a) 200 |

and (b) 1000 sectors of 4KB and a 128-bit tweak using machine M2.| 87

XIIT

[6.6 Comparison of parallel encryption and decryption implementation re-

sults with 2 and 4 threads in clock cycles per byte (ccpb), for (a)

1000 sectors of 4KB and a 128-bit tweak using machine M?2.|

88

Chapter 1
Introduction

Nowadays, it is very difficult to imagine a life without computers. Today, every com-
pany uses computers to store its data and to make different kinds of operations. When
we go to a store and use our credit card, many computers process our information and
perform different kinds of transactions and store a record of them. When we need to
get some cash, we use automatic teller machines (ATMs) that are computerized too.
Also, personal computers and similar devices have become ubiquitous, and even a
common man depends heavily on personally owned computational devices and tech-
nologies. An ordinary citizen today, stores many sensitive information in a personal

desktop or laptop computer or in other specialized digital storage devices.

The loss of sensitive data stored in storage devices is a grave problem of today.
Recent statistics show that an organization with 100,000 laptops may lose on average
several of them per day [19]. A stolen laptop amounts to the loss of the hardware
and the data stored in it. But what is of more severe consequence is that sensitive
information may fall in the wrong hands which could potentially cause much greater

damage than the one incurred by the mere physical loss of the hardware and the data.

To ensure the confidentiality of stored data, one can use cryptographic techniques.
Cryptography was traditionally used for securing data in transit, but now the security
of stored information has also gained the same importance as that of the security of
data in transit. But, the cryptographic techniques used for storage security are in
some sense different from other cryptographic techniques. In this thesis we deal with
a class of cryptographic techniques which are suitable for providing privacy of data
stored in hard disks. In the following sections we try to motivate the problem of disk

encryption and finally discuss the contents and scope of the thesis.

2 Chapter 1

1.1 Some Notions of Disk Encryption

All computers store data on disks, and the value of the data on disk is not always
measurable. In order to protect confidentiality of the data stored on a computer disk
a computer security technique called disk encryption is used. With the advent of more
powerful processors in the last decade, the data throughput of ciphers surpassed that
of the data rates in hard disks. Hence, encryption is no longer a bottleneck, and the
interest in the topic of disk encryption has increased.

Although there exist numerous encryption schemes meant for varied scenarios, this
special application brings with it specific design problems which cannot be readily
solved by traditional encryption schemes. A hard disk is partitioned into fixed-length
sectors, usually 512 bytes or 4096 bytes for the new big format. Such a block wise
(or sector wise) organization is also true for other storage devices like NAND flash
memories, etc. It has been argued that the best way to achieve encryption of hard
disks is to encrypt individual sectors. The encryption/decryption algorithm is not
required to have knowledge of the high level organization of the data in the disk
in terms of the file systems, etc. The only organization visible to the encryption
algorithm is that of the sectors, and a sector is encrypted before the disk controller
writes it to the disk, and is decrypted after the disk controller reads it from the disk.
This generic methodology has been termed as low-level disk encryption or in-place
disk encryption.

A symmetric key cryptosystem with certain specific properties can serve as a so-
lution to the low-level disk encryption problem. One particularly important property
to achieve is length-preserving encryption, i.e., the length of the ciphertext should
not be more than that of the plaintext. This implies that the ciphertext itself must
be enough to decrypt the enclosed data, since there is no scope to store associated
data like states, nonces, salts, or initialization vectors, which are common parameters
in numerous symmetric key cryptosystems. Another important property to achieve
is the following: if the same plaintext is stored in encrypted form in two different
sectors, the cipher texts should look different. To achieve this, it is required to treat
each sector in a different way for the purpose of encryption. The current solution
to this problem is achieved by a special public parameter which is called a tweak.
The sector address is considered to be a tweak, and the tweak is an input to the
encryption algorithm, thus as an effect of different tweaks, two sectors which stores

the same information would store different ciphertexts.

CINVESTAV Computer Science Department

Introduction 3

Furthermore, the schemes to be selected must be secure against adaptive-chosen
plaintext and adaptive-chosen ciphertext adversaries. Such schemes are generally
called CCA secure schemes (secure against chosen ciphertext attacks). Achieving
CCA security means that no adversary can be able to distinguish the ciphertexts
from random strings, and additionally, the attacker must not be able to modify the
ciphertext so that it gets decrypted to something meaningful. During the last few
years, there has been an intense research addressing this problem, and it appears
that both practitioners and researchers have come to the conclusion that a class
of encryption algorithms called tweakable enciphering scheme (TES) offers the best
solution to the in-place disk encryption problem [30].

An important activity regarding the problem of disk encryption was initiated
by the IEEE security in storage working group (SISWG)[1]. This working group
is still working on various aspects of storage security and they aim to standardize
cryptographic algorithms for various storage media. The SISWG has also considered
encryption schemes other than TES, we summarize in more details the activities of
this working group later in Section (in page [23)).

1.2 Contribution and Scope of the Thesis

In spite of the active effort of the community in constructing new schemes for disk
encryption and the standardizing activities, there have been a very few optimized
implementations of such schemes reported in literature. In [10} [46] 47] efficient hard-
ware implementations of some TES were reported, but no performance comparison
in software is yet available. This thesis aims to bridge this important gap.

The main thrust of this thesis is to generate experimental performance data of
the available Tweakable Enciphering Schemes in modern processors. Tweakable enci-
phering schemes are generally constructed using a block cipher. Some of the reported
schemes also uses some finite field operations. In all previous works the efficiency of
a scheme was argued based on the number of block-cipher calls and the number of
finite field multiplications it required. Since these were the most expensive operations
to be performed and the other overhead was negligible. The new generation of Intel
processors have been equipped with the new instructions for AES encryption/de-
cryption and carry free multiplication of two 64 bit operands. These instruction set
extension is commonly known as AES NI, were first introduced in the 2010 Intel Core

processor family, based on the 32 nm Intel microarchitecture codename “Westmere”

CINVESTAV Computer Science Department

4 Chapter 1

and are also available for AMD procesors starting from its CPU generation called
“Bulldozer”. These instructions are very important from the perspective of diverse
kinds of cryptographic implementations. With this new hardware support the two
most expensive operations of the existing TES (the block cipher calls and the finite
field multiplications) can be now implemented much more efficiently than in older
Processors.

The cryptographic community has already started taking advantage of these new
instructions. Like, in [26], the authors report an efficient method to implement the
Galois Counter Mode of operation. This contribution adds motivation on using AES-
GCM for high performance secure data networking. In [27] is contained all the infor-
mation regarding the instructions, and its usage for computing the Galois Hash. It
also provides code examples for the usage of the carry free multiplier, together with
the new AES instructions. Recently, in [41], T. Krovetz and P. Rogaway, study the
software performance of authenticated encryption (AE) modes like CCM [16], GCM
[51], and OCB [57] across a variety of platforms using the AES-NI support. The AES-
NI support, specially the carry-free multiplier has also been utilized in implementing
other primitives useful for elliptic curve cryptosystems, pairing based cryptosystems
etc. [62].

In spite of the active effort in validating the usefulness of the AES-NI support
for diverse kinds of cryptographic implementations, there are no optimized software
implementations of disk encryption schemes available in the literature. We present
here optimized software implementations of all important TES considering various
implementation scenarios and provide a performance comparison between them. In
our implementations we use the new intel AES NI instructions and report performance
in two different processors. It is expected that the performance figures provided in
this study would scale to other processors with AES NI support. Keeping in mind the
support of AES-NI we also modify two existing constructions giving rise to two new
schemes named HCTR* and HMCH2. We show that these new proposals perform
much better than their predecessors.

Though it has been argued that TES are the only modes which provide adequate
security for the in-place disk encryption application, over the years other kinds of
schemes have also been proposed for this purpose. We provide a brief discussion on
those schemes which include XTS and BitLocker. XTS is a modified tweakable block
cipher which is now a NIST standard and BitLocker is a full disk encryption feature

included in some OS versions of Microsoft’s Windows Vista and Windows 7 [19]. We

CINVESTAV Computer Science Department

Introduction 5

also analyze XTS [63], and give a concrete attack on this scheme.

Since the use of multi-core processor is an emerging research topic in the context
of cryptographic implementations we consider the usage of multiple cores for the
application of disk encryption. Considering the disk encryption application where the
message length is fixed and multiple messages are needed to be encrypted/decrypted
in a short period of time, we use a strategy for parallelization. We also report these
performance results and give a comparison between both serial and multi-threaded
implementations.

The rest of the document is organized into 6 chapters, we discuss in short the

contents of these Chapters next:

e In Chapter 2, we discuss some architectural issues in modern processors. In
particular, we explore the different ways in which parallelism can be achieved in
a modern processor. We discuss in brief instruction level parallelism, data level
parallelism and thread level parallelism. We also shortly describe the evolution
of the instruction set extensions in Intel processors which supports the paradigm
of single instruction multiple data (SIMD). Finally we give a brief overview of
parallel programming tools required to exploit the power of multiple core CPUs

which are available today.

e In Chapter 3 we describe the existing disk encryption schemes. In particular,
most of the chapter is dedicated to the description of tweakable enciphering
schemes, which is considered to be a main paradigm for disk encryption. In ad-
dition, we discuss some schemes other than TES which have been proposed for
the purpose of disk encryption. Among them, an interesting proposal is XTS,
which has been recently standardized by the National Institute of Standards
and Technology (NIST) [17] as an encryption algorithm for block oriented stor-
age devices. We argue, why XTS does not provide adequate security for this
application, and formulate a concrete attack on the scheme. Though several
weaknesses of XTS have been acknowledged by the community, but to our
knowledge a concrete attack has not appeared in the literature before. Hence,

this attack can also be seen as a contribution of this thesis.

e In Chapter 4 we describe two new tweakable enciphering schemes. The new
schemes are called HCTR* and HMCH2 which are modifications of two existing
schemes HCTR and HMCH [BRW] respectively. The modifications which yields

CINVESTAV Computer Science Department

6 Chapter 1

the new schemes are subtle, and have been done keeping in mind the AES-NI
support. The experimental results presented in Chapter 6 validates that the
modified schemes perform better than their predecessors. In general one can
prove security of a tweakable enciphering scheme by a standard reductionist
argument which reduces the security of the whole scheme to that of the under-
lying block cipher. Both HCTR and HMCH[BRW] have a proof for its security.
Thus, it is required that the security of the modified schemes should also be
proved. We adapt the original proofs of the original schemes and successfully

demonstrate that the modifications are also provably secure.

e In Chapter 5, we provide some implementation details. In particular we de-
scribe how we implement the basic building blocks for the various schemes that
we study in this thesis. We provide details of the implementations for the finite
field operations required for our purpose and also the description of the AES

blockcipher, which is used in all schemes.

e In Chapter 6 we present the experimental results. We discuss about the char-
acteristics of the processors used for this study, and finally present performance
data of our implementations in various scenarios. We also provide some prelim-

inary analysis of the results.

e We conclude the thesis in Chapter 7 and discuss about some issues which we

would like to take up for future study.

CINVESTAV Computer Science Department

Chapter 2

Exploiting Parallelism in Modern

Processors

The crux of this thesis is about efficient implementations of a class of cryptographic
algorithms which are suitable for the application of disk encryption. The main goal of
the implementations is to obtain high speed. To achieve this goal we exploit various
features present in modern processors. In this Chapter we try to summarize some
of the ways one can exploit parallelism in a modern processor. We begin with a
brief description of an instruction set architecture in Section 2.1} In Sections [2.2]
and we discuss the three common types of parallelism which a modern processor
provide, namely, instruction level parallelism, data level parallelism and thread level
parallelism. In Section [2.3.1] we also discuss about some of the instruction set ex-
tensions which implements the paradigm of Single Instruction Multiple Data (SIMD)
computing in the state of the art Intel and AMD processors. Finally, in Section [2.5]
we discuss some issues about the choice of the programming language and some others

about parallel computing.

2.1 Instruction Set Architecture

In general, computer architecture can be defined as the practical art of selecting
and interconnecting hardware components to create computers that meet functional,
performance and cost goals [33]. Computer architecture can be broadly classified into
instruction set architecture and microarchitecture.

An instruction set, or instruction set architecture (ISA), is the part of the com-

7

8 Chapter 2

puter architecture related to programming. An ISA includes the native data types,
instructions, registers, addressing modes, memory architecture, interrupt exception
handling, and external input/output. An ISA incorporates a specification of the set
of opcodes (machine language), and the native commands implemented by a partic-
ular processor. On the other hand, microarchitecture is the set of processor design
techniques used to implement the instruction set. Computers with different microar-
chitectures can share a common instruction set. For example, the Intel Pentium and
the AMD Athlon implement nearly identical versions of the x86 instruction set, but
have radically different internal designs [33].

The instruction set architecture of a modern processor enables parallel computing
in various ways. In the following three sections we discuss in brief the way a modern

processor enables parallel computing.

2.2 Instruction Level Parallelism

A computer program is a sequence of instructions. In a program there may exist
certain dependencies among the various instructions it contains. If two or more
instructions are independent of each other then these instructions can be executed in
any order and even they can be executed in parallel without any effect on the results
they produce. To understand how instruction level parallelism can be exploited in a
program, we need to first be precise regarding what we mean by two instructions to
be independent.

There can be generally three types of dependencies between instructions. These

dependencies are summarized as below [33]:

1. Data dependencies: If the output of an instruction a is input to an instruction
b, then we say that there is a data dependency between the instructions a and b.
It is easy to see that data dependencies are transitive, i.e., if b depends on a and
¢ depends on b, then surely ¢ also depends on a. Data dependent instructions
have always to be executed in an order which respects the dependency. So if
a — b — ¢, i.e., bdepends on a and ¢ depends on b, then these instructions have

to be executed in the order a, b, ¢, and there is no way they can be parallelized.

2. Name dependencies: It would be easier to explain this kind of dependency

using an example. Consider the code below:

CINVESTAV Computer Science Department

Exploiting Parallelism in Modern Processors 9

1. A=X+1;
2. B=A+2;
3. A=Y +3;

In this piece of code the instructions 1 and 3 are dependent, in the sense that the
order of their execution determines the value of B. But here, the instructions 1
and 3 has no data dependencies, i.e., the input of one is not dependent on the
output of the other. But still they cannot be swapped and has to be performed
in the specific order specified by the code. This type of dependencies are not
true dependencies and can be easily removed by renaming of variables. Like for
our example if we replace instruction 3 by C' = Y 43, then the instructions 1 and
3 are no more dependent. This kind of dependencies, where two instructions

write to the same location, are called named dependencies.

3. Control dependencies: In a program there are certain instructions which
change the flow of execution abruptly, possibly based on some values of vari-
ables attained in run-time. Such instructions are called branch instructions or
jump instructions. These instructions are used to implement loops and other
conditional operations. Swapping or reordering an instruction which contains a
branch variable or instructions which belongs to different branches of execution
can lead to un-desirable effects. Such dependencies are called control (or some-
times branch) dependencies. We illustrate this with a simple example. Consider

the piece of code below:

Al. if (a==0)
A2. a=a+b;
A3. elseb=a-+b

In the above example A2 is control dependent on Al, and thus cannot be

parallelized.

If two instructions are independent then they can be suitably parallelized. Modern
processors apply various techniques for parallel execution of multiple instructions. We

briefly describe next some of these techniques.

CINVESTAV Computer Science Department

10 Chapter 2

Instruction pipelining: The main goal of instruction pipelining is to increase the
instruction throughput, i.e., to increase the number of instructions executed per unit
time. The fundamental idea is to split the processing of an instruction into a series
of independent steps, with storage at the end of each step. For example, a typical
instruction in a modern reduced-instruction-set (RISC) processor can be broken into

the following five steps:

Instruction fetch
Instruction decode and register fetch
Execute

Memory access

Ot W

Register write back

For independent instructions these steps can overlap. While one instruction is de-
coded, the next instruction can already be fetched from memory and during execution
of one instruction the next instruction can be decoded and so on. This overlapping
in the execution of independent instructions is called pipelining. Note that some
stages in the pipeline can also be overlapped for dependent instructions as long as the
dependency is not a control dependency. There can be several issues in the process
of pipelining, an important one is when the code has a branch. In this case, the
processor could waste some clock cycles whenever it feeds a branch into the pipeline
and later discovers it has chosen the wrong branch. In order to solve this problem,
processors use a method called branch prediction which uses specialized algorithms
based on history of other nearby branches to predict which way a new branch will go.
There are different branch prediction techniques used depending on the processor.
However, a good programming advice is avoiding branches as far as possible.

It may be possible to break a single instruction into more finer steps than the five
steps described above. With such finer sub-division, deeper pipelines are possible.
More pipeline stages have the advantage that the CPU needs to do less work in each

pipeline stage which allows an increase in the CPU frequency [33].

Superscalar processing: A superscalar processor executes more than one instruc-
tion during a clock cycle by simultaneously dispatching multiple instructions to re-
dundant functional units on the processor. Each functional unit is not a separate
CPU core but an execution resource within a single CPU such as an arithmetic logic

unit, a bit shifter, or a multiplier. A superscalar CPU is thus capable of handling

CINVESTAV Computer Science Department

Exploiting Parallelism in Modern Processors 11

multiple instructions in the same pipeline stage by duplicating the various resources
of a single CPU, and is thus independent of instruction pipelining. In a superscalar
CPU the dispatcher reads instructions from memory and decides which ones can be
run in parallel, dispatching them to redundant functional units contained inside a
single CPU. Therefore a superscalar processor can be envisioned having multiple par-
allel pipelines, each of which is processing instructions simultaneously from a single

instruction thread.

Specialized instruction scheduling: In traditional processors, instructions are
scheduled in the same order in which the instructions appear in a program. Such
a scheduling is called in order instruction scheduling. In processors where in order
scheduling takes place, it is the programmers task to sequence the instructions in such
a manner so that instruction pipelining and other parallelization techniques inherent
to the processor can be utilized on the given sequence of instructions.

Many modern processors, in particular most Intel and AMD processors, execute
the instructions in a program out of order, i.e., the processor dynamically schedules
instructions at run time and may not respect the sequence in which the instruc-
tions appear in the program. The main advantage of out-of-order execution is that
programs can be compiled once and achieve reasonable performance on different mi-
croarchitectures. Furthermore it releases some pressure from the compiler, it becomes

easier and cheaper to develop compilers for new microarchitectures.

2.3 Data Level Parallelism and SIMD Instructions

When the same computations need to be carried out on multiple independent inputs
then these computations can be parallelized. Such a parallelization is called data level
parallelism. In modern desktop processors data level parallelism is achieved through
specialized instructions called SIMD instructions which works on vector registers.

[4

Flynn [22] classifies “very high speed computers” in the following classes:

1. Single Instruction Stream, Single Data Stream (SISD)

2. Single Instruction Stream, Multiple Data Stream (SIMD)

3. Multiple Instruction Stream, Single Data Stream (MISD)

4. Multiple Instruction Stream, Multiple Data Stream (MIMD).

CINVESTAV Computer Science Department

12 Chapter 2

Each of this class can be seen as a specific paradigm to achieve high performance com-
puters. Modern processors may have in them more than one of the above paradigms
implemented. In our context, the SIMD is particularly important as this is the way to
implement data level parallelization. The two implementations of SIMD found in cur-

rent processors are vector registers and single instruction, multiple threads (SIMT).

Vector registers: The idea of vector registers is to keep multiple values of the
same type in one register. Arithmetic operations are then carried out on all of these
values in parallel by vector instructions (sometimes called SIMD instructions). For
example, suppose one requires to add four pairs of 32 bit integers. If these integer
values are stored in consecutive memory locations then they can be loaded into two
128 bit registers by two loads, can be added by a single add instruction, and the result
can be stored back into the memory using a single store instruction. It is evident that

this leads to considerable savings in CPU cycles.

Single instruction multiple threads: Many modern graphics processing units
(GPUs) implement SIMD by executing the same instruction in parallel by many
hardware threads. The program is the same for all threads. Accessing different input
data is realized by loads from addresses that depend on a thread identifier. The main
difference compared to the concept of vector registers is in handling of memory loads:
Unlike current implementations of vector registers, SIMT makes it possible to let all
threads load values from arbitrary memory positions in the same instruction. Note
that this corresponds to collecting values from arbitrary memory positions in a vector
register in one instruction. But as stated earlier, such loads are not possible in vector

registers.

2.3.1 SIMD instructions in modern processors

Though the SIMD paradigm was first utilized in designing of vector supercomputers
like Cray-1 [58], recently this paradigm has seen a glorious come-back in desktop com-
puters. Starting from the early nineties desktop processors became powerful enough
to support real-time gaming and video processing, and demand grew for this partic-
ular type of computing power, and microprocessor vendors turned to SIMD to meet
the demand. In the last decade in most of the processor families new extensions of the

instruction sets have been incorporated and these instructions implement the SIMD

CINVESTAV Computer Science Department

FExploiting Parallelism in Modern Processors 13

paradigm through vector registers. We summarize the evolution vector instruction

set extensions in the Intel x86 family [37]:

MMX: MMX is a SIMD instruction set designed by Intel, introduced in 1996
with their P5-based Pentium line of microprocessors, designated as ”Pentium
with MMX Technology”. The MMX instruction added eight 64 bit registers to
the then existing Pentium architecture. The new registers were named MMO
to MM7 and they are capable of holding 8 bytes, 4 words (16 bits), 2 double
words (32 bits) or a single quad word (64 bits). Along with the new registers 57
new instructions were added. The new instructions were all directed towards

increasing efficiency of multimedia related applications.

SSE: Streaming SIMD Extensions (SSE) is a SIMD instruction set extension to
the x86 architecture, designed by Intel and introduced in 1999 in their Pentium
IIT series processors. It is said that Intel’s SSE extension was proposed as a
reply to AMD’s 3DNow, which had debuted a year earlier. SSE contains 70 new
instructions, most of which work on single precision floating point data. SSE
originally added eight new 128-bit registers known as XMMO0 through XMM7.
The AMDG64 extensions from AMD (originally called x86-64) added a further
eight registers XMMS8 through XMM15, and this extension is duplicated in
the Intel 64 architecture. There is also a new 32-bit control/status register,
MXCSR. The registers XMM8 through XMM15 are accessible only in 64-bit
operating mode. SSE used only a single data type for XMM registers: four

32-bit single-precision floating point numbers

SSE2: Streaming SIMD Extensions 2 (SSE2) was introduced with the Pen-
tium 4 and is a major enhancement to SSE. SSE2 adds new math instructions
for double-precision (64-bit) floating point and also extends MMX integer in-
structions to operate on 128-bit XMM registers. SSE2 enables the programmer
to perform SIMD math on any data type (from 8-bit integer to 64-bit float)
entirely with the XMM vector-register file, without the need to use the legacy
MMX or FPU registers. Many programmers consider SSE2 to be “everything
SSE should have been”, as SSE2 offers an orthogonal set of instructions for

dealing with common data types.

