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Abstract

Over the last decades evolutionary algorithms have become very popular to solve multi-
objective optimization problems (MOPs). Several multi-objective evolutionary algorithms
(MOEAs) have been developed to solve MOPs with successfull results. A feature of these
algorithms is that they do not exploit concrete information, about continuity or differentia-
bility of the objective functions of the problems—uwhich is considered as information of the
problem domain. One question that arises when seeking for more efficient MOEAs, is about
the effectiveness of including this mathematical information during the MOEA execution. In
particular, we are interested in exploiting the gradient information of the objective functions
during the evolutionary search. In this thesis, the inclusion of gradient-based local searchers
into MOEAs is presented. An in depth study of the gradient-based search directions is
included, as well as the proposal of diverse types of hybridization. This coupling has two
aims, one is made in order to improve the performance of these stochastic algorithms, and
the second one is to efficiently refine their solution sets. Hybrid gradient-based MOEAs are
built and tested, in this work, over widely used benchmark MOPs. The numerical results are
analyzed and discussed; also, conclusions and extensions for promising future research paths

are included.
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Resumen

Durante las Ultimas décadas los algoritmos evolutivos se han vuelto populares como her-
ramientas para la solucion de problemas de optimizacién multiobjetivo (MOPs). Estos al-
goritmos evolutivos multiobjetivo, cominmente conocidos como MOEAs, han demostrado ser
una opcién muy conveniente y por eso mismo han dado origen al estudio de aplicaciones
y mejoras en su eficiencia. Tradicionalmente estos algoritmos no explotan la informacién
especifica del dominio de los MOPs; en particular, no utilizan informacién que tenga que ver
con la continuidad nt diferenciabilidad de sus funciones. En esta tesis, estudiamos la manera
de explotar informacién relacionada con los gradientes de las funciones objetivo, como una
manera de qguiar la busqueda de los MOEAs y hacerlos mas eficientes. También se analiza
el uso de esta informacion como herramienta para refinar la precisién de las soluciones. El
trabajo de esta tesis se enfoca en dos objetivos, el primero es construir buscadores locales
eficlentes que combinen y exploten la informacién obtenida de los gradientes de las fun-
ciones. El segundo objetivo es incorporar estos buscadores locales dentro de los MOEAs
para generar algoritmos hibridos. Se proponen varios buscadores locales con caracter(sticas
diversas y varias opciones para su integracién con MOEAs. Se presentan analisis tedricos y
pruebas experimentales de su eficacia y eficiencia en problemas de prueba tradicionales. Se
mencionan pautas para hacer eficiente este tipo de integracion de heuristicas y se presentan

conclusiones.
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“Computer Science is no more
about computers than astronomy is
about telescopes.

EW. Dijkstra

Introduction

The necessity of finding the best solution, for a particular problem, arises in many areas
of engineering and science. Improved solutions are sought in industry, economics, and other
human activities which involve planning and limited resources. The area of mathematics which
deals with this class of task is known as optimization; and, since the advent of digital comput-
ing, optimization algorithms have attracted an increasing interest from researchers. Moreover,
when solving many real-life situations, multiple criteria must normally be considered. The
task of simultaneously optimizing several objective functions (which are normally in conflict
with each other) is called Multi-objective Optimization (MO); and the problem that this area
deals with is properly called Multi-objective Optimization Problem (MOP), also known as a
vector optimization problem. Several engineering applications can be modeled by this kind
of problems [21, 22, 32, 43, 109, 128].

MOPs have been numerically solved, since their origins, using methods supported by
specialized mathematical programming techniques. The use of Evolutionary Algorithms (EAs)
for solving MOPs started in the mid-1980s. Since then, the use of the so-called Multi-
objective Evolutionary Algorithms (MOEAs) has had a significant growth. EAs are, in general,
stochastic search techniques inspired on mimicking the principles of evolution (i.e, the survival
of the fittest) in nature. EAs apply a set of variation operators (e.g., crossover, mutation, etc.)
to combine different solutions, aiming to produce reasonably good approximations of the
optimum. The advantages and issues of these different methods—EAs and mathematical
programming techniques—are still under study by several research groups. Solving MOPs
is a hard task since there are several basins of attraction that can bias the search. In fact,
because of their nature, when solving MOPs it is very convenient to know effective search
directions that can speed up the process. Obtaining this knowledge may imply spending an
additional computational effort. However, in certain applications, in which the evaluation of
the objective functions is computationally expensive, this extra effort is well justified.

This work is focused on coupling these two paradigms—EAs and mathematical program-
ming techniques—in order to exploit their particular advantages when solving MOPs. On
smooth problems, gradient information is a powerful tool which is absolutely not exploited
by the reqular operators of EAs. In a certain way this can be seen as a drawback of these
latter methods because of their slow convergence rate, even in problems when differentiable
objectives are present. On the other hand, because of their nature, gradient-based procedures

1




CHAPTER 1. INTRODUCTION

have a local scope and are not able to find entire optimal sets by themselves; furthermore,
they are usually stuck on local (stationary) optima. Therefore, combining these procedures
with a global stochastic strategy—such as EAs—constitutes a promising mechanism to gen-
erate good solutions. This mix is done in order to obtain an algorithm which offers, on
the one hand, the globality and robustness of the evolutionary approach; but on the other,
also an improved overall performance by the inclusion of a well directed Local Search (LS)
mechanism. There is some evidence [78, 56] that hybridization using gradient information can
really speed up convergence of MOEAs on continuous problems. However, the application of
the LS procedure some times goes wrong, and for certain problems, the performance of the
hybrid is not even as good as the stand-alone MOEA. This opens the door to new research
about the way of hybridizing these techniques.

Introducing gradient information of a MOP (when it is available) into a MOEA is a
research topic that has attracted a lot of interest in recent years [76, 19]. There are some hy-
brids of MOEAs and gradient-based methods currently available in the specialized literature
[130, 51, 56, 132]. Such approaches normally replace [130] or add [132] existing evolutionary
operators such that the available gradient information is used to guide the search. The mo-
tivation for this sort of coupling has been, first, to speed up convergence towards the Pareto
front [8, 132, 83, 130], and second, to produce more accurate solutions [132]. Nevertheless,
the studies about theoretical and practical aspects of this coupling are still scarce, giving rise
to a variety of research possibilities, which motivated the work presented in this thesis.

Gradient information provides a MOEA with search directions to perform more accurate
movements. However, computing such search directions is also a MOP since each objective
provides its own set of (gradient-based) search directions; therefore, all of these directions
need to be properly combined into a single one, in order to perform a line search proce-
dure—particularly adapted for the multi-objective case. Early approaches are presented in
[42, 107, 53] and [8].

Another major issue arising when incorporating gradient information into a MOEA is how
to provide a proper balance between the LS (ie, operators using the gradient information)
and the global search (ie, the MOEA). In fact, such a balance is problem-dependent [67].
For example, in [51] the use of the LS is proposed to be used at the end of the evolutionary
process, and the interleaving between the local and the global search takes place after a
certain (fixed) number of objective function evaluations. However, other proposals use the
gradient information to overtake solutions towards the Pareto optimal set, and adopt the
evolutionary search in a second stage (see for example [56, 83]). In any case, none of these
types of strategies is really ideal, since the best would be to have an adaptive mechanism
that allows the two types of search to interleave during the run of the MOEA, such that each
of them intervenes whenever needed.

LS algorithms move from an initial solution to another one in the search space by applying
local changes (typically over particularly defined neighborhoods), until a better solution is
found or a time bound is reached. There exist a plethora of LS methods for continuous (and
discrete) optimization problems, and some authors have reported successful hybridizations of
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LS techniques, in general, with genetic algorithms. However, to the author’s best knowledge,
there exist basically three crucial questions [54, 133, 79, 63, 89, 7] which remain open in
the design of memetic strategies: Where shall a LS process be hybridized with a genetic
algorithm? Which individuals should be fine-tuned and how much? And, when shall the local
refinement be applied? These questions apply both, to single and to multi-objective problems.

Problem Statement

The main goal of this thesis is to investigate how gradient-based information can effectively
help MOEAs during the search, and studying the issues that arise when combining these
two procedures. One particular goal is to look deeply into the calculation of multi-objective
gradient-based search directions—a basic topic when trying to design hybrid MOEAs, using
gradient-based line search. A second particular aim is incorporating these directions into
LS engines, as well as devising new possible movement directions. Also, analyzing the
cost and differences among them, in order to study some aspects regarding their practical
implementation.

Another particular aim of this work is, precisely, to propose an adaptive mechanism that
allows the local and global search strategies to interleave. The ideal case is when the
algorithm can automatically assign more or less resources either to the local or to the global
search procedure, as deemed necessary.

Contributions

The main contributions of this thesis are the following:

e We state a framework for the analysis and the application of gradient-based local
searchers in the multi-objective case (Chapter 3). Also, we study the many-objective
problem, from the descent cone point of view, and get important results to disprove a
common belief about sources of difficulty for MOEAs (Section 3.5).

e For two-objective problems, we present a simple and efficient method to calculate a
descent direction; we show the effectiveness of this method and analyze its limitations
(Chapter 3). Furthermore, its effectiveness inside a memetic MOEAs is studied (Chapter
6).

e We present two new local searchers, particularly designed to be combined with MOEAs.
Both show a lot of potential for hybridization due to their special features. First, the
Hill Climber with Side Step which is able to search towards and along the Pareto
front—making the switch between the two movements in an automatic way. Second, the
Directed Search method which is able to direct and steer the search towards regions
of interest (Chapter 4).
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e Diverse implementations for coupling our local searchers with MOEAs are presented.
The experiments show the benefits of the hybridization and some guidelines for building
this type of algorithms (Chapters 5 and 6).

e An adaptive control for the use of LS, inside the memetic MOEA, is proposed and
tested. This is based on the dynamics of the size of the non-dominated individual set
(Chapter 6).

e The scalability of gradient-based methods is investigated, both, increasing the number
of variables and also the number of objectives (Chapters 3 and 5).

Outline of the Thesis

Including this introduction, the thesis consists of seven chapters. Chapter 2 presents basic
definitions and concepts as a background for the following chapters of this document.

Chapter 3 is dedicated to the study of the properties induced by gradients when analyzing
MOPs. Definitions of descent directions and their importance are presented. We also present,
some important geometrical concepts required to understand the rest of the thesis. Finally, we
include our insights about the descent cones point of view when dealing with many-objective
problems (MOPs with more than three objective functions).

Next, we present our proposals for gradient-based search directions: the simplest one
for two-objective problems is introduced in Chapter 3, and in Chapter 4 the Hill Climber
with Side-step (HCS) and the Directed Search Method (DS) are presented. The HCS is
a novel iterative search procedure which is capable of moving both toward and along the
(local) Pareto set, depending on the distance of the current iterate toward this set. It utilizes
the geometry of the directional cones present in MOPs and works with or without gradient
information. Meanwhile, the Directed Search Method allows to steer the search process in
a particular desired direction, established in the objective space. This also counts with a
continuation-based procedure, which allows to reach other points over the Pareto set.

Chapter 5 focuses on the hybridization of gradient-based LS and MOEAs. First, a two-
stage algorithm named Gradient Based Multi-objective Evolutionary Strateqy (GBMES) is
presented; this is a hybrid between an elitist MOEA, and a gradient-based descent method.
This algorithm requires a low number of objective function evaluations to converge to a few
points in the Pareto front; then, the rest of the Pareto front is reconstructed. Emphasis is
placed on the effectiveness of this hybrid approach when increasing the number of decision
variables, and a study of its scalability is also presented. In this chapter we also show two
possible ways to integrate the HCS into a given MOEA, leading to new memetic MOEAs.
We use the state-of-the-art algorithms NSGA-Il and SPEAZ as baseline MOEAs. Numerical
results on some widely used benchmark problems are presented, indicating the benefits of
using the proposed local searcher within a MOEA.

In Chapter 6 we present, and investigate, a simple and generic way to add gradient-based
information, as a means to improve the search process performed by a MOEA. We present
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ideas that can be easily incorporated into any MOEA and provide some quidelines regarding
the use of our proposed approach. We also propose an adaptive mechanism that allows the
local and global search strategies to dynamically interleave. We based the control mechanism
on monitoring the evolutionary search efficiency; in this way, the algorithm can automatically
assign more or less resources either to the local or to the global search procedure in a
dynamic way.

Finally, the conclusions of the thesis, as well as some possible paths for future research,
are presented in Chapter 7.







“In mathematics you don't understand things.
You just get used to them.

John von Neumann

Preliminary Concepts

2.1 The Multi-objective Optimization Problem

We are interested in solving problems of the type:

Minimize F(x) := [(x), H(x), ..., f(x)]

subject to:
g) <0 i=12,...,m
hix)=0 i=12...,p
where x =[x, %o, .. ., Xn]T € R” is the vector of decision variables (also known as decision
parameters vector or solution vector), f; : R" — R, i =1, ..., k are the objective functions

(or objectives, in short) and g, h; : R" — R, i =1,...,m, j=1,..,p are the constraint
functions of the problem. If functions g; and h; are not present, we are dealing with an
unconstrained MOP. Solving the above problem is known as solving a MOP.

If any function in the original problem must be maximized (for example, profit), it is possible
to restate it as a minimization approach (using the duality principle when multiplying the
function by —1). Therefore, the problem can be stated in general as above. Even though
MOPs can be defined over other domains—like discrete sets, for example—in this work we
are only interested in continuous domains which are contained on R". When all the objective
functions and the constraint functions are linear, the problem (2.1) is called a linear MOP,
and there are several techniques to solve it. If at least one of the functions is nonlinear, the
problem is then called a nonlinear MOP:. If all the objective functions are convex, and also the
feasible region is convex the problem is known as a convex MOP. In this study we are dealing
with nonlinear problems, either convex or not. Several conditions, such as differentiability or
continuous differentiability, will be assumed for the f, g and h functions during the remainder
of this document.

Solving a MOP is very different that solving a Single-objective Optimization Problem
(SOP). Since some of the f; are normally “in conflict” with each other," the solution of a
MOP is not unique; this is because normally no single solution exists that provides the

"For example, one objective may refer to manufacture cost and another to quality of the product.
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best possible value for all the objectives (see Figure 2.1). Consequently, solving a MOP
implies finding a trade-off among all the objective functions. This involves the generation of
a set of possible solutions instead of a single one—Ilike in the single-objective optimization
case. The notion of “optimality” that we just informally described, was originally proposed
by Francis Ysidro Edgeworth in 1881 [36] and was generalized by Vilfredo Pareto in 1896
[97]. This concept is known today as Pareto optimality and will be formally introduced next,
after providing some other basic definitions.

Figure 2.1: This figure shows function f;5 in conflict with functions f; and f,.

Definition 2.1.1 Given two vectors x, y € R", we say that x dominates y (denoted by x < y)
it fi(x) < fily) for i =1, ..., m, and F(x) & F(y).

Definition 2.1.2 We say that a vector of decision variables x € X C R" is non-dominated
with respect to X (where X is the feasible region), if there does not exist another X' € X
such that x" < x.

Definition 2.1.3 We say that a vector of decision variables x* € X C R" is Pareto optimal
if it is non-dominated with respect to X.

Definition 2.1.4 a) The Pareto Optimal Set or Pareto Set P* is defined by:
P ={x € X| x is Pareto optimal}.
b) The Pareto Front PF* is defined by:

PF* = {F(x) € R" | x e P*}.
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Figure 2.2: This figure emphasizes the Pareto front for Example 2.1.1. The axes represent
the value regarding each function—what is known like the objective space. The points of Y
are the images of randomly generated vectors from the domain.

We thus wish to determine the Pareto optimal set from the set X of all the decision
variable vectors that satisfy the constraints of the problem. Note however that in practice,
just a finite representation of the Pareto optimal set is normally achievable.

Assuming x* as a Pareto point of (2.1), there exist [81] a vector a € R, with 0 < a;, i =
1,..., k and ZL = 1 such that

k
> aViix) = 0.
A point x* that satisfies (2.4) is called a Karush-Kuhn-Tucker (KKT) point.

Example 2.1.1 Consider the following unconstrained MOP:

minimize F(x, y) = [x"+y*, (x —10)° + yz]T ,

with x, y € R.
The Pareto set of this problem is the line segment [(0,0), (10,0)] € R?, and the Pareto
front is shown, as a continuous line, in Figure 2.2
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2.2 Solving a MOP

The most common procedures to solve (2.1) are classified [91, 92] in four classes: no-preference
methods, a posteriori methods, a priori methods and interactive methods, according to the
stage, an level, in which the decision maker intervenes. In this work, we focus our attention
on the a posteriori methods, in which the goal is to obtain the best approximation of the
entire set of optima, which will be presented a posteriori to the decision maker—who will
then select the most suitable solution out of it. When tackling the a posteriori approach,
the use of EAs is a natural choice. This is due to the fact that no previous knowledge
regarding the MOP is necessary for the algorithm; and also because, at the end of the run,
the population-based algorithm throws an entire set of (ideally) well distributed solutions.
We present in the following, a brief review of some classical techniques in order to mention
important aspects for comparison against EAs.

2.2.1 Classical mathematical techniques

Operations Research (OR), is a branch of mathematics within which a variety of techniques
have been developed to deal with MOPs. These approaches developed within OR for solving
MOPs are known as classical methods. Up to 1980 most of the computational methods
to solve MOPs consisted of minimizing only one function, either using the other objective
functions as constraints of the problem, or simply by taking a combination of all the objectives
[94]. The most common way to tackle a MOP is by scalarization which means reducing the
problem to @ SOP. One example of this approach is the following method:

Weighted sum method: This method consists of transforming the vector of function values
into a scalar value using an aggregating function over the vector function, getting the following
problem:

k
Minimize ¢, = Z w;fi(X)
i=0
subject to 0 < w;for alli € {1, ..., k};

k
and Zwiztxes.

i=0

In this way, the solution set consists only of one point for each weight combination. An
important drawback of this approach is that controlling the weights does not necessary help
us to control the distribution of the points in the parameter space. Besides, there are points
that can not be generated as a combination of weights in non convex cases—see [27] for a
more in-depth explanation about this. There exist, in general, many scalarization methods
which transform the MOP into a ‘classical’ SOP. It is worth to notice that by choosing a
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clever sequence of SOPs, a suitable finite size approximation of the entire Pareto set can be
obtained (see [26, 74, 40, 37] and references therein). Another approach to approximate the
entire Pareto set is to use set oriented methods such as subdivision techniques [33, 68].

e-constraint method: In the e-constraint method [48], one of the objectives is chosen for
minimization while the rest of the objectives conform a set of constraints limited by user
specifyed bounds ¢;. ie.

Minimize f;
subject to f; < ¢ foralli e {1,..., Kk}, i j.

The e-constraint problem should be solved using multiple different values for €;, if several
Pareto optimal solutions are desired. This method can deal with convex and non convex
functions; but, choosing the €; values is still an issue since there is no warranty that a
feasible optimum exists for a specific €. An in depth analysis of these method can be found
in [91].

Most of the classical methods require the prior fulfillment of certain geometrical or ana-
lytical properties imposed on the MOP, such that they can properly work. For instance, in
problems with nonlinear functions, some methods (like those in [91]) use gradient information.
Since the differentiability properties of functions provides local information (i.e., an appro-
priate search direction over a certain neighborhood), any technique that uses such gradient
information can be seen as a LS procedure.

2.2.2  Multi-objective evolutionary algorithms

As an alternative to the classical methods, researchers in the area of Evolutionary Computation
(EC) [46, 6] have developed new approaches to approximate the solution of MOPs. This area,
which is now known as Evolutionary Multi-objective Optimization (EMO) has given rise to a
wide variety of MOEAs [23, 30] which do not require special features or properties from the
objective functions, and rely on stochastic search procedures. The use of EAs to solve MOPs
has several advantages. In the first place, a MOEA generates a set of solutions instead of a
single solution in one run—uwhich is not the case in most OR methods. Furthermore, MOEAs
are general search engines which do not impose special requirements on the type of objective
functions that can be solved. Note however, that differentiability is a requirement that we
will assume in this thesis, because of the sort of work that we aim to develop.

During the last decade, MOEAs have become very popular in a wide variety of application
domains, and are now a very fertile research area [22]. Algorithm 1 describes a generic MOEA.
The most common way to perform the selection of individuals (lines 13-14) for survival is
according to the Pareto dominance relation. The goal of this class of algorithms is to provide
a reasonably accurate approximation of the true Pareto front of the problem. When using
MOEAs, approximating the Pareto set involves seeking for two goals: (a) minimize the distance
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between the output population and the theoretical Pareto set, and (b) make a diverse sample
(with a good spread and uniform distribution) of output solutions. It is worth to notice that
(a) and (b) represents conflicting aims during the execution of a MOEA.

Require: MOEA's particular parameters

Ensure: A set S which approximates the Pareto front of the MOP.
1: Randomly generate a population of individuals P, (t = 0).
2: for each individual p € P; do

3: Evaluate the objective functions.

4: Assign the corresponding fitness value.

5. end for

6: while temination condition is not reached do

7: Select P{ C P; based on the fitness.

8: Produce the offspring population P} by recombination and mutation.
9: for each individual p” € P/ do

10: Evaluate the objective functions.

1: Assign the corresponding fitness value.

12: end for

13: Select the individuals to survive from a combination of P; and
14: P/, in order to conform P;4.

15: t=t+1.
16: end while
17: S - P[.

Algorithm 1: Description of a generic MOEA.

One of the current challenges on the design of MOEAs is to find structures and mech-
anisms that increase their efficiency [20]. Fitness values are normally tightly coupled to
the objective function values; therefore, there is a difficulty to reduce the number of fitness
function evaluations, since this particular information is required to guide the search. We
describe, in the following, two state-of-the art MOEAs which are the most popular in the
current literature.

Elitist Non-dominating Sorting Genetic Algorithm:  The Elitist Non-dominating Sorting Ge-
netic Algorithm (NSCGA-I1) was proposed by K. Deb et al. [31] and, due to its proven ro-
bustness and efficacy, it has been widely used as a reference to assess the performance of
new MOEAs. It has remarkable differences with its predecessor, the Non-dominating Sorting
Genetic Algorithm (NSGA) [135], other than the addition of an elitism mechanism.
Algorithm 2 shows in pseudo-code the main parts of the NSGA-Il. Lines 3 and 4, in
the algorithm, refers to the process known as nondominated sorting; this process consists
of clasifying the population into several disjoint layers (non-dominated sets) F/s, such that
P = UF;. The main feature of these classes F; is that any two members of the same class
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are incomparable in the Pareto sense. As a second criterion for ordering, after considering
the Pareto rank of each solution, the crowding distance value is used (Line 18). Crowding
distance is an indicator of the density of individuals around a particular individual p; inside
the population. For this, the average distance of two solutions, on either side of solution p;,
is taken along each objective. To create an offspring population, binary tournament selection
followed by recombination and mutation is used. In this case, a modification called crowded
tournament is employed for selection. In this operator, a solution p; wins a tournament against
other solution p; if p; has a better (smaller) Pareto rank or, in the case that both have the
same rank value, when p; has a better crowding distance value. This last condition provides
a way to proceed in case of incomparable solutions, and, in terms of the evolutionary process,
it helps to mantain diversity

1: procedure NSGA-Il(gen)

2 Randomly generate a population of individuals P, (t = 0).

3 Sort the population into a set of different domination levels.

4 Assign the fitness to each solution as its non-domination level.
5: Create an offspring population Oy, of size N, from P; by using
6 the crowded tournament selection, crossover and

7 mutation operators.
8 for t =1 to gen do

9: Combine parent and offspring populations to conform

10: Ry = P, U Q.

11: Perform a non-dominating sorting to R; and identify the
12: different fronts f;, i=1, ..., etc.

13: Set new population P4 = @. Set a counter i = 0.

14: repeat

15: Pt+1 = Pt+1 U F.

16: i=i+1

17: until |Prq| + |Fi| < N

18: Perform the crowding-sort(F;) procedure and include the
19: most widely spread N — |P;,1| solutions by using the
20: crowding distance values in the sorted F; to P;.q.

21 Create an offspring population Q; from P; by using the

22: crowded tournament selection, crossover and mutation
23: operators.

24: end for

25: end procedure

Algorithm 2: Description of the NSGA-II.
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Strength Pareto Evolutionary Algorithm: ~ Another widely used MOEA is the Strength Pareto
Evolutionary Algorithm (SPEA2) [150]. This is a revised version of the original SPEA proposed
by Zitzler and Thiele [148] The algorithm uses an external archive—of a pre-specified
size—in order to store the nondominated solutions produced at each generation.

SPEA2 employs an enhanced fitness assignment strateqy compared to its predecessor
SPEA as well as new techniques for archive truncation and density-based selection. For
the fitness assignment of each individual, two quantities are taken into account: the number
of individuals which dominate it, and those which are dominated by the individual to be
assigned. The strength value for the individual is determined by these two numbers, and it is
involved in the final computation of the particular individual fitness. A description of SPEA2
is provided in Algorithm 3. The steps described in lines 6 to 10 conform what is mentioned,
by the authors, as the environmental selection. In this part of the algorithm, an individual is
removed form the archive either if a solution has been found that dominates it, or when the
maximum archive size is reached. Also, in the latter case, the individual is removed when lies
on a region of the front with a high density of solutions in the archive.

