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Abstract
Over the last decades evolutionary algorithms have become very popular to solve multi-objective optimization problems (MOPs). Several multi-objective evolutionary algorithms(MOEAs) have been developed to solve MOPs with successfull results. A feature of thesealgorithms is that they do not exploit concrete information, about continuity or differentia-bility of the objective functions of the problems—which is considered as information of theproblem domain. One question that arises when seeking for more efficient MOEAs, is aboutthe effectiveness of including this mathematical information during the MOEA execution. Inparticular, we are interested in exploiting the gradient information of the objective functionsduring the evolutionary search. In this thesis, the inclusion of gradient-based local searchersinto MOEAs is presented. An in depth study of the gradient-based search directions isincluded, as well as the proposal of diverse types of hybridization. This coupling has twoaims, one is made in order to improve the performance of these stochastic algorithms, andthe second one is to efficiently refine their solution sets. Hybrid gradient-based MOEAs arebuilt and tested, in this work, over widely used benchmark MOPs. The numerical results areanalyzed and discussed; also, conclusions and extensions for promising future research pathsare included.
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Resumen
Durante las últimas décadas los algoritmos evolutivos se han vuelto populares como her-ramientas para la solución de problemas de optimización multiobjetivo (MOPs). Estos al-goritmos evolutivos multiobjetivo, comúnmente conocidos como MOEAs, han demostrado seruna opción muy conveniente y por eso mismo han dado origen al estudio de aplicacionesy mejoras en su eficiencia. Tradicionalmente estos algoritmos no explotan la informaciónespećıfica del dominio de los MOPs; en particular, no utilizan información que tenga que vercon la continuidad ni diferenciabilidad de sus funciones. En esta tesis, estudiamos la manerade explotar información relacionada con los gradientes de las funciones objetivo, como unamanera de guiar la búsqueda de los MOEAs y hacerlos más eficientes. También se analizael uso de esta información como herramienta para refinar la precisión de las soluciones. Eltrabajo de esta tesis se enfoca en dos objetivos, el primero es construir buscadores localeseficientes que combinen y exploten la información obtenida de los gradientes de las fun-ciones. El segundo objetivo es incorporar estos buscadores locales dentro de los MOEAspara generar algoritmos h́ıbridos. Se proponen varios buscadores locales con caracteŕısticasdiversas y varias opciones para su integración con MOEAs. Se presentan análisis teóricos ypruebas experimentales de su eficacia y eficiencia en problemas de prueba tradicionales. Semencionan pautas para hacer eficiente este tipo de integración de heuŕısticas y se presentanconclusiones.
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Porque los tres somos un solo corazón.

vii





Agradecimientos
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“Computer Science is no moreabout computers than astronomy isabout telescopes.”E.W. Dijkstra 1Introduction
The necessity of finding the best solution, for a particular problem, arises in many areasof engineering and science. Improved solutions are sought in industry, economics, and otherhuman activities which involve planning and limited resources. The area of mathematics whichdeals with this class of task is known as optimization; and, since the advent of digital comput-ing, optimization algorithms have attracted an increasing interest from researchers. Moreover,when solving many real-life situations, multiple criteria must normally be considered. Thetask of simultaneously optimizing several objective functions (which are normally in conflictwith each other) is called Multi-objective Optimization (MO); and the problem that this areadeals with is properly called Multi-objective Optimization Problem (MOP), also known as avector optimization problem. Several engineering applications can be modeled by this kindof problems [21, 22, 32, 43, 109, 128].MOPs have been numerically solved, since their origins, using methods supported byspecialized mathematical programming techniques. The use of Evolutionary Algorithms (EAs)for solving MOPs started in the mid-1980s. Since then, the use of the so-called Multi-
objective Evolutionary Algorithms (MOEAs) has had a significant growth. EAs are, in general,stochastic search techniques inspired on mimicking the principles of evolution (i.e., the survivalof the fittest) in nature. EAs apply a set of variation operators (e.g., crossover, mutation, etc.)to combine different solutions, aiming to produce reasonably good approximations of theoptimum. The advantages and issues of these different methods—EAs and mathematicalprogramming techniques—are still under study by several research groups. Solving MOPsis a hard task since there are several basins of attraction that can bias the search. In fact,because of their nature, when solving MOPs it is very convenient to know effective searchdirections that can speed up the process. Obtaining this knowledge may imply spending anadditional computational effort. However, in certain applications, in which the evaluation ofthe objective functions is computationally expensive, this extra effort is well justified.This work is focused on coupling these two paradigms—EAs and mathematical program-ming techniques—in order to exploit their particular advantages when solving MOPs. Onsmooth problems, gradient information is a powerful tool which is absolutely not exploitedby the regular operators of EAs. In a certain way this can be seen as a drawback of theselatter methods because of their slow convergence rate, even in problems when differentiableobjectives are present. On the other hand, because of their nature, gradient-based procedures

1



CHAPTER 1. INTRODUCTION

have a local scope and are not able to find entire optimal sets by themselves; furthermore,they are usually stuck on local (stationary) optima. Therefore, combining these procedureswith a global stochastic strategy—such as EAs—constitutes a promising mechanism to gen-erate good solutions. This mix is done in order to obtain an algorithm which offers, onthe one hand, the globality and robustness of the evolutionary approach; but on the other,also an improved overall performance by the inclusion of a well directed Local Search (LS)mechanism. There is some evidence [78, 56] that hybridization using gradient information canreally speed up convergence of MOEAs on continuous problems. However, the application ofthe LS procedure some times goes wrong, and for certain problems, the performance of thehybrid is not even as good as the stand-alone MOEA. This opens the door to new researchabout the way of hybridizing these techniques.Introducing gradient information of a MOP (when it is available) into a MOEA is aresearch topic that has attracted a lot of interest in recent years [76, 19]. There are some hy-brids of MOEAs and gradient-based methods currently available in the specialized literature[130, 51, 56, 132]. Such approaches normally replace [130] or add [132], existing evolutionaryoperators such that the available gradient information is used to guide the search. The mo-tivation for this sort of coupling has been, first, to speed up convergence towards the Paretofront [8, 132, 83, 130], and second, to produce more accurate solutions [132]. Nevertheless,the studies about theoretical and practical aspects of this coupling are still scarce, giving riseto a variety of research possibilities, which motivated the work presented in this thesis.Gradient information provides a MOEA with search directions to perform more accuratemovements. However, computing such search directions is also a MOP since each objectiveprovides its own set of (gradient-based) search directions; therefore, all of these directionsneed to be properly combined into a single one, in order to perform a line search proce-dure—particularly adapted for the multi-objective case. Early approaches are presented in[42, 107, 53] and [8].Another major issue arising when incorporating gradient information into a MOEA is howto provide a proper balance between the LS (i.e., operators using the gradient information)and the global search (i.e., the MOEA). In fact, such a balance is problem-dependent [67].For example, in [51] the use of the LS is proposed to be used at the end of the evolutionaryprocess, and the interleaving between the local and the global search takes place after acertain (fixed) number of objective function evaluations. However, other proposals use thegradient information to overtake solutions towards the Pareto optimal set, and adopt theevolutionary search in a second stage (see for example [56, 83]). In any case, none of thesetypes of strategies is really ideal, since the best would be to have an adaptive mechanismthat allows the two types of search to interleave during the run of the MOEA, such that eachof them intervenes whenever needed.LS algorithms move from an initial solution to another one in the search space by applyinglocal changes (typically over particularly defined neighborhoods), until a better solution isfound or a time bound is reached. There exist a plethora of LS methods for continuous (anddiscrete) optimization problems, and some authors have reported successful hybridizations of
2



LS techniques, in general, with genetic algorithms. However, to the author’s best knowledge,there exist basically three crucial questions [54, 133, 79, 63, 89, 7] which remain open inthe design of memetic strategies: Where shall a LS process be hybridized with a geneticalgorithm? Which individuals should be fine-tuned and how much? And, when shall the localrefinement be applied? These questions apply both, to single and to multi-objective problems.
Problem Statement
The main goal of this thesis is to investigate how gradient-based information can effectivelyhelp MOEAs during the search, and studying the issues that arise when combining thesetwo procedures. One particular goal is to look deeply into the calculation of multi-objectivegradient-based search directions—a basic topic when trying to design hybrid MOEAs, usinggradient-based line search. A second particular aim is incorporating these directions intoLS engines, as well as devising new possible movement directions. Also, analyzing thecost and differences among them, in order to study some aspects regarding their practicalimplementation.Another particular aim of this work is, precisely, to propose an adaptive mechanism thatallows the local and global search strategies to interleave. The ideal case is when thealgorithm can automatically assign more or less resources either to the local or to the globalsearch procedure, as deemed necessary.
Contributions
The main contributions of this thesis are the following:
• We state a framework for the analysis and the application of gradient-based localsearchers in the multi-objective case (Chapter 3). Also, we study the many-objectiveproblem, from the descent cone point of view, and get important results to disprove acommon belief about sources of difficulty for MOEAs (Section 3.5).
• For two-objective problems, we present a simple and efficient method to calculate adescent direction; we show the effectiveness of this method and analyze its limitations(Chapter 3). Furthermore, its effectiveness inside a memetic MOEAs is studied (Chapter6).
• We present two new local searchers, particularly designed to be combined with MOEAs.Both show a lot of potential for hybridization due to their special features. First, theHill Climber with Side Step which is able to search towards and along the Paretofront—making the switch between the two movements in an automatic way. Second, theDirected Search method which is able to direct and steer the search towards regionsof interest (Chapter 4).
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• Diverse implementations for coupling our local searchers with MOEAs are presented.The experiments show the benefits of the hybridization and some guidelines for buildingthis type of algorithms (Chapters 5 and 6).
• An adaptive control for the use of LS, inside the memetic MOEA, is proposed andtested. This is based on the dynamics of the size of the non-dominated individual set(Chapter 6).
• The scalability of gradient-based methods is investigated, both, increasing the numberof variables and also the number of objectives (Chapters 3 and 5).