SSE3: Streaming SIMD Extensions 3, also known by its Intel code name
Prescott New Instructions (PNI), is the third iteration of the SSE instruction

CINVESTAV Computer Science Department

14 Chapter 2

set for the IA-32 (x86) architecture. Intel introduced SSE3 in early 2004 with
the Prescott revision of their Pentium 4 CPU. In April 2005, AMD introduced
a subset of SSE3 in revision E of their Athlon 64 CPUs. SSE3 is a minor ex-
tension of SSE2, it adds 13 new instructions mostly related to mathematical

operations for digital signal processing and thread management.

SSE4: SSE4 (Streaming SIMD Extension 4) is a CPU instruction set used in
the AMD K10 (K8L) and Intel Core microarchitecture. SSE4 is a significant
upgrade from SSE3. SSE4 contains 54 new instructions: A subset consisting
of 47 instructions referred to as SSE4.1 and the 7 remaining instructions as
a second subset called SSE4.2. AMD also added four new SSE instructions,
naming the group SSE4a.

AVX: Advanced Vector Extensions (AVX) is an extension to the x86 instruction
set architecture for microprocessors from Intel and AMD proposed by Intel
in March 2008 and first supported by Intel with the Sandy Bridge processor
and by AMD with the BullDozer processor. AVX provides new features, new
instructions and a new coding scheme. The width of the SIMD registers is
increased from 128 bits to 256 bits, and renamed from XMMO - XMM15 to
YMMO - YMM15. In processors with AVX support, the legacy SSE instructions
(which previously operated on 128-bit XMM registers) now operate on the lower
128 bits of the YMM registers. Additionally, AVX introduces a three-operand
SIMD instruction format, where the destination register is distinct from the
two source operands. For example, an SSE instruction using the conventional
two-operand form a = a + b can now use a non-destructive three-operand form
¢ = a + b, preserving both source operands. AVX’s three-operand format is
limited to the instructions with SIMD operands (YMM), and does not include
instructions with general purpose registers (e.g. EAX). Such support will first
appear in AVX2.

As stated earlier, the shift to SIMD paradigm in the desktop computers were
mainly motivated by the multi-million dollar gaming industry which required very
fast graphics and related multimedia operations. But, in 2010 there was an instruc-
tion set extension called AES-NI introduced in the x86 processor which is of par-
ticular interest to the the cryptographic community. The AES-NI consists of various

instructions with which the Advanced Encryption Standard block-cipher can be easily

CINVESTAV Computer Science Department

FExploiting Parallelism in Modern Processors 15

implemented. In addition it contains a special instruction called PCLMULQDQ with
the help of which carry free multiplication of two 64 bit integers can be performed.
The PCLMULQDQ instruction can be used for efficient implementation of multipliers
in a finite binary extension field. More discussions about the AES-NI instructions are
provided in Chapter m (in page , where we discuss about the implementation

details of some of the modes considered in this study.

2.4 Multicore Processors and Thread Level Paral-

lelism

The last decade has seen exponential rise in CPU frequencies which has given rise
to very fast CPUs. But in the last few years it was realized by the computer ar-
chitects that CPU frequencies have reached near saturation, and it is unlikely that
they can be further increased. This lead to a new paradigm of CPU designs which
utilizes more than one processor core in a single processor. This kind of processors
are commonly known as multicore processors. Each core in a multicore processor
completely implements an architecture with all registers and units. But it may be
the case that the cores share some resources like the caches, but architectures where
each core has its dedicated cache are also available. In the most typical model of
multicore architecture, the main memory is shared by the cores.

The performance gain in multicore processors heavily depends on the extent to
which the application can be parallelized. For a programmer there exist the option
to develop software which runs in multiple threads, and the threads communicate
between them by using the shared memory. Developing such software is a non trivial
task, thus multi-threaded implementations of common software is not very common.
But performance critical applications, which are parallelizable, can gain a lot from a

multi-threaded implementation. We describe more about parallel programming issues

in Section [2.5.1] (in page [17).

2.5 Notes on Programming Languages and Tools

Choosing a proper programming language depends hugely on the application goals.
The most preferred programming language from the point of view of a programmer

is a high level language. High level languages help to create functionalities using

CINVESTAV Computer Science Department

16 Chapter 2

special reserved words (the syntax) to define memory locations, jumps over instruction
codes, or handle input output data. The syntax of a high level language is generally
intuitive, as it may hide low-level details of the instructions that ultimately generate
the machine readable codes. Thus, it is easier to program in these languages and the
code written in such languages is also easy to maintain and debug.

A code written in a high level language is generally compiled [] and the compiler
translates the code into a machine readable format. Thus, a programmer who develops
his/her code in a high level language does not have much control on the code that
is produced by the compiler. This is a serious disadvantage of high level languages,
as till now the state of the art compilers are unable to produce code which is fully
optimized for performance. Hence, generally it is difficult to develop a very high
performance code using a high level language.

The alternative to high level language is coding in assembly language. An assembly
code is very near to the hardware, and a programmer has full control over which
resource is used by the program and in which manner, and they can be tuned to
a large extent to produce highly optimized code. But, programming in assembly is
tedious, it requires serious knowledge of the instruction set architecture of the machine
for which the code is being written. Moreover, assembly codes are not easily readable

and thus very difficult to debug and maintain.

Inline assembly: A trade off between assembly language and high level language
is using inline assembly in a code written in a high level language. Inline assembly
language programming refers to the practice of writing some parts of the code (which
is written in a high level language) in assembly. The general practice is to write those
parts of the code which have critical performance goals in assembly language, where
as the other parts are in a high level language. Most compilers supports this practice,
and they generate code respecting the parts which are written in assembly, i.e., by
using a few directives it is possible that in the final code produced by the compiler
the inlined assembly parts remains un-touched by the compiler. With inlining, it is
thus possible to gain some aspects of the performance gains in a assembly program
without totally losing the flexibility of a high level language.

There can be other advantages of inlining. For example, one way to utilize various
SIMD instruction set extensions for the x86 architecture, is to implement the relevant

code, which uses this instructions, in assembly and inline it in the program written

!some high level languages like MATLAB, Perl, Python or PHP are interpreted (not compiled)

CINVESTAV Computer Science Department

FExploiting Parallelism in Modern Processors 17

in a high level language.

Intrinsic functions: Though the most direct way to use specialized processor in-
structions is to inline the assembly language instructions into the source code. How-
ever, this process can be time-consuming and tedious. In addition, some compilers
may not support inline assembly language programming. Some compilers enables
easy implementation of these instructions through the use of API extension sets built
into the compiler. These extension sets are referred to as intrinsic functions or in-
trinsics [36]. Thus, we can say that an intrinsic function is a function available for
use in a given language whose implementation is handled specially by the compiler.
Typically, it substitutes a sequence of automatically generated instructions for the
original function call, similar to an inline function. Unlike an inline function though,
the compiler has an intimate knowledge of the intrinsic function and can therefore
better integrate it and optimize it for the situation. The following are some of the

advantages of using intrinsics:

e The compiler optimizes intrinsic instruction scheduling so that executables run

faster.

e Intrinsics enable the use of the syntax of the high level language, in particular
variables etc. can be named as required by the high level language instead of

assembly language or hardware registers.

e Intrinsics provide access to instructions that cannot be generated using the

standard constructs of the high level languages.

The work that we report in this thesis is highly performance critical. Our primary
objective here is to obtain fast implementations. For this reason we heavily use the
SIMD instructions. We write our codes in the high level language C with the intrinsic
functions where ever possible. At some places we use a little amount of inline assembly
also. Our codes are directed towards multicore processors, and we report some results
where our code utilizes thread level parallelism using multiple cores. We describe next

some issues in programming for multicore processors.

2.5.1 Basics of parallel programming

Parallel computing was an evolution of serial computing and attempts to save time

or even money, for solving many problems that are considered to be so large and/or

CINVESTAV Computer Science Department

18 Chapter 2

so complex that could be impossible to solve them with a serial algorithm on a single
computer. When we talk about parallel computing there are some concepts involved
that need to be cleared.

For computing in parallel, we first need to divide the work into different tasks.
A task is a logically discrete section of computational work, which can be seen as a
set of instructions that are executed by a processor. A parallel program consists of
multiple tasks running on multiple processors. In some cases, tasks need to exchange
data which can be stored either in a distributed or in a shared memory. A shared
memory, is the portion of physical memory where all processors have direct common
access. A distributed memory is a specific architecture where each processor has its
own memory.

Other than sharing data, tasks may need to communicate with each other for
maintaining consistency. Such communications are generally called a synchronization.
Synchronization of parallel tasks is also sometimes performed via the shared memory.

For parallel execution of different tasks there may be some extra overheads. The
amount of time required to manage a parallel program is called parallel overhead. To
measure the parallel overhead, there may be many things that are to be taken into
account, like synchronization, data communications, task start-up and termination
time, etc. The amount of parallel overhead generally determines whether it would be
profitable to parallelize certain tasks, in some cases, the parallel overhead may exceed
the gain obtained by parallelization, thus making parallelization redundant.

For evaluating a parallel program it is important to consider the following char-

acteristics:

e Scalability: The ability that demonstrates that parallel speedup is proportional

to the number of processors.

e Granularity : The amount of computation in relation to communications, it is
a qualitative measure of the ratio of computation to communication. It is often

related to how balanced the work load is between tasks.

High scalability suggests a low parallel overhead. But, in most cases there is a limit to
the parallelization that can be achieved by adding more processors, i.e., most practical
tasks are not infinitely scalable. Parallel overhead can be reduced by increasing the

granularity within each task.

CINVESTAV Computer Science Department

FExploiting Parallelism in Modern Processors 19

Threads: As discussed earlier the modern processors provide instruction level paral-
lelism (like through instruction pipelining) and data level parallelism (through SIMD
instructions). These forms of parallelism are inherent to the processor, and to exploit
them explicit division into tasks and applying methods of parallel programming is
not required. But to utilize the support of multiple cores, the task at hand need to be
carefully subdivided into subtasks for the different cores. Here, techniques and tools
of parallel programming becomes important. Exploiting the multiple cores is achieved
by multi-threaded programming, hence this parallelism is referred to as thread level
parallelism.

A thread is an independent execution state, which have their own machine regis-
ters, a call stack and the ability to execute code. But a thread is not an independent

process. The differences between a thread and a process are basically the following:

e Threads exist within a process, which means they do not have distinct copies

of state values like user 1D, file descriptors, etc.

e Threads also share a single address space of memory segment belonging to their

process.

e Threads can be scheduled by code without kernel assistance. This could be

much faster than process scheduling.

Multithreading is a widespread programming and execution model which allows mul-
tiple threads to exist within the context of a single process. These threads share the
resources of the process but are able to execute independently. The threaded program-
ming model provides developers with an useful abstraction of concurrent execution.
However, perhaps the most interesting application of the technology is when it is
applied to a single process to enable parallel execution on a multiprocessor system.
This advantage of a multi-threaded program allows it to operate faster on com-
puter systems that have multiple CPUs, CPUs with multiple cores, or across a cluster
of machines, because the threads of the program naturally lend themselves to truly
concurrent execution. In such a case, the programmer needs to be careful to avoid
race conditions, and other non-intuitive behaviors. In order for data to be correctly
manipulated, threads will often need to rendezvous in time in order to process the
data in the correct order. Threads may also require mutually-exclusive operations

(often implemented using semaphores) in order to prevent common data from being

CINVESTAV Computer Science Department

20 Chapter 2

simultaneously modified, or read while in the process of being modified. Careless use

of such primitives can lead to deadlocks.

Tools for multi-threaded implementations: Many high level programming lan-
guages provide in-built support for multi-threading, and some provide access to the
native threading APIs provided by the operating system. For developing multi-
threaded applications in C or C++, there are primarily two different ways to go:
OpenMP and POSIX threads (Pthreads).

OpenMP: Open Multi-Processing (OpenMP) is an API that supports multi-
platform shared memory multiprocessing programming in C, C++, and Fortran,
on most processor architectures and operating systems. It consists of a set of
compiler directives, library routines, and environment variables which can be
suitably used for building parallel code. OpenMP is based on a fork-join execu-
tion model. Execution begins with a single thread called the master thread, and
when parallel sections are encountered within then the master thread spawns a
set of parallel threads. The parallel portion of the code gets executed, and at the
end of the parallel region all threads terminate leaving only the master thread.
Parallel regions and other OpenMP constructs are defined through compiler
directives. The #pragma omp parallel is one of the main OpenMP constructs
which specifies a piece of code to be run in multiple threads. Starting from the
beginning of the region, the code is duplicated and all threads execute that code.
While OpenMP does not guarantee a priori how many threads will be created,
it usually chooses a number equivalent to the number of available execution
pipelines. On standard multiprocessor environments, this number is the num-
ber of processors. On systems with processors endowed with Hyper-Threading
Technology, the number of pipelines is twice the number of processors. An API
function or environment variable can be used to override the default number of
threads.

POSIX threads: Pthreads is an API which was first defined in the AN-
SI/IEEE POSIX 1003.1-1995 standard, and since then has continued to evolve
and by now many compilers support it. The Pthreads library contains around
100 subroutines that are used for thread management which includes routines
dealing with synchronization, communications between threads and routines for

using read/write locks and barriers. The current standard is only defined for

CINVESTAV Computer Science Department

Exploiting Parallelism in Modern Processors 21

C, but there also exist some Fortran compilers that provide a similar Pthread
APIs. Pthreads provides extensive control over threading operations, it is an
inherently low-level API that mostly requires multiple steps to perform simple
threading tasks. For example, using a threaded loop to step through a large
data block requires that threading structures be declared, that the threads be
created individually the loop bounds for each thread be computed and assigned
to the thread, and ultimately that the thread termination be handled, all this
must be coded by the developer. If the loop does more than simply iterate,
the amount of thread-specific code can increase substantially. Thus, Pthreads
provide much less abstraction than OpenMP, making development much more
faster in OpenMP than in Pthreads. The number of threads in Pthreads appli-
cations needs to be hard coded in the code and this makes codes less portable

across platforms with variable number of CPUs.

Summary

As the main goal of the thesis is to obtain high speed efficient implementations of
cryptographic algorithms suitable for the application of disk encryption. We described
some of the features present in modern processors which we considered in order to
achieve this goal. Although modern processors may have in them more than one of the
Flynn paradigms implemented, we heavily use the SIMD paradigm and our codes are
directed towards multicore processors. We also described some issues in programming
for multicore processors as we report some results where our code utilizes thread level

parallelism using multiple cores.

CINVESTAV Computer Science Department

22 Chapter 2

CINVESTAV Computer Science Department

Chapter 3
Schemes for Disk Encryption

In this chapter we give an overview of the important disk encryption schemes which
are available in the literature. Our primary focus is on a class of block cipher modes of
operation called tweakable enciphering schemes (TES). It is widely accepted that TES
are the most suitable methods applicable for low level disk encryption. Nevertheless
there have been other proposals for disk encryption which are not TES. We also
discuss some important candidates of those classes.

In what is to follow, we first give a brief description of the activities of the IEEE
working group on security in storage (SISWG) [34]. SISWG has been working in
the past few years for formulating standards for various tasks related to security
in storage. The activities of this working group have been a guiding force towards
development of new methods for secure storage. Later in Section [3.3] we discuss
about tweakable enciphering schemes and also give algorithmic descriptions of the
specific schemes that we chose for this study. In Section we give descriptions of

some other schemes which are not TES but have been proposed for the application.

3.1 Activities of IEEE SISWG

The current activities surrounding the problem of storage encryption have been
broadly directed by an active standardization procedure being performed by IEEE
working group on security in storage (SISWG). SISWG has been working towards
security solutions in various storage media. SISWG has four task groups: 1619 which
deals with narrow block encryption, 1619.1 which deals with tape encryption, 1619.2
deals with wide block encryption and 1619.3 which deals with key management. The

23

24 Chapter 3

task groups 1619 and 1619.2 are responsible for standardizing encryption algorithms
for fixed-block storage devices and hard disks fall under this category. Both the task
groups (1619 and 1619.2) have concentrated only on length preserving encryption
stressing this to be an important criteria for disk encryption. The task group 1629.1
has standardized authenticated encryption for the purpose of tape encryption, as in

tapes there exist extra space for the authentication tag.

The task of 1619 has been completed and they have come up with the standard
document 1619-2007 which specifies a mode called XTS-AES [I7]. XTS is derived
from a previous construction of Rogaway [57] which was called XEX. XEX is a tweak-
able block cipher and in [57] it was shown how such a tweakable blockcipher can
be used to construct authenticated encryption schemes and message authentication
codes. XTS is different from XEX by the fact that it uses two keys and later it was
pointed out in [42] that use of two keys was unnecessary. The XTS can be seen as an
electronic code book mode of tweakable block-ciphers where each block uses a differ-
ent tweak, hence the name “narrow block mode”. XTS is efficient, fully parallelizable,
and possibly does not have any patent claims. But it is questionable whether XT'S
provides adequate security for the disk encryption problem. XTS is deterministic and
there is no scope of authentication, also trivial mix and match attacks are applicable
to XTS. These weaknesses are acknowledged in the standard document itself. The
document gives a proof of the security of XTS (the validity of the proof has also been
contested in [42], where a better proof has been provided), but it only proves XTS
as a secure tweakable block-cipher, this assurance is possibly not enough to use XT'S
for the disk encryption application. This concern has been voiced in other public
comments like in [63]. In spite of these criticisms XTS has been standardized by
NIST [17].

1619.2 is working on wide block modes, which means they would standardize a
mode of operation which behaves like a (tweakable) block-cipher with a block length
equal to the data length of a sector. This notion is satisfied by tweakable enciphering
schemes (TES), and the security guarantees provided by TES seem adequate for the
disk encryption scheme as the ciphertexts produced by them are indistinguishable
from random strings and are also non-malleable [30]. Thus, the wide block modes
would be much more interesting in terms of security than the XT'S mode. But, TES
are much more inefficient than XTS. It has been shown in [47, [10], that some of the
existing TES when implemented in FPGAs can outperform the data rates of the most

modern disk controllers, which shows that these schemes possibly can be used in real

CINVESTAV Computer Science Department

Schemes for Disk Encryption 25

life disk encryption. 1612.2 has chosen two modes EME2 (a variant of EME [31]),
and XCB [48] for standardization, but the final standard document is not yet out.
Among many available TES the reason for choosing EME2 and XCB is not clear. At
least the studies in [47] show XCB to be the least efficient mode and both XCB and
EME are covered by patent claims.

3.2 Some Notations

The set of all n bit strings would be denoted by {0, 1}". Given a finite binary string
X, we write |X| to denote its length in bits. By X||Y we mean the concatenation
of two finite strings X and Y. For a positive integer n, 0,, represents the n—times

repetition of 0’s. If X is a finite set, then |X| denotes its cardinality.

The set of strings {0, 1}" can be treated in multiple ways. In most cases {0,1}"
is treated as the finite field Faon. Thus, for XY € {0,1}", by X ® Y and XY we
denote the addition and multiplication in the field Fon. The elements in {0, 1}" can be
treated as polynomials of degree at most n—1 over Fy, and with such a representation
X @Y is ordinary polynomial addition where the coefficients are added modulo 2, and
can be achieved by the bitwise XOR of X and Y. XY can be obtained by multiplying
the polynomials associated with X and Y modulo an irreducible polynomial of degree
n representing the field Fon. If the strings in {0, 1}™ are treated as polynomials, then
the string 10 represents the monomial z. Thus for X € {0,1}" by X we would mean
the multiplication of the polynomial representing X with the monomial x modulo the
irreducible polynomial representing the field. Further this operation x X will be called

xtimes.

A block cipher is a function F : K x {0,1}" — {0, 1}" such that for any K € K,
E(K,-) = Ek(-) is a permutation on {0,1}". We shall usually write Ex(X) instead
of E(K, X). The positive integer n is the block length, and an n—bit string is called
a block.

CINVESTAV Computer Science Department

26 Chapter 3

3.3 Tweakable Enciphering Schemes

Tweakable enciphering schemes (TES), are block cipher modes of operation which pro-
vide security in the sense of a tweakable strong pseudo-random permutation (SPRP)E].
TES are based on the notion of tweakable block ciphers introduced in [43] (this im-
portant piece of work was recently published in a much expanded form in [44]).

Given a message space M = U;»0{0, 1}, a tweak space T C {0,1}* and a key
space K C {0,1}*, a tweakable enciphering scheme can be defined as a function
E: KxT xM — M. This notion is very similar to a tweakable block cipher [43]. A
tweakable block cipher E is defined as E : K x T x {0,1}" — {0,1}". As in a block
cipher, the message and the cipher space of a tweakable block cipher are also restricted
to fixed length strings. But, in a TES the message space can contain variable length
and arbitrarily long strings. The tweak aims to provide variability of the ciphertext,
with the property that if the same plaintext is encrypted using the same key and
different tweaks then different ciphertexts would be produced. The tweak is not a
part of the key, it is a public quantity. The use of tweaks is fundamental for the
purpose of disk encryption. Generally, the sector address of a disk sector is treated
as a tweak, this ensures that the tweaks for two different sectors are always different.
Thus, such a use of the tweak guarantees that if the same message is written in two
different sectors then the ciphertexts would be different. This property prevents an
adversary to know that two sectors contain the encryption of the same plaintext. Also,
the SPRP property of a TES guarantees that each bit of ciphertext is dependent on
all the bits of the plaintext and vice versa, a property which makes TES very secure
for the disk encryption application. Though, the general definition of a TES considers
messages and tweaks of arbitrary length but for the application of disk encryption
such generality is not required, as the sector lengths are of fixed size and tweaks
(which are sector addresses) can also be suitably coded to fit into fixed length strings.
As TES are generally constructed using a block-cipher, for efficiency reasons tweaks
can be considered to be of the same length of that of the block length of the block
cipher and the message lengths to be a suitable multiple of the block cipher. Such
length restrictions on the messages and tweaks in most cases result in more efficient
constructions than a construction which is more general.

In this Section we will provide a brief history of the constructions of TES known

'For clarity we skip formal security definition of TES in this chapter, we provide such formal
definitions and describe the notion of SPRP in (in page

CINVESTAV Computer Science Department

Schemes for Disk Encryption 27

till date and finally provide specifications of the schemes that were selected for this

study.

3.3.1 A brief history of the known constructions of TES

The first work to present a scheme which is very near to a TES was by Naor-Reingold
[53]. This work provides a construction of a strong pseudorandom permutation
(SPRP) on messages of arbitrary length. The construction consists of a single encryp-
tion layer in between of two invertible universal hash functions. They did not provide
a tweakable SPRP (which is the requirement for a TES) since their work predates
the notion of tweaks which was introduced much later in [43].