1: procedure SPEA2(gen)

2 Randomly generate a population of individuals P, (t = 0).

3 Create an empty external set £ = .

4 for t =1 to gen do

5: Compute fitness of each individual in P; and £

6 Select all non-dominated individuals from P, U E

7 and store them in E.

8 Use the special truncation mechanism to remove elements

9 from £ when necessary due to the limited size of the archive.

10: If there is place in £ fill it with dominated individuals from P.
11: Conform Py using by binary tournament selction with

12: replacement from P, U E.

13: Apply crossover and mutation to P/ in order to fill P, 4.

14: end for

15: end procedure

Algorithm 3: Description of the SPEA2 algorithm.

2.2.3  Memetic algorithms

Algorithms that combine MOEAs with LS are called multi-objective memetic algorithms [93].
The work developed in this thesis consists of building new hybrid MOEAs (a general de-
scription which includes multi-objective memetic algorithms) that incorporate gradient-based
information during the evolutionary process. The main design goal of such an approach will be
the efficiency of the algorithm (i.e., the proposed approach should perform a reduced number
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of objective function evaluations as compared to state-of-the-art MOEAs) on standard test
functions.

Even though this work focuses just on certain types of MOPs (i.e, those with differentiable
functions), an important number of complex real-world applications exist in which these
conditions are fulfilled (see for example some references within [14]). Also, some problems
can be modified so that the geometrical conditions required by these types of approaches can
be satisfied (see for example [58]).

Hybrid algorithms have been successfully applied to find solutions of SOPs. In the multi-
objective case, Knowles gives in [77] some examples of hybrid algorithms (MOEA + LS)
working over discrete MOPs. In addition, some efforts have also been done for the continuous
case [130, 8, 14, 53] (see Section 2.3 for a wider description). However, an important question
is still open: how to hybridize mathematical methods based on geometrical properties of
a MOP (e.g, methods using gradient information) with MOEAs, such that the resulting
approach is more efficient (in terms of the number of objective function evaluations performed)
than state-of-the-art MOEAs while producing results of comparative quality.

One of the main questions to solve during the design of these algorithms is: how to
introduce the gradient-based information into the genetic operators of the MOEA? Another
possibility is not to apply the LS procedure directly as part of the genetic operators; if that
is the case, which should be the right place to introduce the LS procedure? Also, while
answering these questions it is necessary to keep in mind the evident trade-off between the
computational cost and the benefits of the LS procedure. This leads also to the development
of suitable (gradient-based) local searchers. Finally, an important decision is: from which
solutions should the local search be started? In the sequel, we address all these questions
and present the details of our study. Next, we present a short revision of the previous work
existing on this subject.

2.3 Previous Work

Hybridization of MOEAs with LS algorithms has been investigated for more than one decade.
One of the first memetic MOEAs for models on discrete domains was presented in [64, 65] as a
‘Multi-Objective Genetic Local Search” (MOGLS) approach. We can also mention [70] where
Jaszkiewicz proposed the Pareto Memetic Algorithm (PMA). Another important MEMOEA,
called M-PAES, was proposed in [75]. Unlike Ishibuchi's and Jaszkiewicz's approaches,
M-PAES does not use scalarizing functions, but employs instead a Pareto ranking based
selection coupled with a grid-type partition of the objective space. Two archives are used: one
that maintains the global non-dominated solutions and another that is used por comparison
purposes during the LS phase.

In [95] the authors proposed a LS process with a generalized replacement rule based
on the dominance relation. Caponio and Neri [16] proposed the Cross Dominant Multi-
Objective Memetic Algorithm (CDMOMA), which consists of the NSGA-II [31] combined with
two local search engines: a multi-objective implementation of the Rosenbrock algorithm
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[104], which performs very small movements, and the Pareto Domination Multi-Objective
Simulated Annealing (PDMOSA) [136], which performs a more global exploration. Soliman et
al. [134] proposed a memetic version of a co-evolutionary multi-objective differential evolution
(CMODE-MEM) approach, which evolves both a population of solutions and promising search
directions. In [139, 141, 142, 140], methods are presented which are hybrids of evolutionary
search algorithms and multi-agent strategies, where the task of the agents is to perform the
LS.

For the continuous case—i.e., continuous objectives defined on a continuous domain—the
first attempts started, to the author’s best knowledge, with [45], where a neighborhood search
was applied to NSGA-II [31]. This is a very simple scheme and the authors found that the
added computational work impacted severely the efficiency of the algorithm.

In [59] a gradient-based local algorithm (Sequential Quadratic Programming (SQP)),
was used in combination with NSGA-Il and SPEA [151] to solve the Zitzler-Deb-Thiele
(ZDT) benchmark suite [149]. The authors stated that if there are no local Pareto fronts,
the hybrid MOEA has faster convergence toward the true Pareto front than the original
approach. Furthermore, they found that the hybridization technique does not decrease the
solution diversity.

In [1], three different LS techniques were hybridized with MOGA: simulated annealing,
hill climbing and tabu search. In[102], the authors proposed a hybrid technique that combines
the robustness of MOGA-II [100] with the accuracy and speed of NBI-NLPQLP. In [145], the
proposed LS process employs quadratic approximations for all the objective functions.

One successful hybrid approach was proposed in [60]. The authors proposed the algo-
rithm MO-CMA-ES, a multi-objective CMA-ES [49], which combines the strateqy parame-
ter adaptation of evolution strategies with a multi-objective selection mechanism based on
non-dominated sorting. Also, in [144], a novel EA for constrained optimization problems is
presented: the so-called hybrid constrained optimization EA (HCOEA). The algorithm com-
bines a niching genetic algorithm based on tournament selection while the best infeasible
individual replacement scheme is used as a LS operator. Finally, the mix of NSGA-II with a
reference point method has been proposed and studied in [131]; by this approach, the authors
were able to accelerate the convergence of NSGA-II.

Methods Based on Descent Directions and Line Search

Talking specifically about differentiable problems, we focus on those methods that use gradient-
based descent directions to perform line search. Almost all traditional optimization techniques
for MOPs, exploit previous domain knowledge of the problem. For example, some methods
[72] use the linear properties of the functions; also, many methods [91] that solve nonlinear
MOPs use differentiability properties of the functions. One drawback of these techniques is
precisely that they can not be applied to a wide variety of MOPs. Additionally, they require
a starting point for triggering the search, and they normally produce a single solution per
run (in fact, different starting points may lead to the same final solution in some cases).
Considering this, to generate a set of solutions, Schaffler et al. [107] introduced in 2002
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a stochastic mathematical method. The method uses the solution of a stochastic differen-
tial equation related to the Karush-Kuhn-Tucker conditions for optimality. Some criteria of
Brownian motion are used by the method to finally generate a set of solutions to the MOP.
This technique requires the functions to be continuously differentiable, and it only works for
unconstrained MOPs.

A method to deal with constrained MOPs is shown by Hillermeier in [58]. He introduces
an homotopy approach using differential geometry and parametric-optimization concepts to
model the MOP by k objective functions on an n-dimensional space. The Pareto set of the
problem can be seen as a k — 1 dimensional manifold. In this method, all the functions are
assumed to be twice continuously differentiable, too. Hillermeier states that this method is
scalable to problems of high dimensionality. Even when this method also calculates a set
of Pareto optimal points, the method is of local nature, which is a drawback; but it is worth
noticing, however, that this drawback can be avoided if the method is complemented with a
stochastic technique—like a MOEA. Finally, in [114, 110, 50, 111], hybrids can be found
were heuristic methods are coupled with multi-objective continuation methods.

For MOPs where the objective functions are continuously differentiable, the use of gradient
information seems to be a natural choice. However, due to the local nature of gradient
information, its combination with a global search engine such as a meta-heuristic is an obvious
choice. In fact, several researchers [53, 14, 130, 8, 59] share the opinion that the combination
of gradient-based methods and MOEAs can boost performance. They have proposed some
ideas regarding how to combine these two pieces of information (i.e, the fitness function
information of the MOEA and the gradient-based information), but the research in this area
ts still scarce.

In[8, 9, 14, 42, 53], the idea of moving a particular solution toward a special improvement
direction is used. The goal is to find a descent direction in the multi-objective case equivalent
to the role played by the gradient of a function in the single-objective case. In order to do
this, these authors combine the gradient of each objective function in different ways: Fliege
[42] introduced, in 2000, a method called Steepest Descent Direction which uses a definition
of the Multi-objective Gradient (MOG). Fliege's method implies solving a certain quadratic-
programming problem involving the Jacobian matrix of F. This method works for convex Pareto
fronts as well as for concave Pareto fronts. Later, Bosman and de Jong stated in [8] that the
problem of finding an improvement direction for the multi-objective case is indeed a multi-
objective problem as well. Therefore, the solution (i.e, the “multi-objective gradient”) must
be a set of movement directions in which some of the objective functions, from the original
MOP, decrease simultaneously while the others can either decrease or just maintain the
same value. In other words, the aim is to find a set of descent directions rather than a single
one. After that, Bosman and de Jong proposed an analytical way to calculate this set of
directions. Their method only requires a few matrix operations and the solution of a linear
optimization problem. Once the set of descent directions is settled, one of such directions
ts randomly selected. The method mentioned above is called Combined-objectives Repeated
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Line Search (CORL) in [8]. A later improvement for CORL (by combining it with other criteria)
can be found in [9]. In both cases, the hybridization of CORL is made with an estimation
distribution algorithm (EDA) called MIDEA [10] in the following manner: At the end of the
generational cycle, i.e, after the variation operators have been applied, they choose a specific
set of individuals to be moved by CORL. Thus, they obtain an improvement on the fitness
for each one of them. The results reported in [8] regarding the best way to choose a set
of individuals are inconclusive. Also, CORL has problems, according to Harada et al. [53],
when looking for feasible descent directions in certain MOPs, and also when increasing the
number of objective functions.

An alternative to the previous approach was proposed by Harada et al. [53]. They used
the ideas introduced by Fliege [42] to build what they called the Pareto Descent Method
(PDM). These researchers proposed PDM as an option to deal with particular constrained
MOPs, when the solution lies on the boundary between the feasible and the infeasible
regions. In these cases, it is necessary to find a different descent direction. The complexity
of PDM is polynomial—as its authors refer—because the basic operations of this method
consist of solving systems of linear equations. PDM assumes MOPs with no local Pareto
fronts. Harada et al. [53] compare PDM with CORL and with a simple weighted linear
aggregating function. They also evaluate a randomized generator of solutions, similar to the
mutation mechanism used in the Evolution Strategies, and they conclude that this method
is the worst performer. PDM does not show dramatic improvements over the other methods,
except in the specific case when CORL has trouble (on a three-objective problem). In this
particular situation, PDM does not obtain a set of descent directions—as CORL does—but
it offers a good alternative. There is no hybrid algorithm based on PDM,; this is left by
the authors [53] as future work. In the same paper, the authors stated that their method has
scalability issues when more than three objectives are used.

Brown and Smith [14] revised and emphasized the concept of the descent cone which is
conformed by the intersection of the negative half-spaces (generated by the gradients) over
all the objective functions. Brown and Smith proposed that the offspring, in a particular
MOEA, must lie inside this cone; however, they do not propose a full algorithm. A procedure
to approximate the gradient of the objective functions using neighborhood information is also
introduced in [14]. According to its authors, that method reduces the computational cost of
calculating the Jacobian matrix in Fliege's method. However, further testing and analysis are
missing in order to apply the method.

The main problem of using an improvement direction is that it is impossible to know
beforehand for how long a certain direction will be useful. Evidently, it makes sense to follow
this promising descent direction as long as it remains as a good search direction. However, in
problems with a very irreqular geometry in the search space, the ‘better’ descent direction will
be constantly changing. Thus, this issue remains as an important drawback when adopting
gradient-based information. A particular drawback in Fliege's methods—on which [14], [53]
and [8] are based—is that it has a slow convergence rate [14] and it is susceptible to getting
trapped in local (ie, false) Pareto fronts.
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In [130], Shukla introduced the use of two stochastic gradient-based techniques to improve
the mutation mechanism of the NSCA-II. These two techniques are Schéffler's stochastic
method [107] and Timmel's [137] method. Both hybrid algorithms were competitive in some
modified versions of the well-known ZDT test problems, outperforming the plain NSGA-II.
The ZDT4 problem, however, could not be properly solved by any of these hybrids. Only
the NSGA-Il was able to converge to the true Pareto front of ZDT4, since all the hybrids
got trapped in local Pareto fronts. It is clear that the hybrids proposed by Shukla are
relatively straightforward approaches that could be easily improved, but they also illustrate
the local nature of the gradient-based information and its possible limitations. Additionally,
Schaffler's method requires a huge number of objective function evaluations, which is an
important drawback, if we consider that the main aim of using gradient-based information is
precisely to reduce the overall computational cost of a MOEA.
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“Where there is matter, there is geometry.”

Johannes Kepler

The Geometry of Multi-objective Problems:
A Gradient-based Approach

Gradient-based information can not be used in a straightforward way when solving a MOP.
The main reason for this situation is that the gradients of the objective functions typically
point toward different directions—due to the fact that the objective functions were originally
in conflict each other. This bring us back to the task of finding a common improving direction
into a MOP, again.

In this chapter, we look into the geometry induced by the objective function gradients, on
the context of MOPs. The goal is to study descent directions acting simultaneously for all
the objectives. Important implications of this point of view are also discussed throughout this
chapter.

3.1 Descent Cones and Multi-objective Descent Directions

Descent cones geometry was first used in the multi-objective evolutionary context by Brown
and Smith [14, 15]. The implications from their study became the basis of further proposals to
obtain movement directions when performing multi-objective LS (see for example [8] and [86]).
In a general sense, descent cones constitute the main tool to understand the local behavior
of gradient-based methods dealing with MOPs. In the following, we state the main concepts
and introduce the notation required for further discussion.

Let f4,.. ., fi : R” — R be continuous and differentiable, and (-, -) denote the standard
inner product in R”. Let also

Vi - [0, 2000]

ax, ox,

be the gradient of the function f; at x. It is well known, and easy to prove' that —V/f;(x)
points to the maximal decreasing direction for f; at x (see Figure 3.1).

'Assuming unitary vectors, the directional derivative of f; at x regarding direction v € R” is given by
(VHi(x), vy = ||[VH(X)]| - |[v]| - cos 8, and it gets its more negative value when the coplanar angle 6 between
Vfi(x) and v is 1, ie, when the vectors point toward opposite directions.
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Figure 3.1: The negative of the gradient leads to the maximal decrement direction for a
specific function f;, in a particular point x.

Then, for each x € R”, and assuming Vf(x) # 0 for i € {1, ..., k}, we define:

H;= {v eR": <Vﬂ(x), v> = 0]»,

H;’r[z {VER” :<Vf[(x),v> 20]»,
and
H = {VER” : <Vf[(x),v>§0]».

Since the set H,; is the orthogonal complement of the vector Vfi(x), it is in general a
hyperplane—set of dimension (n —1)—of R”; also, it divides the space in two n—dimensional
sets (half spaces) H,; and H, as it is shown in Figure 3.2).

Definition 3.1.1 We denote
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Figure 3.2: This figure shows the space division, into H;; and H,, induced by the gradient
of the function £; at the solution x.

Figure 3.3: This figure shows the ascent cone C(+, +), the descent cone C,(—, —), and the
diversity cones C,(+, —) and C,(—, +), for a certain point x, on a two-objective problem.
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and the diversity cones are the intersections that contain at least one hyperplane of the form
Hy; and at least one of the form H_,, for any i,j € {1,..., k}.

X.j!

When having k objective functions of a MOP, each function f; determines a gradient vector
Vf; and a hyperplane H, ; for a certain solution x. Then, the presence of these k hyperplanes
divides the space R” into 2, or less, subspaces. Summarizing, for each point x, the search
space is divided into one descent cone, one ascent cone and several diversity cones—as they
were previously named in [14].

The interior set of the descent cone, which is of certain importance in practice, can be
expressed as

Im{Jr) N RE,

where R(_) is the set of strictly negative real numbers, /m(J () consists of the image of the
linear mapping given by /gy, and Jgy is the Jacobian matrix of the function /- at x described
by:

o o
axq ' ' 0dx,

Jrg =1 : Sl
9y 9h
oxi' T 0x,

Descent cones describe the dynamics of the search from a directed-by-gradient point
of view. This has several important implications (see for example the results presented in
Section 3.5) that are useful when building local search operators for searching algorithms
over real numbers. For a particular point x, the descent cone size is determined by the
configuration of the objective gradients. To illustrate this, Figure 3.4 shows the different
stages of this configuration: when the gradients are mostly aligned, case (e), the size of the
cone is almost 50% of the space, being very likely to improve the solution by applying a small
perturbation—in this particular stage getting a better point is almost as simple as in the
case of minimizing one single function. On the contrary, when the gradients are positioned
in opposite directions, case (a), the descent cone size decreases. This latter case occurs, for
example, in most of the Pareto set vicinity.

The above analysis could explain why MOEAs have a good performance at the beginning
of the search, and a slow convergence rate at latter stages—when points are near to the
Pareto front and the chance of generating stochastically better points (near to the parents)
is reduced. This observation inspires guidelines for a suitable hybridization; if it is possible
to identify when the evolutionary search is no longer producing good results, this is then the
time when the gradient-based LS can take part of the process—in order to certainly improve
solutions in a deterministic way.

Improving solutions implies performing movements in specific search directions. In MO,
as we have noticed, these directions should be able to (at least locally) lead toward better

%In [14] the descent cones are defined, for illustrative purposes, by pictures of the corresponding affine
hyperplanes described here. We are stating the formal definitions using no affine hyperplanes just to be
consistent with our approach.
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Figure 3.4: This figure shows the dynamics of descent cones induced by the configuration of
the gradients, assuming a two-objective problem over R?.

solutions regarding all the functions simultaneously. ie. the new point is expected to dominate
the original one. This is formally said by the following definition.

Definition 3.1.2 A vector v € R" is called a multi-objective descent direction of the point
x € R" if

In other words, a multi-objective descent direction is such that the directional derivatives
with respect to v in x are non-positive, ie. (Vfi(x),v) < 0forallie1,..., k without

25




CHAPTER 3. GRADIENT-BASED MULTI-OBJECTIVE GEOMETRY

allowing them to be all equal to zero. This means that if we perform a small movement over
v, we obtain a local improvement (decrease) simultaneously for all the objective functions. In
the following section, we present a result for the construction of a descent direction in the
simplest multi-objective case: two objectives.

3.2 A Simple Descent Direction Suitable for Two-objective Prob-
lems

The simplest way to combine two gradients, in order to get a common descent direction,
is by a vector sum. This fact has been already observed (e.g. [33]) but it has not been
exploited in memetic algorithms yet. The following result shows the way this coupling
works. Unfortunately, Proposition 3.2.1 cannot be generalized for more than two objective
functions—we explain this in detail further in this section; for that case, the application of
other approaches (see Section 3.3) is necessary to obtain the descent direction—even when
this represents a higher computational cost.

Proposition 3.2.1 Let x € R", and f;, f, : R" — R define a two-objective MOP If \V/ f;(x) &
0, for i = {1,2}, then the direction

— Vf1 (X) sz()()

Vi=— + :

VAW (VAR

where || - || = || - ||.. is a descent direction at x for the MOP.
Proof: Let us denote V; := % for i = {1,2}, and O be the angle between V; and

V5. Then

(Vo Vi) = (Vi + V2), V1)
=—1(V1, Vi) +({V2, V1)
= =11+ [[Vao[[[[Vi]] cos(8))
= —1—cos(6)

<0

Similarly, <7X, V7) < 0; then, ¥V, is a descent direction of the point x for the defined
MOP. g
Notice that in case Vf;(x) = 0, the point x is a KKT point. It is also important to note
that normalizing the gradients is crucial for the result below; see Figure 3.5 for an example.
One of the main issues when using gradient-based tools is how to balance the compu-
tational cost of the method with the achieved improvements. The currently available MOEAs
that use descent directions as LS engines have two sources of computational cost: one is
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Figure 3.5: This figure illustrates that proposition 3.2.1 does not hold for unnormalized vectors.
Here the computed direction —s lies outside the descent cone.

associated to the fitness function evaluations required to estimate the gradients and to perform
the line search. The second source is related to the computation of the descent direction
itself. This proposal has the advantage of having no cost for the computation of the descent
directions—apart from the cost of approximating the gradients. We claim that this procedure
is the simplest way to combine the gradients of two functions; but, it can not be generalized
to more than two functions since the arithmetic combination of them does not produce descent
directions in general. This is shown in the next example:

Example 3.2.1 Assuming a three-objective MOP such that, for a certain x,

Vhi(x) = (1.000,1.000,1.000)
Vhix) = (—0.944,0.970,0.374)
Vhx) = (0.836,—0.177,—0.334),

computing
- Vi (x) Vhh(x) Vi5(x)
vV, = — + + 3.5
IVAXI - (IVEX] [V AKX 25)
— (—0.3826, —0.5262, —0.3730)
leads to

(V. Vi) =—12818 < 0.
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(V,, V) = 04423 > 0.
(V,,V3) =—02889 < 0.

with NV, = % for i = {1,2,3}. Then ¥/, is not a common descent direction.

Some proposals have recently been made to compute multi-objective descent directions.
The greedy approaches [42] and [107] are successful but could lead to bias in presence of
unbalanced gradient magnitudes. Since computing a gradient-based descent directions for a
MOP leads again to solving @ MOP, unbiased computations have been presented based on
the calculation of the whole Pareto set of descent directions [8]53] Both approaches have
advantages and drawbacks that are worth studying. All these methods use first order gradient
information and require solving a linear optimization problem for each computed direction.
The following section covers this subject in detail.

3.3 Current Approaches

When using gradient information within a MOEA, the final hybrid algorithm is able to
perform directed accurate movements, towards an improved solution, using multi-objective
descent search directions (as it was shown in [42][107][53] [8]). Computing such directions is
also a MOP [8] Since each objective provides its own (gradient-based) range of movements
for descent, all of these possible directions need to be properly combined into a single one
in order to guide a MOEA. The most commonly used proposals for computing multi-objective
descent directions are the one from Fliege [42] and the one from Schéffler et al [107].
These methods return a common descent direction for all the objectives after solving a linear
optimization problem. These approaches have been already incorporated into multi-objective
memetic strategies [129], [83] [86] Their main drawback is that, being greedy methods used to
perform descents, they can present a bias in case of unbalanced magnitudes of the gradients.
However, these methods present some advantages, like having an intrinsic stopping criterion
and being effective in practice.

As an unbiased alternative, it is possible to use normalized gradients and work with the
proposals developed by Bosman and Dejong [8 and by Harada et al. [53]. These methods
look into the whole Pareto set of descent directions and choose (randomly) one direction
within it. The cost of this approach is again related to solving a system of linear equations.

Schaffler, Schultz and Weinzierl's Direction

This method (SSW), presented in [107], consists of two components. The first part generates
a better individual, calculated in a deterministic way; while the second part adds a stochastic
component to move the individuals along the entire Pareto front, in a certain sense. Some
parts of this method have been naively used [130] to replace the mutation operator of a
MOEA, generating in this way a new better individual from one element of the population.
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In this work, we also pay attention to the first part of the method, in order to generate a
new individual—which will be better than another individual from the population. Our idea
is that the stochastic component of the process will be fulfiled by the MOEA itself which
we are hybridizing. This mentioned method uses the following theorem to obtain a descent
direction:

Theorem 3.3.1 Given a MOP (F) as in (21), in page 7, and q : R” — R" be defined by

k
q) =) &V,

i=1

where ¢ is a solution of
K k
min a5 e >0i=1,..., k, ag="1%F, 3.8
o {13 vl o> sa-if. @B

then either q(x) = 0, or it is the case that —q(x) is a descent direction for F at x.

Fliege's Approach

Let Jr( be the Jacobian matrix of / and R the set of negative real numbers. Then, a
necessary condition [42] for the point x € R” to be a local Pareto point is that the following
equality

range(Jry) VR =0

holds. The above expression means that if we have a point x which is not dominated by
any other point in a certain neighborhood, in a Pareto sense, then it is not possible that a
direction v exists, for which the directional derivative of each f; could be negative—which
would turn it into a descent direction.

Setting the above in terms of our purposes, we will assume that a solution x should be
improved during the solution of a real-valued minimization MOP. Then, if x is not a critical
point for the MOP, it is possible to choose a descent direction v which fulfills

jF(x) v e REH,)

If this is the case, v can be computed using the information provided by the Jacobian of the
problem evaluated on x. As Fliege presents in [42], it is necessary to solve the following
quadratic programming problem:

1
Minimize o + §||v||2

subject o (Jrwv)i < o, forall e {1,..., m}.

29




CHAPTER 3. GRADIENT-BASED MULTI-OBJECTIVE GEOMETRY

The above problem produces a solution

v )

where the descent direction that we are looking for is v*. After having® x! = x + tv, we are
in condition to repeat the movement by calculating a new descent direction from x' or, if this
is not possible, we can assume that a critical point has been achieved.

This method, constructed by Fliege, automatically triggers a condition to know if x" fulfills
condition (3.9), which is the case when o* = 0. In practice, it is necessary to set a tolerance
parameter 7, T < 0 to stop the descent when 7 < @ holds; note that by construction
a* < 0.