Outline of the Thesis
Including this introduction, the thesis consists of seven chapters. Chapter 2 presents basicdefinitions and concepts as a background for the following chapters of this document.Chapter 3 is dedicated to the study of the properties induced by gradients when analyzingMOPs. Definitions of descent directions and their importance are presented. We also present,some important geometrical concepts required to understand the rest of the thesis. Finally, weinclude our insights about the descent cones point of view when dealing with many-objectiveproblems (MOPs with more than three objective functions).Next, we present our proposals for gradient-based search directions: the simplest onefor two-objective problems is introduced in Chapter 3, and in Chapter 4 the Hill Climberwith Side-step (HCS) and the Directed Search Method (DS) are presented. The HCS isa novel iterative search procedure which is capable of moving both toward and along the(local) Pareto set, depending on the distance of the current iterate toward this set. It utilizesthe geometry of the directional cones present in MOPs and works with or without gradientinformation. Meanwhile, the Directed Search Method allows to steer the search process ina particular desired direction, established in the objective space. This also counts with acontinuation-based procedure, which allows to reach other points over the Pareto set.Chapter 5 focuses on the hybridization of gradient-based LS and MOEAs. First, a two-stage algorithm named Gradient Based Multi-objective Evolutionary Strategy (GBMES) ispresented; this is a hybrid between an elitist MOEA, and a gradient-based descent method.This algorithm requires a low number of objective function evaluations to converge to a fewpoints in the Pareto front; then, the rest of the Pareto front is reconstructed. Emphasis isplaced on the effectiveness of this hybrid approach when increasing the number of decisionvariables, and a study of its scalability is also presented. In this chapter we also show twopossible ways to integrate the HCS into a given MOEA, leading to new memetic MOEAs.We use the state-of-the-art algorithms NSGA-II and SPEA2 as baseline MOEAs. Numericalresults on some widely used benchmark problems are presented, indicating the benefits ofusing the proposed local searcher within a MOEA.In Chapter 6 we present, and investigate, a simple and generic way to add gradient-basedinformation, as a means to improve the search process performed by a MOEA. We present
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ideas that can be easily incorporated into any MOEA and provide some guidelines regardingthe use of our proposed approach. We also propose an adaptive mechanism that allows thelocal and global search strategies to dynamically interleave. We based the control mechanismon monitoring the evolutionary search efficiency; in this way, the algorithm can automaticallyassign more or less resources either to the local or to the global search procedure in adynamic way.Finally, the conclusions of the thesis, as well as some possible paths for future research,are presented in Chapter 7.
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“In mathematics you don’t understand things.You just get used to them.”John von Neumann 2Preliminary Concepts
2.1 The Multi-objective Optimization Problem
We are interested in solving problems of the type:

Minimize F (x) := [f1(x), f2(x), . . . , fk (x)]T �� ��2.1subject to:
gi(x) ≤ 0 i = 1, 2, . . . , m �� ��2.2

hi(x) = 0 i = 1, 2, . . . , p �� ��2.3where x = [x1, x2, . . . , xn]T ∈ Rn is the vector of decision variables (also known as decision
parameters vector or solution vector), fi : Rn → R, i = 1, ..., k are the objective functions(or objectives, in short) and gi, hj : Rn → R, i = 1, ..., m, j = 1, ..., p are the constraintfunctions of the problem. If functions gi and hi are not present, we are dealing with an
unconstrained MOP. Solving the above problem is known as solving a MOP.If any function in the original problem must be maximized (for example, profit), it is possibleto restate it as a minimization approach (using the duality principle when multiplying thefunction by −1). Therefore, the problem can be stated in general as above. Even thoughMOPs can be defined over other domains—like discrete sets, for example—in this work weare only interested in continuous domains which are contained on Rn. When all the objectivefunctions and the constraint functions are linear, the problem (2.1) is called a linear MOP,and there are several techniques to solve it. If at least one of the functions is nonlinear, theproblem is then called a nonlinear MOP. If all the objective functions are convex, and also thefeasible region is convex the problem is known as a convex MOP. In this study we are dealingwith nonlinear problems, either convex or not. Several conditions, such as differentiability orcontinuous differentiability, will be assumed for the f , g and h functions during the remainderof this document.Solving a MOP is very different that solving a Single-objective Optimization Problem(SOP). Since some of the fi are normally “in conflict” with each other,1 the solution of aMOP is not unique; this is because normally no single solution exists that provides the

1For example, one objective may refer to manufacture cost and another to quality of the product.
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best possible value for all the objectives (see Figure 2.1). Consequently, solving a MOPimplies finding a trade-off among all the objective functions. This involves the generation ofa set of possible solutions instead of a single one—like in the single-objective optimizationcase. The notion of “optimality” that we just informally described, was originally proposedby Francis Ysidro Edgeworth in 1881 [36] and was generalized by Vilfredo Pareto in 1896[97]. This concept is known today as Pareto optimality and will be formally introduced next,after providing some other basic definitions.

x

f2(x)

f1(x)

f3(x)
Figure 2.1: This figure shows function f3 in conflict with functions f1 and f2.

Definition 2.1.1 Given two vectors x, y ∈ Rn, we say that x dominates y (denoted by x ≺ y)
if fi(x) ≤ fi(y) for i = 1, ..., m, and F (x) 6= F (y).
Definition 2.1.2 We say that a vector of decision variables x ∈ X ⊆ Rn is non-dominated
with respect to X (where X is the feasible region), if there does not exist another x ′ ∈ X
such that x ′ ≺ x.

Definition 2.1.3 We say that a vector of decision variables x∗ ∈ X ⊂ Rn is Pareto optimal
if it is non-dominated with respect to X.

Definition 2.1.4 a) The Pareto Optimal Set or Pareto Set P∗ is defined by:

P∗ = {x ∈ X | x is Pareto optimal}.
b) The Pareto Front PF ∗ is defined by:

PF ∗ = {F (x) ∈ Rk | x ∈ P∗}.
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2.1. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100  120  140  160

f 2

f
1

Pareto front

Y

Figure 2.2: This figure emphasizes the Pareto front for Example 2.1.1. The axes representthe value regarding each function—what is known like the objective space. The points of Yare the images of randomly generated vectors from the domain.
We thus wish to determine the Pareto optimal set from the set X of all the decisionvariable vectors that satisfy the constraints of the problem. Note however that in practice,just a finite representation of the Pareto optimal set is normally achievable.Assuming x∗ as a Pareto point of (2.1), there exist [81] a vector α ∈ Rk , with 0 ≤ αi, i =1, . . . , k and ∑k

i=1 = 1 such that
k∑
i

αi∇fi(x∗) = 0. �� ��2.4

A point x∗ that satisfies (2.4) is called a Karush-Kuhn-Tucker (KKT) point.
Example 2.1.1 Consider the following unconstrained MOP:

minimize F (x, y) := [x2 + y2 , (x − 10)2 + y2]T , �� ��2.5

with x, y ∈ R.
The Pareto set of this problem is the line segment [(0, 0), (10, 0)] ∈ R2, and the Pareto

front is shown, as a continuous line, in Figure 2.2.
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2.2 Solving a MOP
The most common procedures to solve (2.1) are classified [91, 92] in four classes: no-preference
methods, a posteriori methods, a priori methods and interactive methods, according to thestage, an level, in which the decision maker intervenes. In this work, we focus our attentionon the a posteriori methods, in which the goal is to obtain the best approximation of theentire set of optima, which will be presented a posteriori to the decision maker—who willthen select the most suitable solution out of it. When tackling the a posteriori approach,the use of EAs is a natural choice. This is due to the fact that no previous knowledgeregarding the MOP is necessary for the algorithm; and also because, at the end of the run,the population-based algorithm throws an entire set of (ideally) well distributed solutions.We present in the following, a brief review of some classical techniques in order to mentionimportant aspects for comparison against EAs.
2.2.1 Classical mathematical techniquesOperations Research (OR), is a branch of mathematics within which a variety of techniqueshave been developed to deal with MOPs. These approaches developed within OR for solvingMOPs are known as classical methods. Up to 1980 most of the computational methodsto solve MOPs consisted of minimizing only one function, either using the other objectivefunctions as constraints of the problem, or simply by taking a combination of all the objectives[94]. The most common way to tackle a MOP is by scalarization which means reducing theproblem to a SOP. One example of this approach is the following method:
Weighted sum method: This method consists of transforming the vector of function valuesinto a scalar value using an aggregating function over the vector function, getting the followingproblem:

Minimize gω = k∑
i=0 ωifi(x)subject to 0 < ωi for all i ∈ {1, . . . , k};

and k∑
i=0 ωi = 1; x ∈ S.

In this way, the solution set consists only of one point for each weight combination. Animportant drawback of this approach is that controlling the weights does not necessary helpus to control the distribution of the points in the parameter space. Besides, there are pointsthat can not be generated as a combination of weights in non convex cases—see [27] for amore in-depth explanation about this. There exist, in general, many scalarization methodswhich transform the MOP into a ‘classical’ SOP. It is worth to notice that by choosing a
10
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clever sequence of SOPs, a suitable finite size approximation of the entire Pareto set can beobtained (see [26, 74, 40, 37] and references therein). Another approach to approximate theentire Pareto set is to use set oriented methods such as subdivision techniques [33, 68].
ε-constraint method: In the ε-constraint method [48], one of the objectives is chosen forminimization while the rest of the objectives conform a set of constraints limited by userspecifyed bounds εi. i.e.:

Minimize fjsubject to fi ≤ εi for all i ∈ {1, . . . , k}, i 6= j .