The first construction of a tweakable SPRP was presented in [30] which was called
the CMC mode of operation. Also, in [30] it was first pointed out that tweakable SPRP
is a suitable model for low level disk encryption and thus TES should be used for
this application. In this application, the disk is encrypted sector-wise and the sector
address corresponds to the tweak. CMC consists of two layers of CBC encryption
along with a light weight masking layer. The sequential nature of CBC encryption
makes CMC less interesting from the perspective of efficient implementations.

Using the same philosophy of CMC a parallel mode called EME was proposed
in [31]. In EME the CBC modes of CMC are replaced by electronic code book
(ECB) layers which are amenable to efficient parallelization. EME has an interesting
limitation that it cannot securely encrypt messages whose number of blocks are more
than the block length of the underlying block-cipher, for example, if AES is used as
the block cipher in EME then it can securely encrypt messages containing less than
128 blocks. This limitation was fixed in the mode EME*[2§].

The modes CMC, EME, EME* have been later classified as encrypt-mask-encrypt
type modes. As they use two encryption layers along with a masking layer. For
encrypting m blocks of messages, these modes require around 2m block cipher calls,
and the block cipher calls are the most expensive operation used by these modes.

A different class of constructions which have been named as the hash-counter-hash
type, consist of two universal hash functions with a counter mode of encryption in
between. The first known construction of this kind is XCB[48, 50]. In [48] the security
of the construction was not proved, which was done much later in [50].

HCTR [64] is another construction which uses the same methodology of XCB. A
serious drawback of HCTR was that the security proof provided in [64] only guar-

CINVESTAV Computer Science Department

28 Chapter 3

anteed that the security degrades by a cubic bound on the query complexity of the
adversary. As quadratic security bounds for TES were already known, so HCTR
seemed to provide very weak security guaranties compared to the then known con-
structions. In an attempt to fix this situation HCH [13] was proposed, which modified
HCTR in various ways to produce a new mode which used one more block cipher call
than HCTR but provided a quadratic security guarantee. HCH offered some more
advantages over HCTR in terms of the number of keys used, etcetera. In [52] another
variant of HCTR was proposed which provides a quadratic security bound and later
in [11] a quadratic security bound of the original HCTR construction (as proposed in
[64]) was proved.

ABL [49] is another construction of the hash-counter-hash type, but it is inefficient
compared to the other members of this category. The constructions of this type
require both finite field multiplications along with block cipher calls. The efficient
members of this category use about m block cipher calls along with 2m finite field
multiplications for encrypting a m block message.

The paradigm proposed for the original Naor-Reingold construction has also been
further used to construct TES and they are categorized as hash-encrypt-hash type.
Examples of constructions on this category are PEP [12], TET [29], HEH [59]. Like
the hash-counter-hash constructions these modes also require about m block cipher
calls and 2m finite field multiplications for encrypting a m block message.

In a recent work [60] significant refinements of constructions of hash-counter-hash
and hash-encrypt-hash constructions were provided. The main idea in [60] is using a
new class of universal hash functions called the Bernstein-Rabin-Winnograd (BRW)
polynomials. The BRW polynomials provide a significant computational advantage,
as they can hash a m block message using about m/2 multiplications in contrast to
usual polynomials which require m multiplications. These new modes proposed in
[60] are called HEH[BRW| and HMCH[BRW]. These modes can also be instantiated
using usual polynomials, and such instantiations result in the modes HEH[Poly] and
HMCH][Poly].

3.3.2 The schemes considered for this study

In Table we summarize almost all the existing TES. In our study we consider
all known efficient candidates, a scheme is left out either because it is known to

be very inefficient or there exist a more efficient successor of the scheme. Many of

CINVESTAV Computer Science Department

Schemes for Disk Encryption 29

Table 3.1: List of existing TES

Mode Reference | In this study | Remark

CMC [30] No Uses two layers of CBC encryption;
cannot be parallelized;
EME [31] No Uses two layers of ECB, cannot encrypt
more than 2048 bytes if AES-128 is used
EME2 [35] Yes Derivative of EME, a candidate for
the standard P1619.2
XCB [48] Yes Candidate for standard P1619.2
HCTR [64] Yes The original work proved a very weak
security bound which was improved in [I1]
HCH [13] No Has been further improved in HMCH
HMCH [60] Yes Has two versions HMCH|[Poly] and HMCH[BRW].
We study both variants
PEP 12 No Known to be inefficient
TET [29] No Has been further improved in HEH
HEH [60] Yes Has two variants HEH[Poly] and HEH[BRW].
We study both variants
HCTR* | Chapter 4 Yes A modification of HCTR
HMCH?2 | Chapter {4 Yes A small modification of HMCH

the schemes considered have several variants, but we consider only those variants
which are suitable for disk encryption, as this is the only known application of TES.
We consider those variants which are designed for fixed length messages and a fixed
length tweak. For disk encryption, the sector address is considered as the tweak,
thus we consider the tweak length to be same as the block length of the underlying
block cipher. We use AES 128 as our block cipher in all the implementations. The

algorithms used for the schemes are discussed in the next section.

3.3.3 Description of some schemes

In this section we describe the existing TES that we selected for this study. The two
new schemes HCTR* and HMCH2 which are proposed in this work are described
later in Chapter 4 The descriptions in this section assume that the tweak length is
same as the block length of the underlying block-cipher and the message length is
fixed and is a multiple of the block length of the block cipher.

CINVESTAV Computer Science Department

30 Chapter 3

Specification of EME2

As stated earlier, EME2 is a candidate for the standard P1619.2, it is a successor of
EME. EME uses a block cipher E : K x {0,1}"™ — {0, 1}" and three keys K, K and
K3. Out of the three keys only one key K is used for the underlying block cipher

E and the two other n bit keys K, and K3 are used for other purposes (this would
be evident soon from the description in Algorithm [3.1)). EME2 consists of two layers

of masked ECB encryption with a layer called intermediate mizing in-between. The

complete specification of EME2 is given in Algorithm [3.1] which is self explanatory.

Algorithm 3.1: Encryption using EME2

EME2.£L(P; ..., P,)

10

11

12

13

14

15

16

17

18

19

20

// K = K||Ks|| K3
T* < FEk, (K3 @ T) ® zKs ;
L+ Ks;
for i < 1 to m do
PPP, Ex, (L& P);
L+ xL;
MP, + (PPP,® PPP,®...® PPP,,)) & T
MCy + Ex,(MPy);
My <+ MP, & MCq;
for i + 2 to m do
j+ [i/n], k+ (i —1) mod n;
if £ =0 then
MPj <~ PPP; ® M;;
MC; + Eg, (MP;);
M; < MP; ® MCj;
CCC; +— MCj & My;
else
CCC; +— PPP;® kaj

CCCy + MCy & (CCCy & ... CCC) & T

L+ Ks;

for i + 1 to m do
C; < Ex,(CCCy) @ L;
L+ xL;

return (C1,Cs,...,Cp)

CINVESTAV

Computer Science Department

Schemes for Disk Encryption 31

Specification of XCB and HCTR

XCB and HCTR modes are a class of TES constructions that utilize a variant of
the Carter-Wegman polynomial hash [9] combined with a counter mode of operation.
For this reason, these modes are classified as Hash-Counter-Hash type modes. The

encryption algorithms for XCB and HCTR are described in Algorithms [3.2] and

respectively.

Algorithm 3.2: Encryption using XCB

XCB.EL(Py ..., Pw)

1 Ko« Ex(0") Ky < Ex (0" 1[1);

2 Ky + Ex(0"2|1]|0) K3 <+ Ex(0m2|]12);

3 Ky <+ Ex(0"3]]1]]0%);

4 A+ Eg,(P1);

5 Hy + A® hg, (Ps|...||Pm, T);

6 (Co...,Cp_1,Cp) < Ctri, g, (Pa,...,Py_1,Pp);
7 Hy <+ H1® hg, (Co|Cs]] ... ||Cm, T);

s C1 « El(Hy);

o return (Cq,Co,...,Cp)

Ctrg s(X1,..., X0
/7S =5|Sr, |S:] =32
1 fori<+ 1to{do
2 Y; < X; ® Ex(S/]|(S, +i mod 23?));
3 return (Y3,...,Y))

The XCB scheme uses the hash hy, (X, T) where X = Xj||Xs]|...|| X, for X; €
{0,1}", and T is an n bit string. The hash is defined as:

hy(X,T) = Xih"™ @ Xoh™ M & ... & X,,h° @ Th? & (binx (|P|)||bin= (IT1))h. (3.1)

Where binx (
For X = X1||Xs]|...|| X}, where each X; € {0,1}", the polynomial hash Hj,(X)
used in HCTR is defined as:

Y'|) denotes the §—bit binary representation of |Y|.

H,(X) = X107 @ Xoh™ @ ... @ (Xon)h? @ bin, (| X|)h (3.2)

Specification of HEH and HMCH

Before describing the specifications of HEH and HMCH we would describe a special

class of polynomials which were introduced in [56]. These polynomials were later

CINVESTAV Computer Science Department

32 Chapter 3

Algorithm 3.3: Encryption using HCTR

HCTR.EL , (P, ..., Py)

1 MM+ PLeHL(BR||...||Pa|T);

2 OC « Ex(MM);

3 S+ MMaCC;

4 (Cqy...,Chp_1,Cp) < Ctrg s(Pay ..., Py—1, Pn);
5 C1+ CCaHL(Co||Cs]]. .. ||ICwlIT);

6 return (C1,Cy,...,Ch)

Ctrg s(X1,..., X0

1 fori<+ 1to{do

2 Vi ¢ X; @ Ex (S @ bin, (4));
s return (Y7,...,Y))

improved in [6] and recently they were named as Bernstein Rabin Winograd (BRW)
polynomials in [60]. In [60] these polynomials were successfully used to construct the
tweakable enciphering schemes HEH and HMCH.

A BRW polynomial is defined recursively a follows

e BRW,() =

BRWh(X)

BRW,, (X1, X) th@X2
(
(

o BRWh X Q,Xg) (h@X1)<h2@X2)@X3
e BRW, Xl,XQ,... X)) = BRW, (X1, ..., X, 1) (MO X)®BRW,(Xty ..., Xin)

Where t € {4,8,16,32,...} and t < m < 2t.

Here we assume that h, X; € {0,1}". A BRW polynomial is interesting because it
computes a polynomial hash of a message of m blocks using only [% | multiplications
and [lgm] squarings. A normal polynomial (as defined in Equation ({3.3) requires m
multiplications. As computing squares in a binary extension field is much easier than
computing multiplications, hence BRW polynomials provide significant computational
advantage over a normal polynomial.

HEH is a TES mode that falls under the hash-encrypt-hash category while HMCH
falls under hash-counter-hash type. The encryption algorithms for HEH and HMCH
are described in Algorithms[3.4land[3.5]respectively. As it is clear from the algorithms,
HEH uses a polynomial hash () along with a electronic code book type mode and
HMCH uses the hash 9() along with a counter mode. The hash function ()

CINVESTAV Computer Science Department

Schemes for Disk Encryption 33

in both HEH and HMCH can be either instantiated using an ordinary polynomial
poly, (), defined as

poly,(X) = X1h™ @ Xoh™ ' & ... & Xph, (3.3)

or by a BRW polynomial BRW(),. For these different instantiations we get four
different modes, namely HEH|[Poly], HEH[BRW|, HMCH|Poly] and HMCH[BRW].

Algorithm 3.4: Encryption using HEH

HEH.E , (Pr...,Py)
1 f1+ Ex(T);
2 [< 2
8 U<+ Pp@Yn(Pr,..., Pr1);
a PP, <+ U®p;
5 CCp, + Ex(PP,);
6 V <+ CC,, @ pBo;
fori+ 1tom—1do

7 PP1<—P1€BU@ZL'lﬂ1,
8 CC; + Ex(PP;);
9 C;+— CC;® l‘iﬁg oV

10 Cp+«Vay(Cr,...,Ch_1);
11 return (Cq,Co,...,Cp)

Algorithm 3.5: Encryption using HMCH

HMCH.EL , (Py ..., P)
1 B+ Ex(T);
2 [xf;
3 M+ PL®Yp(Py, ..., Py);
4 Uy« Ex(My);
5 S+ M OUL OB Py
for i + 2 to m do
6 Ci+ P, ® Ex(z°725, @ 9);
7 O UL ®Yn(Cay.. . C):
s return (C1,Cy,...,Ch)

CINVESTAV Computer Science Department

34 Chapter 3

3.4 Other Schemes

Though it has been argued that TES are the only modes which provide adequate
security for the in place disk encryption application, over the years other kinds of
schemes have also been proposed for this purpose, we provide a brief discussion on

those schemes in this section.

3.4.1 Wide Block Block Ciphers

We said that a tweakable enciphering scheme provides security in the sense of a strong
pseudorandom permutation, hence it can be seen as a block cipher which works on
arbitrary long message blocks and is tweakable. The existing secure constructions of
TES rely on the use of fixed block length block ciphers, thus to achieve the goal of
an SPRP on long messages a TES uses multiple block cipher calls and the security
of a TES can be suitably reduced to the security of the block cipher.

There have been attempts to build wide block-size block cipher from scratch, and
such schemes have also been proposed for use in the disk encryption application.
Important examples of these attempts are Bear and Lion, which were proposed by
Ross Andersen and Eli Biham [2]. Both are very similar in construction except
that Bear uses two keyed hash function rounds and one of a stream cipher whereas
Lion uses only one keyed hash function round and two of stream ciphers. Current
investigations have shown that they do not achieve adequate efficiencies required for
the disk encryption application. A faster version of Bear called Beast[45] was another
proposal, but it was still slow enough to be a real solution for disk encryption. Another
block cipher designed for disk sector encryption is Mercy[14], unfortunately broken
by Scott Fluhrer in 2001 [21].

Hence currently, to our knowledge, there are no standing proposals for wide block
block ciphers constructed from scratch which can be considered suitable for disk

encryption, hence, we do not consider such schemes in this study.

3.4.2 XTS

NIST has recently standardized a scheme called X'T'S for applications in secure storage
[17]. XTS is a variant of the tweakable block cipher XEX proposed in [57]. XTS takes
in two block-cipher keys, a tweak and a plaintext to output a ciphertext of the same

length of that of the plaintext. For messages whose lengths are multiples of the block

CINVESTAV Computer Science Department

Schemes for Disk Encryption 35

length of the block cipher XTS works as follows shown in Algorithm [3.6] As evident
from the description in Algorithm [3.6, XTS works as an electronic code book mode
for a tweakable block cipher, and uses two keys K; and K.

Algorithm 3.6: Encryption and Decryption XTS

XTS-AES.€}Q17K2 (P,...,Py) XTS-AES.D%MKZ (C1,...,Cn)
1 [+ Ex,(T) 1 [+ Ex,(T)
for i + 1 to m do for i + 1 to m do
2 B+ zf 2 B+ zf
3 PP+ P ®pS 3 CC+C;ap
. CC « Eg, (PP) 4 PP « Eg, (CC)
5 C,i+—CCa®p 5 P+~ PP
6 return (Cy,Co,...,Cp) 6 return (P, P, ..., P,)

Though this is much simpler than any of the TES but it is doubtful whether
it provides the required security for the disk encryption application. The XTS with
AES as the underlying block cipher was first standardized by the IEEE working group
on security in storage in the standard document P1619.1. But a public scrutiny of
the standard resulted in numerous debates which voiced concerns about its security
[42, 63]. It was acknowledged that simple mix and match type attacks could be
mounted on XTS. The standard provides a security proof, which proves XT'S to be a
secure tweakable block cipher. But such a security guarantee may not be enough for
the purpose of disk encryption. Though there have been some skepticism surrounding
XTS but no concrete attack on XT'S has been yet demonstrated. A trivial attack that
can be mounted on XTS is described next. The attack described below is a mix and

match attack.

An attack on XTS

Suppose an adversary knows about the encryption of two plain texts P, P, where
P = (FR,P,...,P,1)and P' = (P}, P|,..., P, ;) using the same tweak 7. Let

» - m—1
the ciphertexts corresponding to P and P’ be C' = (Cy,C4,...,Cpy) and C' =
(Cy,C1, ..., Cl) respectively.

Then the adversary can create a new cipher text Yi,Ys, ..., Y, where each Y; €

CINVESTAV Computer Science Department

36 Chapter 3

Figure 3.1: The decryption of the ciphertext generated by adversary A

{C;, C!}, which would get decrypted to X, Xs, ..., X,, for the tweak T, where

P ifY;=C,
Xi:
P ifY;=Cl.

(2

This attack can be made more convincing with a concrete example. Consider the
scenario that a raw image of size 64 x 64 of one byte per pixel is stored in a 4096 byte
sector. The adversary have knowledge of the encryption of a white image, i.e., where
each pixel has the value of 255 and a black image where each pixel have a value of 0,
when stored in a specific sector. Thus, we are considering that P = (Fy, Py, ..., Py,_1)
and P = (P}, P|,..., P! ;) are the white and black image respectively and the
adversary has knowledge of C' = (Cy,C,...,Cyp—q1) and C" = (Cy,CY, ..., C!),
where C' and C” are the encryptions of P and P’ using XTS with the same tweak T
If the block cipher of XTS has block length of 128 bits, then each P; (and P/) would
contain sixteen pixels and the number of blocks m would be equal to 256. Now, the

adversary A follows the following procedure to output Y.

Adversary A(C,C")

1. fork<+1tom—1,
2 j < k mod 4;
3. i

4. p &)

CINVESTAV Computer Science Department

Schemes for Disk Encryption 37

5 if (j + p) mod 2 =0,

6. Y; + Cj;

7. else Y, + CI;

8. end for

9. return Y < (Yo,..., Y1)

If Y is decrypted using the tweak 7', the corresponding image would have a chess
board pattern as shown in Figure with alternate white and black blocks where
each block would be 16 x 16 pixels. Thus, with the knowledge of two ciphertexts
the adversary is able to construct a completely different ciphertext which decrypts to
something meaningful. This is just one example, the adversary can be more artistic
and generate ciphertexts corresponding to other images using C' and C’. This kind of
attack is not possible in TES as in a TES each block of ciphertext depends on each
block of plaintext and vice versa.

This attack makes us skeptic about the security of XTS for disk encryption, but
given that it is now part of a standard, we include this in our study and provide

performance characteristics of this mode.

3.4.3 LRW

Another construction related to XTS is the LRW construction which is also a tweak-
able block cipher first proposed in [43]. P1619 was considering LRW as a candidate,
but later rejected it. The draft in [40] gives a description of LRW-AES cipher. Ac-
cording to this draft, the encryption algorithm of LRW-AES takes as input a primary
AES key, K; , a secondary key Kj of 16 bytes, a 16—byte wide block P of plaintext
and a 16—byte block T" which represents the logical position or index of the block
in relation to the beginning of the key scope (the value T" acts as the tweak). The
algorithm is shown in Algorithm [3.7] As shown in the Algorithm [3.7] in step 1 a finite
field operation is required. The document [40] suggests an optimization in the com-
putation in step 1, as it can be computed by reusing previously known information
which can be stored in a pre-computed table. With this optimization, LRW would
require only one field multiplication, 32 field additions and a few integer increments
for computing 32 consecutive cipher blocks.

Though it seems that LRW is quite efficient, but like XT'S, LRW is also not a TES,
it is just a tweakable block cipher used in a ECB mode. Hence an attack similar to

the one we described for XTS is applicable here. Additionally, it was observed that

CINVESTAV Computer Science Department

38 Chapter 3

Algorithm 3.7: Encryption LRW

LRW.SIT(LK2 (Py,...,Py)
for i < 1 to m do

1 B+ KsI;

2 PP+ P, @

3 CC < Ek,(PP);
4 T+ T+71;

5 C; + CC o p;

return (C1,Ca,...,Cp)

(=)

if a key is encrypted using LRW, then it leads to a complete break. This observation
prompted its rejection from P1619.1. For these reasons we do not consider LRW in

the current study.

3.4.4 BitLocker

BitLocker encrypts all the data on a specific operating system volume. The encryption
offers only confidentiality of the data. In order to provide some kind of authentica-
tion of the data, BitLocker makes use of the TPM (Trusted Platform Module) chip
mounted on the motherboard of most of the modern PCs. BitLocker also allows users
to use a PIN or a cryptographic key contained in a USB device that the TPM checks,
which serves as an authentication of a user. BitLocker uses AES-CBC mode for the
primary encryption part plus a dedicated diffuser, named Elephant diffuser, to the
plaintext side. The security of the Elephant diffuser is still unproven. The idea of the
diffuser according to [19] is that even if the diffuser was broken, as the data is also
encrypted using AES-CBC, the confidentiality will be ensured. The only task of the
diffuser is to make manipulation attacks harder.

Encryption and decryption using BitLocker require four separate operations. De-
cryption applies them just in the other direction that encryption does. Next we

describe the encryption process of BitLocker as is detailed in [19].

Specification of BitLoker Encryption

For encrypting, a plaintext is first xored with a sector key derived from the sector
number, then run through two (unkeyed) diffusers and finally encrypted with AES in
CBC mode. The encryption algorithm for BitLocker encryption is shown in Algorithm

CINVESTAV Computer Science Department

Schemes for Disk Encryption 39

[3.8] Here, E () represents the AES encryption function, and e() an encoding function
that maps a sector number s into a unique 16—byte value in which the first 8 bytes
(in least significant byte first encoding) are the byte offset of the sector on the volume
and the last 8 bytes are always zero. In the description of the Algorithm first (in

line 1) the sector key K is generated from the secret key Kec as follows:

Algorithm 3.8: Encryption BitLocker

BitLocker.Ex x, . (S1,...,5m)
// Derive Sector Key Kj
LKy e B (e B (O]
2 S+ (S1]]...]|Sm) & Ks;
3 (s1]|...||sn) <= S // Each s; is 32 bits
// Applying Diffuser A
for i =n-Acyctes — 1,...,2,1,0 do
a s 51— (810 @ (si5 <<< R D);
// Applying Diffuser B
for i =n- Beyeres — 1,...,2,1,0 do
5 8i 4= 85; — (8i42 @ (5445 <<< Rgb)mod)
o S (sill-.sn)
// Each SS; is 128 bits
7 (SS1]]...||Sm) « S;

// Finally AES-CBC

8 OQ — I‘/s7
for i + 1 to m do
9 CZ %EKAES(Cifl@SSZ‘);

10 return (C1,Co,...,Cp)

K = Bk...(e(5))|| Ex...(¢'(s))

. €/(s) is the same as e(s) except that the last byte of the result has the value 128. K,
is repeated as many times as necessary to get a size equal to the size of the plaintext
to be xored with it.