Several ways to calculate descent directions have been proposed [107, 8, 9, 14, 53]. A
study of the efficiency of each method is subject of ongoing research. But, descent directions
are not the only interesting directions during the search; sometimes it is also necessary to
perform movements along the Pareto front, or specifically directed towards a particular region.
We will discuss this idea in the following chapters.

3.4 Optimality Conditions

The optimality conditions to decide whether a point could be a Pareto point, of a MOP, have
been commonly studied since their introduction in 1951 [81]. In case all the objectives of
the MOP are differentiable, the following famous theorem of Kuhn and Tucker [80] states a
necessary condition for Pareto optimality for unconstrained MOPs.

Theorem 3.4.1 Let x* be a Pareto point of (MOP), then there exists a vector a € R¥ with
a>0,i=1,..., k, and Z; a; = 1 such that

k
> aVii{x) = 0.
i=1

According to this theorem, the vector of zeros can be written as a convex combination of the
gradients of the objectives at every Pareto point. It is worth to notice that holding Condition
(3.12) is not sufficient for claiming Pareto optimality; but, those points satisfying (3.12) are
certainly ‘Pareto candidates"

Definition 3.4.1 A point x € R” is called a Karush—Kuhn—Tucker point' (KKT—point) if there
exist scalars ay, . . ., ax > 0 such that ZL a; = 1 and that equation (3.12) is satisfied.

SWith t a suitable step length.
“Named after the works of Karush [73] and Kuhn & Tucker [80].

30




3.5. DESCENT CONES FOR MOPS WITH K > 3

3.5 Descent Cones for MOPs with K > 3

This section is included in order to study, from the descent-cones point of view, the role of
increasing the number of objectives of a MOP. The term many-objective problem [38] refers
to a MOP with more than three objective functions. The special interest for investigating
Many-objective problems comes from observations about degradation of MOEAs performance
when dealing with them.

The following comments are part of the work described in [121] where the influence of
the number of objectives is investigated to understand if this is the mere cause of degradation
in MOEAs performance for many-objective problems. The main conclusion in that work is
that the addition of an objective does not make a problem per se harder. In that study,
we investigate the influence of the number k of objectives in @ MOP on the hardness of
the problem when solving it by evolution strategies. For this, we have utilized the descent
cones which can be used to measure the probability to improve a solution by the generational
operators. Though these considerations are of qualitative nature and can hardly be quantified,
they help to a certain extent to understand the behavior of the population’s evolution with
respect to k. As an example, we have considered a class of uni-modal test functions and have
investigated the resulting models qualitatively and empirically. Qualitative studies based on
the descent cones led to the conclusion that, on the one hand, the addition of an objective
makes the problem indeed harder, but, on the other hand, it can be arqued that the difference
is not significant, which is, later on, empirically validated. That is, it can be argued that the
addition of an objective to a MOP does not make the problem per se harder. In contrast
to this, many researchers have so far observed a certain scalability in the hardness of the
problem with respect to k, albeit for more complex models. Based on our considerations on
the uni-modal models we have tried to identify the challenges which have to be mastered
by evolution strategies for general models: the ability to keep “good” solutions in order to
pull the population toward the set of interest, the probability to improve an individual, and
the multi-modality of the MOP. This together with the qualitative discussions included in
[121] can be used to a certain extent to explain recent advances in the field of evolutionary
many-objective optimization. The importance of such analysis lies on the possibility that
those insights into the geometry of MOPs may help researchers in the field of evolutionary
computation for further developments of efficient specialized algorithms, particularly when
dealing with many-objective problems.
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“Turn away with fear and hor-
ror from this lamentable plague of
continuous functions that do not
have a derivative.

Charles Hermite

Gradient-based Local Search for MOPs

4.1 Local Search and Search Directions for MOPs

When used in optimization processes, LS explores the solution space in a fine-grained way.
The traditional tool to perform LS for continuous search spaces is the gradient of the objective
function (see Figure 3.1). There are several well-known methods available for single-objective
optimization, which have been successfully used during the last decades [96, 138, 101]. As
we have noticed before, in the presence of several objective functions we have to deal with
several gradients—one for each objective. Some gradient-based hybrid MOEAs have been
built to perform descent movements alternating the single gradient of each objective function
[44, 56], and this could have certain application when preferences management is required.
However, when seeking for a general purpose local searcher, for continuous multi-objective
problems, our focus lies on using simultaneously all the gradients. In the case of looking
for better solutions in the Pareto sense (i.e. x;11 < x;) descent directions, as described in
Chapter 3, are suitable. Improving solutions by descent directions, in LS, has two advantages
in the evolutionary multi-objective context: it is a reliable way to refine the final results when
used at the end of the search; and second, the possibility of leading the search with “better
genes” in order to “pull” the population toward the optimum in a faster manner.

Descent directions are not the only useful movement directions for multi-objective search.
Moving along the Pareto set is also possible using gradient-based continuation methods, such
as those in [58] [119] [52] or those where estimation of the gradient is not necessary, as in
[86]. Furthermore, it is possible to perform directed movements not only towards and along the
Pareto front, but also to any desired direction in the objective space. To summarize, alternative
search directions are advisable because in multi-objective search the term ‘promising region’
depends on the goal at the time, i.e, in some moments the proximity to the front is necessary
but in others a movement to spread the solutions is advisable.

In the rest of this chapter, we look deeply into the calculation of multi-objective gradient-
based search directions. The study of this subject is necessary when hybridizing MOEAs
with LS. We analyze the cost and differences of our procedures, and study some aspects
regarding the parameters for its practical implementation. We also show some examples to
point out the use of these strategies, and present some experimental results for comparison.
Some considerations to take into account when hybridizing MOEAs with these operators are
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presented in Chapter 5.

In the following, we present our different proposals in order to build local searchers with
alternative multi-objective search directions: The Hill Climber with Side-step in Section 4.2,
which combines two kind of movements, and the recently proposed Directed Search Method
in Section 4.3 (page 52).

4.2 The Hill Climber with Sidestep Operator

The Hill Climber with Side Step (HCS) was proposed in [86] as a novel point-wise iterative
search procedure, which is designed to perform LS in a given MOP. Being a local searcher,
the HCS is intended to be capable of moving both toward and along the set of Pareto points,’
depending on the location of the current iterate. The HCS operator has an automatic criterion
(based on the descent cone size and the KKT conditions) to switch between the two types of
movements. Two variants of the HCS have been proposed: A gradient-free version denoted
here as HCS1—also presented as an early version in [126}—and one, denoted here as HCS2,
that exploits (first and second order) gradient information. Both can be used as standalone
algorithms to explore parts of the Pareto set, starting with one single solution, and both are
able to handle constraints of the model to some extent. In the following we will explain the
two versions of the HCS as standalone algorithms.

421 HCS1 procedure

The HCS1 assumes that the objective gradients are practically aligned, in particular, when
the initial point is far away from the optima. In this case the descent cone is almost equal
to the half-spaces associated with each objective;” we can say that the descent cone is 'big),
since the chance of randomly generating a direction/solution which simultaneously improves
all the functions is high (see Section 3.1, page 21). Figure 4.1 shows randomly generated
points in these two cases; it illustrates this observation to contrast with the situation when
the point x is near to some regions of the Pareto set. In this second case, the gradients
are almost linearly dependent, which means that the descent cone shrinks down; then, the
probability of randomly generating a better point (i.e, a point inside the descent cone) is low.

According to the comments above, the HCS1 starts with an initial point xy, and the next
iterate x4 is randomly chosen from a vicinity B(xg, r) with radius r.® If x; < x the movement
direction for improvement is set as v = x; — xg; if xo < xq, then the direction is flipped, i.e,
V=Xo— X1.

When a solution is near to a Pareto point, the probability of generating a dominated
or a dominating point—like in the case above—is low (see Figure 4.1). So, when %; is
not comparable against xy, the point is stored, and labeled, as a point which corresponds

'Due to the nature of gradients, we can only quarantee local optimality.
2This observation was first noticed in [15]
Bxo,r) ={x R xg; — i <xi < xo;+r, Vi=1,.,n}
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Figure 4.1: The configurations for descent cones at points near and far from the Pareto set
are shown in this figure. The trial points illustrate how likely is to reach descent cones
according to the proximity to the optima. For illustration purposes, the affine hyperplanes
and the translated cones at the solution point are shown.
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to a specific diversity cone; then, a new trial point is generated. After N,4 trials obtaining
mutually non-dominated solutions, the proximity to the optima is assumed and this triggers
a 'side step’ movement over the Pareto front.

To perform this side step movement, the stored points %, . .. Xy, are used in the following
way: Assuming a two-objective problem, for example, if ¥ — xo is in the cone C(+, —), then
Xo — X1 is in the opposite cone C(—, +) (for the two-objective MOPs, the general k-objective
case is analogue). When the limit for unsuccessful trials is reached, a search along C(—, +)
is performed; taking advantage of the accumulated information, the following direction is used:

/\/nd ~
1 Xi — Xo
Vace = 75— Sit—————— 7 .4']-
Nnd; 1% — xol|
where
B 1 i A(%) < filx).
%= { -1 otherwise.

By construction, v, is in C(—, +), and by averaging the trial search directions we aim
to obtain a direction® which is ideally ‘perpendicular’ to the (small) descent cone. Note
that in this case v, is indeed a ‘side step’ to the upward movement of the hill climbing
process as desired, but this search direction does not necessarily have to point along the
Pareto set (we present with HCS2 an alternative method with better quidance properties).
Also, there is no guarantee that v, indeed points to a diversity cone, but even if that is
not the case, there will be an improvement on the solution, anyway. This means that, even
with these two considerations, this side step is still a good option in practice, when working
with few objectives or when coupling the operator with evolutionary methods. For more than
two objectives the strateqy is similar, but we should notice that the possibilities for the side
direction increase. For example, for k = 3 there are six diversity cones which form three
groups by reflection as follows:

C(+,—,—) and C(— +,+),
C(+,—4) and C(—, +, —),
C+,4,—) and C(— +,+).

For a general k it is possible to make 28=! — 1 different groups, being less likely to find a
perpendicular direction, due to averaging N,4 trials, within one of these cones. Alternatively,
one can e.g, use the accumulated information by taking the average search direction over all
search directions only using Formula (4.1) with s = 1.

Algorithm 4 shows the pseudocode of the HCS1 algorithm as a standalone process. The
value of iy, chosen at random for simplicity, determines the side step direction (see line 5
and lines 15-20). For illustration purposes, we explain here the two-objective case: in order

This direction has previously been proposed as a local guide for a multi-objective particle swarm algorithm
in [13]
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Require: starting point xo € O, radius r € R',, number N, of trials, MOP with k = 2
Ensure: sequence {x }en of candidate solutions

1:

=(0,....,00 R’

2: nondom =10
3 for{=1,2,... do

4 setx] :=xP, and choose x/ € B(x/, r) at random
5: choose iy € {1,2} at random
6: if x| < x7 then
7 V= XZZ — xﬂ
8: compute t; € R, and set ¥/ := X,z + tv.
9: choose x? € {xP, x'} such that f(x?) = min(f(), f(x))
10: nondom =0, a:=(0,..., 0)
1. else if x/ < x/ then
12 proceed analogous to case "x/ < x7" with
13: v = x} —x} and X" := x] + .
14: else
15: if f,(x7) < fi,(x/) then
16: S| = 1
17: else
18: s = —1
19: end if
. . s Xy
20: a:=a-+ mm
21 nondom := nondom + 1
22: if nondom = N,4 then
23: compute f; € R, and set ¥ == x| + fa.
24 nondom:=0, a:=(0,..., 0)
25: end if
26: end if
27: end for

Algorithm 4: HCS1
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Figure 4.2: This figure shows the performance of HCS as a standalone algorithm on Example
2.1.1. The “anchor’ picture shows an approximation of the Pareto front, built using the steering
mechanism previously described.

to introduce an orientation to the search, iy is fixed to 1 for the initial iteration steps. When
the side step (line 23) has been performed N; times during the run of an algorithm, this
indicates that the current iteration is already near to the (local) Pareto set, and this vector
is stored in x,. If no improvements can be achieved, according to f;, within a given number
N; of side steps, the HCS ‘jumps’ back to x,, and a similar process is started but aiming for
improvements according to f,. That is, iy is set to —1 for the following steps (see Figure 4.2).
When no improvements can be achieved according to f, within another N; side steps along
C(+,—), the process is stopped. It is worth to notice that more attention has to be paid
for the computation of #; (see Section 4.2.3, page 41). For the experiments presented here, a
strateqy analogous to [34] was used.

Finally, we notice that some parameters are involved in the realization of Algorithm 4;
however, only the values for four design parameters have to be chosen—they are shown
in Table 4.1. The parameter r defines the neighborhood search of the procedure. This
neighborhood is used to find a search direction which is afterwards coupled with a step
size control. Because of this, the value of r is not that important, but it should be ‘small’
to guarantee the locality of the search. N,4 is the value which determines the number of
directions that have to be averaged, in order to choose the side step direction. In general, a
larger value of N,s leads to a ‘better’ side step (in the sense that the search is performed
orthogonal to the upward movement), but will in turn increase the cost of the search. We have
experienced that a low value for N,g4, in particular 5 < N,y < 10, already gives satisfactory
results; the ‘accuracy’ of the search does not seem to influence the performance of the HCS
(considering that neither first or second order information is used). The value of €, is problem
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Table 4.1: Design parameters that are required for the realization of HCS1.

Parameter | Description

r Radius for neighborhood search (Al-
gorithm 4).
N4 Number of trials for the hill climber
before the side step is performed (Al-

gorithm 4).

€ Desired distance (in image space) for
the side step, see Eq. (4.9).

tol Tolerance value used for the back-

tracking in Algorithm 7.

dependent but can be given quite easily in a real world application (see discussion above
the equation (4.9)). Finally, the tolerance value tol is also problem dependent, and has to
be adjusted for constrained MOPs, like in every other algorithm which deals with constraints
(see Section 4.2.4, page 45, for the explanation on constraint management).

422 HCS2 procedure

When gradient information is explicitly available, the search directions for the HCS can be
computed more precisely. We describe in the following, a possible realization of the HCS
using the descent direction presented in [107]. First, using Theorem 3.3.1, a descent direction
—q(x) is computed. If g(x) = 0, then the point x should be a KKT—point. This implies that a
test for optimality is automatically performed when computing the descent direction for a given
point x € X. In other words, for every point x € X, which is not a KKT—point, a descent

A

direction can be found by obtaining the vector & after solving the quadratic optimization
problem (3.8).

For the numerical treatment of this optimality test, we suggest to set a threshold ep € R,
such that in case

k
1) &V > e,
i=1

the candidate solution x can be considered to be ‘away’ from P, and thus, it makes sense to
seek for a dominating solution. In this case, the descent direction (3.7) can be taken together
with a suitable step size control (see Section 4.2.3). If the value of the term in (4.4) is less
than ep, this indicates that x is already in a certain vicinity of P. In that case one can lean
elements from (multi-objective) continuation methods [58, 3] to perform a search along P.
To explain the side step procedure we assume, for simplicity, that a KKT—point X is
given with its corresponding weight vector @, obtained by solving (3.8). Then the point
(%, &) € R"* is clearly contained in the zero set of the auxiliary function F : R"** — R
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Table 4.2: Design parameters that are required for the realization of the HCS algorithm which
involves gradient information (HCS2).

Parameter | Description

€ Desired distance (in image space) for
the side step (4.9)
tol Tolerance value used for the back-

tracking, see algorithm 7.
ep Threshold for the vicinity test (4.4)

of the given MOP, which is defined as follows:

k

>_aVii(x)
Fixa)=| 7, .
Z a;p — 1

i=1

It has been shown in [58], that the zero set F~'(0) can be linearized around % by using a
QU-factorization of F’(%, &)', i.e, the transposed of the Jacobian matrix of F at (&, &). To be
more precise, given a factorization

//:—()?, &)T _ QU c R(n-{-k)x(n-‘rk)’

where Q = (Q, Ox) € RK*0HK is orthogonal with Qy € R+ and Q¢ €
RFE*E=1 " the column vectors of Qx form—under some mild reqularity assumptions on
F~'(0) at (&, &), see [58}—an orthonormal basis of the tangent space of F~'(0). Hence, it
can be expected that each column vector g; € Ok, i =1, ..., k — 1, points (locally) along
P and it is, then, well suited for a side step direction.

Algorithm 5 presents a procedure which is based on the above discussion. Note that this is
one possible realization and that there exist certainly other possible ways leading, however, to
similar results; for instance, alternatively to the descent direction used in Algorithm 5 the ones
proposed in [42] and [10] can be taken. Besides, the movement along P can be realized by
predictor-corrector methods [58, 3] which consists roughly speaking of a repeated application
of a predictor step obtained by a linearization of £~'(0) and a corrector step which is done via
a Gauss-Newton method. Regarding the design parameters of the algorithm, ¢, and tol are
as discussed above and N, 4 and r are not needed due to the accuracy of the gradient-based
search; also, the threshold ep is used for the vicinity test of a given P. This value is certainly
problem dependent, but can be made ‘small’ due to the convergence properties of the hill
climber (e.g, [42)).
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Require: starting point xp € Q
Ensure: sequence {x }en of candidate solutions
1. for [=0,1,2,... do
compute the solution @ of (3.8) for x;.
if || 31y &V 1i(x)|[5 > ep then
V= —q(x)
compute t; € R, and set x;41 = x + tiy

compute F/(%, &) = (O, Ox)U as in (4.6)
choose a column vector § € Qk at random
compute t; € R and set x.41 := x; + 3.
10: end if

1

2
3
4
5
6: else
7
8
9
0
1: end for

Algorithm 5: HCS2

4.2.3 Step size calculation

Once the movement direction is set, the next step is to determine the step length to advance
in this direction. Here we describe the procedure to compute the step sizes of the HCS for
both, the hill climber and the side step movement. This procedure is applied for the two
presented versions of the HCS®.

Step size for movements toward the front (hill climber)

When starting the movement we assume having a descent direction v; or alternatively, that
two points are given, namely xo, x; € R", such that x; < xo. In this latter case, there exists
a subsequence {iy,..., i} € {1,..., k} with

fila) <filx), j=1,..., [,

and thus, v := x; — xp is a descent direction for all f[-/'s at the point xp.

Some strategies can be used to perform the line search (see, e.g, [34, 127]). Nevertheless,
one crucial problem is to find a good initial value t* for a suitable step size (which is, for
example, given by 1 when using Newton's method); in case t* is not already sufficient, the
step size can for instance be fine tuned by backtracking methods [34]. In this particular
instance, since x; can be very close to xp, the distance ||x; — xg|| may not always serve
as a good choice; and standard methods to obtain the initial quess do not apply. For this
purpose, we propose the following heuristic to compute t* instead. We begin explaining the

?In case of the version with explicit gradients, the step size for the hill climber is easily computed applying
as suggested in [42], which ensures convergence of the procedure, but this is not the most efficient choice in
practice, because it requires too many evaluations.
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common scalar case, i.e, when a function f : R — R, and values ty, t1 € R with t; < ¢ and
f(to) < f(t) are given. We first define

A= ty — fo,

and
t, =ty + 27

in order to check if

f(tn) — f(t) P f(t,) — f(tn)
th — 4 tr—tn

l6

holds. When the above equation is true, f is approximated by a quadratic polynomia
p(t) = at’ + bt + c; where the values of a, b, and ¢ can be explicitly derived by the
interpolation conditions

plt) = f(t), p(ta) = (), and p(t;) = f(t,),

(see [34]). The expression (4.7) tests the convexity of the function p; this is, if the term in
(4.7) is true then p is convex (see Figure 4.3 for an example), and thus, it is quaranteed that
the extreme point of p, obtained by

p—
P 2a’
(s a minimizer and takes its value in (fy, 00). Hence, t; can be chosen as a guess for the
minimizer of f. On the other hand, if (4.7) is false, this quadratic approximation may not yield
a useful result—in fact, in that case t; may be negative—and we suggest to check condition
(4.7) with the new data
tr=ty tn =1,

and
t, =t + t; + 4A

i.e, doubling the step size for t.. This process will be repeated until the boundary of the
domain dQ is reached (in that case, take the maximal step size t,,, as described below) or
(4.7) is true. The process will stop after a few iterations. If ¢} is too large (ie., U f(t;) > f(#)),
smaller step sizes can be found via backtracking.

The use of this idea for the multi-objective case is presented in Algorithm 6. Hereby, f, ;
denotes the restriction of objective f; to the line xo + Rv, ie,

f,i(t) = filxo + tv),

%The idea to approximate f locally by a quadratic polynomial was first proposed by Armijo in [4]
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Figure 4.3: The two cases in the quadratic approximation for computing the step length. The
expression in Equation (4.7) is false for t, t,, and t, in the upper figure and true in the lower
figure. In the latter case, the quadratic polynomial is convex.

and quad_approx is the method to find the minimizer of the quadratic polynomial, as it was
described above. Note that this step size control differs from the one presented in [126] since
the initial guesses, as they are described in [126], are restricted to the range

t e (0,2 —xll2].

which may be too small if x; is near to xg.

Step size for movements along the front (side step)

For this case, we assume to have a point xp € R" and a search direction @ given by
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Require: xp, x; € R” with x; < xo, maximal number of trials N,
Ensure: step size t* for the hill climber

vi={ie{l ..., k} : filx) < fi(xo)}

22 Vi=X1 — X

3 A= ||X1 —X0||2

4. t,:=0t, =N\ t :=2A

5 for j=1,..., N,yax do

6: if diel:(47) is true for ¢, t,, t, and f,; then
7: forall i € / do

8: if (4.7) is true for t,, t,, t, and f,; then
9: t' = quad_approx(t;, ty, t., 1,
10: else

11 tf =00

12: end if

13: end for

14: return t* ;= min_y 4t

15: else

16: ti=ty ty =1, 1t =2xt

17: end if

18: end for

19: return t* :=t,

Algorithm 6: Step size tracking procedure for the HCS (for its two versions).
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(or alternatively the one described in section 4.2.2) with X; € B(xo,r), i=1,..., N,q, and
such that (xo, %), i =1, ..., N,g, are mutually non-dominating. Then, we propose to proceed
analogously to [125], where a step size strategy for multi-objective continuation methods is
suggested: given a target value ¢, € Ry (ie, the minimal value which makes two solutions
distinguishable from a practical point of view), the task is to compute a new candidate
Xpew = Xo + ta such that

||F(X0) - F(Xnew)Hoo ~ €.

In case F is Lipschitz continuous (see [96]), there exists an L > 0 such that
1FO) = Flo)ll < Llx =yl Yx,y € Q. 4.10

This constant can be estimated around xy by

where /g, denotes the Jacobian of f at xp and Vfj(xy) denotes the gradient of the i-th
objective at x.

In case the derivatives of F are not given (which is also considered here) the accumulated
information can be used to compute the estimation

N 1) Bt [

----- Nad ||X0 _)?l||00

since the X;'s are near to xp.
Finally, combining (4.9), (4.10) and using the estimation L,, the step size control is

obtained by
Xnew = X0 + i ? .
Ly llaleo

These step-size controls were used for the experiments in this, and the following chapter,
obtaining competitive results. However, the step size control in multi-objective optimization

is a very complicated problem. This will be later discused in detail in Section 6.1.2, page
115.

4.2.4 Constraints management

During the run of the search algorithm, it can occur that some of the new iterates are not
inside the feasible domain Q. That is to say, we are faced with the situation that xy € Q and
X1 = Xo + hov & O, where v is the search direction. In that case, we propose to proceed
analogously to the well-known bisection method for root finding in order to backtrack from
the current iterate x; to the feasible set:
let ing := xo € Q and outy ;== x; & Q and

ho

moy = ing + 0.5(outy — ing) = xo + ?v.
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If my € Q set iny := my, else out; .= my. Proceeding in an analogous way, one obtains
a sequence {in;}.cy of feasible points which converges linearly to the boundary dQ of the
feasible set. One can, for example, stop this process with an iy € N such that

llout,, — iny||eo < tol,

obtaining a point in;, with maximal distance tol to 0 Q.

Algorithm 7 illustrates this described process. Note that by this procedure no function
evaluation has to be spent, though a feasibility test may also be of relevant numerical effort
in some cases. In case the domain Q is given by box constraints, i.e, if Q can be written as

O={xeR : [ <x<u,i=1,..n},

where [, u € R" with [ <, u, the backtracking can be performed in one step: given a point
xo € Q and a search direction v the maximal step size h,q such that xg 4+ hyev € O can
be computed as shown in Algorithm 8.

Require: xo € Q, x; = xo + hov & Q, tol € R
Ensure: ¥ € Xpxq N Q with infyeo ||b — X|| < tol

1: ing .= Xy
2. outy = xq
30i:=0

4: while ||out; — in;|| > tol do

5: m; = in; + %(out,- —iny)
6: if m; € O then

7: (Nigq = m;

8: outiyy == out;

9: else

10: (Nixq = (n;

11: outi g == m;

12: end if

13: i=i+1

14: end while
15: return X = in;

Algorithm 7: Backtracking to feasible region when managing constraints in HCS.