The ε-constraint problem should be solved using multiple different values for εi, if severalPareto optimal solutions are desired. This method can deal with convex and non convexfunctions; but, choosing the εi values is still an issue since there is no warranty that afeasible optimum exists for a specific εi. An in depth analysis of these method can be foundin [91].Most of the classical methods require the prior fulfillment of certain geometrical or ana-lytical properties imposed on the MOP, such that they can properly work. For instance, inproblems with nonlinear functions, some methods (like those in [91]) use gradient information.Since the differentiability properties of functions provides local information (i.e., an appro-priate search direction over a certain neighborhood), any technique that uses such gradientinformation can be seen as a LS procedure.
2.2.2 Multi-objective evolutionary algorithmsAs an alternative to the classical methods, researchers in the area of Evolutionary Computation(EC) [46, 6] have developed new approaches to approximate the solution of MOPs. This area,which is now known as Evolutionary Multi-objective Optimization (EMO) has given rise to awide variety of MOEAs [23, 30] which do not require special features or properties from theobjective functions, and rely on stochastic search procedures. The use of EAs to solve MOPshas several advantages. In the first place, a MOEA generates a set of solutions instead of asingle solution in one run—which is not the case in most OR methods. Furthermore, MOEAsare general search engines which do not impose special requirements on the type of objectivefunctions that can be solved. Note however, that differentiability is a requirement that wewill assume in this thesis, because of the sort of work that we aim to develop.During the last decade, MOEAs have become very popular in a wide variety of applicationdomains, and are now a very fertile research area [22]. Algorithm 1 describes a generic MOEA.The most common way to perform the selection of individuals (lines 13-14) for survival isaccording to the Pareto dominance relation. The goal of this class of algorithms is to providea reasonably accurate approximation of the true Pareto front of the problem. When usingMOEAs, approximating the Pareto set involves seeking for two goals: (a) minimize the distance
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between the output population and the theoretical Pareto set, and (b) make a diverse sample(with a good spread and uniform distribution) of output solutions. It is worth to notice that(a) and (b) represents conflicting aims during the execution of a MOEA.
Require: MOEA’s particular parameters
Ensure: A set S which approximates the Pareto front of the MOP.1: Randomly generate a population of individuals Pt, (t = 0).2: for each individual p ∈ Pt do3: Evaluate the objective functions.4: Assign the corresponding fitness value.5: end for6: while temination condition is not reached do7: Select P ′t ⊂ Pt based on the fitness.8: Produce the offspring population P ′′t by recombination and mutation.9: for each individual p′′ ∈ P ′′t do10: Evaluate the objective functions.11: Assign the corresponding fitness value.12: end for13: Select the individuals to survive from a combination of Pt and14: P ′′t , in order to conform Pt+1.15: t = t + 1.16: end while17: S = Pt. Algorithm 1: Description of a generic MOEA.

One of the current challenges on the design of MOEAs is to find structures and mech-anisms that increase their efficiency [20]. Fitness values are normally tightly coupled tothe objective function values; therefore, there is a difficulty to reduce the number of fitnessfunction evaluations, since this particular information is required to guide the search. Wedescribe, in the following, two state-of-the art MOEAs which are the most popular in thecurrent literature.
Elitist Non-dominating Sorting Genetic Algorithm: The Elitist Non-dominating Sorting Ge-
netic Algorithm (NSGA-II) was proposed by K. Deb et al. [31] and, due to its proven ro-bustness and efficacy, it has been widely used as a reference to assess the performance ofnew MOEAs. It has remarkable differences with its predecessor, the Non-dominating SortingGenetic Algorithm (NSGA) [135], other than the addition of an elitism mechanism.Algorithm 2 shows in pseudo-code the main parts of the NSGA-II. Lines 3 and 4, inthe algorithm, refers to the process known as nondominated sorting; this process consistsof clasifying the population into several disjoint layers (non-dominated sets) F ′i s, such that
P = ∪Fi. The main feature of these classes Fi is that any two members of the same class
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are incomparable in the Pareto sense. As a second criterion for ordering, after consideringthe Pareto rank of each solution, the crowding distance value is used (Line 18). Crowdingdistance is an indicator of the density of individuals around a particular individual pi insidethe population. For this, the average distance of two solutions, on either side of solution pi,is taken along each objective. To create an offspring population, binary tournament selectionfollowed by recombination and mutation is used. In this case, a modification called crowded
tournament is employed for selection. In this operator, a solution pi wins a tournament againstother solution pj if pi has a better (smaller) Pareto rank or, in the case that both have thesame rank value, when pi has a better crowding distance value. This last condition providesa way to proceed in case of incomparable solutions, and, in terms of the evolutionary process,it helps to mantain diversity

1: procedure NSGA-II(gen)2: Randomly generate a population of individuals Pt, (t = 0).3: Sort the population into a set of different domination levels.4: Assign the fitness to each solution as its non-domination level.5: Create an offspring population Qt, of size N, from Pt by using6: the crowded tournament selection, crossover and7: mutation operators.8: for t = 1 to gen do9: Combine parent and offspring populations to conform10: Rt = Pt ∪ Qt.11: Perform a non-dominating sorting to Rt and identify the12: different fronts Fi, i = 1, . . . , etc.13: Set new population Pt+1 = ∅. Set a counter i = 0.14: repeat15: Pt+1 = Pt+1 ∪ Fi.16: i = i+ 1.17: until |Pt+1|+ |Fi| < N18: Perform the crowding-sort(Fi) procedure and include the19: most widely spread N − |Pt+1| solutions by using the20: crowding distance values in the sorted Fi to Pt+1.21: Create an offspring population Qt from Pt by using the22: crowded tournament selection, crossover and mutation23: operators.24: end for25: end procedure Algorithm 2: Description of the NSGA-II.
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Strength Pareto Evolutionary Algorithm: Another widely used MOEA is the Strength Pareto
Evolutionary Algorithm (SPEA2) [150]. This is a revised version of the original SPEA proposedby Zitzler and Thiele [148]. The algorithm uses an external archive—of a pre-specifiedsize—in order to store the nondominated solutions produced at each generation.SPEA2 employs an enhanced fitness assignment strategy compared to its predecessorSPEA as well as new techniques for archive truncation and density-based selection. Forthe fitness assignment of each individual, two quantities are taken into account: the numberof individuals which dominate it, and those which are dominated by the individual to beassigned. The strength value for the individual is determined by these two numbers, and it isinvolved in the final computation of the particular individual fitness. A description of SPEA2is provided in Algorithm 3. The steps described in lines 6 to 10 conform what is mentioned,by the authors, as the environmental selection. In this part of the algorithm, an individual isremoved form the archive either if a solution has been found that dominates it, or when themaximum archive size is reached. Also, in the latter case, the individual is removed when lieson a region of the front with a high density of solutions in the archive.