The xored plaintext is parsed through two diffusers as shown in lines 4 and 5. The
diffusers uses two constants Agyees and Beyees Which are fixed to 5 and 3 respectively.
Additionally it uses some more constants stored in the arrays R® and R®. Where
R@ and R® are fixed as R = [9,0,13,0] and R® = [0,10,0,25]. In lines 4 and 5
a <<< b represents a rotated by b bits.

CINVESTAV Computer Science Department

40 Chapter 3

After parsing through the diffusers the transformed plaintext undergoes CBC
encryption, with an initialization vector IV;, which is computed as IV, = Ek , .. (e(s)).
Though BitLocker has no provable guarantees for its security, it is still the only
known scheme which has been widely deployed in commercial devices. Hence we do

consider BitLocker in our performance study.

Summary

We gave a description of tweakable enciphering schemes, which is considered to be a
main paradigm for disk encryption. Tweakable enciphering schemes for short TES,
are block cipher modes of operation which provide security in the sense of a tweakable
strong pseudo-random permutation (SPRP). Among all the several proposals for disk
encryption schemes and many standardizing activities. In our study we considered
all known TES efficient candidates.

We also described other kinds of schemes that have also been proposed for the
purpose of disk encryption. XTS which has recently been standardized by NIST.
LRW construction which was considered as a candidate also for standardization by
P1619, and Bit-Locker which is part of Windows Vista and Windows 7 OS. Though
several weaknesses of XT'S we described a mix and match attack that can be mounted

on XTS which has not appeared in the literature before.

CINVESTAV Computer Science Department

Chapter 4

Two new Tweakable Enciphering

Schemes

In this Chapter we propose modifications of two existing TES schemes HCTR and
HMCH[BRW] and call the new schemes as HCTR* and HMCH2. The modifications
leads to much efficient schemes. In both the constructions we would use a special
type of polynomial called BRW polynomials [6]. The definition of a BRW polynomial
was given in Section (in page [29).

4.1 Description of HCTR* and HMCH2

HCTR* modifies HCTR in two different ways. Firstly, using the observations made
in [60] we realized that the polynomial hash used in HCTR can be replaced by a
BRW polynomial which can be computed using half the number of multiplications
compared to an usual polynomial. Secondly, HCTR was designed for variable length
messages and could support arbitrary (but fixed) length tweaks. As mentioned ear-
lier, the functionality of variable length messages is not required for sector wise disk
encryption, hence HCTR* only supports fixed length messages. For this restriction
HCTR* unlike HCTR does not take in the length of the message as an input to the
polynomial hash and can thus save some computation. The encryption and decryp-
tion algorithms for HCTR* are shown in Algorithm [4.9] These algorithms are self
explanatory. For an m block message HCTR* requires 2([(m/2)] + 1) multiplica-
tions, |lgm] squarings and m block cipher calls. This is a significant improvement

over HCTR as the original construction required (2m+2) multiplications and m block

41

42 Chapter 4

cipher calls.

Algorithms 4.9: Encryption and Decryption using HCTR*

HCTR*.g}QJL(Pl o, Py HCTR*.D?}L(C& o, Ci)

1 MM + P, ® hBRWy (P, ..., P,,T); 1 CC + C1 ® hBRW(Cy,Cs,...,Cp, T);
2 CC + Exg(MM); 2 MM + EZ'(CC);

3 S+ MMoCC; 3 S+ MM®CC,;

a fori<+ 2tomdo a fori+ 2tomdo

5 C; < P, ® Ex (S @ bin,(i)); 5 P, + C; ® Ex (S ® bin,(4));

6 (1 + CC®hBRWL(Cy,Cs,...,Cp,T); 6 P+ MM ®hBRW,(Ps,...,P,,T);

7 return (Cy,...,Cp) 7 return (P, P, ..., P,)

The other construction HMCH2 is a modification of HMCH[BRW]. This modi-
fication is more subtle. The original HMCH[BRW] construction requires a series of
xtimes operations (see Algorithm in page . As stated earlier, if A € Fyn then
A can be seen as a polynomial of degree less than n with coefficients in Fy. We
define xtimes(A) = xA mod ¢(x), where g(x) is the n degree irreducible polynomial
representing the field Fy». The operation xtimes can be performed very efficiently as
this amounts to a shift and a conditional xor. For this efficiency it has been used in
many other cryptographic constructions also, and previously it was considered that
the computational cost of this operation is negligible compared to a block-cipher call
or a multiplication. With the AES-NI support this consideration is no more true.
Using 128 bit SIMD instructions, in a typical Intel machine xtimes requires about
6 cycles which is not negligible compared to an AES call. As with AES NI support,
theoretically one AES round can be performed in one cycle if there are no dependen-
cies between numerous calls. In our modification of HMCH[BRW] we eliminate the

xtimes and thus come up with a new construction which enjoys the same security
levels of that of HMCH[BRW].

The encryption and decryption algorithms for HMCH2 are shown Algorithm [4.10]
The construction is similar to HCTR* but it handles the tweak in a different manner.
The handling of tweak in HMCH2 is similar to that of HCH. Because of the typical
way in which HMCH2 handles the tweak, it requires one more blockcipher call than

HCTR* but the number of multiplications required is less.

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 43

Algorithms 4.10: Encryption and Decryption using HMCH2

HMCH2.€% ,(P; ..., Py) HMCH2.D} , (Cy ...,Cp)

1 B« Ex(T); 1 B+« Ex(T);

2 MM+ & P, ®hBRWy(Ps,...,Py); 2 CC + Cy ®hBRW,(Cs,...,Cpn);

3 CC <+ Exg(MM); S+ MM @ CC; s MM+ EZ'(CC); S+ MM & CC;
a4 for i+ 2tomdo a4 for i<+ 2tomdo

5 C; < P, ® Ex(S @ bin, (i —1)); 5 P, + C; ® Ex(S @ bin, (i — 1));
6 C1+ CC®B®hBRWL(Cs,...,Ch); 6 P+ MM ®hBRW,(Ps,...,P,);

7 return (C1,...,Cp) 7 return (P, P, ..., Pp)

4.2 Security of the constructions

In this section we would prove that the minor modifications directed towards efficiency
also give rise to secure schemes. To prove security of HCTR* and HMCH2, first we
need to specify the security definition of a TES. In Section we provide the formal
description of an adversary which attacks a TES and then describe when a TES is
considered to be secure. In Section we state two theorems which specifies the
security of HCTR* and HMCH2. In Section we provide the proofs of these

theorems.

4.2.1 Definitions and notation

An adversary A is a probabilistic algorithm which has access to some oracles and
which outputs either 0 or 1. Oracles are written as superscripts. The notation
AP1:02 = 1 denotes the event that the adversary A, interacts with the oracles Oy, O,
and finally outputs the bit 1. In what follows, by the notation X &s , we will denote
the event of choosing X uniformly at random from the finite set S.

Let Perm(n) denote the set of all permutations on {0,1}". We require a block
cipher E : K x {0,1}" — {0,1}" to be a strong pseudorandom permutation (SPRP).
The advantage of an adversary A in breaking the strong pseudorandomness of E\.,.)

is defined in the following manner.
AdviPP(A) = |Pr[K & K0 APROE0 2] -
Pr [71‘ & Perm(n) : A0 0 = 1} ‘ : (4.1)

In Equation|4.1{above the advantage of an adversary A in breaking the strong pseu-

CINVESTAV Computer Science Department

44 Chapter 4

dorandomness of F is defined as a difference of probabilities of two different experi-
ments. In the first experiment the adversary is provided with the oracles Ex (), Ex'()
for a randomly chosen K in the key space. In the second experiment, A is provided
with the oracles (), 771() where 7 is chosen uniformly at random from Perm(n).
The goal of the adversary is to distinguish between these two scenarios. Thus, if the
difference between these two probabilities is very small then we say that with high
probability A cannot distinguish between the block cipher and an uniform random
permutation. Thus E(.,.) is considered secure in the sense of an SPRP if for all
efficient adversaries A, Adviprp(A) is small.

As defined in Section [3.3] (in page[26]), a tweakable enciphering scheme is a function
E:KxTxM — M, where K # 0 and T #) are the key space and the tweak
space respectively. The message and the cipher spaces are M. For both HCTR* and
HMCH?2 we have M = {0, 1}, where m is a fixed integer and n the block length of
the underlying block cipher. We shall write E%(.) instead of E(K,T,.). The inverse
of an enciphering scheme is D = E7! where X = DZ.(Y) if and only if EL(X) =Y.

Let Perm” (M) denote the set of all functions w : T x M — M where w(T,.) is
a length preserving permutation. Such a 7 € PermT(M) is called a tweak indexed
permutation. For a tweakable enciphering scheme E : I x T x M — M, we define
the advantage an adversary A has in distinguishing E and its inverse from a random

tweak indexed permutation and its inverse in the following manner.

Advy"P(4) = ‘Pr K5 AP)

—Pr [’n’ & Perm” (M) : ATCDm 10 = 1] ‘ . (4.2)

We define Advg? P (¢, 0) by max,Advg? P (A) where maximum is taken over all
adversaries which makes at most ¢ queries having at most o many blocks. For a com-
putational advantage we define Adviprp(q, o,t) by max AAdVEprp(A). In addition

to the previous restrictions on A, he can run in time at most ¢.

Pointless queries: Let T, P and C represent tweak, plaintext and ciphertext re-
spectively. We assume that an adversary never repeats a query, i.e., it does not ask
the encryption oracle with a particular value of (T, P) more than once and neither
does it ask the decryption oracle with a particular value of (7, C') more than once.
Furthermore, an adversary never queries its deciphering oracle with (7', C) if it got C'

in response to an encipher query (7, P) for some P. Similarly, the adversary never

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 45

queries its enciphering oracle with (7, P) if it got P as a response to a decipher query
of (T, C) for some C. These queries are called pointless as the adversary knows what
it would get as responses for such queries.

The notation E[E] denotes a tweakable enciphering scheme E, where the n-bit
block cipher E is used in the manner specified in E. We will use the notation E; as a
shorthand for E[Perm(n)] and D, will denote the inverse of E,. Thus, the notation
AB=Dr will denote an adversary interacting with the oracles E, and D,. Note, in
our case E is either HCTR* or HMCH2.

4.2.2 Statement of the results

The following theorem specifies the security of HCTR* and HMCH?2.

Theorem 1. Fix n,o to be positive integers and an n-bit block cipher E : K X
{0,1}" — {0,1}"™. Then

AdviPIP < Tbot 43

VHCTR*[Perm(n)](U) = on (4.3)
—~ 2

Advﬁ%r%’R*[E] (0,t) < 725: + Adv, PP (0.t (4.4)

where t' =t + O(0).

Theorem 2. Fix n,o to be positive integers and an n-bit block cipher E : K X
{0,1}™ — {0,1}". Then

o7 11.502
+prp
AV CHPerm ()] (0) < on (4.5)
£DIT 11.50’2 +
AdVHIIz/l;gH2[E](U’ t) < g T Adv;PP(o,t) (4.6)

where t' =t + O(o).

The transitions from (4.3) to (4.4)) and from (4.5)) to (4.6]) are standard, we provide
proofs of (4.3) and (4.5)) in the next section. The proofs use the standard technique

of sequence of games, and are similar to the proof in [I1].

CINVESTAV Computer Science Department

46 Chapter 4

4.2.3 Proofs

For proving (4.3)) and (4.5)), it would be easier if we consider an adversary’s advantage
in distinguishing a tweakable enciphering scheme E from an oracle which simply

returns random bit strings. This advantage is defined in the following manner.

$
AVE o) (4) = [Pr [& Perm(n) : 4527 = 1
At))
where $(., M) or $(., C) returns independently distributed random bits of length | M|

or |C| respectively. Thus, we have

+PIT Cg)
AdVEI[)Prgrm(n)}(A> = (PI‘ _7T — Perm(n) - AB D o 1-

— Pr [71' & Perm” (M) : ATCDm 10 = 1})

= (Pr & Perm(n) : AB~Pr = 1]
 Pr [ASS6) 5 1)) '
+ (Pr [AC50) = 1]

— Pr [71' & PermT(./\/l) CATGIT) o 1})

1
< Advgpe on(A) + (g) o (4.8)

where ¢ is the number of queries made by the adversary. The last inequality follows
from the fact that the probability with which an adversary (which makes at most ¢
valid queries) can distinguish between a random permutation and an oracle which just
returns random strings would be the same as the collition probability of ¢ random
strings. As the collition probability of ¢ random n-bit strings is (g)zin hence the
inequality follows. For a more detailed proof see [30].

Thus, the main task for proving Theorems 1 and 2 reduces to obtaining an upper
bound on AdvﬁlglgR*[Perm(n)]<O) and Advﬁﬁ%HﬂPerm(n)](a) respectively. In the
next two sections we bound these advantages. The Theorems follows from these
computed bounds and Equation .

Upper bound on Advﬁér&@R*[Perm(n)] (o)

To derive an upper bound on AdvﬁglgR* [Perm(n)](a) we follow the technique of se-

quence of games.

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 47

Game HCTR*1: In HCTR*1, the adversary interacts with E, and D, where 7 is
a randomly chosen permutation from Perm(n). Instead of initially choosing m, we
build up 7 in the following manner.

Initially 7 it is assumed that for all X € {0,1}", 7(X) is undefined. When 7(X)
is needed, but the value of 7 is not yet defined at X, then a random value is chosen
among the available range values. Similarly when 7=!(Y") is required and there is no
X yet defined for which 7(X) =Y, we choose a random value for 771(Y") from the
available domain values.

The domain and range of m are maintained in two sets Domain and Range, and

Domain and Range are the complements of Domain and Range relative to {0, 1}".
The game HCTR*1 is shown in Figure 4.1}
The game HCTR*1 accurately represents the attack scenario, and by our choice

of notation, we can write

Pr[AB=Pr = 1] = pr[AHCTR™ o 1), (4.9)

Game RANDI1: We modify HCTR*1 by deleting the boxed entries in HCTR*1
and call the modified game as RAND1. By deleting the boxed entries it cannot be
guaranteed that 7 is a permutation as though we do the consistency checks but we
do not reset the values of Y (in Ch-7) and X (in Ch-7—!). Thus, the games HCTR*1
and RAND1 are identical apart from what happens when the bad flag is set. By

using the result from [5], we obtain
| Pr[AHCTRL — 1] — Pr[ARANDL —]| < Pr[ARANPT gets bad] (4.10)

Another important thing to note is that in RANDI in line 103, for a encryption
query CC*® (and M M?* for a decryption query) gets set to a random n bit string.
Similarly 105 and 108 Z; gets set to random values. Thus the adversary gets random

strings in response to both her encryption and decryption queries. Hence,
Pr[ARANDL — 1] — pr[A8()80) = (4.11)
So using Equations (4.7)), (4.10) and (4.11) we get

Ad"li{%l%{*merm(n)](f‘) = | Pr[AB~Pr = 1] — Pr[A%G)80) = 1) (4.12)
_ |Pr[AHCTR*1 = 1] — Pr[ARANDl = 1]|
< Pr[ARANDPL gets bad] (4.13)

CINVESTAV Computer Science Department

48 Chapter 4

Game RAND2: Now we make some subtle changes in the game RANDI to get a
new game RAND2 which is described in Figure[4.2] In game RAND1 the permutation
was not maintained and a call to the permutation was responded by returning random
strings, so in Game RAND2 we no more use the subroutines Ch-m and Ch-7—!. Here
we immediately return random strings to the adversary in response to his encryption
or decryption queries. Later in the finalization step we adjust variables and maintain
multi sets D and R where we list the elements that were supposed to be inputs and
outputs of the permutation. In the second phase of the finalization step, we check for
collisions in the sets D and R, and in the event of a collision we set the bad flag to
true.

Game RAND1 and Game RAND2 are indistinguishable to the adversary, as in
both cases he gets random strings in response to his queries. Also, the probability
with which RANDI1 sets bad is same as the probability with which RAND2 sets bad.
Thus we get:

Pr[ARANDL gets bad] = Pr[ARANP? sets bad] (4.14)

Thus from Equations (4.13)) and (4.14])) we obtain

A dvirnd

HOTR* [Perm(n)) (A) < PrIA™YP? sets bad] (4.15)

Now our goal would be to bound Pr[ARAND2 gets bad]. We notice that in Game
RAND?2 the bad flag is set when there is a collision in either of the sets D or R. So
if COLLD and COLLR denote the events of a collision in D and R respectively then

we have

Pr[ARANDZ gots bad] < Pr[COLLR] + Pr[COLLD]

In many previously reported game based proofs for strong pseudorandom permu-
tations as in [64} B1L [13], the final collision analysis is done on a non-interactive game.
The non-interactive game is generally obtained by eliminating the randomness present
in the distribution of the queries presented by the adversary. To achieve this, the final
non-interactive game runs on a fixed transcript which maximizes the probability of
bad being set to true. In our case as we will soon see, such a de-randomization is
not required. Because of the specific structure of the game RAND2 the probability
COLLR and COLLD would be independent of the distribution of the queries supplied
by the adversary, hence a final collision analysis can be done on the game RAND?2
itself.

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 49

Our goal is to bound the probability that two formal variables in the sets D and
R take the same value. After ¢ queries of the adversary where the st query has m?
blocks of plaintext or ciphertext and ¢ block of tweak, then the sets D and R can be

written as follows:

Elements in D : MM?® = P} & Q°,
S8 = S @ bin,(j) = (P; & Cf) & (Q° @ B* @ bin,(5)),
where Q° = hBRW,(Ps || --- || P5 || T¢) and
B* = hBRW,,(C5 [| -~ [| Cy, || T%),
1<s<qg,1<3<m—1,

Elementsin R : CC*®* =C} @ B,
Yp=CoFr,
2<1<m,1<s<q.

Before we present the collision analysis let us identify the random variables based
on which the probability of collision would be computed. In game RAND2 the hash
key h is selected uniformly from the set {0,1}". The outputs that the adversary
receives are also uniformly distributed, and are independent of the previous queries
supplied by the adversary and the outputs obtained by the adversary. The i*" query
supplied by the adversary may depend on the previous outputs obtained by the ad-
versary, but as the output of game RAND2 is not dependent in any way on the hash
key h thus the queries supplied by the adversary are independent of h.

Also we would require two important properties of BRW polynomial which are

easy to prove from the definition of BRW polynomials, which we state next.

Lemma 1. For m > 3, and X = (X1, Xs,...,X,,), BRW, (X1, Xo, ..., X)) is a

monic polynomial of degree at most 2m over GF(2")

Lemma 2. Let m > 3, and X = (X1, Xo,..., Xn), X' = (X1, X5,.... X)) €
[GF(2™)]™ such that X # X'.

Let Y = hBRW, (X1, Xo, ..., Xn) and Y' = hBRW, (X!, X4, ..., X"). Then for
every fired a € GF(2")

(2m+1)
on
The probability is taken over the random choice of h.

PrlY @Y’ =a] <

CINVESTAV Computer Science Department

50 Chapter 4

See [60] for more discussion on the above stated properties of BRW polynomials.
Now, we are ready to provide the collision analysis. We first provide the collision

analysis for R:

e First let us consider the collision between CC*. Let s # s, then as CC* @ CC*
is a nonzero polynomial of degree at most 2m + 1, hence, Pr[CC* = CC*'] <
(2m + 1)/2™, where the probability is taken over the uniform choice of h from

{0,1}". Thus,

/ 2 1
Pr[CC* =CC”® :forsome 1 <s< s <q] < (q) mrl (4.16)

- \2 2n

e Similarly we can compute collision probability between Y;* and CC*'. For each

s', there are (m — 1)¢ many Y;*’s. For each such choice, Pr[CC* = Y] <
(2m — 1)/2™. Thus,

Pr[C’C’SI =Y’ : forsome1<s # §<¢q2<i<m]
q(mg — q)(2m — 1)
2n
< 2miq?/2™. (4.17)

IN

e Now we consider collision among Y;*, 2 < ¢ < m, 1 < s < ¢q. For the pairs
(Y, Yy) with s < s and (s,i) # (s',i'), the collision probability is 1/2", since

either P° or C? is chosen uniformly and independently from the rest of the

variables. There are (qu_q) pairs of this form. Thus,

Pr[Y =Y : forsome 1 <s<s <q1 < i,i <gq,(s,i)# (s,)]

< (mq2_ q) 2m. (4.18)

Combining equation (4.16)), (4.17) and (4.18)) we obtain

2.2
Pr[COLLR] < 3'527”” T, (4.19)

Now we consider collision in domain D.

e Similar to equations (4.16) and (4.17)), we have

/ 2 1
Pr[MM®* = MM?® : forsome 1 <s<s <gq] < (q) mt :

- 2

Pr[MM?® = S8 : forsome 1 < s# s < q,2<i<m®] <2m?¢?/2". (4.21)

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 51

e Now we consider collision among S7 = S* @ bin, (i), 2 <i < m®, 1 < s < q.
Note that, Sf = S5 implies that (P; @ C;)® (Q* @ B*®bin, (i) = (P @ C;) @
(Q° @ B¥ @ bin,(7")). Let s’ < s and (s,i) # (s',i'). Thus, either C7 (in case
st query is encryption) or P (in case s query is decryption) is uniformly and
independently distributed with all other variables stated in the above equality.
Thus, the collision probability is 1/2™. Since there are (qu_q) pairs of this form,

we have

Pr[Si =S5 : forsome 1 <s<s <q1 < 4,7 <q,(si)#(s,7)]

< (qu_ q) /2m, (4.22)

The equations (4.20]), (4.21) and (4.22)) imply the following similar bound for

domain collision probability.

3.5m2q?

Pr[COLLD] < ==

(4.23)

Combining the domain and range collision probabilities, we obtain the probability
of bad being set to true in RAND2 to be at most 7m?q?/2". Thus, by using equa-

tions (4.19)) and (4.23)), we have

+rnd
AV ke Perm(n)] () <

7m2q2

2n

(4.24)

Note, for an adversary making ¢ queries each of a m block message an one block
tweak, the query complexity ¢ = mq + ¢q. Hence,

A dvirnd 70?

HCTR*[Perm(n)]() - 2_n (4'25)

Upper bound on Advﬁﬁgm[},erm(m](a)

The derivation of the bound for AdvﬁﬁgHQ[Perm(n)] (o) is very similar to the deriva-
tion that we presented in the previous section. Using the same technique of sequence
of games we can obtain the final game G2 as described in Figure [£.3] Which is very
similar to the game in Figure [4.2

Following the arguments as in the previous proof, we can say that

+rnd
AdVHIi\illCHQ[Perm(n)] (4)

IN

Pr[A%? sets bad]
< Pr[COLLD1] + Pr[COLLR1], (4.26)

CINVESTAV Computer Science Department

52 Chapter 4

where COLLD1 and COLLR1 are the events of collision in the multisets D; and Ry
respectively as described in Figure [4.3|
The elements in the multisets D; and R, after g queries by the adversary would

be as

Elements in Dy: T, MM*® = P{ & Q*° @ 3°,
83 =5 @bin,(j) = (P} & C}) @ (Q° @ B* @ bin,(j)),
where Q° = hBRW,(Ps || --- || P?) and
B* = hBRW,,(C5 || --- || Cy,),
1<s<q,1<j<m—1,

Elements in Ry: %, CC* = Cf & B* @ 5%,
YP=Ci o P},
2<1<m,1<s<q.