Note that the HCS2 is proposed for the unconstrained case. While an extension to the
constrained case for the hill climber is possible (see, e.g, [42] for possible modifications) this
does not hold for the movement along the Pareto set (i.e, the side step). Though it is possible
to extend system (4.5) by equality constraints (e.g., by introducing slack variables to transform
the inequality constraints into equality constraints) this could lead to efficiency problems in
the numerical treatment [58]. Hence, we restrict ourselves here to the unconstrained case.
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Require: feasible point xp € O, search direction v € R™\{0}, lower and upper bounds
[LueR"
Ensure: maximal step size hq, such that xo + hyev € Q
1. fori=1,...ndo
2: if v, > 0 then

3 di = (u; — x;)|v;
4 else if v; < O then

5 di = —(xi— l)Ivi
6 else

7 d; == 00

8 end if

9: end for

10: hpay == min d,;

i=1

Algorithm 8: Algorithm to deal with box constraints when using HCS.

4.2.5 Numerical results

To illustrate the behavior of the HCS as a standalone procedure, we tested both instances—gra-
dient-based and gradient-free version—on some examples. We use in the first two examples
a convex model (i.e., a model which does not contain local minima where the LS can get stuck)
and we investigate both the unconstrained and the constrained cases. Finally, we consider
a multi-modal and constrained model (ZDT4 [28]). All computations for these examples have
been done using the programming language MaTLAB’.

Example 4.2.1 Consider the MOP defined by minimizing

X)) = =1+ i(xi —1)? and
i=2

n

hx) = > (i+ 1)

i1
The Pareto set P of this model is located within [—1,1]".

Figure 4.4 shows the results obtained by the modified algorithms HCS1 and HCS2, when
applied independently on Example 4.2.1. The MOP was set for dimension n = 10 and the
experiment was performed over the domain Q = [—5,5]". In both cases the same starting
point xp has been chosen. Since P is located within Q in this example, no constraint handling
techniques had to be applied in order to generate the sequence. Analyzing the cost of the
procedures, we found in a typical trial that, for HCS1 a total of 1693 function calls had to be

"https://www.mathworks.com
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spent in order to get this result. For HCS2, 207 function calls, 60 evaluations of the gradient
and 192 evaluations of the Hessian were required (which are both given analytically); a
conversion would lead to 13,095 function calls (We will explain this equivalences later in
Section 5.4.2, page 93). It is evident that due to the different requirements of the algorithms a
quantitative comparison is hardly possible. However, as a way of comparison, Figure 4.4 shows
some qualitative differences as anticipated from the design of the different algorithms. We
can see that HCS2 converges faster (in this case four iterates were needed to reach P while
HCS1 needed 23 iterations) and the non-dominated front is better distributed compared to the
results obtained by the gradient-free version HCS. Nevertheless, both results are satisfying
since both non-dominated fronts represent a good approximation of the Pareto front with
reasonable effort.

Example 4.2.2 We consider now the constrained case of the above example. In this case, we
have used dimension n = 2 and the domain has been restricted to

Q=10515]x[1,2]
The Pareto set, for this constrained case, is given by

Po =10.51] x {1}
and thus included in the boundary of Q.

Figure 4.5 shows a numerical result from the HCS1 over the above constrained example. The
plots show that also in this case the HCS1 is capable of approaching the solution set, and
moving along it further on. However, a total of 997 function calls had to be spent in this
setting, that is, more in comparison to the unconstrained case (note that the dimension of the
model is much lower in the latter case).

Example 4.2.3 We finally consider, in this example, the problem ZDT4 defined by minimizing
f1 (X) = X1,

hix) = g1 =~/filglx)),

n

glx) =1+10(n — 1)+ > (' — 10cos(4mx)),

i=2

with

0<x <1, —H<x<Lh i=2 ..., n.
This is a highly nonlinear and multi-modal model.
Figure 4.6 shows two results, in image space, for two different initial solutions xo, 20 € Q =

[0, 1] x [=5,5]°, when applying the two variants of the HCS. As anticipated, the results for
both algorithms and starting points differ significantly; this is because the HCS is a local
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Figure 4.4: Numerical result of HCS for Example 421, with Q = [-5,5]"°, in objective
space. The comparison between the two versions is presented in the bottom plot, while the
separate behaviors are at the top (HCS1) and middle (HCS2) ones.
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Figure 4.5: Numerical result of HCST for the constrained Example 4.2.2 with Q = [0.5, 1.5]x
1, 2].
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strategy, and ZDT4 contains many local Pareto fronts. However, both procedures are able to
explore a part of the local Pareto front—which is located ‘near’ to the image of the initial
solution.

To conclude this section, it is worth to notice that the performance of the gradient-based
HCS—in terms of convergence—is better than its gradient-free version (as it is shown in
Figure 4.4); but, this improvement does not come for free: for the descent direction all
objectives’ gradients have to be available (or approximated), and to perform the linearization
of P even all second derivatives are required. More tests of the HCS are presented later
in this work, where this operator is combined with MOEAs and its performance as a hybrid
algorithm is analyzed.

4.3 The Directed Search Method

When working with MOPs, performing LS movements towards a particular region is sometimes
desired. In this line of thought, we present in this chapter a proposal for the computation of
improving movements by the Directed Search (DS) method. The complexity of one iteration
step is again equivalent to solving a system of linear equations, and only first order gradient
information is necessary to use it.

This new approach calculates a gradient-based descent direction using a controlled bias
towards interest regions determined in objective space. Hence, we claim that this proposal
has many potential applications in the context of designing hybrid MOEAs. This method is
based on a weighting approach but it is also able to reach non-convex regions on the front
(see Figures 4.7 and 4.8). It can also be used instead of the greedy approaches presented in
[42][107].

The DS method describes the set of descent directions in a similar way to [10]; but,
it performs movements inside this cone in a user-preference controlled way. ie, assuming
xo € R”, when using the Jacobian notation (3.1), in page 24, the descent cone (Definition
3.1.1 in page 22) can be expressed like:

Jrov <0 and  Jrgv # 0.
After a possible normalization, Equation (4.13) can be re-stated as

jF(XO)V = —q, 4.14

where a € R¥ is a convex weight (i.e, a; > 0 and ZL a; = 1). Hence, the descent cone
can be represented as follows:

Col—0 -0, —)={veRN\{0} : Ja € R"\{0}: & >0, Jryyv = —a} 4.15

and thus, every descent direction v & D(xp) can be computed by solving the under-determined
system of linear equations (4.14) for a given vector —a. Note that a has to be determined
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first, but by this, v gains a physical meaning: by construction, the direction in image space
is given by

(VHhx), V)= —a;, i=1,..., k.

In the following we use the notation d = —a to denote descent direction vectors. It is

important to notice that such a search direction v can be computed by solving a system of

linear equations. Since typically the number of parameters is (much) higher than the number of

objectives in a given MOP, i.e, n >> k, system (4.14) is (probably highly) under-determined

which implies that its solution is not unique. To prevent this, the estimated solution with the
lowest norm can be chosen leading to

v :j;_()(o)d’ 417

where At & R"™* denotes the pseudo inverse of a matrix A € R k < n. In case the
rank of A is maximal, the pseudo inverse is given by A* = AT(AAT)~".

In case the MOP contains m active inequality constraints gy, ..., gn - R" — R at a
point x—which is not within the scope of this work—one has to solve instead of (4.14) the
enlarged system

jF(x)V =d
Jawv <0,
where
Vgi(x)'
Jo(x) = ; ER™".
Vgnx)'

For the solution of such systems we refer e.g, to [11]. An analog statement for equality
constraints, however, does in general not hold since they typically reduce the dimension of
the search space, and then, the feasible choice of d may be restricted. In that case, one
might change from the fixed direction d to a ‘best fit, for instance by solving the following
quadratic optimization problem:

il d — VIl
st Jowv <0, and
f/-,'(X)V = 0,

where H contains the gradients of the equality constraints. If d <0 and d # 0, ie, if d is
a ‘descent direction’, then one can add the constraint

Jrgv <0

to (4.20) in order to prevent that the function values of subsequent candidate solutions
decrease.
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43.1 Tracing a solution curve

The above result can be used to define a curve of dominating points. Assume that a (not
necessarily fixed) convex weight @ is given and a search in that direction is desired. Using

Va(X) = —JF 9@, 4.22
one can thus try to solve numerically the following initial value problem:

X(O) xp € R"
VP,
Vo(x(t)), t>0 -

%(1)

A solution of (IVP,) yields a curve of dominating points, and the proportion of the im-
provements of the single objectives is given by a as shown in (4.16). Clearly, if all objectives
are continuously differentiable and if @ = a(x) is continuous in x the solution curve x(t) is
also continuously differentiable.

Stopping Criterion

It is important to notice that even if an endpoint x* of (IVP,) exists—for instance if F(R") is
bounded below—this point does not have to be Pareto optimal since the approach depends
next to a on the initial point xp. At least, a stopping criterion for the numerical treatment of
(IVP,) can be given to detect if an endpoint of the curve is reached under certain (reasonable)
assumptions: if (a) the number of parameters n is at least as large as the number of objectives
k and (b) if the gradients of all objectives are linearly independent at xo, i.e, rank(/r(,)) = k
(which means that all objectives are indeed in conflict at xp), then for every point x(t) along
the curve the rank of the Jacobian is k, except for the endpoint x* (in particular —a is not in
the image of Jr(s+)). The rank of a matrix can of course not be used to detect the endpoint of
a curve numerically, but instead the condition number k, of Jr(,) can be used: one can eg,
compute

g
Ka(lrw) = [rwll2l il = o

where ¢y and o; are the largest and smallest singular value of J,, respectively, and stop
the process if k2(Jr(y)) > tol, where tol € R is a given (large) threshold. This can be done
since by the above discussion k(/F(n)) — oo for x(f) — x*.

This discussion shows one potential drawback of the approach, namely that the determination
of the search direction by solving (4.14) gets inaccurate for points near the Pareto set due to
the high condition number of /r(,. However, our experience has shown that state-of-the-art
numerical tools allow to come ‘near enough’ to the Pareto set even for higher dimensional
problems (here we refer to the numerical results presented in Sections 4.3.3 and 4.35, in
pages 59 and 65 respectively).
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To trace the solution curve of (IVP,) one can e.g, choose well-established numerical
discretization methods (e.g., [35]); Algorithm 9 shows a generic procedure. Also, we think that
Armijo-like step size controls for the choice of h; such as the ones presented in [5, 41| can
be adapted to the current context (whereby (4.16) has to be integrated in a suitable way).
However, none of these methods allow to perform a correction back to the solution curve.
In the following we propose one possible way to compute the solution curve numerically by
predictor corrector (PC) methods (i.e, with a method which allows for such a correction, see
e.q., [2]). To do this recall that for every point x on the solution curve it holds

F(x) = F(x0) + Aya, 4.24
where A, € R. Hence, the curve is contained in the zero set of

H - Rn+1 N Rk

4.25
H(x, /\y) = F(x) — F(xo) — Ay

To comply with the needs of PC methods we introduce an additional parameter A, into
the solution curve (which is defined in parameter space):

X(O) = (Xo, /\X,O = 0) & R

K1) = ( velx(1) ) t>0

1

So far, we are not able to apply PC methods since the parameters A, and A, parametrize
different curves. The following consideration, however, argues that it is reasonable to match
the two parameters: Let xo be given and A, o = 0, and let (xq, A4,1) be an Euler step of
(IVP,,) with a small step size A4,, ie,

X = X0+ AMve(xo), A = Ady.

By construction of v,(xy) and since A4, is small we have

f{()ﬂ) - f{(Xo) .
R =1,...k 4.2
Qi AL ;o e 7
This implies that F(x1) — F(x0) = AAca and hence H(xy, A1) = 0 which suggests to make
the substitution A, = A,. Using this, (IVP, ;) and (4.25) can now be used to perform classical
PC methods in order to trace one solution curve: starting with the point (xo, Aco) one can
integrate (IVP,,) numerically for a small time step, e.g, via the Euler method as described

above leading to a predictor solution (X, A,1). In a next step this solution can be corrected
to the desired curve (in objective space). That is, starting with (%, A, 1) and using a (Gauss-)
Newton method applied on (4.25) one can try to find a solution (xy, A1) with H(xy, A1) = 0,

and so on. For details on the method including the step size control and the properties of the
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(Gauss-) Newton method we refer e.g, to [2] Note that H='(0) forms locally a (n — k + 1)-
dimensional set and hence no unique solution is defined (but also not needed). However, if
the (Gauss-) Newton method is taken for the corrector as described in [2] A, can be chosen
as the pseudo arc length to trace such a curve.

Require: starting point xp € R” with rank(Jr(y)) = k, tol € R., convex weight oy € R*.
1. 0:=0
2: while «(Jr(,)) < tol do
3: compute v; = —j,ff(xl)a[

4 compute h; € R,

5: set X1 = x; + hv;

6: choose a1 € R

7: set (=141

8: end while

Algorithm 9: Directed Search Method

4.3.2 Directed movements

To illustrate the potential of biasing search movements, we use the example of Goal Program-
ming (GP), where the main task is to find a point such that its image is as close as possible
to a given target value Z € R*. This leads, for the unconstrained case, to the following
optimization problem (see e.g, [17] for more information):

min d(Z, F(x)), 4.28

xeR?

where d(-,-) is a particular (chosen) distance in R¥. When choosing the Euclidean distance,
the (local) best search direction at a point Xy is given by

F(x)—Z
A7y = ——————, -4.29
22 [F ) — 2]

where we assume that Z <, F(x). To satisfy user preferences, or to be able to reach
alternative Pareto optimal points, it is commonly desired to use a weighted metric instead of
a fixed metric (e.g, [90]). When using the weighted 2-metric

dp(x, y) ==/ (x — y) Dlx — y),

where D is a diagonal matrix with positive diagonal entries, the greedy direction at xp is
given by

_ D(F(o)—2)
0 T D(F o) — 2T
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Figure 4.7: Numerical result for MOP (4.37): comparison of the numerical solution paths of
the weighted sum and the directed search approach for x; = (1.5, 1.5) and a = (0.5,0.5)".
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To derive equation (4.31), we define for a given point xy and a fixed @ € R* the curve
¢, i R — R by
co(t) = F(xo) + ta. 4.32

Also, let g, : R — R be the square of the weighted 2-metric of Z and ¢,(t), ie,

| — fi(xo) — tai)?,

galt) = dolZ, co(t))’

I

]
=
N

where d; is the i-th diagonal element of . Then, the derivative is given by

k
gu(t) == 2dia(Z — fi{xo) — tat), 434
i=1
and hence .
g,(0) = =2 diai(Z — fi(x)). 4.35
i=1

Finally, using (4.35) we can determine the most greedy choice of @, i.e. the steepest descent
with respect to a given by

—Va(g4(0) = D(Z — F(x)),

and the claim follows (note that the directional vector is negated in (4.14)). To conclude, the
vectors v(az ;) and v(az p) can be viewed as the ‘best’ LS direction for the Goal Programming
(4.28) according to the given metric.

4.3.3 Numerical results for the DS method

Here we present some numerical results to illustrate the Directed Search descent method.
All computations, in this section, have been done using MatLAB®.

Example 4.3.1 First we consider the following parameter dependent MOP ([146]124)):

fi,6H: R >R

1
hlx. y) = Z(\/1 F XAy VI F K=yl Fx—y) A el 3

1 -
falx. y) = §(\/1 FF YRV =g —x g+ A e

For A = 0.85 the Pareto front contains a dent. To be more precise, the Pareto front is
connected and consists of two convex parts and one concave part.

8http://www.mathworks.com
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Figure 4.9: Numerical result for MOP (4.38): solution paths for several initial conditions
X, i=0,..., 5, using the 2-metric for d.

Figure 4.7 shows a comparison of the Weighted Sum method against the Directed Search
method. Starting point for both methods was xy = (1.5,1.5), and the weight vector was
chosen as a = (0.5,0.5)". For the stopping criterion (4.23) we have chosen for this as well
as for the subsequent examples tol = 1e8. To demonstrate the solution curves we have chosen
to solve (IVP,) with the Euler method using very small step sizes. While the solution curve
of the Directed Search method steers on a straight line from F(xo) to the corresponding point
on the Pareto front (the same appears in parameter space), the solution curve of the Weighted
Sum approach eludes this straight line leading to a (for this method) better solution. We
have repeated this for 100 randomly chosen starting points within Q = [—5,5); and the
resulting endpoints for both methods are shown in Figure 4.8. While it may be arqued that
for a single solution the Weighted Sum approach obtained a good solution (Figure 4.7), this
does not hold in terms of a possible representation of the entire Pareto set, since the concave
part of the Pareto front is left out nearly completely.

Example 4.3.2 Next, we consider the following convex MOP:
f1, fz R"— R

fx) =Yg — i) + (x — al)’,

J
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Figure 4.10: Numerical result for MOP (4.38): solution paths for one initial point and for
several weighted metrics (see text).
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where
a = (1,1,1,1,..) e R”
a’ = (=1, -1,-1,-1,..) R

First we turn our attention to the goal programming problem (4.28) where we choose
the target value as Z = (0,0). Figure 4.9 shows some numerical solution curves for several
starting points where the Euclidean Distance has been chosen.

In Figure 4.10 some numerical results are shown for several problems where xo has been
fixed, but the weighed Z2-metric has been chosen for different matrices. To be more precise,

the curves ¢;, i =1, ..., 5, belong to the matrices D;, where
c1  corresponds to Dy = ( 009 097 ) ,
¢, corresponds to D, = ( 007 O(.)3 ) ,
c3 corresponds to Dy = ( 005 0?5 ) ,
¢4 corresponds to Dy = ( 0; 0?7 ) ,
cs  corresponds to Ds = ( 0(')7 0?9 ) .

4.3.4 Continuation process for the DS method

In this section we propose a new PC method for the continuation along (local) Pareto sets of a
given MOP. The central difference from a classical method is that it is based on the geometry
of the Pareto front and realized by the Directed Search Method. This new method—unlike
classical PC methods—does not require to compute the Hessian matrices of the objectives; this
implies that this method can be used to handle even higher dimensional models (n >> 1000),
without exploiting the possibly given sparsity of the system.

We concentrate on the two-objective case (i.e, k = 2) since a consideration of k > 2
requires an additional data structure for the efficient representation of the approximation (for
this we refer e.g, to [55, 112, 115]). Apart from that, all subsequent ideas are suitable for
models with k > 2.

a) Predictor Assume that we are given a Pareto point xy with an associated weight oy such
that

k
> Vi) =0,
i=1

and further we assume that

rank(DF (x)) = k — 1.
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It is known [57] that in this case a is orthogonal to the Pareto front, e,
a L TOF(R)

where y = F(x) and dF(R") denotes the border of the image F(R") (this holds even in
the constrained case, see [57]). Thus, a search orthogonal to a (in objective space) could be
promising to obtain new predictor points. To use the direct approach (4.14), for instance a
OR-factorization of @ can be computed, ie,

a=(QR, 442

where Q = (g1, .. ., q¢) € R¥% is an orthogonal matrix and ¢, i =1,.. ., k, its column
vectors, and R = (ry1,0...,0)" € R with iy € R\{0} (for the computation of such a
factorization we refer e.g, to [96]). Since by (4.42) a = ri1qy, e, a € span{qq}, and Q
orthogonal it follows that the column vectors ¢, .. ., gk build an orthonormal basis of the
hyperplane which is orthogonal to a. Thus, a promising well-spread set of search directions
v; may be the ones which satisfy

DF(x)v; =qi;, i=2, ..., k.

Since a is not in the image of DF(x) (else x would not be a Pareto point) and by assumption
(4.40) it follows that the vectors q», ..., gk are in the image of DF(x), ie, Equation (4.43)
can be solved for each i € {2,..., k}. Note that by this choice of predictor direction no
second derivative of the objectives are required.

The predictor direction can—except for its sign—be chosen as described above, i.e, one of
the normalized vectors v := £v,/||v;||,, where v, satisfies (4.14) as described above for
d = g,. To orientate the curve (i.e, to determine the sign of v) we can not proceed as for
‘classical’ PC methods since this would require as well the derivative of F as in (4.5). Instead,
one can define an orientation in the context of two-objective optimization by the increase (or
decrease) of one objective. For this, the signum of the according entry of the direction vector
g» can be taken. If, for instance, an improvement according to f, is sought, then

p = Xo — sgn(qz2)hv 4.44

can be chosen as predictor, where g, denotes the 2nd entry of g,, and h is the desired step
size. Note that when choosing one of the data structures in [55, 112, 115] for models with
k > 2 no orientation of the solution manifold is required.

To choose the step size h we suggest to proceed as follows: assume we are given x; and
the search direction v with ||v||, = 1 associated to the direction g in objective space for the
predictor, e, p = xo + hv, where h € R, has to be chosen. The underlying idea of the
step size control is as follows: to obtain an adequate spread of the solutions the function
values f;(x) and f;(p) of at least one objective j & {1,..., k} differ ideally by a (problem
dependent) value e while the difference for all other objectives does not exceed this threshold.
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Since this value can differ for each objective the demand on the spread can be stated (after
possible renormalization) as follows:

du(F(p). Fx) = € 4.45

where d,, is the weighted infinity distance, i.e,

k

du(x.y) = > wilx —yil.

i=1

Assuming that each objective is Lipschitz continuous and that the step size h; for the i-th

objective is sufficiently small we obtain for i =1, ..., k:
|filp) = filx)] = Lix |lp = x|z 4.47
N’ ——
I e =h;

=w

Since L;, can be approximated by the norm of the directional derivative we obtain for each
objective the control

€
hi=———7——7—, i=1..., K, -4.48
wi|(V1i(x), v)]

and hence for the entire MOP

h = Tlnkh[.

By construction, the difference vector F(p) — F(x) is ideally orthogonal® to @ which can be
used to determine if the chosen step size (4.49) is too large. If

(. F(p) — F()] < tol,

where tol € R, is a given tolerance, the predictor p can be accepted. If (4.50) is not true,
then p does probably not serve as a good predictor, and the step size has to be decreased
accordingly.

Alternative step size controls for multi-objective continuation can be found e.g, in [57, 113].

b) Corrector Given a predictor p, the subsequent solution along the curve can be computed
by solving numerically (IVP,), using p as initial value and choosing ay, i.e, the weight from
the previous solution xo leading to a new solution x;. This together with the step size control
(4.49) and the ‘quasi-orthogonality" test (4.50) is intended to obtain an even spread of the
solutions. In fact, this is the case if the value of € in (4.45) and hence the step size t is
sufficiently small. The new associated weight o can be updated by solving the following
quadratic optimization problem (3.7).

%If the Pareto front around F(x) is convex, this can only be reached asymptotically.
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Algorithm 10 shows a possible realization of the continuation method which does not
require the second derivatives of the objectives. Hereby, we start with an approximate
minimizer of the first objective f; and trace the curve seeking for improvements according to
the second objective f,. Hence, a possible stopping criterion is that the associated weight
of a candidate solution is approximately @ = (0,1). Other stopping criteria, however, are
possible according to the given setting.

Require: Initial solution (xp, ap) with oy = 1, threshold e € R, tolerance 0 € R,.
Ensure: Set of candidate solutions x;
1. 0:=0
2: while 1 — & > 0 do
3: compute g, as in (4.42)
compute v as in (4.43) (ie, v:i=w)
compute h as in (4.49)
pi = X; —sgn(g22)hv
compute x;11 by solving (IVP,) with initial value p; and using a;.
compute ;41 as in (3.8)
9: set i:==1i+1
10: end while

© N 9o 9 R

Algorithm 10: Bi-Objective Continuation

4.3.5 Numerical results for the DS continuation method

Here we present some numerical results to illustrate the novel continuation approach. All
computations on this section have been again done using MATLAB.

Example 4.3.3 First. we are interested in solving MOP (4.38) by continuation methods.
Figure 4.11 shows a numerical result for n = 10. The figure shows the images of the
solutions F(x;) as well as the images of the predictors F(p;) which are already near to the
solutions.

We have observed that the corrector step uses approximately three iterations to be near
enough to the Pareto set (to be more precise: in the above example we needed, on average,
24 iterations). We use this to make a comparison to the classical PC method:

the classical PC method uses in each predictor step one QR-factorization of (F')(x, a)
which implies one Jacobian call (for all objectives) and one Hessian call. For the corrector
at least one Gauss-Newton step has to be performed which implies again one Jacobian and
one Hessian call (here we neglect possible additional function calls due to backtracking
strategies). In total, we can assume that for the generation of a new candidate solution
two Jacobians and two Hessians have to be calculated. The PC method as described above
requires one Jacobian call for the predictor and we estimate three Jacobians for the corrector
(as observed in this example), which makes in total the computation of four Jacobians to
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obtain a new solution. For the sake of comparison, we assume that the gradient information
is not available but has to be calculated or approximated, and hence measure the cost to find
a new candidate solutions in terms of the number of required function calls. If for instance,
automatic differentiation (AD) is used to compute the derivatives, we can estimate 5 x k
function calls for each derivative call and k * (4 + 6n) function calls for each calculation of

the Hessian ([47)). Then we obtain for our example (n =10, k = 2):
|Fc(PCuassicat)] = 276, [fc(PCyen)| = 40,

where fc(A) denotes the number of required function calls for method A. These values change
when using finite differences (FD). If for instance, the forward difference quotient

of fxq,....x;+0, ..., ) — X, .., ,, .
a(X)z Xt *n) = Fx X), ie{1,. .., n} 4.52

where 0; € R, is a small value, is used to estimate the gradient, apparently n function
calls are required to estimate each gradient. The central difference quotient leads to more
accurate approximations, but does in turn require 2n function calls [47] A forward difference
quotient approximation of the second derivative requires a total of n* function calls (and 2n’
or 4n® function calls when using the central difference quotient, depending on how the rule
is applied). Hence, using the forward difference rule in FD we obtain

£ (P Crigssical)] = 440, |fc(PChew)| = 80.