1: procedure SPEA2(gen)2: Randomly generate a population of individuals Pt, (t = 0).3: Create an empty external set E = ∅.4: for t = 1 to gen do5: Compute fitness of each individual in Pt and E6: Select all non-dominated individuals from Pt ∪ E7: and store them in E.8: Use the special truncation mechanism to remove elements9: from E when necessary due to the limited size of the archive.10: If there is place in E fill it with dominated individuals from Pt.11: Conform P ′t using by binary tournament selction with12: replacement from Pt ∪ E.13: Apply crossover and mutation to P ′t in order to fill Pt+1.14: end for15: end procedure Algorithm 3: Description of the SPEA2 algorithm.
2.2.3 Memetic algorithmsAlgorithms that combine MOEAs with LS are called multi-objective memetic algorithms [93].The work developed in this thesis consists of building new hybrid MOEAs (a general de-scription which includes multi-objective memetic algorithms) that incorporate gradient-basedinformation during the evolutionary process. The main design goal of such an approach will bethe efficiency of the algorithm (i.e., the proposed approach should perform a reduced number
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of objective function evaluations as compared to state-of-the-art MOEAs) on standard testfunctions.Even though this work focuses just on certain types of MOPs (i.e., those with differentiablefunctions), an important number of complex real-world applications exist in which theseconditions are fulfilled (see for example some references within [14]). Also, some problemscan be modified so that the geometrical conditions required by these types of approaches canbe satisfied (see for example [58]).Hybrid algorithms have been successfully applied to find solutions of SOPs. In the multi-objective case, Knowles gives in [77] some examples of hybrid algorithms (MOEA + LS)working over discrete MOPs. In addition, some efforts have also been done for the continuouscase [130, 8, 14, 53] (see Section 2.3 for a wider description). However, an important questionis still open: how to hybridize mathematical methods based on geometrical properties ofa MOP (e.g., methods using gradient information) with MOEAs, such that the resultingapproach is more efficient (in terms of the number of objective function evaluations performed)than state-of-the-art MOEAs while producing results of comparative quality.One of the main questions to solve during the design of these algorithms is: how tointroduce the gradient-based information into the genetic operators of the MOEA? Anotherpossibility is not to apply the LS procedure directly as part of the genetic operators; if thatis the case, which should be the right place to introduce the LS procedure? Also, whileanswering these questions it is necessary to keep in mind the evident trade-off between thecomputational cost and the benefits of the LS procedure. This leads also to the developmentof suitable (gradient-based) local searchers. Finally, an important decision is: from whichsolutions should the local search be started? In the sequel, we address all these questionsand present the details of our study. Next, we present a short revision of the previous workexisting on this subject.
2.3 Previous Work
Hybridization of MOEAs with LS algorithms has been investigated for more than one decade.One of the first memetic MOEAs for models on discrete domains was presented in [64, 65] as a‘Multi-Objective Genetic Local Search’ (MOGLS) approach. We can also mention [70] whereJaszkiewicz proposed the Pareto Memetic Algorithm (PMA). Another important MEMOEA,called M-PAES, was proposed in [75]. Unlike Ishibuchi’s and Jaszkiewicz’s approaches,M-PAES does not use scalarizing functions, but employs instead a Pareto ranking basedselection coupled with a grid-type partition of the objective space. Two archives are used: onethat maintains the global non-dominated solutions and another that is used por comparisonpurposes during the LS phase.In [95], the authors proposed a LS process with a generalized replacement rule basedon the dominance relation. Caponio and Neri [16] proposed the Cross Dominant Multi-
Objective Memetic Algorithm (CDMOMA), which consists of the NSGA-II [31] combined withtwo local search engines: a multi-objective implementation of the Rosenbrock algorithm
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[104], which performs very small movements, and the Pareto Domination Multi-ObjectiveSimulated Annealing (PDMOSA) [136], which performs a more global exploration. Soliman etal. [134] proposed a memetic version of a co-evolutionary multi-objective differential evolution(CMODE-MEM) approach, which evolves both a population of solutions and promising searchdirections. In [139, 141, 142, 140], methods are presented which are hybrids of evolutionarysearch algorithms and multi-agent strategies, where the task of the agents is to perform theLS. For the continuous case—i.e., continuous objectives defined on a continuous domain—thefirst attempts started, to the author’s best knowledge, with [45], where a neighborhood searchwas applied to NSGA-II [31]. This is a very simple scheme and the authors found that theadded computational work impacted severely the efficiency of the algorithm.In [59] a gradient-based local algorithm (Sequential Quadratic Programming (SQP)),was used in combination with NSGA-II and SPEA [151] to solve the Zitzler-Deb-Thiele(ZDT) benchmark suite [149]. The authors stated that if there are no local Pareto fronts,the hybrid MOEA has faster convergence toward the true Pareto front than the originalapproach. Furthermore, they found that the hybridization technique does not decrease thesolution diversity.In [1], three different LS techniques were hybridized with MOGA: simulated annealing,hill climbing and tabu search. In [102], the authors proposed a hybrid technique that combinesthe robustness of MOGA-II [100] with the accuracy and speed of NBI-NLPQLP. In [145], theproposed LS process employs quadratic approximations for all the objective functions.One successful hybrid approach was proposed in [60]. The authors proposed the algo-rithm MO-CMA-ES, a multi-objective CMA-ES [49], which combines the strategy parame-ter adaptation of evolution strategies with a multi-objective selection mechanism based onnon-dominated sorting. Also, in [144], a novel EA for constrained optimization problems ispresented: the so-called hybrid constrained optimization EA (HCOEA). The algorithm com-bines a niching genetic algorithm based on tournament selection while the best infeasibleindividual replacement scheme is used as a LS operator. Finally, the mix of NSGA-II with areference point method has been proposed and studied in [131]; by this approach, the authorswere able to accelerate the convergence of NSGA-II.
Methods Based on Descent Directions and Line SearchTalking specifically about differentiable problems, we focus on those methods that use gradient-based descent directions to perform line search. Almost all traditional optimization techniquesfor MOPs, exploit previous domain knowledge of the problem. For example, some methods[72] use the linear properties of the functions; also, many methods [91] that solve nonlinearMOPs use differentiability properties of the functions. One drawback of these techniques isprecisely that they can not be applied to a wide variety of MOPs. Additionally, they requirea starting point for triggering the search, and they normally produce a single solution perrun (in fact, different starting points may lead to the same final solution in some cases).Considering this, to generate a set of solutions, Schäffler et al. [107] introduced in 2002
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a stochastic mathematical method. The method uses the solution of a stochastic differen-tial equation related to the Karush-Kuhn-Tucker conditions for optimality. Some criteria ofBrownian motion are used by the method to finally generate a set of solutions to the MOP.This technique requires the functions to be continuously differentiable, and it only works forunconstrained MOPs.A method to deal with constrained MOPs is shown by Hillermeier in [58]. He introducesan homotopy approach using differential geometry and parametric-optimization concepts tomodel the MOP by k objective functions on an n-dimensional space. The Pareto set of theproblem can be seen as a k − 1 dimensional manifold. In this method, all the functions areassumed to be twice continuously differentiable, too. Hillermeier states that this method isscalable to problems of high dimensionality. Even when this method also calculates a setof Pareto optimal points, the method is of local nature, which is a drawback; but it is worthnoticing, however, that this drawback can be avoided if the method is complemented with astochastic technique—like a MOEA. Finally, in [114, 110, 50, 111], hybrids can be foundwere heuristic methods are coupled with multi-objective continuation methods.
For MOPs where the objective functions are continuously differentiable, the use of gradientinformation seems to be a natural choice. However, due to the local nature of gradientinformation, its combination with a global search engine such as a meta-heuristic is an obviouschoice. In fact, several researchers [53, 14, 130, 8, 59] share the opinion that the combinationof gradient-based methods and MOEAs can boost performance. They have proposed someideas regarding how to combine these two pieces of information (i.e., the fitness functioninformation of the MOEA and the gradient-based information), but the research in this areais still scarce.In [8, 9, 14, 42, 53], the idea of moving a particular solution toward a special improvementdirection is used. The goal is to find a descent direction in the multi-objective case equivalentto the role played by the gradient of a function in the single-objective case. In order to dothis, these authors combine the gradient of each objective function in different ways: Fliege[42] introduced, in 2000, a method called Steepest Descent Direction which uses a definitionof the Multi-objective Gradient (MOG). Fliege’s method implies solving a certain quadratic-programming problem involving the Jacobian matrix of F. This method works for convex Paretofronts as well as for concave Pareto fronts. Later, Bosman and de Jong stated in [8] that theproblem of finding an improvement direction for the multi-objective case is indeed a multi-objective problem as well. Therefore, the solution (i.e., the “multi-objective gradient”) mustbe a set of movement directions in which some of the objective functions, from the originalMOP, decrease simultaneously while the others can either decrease or just maintain thesame value. In other words, the aim is to find a set of descent directions rather than a singleone. After that, Bosman and de Jong proposed an analytical way to calculate this set ofdirections. Their method only requires a few matrix operations and the solution of a linearoptimization problem. Once the set of descent directions is settled, one of such directionsis randomly selected. The method mentioned above is called Combined-objectives Repeated
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Line Search (CORL) in [8]. A later improvement for CORL (by combining it with other criteria)can be found in [9]. In both cases, the hybridization of CORL is made with an estimation
distribution algorithm (EDA) called MIDEA [10] in the following manner: At the end of thegenerational cycle, i.e., after the variation operators have been applied, they choose a specificset of individuals to be moved by CORL. Thus, they obtain an improvement on the fitnessfor each one of them. The results reported in [8] regarding the best way to choose a setof individuals are inconclusive. Also, CORL has problems, according to Harada et al. [53],when looking for feasible descent directions in certain MOPs, and also when increasing thenumber of objective functions.An alternative to the previous approach was proposed by Harada et al. [53]. They usedthe ideas introduced by Fliege [42] to build what they called the Pareto Descent Method(PDM). These researchers proposed PDM as an option to deal with particular constrainedMOPs, when the solution lies on the boundary between the feasible and the infeasibleregions. In these cases, it is necessary to find a different descent direction. The complexityof PDM is polynomial—as its authors refer—because the basic operations of this methodconsist of solving systems of linear equations. PDM assumes MOPs with no local Paretofronts. Harada et al. [53] compare PDM with CORL and with a simple weighted linearaggregating function. They also evaluate a randomized generator of solutions, similar to themutation mechanism used in the Evolution Strategies, and they conclude that this methodis the worst performer. PDM does not show dramatic improvements over the other methods,except in the specific case when CORL has trouble (on a three-objective problem). In thisparticular situation, PDM does not obtain a set of descent directions—as CORL does—butit offers a good alternative. There is no hybrid algorithm based on PDM; this is left bythe authors [53] as future work. In the same paper, the authors stated that their method hasscalability issues when more than three objectives are used.Brown and Smith [14] revised and emphasized the concept of the descent cone which isconformed by the intersection of the negative half-spaces (generated by the gradients) overall the objective functions. Brown and Smith proposed that the offspring, in a particularMOEA, must lie inside this cone; however, they do not propose a full algorithm. A procedureto approximate the gradient of the objective functions using neighborhood information is alsointroduced in [14]. According to its authors, that method reduces the computational cost ofcalculating the Jacobian matrix in Fliege’s method. However, further testing and analysis aremissing in order to apply the method.The main problem of using an improvement direction is that it is impossible to knowbeforehand for how long a certain direction will be useful. Evidently, it makes sense to followthis promising descent direction as long as it remains as a good search direction. However, inproblems with a very irregular geometry in the search space, the ‘better’ descent direction willbe constantly changing. Thus, this issue remains as an important drawback when adoptinggradient-based information. A particular drawback in Fliege’s methods—on which [14], [53]and [8] are based—is that it has a slow convergence rate [14], and it is susceptible to gettingtrapped in local (i.e., false) Pareto fronts.
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In [130], Shukla introduced the use of two stochastic gradient-based techniques to improvethe mutation mechanism of the NSGA-II. These two techniques are Schäffler’s stochasticmethod [107] and Timmel’s [137] method. Both hybrid algorithms were competitive in somemodified versions of the well-known ZDT test problems, outperforming the plain NSGA-II.The ZDT4 problem, however, could not be properly solved by any of these hybrids. Onlythe NSGA-II was able to converge to the true Pareto front of ZDT4, since all the hybridsgot trapped in local Pareto fronts. It is clear that the hybrids proposed by Shukla arerelatively straightforward approaches that could be easily improved, but they also illustratethe local nature of the gradient-based information and its possible limitations. Additionally,Schäffler’s method requires a huge number of objective function evaluations, which is animportant drawback, if we consider that the main aim of using gradient-based information isprecisely to reduce the overall computational cost of a MOEA.
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“Where there is matter, there is geometry.”Johannes Kepler 3The Geometry of Multi-objective Problems:A Gradient-based Approach
Gradient-based information can not be used in a straightforward way when solving a MOP.The main reason for this situation is that the gradients of the objective functions typicallypoint toward different directions—due to the fact that the objective functions were originallyin conflict each other. This bring us back to the task of finding a common improving directioninto a MOP, again.In this chapter, we look into the geometry induced by the objective function gradients, onthe context of MOPs. The goal is to study descent directions acting simultaneously for allthe objectives. Important implications of this point of view are also discussed throughout thischapter.
3.1 Descent Cones and Multi-objective Descent Directions
Descent cones geometry was first used in the multi-objective evolutionary context by Brownand Smith [14, 15]. The implications from their study became the basis of further proposals toobtain movement directions when performing multi-objective LS (see for example [8] and [86]).In a general sense, descent cones constitute the main tool to understand the local behaviorof gradient-based methods dealing with MOPs. In the following, we state the main conceptsand introduce the notation required for further discussion.Let f1, . . . , fk : Rn → R be continuous and differentiable, and 〈·, ·〉 denote the standardinner product in Rn. Let also