We observe that Dy = DU{T* : 1 < s < g} and Ry = RU{S* : 1 < s < ¢},
where D and R are the multisets described in Figure [£.2] But the definition of M M?
in D, is a bit different from that in D, similarly CC® in Ry and R are different. But
this difference does not increase the collision probabilities involving these quantities

that were presented in the previous section. So,
Pr[COLLD1] < Pr[COLLD] + Pr[ED] (4.27)

and

Pr[COLLR1] < Pr[COLLR] + Pr[ER] + Pr[EB], (4.28)

where ED is the event of a collision between T and the elements of D, ER is the
event of a collision between 3° and the elements of R and EB is the event of collision
between the 3°s themselves. Note that in D; there is never a collision between T and
T* because of the way the game G2 runs. Noting that the degree of the polynomial
hBRW,(Ps, ..., P,) is at most 2m — 1 and following same arguments in the previous

section we get

: 2(9m — 1
Pr[MM?® =T% : for some 1 <s,s' <q] < % (4.29)

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 53

Pr[T* :Sf/ : forsome 1 <s,8 <¢,1 < i<m-—1]
< —Q(mgn_ 7). (4.30)
Thus, from equations and we have
Pr[ED] < ¢@m—1) + a(mg — Q). (4.31)

2n AL
As (3* is a uniform random element in {0, 1}" and there are at most ¢ many /3° in
R4, so

g\ 1
PrlEB| < —. 4.32
el < (1) 5 (1.32)
And as there are (m — 1)¢ + ¢ many elements in R, hence
2
Pr[ER] < ”;—g (4.33)

Thus, putting all together we have

2.2 2
AdvErmnd (4) < 117;61 < 1;:

HMCH2[Perm(n)] (4.34)

as desired.

Summary

We described the two new schemes HCTR*, HCTR*. HCTR* modifies HCTR in two
different ways. Firstly, the polynomial hash used in HCTR can be replaced by a
BRW polynomial which can be computed using half the number of multiplications
compared to an usual polynomial. Secondly, HCTR was designed for variable length
messages and could support arbitrary (but fixed) length tweaks. As mentioned ear-
lier, the functionality of variable length messages is not required for sector wise disc
encryption.

The other construction HMCH2 is a modification of HMCH[BRW]. This modi-
fication is more subtle. The original HMCH[BRW] construction requires a series of
xtimes operations, For this efficiency we eliminate the xtimes and thus come up with
a new construction which enjoys the same security levels of that of HMCH[BRW].

We proved that these minor modifications directed towards efficiency also give rise
to secure schemes. After adapt the original proofs we successfully demonstrate that

these modifications are also provably secure.

CINVESTAV Computer Science Department

54 Chapter 4

Figure 4.1: Games HCTR*1 and RAND1

Subroutine Ch-m(X)

1. v {0,1}"; if Y € Range then bad «+ true; | YV & Range |, endif;

12. if X € Domain then bad «+ true; |Y + 7(X) |, endif
13. @(X) + Y; Domain < Domain U {X}; Range < Range U {Y}; return(Y);

Subroutine Ch-r—1(Y")

14. x & {0,1}"; if X € Domain, bad + true;; endif;
15. if Y € Range then bad « true; X + 7~ 1(Y) |, endif;

16. 7w(X) < Y; Domain < Domain U {X}; Range < Range U {Y'}; return(X);

Initialization:
17. for all X € {0,1}" n(X) = undef endfor
18. bad = false

Respond to the s query as follows: (Assume all queries are m blocks long
Decipher query: Dec(C5,C5,...,C2

m?

Encipher query: Enc(T%; P{, Ps,... P3) ™)
CC*® + C; & hBRWR(C5|| ... ||CE11T*);
MM? « Ch-n=Y(CC?)
S5« MM* & CCs
fori=1tom—1,
Z? < Ch-m(S® @ bin, (i));
PPy« Gl ® 27
end for
Pf +— MM?® @& hBRWg(Ps||...||P:|IT%);

101. MM? <+ P7 @ hBRW,(Ps||...||P5||T°);
102. CC?® + Ch-n(MM?®);

103. S* + MM?* @ CC*%;

104. for i =1 tom — 1,

105. Z? < Ch-7(S° @ bin,(7));

106. Gy < PPy © Z7;

107. end for

108. C5 <+ CC* @ hBRW,(Cs]| ... ||C5|T?);
109. return C§||C5]|...||Cs,

return Ps||...||Ps5.

CINVESTAV Computer Science Department

Two new Tweakable Enciphering Schemes 55

Figure 4.2: Game RAND?2

Respond to the st adversary query as follows:
ENCIPHER QUERY Enc(T®; P}, Pj,...,P2)
ty* = Enc; C3|C3[... |5, & {0, 13"
return C5||C5|| ... ||C;
DECIPHER QUERY Dec(T%;CY,C5,...,C})
ty* = Dec; P{||P3||... [Py & {0,1}"™;
return P||P5|| ... || P
Finalization:
Case ty® = Enc: Case ty® = Dec:
MM?® < P} & hBRW, (P3| ... ||P51T*); MM?® < P} & hBRWL (P3| ... ||P5|1T?);
CC*® <+ C; ® hBRW(Cs|| ... ||CE||T*); CC*® «+ Cj] @ hBRW(C5]| ... ||CE|1T%);
S%«— MM?*a CC? S%«— MM?* & CC?
D+ DU{MM?*}; R+ RU{CC"}; D+ DU{MM?*}; R+ RU{CC*};
for i = 2 to m, for i = 2 to m,
Y Cr o P Y Cr e P
D+ DU{S®* @ bin,(i — 1)}; D + DU{S® @ bin, (i — 1)};
R« RU{Y?); R« RU{Y};
end for end for
SECOND PHASE
bad < false;
if (some value occurs more than once in D) then bad « true endif;
if (some value occurs more than once in R) then bad « true endif.

CINVESTAV Computer Science Department

56 Chapter 4

Figure 4.3: Game G2

Respond to the st adversary query as follows:

ENCIPHER QUERY Enc(T®; P{,Ps,...,P3)
S S S S $ nm
ty® = Enc; C||C5]] ... ||CE, < {0,1}™™;
return C§||C5||. .. ||CE,;
DECIPHER QUERY Dec(T%;C%,C5,...,C%)
ty* = Dec; P}[|P5|...|| Py & {0,1}"™
return P{||PS||...||P5;
Finalization:
Case ty® = Enc: Case ty® = Dec:
if T° = T for some t < s, if T° = T* for some t < s,
then 3% « B¢ then 3° « B;
else else
B & {0,1}"; B & 0,1}
Dy + DU {TS}; Ri+ R U {Bs}; Dy + D1 U {TS}; Ri+ R1U {BS};
endif endif

MM? « B° @ Pf ® hBRW(P§||...||Ps);
CC* + B° @ C; & hBRW,(C3|| ...]|C%);
S« MM* & CC?
Dy« D1 U{MM?}; Ry + R U{CC*};
for i =2 to m,

YP + Ci @ P

D1+ Dy U{S* @ bin,(i — 1)}

Ri Ry U{Y]

end for

MM? « B° @ Pf ® hBRW(PS||...||P2);
CC*® « (°* @ C; & hBRW,(C3|| ... ||C2,);
S%+— MM?* q CC?
Dy« D1 U{MM?}; Ry + R U{CC*};
for i =2 to m,

Y Cr @ P

D1 < D1 U{S®* ®bin, (i — 1)};

Ri+ R1U{Y?};

end for

SECOND PHASE
bad « false;

if (some value occurs more than once in D) then bad < true endif;

if (some value occurs more than once in Rq) then bad < true endif.

CINVESTAV

Computer Science Department

Chapter 5

Implementing the Basic Building
Blocks

As described in Chapter 3 the basic building blocks for TES are block ciphers. How-
ever, all modes other than EME2 which are described in Chapter |3 require the com-
putation of a polynomial hash. The computation of the hash in turn involves com-
putation of multiplications in some finite field. Other than the block cipher calls
and multiplications some modes requires some additional finite field operations like
squaring and xtimes.

In this chapter we describe the implementational issues of the basic building blocks
of the constructions presented in this thesis. In the subsequent sections we describe
the basic strategies adopted in implementation of the AES and some basic finite field
operations (multiplication, squaring and xtimes). For all the modes implemented we
consider a block-size of 128 bits, hence we use AES-128 and the finite field of interest
to us is the field Fyizs.

5.1 Binary Field Operations

We denote a field of 2" elements by Fon. We shall often view an n—bit binary string
a= (an_1,...,a1,ap) as an element in Fyn. Any n bit string a can be represented as a
polynomial in one variable of degree at most n — 1 with coefficients in Fy. Then, the
polynomial representation of a would be a(z) = Z?;()l a;x*. In any software imple-
mentation, these coefficients are typically packed in different word sizes, depending

on the word sizes available in the processor.

57

58 Chapter 5

Addition in such a representation would amount to adding two polynomials where
the coefficients are added modulo 2. Thus given two n bit strings, the sum of them
can be realized by the bit wise exclusive or (xor) operation. For multiplication we
fix an irreducible polynomial of degree n representing the field, and given two field
elements in their polynomial representation we compute their product as the product

of the polynomials modulo the irreducible polynomial.

5.1.1 Multiplication

We describe here how we perform multiplication in the field Fq12s, where the elements
of Fy12s are viewed as polynomials of degree at most 127 with coefficients in Fy. For the
field operations we choose ¢(r) = x'% + 27 4+ 2* +x + 1 as the irreducible polynomial.

Given two polynomials A(z) = 321%7 a;z’ and B(x) = 127 bix’, we break them
as

Az) = Ag(z) + 2% Ay (2)
B(z) = By(x) + 2% By (z),

where each Ag(x), Ai(x), Bo(x) and Bj(x) are polynomials of degree at most 63
defined as

63
Ap(x) = Zaixi
i=0
63 4
Al(x) = Z%Hﬂl
i=0
63
i=0

63
Bl(ZE) = Zb64+i$i-
1=0

With such a partitioning of the polynomials and using the famous Karatsuba trick
[38] the multiplication of A(x) and B(x) can be performed using 3 multiplication of
polynomials each of degree at most 63. The method procedure is shown in Algorithm
[.11] This algorithm treats the polynomials A(z) and B(z) as 128 bit strings. The
operation * used in lines 1, 2 and 3 represents polynomial multiplication of two binary
polynomials of degree at most 63. The output of the algorithm is a polynomial of

degree at most 254, which is represented as a string of 256 bits.

CINVESTAV Computer Science Department

Implementing the Basic Building Blocks 59

Algorithm 5.11: Karatsuba Multiplier

input : 128 — bit strings (A1]]|Ao), (B1]||Bo)
where A1, Ao, B1, By are 64 — bit words
output: 256 — bit string S

1 (C4]|C0) « Ay By
2 (D1||Do) + Ay * By

3 (E1]|Eo) < (Ao @ Ay) * (Bo @ By)

1 S« Ci]|(Co® C1® Dy & Ey)||(D1 & Co @ Do @ Ey)|| Do

The reason behind this specific partitioning of the polynomials as used in the
Algorithm is because of the existence of a special AES NI instruction. AES NI
provides a new instruction called PCLMULQDQ which does a carry-less multiplica-
tion of two 64 bit operands, which can be seen as multiplication of two polynomials
in Fy[X] of degree at most 63. In a software implementation, this instruction can be
suitably employed to implement the Algorithm [5.11]

As stated, the multiplication algorithm produces a 256 bit string which needs
to be reduced using the irreducible polynomial ¢(x). We do the reduction using a
technique introduced in [26]. In [26], Gueron and Kounavis demonstrate a method
to do reduction modulo the specific irreducible polynomial ¢(x) using just shifts and
xors. Their technique can be viewed as an extension of the Barrett modular reduc-
tion algorithm [4] to modulo-2 arithmetic, or as an extension of the Feldmeier cyclic
redundancy check generation algorithm [I§] to dividends and divisors of arbitrary
size. The reduction algorithm described in [26] is depicted in Algorithm [5.12] Tt
takes as input a 256 bit string representing a polynomial of degree at most 254 and
performs the desired reduction modulo ¢(x), and thus outputs a 128 bit string. For

the correctness and other details of the algorithm we refer the reader to [26].

5.1.2 Xtimes

For a A € Fauis, some modes require the computation of A mod ¢g(z). This oper-
ation is called xtimes. ztimes can be easily computed by a left shift followed by a
conditional xor as described in Figure In this same figure, where 0x87 is the
string representation of the polynomial 27 + 22 + 2 + 1. As there is no instruction
available for shifting a 128 bit register by one position, so the xtimes turns out to be
a bit costly. Let X = A||B, where both A = [ag3....ap] and B = [bgs....by| are 64 bits

CINVESTAV Computer Science Department

60 Chapter 5

Algorithm 5.12: Fast Reduction modulo ¢(z)

input : 256 — bit strings (As||Az||A1]|4o)
where Az, As, Ay, Ay are 64 — bit words
output: 128 — bit string S

1 Xg <+ A3 >>63

2 X; + A3 >>62

3 Xo <« A3 >>57

4 Xz A X X1 Xs

5 (B1]|Bo) <+ (A3]]X3) << 1

6 (C1]|Cy) + (As]|X3) << 2

7 (D1]|Do) < (As][X3) << 7

s (E1l|Ey) < (As® By @ Cy @ D1)||(X3 ® By ® Cy @ Do)
9 S« (A1 9 E1)||(Ay & Ep)

atimes(A)

1. b+ msb(A)

2. A+~ A<«

3. ifb=1

4. A+ AP 0x87
)

return A

Figure 5.1: The xtimes operation

CINVESTAV Computer Science Department

Implementing the Basic Building Blocks 61

long, both A and B can be shifted right by one position using a single instruction,
but this would lead to loss of the bits bg3 and ags3, and some amount of book-keeping
and data movement is necessary to keep track of these bits lost and ultimately com-
puting xtimes. We use the instructions PSRAD and PSHUFD to achieve this goal. The
pseudo-code for the operation is described in Algorithm [5.13]

Algorithm 5.13: xtimes
input : 128 — bit String A = (As||A2||A1]]Ao)
where As, As, A1, Ag are 32-bit words, and

Ai = ai31ai30- .- Qip
output: 128 — bit string S

1 R < asgzillazzillaisillas s

// where @ means a repeated 32 times.
// R can be obtained from A by the instruction PSRAD

2 S < a1 s1]lar,s1]le1,31]]as,31

// S can be obtained from R by using PSHUFD instruction
3 S« S A(0x00]|0x01]|0x00]|0x87)
4 S%S@[(AgHAQ) << 1|‘(A1||A0) << 1]

This operation has significant computational overhead. Our implementation shows

that this operation takes around 6 cycles to be computed.

5.1.3 Squaring

For computation of the BRW polynomials squares are required to be computed in F,.
Computing squares in binary fields are easier than a full multiplication, as if A € Fai2s
is represented as A = 3127 a;2% then we have A% = 3127 ¢,2% mod ¢(x). To perform
this operation we use the technique used in [3](Algorithm 1). The technique used
in [3] involves using a lookup table for squares of four bit polynomials and byte
interleaving.

The algorithm we used is described in Algorithm The symbols A, > are used
to refer to the bitwise AND and the bitwise right shift of 8-bit arrays, respectively.

For performing the lookup procedure the processor instruction PSHUFB is used.
PSHUFB essentially does the following:

e [t receives two 128-bit parameters A, B which can be seen as 8-bit arrays of 16
elements, A := (a[0],...,a[15]), B := (b[0],...,b[15])

CINVESTAV Computer Science Department

62 Chapter 5

e Returns a 128-bit value also seen as an array of 16 elements R := (r[0], ..., 7[15])
which is obtained with the following:
— If (b[0] & 0x80) r[0] < 0x00 else r[0] + bla]0] & 0xOF].
— If (b[1] & 0x80) r[1] < 0x00 else r[l] < b[a[l] & 0xOF].

— If (b[15] & 0x80) r[15] < 0x00 else r[15] < b[a[15] & 0xOF].

The byte interleaving step, denoted in Algorithm [5.14] as interleaving_; and
interleaving_pg uses the support of the instructions PUNPCKLBW and PUNPCKHBW. Both
instructions interleave the four 8-bit values from the low/high half of its first param-

eter with the four values from the low/high half of its second parameter.

Algorithm 5.14: Squaring in Foi2s

input : 128 — bit strings A := (A15]|...||41]]40)
where A15,..., A1, Ag are 8 — bit words
output: 256 — bit string S := (Sy||SL)
where Sy, Sy are 128 — bit words

1 masky, < (0x0F,0x0F,0x0F,0x0F ,0xO0F,0x0F ,0xOF ,0x0F ,0xOF ,0x0F,,0xOF ,0x0F ,0xOF ,0xOF ,0xOF ,0xOF)
2 masky < (0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0,0%F0,0xF0,0%F0,0xF0,0xF0,0xF0,0xF0,0xF0,0xF0)
3 table < (0x55,0x54,0x51,0x50,0x45,0x44,0x41,0x40,0x15,0x14,0x11,0%10,0%05,0x04,0x01,0%00)

a Sp < A AN maskp,

5 Sy <+ AN masky

6 Sg<«Sgp>14

7 Sy « lookup(table, St.)

s Sy < lookup(table, Si)

o Sp « interleaving_r(Su, SL)
10 Sy « interleaving_g(SH, SH)

For more details of the implementation of the basic operations described above,

we refer to the reader to Appendix [A] where the corresponding source code is shown.

5.2 The Advanced Encryption Standard (AES)

The Rijndael cipher [15] was developed by Joan Daemen and Vincent Rijmen and it
was selected by the National Institute of Standards and Technology (NIST) in Novem-
ber 2001 to become the Advanced Encryption Standard (AES), the replacement for

CINVESTAV Computer Science Department

Implementing the Basic Building Blocks 63

the commonly used Data Encryption Standard (DES) [54]. Until now, AES is the
Federal Information Processing Standard for symmetric encryption, and is defined by
FIPS publication number 197 [20].

In general terms, the AES algorithm is a sequence of pre-defined transformations
which process the input data, depending on the key length used, in 10, 12 or 14
iterations called rounds. The last round differs from the others. AES uses one of
three cipher key-lenghts 128, 192 or 256 bits, and has a fixed block length of 128 bits.
The operations defined in AES are at byte level. Each byte represents an element in
the finite field Fos and some other operations are defined in terms of 4-byte words.
Unlike DES, the AES cipher does not have a Feistel structure.

The AES cipher key is expanded into an array of 4-byte word elements where each
one of them serves as a round key during one round. That means each round key is
128—0bit long, and is derived from the cipher key by another algorithm called the Key
Ezxpansion.

The key expansion algorithm is independent of the input data and receives only
the cipher key. For this reason it can be executed prior to the encryption/decryption
phase. The algorithm consists of the combination of two transformations: SubWord,

RotWord. These transformations are defined as follows:

e SubWord: This transformation uses a substitution table called S-bozx. The
SubWord function takes a 4-byte input word and applies the S-Box to each
byte of the input to produce an 4-byte output. The way this S-box is applied

is analogous to the SubBytes operation.

e RotWord: Takes also a 4-byte word as input, and performs a left rotation
of the word. For example, given [ag, a1, as, as], where each a; is 1 byte long,

RotWord returns [ay, as, as, ag] as output.

Besides the operations described above, AES Key Expansion procedure uses a
constant array called Rcon. Each i-th Rcon value, denoted in [20] as Rcon[i], is an
element in Fys and corresponds to the i-th power of x, where z is the hexadecimal
value 0x02.

AES encryption/decryption algorithm has four different stages: 1 of permutation
and 3 of substitution. All the AES algorithm’s operations are performed using an
intermediate value called the state which can be seen as a array of 4 by 4-bytes

words. Each round receives two 128-bit inputs: the state and a round key. The

CINVESTAV Computer Science Department

64 Chapter 5

following are the transformations applied to the input data during one round of

encryption/decryption:

e AddRoundKey: Returns the bitwise XOR (@) of the state and the corre-
sponding round key. Lets denote the state as the 4 by 4-byte array A, and the
round key ¢ as the 4 by 4-byte array R.

Qoo @1 Ap2 Gop3 Qoo Go1 Ap2 Go3 Too To1 To2 To3
a1p a1 a2 as - ajp a1 a2 Aais EB o Ti1 Ti2 T13
G20 Q21 A2 23 Qzp Q21 A22 A23 o0 T21 T22 T23
azp G31 Aa3z2 A33 azp 31 Aag2 asg T30 731 T32 733

e SubBytes and InvSubBytes. This operation substitutes each byte of the
state by another byte using the S-box table. For each byte a of the state, the

SubBytes transformation is performed as follows :

— Compute the corresponding multiplicative inverse of a over Fos. The ele-

ment {00} maps to itself.
— Apply the following affine transformation, where a; is the j-th bit of a. In

order to get a’.

)] [t o001 11 1] fa] [1]
a, 1100011 1||a 1
), 1110001 1] |a 0
dl _ |1 111000 1ffa] |0
a, 1111100 0| |a 0
d 0111110 0|]as 1
dl 0011111 0|]ag 1
@] 00011111 |a] |0

This values can be precomputed and stored in a 256 lookup table. This structure

is a substitution table called S-box.

e ShiftRows and InvShiftRows. It rotates the rows of the AES state by

different distances. For the ShiftRows transformation:

Qoo Go1 GAp2 403 Qoo Gop1 Ap2 Qo3
ail G2 a1z A - aip @11 A12 aig
Q22 G23 G20 A21 Qzp G21 A22 (23
gz a30 az1 Aa32 azp @31 Aaz2 asg

CINVESTAV Computer Science Department

Implementing the Basic Building Blocks 65

And for the InvShiftRows:

Qoo Go1 Qo2 Ao3 Qoo @1 Ap2 Qo3
a1z G0 Aaix a2 - a1p @11 A12 ais
Q22 Q23 Aa20 dA21 G20 Q21 A22 A23
az1 (32 asz asp azp 31 ag2 asg

e MixColumns and InvMixColumns. It operates on the state column by
column treated as polynomials over Fhs and multiplied modulo %41 with a the
fixed polynomial ¢(z) = {03}2*4+{01}224{01}2+{02} for the MixColumns step
or by its inverse ¢! (z) = {0b}23+{0d}2*+{09}2+{0e} for the InvMixColumns
transformation. This operation can be seen as multiplication between the state

and a fixed circulant matrix. For each column j.