In both cases, i.e, AD and FD, the new PC method requires a much smaller number of function
calls for the computation of the subsequent solution.

Figure 4.12 shows a numerical result for the same model and the same setting but
using n = 100,000 parameters. Also here, the cost to obtain a new candidate solution
is approximately given by four Jacobian calls (we omit here a comparison as in (4.51) and
(4.53)). Since a naive storage of the Hessian matrix (i.e, without exploiting the sparsity)
requires the size of n® floats, a straightforward implementation of the classical PC method is
restricted on a standard computer to approximately 2,000 free parameters, which does not
hold for the new method. Since the second derivatives are not needed for the latter approach,
we think that this one is—independent of the storage problem—a promising alternative to
the classical PC method in particular for higher dimensional problems.

Example 4.3.4 Finally, we reconsider MOP (4.37) from Example 1 and turn our attention
again to Goal Programming. Though it was shown above, that oy is locally the best search
direction, it is not even quaranteed that a solution of (IVP,) leads to a local solution of (4.28).
This is due to the fact that the approach depends next to xy and Z also on the shape of
the Pareto front which is clearly not known a priori. As a possible remedy it seems possible
to combine the two methods proposed in this work to obtain a two-stage algorithm for the
detection of local solutions of (4.28): first, one can compute, starting from xy, the endpoint x*
those image is on the border of F(R"). In the second step, a movement along dF(R") can
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Figure 4.11: Numerical result for MOP (4.38): solution of the continuation algorithm for
n = 10. Shown are the images of the predictors and the solutions.
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Figure 4.12: Numerical result for MOP (4.38): solution of the continuation algorithm for
n =100, 000. Shown are the images of the predictors and the solutions.
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Figure 4.13: Numerical result for MOP (4.38): a combination of the Directed Search descent
method (indicated by the stars) and a modified continuation procedure (crosses) leads to the
solution of the goal programming problem (filled circle).

be performed seeking for a decrease of the distance toward Z.

Figure 4.13 shows such an example for MOP (4.37). The continuation has been done as
described above but we have changed the orientation according to the problem, and stopped
the process as soon as the search direction flipped (monitored by the value of q,). Though
the first result is quite promising, we feel that much more investigation has to be done in
that direction which we leave for future research.

4.3.6 Discussion

It is worth noticing that the idea to adjust the search direction in image space a priori to
obtain a numerical scheme has been previously discussed in the literature [39]. Some con-
sideration that have to be taken are, for example, that the computation of the search vector v
requires the solution of a possibly highly under-determined system of linear equations, and
the condition number of this system increases as the point x gets nearer to a local solution.
However, we have observed that state-of-the-art numerical tools are able to handle such
problems, even for high dimensional problems (for instance, in Section 4.3.5 the Pareto set of
an MOP with n = 100, 000 parameters is presented). Another important observation is that
it is still unclear how to ‘steer’ the optimization process, i.e., how to choose a. Here, we set
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f2

f1 f1

Figure 4.14: In the context of population based optimization, the effective choice of the search
directions depend on several factors. One of them is the location of the individuals of the
population.

a start and present some choices which are locally optimal in certain cases. However, some
‘global’ strategies are to be established in the future.

A very similar representation of the descent cone which is the basis for our descent method
can be found in [8] However, the authors of [8] derived their result differently, and did not
exploit the ‘steering feature’ in their work.

To conclude, there exist some options to compute multi-objective search directions instead
of the traditional weighted sum; but the question about how to efficiently integrate them into
a population-based context—as in the set oriented (MOEASs) algorithms—remains open. It
is also worth noting that the suitable choice of the movement direction relies also on the
location of the point, and on the location of all the other population individuals (see Figure
4.14); to this end, the directed search method has a lot of potential.
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“Thought is only a flash between
two long nights, but this flash is
everything.”

Henri Poincare

Gradient-based Memetic Algorithms

Along this chapter, our different proposals for hybridization of gradient-based LS and MOEAs
are presented. First, we establish a two-stage algorithm and discuss the advantages and
disadvantages of this point of view, followed by numerical examples to study the scalability
of the method. Finally, our proposals for hybridization of two state-of-the-art MOEAs is
presented and discussed; also, some numerical experiments are presented. In the following
section, we state some important definitions about the performance indicators used for the
sequel.

5.1 Comparison Methodology

Building memetic algorithms (MA) has the aim of improving the efficiency of the base EA—a
MOEA in case of multi-objective problems. To verify this improvement, a fair comparison of
performance is necessary; more precisely, we expect to get a better solution with the same
computational effort. Assessing the quality of solutions in multi-objective optimization has
certain complications. Thus, the methodology to make the comparison turns over determining
which is a better approximation of a continuous manifold between two finite solution sets (A
and B), each one corresponding to the output of each different algorithm.

Several performance indicators have been used during the last few years, in order to
compare the quality of Pareto front approximations. Even with these performance indicators,
making a good comparison is not an easy task. The main problem is how to assess that a
certain finite approximation of a continuous k—dimensional manifold is ‘better’ than another
one. In multi-objective evolutionary computation, three different aspects on solution quality
are important. First, we want the solutions to be near to the true Pareto front of the MOP.
Second, these solutions must cover most of the regions in the manifold. Finally, these solutions
should be well spread over the space. In the rest of the chapters, we use certain performance
indicators to assess the efficiency of our algorithms taking into account these different aspects;
here, we will briefly describe them:

Given a finite approximation A of the Pareto front PF of a certain MOP, denote by 0
the minimum Euclidean distance from a given point y;, i = 1,..., |A|, to the true Pareto
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front PF. Then, the Generational Distance (GD) of a set (population) A is defined [143] as

Al

N
i=1

Notice that in practice, PF is also a finite approximation of the true Pareto front. This
operator indicates proximity of A to the Pareto front.

Another indicator, most commonly used in practice implies a distance from PF to A; and
it is known as the Inverted Generational Distance (IGD) [18] This not only indicates the
proximity of the set A to the front, but also gives a certain sense about its extension. The
IGD is analogous to GD, but measured from PF to A; and is defined by

/5 IPFI
IGD(A) := ﬁ

|PF|
where PF is the finite representation of PF, and d; is the Euclidean distance from the i—th
element of PF to the set A.

Given two finite subsets A and B of R” the Two Set Coverage Measure [149] is defined

as

b € B such that A with b
SC(A,B)=A<B=|{ € B suc a|Ba|€ with @ < b}|

If A< B =1, it means that all the elements of B are dominated by at least one element of
A. On the other hand, A < B = 0, means that no element of 5B is dominated by any element
of A. Since the Two Set Coverage Metric is not symmetric, always both values SC(A, B) and
SC(B, A) have to be taken into account.

To compute a relative measure of the distance between solutions, the Spacing indicator
[108] is a commonly used option. It is defined as:

I
1 _
S=y|——Y (d—dp
Al =1 21

where

d; = min Z ly™ — "™, and

Al
- 1
d = WZd,-, y. € AC R

=1
the value of Spacing should be smaller as soon as the solutions y; are close to uniformly
spaced. ie, the smaller the spacing value is, the better is the distribution of the output
solutions for a particular algorithm.
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Finally, the Hausdorff distance dy, of two sets A, B € R, is defined [103] as
dH = max{d[St(FI‘rue: Fknown): d[St(Fknownr Ftrue)}

where

dist(u, A) .= inf ||u —v||, for v € B,
veA

and

dist(B, A) .= sup dist(u, A).

ueB

The Hausdorff distance measures how far two subsets are from each other, so a value near
to zero is desired.

5.2 Two-stage Algorithm GBMES

In the following, we explain our proposal for a two-stage approach, called Gradient-Based
Multi-objective Evolutionary Strateqy (GCBMES), which is designed to perform a gradient-
based search on a reduced population. This approach is complemented with a technique to
reconstruct the front at the end. Examples of some hybrid two-stage multi-objective algorithms
can be found in [56] and [78].

Since MOEAs are known to perform well on problems with high multi-frontality, our
method focuses instead on problems in which the gradient descent is a good option to speed
up the first stages of the search. Although obtaining gradient information is an expensive
process—because it requires several objective function evaluations—we have shown that it
is possible to design a gradient-based hybrid which is very efficient. For this sake, it is
important to devise a careful interleaving between the MOEA and the gradient-based search
engine, so that we do not exceed a modest budget of function calls. Such a balance is achieved
in particular by GBMES, which only performs a total of 3,000 objective function evaluations
for the test problems—which is a very small value compared to the number of evaluations
previously reported in the specialized literature for such problems. Another interesting aspect
about this approach (which we believe that is shared by other hybrids between MOEAs
and gradient-based methods') is that it scales well as we increase the number of decision
variables of a MOP. This is illustrated in this section by two examples in which we use
up to 100 decision variables. When increasing the dimension of the MOP, our proposed
approach is found to degrade significantly less than a state-of-the-art MOEA (in this case,
the NSGA-II [31]), even while still performing a total of 3,000 objective function evaluations.

This also depends on the sort of method adopted to approximate the derivatives of the functions.
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5.2.1 Description of the Gradient-based Multi-objective Evolutionary Strat-
egy

In the following, we describe the two stages that conform GBMES. The aim of the first stage is
to obtain a small set of Pareto optimal points. In the case of facing moderate multi-frontality,
the evolutionary part of the hybrid algorithm can deal with the critical points that are not
optimal; then, we assume that by the end of this first stage, all the points in this set are
part of the global front. The second stage is devoted to the reconstruction of the entire front,
starting from a few solutions found in the first stage.

5.2.2 First stage (Approximation)

Several populations are involved in the first stage of the algorithm. There are a replaceable
and a non-replaceable population, used in an analogous way to the Micro-GA for Multi-
objective Optimization [24] More precisely, we adopt an external population P with a
replaceable part Pr and a non-replaceable part Pn. The former population will evolve over
time and the latter will introduce diversity into the process. We use a small population
Pt of parents, with |Pt| = u, which is randomly chosen from Pr U Pn. The individuals
from Pt are recombined, at each iteration, to produce a set P, of A descendants. Unlike
a traditional evolution strateqy, we set A = p because we need to bound the number of
function calls in this phase—in order to spend most of them in the gradient-based descent
part. The individuals used for recombination are randomly chosen from Pt. We use two
types of recombination, arithmetic and discrete ones, choosing one of them randomly, with a
certain (predefined) probability. We set a higher probability for the discrete recombination at
this stage (the proportion is 2:1). For the second stage of GBMES, arithmetic recombination
plays a more important role.

Once we have selected the nondominated parents from Pt U Py, to conform P4, we
perform an insertion process in order to obtain the secondary population S, and the elite
population E such that £ C S. This insertion process has two cases illustrated by Algorithm
11, for the first time that it is applied, and by Algorithm 12, for further iterations. The
secondary population is directly conformed by the points obtained after applying the steepest
descent procedure, based on the descent direction proposed in [42}—also described in Section
3.3. To be more precise, the descent direction that we are looking for is v* as in Expression
(3.3); and, as Fliege suggests, the step length for the movement can be obtained by an
Armijo's rule, i.e. by decreasing t until the condition

F(x + tv) < F(x) + BtIF(x)v

is fulfilled. The value B & (0,1) is a control parameter to decide how fine grained,
numerically speaking, the descent will be. After having x' = x + tv, the process is repeated
by calculating a new descent direction for x' or, if this is not possible, we can assume that
a critical point has been achieved.
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The condition for a point x € S to be in E is precisely having finished the descent with
an a* (from (3.3)) value of zero—which means it is a candidate to be a local Pareto point.
Note that the latter could not be the case for all the points in S. Thus, this separation is made
because the descent could be stopped before obtaining a local Pareto point. This happens
because, in practice, we restrict the number of steps used in the descent. Additionally,
we could also stop the descent if a certain tolerance value between the initial and the
final points in the movement is achieved. Also, in order to handle box constraints, when
the computed steepest descent direction leads outside of the constraint bounds, the process
must quit exploiting that solution, and then, take the point nearest to the constraint, as the
final point of the movement. This is necessary, since it is possible that the movement of
the descent points leads to a local optimum located in the infeasible region or to a local
optimum located in the boundary between the feasible and the infeasible region. In both
cases, it is unnecessary to perform a fine-grained steepest descent, and the cost of performing
it could lead to an important increase in the number of function calls. Then, during the
procedure these end points from the descent would enter the elite population, £, only if £
is empty. The algorithm’'s implementation should detect the case when, after certain number
of generations, no point has entered the elite population. In this case, we perform uniform
mutation on the individuals in the secondary population and we only retain the nondominated
solutions as candidates for becoming the outcome of the first-stage. In order to feed the
replaceable population, we take P, which is conformed by individuals from P/, that entered
the secondary population S at that generation, and we use them to replace those individuals
from Pr that are dominated. To select the p parents to conform Pt for the next generation,
we take min{p/3, |P/,|} individuals from P”, and the remainder are randomly selected from
P. The general process of the first stage is described in Algorithm 13.

1: procedure INSERTION, CASE 1(p, Py, S =0, E =)
2: for p € P,y : do

3: Perform the gradient-based descent for p and get p” as the final point of the
descent.

4: Insert the element: S «— S U {p'}. If the necessary condition for being in £
holds, then E «— E U {p'}.

5: end for

6: end procedure

Algorithm 11: Case 1 of the insertion process of GBMES (applied for the initial generation)

For all the problems tested here, the values for ¢ and A were 20, the initial population size
was of 130 individuals, and the proportion between the non-replaceable and the replaceable
parts of the initial population was 3:10. Regarding the value of y, in general, it must be a
trade-off because it has to be big enough in order to allow a good sampling of the population
for the evolution strategy; but not too large, in order to avoid that too many function calls
are spent.
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1: procedure INSERTION, CASE 2(p, P4, P:, S, E))

2 Set P!, as the elements from P,4 that are not dominated by any s € E.

3: forpe P, : do

4 Perform the gradient-based descent for p and get p” as the final point of the

descent.
5 Remove s € S such that p’ < s.
6: Insert p” in' S (in E if applicable).
7 Remove g € P/, such that p’ < g.
8 end for
9: Use the set of inserted points p’ to replace the dominated individuals from P,.

10: end procedure

Algorithm 12: Case 2 of the insertion process of GBMES (applied in case that generation >
2)

Ensure: £, S.
1. procedure GBMES (FIRST STAGE)

Initialize the replaceable P, and non-replaceable P,, parts of the population.
Select p parents to conform P;.
Recombine the parents to produce A offspring Off.
Select P,4 nondominated individuals from the union of parents and offspring.
Perform the insertion process with the gradient-based descent, and feed the secondary

population S, the elite population £, and the replaceable population P,.

7: Repeat steps 3 to 6 until having at least four individuals in the elite population or
until running out of the function-calls budget allowed for this first stage.

8: end procedure

S L

Algorithm 13: Description of the first stage of GBMES.
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5.2.3 Second stage (reconstruccion)

Once the Pareto front has been approached, the next step consists of a technique that performs
a reconstruction of the entire front departing from a few points out of this set. One possibility
at this point is to use continuation methods [112, 58]; if this is the case, only one point in
the front is necessary to start, but we would have to be able to afford the computational cost
of calculating the second derivatives of the functions, which is high, even if clever techniques
are devised [50—here we refer to the discussion in [86]

For the second stage of GBMES, we propose for example to use a reconstruction technique
based on Rough Sets [98, 99]; and we reserve at least one third of our function-calls budget for
this part. This approach (rough sets) consists of a stochastic technique which uses information
about individuals that were dominated in the last iteration, in order to construct new solutions
close to the nondominated individuals and far away from the dominated ones. This aims to
generate new nondominated solutions and, as a consequence, fill up the missing parts of the
Pareto front. For a thorough explanation of the technique we refer to [105, 106]. Here we
give a brief description of how we used it for our purposes.

a) Preliminary Phase: Our approach requires an initial population (P1) which is close
to the true Pareto front. This population is partitioned into two sets: DS, which contains the
dominated solutions and NS, which contains the nondominated solutions. At the end of the
first stage of GBMES, we assume that we have a few (at least four) individuals in the true
Pareto front. Then, to start the rough sets procedure, we can generate a small population
in the neighborhood of these solutions in the following way: For each point in the elite
population, we generate a n—dimensional box with each point as one vertex and its nearest
neighbor located in the opposite corner. Then, we generate two types of offspring: first, we
apply total arithmetic recombination to get s descendants in the line that joins the reference
point and its nearest neighbor and we produce another offspring outside the box, but in the
same direction as before (see Figure 5.1). Next, the second kind of offspring consists of ¢
descendants which are randomly built inside the box. For the examples presented here, we
used s=2and t = 3.

b) Rough Sets: Once the population is close enough to the true Pareto front, and it is
partitioned into the sets NS and DS, we perform a sequence of iterations until function-calls
budget is spent. At each iteration, we build a grid with k dominated points from DS, which
serve as vertices. We also take g individuals from the set of nondominated solutions NS
and we apply a bounded mutation to them. The bounds for these mutations are set from half
of the distance over each coordinate to the limits of the grid (see Figure 5.2). If there is
no edge bounding the mutation operator, we set the limit for that specific coordinate as the
natural limits of the box constraints from the problem. The complete procedure is described in
Algorithm 14. For the examples we present here, we used k = 20, ¢ =10, u =4, v =100
for the two-objective problem, v = 150 for the three-objective problem, and v/ = 100 in both
cases.
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O  Elite
®  offspring

True front

Figure 5.1: This figure shows the box formed by two elements in the elite set. Their offspring
lie on the line that joins them, and in the neighborhood bounded by their own coordinates

(n-dimensional box).

X2 )

x1

© non dominated (NS)
* dominated (DS)

m - offspring Q)

Figure 5.2: This figure shows the grid for the rough sets method formed with the elements of
DS serving as vertices (marked as black dots in the figure). The nondominated individuals
(taken from NS), which are used as the reference solutions, are marked with gray circles.
Their descendants, produced by mutation, are marked with the letter ‘m'"
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procedure RoucH SETS(NS, DS)

Divide the population P1 into the DS and NS sets.

Randomly choose k elements from DS to set the limits of the grid.

Randomly choose g elements from NS to form O (the set of parents).

Apply v mutations to each parent and conform Q" with them.

Divide the population P U Q" into the DS and NS sets.

If v < |NS], we use a crowding or a clustering technique to reduce the size to v. v
is a user-defined parameter.

8: If v/ < |DS|, we keep the solutions that were nondominated in the last iteration,
and we choose the rest randomly from the dominated solutions in the population, until
reaching the maximum size allowable for v'. v/ is a user-defined parameter.

: Repeat steps 3 to 8 until a certain (predefined) number of function-calls is performed.

10: end procedure

N s Wy

Algorithm 14: Adaptation of the rough sets technique to reconstruct the Pareto set.

5.2.4 Numerical results

In order to test the scalability of our proposed hybrid approach, we adopted the two problems
defined in Table 5.1. These test problems have two and three objectives, respectively; Besides,
they are both scalable in decision variable space. The final population for both algorithms
was set to 100 individuals, for the problem with two objectives, and to 150 individuals for
the problem with three objectives (a larger value was adopted in this case because of the
higher number of objectives). Our results are compared with respect to those generated
by the NSGA-II [31] using also 100 and 150 individuals, respectively; and performing the
same number of evaluations as our proposed hybrid approach. Tables 5.2 and 5.3 show our
comparison of results after performing 3,000 objective function evaluations for both problems.
In this case, we use n = 10 on Problem1, and n = 12 on Problem2. From Tables 5.2 and
5.3, we can see that GBMES achieves much better convergence than the NSGA-II. This can
be corroborated by looking at Figure 5.3, in which it is clear that the NSGA-II is unable to
converge, even when Problem 1 only has ten decision variables.

Subsequently, we increased the number of decision variables of the problem and focused
our analysis on the convergence of each approach (ours and the NSGA-II). Figures 5.3 to 5.6
show the plots of the final population, corresponding to the run in the mean obtained for IGD
over 30 runs, for Problem 1, using n € {10, 30, 60, 100} decision variables. We can observe
that, as we increase the number of decision variables, GBMES is still able to generate
an important portion of the Pareto front (e.q., it is able to generate the "knee” [12] in all
cases) with the same number of evaluations as before (3,000). The values of the performance
measures (shown in Tables 5.4 to 5.6) indicate that both approaches suffer a performance
degradation as we increase the number of decision variables. This behavior is consistent in
the case of Problem 2, as well. Although the performance of our proposed GBMES degrades
as we increase the number of decision variables, such degradation is less significant than the
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Table 5.1: MOPs adopted for our experiments.

Problem 1

f1( ) X1 —1 Z
hix)=)__ 1(X1+1)
with n =10

Problem 2 (DTLZ2)
fi(x) = cos(*5*) cos(*%") . . . cos(*57) (1 + g(x))
f(x) = cos(*F) cos(*57) . . . sin(#57)(1 + g(x))

.l[k 1()—CO(

2)sin(35) (1 + g(x))
fi(x) = sin(T)(1 +

2
g(x))

i—k
0<x <1, i=1,..., n
with k=3, n=12

one suffered by the NSGA-II. Also, in all cases (for both problems), our approach outperforms
the NSGA-Il with respect to all the performance measures used to assess convergence (see
Tables 5.4 to 5.6). This can be better appreciated in Figures 5.7 to 5.9 for Problem 1 and
from 5.10 to 5.12 for Problem 2, in which we show a graphical comparison of the performance
(regarding convergence) of the two approaches (ours and the NSCGA-II) as we increase the
number of decision variables.

5.3 Discussion on Memetic Aspects

Local search can improve a MOEA's performance if it is efficiently customized for a particular
problem. Applying LS is expected to be less expensive, in terms of function evaluations,
for combinatorial problems than for continuous problems. This is because evaluating fitness
functions of neighbor solutions can be efficiently done in the combinatorial case. Nevertheless,
we can take some ideas from the treatment of such problems, and find analogies that can be
used in the continuous-space case.

Even when a computer represents only a finite set of points when discretizing continuous
domains, the magnitude of this discretization makes it impossible to apply, in the continu-
ous case, the currently available memetic algorithms designed for discrete spaces. In some
combinatorial problems, a good LS mechanism explores more solutions than the evolutionary
search (see for example [71, 67]). This is due to the fact that producing new solutions is
faster with certain LS operators—especially in the combinatorial case—than with traditional
evolutionary operators. Furthermore, quickly exploring new candidate solutions is not as
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Figure 5.3: This graph shows the approximation of the Pareto front generated by GBMES
and NSGA-II on Problem1 (with n = 10), after 3,000 function evaluations.
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Figure 5.4: This graph shows the approximation of the Pareto front generated by GBMES
and NSGA-II on Problem1 (with n = 30), after 3,000 function evaluations.
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Figure 5.5: This graph shows the approximation of the Pareto front generated by GBMES
and NSGA-Il on Problem? (with n = 60), after 3,000 function evaluations.
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Figure 5.6: This graph shows the approximation of the Pareto front generated by GBMES
and NSGA-Il on Problem? (with n = 100), after 3,000 function evaluations.
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Figure 5.7: Graphical illustration of the performance of GBMES and the NSGA-II in Problem
1, regarding the GD performance measure, as we increase the number of decision variables.

In all cases, we performed 3,000 function evaluations.
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Figure 5.8: Graphical illustration of the performance of GBMES and the NSGA-II in Problem
1, regarding the IGD performance measure, as we increase the number of decision variables.

In all cases, we performed 3,000 function evaluations.
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Figure 5.9: Graphical illustration of the performance of GBMES and the NSGA-II in Problem
1, regarding Hausdorff distance, as we increase the number of decision variables. In all cases,
we performed 3,000 function evaluations.
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Figure 5.10: Graphical illustration of the performance of GBMES and the NSCGA-II in Problem
2, regarding the GD performance measure, as we increase the number of decision variables.
In all cases, we performed 3,000 function evaluations.
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Figure 5.11: Graphical illustration of the performance of GBMES and the NSGA-II in Problem
2, regarding the |GD performance measure, as we increase the number of decision variables.
In all cases, we performed 3,000 function evaluations.
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Figure 5.12: Graphical illustration of the performance of GBMES and the NSCA-II in Problem
2, reqarding Hausdorff distance, as we increase the number of decision variables. In all cases,
we performed 3,000 function evaluations.
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Table 5.2: Comparison of results on Problem1, using n = 10, and performing 3,000 function
evaluations. Statistics were gathered from 30 independent runs. The best results are shown

in boldface.

GD
Method Best Mean Worst
GBMES | 0.023375 | 0.049261 | 0.103776
NSCA Il | 0.242919 | 0.415592 0.539319
IGD
Method Best Mean Worst
GBMES | 0.092534 | 0.222116 | 0.549907
NSCA Il | 0.367473 | 0.565376 0.863660
Spacing
Method Best Mean Worst
GBMES | 0.004457 | 0.029559 0.081939
NSGA Il | 0.002789 | 0.022826 | 0.070167
Hausdorff distance
Method Best Mean Worst
GBMES | 3.493272 | 9.823990 | 21.668491
NSGA Il | 7.022420 | 15.473644 | 25.665400

good as exploring only a, well chosen, few candidates. This is a direct motivation to use
gradient-based search methods. i.e, we aim to perform a more efficient exploration of potential
solutions.