∇fi(x) = [∂fi(x)∂x1 , . . . , ∂fi(x)∂xn

]
be the gradient of the function fi at x. It is well known, and easy to prove1 that −∇fi(x)points to the maximal decreasing direction for fi at x (see Figure 3.1).

1Assuming unitary vectors, the directional derivative of fi at x regarding direction ν ∈ Rn is given by
〈∇fi(x), ν〉 = ||∇fi(x)|| · ||ν|| · cos θ, and it gets its more negative value when the coplanar angle θ between
∇fi(x) and ν is Π, i.e., when the vectors point toward opposite directions.
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∇f (x)
x

−∇f (x)
minimum

Figure 3.1: The negative of the gradient leads to the maximal decrement direction for aspecific function fi, in a particular point x.
Then, for each x ∈ Rn, and assuming ∇fi(x) 6= 0 for i ∈ {1, . . . , k}, we define:

Hx,i = {ν ∈ Rn : 〈∇fi(x), ν〉 = 0},
H+
x,i = {ν ∈ Rn : 〈∇fi(x), ν〉 ≥ 0},

and
H−x,i = {ν ∈ Rn : 〈∇fi(x), ν〉 ≤ 0}.

Since the set Hx,i is the orthogonal complement of the vector ∇fi(x), it is in general ahyperplane—set of dimension (n−1)—of Rn; also, it divides the space in two n–dimensionalsets (half spaces) H+
x,i and H−x,i, as it is shown in Figure 3.2).

Definition 3.1.1 We denote

Cx (−,−, . . . , −) = k⋂
i=1 H

−
x,i. \ {0 ∪ {∩ki=1Hx,i} }

as the descent cone pointed at x (see Figure 3.3). Similarly, the ascent cone is defined as

Cx (+,+, . . . ,+) = k⋂
i=1 H

+
x,i. \ {0 ∪ {∩ki=1Hx,i} },
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Figure 3.2: This figure shows the space division, into H+
x,i and H−x,i, induced by the gradientof the function fi at the solution x.

Figure 3.3: This figure shows the ascent cone Cx (+,+), the descent cone Cx (−,−), and thediversity cones Cx (+, −) and Cx (−,+), for a certain point x, on a two-objective problem.
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and the diversity cones are the intersections that contain at least one hyperplane of the form
H+
x,i and at least one of the form H−x,j , for any i, j ∈ {1, . . . , k}.

When having k objective functions of a MOP, each function fi determines a gradient vector
∇fi and a hyperplane Hx,i for a certain solution x. Then, the presence of these k hyperplanesdivides the space Rn into 2k , or less, subspaces. Summarizing, for each point x, the searchspace is divided into one descent cone, one ascent cone and several diversity cones—as theywere previously named in [14]2.The interior set of the descent cone, which is of certain importance in practice, can beexpressed as

Im(JF (x)) ∩ Rk(−), �� ��3.1where R(−) is the set of strictly negative real numbers, Im(JF (x)) consists of the image of thelinear mapping given by JF (x), and JF (x) is the Jacobian matrix of the function F at x describedby:
JF (x) =

 ∂f1
∂x1 , . . . , ∂f1

∂xn..., ... ...
∂fn
∂x1 , . . . , ∂f1

∂xn

 .
�� ��3.2

Descent cones describe the dynamics of the search from a directed-by-gradient pointof view. This has several important implications (see for example the results presented inSection 3.5) that are useful when building local search operators for searching algorithmsover real numbers. For a particular point x, the descent cone size is determined by theconfiguration of the objective gradients. To illustrate this, Figure 3.4 shows the differentstages of this configuration: when the gradients are mostly aligned, case (e), the size of thecone is almost 50% of the space, being very likely to improve the solution by applying a smallperturbation—in this particular stage getting a better point is almost as simple as in thecase of minimizing one single function. On the contrary, when the gradients are positionedin opposite directions, case (a), the descent cone size decreases. This latter case occurs, forexample, in most of the Pareto set vicinity.The above analysis could explain why MOEAs have a good performance at the beginningof the search, and a slow convergence rate at latter stages—when points are near to thePareto front and the chance of generating stochastically better points (near to the parents)is reduced. This observation inspires guidelines for a suitable hybridization; if it is possibleto identify when the evolutionary search is no longer producing good results, this is then thetime when the gradient-based LS can take part of the process—in order to certainly improvesolutions in a deterministic way.Improving solutions implies performing movements in specific search directions. In MO,as we have noticed, these directions should be able to (at least locally) lead toward better
2In [14] the descent cones are defined, for illustrative purposes, by pictures of the corresponding affinehyperplanes described here. We are stating the formal definitions using no affine hyperplanes just to beconsistent with our approach.
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(e)

(a)

(c)

(b)
−∇f1(x)

−∇f2(x)
−∇f1(x)

−∇f2(x)
−∇f1(x)

−∇f2(x)

−∇f1(x)
−∇f2(x) −∇f2(x)

−∇f1(x)

(d)
Figure 3.4: This figure shows the dynamics of descent cones induced by the configuration ofthe gradients, assuming a two-objective problem over R2.
solutions regarding all the functions simultaneously. i.e., the new point is expected to dominatethe original one. This is formally said by the following definition.
Definition 3.1.2 A vector ν ∈ Rn is called a multi-objective descent direction of the point
x ∈ Rn if

ν ∈ Cx (−,−, . . . , −).In other words, a multi-objective descent direction is such that the directional derivativeswith respect to ν in x are non-positive, i.e. 〈∇fi(x), ν〉 ≤ 0 for all i ∈ 1, . . . , k without
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allowing them to be all equal to zero. This means that if we perform a small movement over
ν, we obtain a local improvement (decrease) simultaneously for all the objective functions. Inthe following section, we present a result for the construction of a descent direction in thesimplest multi-objective case: two objectives.
3.2 A Simple Descent Direction Suitable for Two-objective Prob-

lems
The simplest way to combine two gradients, in order to get a common descent direction,is by a vector sum. This fact has been already observed (e.g. [33]) but it has not beenexploited in memetic algorithms yet. The following result shows the way this couplingworks. Unfortunately, Proposition 3.2.1 cannot be generalized for more than two objectivefunctions—we explain this in detail further in this section; for that case, the application ofother approaches (see Section 3.3) is necessary to obtain the descent direction—even whenthis represents a higher computational cost.
Proposition 3.2.1 Let x ∈ Rn, and f1, f2 : Rn → R define a two-objective MOP. If ∇fi(x) 6=0, for i = {1, 2}, then the direction

∇x = −( ∇f1(x)||∇f1(x)|| + ∇f2(x)
||∇f2(x)||

)
,

�� ��3.3

where || · || = || · ||2, is a descent direction at x for the MOP.

Proof: Let us denote ∇i := ∇fi(x)
||∇fi(x)|| for i = {1, 2}, and θ be the angle between ∇1 and

∇2. Then
〈∇x ,∇1〉 = 〈−(∇1 +∇2),∇1〉=− 1 (〈∇1,∇1〉+ 〈∇2,∇1〉)=− 1 (1 + ||∇2|| ||∇1|| cos(θ))=− 1− cos(θ)

≤ 0. �� ��3.4

Similarly, 〈∇x ,∇2〉 ≤ 0; then, ∇x is a descent direction of the point x for the definedMOP. �Notice that in case ∇fi(x) = 0, the point x is a KKT point. It is also important to notethat normalizing the gradients is crucial for the result below; see Figure 3.5 for an example.One of the main issues when using gradient-based tools is how to balance the compu-tational cost of the method with the achieved improvements. The currently available MOEAsthat use descent directions as LS engines have two sources of computational cost: one is
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Figure 3.5: This figure illustrates that proposition 3.2.1 does not hold for unnormalized vectors.Here the computed direction −s lies outside the descent cone.
associated to the fitness function evaluations required to estimate the gradients and to performthe line search. The second source is related to the computation of the descent directionitself. This proposal has the advantage of having no cost for the computation of the descentdirections—apart from the cost of approximating the gradients. We claim that this procedureis the simplest way to combine the gradients of two functions; but, it can not be generalizedto more than two functions since the arithmetic combination of them does not produce descentdirections in general. This is shown in the next example:
Example 3.2.1 Assuming a three-objective MOP such that, for a certain x,

∇f1(x) = (1.000, 1.000, 1.000)
∇f2(x) = (−0.944, 0.970, 0.374)
∇f3(x) = (0.836, −0.177, −0.334),

computing

∇x = −
(
∇f1(x)
||∇f1(x)|| + ∇f2(x)

||∇f2(x)|| + ∇f3(x)
||∇f3(x)||

) �� ��3.5

= (−0.3826, −0.5262, −0.3730) �� ��3.6

leads to
〈∇x ,∇1〉 = −1.2818 < 0.
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〈∇x ,∇2〉 = 0.4423 > 0.
〈∇x ,∇3〉 = −0.2889 < 0.

with ∇i := ∇fi(x)
||∇fi(x)|| for i = {1, 2, 3}. Then ∇x is not a common descent direction.