MixColumns: - ~ o - -
iy 02 03 01 01 ao;
aoj| 01 02 03 01 | o
o, 01 01 02 03 apj

| o | (03 01 01 02| |agy]

InvMixColumns: o) -
ao; O0e 0b 0d 09 o
aoj| , 09 0e 0b 0d | o
ap; 0d 09 Oe 0b Qo;

| ao; | 106 0d 09 Oe| |ao,|

The final round of both encryption and decryption consists of only 3 transforma-
tions. The same explained before without the MixColumns/InvMixColumns trans-
formation.

Only the AddRoundKey transformation uses the key, other transformations are
reversible without the knowledge of the key and together provide confusion, diffusion
and nonlinearity [20].

Even though the order of the transformations is important, the SubBytes and
ShiftRows transformations can be permuted. The same can be applied for InvSub-
Bytes and InvShiftRows.

AES encryption algorithm is described in Figure [5.2] This algorithm and the rest

detailed in this section use the notation given in [20].

CINVESTAV Computer Science Department

66 Chapter 5

Algorithm AES Encryption Algorithm
Input: Data: 16 bytes of plaintext

Round Key_Encrypt: array of 11 — 15 16 — bytes blocks.
state = AddRoundKey (Data, Round Key_Encrypt [0])
For round = 1-9 or 1-11 or 1-13:

state = ShiftRows (state)

state = SubBytes (state)

state = MixColumns (state)

state = AddRoundKey (state, Round Key Encrypt [round])
end loop
state = ShiftRows (state)
state = SubBytes (state)
state = AddRoundKey (state, Round Key Encrypt [10/12/14])
Output: state (16-bytes)

© 0N oo E e WD

Figure 5.2: AES encryption algorithm using FIPS-197 notation

5.2.1 Intel AES-NI architecture

Since its standardization, designing fast implementations of AES has become an active
research area. Examples of this research are bitsliced implementations for Intel core
i7 architectures [8, [39] and some other implementations in a large variety of CPU
architectures [32, [7]. Even a fast AES implementation targeting microcontrollers is
described in [55].

After Intel introduced the streaming SIMD extensions (SSE) in 1999, which is
a SMID instruction set extension to the x86 architecture, the use of this paradigm
became very popular due to enhance the speed of many software implementations by
using special units which operate on larger data types, improving overall throughput.

One of the recent additions to these SSE extension, is the AES instruction set
(AES-NI) [24] available from the 2010 Intel Core processor family based on the 32nm
micro-architecture named Westmere, and also supported by AMD since their CPU
generation called Bulldozer.

In the AES-NT extension there are six instructions related to AES encryption and
decryption. The following four instructions are provided in order to encrypt/decrypt
the data: AESENC, AESENCLAST, AESDEC, AESDECLAST. While the key expansion is
processed by two instructions: AESKEYGENASSIST, AESIMC.

CINVESTAV Computer Science Department

Implementing the Basic Building Blocks 67

Intel’s AES-NI instructions operate on one or two 128—b:t inputs, and the typical
instruction format is instruction xmml xmm2/m128. Where xmm denotes a 128 bit
register and m128 a 128 bit memory location. The related instructions for AES

encryption/decryption are described next.

e AESENC xmml, xmm2/m128: Perform one round of an AES encryption call oper-
ating on a 128—bit data from xmm1 with a 128—bit round key from xmm2/m128.
Thus, this single instruction performs all the relevant transformations of one
AES round, namely, ShiftRows, SubBytes, MixColumns y AddRoundKey.

e AESENCLAST xmml, xmm2/m128: Perform the last round of an AES encryption
call operating on a 128—bit data from xmml with a 128—bit round key from
xmm2/m128. Thus, this instructions performs the transformations ShiftRows,

SubBytes y AddRoundKey.

e AESDEC xmml, xmm2/m128. Perform one round of an AES decryption call, using
the equivalent inverse cipher, operating on a 128—bit data from xmml with a
128—0bit round key from xmm2/m128.

e AESDECLAST xmml, xmm2/m128. Perform the last round of an AES decryption
call, using the equivalent inverse cipher, operating on a 128—b:t data from xmm1
with a 128—bit round key from xmm2/m128.

e AESKEYGENASSIST xmml, xmm2/m128, imm8: Round key generation. Assist in
AES round key generation using an 8—bit round constant (RCON) specified in
the immediate byte, operating on 128 bits of data stored in xmm2/m128 and save

the result in xmm1.

e AESIMC xmml, xmm2/m128: Perform the inverse MixColumn transformation on

a 128—bit round key from xmm2/m128 and store the result in xmm1.

Among the properties of AES algorithm, there exist a way to use the same se-
quences of transformations as in the cipher, each transformation replaced by its in-
verse, in order to perform AES decryption. This is possible with a small change in
the key schedule. This equivalent way for performing AES decryption is called the
Equivalent Inverse Cipher, and is used by Intel architecture. The other way to per-
form this operation is called Inverse Cipher but regarding the purpose of the section

the description of this operation is omitted. Nevertheless it is important to mention

CINVESTAV Computer Science Department

68 Chapter 5

Algorithm AES Encryption Algorithm using AES-NI instructions set
Input: Data: 16 bytes of plaintext

Round Key_Encrypt: array of 11 — 15 16 — bytes blocks.
state = XOR128 (Data, Round Key_Encrypt[0])
For round = 1-9 or 1-11 or 1-13:

state = AESENC(state, Round Key_Encrypt[round])
end loop
state = AESENCLAST(state, Round Key_Encrypt[10/12/14])
Output: state (16-bytes)

RANEE R S

Figure 5.3: AES encryption algorithm using AES-NI instructions set

that the difference between them is that the order in which the the transformations
are applied is not the same, which also changes the way that the decryption round
keys are defined.

The round keys used for the Fquivalent Inverse Cipher are created with the fol-

lowing steps:

1. Let Round Key_Encrypt[j] be the round key used in round number j during

the encryption flow. For j=0,1,2,...,Nr, where Nr takes the values of 10,12 or
14 depending on the selected key version of AES (AES-128, AES-192, AES-256
respectively).

2. Let Round Key Decrypt [j] be the decryption round key used in round number
j during the decryption flow.

3. Derive the decryption round keys from the encryption round keys, in the fol-

lowing manner:

(a) Round Key Decrypt[0] < Round Key Encrypt [Nr]

(b) For every round <« 1,2, to Nr - 1 do

(C) Round Key_Decrypt [round] < InvMixColumns(Round Key_Encrypt[Nr-round])
)

(d) Finally, Round Key Decrypt [Nr] < Round Key Encrypt [0]

AES encryption algorithm using AES-NI instructions is described in Algorithm
6.3

CINVESTAV Computer Science Department

Implementing the Basic Building Blocks 69

Summary

We described the implementational issues of the AES and some basic finite field
operations (multiplication, squaring and xtimes) used in this thesis. We use AES-128
and the finite field of interest to us is the field Foi2s. Regarding the multiplication in
the field we use the famous Karatsuba trick. In the case of the squaring operation
we use a technique used in [3] which uses a lookup table for squares of four bit
polynomials and byte interleaving. All operations were designed to take advantage
of SMID instructions including the AES-NI instruction set available in the new Intel

and AMD processors.

CINVESTAV Computer Science Department

70 Chapter 5

CINVESTAV Computer Science Department

Chapter 6
Experimental Results

In this Chapter we discuss in details the experimental results and compare the per-
formance of the various schemes studied in this thesis. In Section [6.1] we describe
the basic implementation strategies with a thrust to the strategies employed for the
multi-threaded implementations. In Section we state the testing methodology
adopted, and finally in Section we give the detailed results in various scenarios.

6.1 Basic Implementation Strategies

We implemented the following modes: EME2, HEH[Poly], HMCH|[Poly], XCB, HCTR,
HEH[BRW|, HMCH[BRW], HMCH2, HCTR*, XTS and BitLocker. All implementa-
tions were done for a message length of 4096 bytes, as this is the size of a sector for
the currently available hard disks. The tweak was considered to be of 128-bit.

For all the implementations we use AES-128 as the underlying block cipher and the
finite field operations are over the field Fai2s defined with the irreducible polynomial
22427422 +2+1. All implementations are in C using the AES-NI instruction set and
the PCLMULQDQ instruction for the multiplication in the field using Karatsuba’s
method as explained in Chapter 5.

The new AES round instructions are pipelined and can be dispatched theoretically
every 1-2 CPU clock cycles [25] if there is no data dependency between subsequent
calls and data can be provided sufficiently fast. This turns out to be very convenient
when we use the AES block cipher in parallel modes of operation like the CTR mode
or the ECB mode which are employed for some of the TES layers. For these parallel

modes, instead of waiting for the completion of the encryption/decryption of one

71

72 Chapter 6

data block and then continuing with the subsequent blocks, a better throughput is
obtained when we compute AES rounds on multiple blocks in parallel. In general, it
is recommended to process 4-8 blocks in parallel in order to achieve high throughput
[25]. For this work we process 4 blocks in parallel for AES whenever possible.

We have tried to vectorize the code and used the SSE instruction wherever pos-
sible. Thus, our code tries to utilize the instruction level parallelism and data level
parallelism to the fullest extent. We also did some implementations using thread level
parallelism by utilizing the multiple cores. Considering the application of disk sector
encryption, where the message length is fixed, and multiple messages are needed to
be encrypted/decrypted in a short period of time, there can be two strategies for

parallelization utilizing multiple cores:

1. Given a scheme E finding possibilities of parallelism for encrypting a single
message using E and running different parts of the scheme in different cores

and ultimately combining the results to obtain the final cipher/plain text.

2. To run various instances of E in different cores in parallel and thus encryp-

tion/decrypting one message/cipher in one core.

Most TES are designed to support the parallelization strategy as in the strategy 1.
Careful analysis of possible parallelization in some existing TES were done in [46), [10]
in the context of hardware implementations. Those analysis are valid to a large
extent for software implementations also and it is possible to divide work between
different processors for processing a single message. But, this would involve creating
and merging the threads and codes in critical sections. Creation of threads consumes
lot of cycles and the wait required for critical sections to complete may not be always
very predictable.

As the message sizes for the application of disk encryption are small, parallel over-
head exceeds the real computation time. A parallel implementation will be efficient
in terms of speed if the communication overhead between threads is less than the cost
of the procedure/routine itself. Hence we decided to follow strategy 2, where each
message gets encrypted in a different core in parallel. This strategy does not involve
any parallelization within the algorithm, and thus careful division of tasks among
cores is not required and the results shown later suggests that this give rise to the

desired speedups.

CINVESTAV Computer Science Department

Experimental Results 73

6.2 System Information

All constructions have been implemented on two different machines with the following

specifications:

Machine 1 (M1)

e CPU: Intel® Core™ i5-661 @ 3.33GHz, 4M Cache. (2 cores, 4 logical
threads)

e Memory: 4GB DDR3.

OS: GNU/Linux Fedora release 16 (Verne)

Compilers: GCC 4.6.2 and ICC 12.0.1

Machine 2 (M2)

e CPU: Intel® Core™ i5-2400 CPU @ 3.10GHz, 6M Cache. (4 cores, 4 logical
threads)

e Memory: 4GB DDRS3.

e OS: GNU/Linux Fedora release 16 (Verne)

e Compilers: GNU Compiler 4.6.2 and ICC 12.0.4

Both machines M1 and M2 feature 64-bit instruction set, and SSE4.1/4.2 instruc-
tion set extension. In the case of machine M2, the Advanced Vector Extensions
(AVX) are also included. For the ease of development, we only use the intrinsics for
the C programming language provided by Intel with two different compilers: the GNU
Compiler Collection (GCC) and the Intel Compiler (ICC), as both compilers support
these. Finally, all tests were run with Intel Turbo Boost Technology and Enhanced In-
tel Speedstep Technology disabled. In the case of machine M1 Intel Hyper-Threading
Technology was also disabled. The running time was measured when no X-server and

no network daemon were running.

6.3 Testing methodology

For performance evaluation a simple benchmark procedure was developed. An ex-
ample of the basic skeleton of the benchmark procedure is shown with the next C

macro

CINVESTAV Computer Science Department

74 Chapter 6

1 #define BENCHMARK(x) for (i=0; i< WARMUP; i++) \
2 {x:} \

3 start_cycles=get_cycles(); \

4 for (i = 0; i < BENCH; i++) \

5 {x:} \

6 end_cycles=get_cycles () ; \

7 total=(double) (end_cycles—start_cycles)/BENCH;

Listing 6.1: Basic benchmarking procedure.

In the above listing x represents the set of instructions used for the implementation
of a specific scheme. To obtain the cycle counts for a specific set of instructions we
aim to reduce the cache effects. The effects of transition from memory to data cache
and memory to instruction cache are generally called as cache effects. The first loop

in the listing above handles these cache effects.

To eliminate cache effects, both the instructions and data must be contained in
the L1 cache, which is the cache closest to the processor. The technique of storing
memory into a cache before it is actually used is known as “cache warming”. Warm
up the cache simply requires “pass through” the entire data set which is going to
be used, so that it will be moved into the cache. Warming the instruction cache
requires making a first pass through all instructions before the timing begins. We
accomplished this by putting the entire procedure which we want to test in a loop.
After this warming, the cycle counts are computed as an averaged over 1,000,000 runs

of the set of instructions.

The benchmarks were done with the help of the time stamp counter which is read
using the RDTSC instruction. This instruction returns the number of ticks since reset

in registers EDX:EAX. We used the following piece of ASM code for this purpose:

1 static -_inline UINT64 get_cycles(void) {

2 UINT64 tmp;

3 __asm__ volatile(

4 ?rdtsc\n\t\

5 mov Y%eax,(%0)\n\t\

6 mov %%edx ,4(%0)”::” rm” (&tmp) :” eax” ,” edx”) ;
7 return tmp;

8

}

Listing 6.2: Code used to measure time.

CINVESTAV Computer Science Department

Experimental Results 75

6.4 Results

The results presented in this Section are an average over 1,000,000 calls to the cor-
responding functions as explained before. First we present the results of the basic
building blocks. In Table we report the time required for the operations of mul-
tiplication, squaring, xtimes and reduction in the field Fyi2s. Note that the time of
multiplication reported includes the time for reduction. In Table we show the
performance of three versions of the counter mode. The three versions differ in the
way the counter is updated. In the first version (with xtimes) the initial counter value
is updated by performing an xtimes operation repeatedly as in the mode HMCH. In
the second version (with xor) the counter value is updated by xor-ing a constant (as
in the mode HCTR, HCTR* and HMCH2). The third version (addition modulo 23?)
the counter value is updated by incrementing the last 32 bits of the initial counter (as
in XCB). The counter mode for all versions were implemented by grouping four AES
calls together. As is evident from the results in Table 32 bit increments performs

the best whereas xtimes performs the worst.

Total clock cycles
Multiplication 37.38
Squaring 11.54
xtimes 6.01
Reduction 9.01

Table 6.1: Total clock cycles for computing the basic binary field operations over Fyi2s in

M2 using the ICC compiler.

Total clock cycles | Cycles per byte
with xtimes 5061.02 1.23
with xor 4851.67 1.18
with addition mod 232 3998.61 0.97

Table 6.2: Counter mode variants for a 4KB buffer using ICC compiler in machine M2.

Next, we present the performance comparison of the various modes in cycles per
bytes. The number of CPU cycles needed to encrypt a message is divided by the length
of the message to derive the cost per byte to encrypt messages of that length, for
short cpb (cycles per byte). All results include all memory and loop overheads. The
performance results for both compilers using encryption and decryption are shown
in Tables [6.3], [6.4f Table [6.3] shows results for TES modes and consists of two parts

CINVESTAV Computer Science Department

76 Chapter 6

(a) and (b). In (a) the performance figures include the computation of the AES
key expansion. But in (b) the key expansion procedure is not included. We show
the performance of XTS and BitLocker separately in Table[6.4] In these Tables, we
show the timings both for encryption and decryption in terms of cycles per byte for
both machines M1 and M2 using two different compilers (ICC and GCC). The results
described in the Tables are also shown as histograms in Figures [6.1], [6.2] for easy
visual comparisons.

In the sub-tables in Table the TES are grouped into three groups. The first
group contain the encrypt-mask-encrypt scheme EME2 which only uses block cipher
calls and the second and third groups contains the schemes which also use finite
field multiplications in addition to the block cipher calls. The second group contains
the schemes which are constructed using normal polynomial hash functions and the
schemes in the last group uses BRW polynomials. The best candidate in each group
is marked in bold.

The following observations summarize the obtained results:

e The best TES
EME2 has the best performance among the TESs. EME2 uses little more than
2 blockcipher calls for each block of message and all the block cipher calls are
totally parallelizable. Thus EME can use the instruction level pipelining of the
AES instructions to the full extent. Other than the block cipher calls EME2
uses some xtimes operations, but all other TES uses significant number of mul-
tiplications in Faizs (roughly two per block for modes using normal polynomials
and one per block for the modes using BRW polynomials). For one multipli-
cation in Fyi2s, three calls to the PCLMULQDQ are required with some other
operations. Each PCLMULQDQ has a latency of about 12 cycles [23], which

makes it more expensive than the AES calls.

¢ BRW polynomials vs usual polynomials:
HEH[BRW], HMCH[BRW], HMCH2, HCTR*, are the schemes that uses BRW
polynomials and they are significantly faster than the schemes HCTR and
HMCH[Poly|, HEH[Poly| which use usual polynomials. The reason behind this
is that BRW-based schemes utilize about half the number of multiplications

compared to other schemes which require usual polynomials.

e Schemes using usual polynomials:

In most scenarios XCB has the best performance results among the schemes

CINVESTAV Computer Science Department

Experimental Results T7

M1:

Encryption | Decryption

gce icc gce icc

EME2 3.22 3.27 3.23 3.29
HEH|p] 8.56 7.86 8.75 7.88
HMCH]|p] 8.46 7.84 8.47 7.86
XCB 8.38 | 7.74 8.55 7.74
HCTR 8.52 | 7.72 | 8.36 7.75
HEH[B] 4.90 4.58 4.84 4.58
HMCH[B] | 4.78 4.54 4.81 4.53
HMCH2 4.58 | 4.38 | 4.59 | 4.39
HCTR* 4.66 | 4.33 | 4.66 | 4.33

M1:

Encryption | Decryption

gce icc gce icc

EME2 3.16 3.27 3.16 3.26
HEH|p] 8.52 7.86 8.55 7.86
HMCH]|p] 8.46 7.79 8.46 7.7
XCB 8.27 | 7.63 | 8.27 | 7.63
HCTR 8.34 7.68 8.34 7.68
HEH[B] 4.83 4.55 4.91 4.55
HMCH[B] | 4.78 4.48 4.78 4.47
HMCH2 4.55 | 4.33 | 4.56 | 4.34
HCTR* 4.64 | 4.32 | 4.64 | 4.29

(a)

(b)

M2:

Encryption | Decryption

gce icc gce icc

EME2 2.83 2.65 2.90 2.77
HEH|p] 7.49 7.29 7.46 7.30
HMCH|p] 7.12 7.13 7.13 7.12
XCB 6.97 | 6.99 | 6.97 | 7.00
HCTR 7.01 7.12 7.01 7.12
HEH[B] 4.51 4.00 4.48 4.02
HMCH[B] | 4.16 3.80 4.14 3.81
HMCH2 3.92 | 3.75 | 3.92 | 3.75
HCTR* 4.00 4.00 4.00 4.00

M2:

Encryption | Decryption

gce icc gce icc

EME2 2.77 2.61 2.78 2.61
HEH|[p] 7.35 7.29 7.40 7.29
HMCH]|p] 7.07 6.94 7.07 6.94
XCB 6.83 | 6.85 | 6.83 | 6.88
HCTR 6.94 6.99 6.93 6.99
HEH[B] 4.33 3.99 4.38 4.00
HMCH[B] | 4.03 3.66 4.03 3.66
HMCH2 3.92 | 3.64 | 3.91 | 3.64
HCTR* 3.97 3.99 3.98 3.99

Table 6.3: Encryption and decryption implementation results in clock cycles per byte
(ccpb), for a 4KB buffer and a 128-bit tweak using both machines M1 and M2. (a)

includes Key Expansion procedure and (b) does not include it.

Mi1i:
Encryption | Decryption
gee icc gee icc
XTS 1.58 1.65 1.57 | 1.65
BitLocker | 18.35 | 12.58 | 15.50 | 10.18

M2:
Encryption | Decryption
gee icc gee icc
XTS 1.36 147 | 1.45 1.48
BitLocker | 17.32 | 13.90 | 13.27 | 10.28

Table 6.4: Encryption and decryption performance results of other disk encryption schemes:

XTS, BitLocker in clock cycles per byte (ccpb), for a 4KB buffer using both machines

M1 and M2.

CINVESTAV

Computer Science Department

78 Chapter 6

B ENC-GCC

@ ENC-ICC
0O DEC-GCC
@ DEC-ICC

EME2 HEH[p] HMCH[p] XCB HCTR HEH[B] HMCH[B] HMCH2 HCTR*

cycles per byte
[%] (] E=Y (4] [=2] |

-

(a)

B ENC-GCC

@ ENC-ICC
0O DEC-GCC
@ DEC-ICC

EME2 HEH[p] HMCH[p] XCB HCTR HEH[B] HMCH[B] HMCH2 HCTR*

cycles per byte
%] (%] i o [=1] b | [=1]

-

(b)

Figure 6.1: Encryption (ENC) and decryption (DEC) implementation results in clock
cycles per byte (ccpb), for a 4KB buffer and a 128-bit tweak using both machines M1,

figure (a) includes Key Expansion procedure and (b) does not include it.

CINVESTAV Computer Science Department

Experimental Results 79

B ENC-GCC
7 @ ENC-ICC
[0 DEC-GCC
6 @ DEC-ICC
% 5
o
o 4
a
g
- 3
>,
)
2
1
0
EME2 HEH[p] HMCH][p] XCB HCTR HEH[B] HMCH[B] HMCH2 HCTR*
(a)
8
B ENC-GCC
7 @ ENC-ICC
[0 DEC-GCC
6 @ DEC-ICC
% 5
o
o 4
a
g
- 3
>,
)
2
1

EME2 HEH[p] HMCH[p] XCB HCTR HEH[B] HMCH[B] HMCH2 HCTR*
(b)
Figure 6.2: Encryption (ENC) and decryption (DEC) implementation results in clock
cycles per byte (ccpb), for a 4KB buffer and a 128-bit tweak using both machines M2,

figure (a) includes Key Expansion procedure and (b) does not include it.

CINVESTAV Computer Science Department

80 Chapter 6

20

18

16

14+

cycles per byte

12

10

[T SR .)