When hybridizing MOEAS with LS on continuous problems some difficulties arise; one is,
for example, that the LS can consume all our budget of objective function evaluations (as was
noticed in [66] for discrete problems). This situation supports the idea of performing a suitable
selection process to determine which individuals will be modified by the LS mechanism. To the
author’s best knowledge, the work in which the ideas of elitism and local search hybridization
were implemented, for the first time, is [64, 65]. Also, other important questions are: when to
apply the LS into the MOEA, and how often to do it within the evolutionary search.

A suitable control of the local-search computational effort and the MOEA-search engine
effort is subject of ongoing research. We focus here on studying this topic mostly for continuous
and differentiable problems; studies in this topic are scarce since this is a difficult issue. For
example, in [78] some attempts to control the probability of application of the LS are presented.
That work focused on a particular MOEA—from the class of indicator-based MOEAs—and
concluded that using these control mechanisms with a certain probability function (linear or
quadratic) did not outperform the scheme when using a fixed a priori probability. Furthermore,
this last scheme was even more stable than the others, in most of their test problems.
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Table 5.3: Comparison of results on Problem2, using n = 12, and performing 3,000 function
evaluations. Statistics were gathered from 30 independent runs. The best results are shown
in boldface.

GD

Method Best Mean Worst
GBMES | 0.003234 | 0.019648 | 0.032110
NSCA Il | 0.027392 | 0.035683 | 0.043271
IGD
Method Best Mean Worst
GBMES | 0.000421 | 0.000643 | 0.001017
NSCA Il | 0.001422 | 0.001746 | 0.002200
Spacing
Method Best Mean Worst
GBMES | 0.000737 | 0.004314 | 0.009814
NSGA Il | 0.001360 | 0.005380 | 0.032598

Hausdorff distance
Method Best Mean Worst

GBMES | 0.385372 | 0.842908 | 1.335189
NSGA Il | 0.556158 | 0.798111 | 1.170840

In this point we can take a look on the studies made on discrete models, in order to
analyze differences and common goals. To reduce the computational effort of the LS engine,
Ishibuchi et al. proposed two strategies [66, 67]: First, reduce the number of individuals
on which the local search is applied; and second, apply the LS just partially in a certain
sense. The former idea leads to a parameter Nj,—explained below—and the latter leads
to a parameter for early termination of the LS. They concluded experimentally that the
values for these two parameters are related, since both contribute to help the search but they
increase with the computational effort as well. Therefore, to control the resource spending,
they choose to search over just some neighboring points instead of exploring all of them. This
truncates the LS, in a certain way, since the LS engine is not exploiting the entire possible
neighborhood. The analogy of this idea for the continuous case lies on the tolerance value
for the line search, and on the number of times the descent movement is performed for each
solution. Also, in gradient-based procedures these savings on function calls are related, for
example, with a tolerance value in case of using a KKT-based stopping criterion—similar to
the one we use throughout this work.

When limiting the number of individuals on which the LS has to be applied, we support
the idea that the best individuals are the ones that should be pulled toward better regions.
But, we expect a growth on the number of these best individuals as the evolutionary search
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Table 5.4:  Comparison of results regarding GD for both problems when using
n =original,30, 60, 100, and after performing 3,000 function evaluations. The value cor-
responds to the mean over 30 independent runs. The original values adopted for n in each
problem are those defined in Table 5.1. The best results are shown in boldface.

GD Problem 1 Problem 2
n GBMES | NSGAIl | GBMES | NSGAII
original | 0.0493 | 0.4156 | 0.019648 | 0.035683
30 0.3063 | 2.6406 | 0.032565 | 0.131245
60 0.8925 | 6.8851 | 0.015376 | 0.308811
100 1.7495 | 12.9756 | 0.029423 | 0.567924

Table 55:  Comparison of results regarding |IGD for both problems when using
n =original,30, 60, 100, and after performing 3,000 function evaluations. The value cor-
responds to the mean over 30 independent runs. The original values adopted for n in each
problem are those defined in Table 5.1. The best results are shown in boldface.

IGD Problem 1 Problem 2
n GBMES | NSGAIl | GBMES | NSCAII
original | 0.2221 | 0.5654 | 0.000643 | 0.001746
30 0.7449 | 3.0245 | 0.000829 | 0.006448
60 1.6436 | 7.6595 | 0.001116 | 0.016010
100 2.8417 | 14.6620 | 0.001249 | 0.029858

progresses. One idea to delimit this number is to fix a certain value, that we will call N,
and select this number out of the best individuals set. To perform this selection we want
to take a spread sample of N individuals; for this sake, using a crowding distance based
selection would be helpful.

In order to state the control parameters for our gradient-based hybrids we can mention
the ones presented in Table 5.7:

Ns determines the number of individuals that conform the LS pool.

k is the frequency on generations to apply the LS.

e /ol is the tolerance value to finish the descent.

Maxlter determines the depth of the LS, which means the number of times the LS
will be applied.
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Table 5.6: Comparison of results regarding the Hausdorff distance for both problems when
using n =original,30, 60, 100, and after performing 3,000 function evaluations. The value
corresponds to the mean over 30 independent runs. The original values adopted for n in each
problem are those defined in Table 5.1. The best results are shown in boldface.

Haus. dist Problem 1 Problem 2
n GBMES | NSGA-Il | GBMES | NSCA-II
original 9.8240 | 154736 | 0.842908 | 0.798111
30 28.3035 | 55.6760 | 1.625643 | 2.354311
60 54.7381 | 1263136 | 1.164723 | 4.914662
100 80.3792 | 217.4507 | 2.065171 | 8.331932

Table 5.7: Control parameters for applying gradient-based LS.

Nis Number of individuals that conform the
LS pool.

k Frequency, in generations, of application
of the LS.

Tol Tolerance value to finish the descent.

Maxlter Depth of the LS, which refers to the num-
ber of times the LS will be applied.

The parameter Max/ter plays the role of an iterated LS. The parameter k has been
assumed as 1 in most of the studies but has also been proposed with different values, for
continuous problems, in some other algorithms [59, 67]. Here, we propose not to set this
parameter as one, in order to let the evolutionary search keep its own “natural” process, but
mostly to reduce the total cost for LS. In the works analyzed in Section 5.4 and Chapter 6
we use this idea and conducted experiments performing the search in this way, instead of
doing it at each generation.

5.4 Integrating HCS into MOEAs

In this section we address the integration of the HCS into a given MOEA. One of the most
prominent state-of-the-art MOEAs is the NSGA-II [31] Since it has been found to be a
very efficient and robust algorithm, it makes sense to take its operators when seeking for a
hybridization with local searchers.

Several design aspects have to be decided in order to make this coupling. The first
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question that arises is: in which part of this well-known algorithm it is more appropriate to
perform the 1.S? We discuss this issue further on, and also address the details about the
interleaving of these two mechanisms—the global and the LS. We also support, with this
proposal, our idea about investing local-search effort only on the best individuals of each
generation. This is done in order to find specifically good individuals who will lead the entire
population to better search regions during the search.

For this, we present first some modifications required on the standalone version of the
HCS, in order to be efficiently coupled with an evolutionary algorithm, and discuss the cost
of the procedure. Finally, we present two particular hybrids where NSGA-II and SPEA2
[150}—another state-of-the-art MOEA—are used as baseline MOEASs.

5.4.1 Adapting HCS for local search

The HCS is presented as standalone procedure in Algorithms 4 and 5—the goal in those
cases was to generate an infinite sequence of candidate solutions, which is certainly not
applicable when coupling it with a MOEA. To ensure enough resources for the global-search
algorithm (the MOEA), it is rather advisable to stop the iteration of the local searcher after
a few iterations—we denote this parameter by maxiter inside the discussion. In case the
HCS finds only a sequence of dominating solutions (i.e, by the hill climber) merely the
last dominating solution (denoted by x4) has to be returned. This is done because the other
intermediate solutions are all dominated by x4; and they are thus not important for the current
population of the MOEA. On the other case, when the sidestep is performed, that means that
the iterates are ‘near’ to the (local) Pareto set; thus, the iteration can be stopped even before
maxiter is reached. The second modification of HCS that we suggest, compared to the
standalone version presented above, is to perform the sidestep in each diversity direction
which has been found during the LS. This is due to the fact that the sidestep is the most
expensive part of the HCS (expensive in terms of function calls, see also the discussion below);
and hence all accumulated information should be exploited. In that case, the modified HCS
will return the dominating solution x; (if not equal with the initial solution xp) and also a
maximum of 25 — 2 sidestep solutions in all diversity directions of x;—depending on how
many diversity directions of x, have been found within the N,4 ‘unsuccessful’ trials.
Algorithm 15 shows such a modification of the HCS1 for k = 3. Hereby,

Ci(s1, 52, 53),
where s; € {4, —}, i =1,2,3, denotes the diversity cone at a point x. For instance, it is
ye G+ +, -)

if and only if
{fily) > filx) and fy(y) > f(x) and f3(y) < f(x)}

Finally, the algorithm requires the starting point xp and returns the set X,., which can
consist of one candidate solution (i.e, the result of the hill climber x4) up to seven candidate
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solutions (x4 plus candidates in all the six diversity directions (4.3) of xy).
For HCS2, the modifications described above are much easier to handle: If the sidestep is
performed (i.e, if Equation (4.4) is false) the sidestep solutions can be chosen as

¥ = x4

[ .
x\ = x4 — h;,

for all column vectors g; of Qk, which leads to 2k — 2 new candidate solutions.

Require: maximum number of iterations maxiter, rest as in Alg. 4
Ensure: set of candidate solutions X,

1:

10:
11:
12
13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23
24:
25:
26:
27:
28:

L1 = O, Lz = O, Lg =0

20, =0eR" ag=0€R", a3:=0cR"
3 no_a; =0, no_a, =0, no_as =0

4: nondom =0

5 X10 = Xo

6:
7
8
9

fori=12..., maxiter do
forj=1,2,..., N,q4 do
choose x, € B(xq -1, r) at random
if X1i—1 < X2 then
compute t € R, as in Alg. 4 (L. 6-10), set x;; :== xo + t(x1.1 — x2).
nondom =0, a=a,=0a3=0
continue
else if x, < x;; 4 then
comp. t € Ry as in Alg. 4 (L 11-13), set xy; == X141 + t(xo — x1:-1).
nondom =0, a1=a=a06;=0

continue
else
nondom = nondom + 1
if v, € C(X“_L -, —, —|—) then

ay = a1+ (x — X1,zf1)/||X2 - X1,HH0<>

no_ay == no_a; + 1

Ly = max(Ly, [|F(x2) — F(x1,i21)|oo /|| X2 — X121 o)
end if
if x, € C(x,—1, 4+, +, —) then

ay = a1+ (X1 — XZ)/HXLH - XZHOO

no_ay = no_a; + 1

Ly = max(Ly, [|F(x1,i-1) — F )l oo! [1X¥1,i21 = X2[|oo)
end if

Algorithm 15: HCST, for use within MOEAs for k = 3.
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29: if x € C(x3,-1,—,+, —) then

30: update a, no_ay, and L, analogue to lines 19 —22.

31 end if

32: if v, € C(X1,[,1, +, —, —|—) then

33 update a, no_ay, and L, analogue to lines 24 —27.

34: end if

35: if v € C(X“q, +,—, —) then

36: update a3, no_as, and L3 analogue to lines 19 —22.

37: end if

38: if x € C(x3,-1,—, +, +) then

39: update as, no_as, and L3 analogue to lines 24 —27.

40: end if

41: end if

42 end for

43: Xpew = {x1.:} > perform sidesteps and return
44; if no_a; > 0 then

45: vi = a1/||a1]]ee, M1 = €yl

46: K= XiN,y + hiva, K= Xin,y — Mvi

47 Xpew = Xpew U {Xf), X@}

48: end if

49; if no_a, > 0 then

50: compute X2 X analogue to lines 44-47, set Xyer := Xpew U {xf), x(_z)}
51: end if

52 if no_az > 0 then

53: compute X P analogue to lines 4447, set Xyen = Xje U {Xf), X(j)}
54: end if

55: return

56: end for

57: Xpew = {X1.maxiter } > return dominating solution

Algorithm 15: HCST, for use within MOEAs for k = 3 (continued).
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The HCS shows large potential when used within multi-objective memetic algorithms,
mainly because it performs an efficient LS which starts with one point and ends not only
with an improvement of this point, but also, with several candidates for spread. Figure
5.13 illustrates the application of the HCS as a local searcher over a population of three
individuals. When the points are far, a hill climber movement (HC) is performed, and the hill
climber with side step (HCS) is applied when the optima is ‘almost’ reached. The operator
could (via maxiter) repeat the descent step—hill climber—several times until a sidestep is
triggered. The cost and profit of this operator is discussed in the following sections of this
chapter.

Initial points
Final points 4

Figure 5.13: This figure shows the way to use the HCS as a LS operator, when coupled
with a MOEA. The LS starts with a point and ends with an improved point, or with three
points (in case of k = 2): the one obtained by the gradient-based descent and the other two
obtained by sidesteps.

5.4.2 Cost of the local search

Crucial for the efficient usage of the HCS within a MOEA is the knowledge of its cost.
Here we measure the cost of one step of the modified HCS as described above (ie, for
maxiter = 1). Unfortunately, the different algorithms use different gradient information
(quantitatively different) of the model. For sake of comparison, we measure the cost of the
HCS in terms of the number of required function calls (to be more precise, we measure the
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running time for a function call and neglect the memory requirement). In other words, to
measure HCS2 we have to find an equivalent in terms of function calls for the computation
or approximation of the derivative Vf(x), and of the second derivative %72f(x) of a function
f:R"” — R at a point x. If for instance automatic differentiation (AD) is used to compute
the derivatives, we can estimate 5 function calls for the derivative call and 4 + 6n function
call for the second derivative [47] These values change when using finite differences (FD). If,
for instance the forward difference quotient

s_)l(((X) ~ flxi, ..., X+ 0, ..., Xo) = Fxa, X”), re{l..., n}

where 0; € R, is a small value, is used to estimate the gradient, then n function calls are
required. The central difference quotient leads to more accurate approximations, but does in
turn require 2n function calls (see [47]). A forward difference quotient approximation of the
second derivative requires a total of n? function calls (and 2n? or 4n? function calls when
using the central difference quotient, depending on how the rule is applied). Finally, we have
to estimate the number of function calls required for a line search for the hill climber. Here,
we take the value of 3 obtained by our observations.

Then, a call of HCST requires at least four function calls, from which one is for the LS
around x. If the new candidate solution is either dominating or dominated by xp—which
is very likely at the early stages of the optimization process—the next point is found via
line search resulting in 4 function calls due to our assumptions. The most expensive event of
the HCS is the sidestep; when it is performed, this means that N, trial points have been
generated around xo. Then, it is still necessary to compute candidates in at most 28 — 2
directions, with a cost of one function call each (see (4.11)), leading to a total of

Nnd +2k -2

function calls.

The HCS2 needs, for the realization of the hill climber, the gradients of all k objectives, the
solution of a quadratic optimization problem (which we do not count here since k is typically
low, and thus, the quadratic problem is easy to solve with standard techniques) and one line
search. This makes 5k + 3 function calls when using AD and kn + 3 function calls when
using FD (here we assume the forward difference method). For the sidestep, k gradients
and the second derivative of ZL1 a;fi(x4) have to be computed, and further 2k — 2 sidestep
candidates are produced. This leads to 6n + 7k + 2 function calls when using AD and to
n? + k(n + 2) — 2 function calls when using FD.

Table 5.8 summarizes the cost of the different algorithms using the different conversion
rules. Hereby, HC2 denotes the hill climber as presented in Algorithm 5 but without the
sidestep operator (i.e, for ep = 0). Table 5.9 gives the numerical values for k = 3, and
Ny, = 3, and ny = 10 and n, = 30. It is obvious that FD should only be used for

94




5.4. INTEGRATING HCS INTO MOEAS

Table 5.8: Cost of one step of the HCS measured in function calls. To convert the derivative
calls in HCS2 into function calls we have used values based on automatic differentiation (AD)
and finite differences (FD).

’ Method \ Number of function calls required ‘
HCS from 4 to N,y + 25 — 2
HC2 (AD) 5k + 3
HC2 (FD) kn+3
HCS2 (AD) from 5k + 3 to 6n + 7k 4 2
HCS2 (FD) | from kn + 3 to n> + k(n + 2) — 2

Table 5.9: Numerical values for the cost of the HCS algorithms for the settings (a) ny = 10,
k =3, N,y =3 and (b) n, =10, k = 3, N,y = 3. See Table 5.8 for details.

No. of function calls required | No. of function calls required
Method forny =10, k=3 N,y=3 | forn, =30 k=3, N,y =3
HCS1 from 4 to 9 from 4 to 9
HC2 (AD) 18 18
HC2 (FD) 33 93
HCS2 (AD) from 18 to 83 from 18 to 203
HCS2 (FD) from 33 to 138 from 93 to 996

models with moderate dimensional parameter space, otherwise the cost of the HCS2 will get
tremendous. On the other side, note that the cost of HCS1 is independent of n and thus
relatively inexpensive, in particular in higher dimensions.

5.4.3 Combining both techniques

The question which remains open is how to integrate the HCS into a given MOEA, in order to
obtain an efficient memetic strateqy. Here we give the first steps to answer this problem, and
propose hybrid versions for the state-of-the-art MOEAs NSCA-II and SPEA2. The numerical
results obtained show that the combination is advantageous.

We start noticing that the modified HCS can be written in the shorthand form as

Prics = HCS (x),

where xp is a given point (e.g., coming from the current population of the MOEA) and Py is
the output set. Given a probability pycs for the application of the procedure on an individual
of a population, the operator can be defined set-wise as

Pres = HCS (P, pucs),
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where P denotes a given population. By doing so, the HCS can be interpreted as a particular
mutation operator, and thus it can, in principle, be integrated into any given MOEA with little
effort. However, this should be handled with care since the efficiency of the resulting hybrid
depends (among other issues) on (a) which elements of the population the HCS is applied
to, and (b) the balance of the genetic search and the HCS. As an example for (a) we have
observed that if the HCS is merely applied on elements of the external archive in a combi-
nation with SPEA2, that this ‘elitist approach’ has a negative effect on the diversity of the
population, at least at early stages of the search. Even the application of the sidestep could
not compensate this effect, since it is applied on a few, possibly closely located solutions.
Problem (b) is another typical problem when designing memetic strategies (probably first
reported in [67] in the context of multi-objective optimization), and in particular in our setting
due to the relatively high cost of the HCS compared to classical mutation operators.

Most important for the effect and the cost of the HCS are the parameters maxiter and N,4
(for HCS1). In general, it can be said that if both values of maxiter and N,4 are high, the
local improvement of a point xy will be nearly optimal (i.e, the elements of Ppcs will be near
to local solutions). This can be advantageous for uni-modal models but can in turn reduce
the efficiency of the entire search algorithm for multi-modal models due to the high cost of
the HCS and the relatively high chance that the search gets stuck in a local (and not global)
solution. If the values of maxiter and N, 4 are low, the local improvements in one application
of HCS will typically be sub-optimal. However, the choice of low values offers on the other
hand two advantages: first, the HCS spends less function calls for unpromising starting points.
That is apparently also the case for promising starting points but we have observed that it is
advantageous to repeat the LS more often instead of spending the function calls in generating
single solutions (future populations contain points which are at least as good as the point xp
from the current population). The second advantage is that the population is not disturbed
by drastic improvements of single solutions which may cause trouble in elitist strategies [75].
The next question is the choice of the probability pycs to apply the HCS. Due to the cost
of the HCS, a low value seems to be advisable which also coincides with our observations.
Further, we suggest not to apply the HCS in every generation in order not to disturb the ef-
ficient but highly sensitive interplay of the different operators of the MOEA (as done in [147)).

To summarize, we suggest low values for the parameters maxiter and N, 4 which influence
efficiency and cost of one application of the HCS. Besides, it is convenient a low value for the
probability pycs since the application of LS influences the overall cost of the entire search
procedure. See the next section for particular choices of these values.

In the following, we propose two particular combinations where we use NSGA-II and SPEA2
as baseline MOEAs.

NSGA-II-HCS

As discussed above, crucial are the questions about when and to which elements the LS has
to be applied on within a given MOEA. For NSCGA-II, we suggest to perform the LS (ie,
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HCS) only on the best individuals of a given generation. This is made in order to find leader
solutions to pull the entire population to better solutions during the search. This exclusive
search can be done since the diversity of the best (i.e, non-dominated) solutions is typically
quite high. Thus, it is likely to generate well-spread leader individuals from the beginning
of the search which will help to pull the population towards the entire Pareto set.

Algorithm 16 shows the way to combine NSCA-II with HCS. Hereby, the procedures ‘Fast
Non-Dominated Sort’, ‘Crowding Distance Assignment’ and ‘Generate Child Population” are
well known as parts of the NSGA-Il—a thorough discussion can be found in [31].

1. procedure NSCA-II-HCS(N,G, pycs, S)
2: Generate Random Population P (size N).
3 Evaluate Objective Values.

4: Fast Non-Dominated Sort

5: Crowding Distance Assignment
6 Generate Child Population P,/
7 fori:=1,..., G do

8 Using P .= P U Py

9 if mod(i,s)==0 then

10: LOCALSEARCH(pycs)

11: end if

12: Fast Non-Dominated Sort

13: Crowding Distance Assignment
14: Generate Child Population Pyyys
15: end for

16: end procedure

17: procedure LOCALSEARCH(ppcs)
18: forall c € P do

19: if Ab € P such that b < a then
20: AC, = HCS({G},[)HCS)

21: P:=PUA,

22: end if

23: end for

24: end procedure

Algorithm 16: NSGA-II-HCS

Algorithm 16 applies the LS each s generations after the reproduction process. The LS
is applied only to non-dominated individuals, and—due to the cost of the procedure—it is
performed with a certain (low) probability. After having computed the improved solutions of
LS, the reqular operations of ranking and crowding are used as in NSGA-II.

Contrary to [126], where the LS has been applied after 75 percent of a given budget B of
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function calls has been spent, we have observed that it is advantageous to apply the HCS
in all stages of the search to pull the population permanently towards the Pareto set. In
fact, we propose here that the LS should be evenly distributed over the run of the algorithm.
This guideline and the choice to take only non-dominated solutions as starting points for the
HCS have an implication on the rule to choose pycs: the number of non-dominated points
(or rank 0 solutions) is typically very low at the beginning of the search, and increases later
on. From a certain stage of the process, however, the number of non-dominated solutions is
nearly constant (i.e, equal to the population size). A constant value of pycs would hence
lead to a permanent growth of the fraction of the LS within the memetic strateqy, at least in
the beginning of the search. To counteract to this effect it seems to be better to start with a
relatively high probability p,.« and to decrease this value during the search process until a
prescribed (low) probability p, is reached. This value is then chosen for the remainder of
the algorithm's execution.

For the computations presented here, we have used the following strateqy which is based on
the above considerations: starting with the probability pycs(0) :== pnax, the LS probabilities
for the subsequent generations are updated as follows

. —2 max — min [ .
pres(i) = max % Z fe(j) + Pmax + Pmin

j=1

where fc(j) denotes the number of function calls spent in the j-th generation. Hereby, the
first expression in (5.7) is a linear term in the number of function calls spent. Its value is pyax
for zero function calls (i.e, at the beginning of the search) and p, for B/2. That is, after at
least 50 percent of a given budget has been spent, the LS probability for future generations
is constantly set to pui, (i.e, pmin times the population size is the number of HCS calls one
is willing to spend on average, per generation, at late stages of the search).

SPEA2-HCS

Unlike above, where NSGA-II is used as the baseline MOEA, we have observed that for a
hybridization with SPEAZ2 it is not always beneficial to apply the HCS only to members
of the archive which consists only of non-dominated solutions. This is because the archive
can—in particular at early stages of the search—consist of few, and probably not well spread
solutions (which changes with an increasing number of iterations). Thus, for a hybrid of HCS
with SPEA2, we suggest to apply the LS operator to members of the mating pool, i.e., also to
dominated solutions. Consequently, we propose by the above discussion to set pycs constant

since the size of the mating pool does not change. See Algorithm 17 for a pseudocode of
SPEA2-HCS.
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1. Generate initial population Py C Q and set Ay := @, Py := 0.

2. for k=0,1,..., Noaxiter dO

3: pk_;'_] := non-dominated solutions of P, U A,

4: Set Ai41 := non-dominated solutions of 5k+1

5: Calculate fitness values of individuals in Py

6 Perform tournament selection in P, to fill the mating pool

7 Apply crossover, mutation and the LS operators (HCS) to the mating pool.
8 Denote the resulting population by Py .

9: end for

Algorithm 17: SPEA2-HCS

5.4.4 Numerical results

In order to demonstrate the benefit of using HCS within a given MOEA, we present and
discuss some numerical results regarding the two specially designed memetic strategies. The
particular MOPs we have used here, as test problems, are listed in Table 5.10 for (two and
three objective) convex problems, and in Table 5.19 for multi-modal MOPs.