Some proposals have recently been made to compute multi-objective descent directions.The greedy approaches [42] and [107] are successful but could lead to bias in presence ofunbalanced gradient magnitudes. Since computing a gradient-based descent directions for aMOP leads again to solving a MOP, unbiased computations have been presented based onthe calculation of the whole Pareto set of descent directions [8][53]. Both approaches haveadvantages and drawbacks that are worth studying. All these methods use first order gradientinformation and require solving a linear optimization problem for each computed direction.The following section covers this subject in detail.
3.3 Current Approaches
When using gradient information within a MOEA, the final hybrid algorithm is able toperform directed accurate movements, towards an improved solution, using multi-objectivedescent search directions (as it was shown in [42] [107] [53] [8]). Computing such directions isalso a MOP [8]. Since each objective provides its own (gradient-based) range of movementsfor descent, all of these possible directions need to be properly combined into a single onein order to guide a MOEA. The most commonly used proposals for computing multi-objectivedescent directions are the one from Fliege [42] and the one from Schäffler et al. [107].These methods return a common descent direction for all the objectives after solving a linearoptimization problem. These approaches have been already incorporated into multi-objectivememetic strategies [129], [83], [86]. Their main drawback is that, being greedy methods used toperform descents, they can present a bias in case of unbalanced magnitudes of the gradients.However, these methods present some advantages, like having an intrinsic stopping criterionand being effective in practice.As an unbiased alternative, it is possible to use normalized gradients and work with theproposals developed by Bosman and DeJong [8], and by Harada et al. [53]. These methodslook into the whole Pareto set of descent directions and choose (randomly) one directionwithin it. The cost of this approach is again related to solving a system of linear equations.
Schäffler, Schultz and Weinzierl’s DirectionThis method (SSW), presented in [107], consists of two components. The first part generatesa better individual, calculated in a deterministic way; while the second part adds a stochasticcomponent to move the individuals along the entire Pareto front, in a certain sense. Someparts of this method have been naively used [130], to replace the mutation operator of aMOEA, generating in this way a new better individual from one element of the population.
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In this work, we also pay attention to the first part of the method, in order to generate anew individual—which will be better than another individual from the population. Our ideais that the stochastic component of the process will be fulfiled by the MOEA itself whichwe are hybridizing. This mentioned method uses the following theorem to obtain a descentdirection:
Theorem 3.3.1 Given a MOP (F) as in (2.1), in page 7, and q : Rn → Rn be defined by

q(x) = k∑
i=1 α̂i∇fi(x),

�� ��3.7

where α̂ is a solution of

min
α∈Rk

{
||

k∑
i=1 αi∇fi(x)||22; αi ≥ 0, i = 1, . . . , k, k∑

i=1 αi = 1} ,
�� ��3.8

then either q(x) = 0, or it is the case that −q(x) is a descent direction for F at x.

Fliege’s ApproachLet JF (x) be the Jacobian matrix of F and R(−) the set of negative real numbers. Then, anecessary condition [42] for the point x ∈ Rn to be a local Pareto point is that the followingequality range(JF (x)) ∩ Rm(−) = ∅ �� ��3.9holds. The above expression means that if we have a point x which is not dominated byany other point in a certain neighborhood, in a Pareto sense, then it is not possible that adirection v exists, for which the directional derivative of each fi could be negative—whichwould turn it into a descent direction.Setting the above in terms of our purposes, we will assume that a solution x should beimproved during the solution of a real-valued minimization MOP. Then, if x is not a criticalpoint for the MOP, it is possible to choose a descent direction v which fulfills
JF (x)v ∈ Rm(−).If this is the case, v can be computed using the information provided by the Jacobian of theproblem evaluated on x . As Fliege presents in [42], it is necessary to solve the followingquadratic programming problem:

Minimize α + 12 ||v ||2 �� ��3.10

subject to (JF (x)v )i ≤ α, for all i ∈ {1, . . . , m}.
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The above problem produces a solution
(v∗, α∗), �� ��3.11

where the descent direction that we are looking for is v∗. After having3 x1 = x + tv , we arein condition to repeat the movement by calculating a new descent direction from x1 or, if thisis not possible, we can assume that a critical point has been achieved.This method, constructed by Fliege, automatically triggers a condition to know if x1 fulfillscondition (3.9), which is the case when α∗ = 0. In practice, it is necessary to set a toleranceparameter τ, τ < 0 to stop the descent when τ ≤ α∗ holds; note that by construction
α∗ ≤ 0.Several ways to calculate descent directions have been proposed [107, 8, 9, 14, 53]. Astudy of the efficiency of each method is subject of ongoing research. But, descent directionsare not the only interesting directions during the search; sometimes it is also necessary toperform movements along the Pareto front, or specifically directed towards a particular region.We will discuss this idea in the following chapters.
3.4 Optimality Conditions
The optimality conditions to decide whether a point could be a Pareto point, of a MOP, havebeen commonly studied since their introduction in 1951 [81]. In case all the objectives ofthe MOP are differentiable, the following famous theorem of Kuhn and Tucker [80] states anecessary condition for Pareto optimality for unconstrained MOPs.
Theorem 3.4.1 Let x∗ be a Pareto point of (MOP), then there exists a vector α ∈ Rk with
αi ≥ 0, i = 1, . . . , k , and

∑k
i=1 αi = 1 such that

k∑
i=1 αi∇fi(x∗) = 0. �� ��3.12

According to this theorem, the vector of zeros can be written as a convex combination of thegradients of the objectives at every Pareto point. It is worth to notice that holding Condition(3.12) is not sufficient for claiming Pareto optimality; but, those points satisfying (3.12) arecertainly ‘Pareto candidates’.
Definition 3.4.1 A point x ∈ Rn is called a Karush–Kuhn–Tucker point4 (KKT–point) if there
exist scalars α1, . . . , αk ≥ 0 such that

∑k
i=1 αi = 1 and that equation (3.12) is satisfied.

3With t a suitable step length.4Named after the works of Karush [73] and Kuhn & Tucker [80].
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3.5. DESCENT CONES FOR MOPS WITH K > 3
3.5 Descent Cones for MOPs with K > 3
This section is included in order to study, from the descent-cones point of view, the role ofincreasing the number of objectives of a MOP. The term many-objective problem [38] refersto a MOP with more than three objective functions. The special interest for investigatingMany-objective problems comes from observations about degradation of MOEAs performancewhen dealing with them.The following comments are part of the work described in [121] where the influence ofthe number of objectives is investigated to understand if this is the mere cause of degradationin MOEAs performance for many-objective problems. The main conclusion in that work isthat the addition of an objective does not make a problem per se harder. In that study,we investigate the influence of the number k of objectives in a MOP on the hardness ofthe problem when solving it by evolution strategies. For this, we have utilized the descentcones which can be used to measure the probability to improve a solution by the generationaloperators. Though these considerations are of qualitative nature and can hardly be quantified,they help to a certain extent to understand the behavior of the population’s evolution withrespect to k. As an example, we have considered a class of uni-modal test functions and haveinvestigated the resulting models qualitatively and empirically. Qualitative studies based onthe descent cones led to the conclusion that, on the one hand, the addition of an objectivemakes the problem indeed harder, but, on the other hand, it can be argued that the differenceis not significant, which is, later on, empirically validated. That is, it can be argued that theaddition of an objective to a MOP does not make the problem per se harder. In contrastto this, many researchers have so far observed a certain scalability in the hardness of theproblem with respect to k, albeit for more complex models. Based on our considerations onthe uni-modal models we have tried to identify the challenges which have to be masteredby evolution strategies for general models: the ability to keep “good” solutions in order topull the population toward the set of interest, the probability to improve an individual, andthe multi-modality of the MOP. This together with the qualitative discussions included in[121] can be used to a certain extent to explain recent advances in the field of evolutionarymany-objective optimization. The importance of such analysis lies on the possibility thatthose insights into the geometry of MOPs may help researchers in the field of evolutionarycomputation for further developments of efficient specialized algorithms, particularly whendealing with many-objective problems.