18

Encryption GCC ===
Encryption ICC
Decryption GCC ===
Decryption ICC =———3

Encryption GCC ===
Encryption ICC ez===a
Decryption GCC m====
Decryption ICC =—=—3

16 r

14 |

12+

10 |

cycles per byte

EME2 XTS BitLocker HEH[Paly] EME2 XTS BitLocker HEH[Paly]

Figure 6.3: Encryption and decryption comparison of other disk encryption schemes with

some TES modes in clock cycles per byte (ccpb), for a 4KB buffer using both machines
M1 and M2. Results include key schedule.

which use usual polynomials. Only in machine M1 HCTR encryption wins in
this group when compiled using ICC and HCTR decryption wins when compiled
using GCC, when the computation of the key schedules is also included for
counting the cycles. XCB uses three different blockcipher keys and hence there
is a requirement for running three different key schedules, whereas all other
schemes in this category use only one AES key. Moreover XCB uses six AES
calls more than HCTR. Thus, it is non-intuitive that XCB performs better than
HCTR (or even other schemes in the category). A possible explanation of this
is the way the counter mode is implemented in XCB. In XCB the counter uses
an increment modulo 232 of the last 32 bits of the counter value, which can be
implemented by a single instruction on an 128 bit register. On the other hand,
the CTR mode used for HCTR encryption/decryption, requires to perform an
XOR of each input block with the binary representation of a counter value. To
compute this value, it is needed to perform some extra operations which are
more expensive than the addition modulo 232 required by the XCB mode. This
possibly explains the better performance of XCB.

The other modes in this category namely HEH[Poly] and HMCH[Poly] uses
significant number of xtimes operations, which are not present in HCTR and
XCB. The xtimes operations when implemented in 128 bit registers is partic-

ularly inefficient, according the estimates shown in [4I] one xtime operation

CINVESTAV Computer Science Department

Experimental Results 81

costs approximately 6.8 cycles in a typical Westmere machine. This explains
the worse performance of HEH[Poly] and HMCH[Poly| compared to HCTR
and XCB. HEH[Poly| has the worst performance result as it requires twice the

number of xtimes operations compared to HMCH|[Poly].

e Schemes using BRW polynomials:
HMCH2 is the fastest among BRW-based schemes followed by HCTR*. Com-
pared to its predecessors, both schemes obtained a remarkable gain. The main
reason of this results is due to the fact that neither HMCH2 nor HCTR* use

any xtimes operation.

e The schemes that are not TES:
XTS and BitLocker are the schemes which are not TES. Figure [6.3| shows its
comparison between EME2 and HEH[Poly], the TES modes which according to
our study are the most and least efficient. BitLocker is the least efficient disk
encryption scheme as the diffusers are designed to exploit 32-bit architectures
and data parallelization is not suitable in their design. XTS is the fastest disk
encryption scheme, as like EME2 it uses only AES calls and thus gains a lot
from the use of AES-NI. XTS performs much better than EME2 because it uses
only half the number of AES calls compared to EME2. As stated before, though
XTS is the fastest it has some glaring issues regarding its security, and we are

skeptic whether it provides adequate security for the application.

6.4.1 Comparisons

As we stated at the beginning of this document there are no performance data in soft-
ware of TES modes available in the literature. The only implementations reported,
are the hardware implementations reported in [47] and [I0]. In [47] optimized imple-
mentations of EME, HCTR, HEH, XCB and some other scheme were reported. No
scheme using BRW polynomials were included in the study in [47]. The implementa-
tions were directed towards Virtex 4 family of FPGAs, and throughputs were reported
for encrypting disk sectors of 512 bytes. In [10] an efficient methodology for computing
BRW polynomials were proposed and the performance comparisons for HEH[Poly],
HMCH|[Poly], HEH[BRW] and HMCH[BRW] were provided. The implementations in
[10] were directed towards Virtex 5 family of FPGAs and the throughputs were re-
ported for message lengths of 512 bytes. Thus, strictly speaking, the results in [10, 47]

CINVESTAV Computer Science Department

82 Chapter 6

are not comparable, but as these are the only available results we compare our results
with them.

In Table we show the results reported in [10} 47] for encrypting a sector of 512
bytes. The performance is shown in terms of total clock cycles and the throughput in
Gigabits per second. In Table we show the throughput of the TES modes results
obtained using ICC compiler, for encrypting a big sector (4096 bytes) using machine
M2. And in we show our results for encryption 512 bytes.

Encryption Throughput | Source
Total clock cycles GBits/Sec
EME 107 2.597 [a7]
HEH[Poly] 83 10.768 [10]
HMCH]Poly) 94 9.825 [10]
HEH 75 3.956 [47]
XCB 116 1.907 [47]
HCTR 89 3.665 [47]
HEH[BRW] 55 15.184 [10]
HMCH[BRW] 66 13.193 [10]

Table 6.5: Hardware implementation results presented in [10, 47] which show the number
of clock cycles and its corresponding throughput for various TES constructions to encrypt
a whole disk sector of 512 bytes.

Encryption Throughput
Total clock cycles GBits/Sec
EME2 10,854 9.358
HEH|p] 29,860 3.402
HMCH]|p] 29,205 3.478
XCB 28,631 3.548
HCTR 29,164 3.483
HEH[B] 16,384 6.200
HMCH|[B] 15,565 6.526
HMCH2 15,360 6.613
HCTR* 16,384 6.200

Table 6.6: Encryption implementation throughput GBit/Sec, for a 4KB buffer and a
128-bit tweak using machine M2 and ICC compiler, including Key Expansion procedure

From Table [6.5] we see that the implementations in [10] perform much better than
that reported in [47], as in [I0] better strategies for parallelization were adopted and
the results are in a Virtex 5 device which in general are able to operate at higher

frequencies. Our results as reported in Table are comparable to that of the results

CINVESTAV Computer Science Department

Experimental Results 83

Encryption Throughput
Total clock cycles GBits/Sec
EME2 1664 7.630
HEH|p] 3796 3.345
HMCH]|p] 3705 3.427
XCB 4142 3.066
HCTR 3856 3.293
HEH[B] 2258 5.623
HMCH|[B] 2171 5.849
HMCH2 2173 5.843
HCTR* 2322 5.468

Table 6.7: Encryption implementation throughput GBit/Sec, for a 512-bytes buffer and

a 128-bit tweak using machine M2 and ICC compiler, including Key Expansion procedure

reported in [47]. In fact our implementations of EME2 and XCB gives much better
throughput than those reported in [47].

The fastest known AES implementation without AES-NI support is reported in
[39]. In their implementation for encrypting a 4096 byte message using counter mode,
it takes at least 6.92 cycles per byte in a Intel Core i7 920. For all our TES imple-
mentations which uses BRW and EME2 performs much better than this. It is to be
noted that any TES uses much more operations than a single counter mode. So use
of AES-NI gives significant speed ups.

The goal of our implementations is to obtain high speed in order to achieve an
encryption/decryption speed which matches the speed of the current data rates of
commercial disk controllers. With emerging technologies like serial ATA and Na-
tive Command Queuing (NCQ), modern day disk controllers can provide data rates
around 3 Giga-bits per second [61]. Thus, it is clearly seen that the throughput re-
sults obtained by our software implementations are competitive enough with hardware

designs and can also achieve the required speed for a low-level disk encryption.

Multi-threaded implementation results

As discussed earlier, for the multi-threaded implementations we implement proce-
dures so that one sector gets encrypted/decrypted in each core, we do not attempt
to parallelize the operations within a single sector. Such an implementation can be
practically useful, as in general a disk controller can get read/write requests of several

sectors almost simultaneously and thus individual sectors may be processed in differ-

CINVESTAV Computer Science Department

84 Chapter 6

ent CPU cores. Under this scenario we do not consider computing the key schedules
for each sector. In a realistic scenario, the key schedules would be computed only
once during the system startup and they would be used for subsequent encryption/de-
cryption thus making the cost involved for key scheduling negligible compared to the
total encryption/decryption overhead.

For our multi-threaded implementations we use the POSIX thread libraries. Since
both machines have at least two cores, we run all tests for 2 threads, and in the case
of machine M2 we also did experiments with 4 threads. We assure thread affinity,
that is, we force a thread to run on a specific core. This is done using the follow-
ing methodology: The system represents affinity with a bitmask called a processor
affinity mask. The size of the affinity mask is the size of the maximum number of
processors in the system, with bits set to identify a subset of processors. Initially,
the system determines the subset of processors in the mask. A CPU affinity mask is
represented by the CPU_SET_T structure, a “CPU set”, pointed to by mask. Then,
SCHED_SETAFFINITY() sets the CPU affinity mask of the process whose ID is pid to

the value specified by mask. Thus, the following codes was used to reach this goal.

1 int set-thread_-affinity (int thread_num){

2 cpu-set_t currentCPU;

3 CPUZERO(¤tCPU) ;

4 CPUSET(thread_num , ¤tCPU);

5 sched_setaffinity (0, sizeof (currentCPU), ¤tCPU);
6

}

Listing 6.3: Code used to ensure thread affinity.

Table show the parallel encryption and decryption implementation results with
2 threads in clock cycles per byte (cepb), for 200 and 1000 sectors of 4096 bytes each
with a 128-bit tweak. Both compilers were used (GCC and ICC), and for a better
comparison we show its corresponding histograms in Figures and [6.5

As machine M2 has 4 cores, we show in Table the results obtained for encrypt-
ing and decrypting 1000 sectors of 4096 bytes with 4 threads using both compilers
(GCC and ICC). In Figure we give a graphic comparison between these and the
results obtained for 2 threads and 1000 sectors in the same machine.

The results of the multi-threaded implementations show that the increase in en-
cryption/decryption speed is almost directly proportional to the number of cores. It
is expected that processors with Hyper-threading technology which provide multiple
logical cores per one physical core would provide similar proportional results with

only a very small thread overhead. The comparative performance among the various

CINVESTAV Computer Science Department

Experimental Results 85

M1: M2:

Encryption | Decryption Encryption | Decryption

gce icc gce icc gce icc gce icc

EME2 1.58 1.67 1.58 1.66 EME2 1.42 1.36 1.41 1.36
HEH|p] 4.27 3.94 4.38 3.94 HEH|[p] 3.66 3.65 3.68 3.65
HMCH]|p] 4.24 3.90 4.24 3.89 HMCH|p] 3.51 3.47 3.51 3.47
XCB 4.14 | 3.82 | 4.14 | 3.83 XCB 3.42 | 3.44 | 3.42 | 3.44
HCTR 4.17 3.84 4.17 3.84 HCTR 3.47 3.50 3.47 3.51
HEH|[B] 2.43 2.29 2.47 2.29 HEH|[B] 2.16 2.00 2.19 2.00
HMCH[B] | 2.39 2.26 2.39 2.25 HMCH[B] | 2.02 1.83 2.02 1.84
HMCH2 244 | 217 | 2,53 | 2.18 HMCH2 1.96 | 1.83 | 1.95 | 1.84
HCTR* 2.33 | 218 | 2.33 | 219 HCTR* 1.99 2.00 1.99 2.00

(a)
Mai: Ma2:

Encryption | Decryption Encryption | Decryption

gce icc gce icc gce icc gce icc

EME2 1.67 1.76 1.67 1.75 EME2 1.45 1.39 1.45 1.39
HEH|p] 4.34 4.01 4.30 4.00 HEH|p] 3.69 3.68 3.71 3.69
HMCH]|p] 4.31 3.97 4.31 3.96 HMCH|p] 3.54 3.51 3.54 3.51
XCB 4.21 | 3.89 | 4.21 | 3.89 XCB 3.46 | 3.48 | 3.46 | 3.48
HCTR 4.25 3.91 4.25 3.91 HCTR 3.50 3.54 3.50 3.54
HEH[B] 2.59 2.36 2.67 2.52 HEH[B] 2.25 2.05 2.32 2.13
HMCH[B] | 2.53 2.43 2.59 2.46 HMCH[B] | 2.09 1.88 2.12 1.96
HMCH2 2.30 | 2.25 | 2.31 2.40 HMCH2 2.02 | 1.87 | 2.06 | 1.95
HCTR* 2.53 2.29 2.53 | 2.18 HCTR* 2.08 2.08 2.08 2.08

(b)

Table 6.8: Parallel encryption and decryption implementation results with 2 threads in
clock cycles per byte (ccpb), for (a) 200 and (b) 1000 sectors of 4KB and a 128-bit
tweak using both machines M1 and M2.

Encryption | Decryption

gce icc gcce icc
EME2 0.74 0.71 0.74 0.71
HEH|p] 1.85 1.85 1.87 1.85
HMCH]|p] 1.78 1.76 1.78 1.77
XCB 1.74 | 1.75 | 1.74 | 1.75
HCTR 1.77 1.78 1.77 1.78
HEH[B] 1.14 1.04 1.18 1.08
HMCH|[B] 1.06 0.95 1.08 0.99
HMCH2 1.02 | 0.95 | 1.03 | 0.98
HCTR* 1.06 1.06 1.06 1.06

Table 6.9: Parallel encryption and decryption implementation results with 4 threads in
clock cycles per byte (ccpb), for 1000 sectors of 4KB and a 128-bit tweak using

machine M2.

CINVESTAV Computer Science Department

86 Chapter 6

10

WENC-GCC
@ ENC-ICC
0 DEC-GCC
|l |l Il @ DECHICC
(]
5
0
k)
| |l Il "
L]
[3]
>
| I]
HEH[B] HMCH2 HMCH[p] HCTI HMCHB] HCTR*
HMCH[p] H HMCH[B] HCTR* HEH[p] XCB HEH[B] HMCH2
(a)
BWENC-GCC
BENCIICC
DDEC-GCC
B DEC-ICC
Q
< 5
0
: " Il " "
9
Q
>
| I]
HEH[p] XCB HEH[B] HMCH2 HMCH[p H HMCH[B] HCTR*
HMCH[p] HCTI HMCH[B] HCTR* HEH[B] HMCH2

(b)

Figure 6.4: Comparison of parallel encryption and decryption implementation results with
2 threads in clock cycles per byte (ccpb), for (a) 200 and (b) 1000 sectors of 4KB
and a 128-bit tweak using machine M1.

CINVESTAV Computer Science Department

Experimental Results 87

BENC-GCC
BENCICC
7 0 DEC-GCC
BDECICC
6
5
Q
£
Q
5 4
a
(5]
o
g\ 3
Q
0
HEH[B] HMCH2 HMCH[p H HMCH[B] HCTR*
HMCH[p] H HMCHB] HCTR* HEH[B] HMCH2
(a)
8
BENC-GCC
WENCICC
7 CDEC-GCC
BDECICC
6
5
Q
5
0
5 4
a
(5]
3
g 3
[&]
| Il
0
HEH[p] XCB HEH[B] HMCH2 HMCH[p] HCT HMCH[B] HCTR*
HMCH[pl HCTR HMCHB] HCTR* HEH[p] XCB HEH[B] HMCH2

(d)

Figure 6.5: Comparison of parallel encryption and decryption implementation results with
2 threads in clock cycles per byte (ccpb), for (a) 200 and (b) 1000 sectors of 4KB
and a 128-bit tweak using machine M2.

CINVESTAV Computer Science Department

88 Chapter 6

B ENC-GCC
W ENC-CC
4 [0 DEC-GCC
B DEC-ICC
3
3
Q
<,
o
5 2
Q
(5]
3
| I]
1
0
, Hel XcB HEHEB] HNCH2 HMCHl HCTR HMCH[B] HCTR*
HMCH[] HCTR HMCHB] HCTR' HEH[p] XCB HEH[B] HMCH2

Figure 6.6: Comparison of parallel encryption and decryption implementation results with
2 and 4 threads in clock cycles per byte (ccpb), for (a) 1000 sectors of 4KB and a
128-bit tweak using machine M2.

TES is also retained in the multi-threaded implementations.

CINVESTAV Computer Science Department

Chapter 7
Conclusion

With the increased need to store digital information, security of data stored in bulk
storage devices like hard disks of laptop and desktop computers, flash memories, and
a variety of small mobile devices, has become an important issue of today. Disk
encryption prevents unauthorized access to data storage. Tweakable enciphering
schemes (TES), are considered to be a main paradigm for disk encryption.

We presented a new approach for implementing TES modes of operation using
different parallelization techniques: data and thread parallelization under the SIMD
(Single Instruction, Multiple Data) paradigm. The new generation of modern Intel
processors have been equipped with the new instructions for AES encryption/decryp-
tion including an instruction for performing a carry free multiplication of two 64 bit
operands. With the aid of these new instructions the two most expensive operations
of the existing TES (the block cipher calls and the finite field multiplications) can be
now implemented much more efficiently than in older processors. In this thesis we
experimentally showed that use of these new instructions leads to efficient software
implementations of tweakable enciphering schemes.

From the different experiments presented in Chapter 6 using two different ma-
chines (M1 and M2) supporting SSE4.1/SSE4.2 instructions, we conclude that EME2
is the fastest among all the TES modes. EME2 is the only TES which uses only block
cipher calls, thus it gains the most from using the AES-NI instructions. The TES
modes other than EME2 uses finite field multiplications, as all of them requires to
compute certain polynomial hashes over the messages or other intermediate values.
Among the modes that uses polynomial hashes there are two distinct divisions. One
class of schemes uses the normal polynomials, which can hash a m block message

using m multiplications and the other class uses a special class of polynomials called

89

90

BRW polynomials which can hash m message blocks using about m/2 multiplica-
tions. Thus, as evident, the class of modes using the BRW polynomials performs
much better compared to the schemes which uses normal polynomials.

There exist no standard for TES till date. IEEE security in storage working group
is working towards formulation of a standard for such modes. This body has selected
two schemes EME2 and XCB as the candidates, but the final standard is not yet out.
Our study suggest that EME2 is the fastest mode, and XCB is the fastest among all
modes which uses the normal polynomial hashing. But, as stated earlier, there are
other schemes available (like the ones that uses BRW polynomials) which are much
more efficient than XCB, hence the choice of XCB for the standard is not clear. It
would be worth mentioning here, that a previous performance study of TES in FPGA
devices [47] suggested XCB to the least efficient mode. This was probably due to the
more flexibility that a hardware designer has to exploit parallelism helped the other
modes to gain more than XCB in a hardware implementation.

In Chapter 4 of this thesis we also proposed two new TES named HCTR* and
HMCH2. Both these modes use BRW polynomials and our experiments suggests
that they perform better than all existing modes which uses BRW polynomials.
The new modes were designed as modifications of two existing modes (HCTR and
HMCH[BRW]). The modifications were done keeping an eye to the efficiency gains that
can be achieved by using SIMD instructions. In this context, the design of HMCH2
is particularly interesting. HMCH[BRW] which is the predecessor of HMCH2 uses a
series of xtimes operations. The implementation of xtimes operations in 128 bit regis-
ters turned out to be particularly inefficient. Thus in HMCH2 we successfully remove
the xtimes operations at the cost of just an increment and a 128 bit xor. Results in
Chapter 6 clearly demonstrate that this subtle change do have a very positive impact
on the efficiency.

To guarantee security of TES, one uses some reductionist arguments where one
reduces the security of the whole TES to that of the block cipher. In other words,
one argues that a break in the TES would imply a break of the underlying block
cipher. Thus, such an argument guarantees that a TES would be secure as long
as the underlying blockcipher is secure. Such a reductionist argument is generally
called a security proof, and schemes for which such an argument is applicable are
called provably secure. But, it should be noted that a security proof does not suggest
absolute security, but is a statement of security in a specified model relative to the

security of an underlying primitive. All existing TES studied in this thesis have

CINVESTAV Computer Science Department

Conclusion 91

security proof attached to it. In fact, a new TES without a security proof is not
acceptable. Thus in Chapter 4 we provide security proofs for HCTR* and HMCH2.
Our proofs do not use any new idea, but closely follow proofs of other existing TES.

There are schemes other than TES which are used for disk encryption. In this
thesis we included two schemes called XTS and BitLocker. XTS is a NIST standard
for encrypting block oriented storage devices like hard disk, and BitLocker (to our
knowledge) is the only scheme which has been widely deployed in general purpose
devices through the Microsoft Windows Vista operating system. XTS is not a TES
and does not enjoy security properties similar to TES, this is well known and also
the NIST standard document acknowledges that XT'S may be vulnerable to certain
kinds of cryptanalytic attacks. In Chapter 3 we describe a convincing attack on
XTS, which clearly show that XTS does not attain similar security as that of any
TES. The attack, though is simple, but to our knowledge is the first concrete attack
demonstrated on XTS. Experimental results in Chapter 6 shows XTS to be the most
efficient scheme for disk encryption, which is not surprising as X'T'S only uses a single
ECB type encryption layer, whereas all other TES are much more complex. The
performance advantage of X'T'S should be interpreted in accordance to its security
weakness.

BitLocker is also not a TES, and there is no security proof for BitLocker. The
authors argue that BitLocker achieves security through a secure CBC mode along
with some scrambling done by two diffusers. The exact properties of the diffusers
used in BitLocker have not been adequately studied, thus one has every right to be
skeptic about this scheme. But, there exist no concrete attack against bit locker. Our
experiments show that BitLocker has a very poor performance when implemented
with the 128 bit register support. This is due to the fact that BitLocker was designed
for a 32 bit architecture, and efficient implementation of the diffusers within 128
bit registers is not possible. Additionally, BitLocker uses the CBC mode, which is
inherently serial and thus instruction pipelining of the AES-NI instructions cannot
be used in here.

In summary, in this thesis we present a comprehensive study of disk encryption
schemes. Though the main direction of this study is in obtaining efficient implemen-
tation of such schemes in modern processors, but we also achieve significant other
results like two new secure TES schemes which are most efficient in their category.
Our performance studies shows that TES when implemented with AES-NI support

can perform very good in terms of speed and can reach the data rates of modern disk

CINVESTAV Computer Science Department

92

Chapter 7

controllers, thus software implementations of TES may have practical applicability in

the near future.

7.1 Future Work

As a future work, we would like to explore the following:

Implementation aspects

1. Although we took care on the performance and optimization of our C implemen-

tation, these numbers can certainly be improved if they were all implemented
directly in assembly. As shown in [27], 25] where better results were obtained
for the assembly versions. For a real world application this surely should be

done.