The comparisons presented here, show the two state-of-the-art MOEAs NSGA-II and
SPEA2 against their corresponding hybrid variants NSGA-II-HCS and SPEA2-HCS. Since
the Pareto sets of these test MOPs are located at the boundary of their corresponding
domains, we have specially used a modification of HCS2 which acts just as a hill climber—in
other words, the value ep is set to 0; which means, that the search along the Pareto set is
never performed. To agree with our notations, and to avoid confusions, we denote this special
algorithm by HC2.

In order to evaluate the performance of the algorithms we have used the Generational
Distance, the Inverted Generational Distance and the Two Set Coverage Measure—also
described in Chapter 5—as indicators. All computations have been done using MATLAB.

Convex Models

First we consider the convex and thus uni-modal models CONV1 (with k = 2 objectives) and
CONV2 (with k = 3 objectives) which are taken from [32]. The dimension of the parameter
space is set as n = 30.

For both models we are interested in the unconstrained case (i.e., where the Pareto set
does not intersect with the boundary of the domain), and in the constrained case—also named
here as the bounded case. We have chosen to take the domains

0, :=[-5,5"

and
Q.= [-1,1]x[1,2/"

’https://www.mathworks.com
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Table 5.10: Two and three objective convex problems adopted to test the memetic algorithms
NSCA-II-HCS and SPEA2-HCS.

CONWV1
A = b — 1)+ X7 — 1)
h¥) =300y +1)

CONV2

F) =3y — ) +(x —a), i=1,2,3
m

a, = (1 ..... 1) e R

a=(—1,..., —1) e R"

for the unconstrained and the constrained model, respectively. Thus, the Pareto set of both
problems? is located within the box [—1,1]°. The resulting models are denoted here by
CONV1-U and CONV1-C for the two-objective problem, and CONV2-U and CONV2-C for
the three-objective case.

Tables 5.12 to 5.17 show averaged numerical results obtained, on the convex models,
using SPEA2 and NSCA-II and compare them against their respective memetic strategies.
The parameter values used for their realization are displayed in Table 5.11. A budget of
B = 10,000 function calls was spent in every case. It is worth noticing that B is chosen
relatively low in order to obtain significant differences in the indicator values.

For the two cases where we hybridize the baseline MOEA with the HCS the following
observations can be made: the values of the Set Coverage and the GD improve when the
HCS1 is used as an additional local searcher. The values are even much better when using
the gradient explicitly, i.e, HC2 or HCS2 for the LS; in this case the improvement is roughly
one order of magnitude. This big difference is certainly due to the fact that we are dealing
with convex models. For this reason, the gradient based search—though much more costly
than HCST for n = 30, see Table 5.8—leads to great improvements of given initial points
since it does not get stuck at local solutions. Consequently, the population is pulled to
the ‘right’ set at any stage of the optimization process. For IGD the results are not that
conclusive; however, improvements can be observed.

One result of NSGA-II, and their memetic variants, is plotted in Figure 5.14 in consistency
with the above discussion: Figure 5.14 (a) shows the effect of the HCS1 on a typical run, ie,
better convergence and spread than the result of NSGA-Il—due to the two search directions
of HCS1. Convergence is on the other side much better in Figures 5.14 (b) and (c) where
gradient information is used. When comparing the latter two figures, the effect of the sidestep
gets visible: The spread in Figure 5.14 (c) is apparently better than in Figure 5.14 (b), where

3That s, considering the entire domain Q = R3O
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Table 5.11: Parameter values used for SPEA2 and NSGA-II and the memetic strategies
SPEA2-HCS and NSCA-II-HCS on the convex problems.

SPEA2-HCS NSCA-II-HCS
Parameters | unbounded | bounded | unbounded | bounded
Noop 100 100 100 100
N, 100 100 - -
Ne - - 15 15
N - - 20 20
Pc 09 09 09 09
P 01 0.1 1/30 1/30
PHCS! 0.2 0.2 - -
SHCST 5 5 10 10
PHcS2 0.1 0.1 - -
SHCS?2 10 10 10 10
&y 5 5 5 5
ep 0.0001 0.0001 0.0001 0.0001
r 0.1 0.1 0.1 0.1
maxiter 10 10 10 10
N,y 5 5 3 3
tol 104 101 10~ 101
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Table 5.12: Numerical results (GD and IGD) for SPEA2 and the memetic strategies SPEA2-
HCS on the convex problems using dimension n = 30 and performing 10,000 function calls.
Statistics were gathered from 30 independent runs; average values are presented, showing

the standard deviation in parentheses.

Indicators
Problems GD 1GD
SPEA2(A) 3.5762(0.9190) 2.5469(0.3460)
CONVA-U SPEA2-HCS1(B) 1.9399(0.5721) 2.2846(0.5483)
SPEA2-HCS2(C) 0.1139(0.0505) 1.8377(0.9405)
SPEA2-HC2(D) 0.1483(0.0463) 1.8792(0.9371)
SPEA2(A) 6.8446(2.7245) 1.2491(0.1268)
CONV1-C | SPEA2-HCS1(B) 6.3508(1.9602) 1.1985(0.1225)
SPEA2-HC2(C) 0.2800(1.1503) 0.4268(0.0069)
SPEA2(A) 3.5762(0.9190) 2.5469(0.3460)
CONV2U SPEA2-HCS1(B) 1.9399(0.5721) 2.2846(0.5483)
SPEA2-HCS2(C) 0.1139(0.0505) 1.8377(0.9405)
SPEA2-HC2(D) 0.1483(0.0463) 1.8792(0.9371)
SPEA2(A) 1.7887(0.4642) 0.4882(0.1086)
CONV2-C | SPEA2-HCS1(B) 1.6342(0.7454) 0.4341(0.1303)
SPEA2-HC2(C) 0.4902(0.1789) 0.2774(0.1440)

Table 5.13: Numerical results, for the CONV1 problems, testing on Set Coverage the al-
gorithms SPEA2 (A), and the memetic strategies SPEA2-HCS1 (B), SPEA2-HCS2 (C) and
SPEA2-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.
Statistics were gathered from 30 independent runs; average values are presented, showing
the standard deviation in parentheses.

Set Coverage CONV1-U
B<A A< B
0.7834(0.2726) | 0.0984(0.1929)
C<A A< C

0.9742(0.0755) 0(0)
D<A A<D
0.9770(0.0753) 0(0)
Set Coverage CONV1-C
A< B C<AlA<C
0.2932(0.3604) | 1(0) 0(0)

B<A
0.4881(0.4119)
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Table 5.14: Numerical results, for the CONV2 problems, testing on Set Coverage the al-
gorithms SPEA2 (A), and the memetic strategies SPEA2-HCS1 (B), SPEA2-HCS2 (C) and
SPEA2-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.
Statistics were gathered from 30 independent runs; average values are presented, showing
the standard deviation in parentheses.

Set Coverage CONV2-U

B<A

0.5602(0.2900)

A< B
0.1223(0.1405)

C <A

0.8963(0.2118)

A< C
0(0)

D<A

0.9893(0.0324)

A<D
0(0)

Set Coverage CONV2-C

0.6426(0.3622)

B<A

A< B
0.1796 (0.2752) | 1(0)

C <A

A< C
0(0)

Table 5.15: Numerical results on GD and IGD for NSGA-II and the memetic strategies NSGA-
[I-HCS on the convex problems using dimension n = 30 and performing 10,000 function calls.
Statistics were gathered from 30 independent runs; average values are presented, showing
the standard deviation in parentheses.

Indicators
Problems GD 1GD
NSCA-II(A) 1.2847(0.2258) 1.6994(0.2843)
CONVA-U NSGA-II-HCS1(B) 0.5661(0.0938) 1.1123(0.4191)
NSGA-II-HCS2(C) 0.0606(0.0054) 1.5931(0.9827)
NSCGA-II-HC2(D) 0.0590(0.0048) 1.3167(0.8445)
NSGA-II(A) 1.3747(0.1687) 1.0594(0.1027)
CONV1-C | NSGA-II-HCS1(B) 0.1143(0.0417) 0.3470(0.0661)
NSGA-II-HC2(C) 0.0063(0.0041) 0.0386(0.0540)
NSCA-II(A) 2.1814(0.4247) 0.4618(0.0652)
CONV2_U NSCA-II-HCS1(B) 1.1465(0.1249) 0.4533(0.0784)
NSGA-II-HCS2(C) 0.1041(0.0133) 0.3815(0.1582)
NSGA-II-HC2(D) 0.1171(0.0136) 0.3374(0.1466)
NSCA-II(A) 2.1165(0.3591) 1.4540(0.1725)
CONV2-C | NSGA-II-HCS1(B) 0.4333(0.1673) 0.5873(0.0794)
NSGA-II-HC2(C) 0.0127(0.0114) 0.4232(0.1127)
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Table 5.16: Numerical results, for the CONV1 problems, testing on Set Coverage the algo-
rithms NSGA-II (A), and the memetic strategies NSGA-II-HCST (B), NSGA-II-HCS2 (C) and
NSCA-II-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.
Statistics were gathered from 30 independent runs; average values are presented, showing
the standard deviation in parentheses.

Set Coverage CONV1-U
B<A A< B
0.9516(0.0977) | 0.0218(0.0597)
C<A A< C
0.9412(0.0825) | 0.0032(0.0155)
D<A A<D

0.9418(0.1144) 0(0)

Set Coverage CONV1-C
B<A|A<B|C<A|A<C
10) | 00 | o) | 0(0)

Table 5.17: Numerical results, for the CONV2 problems, testing on Set Coverage the algo-
rithms NSGA-II (A), and the memetic strategies NSGA-II-HCS1 (B), NSGA-II-HCS2 (C) and
NSCA-II-HCZ (D). The setting was for dimension n = 30, performing 10,000 function calls.
Statistics were gathered from 30 independent runs; average values are presented, showing
the standard deviation in parentheses.

Set Coverage CONV2-U
B<A A< B
0.8433(0.1572) | 0.0103(0.0332)
C<A A<C

0.9397(0.1233) 0(0)
D<A A<D
0.9633(0.1035) 0(0)
Set Coverage CONV2-C
B<A|A<B|C<A|A<C
1(0) 0 (0) 1(0) 0(0)
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Table 5.18: Cost of the HCS variants within SPEA2-HCS in one run on CONV1-U (the run
which produced the result displayed in Figure 5.14).

Hill climber calls Sidestep calls Function calls
Method (no sidestep) (w or w/o sidestep) (total)
HCS1 7 68 2229
HC2 69 0 1262
HCS2 51 20 6145

the solutions fall into clusters.

Table 5.18 gives an impression on the overall cost of the HCS within the search procedure.
The table shows the amount of calls of the hill climber and the sidestep procedures, of HCS,
when used within SPEA2-HCS to obtain the results shown in Figure 5.14. In this case,
HCST used 22 percent of the total budget B of SPEA2-HCS1. The relatively large number
of sidestep calls is due to the low value of N,y (= 3). Larger values of N,; would result
in less sidestep calls and in turn more hill climber calls. The cheapest LS operator is HCZ;
only a portion of 13 percent of the function calls is used, since this operator merely computes
the gradients to perform the hill climber. On the other hand, the sidestep operator is much
more costly since the second derivatives are involved. Table 5.18 shows that, for HCS2, this
LS operator spent 61 percent of B. The better result in Figure 5.14 (c) compared to Figure
5.14 (b) in terms of spread, was obtained by merely 20 sidestep calls which, however, used
quite a lot of function calls for this.

To conclude, it can be said that on the convex models (two and three objectives, and
also constrained and unconstrained) a combination of the two baseline MOEAs with the HCS
variants improves the overall performance of the search. On the other hand, considerations
of the cost of the operators show that its application should be handled with care, since the
HCS can use a big portion of the budget, resulting therefore, in a risk to decrease the overall
performance of the algorithm (note that we have assumed B to be constant).

DTLZ for Three Objectives

To continue with the numerical analysis of the performance for the memetic algorithms, we
consider three MOPs from the widely used benchmark DTLZ [29]. The problems DTLZ1
and DTLZ3 are highly multi-modal and thus very difficult for LS methods, in particular for
gradient-based ones. Problem DTLZ2 is also a difficult problem but with a moderate multi-
frontal geometry. The description of these MOPs is found in Table 5.19. We have set n = 30
for the dimension of the parameter space, k = 3 objectives, and the domain Q = [0, 1]30 for
all the DTLZ models adopted in our experiments.

Tables 5.21 and 5.22 show averaged numerical results obtained by the MOEAs and its
memetic variant. Hereby, we have used the parameter values shown in Table 5.20 and a
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Figure 5.14: Numerical result for CONV1-U using NSGA-II and the three memetic strategies
NSCGA-II-HCST, NSGA-II-HC2, and NSCA-II-HCS2. The best result (spread and conver-
gence) in this case was obtained by SPEA2-HCS2.

106




5.4. INTEGRATING HCS INTO MOEAS

budget of By = 100, 000 function calls for the multi-modal models DTLZ1 and DTLZ3 and
a budget of B, = 10,000 for the uni-modal model DTLZ2—this has again been done in
order to prevent too small values of the indicators. The conclusions which can be drawn from
the results are not as straightforward as for the convex case. While a similar trend as for
the convex case can be observed for DTLZ2, this does not hold for the multi-modal models.
Apparently, the two memetic versions which use HC2 can not compete with their baseline
MOEAs. However, to be fair the construction of the models already suggests that gradient
information is worthless. Thus, it is rather a question of the choice of the model than an
indication of a general failure of the HC2. On the other hand, SPEA2-HCS1 outperforms
its baseline MOEA—SPEA2—significantly on these highly multi-modal models. Such an
improvement, however, can not be observed from NSGA-II-HCS1 and NSCGA-II. The latter
MOEA is already performing very well in these MOPs. As we noticed before, these problems
make it hard for any LS strategy to improve the overall performance; besides, such an operator
(the HCS in particular) causes an extra computational cost, which diminishes the resources
invested in the MOEA execution.

Based on the numerical results presented in this section, it can be said that both variants
of the standalone HCS accomplish their task; ie., they are capable of moving toward and
along the Pareto set. This implies that, by using the HCS, entire connected components of
the (local) Pareto set can be explored after starting with one single solution. Furthermore,
it has been shown that the hybridization of the HCS, with a given MOEA, can improve the
overall performance of the baseline MOEA adopted. More precisely, satisfying results have
yet been obtained for uni-modal MOPs. The results on multi-modal models, however, do not
allow us to draw general conclusions. Due to the relative high cost of the HCS and the
natural handicap of LS methods for multi-modal problems, the balance of local and genetic
search (such as for DTLZ1 and DTLZ3) is a challenging task. In order to handle this in an
efficient manner, adaptive strategies are required, and further research should be done in that
direction. An alternative for dealing with this problem, together with more insights about this,
are presented in the next chapter.
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Table 5.19: Three-objective problems adopted to test the memetic algorithms NSGA-II-HCS
and SPEA2-HCS. Hereby, k = n — k + 1.

DTLZ1
fi(x) = %)qxz X (T4 g(x)
hlx) = 30 (1= x1)(1 + g(x)

fia) = S (1 = )1 + gx)
() = L0 —x)(1 + gx)

g(x) =100 [k + > (x — 3)* — cos(20m(x; — 3))
i—k

0<x <1, i=1,..., n

DTLZ2

fi(x) = cos(*F) cos(*57) . . . cos(*57)(1 + g(x)

f(x) = cos(*57) cos(*5") . . . sin(*57)(1 + g(x)

51 )
Q(X)=;(Xz—%)z
0<x <1, i=1,..., n
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Table 5.20: Parameter values used for SPEA2 and NSGA-II and the memetic strategies
SPEA2-HCS and NSGA-II-HCS on the DTLZ functions.

Parameters | SPEA2-HCS | NSGA-II-HCS
Noop 200 200
N, 100 -

Ne - 15
[]IU - 20
Pe 09 09
P 0.01 1/30
PHCs1 0.3 -
PHCS? 0.3 -

s 10 10
&y 1 5
ep 0.0001 0.0001

r 0.05 0.1

maxiter 9] 10
N, 4 5 3
tol 10~ 101
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Table 5.21: Numerical results of SPEAZ and the memetic strategies SPEA2-HCS on the
DTLZ benchmarks using dimensions n = 30, k = 3, and performing 100,000 function calls.
Statistics were gathered from 30 independent runs.

Indicators
Problems GD 1GD
SPEA2(A) 22.7984(1.6658) 2.4303(0.4716)
DT/ SPEA2-HCS1(B) 12.2165(3.9738) 1.5389(0.2132)
SPEA2-HC2(C) 48.06789(7.5157) 1.3770(0.4404)
SPEA2(A) 0.0529(0.0102) 0.0011(0.0001)
DTLZ2 | SPEA2-HCS1(B) 0.0342(0.0404) 0.0007(0.0001)
SPEA2-HC2(C) 0.0557(0.0164) 0.0012(0.0001)
SPEA2(A) 218.3484(9.9639) 10.3885(2.2814)
DTLZ3 | SPEA2-HCS1(B) 28.1974(3.8434) 3.2152(0.3890)
SPEA2-HCS2(C) 198.8947(27.5283) 3.6925(0.7106)
Set Coverage DTLZ1
B<A A< B C <A A< C
0.9789(0.0286) | 0.0157(0.0227) | 0.6925(0.2840) | 0.2100(0.2710)
Set Coverage DTLZ2
B<A A<B C<A A< C
0.7820(0.0779) | 0.0040(0.0089) | 0.2060(0.0888) | 0.3660(0.1740)
Set Coverage DTLZ3
B<A|A<B C<A A< C
1(0) 0(0) | 0.7905(0.0862) | 0.0877(0.0586)
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Table 5.22: Numerical results of NSGA-Il and the memetic strategies NSGA-II-HCS on the
DTLZ benchmarks using dimensions n = 30, k = 3, and performing 100,000 function calls.

Statistics were gathered from 30 independent runs.

Indicators
Problems GD 1GD
NSGA-II(A) 8.5024(1.2081) 1.5998(0.1530)
DTLZ1 NSGA-II-HCS1(B) 10.4444(1.1505) 1.6856(0.2202)
NSGA-II-HC2(C) 18.1555(4.6705) 1.0096(0.1899)
NSGA-II(A) 0.0363(0.0041) 0.0022(0.0002)
DTLZ2 | NSGA-II-HCS1(B) 0.0293(0.0033) 0.0018(0.0001)
NSGA-1I-HC2(C) 0.0097(0.0039) 0.0005(0)
NSGA-II(A) 17.6126(3.5630) | 3.2696(0.7721)
DTLZ3 | NSGA-II-HCS1(B) 16.9381(2.9723) | 2.9951(0.6861)
NSGA-II-HC2(C) 24.6485(3.6724) | 2.5127(0.4320)
Set Coverage DTLZ1
B<A A< B C<A A< C
0.1610(0.1376) | 0.6035(0.2565) | 0.4885(0.1354) | 0.3960(0.1627)
Set Coverage DTLZ2
B<A A< B C <A A=< C
0.7125(0.1869) | 0.1235(0.0790) | 0.9715(0.0284) | 0.0105(0.0116)
Set Coverage DTLZ3
B <A A< B C <A A=< C
0.5010(0.3365) | 0.3965(0.3243) | 0.4435(0.3225) | 0.4550(0.2857)
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“This principle is so perfectly general
that no particular application of it is
possible.”

George Pélya

Seeking a Generic Procedure

In this chapter we suggest and investigate a generic way to introduce gradient-based infor-
mation, as a means to improve the search process performed by a MOEA. We present ideas
that can be easily incorporated into any MOEA, and provide some guidelines regarding the
use of our proposed approach. This is an attempt to propose an adaptive mechanism that
allows the local and global search strategies to dynamically interleave. We based the control
mechanism on the observation of the evolutionary search efficiency; in this way, the algorithm
can automatically assign more or less resources either to the local or to the global search
procedure, as deemed necessary.

As a matter of example, in the sequel we present a particular algorithm (Algorithm 18)
and then use it to discuss several issues. We also test this algorithm (in Section 6.3) over
unconstrained two-objective optimization problems—since just two gradients can effort-less
be combined into a common descent direction. However, the control part and the rest of
the analysis could be used for problems with a higher number of objectives. To show our
proposed coupling, we chose the widely used NSGA-II [31] as our global search engine.
Nevertheless, the coupling with other MOEAs is also possible as will be later discussed. In
the following, we present in Algorithm 18 our simple version of a MOEA hybridized with
gradient information.

The parameters N and G in Algorithm 18, represent the population size and the maximum
number of generations, respectively. The necessity for the module operation' in line 15,
and the parameter k, will be discussed later in this chapter. Again, the procedures “Fast
Non-Dominated Sort”, “Crowding Distance Assignment” and “Generate Offspring Population”
correspond to the well-known components of the NSGA-II.

Algorithm 18 places the LS inside the NSGA-II just after the reproduction and the
ranking-crowding process. The LS is applied only to non-dominated individuals, but not
to all of them. Our control mechanism (global vs. local) uses information that has already
emerged from the original ranking process.

'a = b (mod m) is that both numbers a and b leave the same residue when divided by m.

113




CHAPTER 6. SEEKING A GENERIC PROCEDURE

1: procedure GH-NSGAII(N,G)

2: Generate a Random Population P.
3 Evaluate Objective Function Values.
4 Fast Non-Dominated Sort

5: Crowding Distance Assignment
6 fori—1,..., G do

7 Generate Offspring Population Pyyys
8 Set P« P U Py

9 Fast Non-Dominated Sort

10: Crowding Distance Assignment
11: LOoCALSEARCH((, P)
12: end for

13: end procedure

14: procedure LOCALSEARCH(I, P)
15: if i=0 (mod k,) then

16: Compute e as in equation (6.1).

17 Form the set £ taking e individuals

18: randomly selected out of R;(P).

19: forall ¢ € E do

20: if local improvement is possible then
21: Apply line search to obtain a’.
22: Replace a « d’.

23: Set a’ € Ry(P).

24: Set the crowding distance of a’ as co.
25: end if

26: end for

27 end if

28: end procedure

Algorithm 18: Hybrid GH-NSGAII
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6.1. MULTI-OBJECTIVE LINE SEARCH

6.1 Multi-objective Line Search

6.1.1 Movement direction

We already discussed (in Chapter 3) the concept of multi-objective descent direction v &
R". Several methods, that we previously discussed, to compute this directions are currently
available. We have methods which calculate the greedy direction [42, 107], methods which
compute the entire set of descent directions [53] [8], and our proposed HCS method [86]
(Section 4.2) that performs two kinds of movements: towards and along the front. In addition,
moving in a direction along the Pareto front is also possible using gradient-based continuation
methods such as those in [58] [119] [52] or those without estimation of the gradient as in [86].
Furthermore, it is possible to perform directed movements not only towards and along the
Pareto front, but also to any desired direction in the objective space; for this regard, the DS
method [118] (discussed in Section 4.3) has the advantage of performing movements along
determined paths in objective function space.

A descent direction particularly convenient is the one used to apply the line search in
Algorithm 18 (line 21). For the two-objective case, we calculate the descent direction ¥/,
using equation (3.3), and we obtain the individual x" as

X =x+tV,.

The advantage of using the formula (3.3) for two objectives (over other currently available
for multi-objective descent directions [107, 42, 8)) is that no additional effort is needed for
its computation itself. While all the other alternatives need to solve a quadratic or linear
optimization problem for each point, we emphasize that for two-objective problems just an
arithmetic operation (a geometrical “average”) over the gradients is necessary. This could be
attractive for the algorithm designer because no additional code for solvers has to be added,
and the procedure can be directly plugged into the MOEA adopted.

Once the movement direction is set, other issues come to our attention. Computing an
optimal step length and applying a suitable stopping criterion are necessary in order to finish
the design of the local searcher.

6.1.2  Step length control

Once the multi-objective descent direction v is set for a specific point x € R", we can just
define the new line search function as

ffr R—R
t — filx + tv).
It is worth noticing that the computations of the step length of ! is again a multi-objective

problem. In Figure 6.1 it is possible to observe that ¢; is the local minimum corresponding to
the 1} function (i € {1,2,3}); therefore, there are k functions (over one single variable) to
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1 1 1 t
t t2 ts

Figure 6.1: Simultaneous line search for three functions along the direction v.

be simultaneously minimized in the same neighborhood. Even when solving separately the
k line searches (getting t;, t, and t;3 as in the figure), it is not possible to say which is the
suitable step length for all of them. Nevertheless, since not all the functions are in conflict
with each other—at every point—it is possible to find regions of common improvement; for
example, the region before the first local optimum appears, quarantees that all the functions
have a certain improvement (decrease).

Since an exact step length calculation is not possible in this case, the use of inexact
methods is a good option. One practical choice (suggested by [42]) is to adapt the widely
known Armijo-Goldstein rule to the multi-objective case, and accept any step length t that
holds

Fix +tv) < F(x) — ctlry v,

where 1 R" — R" is the multi-objective function and Jr(,) : R" — R" is the Jacobian
matrix of £ at x. With a suitable initial step length, this method is easily applicable. However,
this is not an efficient approach in general.