31





“Turn away with fear and hor-ror from this lamentable plague ofcontinuous functions that do nothave a derivative.”Charles Hermite 4Gradient-based Local Search for MOPs
4.1 Local Search and Search Directions for MOPs
When used in optimization processes, LS explores the solution space in a fine-grained way.The traditional tool to perform LS for continuous search spaces is the gradient of the objectivefunction (see Figure 3.1). There are several well-known methods available for single-objectiveoptimization, which have been successfully used during the last decades [96, 138, 101]. Aswe have noticed before, in the presence of several objective functions we have to deal withseveral gradients—one for each objective. Some gradient-based hybrid MOEAs have beenbuilt to perform descent movements alternating the single gradient of each objective function[44, 56], and this could have certain application when preferences management is required.However, when seeking for a general purpose local searcher, for continuous multi-objectiveproblems, our focus lies on using simultaneously all the gradients. In the case of lookingfor better solutions in the Pareto sense (i.e. xi+1 ≺ xi) descent directions, as described inChapter 3, are suitable. Improving solutions by descent directions, in LS, has two advantagesin the evolutionary multi-objective context: it is a reliable way to refine the final results whenused at the end of the search; and second, the possibility of leading the search with “bettergenes” in order to “pull” the population toward the optimum in a faster manner.Descent directions are not the only useful movement directions for multi-objective search.Moving along the Pareto set is also possible using gradient-based continuation methods, suchas those in [58] [119] [52], or those where estimation of the gradient is not necessary, as in[86]. Furthermore, it is possible to perform directed movements not only towards and along thePareto front, but also to any desired direction in the objective space. To summarize, alternativesearch directions are advisable because in multi-objective search the term ‘promising region’depends on the goal at the time, i.e., in some moments the proximity to the front is necessarybut in others a movement to spread the solutions is advisable.In the rest of this chapter, we look deeply into the calculation of multi-objective gradient-based search directions. The study of this subject is necessary when hybridizing MOEAswith LS. We analyze the cost and differences of our procedures, and study some aspectsregarding the parameters for its practical implementation. We also show some examples topoint out the use of these strategies, and present some experimental results for comparison.Some considerations to take into account when hybridizing MOEAs with these operators are
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CHAPTER 4. GRADIENT-BASED LOCAL SEARCH FOR MOPS

presented in Chapter 5.In the following, we present our different proposals in order to build local searchers withalternative multi-objective search directions: The Hill Climber with Side-step in Section 4.2,which combines two kind of movements, and the recently proposed Directed Search Methodin Section 4.3 (page 52).
4.2 The Hill Climber with Sidestep Operator
The Hill Climber with Side Step (HCS) was proposed in [86] as a novel point-wise iterativesearch procedure, which is designed to perform LS in a given MOP. Being a local searcher,the HCS is intended to be capable of moving both toward and along the set of Pareto points,1depending on the location of the current iterate. The HCS operator has an automatic criterion(based on the descent cone size and the KKT conditions) to switch between the two types ofmovements. Two variants of the HCS have been proposed: A gradient-free version denotedhere as HCS1—also presented as an early version in [126]—and one, denoted here as HCS2,that exploits (first and second order) gradient information. Both can be used as standalonealgorithms to explore parts of the Pareto set, starting with one single solution, and both areable to handle constraints of the model to some extent. In the following we will explain thetwo versions of the HCS as standalone algorithms.
4.2.1 HCS1 procedureThe HCS1 assumes that the objective gradients are practically aligned, in particular, whenthe initial point is far away from the optima. In this case the descent cone is almost equalto the half-spaces associated with each objective;2 we can say that the descent cone is ‘big’,since the chance of randomly generating a direction/solution which simultaneously improvesall the functions is high (see Section 3.1, page 21). Figure 4.1 shows randomly generatedpoints in these two cases; it illustrates this observation to contrast with the situation whenthe point x is near to some regions of the Pareto set. In this second case, the gradientsare almost linearly dependent, which means that the descent cone shrinks down; then, theprobability of randomly generating a better point (i.e., a point inside the descent cone) is low.According to the comments above, the HCS1 starts with an initial point x0, and the nextiterate x1 is randomly chosen from a vicinity B(x0, r) with radius r.3 If x1 ≺ x0 the movementdirection for improvement is set as ν = x1 − x0; if x0 ≺ x1, then the direction is flipped, i.e.,
ν = x0 − x1.When a solution is near to a Pareto point, the probability of generating a dominatedor a dominating point—like in the case above—is low (see Figure 4.1). So, when x̃1 isnot comparable against x0, the point is stored, and labeled, as a point which corresponds

1Due to the nature of gradients, we can only guarantee local optimality.2This observation was first noticed in [15].3B(x0, r) := {x ∈ Rn : x0,i − ri ≤ xi ≤ x0,i + ri, ∀i = 1, .., n}.
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4.2. THE HILL CLIMBER WITH SIDESTEP OPERATOR

Figure 4.1: The configurations for descent cones at points near and far from the Pareto setare shown in this figure. The trial points illustrate how likely is to reach descent conesaccording to the proximity to the optima. For illustration purposes, the affine hyperplanesand the translated cones at the solution point are shown.
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CHAPTER 4. GRADIENT-BASED LOCAL SEARCH FOR MOPS

to a specific diversity cone; then, a new trial point is generated. After Nnd trials obtainingmutually non-dominated solutions, the proximity to the optima is assumed and this triggersa ‘side step’ movement over the Pareto front.To perform this side step movement, the stored points x̃1, . . . x̃Nnd are used in the followingway: Assuming a two-objective problem, for example, if x̃1 − x0 is in the cone C (+, −), then
x0− x̃1 is in the opposite cone C (−,+) (for the two-objective MOPs, the general k-objectivecase is analogue). When the limit for unsuccessful trials is reached, a search along C (−,+)is performed; taking advantage of the accumulated information, the following direction is used:

vacc = 1
Nnd

Nnd∑
i=1 si

x̃i − x0
||x̃i − x0|| ,

�� ��4.1

where
si = { 1 if f1(x̃i) < f1(x0).-1 otherwise. �� ��4.2

By construction, vacc is in C (−,+), and by averaging the trial search directions we aimto obtain a direction4 which is ideally ‘perpendicular’ to the (small) descent cone. Notethat in this case vacc is indeed a ‘side step’ to the upward movement of the hill climbingprocess as desired, but this search direction does not necessarily have to point along thePareto set (we present with HCS2 an alternative method with better guidance properties).Also, there is no guarantee that vacc indeed points to a diversity cone, but even if that isnot the case, there will be an improvement on the solution, anyway. This means that, evenwith these two considerations, this side step is still a good option in practice, when workingwith few objectives or when coupling the operator with evolutionary methods. For more thantwo objectives the strategy is similar, but we should notice that the possibilities for the sidedirection increase. For example, for k = 3 there are six diversity cones which form threegroups by reflection as follows:
C (+, −,−) and C (−,+,+),
C (+, −,+) and C (−,+, −),
C (+,+, −) and C (−,+,+).

�� ��4.3

For a general k it is possible to make 2k−1 − 1 different groups, being less likely to find aperpendicular direction, due to averaging Nnd trials, within one of these cones. Alternatively,one can e.g., use the accumulated information by taking the average search direction over allsearch directions only using Formula (4.1) with s = 1.Algorithm 4 shows the pseudocode of the HCS1 algorithm as a standalone process. Thevalue of i0, chosen at random for simplicity, determines the side step direction (see line 5and lines 15-20). For illustration purposes, we explain here the two-objective case: in order
4This direction has previously been proposed as a local guide for a multi-objective particle swarm algorithmin [13].
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4.2. THE HILL CLIMBER WITH SIDESTEP OPERATOR

Require: starting point x0 ∈ Q , radius r ∈ Rn+, number Nnd of trials, MOP with k = 2
Ensure: sequence {xl}l∈N of candidate solutions1: a := (0, . . . , 0) ∈ Rn2: nondom := 03: for l = 1, 2, . . . do4: set x1

l := xbl−1 and choose x2
l ∈ B(x1

l , r) at random5: choose i0 ∈ {1, 2} at random6: if x1
l ≺ x2

l then7: vl := x2
l − x1

l8: compute tl ∈ R+ and set x̃nl := x2
l + tlvl.9: choose xbl ∈ {x̃bl , x1

l } such that f (xbl ) = min(f (x̃nl ), f (x1
l ))10: nondom := 0, a := (0, . . . , 0)11: else if x2

l ≺ x1
l then12: proceed analogous to case ”x1

l ≺ x2
l ” with13: vl := x1

l − x2
l and x̃nl := x1

l + tlvl.14: else15: if fi0 (x2
l ) < fi0 (x1

l ) then16: sl := 117: else18: sl := −119: end if20: a := a+ sl
Nnd

x2
l −x1

l
||x2

l −x1
l ||21: nondom := nondom+ 122: if nondom = Nnd then23: compute t̃l ∈ R+ and set x̃nl := x1

l + t̃la.24: nondom := 0, a := (0, . . . , 0)25: end if26: end if27: end for Algorithm 4: HCS1
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Figure 4.2: This figure shows the performance of HCS as a standalone algorithm on Example2.1.1. The ‘anchor’ picture shows an approximation of the Pareto front, built using the steeringmechanism previously described.
to introduce an orientation to the search, i0 is fixed to 1 for the initial iteration steps. Whenthe side step (line 23) has been performed Ns times during the run of an algorithm, thisindicates that the current iteration is already near to the (local) Pareto set, and this vectoris stored in xp. If no improvements can be achieved, according to f1, within a given number
Ni of side steps, the HCS ‘jumps’ back to xp, and a similar process is started but aiming forimprovements according to f2. That is, i0 is set to −1 for the following steps (see Figure 4.2).When no improvements can be achieved according to f2 within another Ni side steps along
C (+, −), the process is stopped. It is worth to notice that more attention has to be paidfor the computation of tl (see Section 4.2.3, page 41). For the experiments presented here, astrategy analogous to [34] was used.Finally, we notice that some parameters are involved in the realization of Algorithm 4;however, only the values for four design parameters have to be chosen—they are shownin Table 4.1. The parameter r defines the neighborhood search of the procedure. Thisneighborhood is used to find a search direction which is afterwards coupled with a stepsize control. Because of this, the value of r is not that important, but it should be ‘small’to guarantee the locality of the search. Nnd is the value which determines the number ofdirections that have to be averaged, in order to choose the side step direction. In general, alarger value of Nnd leads to a ‘better’ side step (in the sense that the search is performedorthogonal to the upward movement), but will in turn increase the cost of the search. We haveexperienced that a low value for Nnd , in particular 5 ≤ Nnd ≤ 10, already gives satisfactoryresults; the ‘accuracy’ of the search does not seem to influence the performance of the HCS(considering that neither first or second order information is used). The value of εy is problem
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4.2. THE HILL CLIMBER WITH SIDESTEP OPERATOR

Table 4.1: Design parameters that are required for the realization of HCS1.
Parameter Descriptionr Radius for neighborhood search (Al-gorithm 4).