. Significant improvements may be achieved using AVX instructions in assembly

directly. It is known that mixing 256-bit AVX instructions with legacy (non
VEX-encoded) Intel SSE instructions may result in penalties that could impact
performance. 256-bit AVX instructions operate on the 256-bit YMM registers
which are 256-bit extensions of the existing 128-bit XMM registers. 128-bit
AVX instructions operate on the lower 128 bits of the YMM registers and zero
the upper 128 bits. However, legacy Intel SSE instructions operate on the XMM
registers and have no knowledge of the upper 128 bits of the YMM registers.
Because of this, the hardware saves the contents of the upper 128 bits of the
YMM registers when transitioning from 256-bit AVX to legacy SSE, and then
restores these values when transitioning back from SSE to AVX (256-bit or
128-bit). The save and restore operations both cause a penalty that amounts
to several tens of clock cycles for each operation. There are several different
situations where AVX-SSE transitions might occur, such as when 256-bit AVX

intrinsic instructions or inline assembly are mixed with any of the following:

128-bit intrinsic instructions

SSE inline assembly

C/C++ floating point code that is compiled to Intel SSE
Calls to functions or libraries that include any of the above

CINVESTAV Computer Science Department

Conclusion 93

There are several methods to either remove AVX-SSE transitions or to remove
the penalty from transitions. The easiest method to avoid the AVX-SSE transi-
tion penalty is to compile the relevant source files with the Intel Compiler using
either the -xavx or -mavx for Intel compiler or -msse2avx or -mavx for GNU
compiler. When these flags are used the compiler will automatically generate
VEX-encoded instructions rather than legacy SSE instructions where appro-
priate, which removes the transition between AVX and SSE within those files.
Although we use these flags in our experiments we do not know exactly how the
compilers handles this, what or how many AVX instructions are used. Thus,
the performance of the schemes in machine M2 (where AVX instructions are
enabled) can be significantly improved with a redesign of the code to exploit

the AVX instructions more.

3. Other than the AVX instructions, the latencies of the AES-NI instructions in
machine M2 are quite different from that of machine M1. For example, we
learned from a recent talk by Shay Gueron (Indocrypt 2011, Tutorial) that for
the SandyBridge processors the optimal grouping of the AES encrypt/decrypt
instructions should be done in groups of 8 instead of groups of 4 which was the
optimal grouping in previous processors. Thus, a proper study of the latencies

of the instructions in particular processors may lead to further optimized codes.

4. The main goal of our implementations was to achieve speed. We did not pay
much attention to make our codes secure against known software side channel
attacks like cache attacks and timing attacks. Designing code, keeping in mind

these issues is something that we would like to focus in the near future.

Other aspects

1. Our experiments suggested that XCB gains a lot by using 32 bit increments
in the counter value. There is no TES using BRW polynomials which uses
this philosophy. We believe that such a scheme would result in much better

performance.

2. The scheme BitLocker has not been adequately studied by the community.
Finding a convincing security argument or an attack on BitLocker would be an

interesting project.

CINVESTAV Computer Science Department

94 Chapter 7

3. Design of new TES or other cryptographic schemes which can take specific ar-
chitectural advantage can be an interesting area of study. In the near future
we would like to undertake this study and explore ways in which message au-
thentication schemes, authenticated encryption schemes and other similar block
cipher based schemes can be designed so that they would have high performance

advantage when implemented in processors with AES-NI support.

CINVESTAV Computer Science Department

Bibliography

1]

2]

IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage
Devices. IEEFE Std 1619-2007, pages ¢1-32, 2008.

Ross J. Anderson and Eli Biham. Two Practical and Provably Secure Block
Ciphers: BEARS and LION. In Dieter Gollmann, editor, FSE, volume 1039 of
Lecture Notes in Computer Science, pages 113-120. Springer, 1996.

Diego F. Aranha, Julio Lépez, and Darrel Hankerson. Efficient Software Imple-
mentation of Binary Field Arithmetic Using Vector Instruction Sets. In Michel
Abdalla and Paulo S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of
Lecture Notes in Computer Science, pages 144-161. Springer, 2010.

Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In Andrew M. Odlyzko,
editor, CRYPTO, volume 263 of Lecture Notes in Computer Science, pages 311—
323. Springer, 1986.

Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the
Security of Triple Encryption. TACR Cryptology ePrint Archive, 2004:331, 2004.

Daniel J. Bernstein. Polynomial Evaluation and Message Authentication, 2007.

http://cr.yp.to/papers.html#pema.

Daniel J. Bernstein and Peter Schwabe. New AES software speed records. JACR
Cryptology ePrint Archive, 2008:381, 2008.

Eli Biham. A Fast New DES Implementation in Software. In Eli Biham, ed-
itor, F'SE, volume 1267 of Lecture Notes in Computer Science, pages 260-272.
Springer, 1997.

95

http://cr.yp.to/papers.html#pema

96

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions. J.
Comput. Syst. Sci., 18(2):143-154, 1979.

Debrup Chakraborty, Cuauhtemoc Mancillas-Lopez, Francisco Rodriguez-
Henriquez, and Palash Sarkar. Efficient Hardware Implementations of BRW
Polynomials and Tweakable Enciphering Schemes. Cryptology ePrint Archive,
Report 2011/161, 2011. http://eprint.iacr.org/.

Debrup Chakraborty and Mridul Nandi. An Improved Security Bound for HCTR.
In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in Computer Sci-
ence, pages 289-302. Springer, 2008.

Debrup Chakraborty and Palash Sarkar. A New Mode of Encryption Providing
a Tweakable Strong Pseudo-random Permutation. In Matthew J. B. Robshaw,
editor, FiSE, volume 4047 of Lecture Notes in Computer Science, pages 293-309.
Springer, 2006.

Debrup Chakraborty and Palash Sarkar. HCH: A New Tweakable Enciphering
Scheme Using the Hash-Counter-Hash Approach. IEEE Transactions on Infor-
mation Theory, 54(4):1683-1699, 2008.

Paul Crowley. Mercy: A Fast Large Block Cipher for Disk Sector Encryption. In
Bruce Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer Science,
pages 49-63. Springer, 2000.

Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. In Jean-Jacques
Quisquater and Bruce Schneier, editors, CARDIS, volume 1820 of Lecture Notes
in Computer Science, pages 277-284. Springer, 1998.

Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality, 2004.

Morris Dworkin. Recommendation for Block Cipher Modes of Operation: The
XTS-AES Mode for Confidentiality on Storage Devices. NIST Special Publi-
cation 800-38E, 2010. http://csrc.nist.gov/publications/nistpubs/800-
38E/nist-sp-800-38E. pdf.

David C. Feldmeier. Fast software implementation of error detection codes.
IEEE/ACM Trans. Netw., 3(6):640-651, 1995.

CINVESTAV Computer Science Department

http://eprint.iacr.org/
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf

BIBLIOGRAPHY 97

[19]

[20]

[21]

[24]

[25]

[26]

28]

[29]

N. Ferguson. AES-CBC+ Elephant diffuser: A disk encryption algorithm for
Windows Vista. Microsoft Corp, 2006.

FIPS. Advanced Encryption Standard (AES). National Institute for Standards
and Technology, pub-NIST:adr, November 2001.

Scott R. Fluhrer. Cryptanalysis of the Mercy Block Cipher. In Mitsuru Matsui,
editor, FSE, volume 2355 of Lecture Notes in Computer Science, pages 28-36.
Springer, 2001.

M. Flynn. Very High-Speed Computing Systems. Proceedings of the IEEFE,
54(12):1901-1909, December 1966.

Agner Fog. Instruction tables : Lists of instruction latencies, throughputs and
microoperation breakdowns for Intel, AMD and VIA CPUs. Copenhagen Uni-
versity College of Engineering, 2011.

S. Gueron. Advanced encryption standard (AES) instructions set. 25, 2008.

Shay Gueron. Intel’s New AES Instructions for Enhanced Performance and
Security. In Orr Dunkelman, editor, FSE, volume 5665 of Lecture Notes in
Computer Science, pages 51-66. Springer, 2009.

Shay Gueron and Michael E. Kounavis. Efficient implementation of the Galois
Counter Mode using a carry-less multiplier and a fast reduction algorithm. Inf.
Process. Lett., 110(14-15):549-553, 2010.

Shay Gueron and Michael E. Kounavis. Intel Carry-Less Multiplica-
tion Instruction and its Usage for Computing the GCM Mode. http:
//software.intel.com/en-us/articles/carry-less-multiplication-

and-its-usage-for-computing-the-gcm-mode/, January 2010.

Shai Halevi. Eme Extending EME to Handle Arbitrary-Length Messages with
Associated Data. In Anne Canteaut and Kapalee Viswanathan, editors, IN-
DOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 315-327.
Springer, 2004.

Shai Halevi. Invertible Universal Hashing and the TET Encryption Mode. TACR
Cryptology ePrint Archive, 2007:14, 2007.

CINVESTAV Computer Science Department

http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing- the-gcm-mode/
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing- the-gcm-mode/
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing- the-gcm-mode/

98

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

[34]

Shai Halevi and Phillip Rogaway. A Tweakable Enciphering Mode. TACR Cryp-
tology ePrint Archive, 2003:148, 2003.

Shai Halevi and Phillip Rogaway. A Parallelizable Enciphering Mode. In Tatsuaki
Okamoto, editor, C'T-RSA, volume 2964 of Lecture Notes in Computer Science,
pages 292-304. Springer, 2004.

Mike Hamburg. Accelerating AES with Vector Permute Instructions. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes
in Computer Science, pages 18-32. Springer, 2009.

J.L. Hennessy, D.A. Patterson, and D. Goldberg. Computer architecture: a

quantitative approach. Morgan Kaufmann, 2003.

IEEE Security in Storage Working Group, (SISWG). PRP Modes Comparison.
http://siswg.org/, November 2008. IEEE p1619.2.

IEEE 1619 SISWG Security in Storage Working Group. Draft standard architec-
ture for wide-block encryption for shared storage media. https://siswg.net/

index.php?option=com_content&task=view&id=36&Iltemid=75.
Intel. Intel C++ Compiler 12.0 User and Reference Guides. INTEL Corporation.

INTEL Corporation. Intel 6 and IA-32 Architectures Software Developer Man-

uals.

A. Karatsuba and Yu. Ofman. Multiplication of Multidigit Numbers on Au-
tomata. Soviet Physics—Doklady, 7(7):595-596, January 1963.

Emilia Kasper and Peter Schwabe. Faster and timing-attack resistant aes-gem.
In Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture Notes
in Computer Science, pages 1-17. Springer, 2009.

C. KENT. Draft Proposal for Tweakable Narrow-block Encryption. Draft. IEEFE
Computer Society, August, 2004.

Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Antoine Joux, editor, FISE, volume 6733 of Lecture Notes

in Computer Science, pages 306-327. Springer, 2011.

CINVESTAV Computer Science Department

http://siswg.org/
https://siswg.net/index.php?option=com_content&task=view&id=36&Itemid=75
https://siswg.net/index.php?option=com_content&task=view&id=36&Itemid=75

BIBLIOGRAPHY 99

[42]

[43]

[46]

[47]

Moses Liskov and Kazuhiko Minematsu. Comments on XTS-AES. Comments
On The Proposal To Approve XTS-AES, 2008.

Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers.
In Moti Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 31-46. Springer, 2002.

Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers.
J. Cryptology, 24(3):588-613, 2011.

Stefan Lucks. BEAST: A Fast Block Cipher for Arbitrary Blocksizes. In Patrick
Horster, editor, Communications and Multimedia Security, volume 70 of IFIP
Conference Proceedings, pages 144-153. Chapman & Hall, 1996.

Cuauhtemoc Mancillas-Lopez, Debrup Chakraborty, and Francisco Rodriguez-
Henriquez. Efficient implementations of some tweakable enciphering schemes in
reconfigurable hardware. In K. Srinathan, C. Pandu Rangan, and Moti Yung,
editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer Science, pages
414-424. Springer, 2007.

Cuauhtemoc Mancillas-Lopez, Debrup Chakraborty, and Francisco Rodriguez-
Henriquez. Reconfigurable Hardware Implementations of Tweakable Enciphering
Schemes. IEEE Trans. Computers, 59(11):1547-1561, 2010.

D.A. McGrew and S.R. Fluhrer. The extended codebook (XCB) mode of oper-
ation. Rep, 278:2004, 2004.

D.A. McGrew and J. Viega. Arbitrary block length mode. Standards contribu-
tion, 2004.

David A. McGrew and Scott R. Fluhrer. The Security of the Extended Codebook
(XCB) Mode of Operation. In Carlisle M. Adams, Ali Miri, and Michael J.
Wiener, editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes
in Computer Science, pages 311-327. Springer, 2007.

David A. McGrew and John Viega. The Security and Performance of the
Galois/Counter Mode (GCM) of Operation. In Anne Canteaut and Kapalee
Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer
Science, pages 343-355. Springer, 2004.

CINVESTAV Computer Science Department

100 BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[57]

[58]

[59]

[60]

Kazuhiko Minematsu and Toshiyasu Matsushima. Tweakable Enciphering
Schemes from Hash-Sum-Expansion. In K. Srinathan, C. Pandu Rangan, and
Moti Yung, editors, INDOCRYPT, volume 4859 of Lecture Notes in Computer
Science, pages 252-267. Springer, 2007.

Moni Naor and Omer Reingold. A Pseudo-Random Encryption Mode, January
2002.

National Bureau of Standards. FIPS Publication 46-1: Data Encryption Stan-
dard, January 1988.

Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast software
aes encryption. In Seokhie Hong and Tetsu Iwata, editors, FISE, volume 6147 of
Lecture Notes in Computer Science, pages 75-93. Springer, 2010.

Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by ratio-
nal preparation. Communications on Pure and Applied Mathematics, 25:433-458,
1972.

Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Re-
finements to Modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT,
volume 3329 of Lecture Notes in Computer Science, pages 16-31. Springer, 2004.

Russel, R. M. The CRAY-1 Computer System. Comm. ACM, 21(1):63-72, 1978.

Palash Sarkar. Improving Upon the TET Mode of Operation. In Kil-Hyun Nam
and Gwangsoo Rhee, editors, ICISC, volume 4817 of Lecture Notes in Computer
Science, pages 180-192. Springer, 2007.

Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) uni-
versal hash functions. IEEE Transactions on Information Theory, 55(10):4749~
4760, 2009.

Seagate Technology. Internal 3.5-Inch (SATA) Data Sheet, 2010.

Jonathan Taverne, Armando Faz-Hernandez, Diego F. Aranha, Francisco
Rodriguez-Henriquez, Darrel Hankerson, and Julio Lépez. Speeding scalar mul-
tiplication over binary elliptic curves using the new carry-less multiplication in-
struction. J. Cryptographic Engineering, 1(3):187-199, 2011.

CINVESTAV Computer Science Department

BIBLIOGRAPHY 101

[63] Seagate Technology. Comments on XTS-AES. Comments On The Proposal To
Approve XTS-AES, 2008.

[64] Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A Variable-Input-Length
Enciphering Mode. In Dengguo Feng, Dongdai Lin, and Moti Yung, editors,
CISC, volume 3822 of Lecture Notes in Computer Science, pages 175-188.
Springer, 2005.

CINVESTAV Computer Science Department

102 BIBLIOGRAPHY

CINVESTAV Computer Science Department

Appendix A

Source Codes of Some Basic Blocks

#define reduction () \

2 tmp5 = _mm_shuffle_epi32 (tmp4,0x93); \
3 tmp5 = _mm_srli_epi32 (tmp5,0x19); \
4 tmp2 = _mm_srli_epi32 (tmp5,0x05); \
5 tmp3 = _mm_srli_epi32 (tmp2,0x01); \
6 tmp5 = _mm_xor_sil28 (tmp5,tmp2); \
7 tmp5 = _mm_xor_-sil28 (tmp5,tmp3); \
8 tmp3 = _mm_and_sil28 (tmp5,tmp0); \
9 tmp5 = _mm_xor_sil28 (tmp5,tmp3); \
10 tmp4 = _mm_xor_sil28 (tmp4,tmp3); \
11 tmp0 = _mm_slli_epi32 (tmp4,0x01); \
12 tmp2 = _mm_slli_epi32 (tmp0,0x01); \
13 tmp3 = _mm_slli_epi32 (tmp2,0x05); \
14 tmp4 = _mm_xor_sil28 (tmp4,tmp0); \
15 tmp4 = _mm_xor_sil28 (tmp4,tmp2); \
16 tmp4 = _mm_xor_sil28 (tmp4,tmp3); \
17 tmp4 = _mm_xor_sil28 (tmp4,tmpl); \
18 *res = _mm_xor_sil28 (tmp4,tmp5); \
19

Petatic inline void gfmul_karatsuba(--m128i a, --m128i b, __m128i xres){
Rl __m128i tmpO,tmpl,tmp2,tmp3,tmp4,tmp5;

R22

23 tmp0 = _mm_set_epi32(0x00,0x00,0x00,0xFF);
P4 tmpl = _mm_shuffle_epi32(a,0x44);

25 tmp2 = _mm_shuffle_epi32(b,0x44);

26 tmpl = _mm_xor_sil28 (tmpl,a);

R7 tmp2 = _mm_xor_sil28 (tmp2,b);

P8 tmpl = _mm_clmulepi64_sil28 (tmpl,tmp2,0x11);
R9 tmp2 = _mm_clmulepi64_sil28(a,b,0x00);

B0 tmp3 = _mm-_clmulepi64_sil28(a,b,0x11);

B1

B2

B3 tmpl = _mm_xor_sil28 (tmpl,tmp2);

B4 tmpl = _mm_xor_sil28 (tmpl,tmp3);

B5 tmp4d = _mm_srli_sil128 (tmpl,0x08);

B6 tmpl = _mm_slli_si128 (tmpl,0x08);

103

104

B7

B8

B9 tmp4d = _mm_xor_sil28 (tmp4,tmp3);//
0 tmpl
U1

M2 reduction ();
13
%1

UStatic inline void gfsqr(--m128i a, --m128i *res){

16

U7 __m128i tmpO,tmpl,tmp2,tmp3,tmp4,tmpd;

U8 __m128i maskl, maskh, table;

1o

50 tmp0 = _mm_set_epi32(0x00,0x00,0x00,0xFF);

bl table = _mm_set_epi32(0x55545150,0x45444140,0x15141110,0x05040100) ;
52 maskl = _mm_setl_epi32 (0xO0FOFOFOF) ;

53 maskh = _mm_setl_epi32 (0xFOFOFOFO) ;

b4 tmpl = _mm_and_sil28(a, maskh);

_mm_xor_sil28 (tmpl,tmp2);//

b5 tmp2 = _mm_and_sil28(a, maskl);

56 tmpl = _mm_srli_epi64 (tmpl, 0x04);

b7 tmpl = _mm_shuffle_epi8 (table ,tmpl);

b8 tmp2 = _mm_shuffle_epi8 (table ,tmp2);

9 tmp4 = _mm_unpackhi_epi8 (tmp2,tmpl);//hi

60 tmpl = _mm_unpacklo_epi8 (tmp2,tmpl);//low

1 reduction();

62

63

dtatic inline void gfmulby2(--m128i a,__m128ix res){
65 *res = _mm-_srai_epi32(a,31);

66 *xres = _mm_shuffle_epi32 (xres ,0x57);

67 *res = _mm_and_sil28 (xres, _mm_set_epi32(0x00,0x01,0x00,0x87));
8 xres = _mm._xor_sil28(*res, _mm_slli_epi64(a,0x01));
69

Listing A.1: Code of basic building blocks.

CINVESTAV Computer Science Department

Appendix B

Experimental Results

M1: M2:
Encryption | Decryption Encryption Decryption
gce icc gce icc gcce icc gcce icc
EME2 8.27 8.15 8.25 8.10 EME2 8.763 9.358 8.552 8.953
HEH|p] 3.11 3.39 3.04 3.38 HEH|p] 3.311 3.402 3.324 3.397
HMCH]|p] 3.15 3.40 3.15 3.39 HMCH]|p] 3.483 3.478 3.478 3.483
XCB 3.18 | 3.44 3.12 | 3.44 XCB 3.558 | 3.548 | 3.558 | 3.543
HCTR 3.13 | 3.45 | 3.19 | 3.44 HCTR 3.538 3.483 3.538 3.483
HEH[B] 5.44 5.82 5.50 5.82 HEH[B] 5.499 6.200 5.536 6.169
HMCH[B] | 5.57 5.87 5.54 5.88 HMCH|[B] 5.962 6.526 5.990 6.509
HMCH2 5.82 | 6.08 | 5.80 | 6.07 HMCH2 6.327 | 6.613 | 6.327 | 6.613
HCTR* 5.72 | 6.15 | 5.72 | 6.15 HCTR* 6.200 6.200 6.200 6.200
(a)
M1: M2:
Encryption | Decryption Encryption | Decryption
gce icc gce icc gce icc gce icc
EME2 8.43 8.15 8.43 8.17 EME2 8.95 9.50 8.92 9.50
HEH|p] 3.13 3.39 3.12 3.39 HEH|[p] 3.37 3.40 3.35 3.40
HMCH]|p] 3.15 3.42 3.15 3.43 HMCH]|p] 3.51 3.57 3.51 3.57
XCB 3.22 | 3.49 | 3.22 | 3.49 XCB 3.63 | 3.62 | 3.63 | 3.60
HCTR 3.19 3.47 3.19 3.47 HCTR 3.57 3.55 3.58 3.55
HEH[B] 5.52 5.85 5.43 5.85 HEH[B] 5.73 6.22 5.66 6.20
HMCH[B] | 5.57 5.95 5.57 5.96 HMCH[B] | 6.15 6.78 6.15 6.78
HMCH2 5.85 | 6.15 | 5.84 | 6.14 HMCH2 6.33 | 6.81 | 6.34 | 6.81
HCTR* 5.74 | 6.17 | 5.74 | 6.21 HCTR* 6.25 6.22 6.23 6.22

(b)

Table B.1: Encryption and decryption implementation throughput results in Gbit/sec, for
a 4KB buffer and a 128-bit tweak using both machines M1 and M2. (a) includes Key

Expansion procedure and (b) does not include it.

105

	Introduction
	Some Notions of Disk Encryption
	Contribution and Scope of the Thesis

	Exploiting Parallelism in Modern Processors
	Instruction Set Architecture
	Instruction Level Parallelism
	Data Level Parallelism and SIMD Instructions
	 SIMD instructions in modern processors

	Multicore Processors and Thread Level Parallelism
	Notes on Programming Languages and Tools
	Basics of parallel programming

	Schemes for Disk Encryption
	Activities of IEEE SISWG
	Some Notations
	Tweakable Enciphering Schemes
	A brief history of the known constructions of TES
	The schemes considered for this study
	Description of some schemes

	Other Schemes
	 Wide Block Block Ciphers
	XTS
	LRW
	BitLocker

	Two new Tweakable Enciphering Schemes
	Description of HCTR* and HMCH2
	Security of the constructions
	Definitions and notation
	Statement of the results
	Proofs

	Implementing the Basic Building Blocks
	Binary Field Operations
	Multiplication
	Xtimes
	Squaring

	The Advanced Encryption Standard (AES)
	Intel AES-NI architecture

	Experimental Results
	Basic Implementation Strategies
	System Information
	Testing methodology
	Results
	Comparisons

	Conclusion
	Future Work

	Source Codes of Some Basic Blocks
	Experimental Results