These inexact methods (such as Wolfe conditions, Armijo conditions, etc.) have been widely
studied in mathematical programming for single-objective optimization, but their application
in the multi-objective case is still an open problem. Ensuring convergence and the study
of speed of convergence for these methods are important issues to address, when building
an efficient interleaving between MOEAs and line search. The use of further heuristics and
mathematical analysis to deal efficiently with this multi-objective problem (the step length
calculation) are an open branch of study, and are also accessible for future experimental
research.

As a practical choice, in this proposed algorithm, to estimate ¢,, we use an Armijo-like
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rule starting from a size t,., and we reduce t « t/2 at each iteration, until f;(x) < f;(x) Vi
(or the Armijo condition) is fulfilled. The procedure is sensitive to this t,., parameter as any
other line-search procedure is to the initial step length choice.

6.1.3 Stopping criterion

Since it could happen that a certain point x is already close to a Pareto optimal point, it
{s necessary to set a stopping criterion—in order not to apply the LS on certain points. In
Algorithm 18, the stopping criterion is applied in line 20. As we stated above, most of the
gradient-based descent directions can be automatically tested for a stopping criterion. These
criteria are, in general, inspired on the KKT optimality conditions [81].

For the particular case of two objectives, it is very easy to set a stopping criterion to apply
the steepest descent. The condition is related to certain small tolerance 0 < ¢, < 0.01 and
is given by the following rule: If

<V1, VQ> < —1 + €tol

holds, then, no LS movement is performed for the point x.

6.2 Balancing Resources

Since there is no a priori knowledge about the benefits of using LS (within the evolutionary
search) for a specific problem, it is not convenient to previously determine—as it is done,
for example, in two-stage algorithms—a specific amount of resources to be devoted for the
global, and for the local part of the search. Nevertheless, it is a promising idea to incorporate
LS, as a method to refine solutions, only at the end (as suggested in [51]); but this leads
again to a two-stage algorithm. In this case, an adaptive switch mechanism between the two
stages is desired, and its design is still an open research problem.

An adaptive mechanism to control the use of LS is advised in order to produce efficient
algorithms, but this is, by itself, a non-trivial problem. Because of the high cost, in general,
of the application of LS, such balance mechanisms must be capable of determining when the
gradient method outperforms the pure evolutionary search during the solution of a specific
problem. This control should be based on a mechanism to determine when the evolutionary
search is not producing improvements and then allow more resources for the solutions refine-
ment. In the following, we discuss our proposal to control the application of LS, based on
the above observations.

In chapter 3 we discussed that the descent cone is wider for farther points than for those
close to KKT points. In particular, the descent cone shrinks down as the search gets closer to
the optimum. Thus, the probability to locally improve the point x with any kind of perturbation
is high when x is far, being this the case—most of the time—during the first stages of the
evolutionary search, when many points are likely to be replaced by non-dominated ones. On
the other hand, when a point highly improves, it is unlikely that new points, stochastically
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generated, could replace it—since the descent cone shrinks down—and it will remain in
this state for several iterations. This is the case when a trusty movement towards a descent
direction is more necessary, and, therefore, the use of LS becomes cost-effective. However,
since different MOPs have different fitness landscapes, we do not really know if this state
is reached at the end of the search (or at any other stage, for that sake). Thus, it becomes
desirable to have an adaptive mechanism that can recognize when the use of LS is useful
and when it will produce no gains with respect to the use of the global search engine alone.

On the other hand, a well studied fact about the efficiency of MOEAs [62]69] is that
when a large portion of the population becomes non-dominated, the selection mechanism
of the evolutionary search fails?,—possibly leading to a random behavior. This situation is
easily detected during the execution of the algorithm, mostly within MOEAs that use Pareto
ranking. Following this reasoning, we propose a control mechanism based on the number
of non-dominated points at each iteration. The idea is that when the evolutionary search is
promising, the LS is scarcely used. On the other hand, when the number of non-dominated
solutions grows, our method allows the LS mechanism to be applied more often.

Then, the control parameter e that we propose should follow the rule:

0 it [Ri(P)] < (0.1)(N)

[ ‘%(P” J otherwise.

where

|Ri(P)|

is the cardinality of the subset Ry(P) (lines 18 and 23 of Algorithm 18, in page 114) formed
by the elements in P whose Pareto rank is one. N is the population size and |-| represents
the floor function.

The idea behind the parameter k; (line 15 of Algorithm 18) is that the LS is improving
only a few individuals at a certain moment and, since we have a population-based approach
(i.e, the MOEA acting as our global search engine) we should let the evolution do its job.
In other words, we are expecting that most of the effort will come from the global procedure,
and that the gradient-based LS will only refine the solutions generated by the global engine.
A deeper study over this parameter is left as future work. During the experiments done in
this thesis, the best behavior was obtained with values between 5 and 10; but it seems that
this parameter will be problem dependent, in a similar way that it was concluded for the
discrete domain case [66]. Not applying the LS at each iteration will help us to make its cost
more affordable. At the same time, this will allow us to push the population of the MOEA
towards better solutions. Thus, parameter k, determines how often do we apply the LS. We
believe that this parameter must be varied adaptively during the search as a second control
mechanism for balancing resources. A more in depth study of this topic is left as future work.

“This behavior is because the selection in EAs is normally based on the Pareto dominance relation.
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6.3 Numerical Results

For assessing the performance of our proposed approach, and in order to deal with uncon-
strained problems, we used the modified Zitzler-Deb-Thiele (ZDT) problems presented in [130]
and [129] (with the difference that to use our method we do not need the twice differentiability
property). These test functions are defined in Table 6.1 (ZDT5 was not included because it
is defined over a binary space). All these experiments were coded using the programming
lanquage C°.

The parameters used in our experiments were the following:

e Population size N = 100,
e ¢, = 0.0001,
e k = 2, but similar results were obtained for values under 10, and

ot = 2.

Regarding the computational costs involved in practice, we are assuming that the user
estimates the gradients of the objective functions using an evaluations-saver method such
as Automatic Differentiation [25]. This sort of approach introduces significant savings in the
computational cost of the gradient values.

It is worth noting that we adopted the previously described test problems both, with their
original dimensionality and, as a second instance, with a higher number of decision variables.
The specific dimensionalities adopted are indicated in Table 6.2.

We compared the plain NSGA-II with respect to our proposed hybrid approach. All the
experiments were run until reaching a certain number of function evaluations (5,000 for ZDT1,
/DT2 and ZDT3; 20,000 for ZDT4 and ZDT6) which corresponds to the moment when certain
reasonable proximity to the front has been reached (see the right hand-side plots of Figures
6.7 to 6.11). Then, we allowed the algorithms to perform twice these numbers of evaluations.
It is worth noting that the same number of evaluations were adopted for the two cases: for
the original test problems and for their extended versions (see Table 6.2).

Tables 6.3 to 6.6 show the mean and the standard deviations over 30 independent runs,
regarding the indicators Set Coverage and IGD. The calculation of IGD was done using
the parameter p = 1. Table 6.3 shows that, for the first number of evaluations, the hybrid
approach almost always set-covers the plain MOEA (its values are close to one), while the
plain NSGA-II almost never set-covers the hybrid approach (its values are close to zero). The
only two exceptions to notice are ZDT6, where the values of the coverage are exactly one
and zero (which means total coverage of the hybrid over the original approach and never the
opposite), and ZDT4 in which the coverage difference was reduced. When performing twice

SWe  took  the  implementation  of  NSGA-Il  available  from its  author  at
http://www.iitk.ac.in/kangal/codes.shtml
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Table 6.1: Test problems adopted

Problem | Functions Domain
zor1 | hb) =2
hHix) = Q(X)(29— v (Xg/g(X)) [0, 1] x [=1,1]
g) =1+ 5> 1ox
ZnT 2 | I =x —
fz((X)) = Q(X)(Zg— (f1 (X)/_g](x))z) [0, 1] x [=1,1]
g) =1+ =) o
7pT3 | b =x o
H(x) = g2 —~/filx)/g(x)— | [0, 1] x [=1,1]
(fy (X)g/g(x))sln(mﬂﬁ))
g(X):1+m 7=2X1
70T 4 | hb) =2
fz((X)) = g(X)(ZO(— f1)(X)/9(X)) [0,1] x [=5,5]
gx) =1+10(n — 1)+
> (= 10c405 4rh)
) =1—¢ ™
OTO 1 1) = g2 — (gl | 0,1]x [=1,1]
g =1+ 23 )%

the number of evaluations, the plain NSCGA-II was able to converge closer to the true Pareto
front, but was still never able to set-cover the hybrid approach.

In Table 6.4, we show the results obtained for the extended versions of the test problems.
We can see here similar results to those obtained when dealing with the original versions
of the test problems. However, in this case the outperformance of the hybrid over the plain
NSCGA-II improved as the number of iterations was increased. Tables 6.5 and 6.6 support
these results, and show the IGD indicator values which measures both, proximity to the front
and spread of solutions.

It is worth noticing that, since ZDT4 is a highly multi-frontal MOP, then, a gradient-based
method is expected to get stuck when attempting to solve it, producing, as a consequence, a
negative impact on the performance of the hybrid MOEA. However, our results do not indicate
that this is always the case. However, it is important to notice that this problem, as well as
/DT2, were the least stable in terms of the standard deviation for the IGD indicator.

Another important aspect to mention is that, since the two compared algorithms use the
same crowding selection procedure, the distance towards the Pareto front does not decrease
monotonically at the last stages of the search, since some good solutions could be deleted at
further iterations. This is also the reason why no useful information (for comparison purposes)
can be obtained from letting the algorithms to perform a higher number of objective function
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Table 6.2: Number of decision variables used for each test problem

Problem | Original Size | Extended Size
/DT 1 30 variables 60 variables
/DT 2 | 30 variables 60 variables
/DT 3 | 30 variables 60 variables
/DT 4 | 10 variables 15 variables
/DT 6 | 10 variables 15 variables

Table 6.3: Comparison of results using the Set Coverage indicator for the original versions of
the test problems.

Set Coverage

Problem | NSGA-I 1 5000 1 evals. | 10000 evals

version: Mean o Mean o

o4 | Fubrid < Plain | 098 | 003 | 078 | 008
Plain < Hybrid | 0.00 | 000 | 000 | 000

o, | Fubrid < Plain | 097 | 027 | 088 | 008
Plain < Hybrid | 001 | 007 | 000 | 000

Hubrid < Plain | 090 | 041 | 060 | 0.09

D13 1 plain < Hybrid | 003 | 006 | 001 | 003
20,000 T evals. | 40,000 1. evals

Mean o Mean o

Hubrid < Plain | 066 | 020 | 032 | 0.19

DT 4| plain < Hybrid | 0.11 | 027 | 000 | 000
Hubrid < Plain | 100 | 000 | 100 | 000

D10 | plain < Hybrid | 0.00 | 000 | 000 | 000
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Table 6.4: Comparison of results using the Set Coverage indicator, for the extended versions
of the test problems.

Set Coverage

Problem | NSGA-IL 1 5,000 (. evals. | 10,000 £ evals.

version: Mean o Mean o

Hybrid < Plain | 0.99 | 002 | 100 | 001

DT plain < Hybrid | 000 | 000 | 000 | 000
Hybrid < Plain | 0.86 | 030 | 090 | 024

D120 plain < Hybrid | 005 | 017 | 000 | 000
Hybrid < Plain | 0.88 | 017 | 095 | 005

D131 plain < Hybrid | 010 | 018 | 001 | 003
20,000 f. evals. | 40,000 f. evals

Mean o Mean o

Hybrid < Plain | 055 | 049 | 070 | 029

DT 4 plain < Hybrid | 052 | 048 | 013 | 032
Hybrid < Plain | 1.00 | 000 | 100 | 0.00

ZDTO 1 plain < Hybrid | 000 | 000 | 000 | 000

evaluations.

Figures 6.2 to 6.6 show the Pareto fronts generated for each of the test problems, in their
two instances (original and extended), and for the two numbers of iterations adopted. These
Pareto fronts correspond to randomly selected runs.

Figures 6.7 to 6.11 show the average over 30 runs for the number of non-dominated
points—which is the basis of our control mechanism—and the GD as the number of function
evaluations increases. These comparisons are presented in the original and also in the
extended size versions of the problems.

When hybridizing MOEAs with gradient-based procedures, an obvious question that
arises is if this sort of hybrid scheme is more cost-effective than the use of a plain MOEA.
This cannot be easily answered, and few studies that look into this are currently available.
However, we conclude that the answer to this question depends on two things: the specific
features of the problem to be solved, and the effectiveness of the mechanism that balances the
LS with the global search. Regarding the scalability of Algorithm 18, we can comment that
excluding the computation of the descent direction (Proposition 3.2.1), the ideas presented
here can be used to hybridize MOEAs to deal with more than two objectives. For those cases,
we suggest to use any of the the procedures proposed in Chapter 4, or the ones proposed by
Fliege et al. [42] or by Schéffler et al. [107]. It is worth noting that, in these cases (except for
HCS1), it is necessary to use a solver for convex quadratic optimization or, at least, a linear
optimization solver.
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Figure 6.2: Pareto fronts corresponding to a random run (seed 0.39) for ZDT1. Original (top)
and extended problem sizes (bottom), 5000 (left) and 10000 (right) evaluations.
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Figure 6.3: Pareto fronts corresponding to a random run (seed 0.39) for ZDT2. Original (top)

and extended problem sizes (bottom), 5000 (left) and 10000 (right) evaluations.
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Figure 6.4: Pareto fronts corresponding to a random run (seed 0.39) for ZDT3. Original (top)
and extended problem sizes (bottom), 5000 (left) and 10000 (right) evaluations.
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Figure 6.5: Pareto fronts corresponding to a random run (seed 0.39) for ZDT4. Original (top)
and extended problem sizes (bottom), 20000 (left) and 40000 (right) evaluations.
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Figure 6.6: Pareto fronts corresponding to a random run (seed 0.39) for ZDT6. Original (top)
and extended problem sizes (bottom), 20000 (left) and 40000 (right) evaluations.
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Figure 6.7: Average over 30 runs for ZDT1 with both its original size (top) and its ex-
tended size (bottom). We also show the number of non-dominated elements (left), and the
Generational Distance (right).
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Figure 6.8: Average over 30 runs for ZDT2 with both its original size (top) and its ex-
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Generational Distance (right).
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Figure 6.9: Average over 30 runs for ZDT3 with both its original size (top) and its ex-
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Table 6.5: Comparison of results for the IGD indicator, adopting the test problems with their

original sizes.

IGD
Problem | NSGA-II 5,000 function evals. 10,000 function evals.
version: Mean Std. Dev. Mean Std. Dev.
Hybrid | 9.059E-03 | 9.080E-03 | 4798E-03 | 5318E-04
DT plain | 514346202 | 1129E-02 | 9349E-03 | 8545E-04
Hybrid | 4437E-02 | 1.100E-01 | 7.108E-03 | 1264E-02
DT20 plain | 1114E-01 | 1396E-01 | 1446E-02 | 1.398E-02
Hubrid | 1.950E-02 | 1252E-02 | 6.084E-03 | 4.021E-03
DT3 1 plain | 37226202 | 9161E-03 | 7.443E-03 | 6.264F-04
20,000 function evals. 40,000 function evals
Mean Std. Dev. Mean Std. Dev.
Hubrid | 1237E-01 | 1233E-01 | 4511E-03 | 1441E-04
DT4 1 plain | 6191F-02 | 8149F-02 | 5483E-03 | 9.147E-04
Hubrid | 2.850E-03 | 3.342E-04 | 2422E-03 | 1.828E-04
ZDT0 1 plain | 32626201 | 7280E-02 | 1.806E-01 | 3.616E-02

Table 6.6: Comparison of results for the IGD indicator, adopting the test problems in their

extended versions.

IGD
Problem | NSCA-I 5,000 function evals. 10,000 function evals.
version: Mean Std. Dev. Mean Std. Dev.
Hybrid | 1269E-02 | 5371E-03 | 4816E-03 | 1682E-04
DT plain | 1.809E-01 | 3366F-02 | 3273F-02 | 5349F-03
Hybrid | 1785E-01 | 3.038E-01 | 4.189E-02 | 1.016E-01
DV20 plain | 3167E-01 | 11026-01 | 51976-02 | 4667E-02
Hubrid | 1.086E-01 | 2525E-02 | 1206E-02 | 7.814E-03
DV3 1 plain | 14876-01 | 2186F-02 | 2632602 | 9.028F-03
20,000 function evals. 40,000 function evals
Mean Std. Dev. Mean Std. Dev.
Hybrid | 2018E--00 | 9.879E-01 | 1.137E-01 | 9.409E-02
DT 41 plain | 2086E4-00 | 8.390E-01 | 3600E-02 | 2.234E-02
Hubrid | 1.080E-02 | 1.044E-02 | 2439E-03 | 1434E-04
D6 | plyin | 10236400 | 1.203E-01 | 4985E-01 | 9.087E-02
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6.4 Archive Bounding Process

Why should we spend resources refining a solution that will be later deleted by a crowding-
like strateqy? When using gradient information at the end of the search, solutions are as
accurate as the amount of resources we want to spend in the line search. If we incorporate
this refinement as part of the LS engine during the execution of the hybrid algorithm, the
same archive truncation mechanism—present in most of the MOEAs—will withdraw these
improvements.

Another option is to look at special archiving strategies, such as those described in [124],
which could deal with this issue. Important open problems in this sense are the interplay of
the archiving and the selection mechanism of the MOEA, how to set the mutation radius (step
size) in the MOEA, its relation with the archive setting, and what resolution of the archive
should be used. Besides, the detection of promising elements in the archive is very important
during the evolutionary search.

From the experiments presented here, it can be noticed in Figures 6.7 to 6.11 (right hand-
side) that the crowding procedure truncation does not allow the method to converge. In other
words, the zero value is never reached when assessing GD for a large number of function
evaluations. The worst part, of this situation, is that there is a positive probability to lose,
during the selection (when using the crowding procedure), points which have already been
improved (by the application of LS). The alternative that we adopted for these experiments was
to skip the calculation of the crowding value for the elements resulting from the application
of the LS (by assigning a special value to them). However, this mechanism only saves these
elements for the next generation and it does not prevent that, at future generations, the
improved individuals are deleted. Otherwise, we could interfere with the original diversity
control process of the MOEA and this could have a negative effect.

As a final suggestion, if quaranteed convergence is searched for the procedure, the ob-
servation presented above motivates the study and use of different types of archivers for
MOEA:s.

134




“We can only see a short distance
ahead, but we can see plenty there
that needs to be done.”

Alan Turing

Conclusions and Extensions

In this work we have presented our research on the design of hybrid MOEAs that incorporate
gradient information. We analyzed the main issues when making this coupling from both, the
LS and the global search point of view. This is an important problem since most of the current
multi-objective memetic algorithms have focused on discrete problems, in which the LS over
neighborhoods has been well studied. However, for the continuous case, there is no direct
comparison with such (discrete) proposals. In this sense, for the exploration of continuous
neighborhoods we used gradient-based line search. This is a powerful tool that certainly
implies a high cost, but that it is also a reliable way to produce improvements. The material
presented in this thesis contributes to increase the knowledge about these mathematical
techniques and to motivate their use to improve the efficiency of MOEAs. We have shown
the huge potential of combining gradient information with multi-objective evolutionary search.
Also, theoretical aspects and open research branches have been discussed.
The contributions of this thesis are stated in the following:

1) Specialized local search mechanisms: This is about the construction and computacion of
gradient-based search directions; also about some different aspects regarding the design of
LS operators based on them.

First, we incorporated the gradient of two functions (Expression 3.3, in page 26), in
the most simple possible way compared with other works which use gradient-based multi-
objective line search—since these other procedures require at least the solution of linear
equation systems. In this sense, we developed a “plug and play” method that can be easily
coupled with many MOEAs with little effort. The most important advantage, of implementing
LS with our proposed approach, is that no additional quadratic or linear optimization solvers
are required to calculate the descent direction for two-objective problems. This makes our
approach cost-free, in a certain extent, for such types of problems.

Second, in Chapter 4 we have proposed a novel point-wise iterative search procedure, the
Hill Climber with Sidestep (HCS), which is designed for the LS of a given MOP. The HCS
is intended to be capable of moving both toward and along the set of (local) Pareto points,
depending on the location of the current iterate. We proposed two variants of the HCS, a
gradient-free version (HCS1) and one version which explicitly exploits gradient information
(HCS2). Both can be used as standalone algorithms, to explore parts of the Pareto set
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starting with one single solution; and are able to handle constraints of the model, to some
extent. We also presented, in Section 4.25 (page 47), some numerical results indicating the
efficiency of the HCS as a standalone algorithm, and its benefit when being integrated into
a MOEA in Section 5.4.4 (page 99).

Third, we presented the Directed Search method (DS) for multi-objective optimization,
which allows to steer the search into any direction a, given in objective space. Based on
this idea we also presented a novel continuation procedure, which depends of the initial point
xo and of the choice of the desired direction a. We have emphasized the similarities and
differences among our approach and other possibilities like the Weighted Sum approach and
Goal Programming. Though these directions are locally optimal, the resulting approaches
do not guarantee, however, that at least a locally optimal point is reached. The essential
novelty in the alternative continuation method we have presented is the choice of the predictor
direction: instead of linearizing the Pareto set we have used a linearization of the Pareto
front to obtain a new predictor solution; By this, no second order information is required,
as in ‘classical’ continuation methods. This aspect makes the new strategy a competitive
alternative, in particular for the treatment of higher dimensional problems. To conclude, we
have illustrated the behavior of both methods in some benchmark problems.

Finally, our three proposals for local searchers also include a tolerance controlled stopping
criterion—in order to avoid applying LS in a particular (almost optimal) point.

2) Memetic algorithm construction: We have addressed in Chapter 5 the problem of inte-
grating some of our local searchers into a given MOEA, in order to obtain novel memetic
strategies. As examples, we have proposed, in Section 5.4 (page 89), the two algorithms (or
family of algorithms) SPEA2-HCS and NSCA-II-HCS which are derived from SPEA2 and
NSGA-II, respectively. More precisely, the results of SPEA2-HCS and NSGA-II-HCS show
that the combination as proposed here is advantageous in many cases. However, it has to
be mentioned that for this, the design parameters of the HCS and the balance between local
and genetic search has to be chosen properly. In that chapter we also presented GBMES, a
two stage algorithm which reaches such a balance while requiring a total of 3,000 objective
function evaluations—a very competitive performance for the particular benchmark problems
used. With this work we showed that although obtaining gradient information is an expensive
process, it is possible to design an efficient gradient-based hybrid. Another studied feature
of GBMES is that it scales well as we increase the number of decision variables of the
MOP. This was illustrated by two examples in which we use up to 100 decision variables.
This approach was found to degrade significantly less than a state-of-the-art MOEA (the
NSGA-II), while still performing the small budget of 3,000 objective function evaluations.
We also tackled, in Chapters 5 and 6, the problem of the balance between LS and global
search. This is not a trivial issue, and it has been indeed recognized as one of the main
difficulties when designing memetic MOEAs. The work presented in Section 6.2 (page 117)
is a first step towards developing a fully adaptive method, that can automatically balance
the role of each of the two search engines (i.e, the global search and the LS engines) when
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dealing with continuous problems. We presented a criterion to switch between the local and
the global search procedures based on the cardinality of the non dominated set. The aim of
such mechanism is precisely to automatically release resources (i.e,, function evaluations) for
each of the two engines. Algorithm 18 presents a generic gradient-helped MOEA which uses
this kind of balance method. The hybrid algorithm showed advantages over the plain MOEA
in the test problems adopted in different instances (i.e., with their original dimensionality and
with a higher one). Since the application of LS is an expensive procedure for MOPs, it is
advisable to perform an efficient interleaving with the MOEA.

Future Work

As part of our future work, we are interested in coupling alternative archiving methods (see
for example those in [124]) with our approaches. Such type of mechanism should be able to
preserve good solutions during a longer time, which would be beneficial for the performance of
the final algorithm. Archiving strategies have different edges to investigate, since convergence
of the procedures lies most of the time on them. On the other hand, the management of a
good archiving method is not an easy task since it has several computational issues—even
when dealing with a moderate number of dimensions.

Since gradient-based descent was proved to increase the accuracy of solutions, an inter-
esting way to exploit it is by reconstruction techniques—like the one presented in Section
523 (page 77). In this regard, the rough sets mechanism can be improved—as a future
work—by introducing gradient-based information into it; however, this should be done very
carefully, because of the high computational cost associated with obtaining this information.
For this sake, it is possible to take advantage of the construction explained in the preliminary
phase of Section 5.2.3 (page 77). Such construction could be selectively repeated and mixed
with a gradient-based descent applicable only to a few selected individuals.

When performing a gradient-based line search in multi-objective problems, two important
factors determine the success of the procedure: First, we must choose a suitable search
direction, and second, a good step length control must be set. In this thesis, we have
performed studies for the former issue, which make promising the use of this technique. On
the other hand, methods to control the step length in a multi-objective problem represent a
hard open question—but a treatable one since these methods have been widely studied in
the mathematical programming literature for the single-objective case.

In addition, we have the hypothesis that gradient-based movements could deal with
dominance resistant solutions (DRS) [61]. DRS are points in the domain which are difficult
to improve using the evolutionary operators. This is an unexplored and natural application
of our proposed methods. Finally, even when the computation of search directions has been
well studied, calculating them on the presence of constraint MOPs has scarcely been tackled
[53, 42]; this is certainly a topic that deserves further research.
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