Nnd Number of trials for the hill climberbefore the side step is performed (Al-gorithm 4).
εy Desired distance (in image space) forthe side step, see Eq. (4.9).tol Tolerance value used for the back-tracking in Algorithm 7.

dependent but can be given quite easily in a real world application (see discussion abovethe equation (4.9)). Finally, the tolerance value tol is also problem dependent, and has tobe adjusted for constrained MOPs, like in every other algorithm which deals with constraints(see Section 4.2.4, page 45, for the explanation on constraint management).
4.2.2 HCS2 procedureWhen gradient information is explicitly available, the search directions for the HCS can becomputed more precisely. We describe in the following, a possible realization of the HCSusing the descent direction presented in [107]. First, using Theorem 3.3.1, a descent direction
−q(x) is computed. If q(x) = 0, then the point x should be a KKT–point. This implies that atest for optimality is automatically performed when computing the descent direction for a givenpoint x ∈ X. In other words, for every point x ∈ X, which is not a KKT–point, a descentdirection can be found by obtaining the vector α̂ after solving the quadratic optimizationproblem (3.8).For the numerical treatment of this optimality test, we suggest to set a threshold εP ∈ R+such that in case

||
k∑
i=1 α̂i∇fi(x)||22 ≥ εP,

�� ��4.4

the candidate solution x can be considered to be ‘away’ from P, and thus, it makes sense toseek for a dominating solution. In this case, the descent direction (3.7) can be taken togetherwith a suitable step size control (see Section 4.2.3). If the value of the term in (4.4) is lessthan εP , this indicates that x is already in a certain vicinity of P. In that case one can leanelements from (multi-objective) continuation methods [58, 3] to perform a search along P.To explain the side step procedure we assume, for simplicity, that a KKT–point x̂ isgiven with its corresponding weight vector α̂ , obtained by solving (3.8). Then the point(x̂ , α̂) ∈ Rn+k is clearly contained in the zero set of the auxiliary function F̃ : Rn+k → Rn+1
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CHAPTER 4. GRADIENT-BASED LOCAL SEARCH FOR MOPS

Table 4.2: Design parameters that are required for the realization of the HCS algorithm whichinvolves gradient information (HCS2).
Parameter Description

εy Desired distance (in image space) forthe side step (4.9)tol Tolerance value used for the back-tracking, see algorithm 7.
εP Threshold for the vicinity test (4.4)

of the given MOP, which is defined as follows:
F̃ (x, α) =


k∑
i=1 αi∇fi(x)
k∑
i=1 αi − 1

 .
�� ��4.5

It has been shown in [58], that the zero set F̃−1(0) can be linearized around x̂ by using aQU-factorization of F̃ ′(x̂ , α̂)T , i.e., the transposed of the Jacobian matrix of F̃ at (x̂ , α̂). To bemore precise, given a factorization
JF̃ (x̂ , α̂)T = QU ∈ R(n+k )×(n+k ), �� ��4.6

where Q = (QN , QK ) ∈ R(n+k )×(n+k ) is orthogonal with QN ∈ R(n+k )×(n+1) and QK ∈
R(n+k )×(k−1), the column vectors of QK form—under some mild regularity assumptions on
F̃−1(0) at (x̂ , α̂), see [58]—an orthonormal basis of the tangent space of F̃−1(0). Hence, itcan be expected that each column vector qi ∈ QK , i = 1, . . . , k − 1, points (locally) along
P and it is, then, well suited for a side step direction.Algorithm 5 presents a procedure which is based on the above discussion. Note that this isone possible realization and that there exist certainly other possible ways leading, however, tosimilar results; for instance, alternatively to the descent direction used in Algorithm 5 the onesproposed in [42] and [10] can be taken. Besides, the movement along P can be realized bypredictor-corrector methods [58, 3] which consists roughly speaking of a repeated applicationof a predictor step obtained by a linearization of F̃−1(0) and a corrector step which is done viaa Gauss-Newton method. Regarding the design parameters of the algorithm, εy and tol areas discussed above and Nnd and r are not needed due to the accuracy of the gradient-basedsearch; also, the threshold εP is used for the vicinity test of a given P. This value is certainlyproblem dependent, but can be made ‘small’ due to the convergence properties of the hillclimber (e.g., [42]).
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4.2. THE HILL CLIMBER WITH SIDESTEP OPERATOR

Require: starting point x0 ∈ Q
Ensure: sequence {xl}l∈N of candidate solutions1: for l = 0, 1, 2, . . . do2: compute the solution α̂ of (3.8) for xl.3: if ||

∑k
i=1 α̂i∇fi(xl)||22 ≥ εP then4: νl := −q(xl)5: compute tl ∈ R+ and set xl+1 := xl + tlνl6: else7: compute F̃ ′(x̂ , α̂)T = (QN , QK )U as in (4.6)8: choose a column vector q̃ ∈ QK at random9: compute t̃l ∈ R+ and set xl+1 := xl + t̃lq̃.10: end if11: end for Algorithm 5: HCS2

4.2.3 Step size calculationOnce the movement direction is set, the next step is to determine the step length to advancein this direction. Here we describe the procedure to compute the step sizes of the HCS forboth, the hill climber and the side step movement. This procedure is applied for the twopresented versions of the HCS5.
Step size for movements toward the front (hill climber)When starting the movement we assume having a descent direction ν; or alternatively, thattwo points are given, namely x0, x1 ∈ Rn, such that x1 ≺ x0. In this latter case, there existsa subsequence {i1, . . . , il} ⊂ {1, . . . , k} with

fij (x1) < fij (x0), j = 1, . . . , l,
and thus, ν := x1 − x0 is a descent direction for all fij ’s at the point x0.Some strategies can be used to perform the line search (see, e.g., [34, 127]). Nevertheless,one crucial problem is to find a good initial value t∗ for a suitable step size (which is, forexample, given by 1 when using Newton’s method); in case t∗ is not already sufficient, thestep size can for instance be fine tuned by backtracking methods [34]. In this particularinstance, since x1 can be very close to x0, the distance ||x1 − x0|| may not always serveas a good choice; and standard methods to obtain the initial guess do not apply. For thispurpose, we propose the following heuristic to compute t∗ instead. We begin explaining the

5In case of the version with explicit gradients, the step size for the hill climber is easily computed applyingas suggested in [42], which ensures convergence of the procedure, but this is not the most efficient choice inpractice, because it requires too many evaluations.
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CHAPTER 4. GRADIENT-BASED LOCAL SEARCH FOR MOPS

common scalar case, i.e., when a function f : R→ R, and values t0, t1 ∈ R with t0 < t1 and
f (t0) < f (t1) are given. We first define ∆ := t1 − t0,

tl := t0,
tm := t1,and

tr := t0 + 2∆in order to check if
f (tm)− f (tl)
tm − tl

< f (tr)− f (tm)
tr − tm

�� ��4.7

holds. When the above equation is true, f is approximated by a quadratic polynomial6
p(t) = at2 + bt + c; where the values of a, b, and c can be explicitly derived by theinterpolation conditions

p(tl) = f (tl), p(tm) = f (tm), and p(tr) = f (tr),(see [34]). The expression (4.7) tests the convexity of the function p; this is, if the term in(4.7) is true then p is convex (see Figure 4.3 for an example), and thus, it is guaranteed thatthe extreme point of p, obtained by
t∗p = − b2a,is a minimizer and takes its value in (t0,∞). Hence, t∗p can be chosen as a guess for theminimizer of f . On the other hand, if (4.7) is false, this quadratic approximation may not yielda useful result—in fact, in that case t∗p may be negative—and we suggest to check condition(4.7) with the new data

tl := tm, tm := tr,and
tr := tl + tl + 4∆

i.e., doubling the step size for tr . This process will be repeated until the boundary of thedomain ∂Q is reached (in that case, take the maximal step size tmax as described below) or(4.7) is true. The process will stop after a few iterations. If t∗p is too large (i.e., if f (t∗p ) > f (t1)),smaller step sizes can be found via backtracking.
The use of this idea for the multi-objective case is presented in Algorithm 6. Hereby, fν,idenotes the restriction of objective fi to the line x0 + Rν , i.e.,

fν,i(t) = fi(x0 + tν), �� ��4.8

6The idea to approximate f locally by a quadratic polynomial was first proposed by Armijo in [4].
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and quad approx is the method to find the minimizer of the quadratic polynomial, as it wasdescribed above. Note that this step size control differs from the one presented in [126] sincethe initial guesses, as they are described in [126], are restricted to the range
t∗ ∈ ( 0 , 2||x1 − x0||2 ],which may be too small if x1 is near to x0.

Step size for movements along the front (side step)For this case, we assume to have a point x0 ∈ Rn and a search direction a given by
a = Nnd∑

i=1
si(x̃i − x0)
||x̃i − x0||
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Require: x0, x1 ∈ Rn with x1 ≺ x0, maximal number of trials Nmax
Ensure: step size t∗ for the hill climber1: I := {i ∈ {1, . . . , k} : fi(x1) < fi(x0)}2: ν := x1 − x03: ∆ := ||x1 − x0||24: tl := 0, tm := ∆, tr := 2∆5: for j = 1, . . . , Nmax do6: if ∃i ∈ I : (4.7) is true for tl, tm, tr and fν,i then7: for all i ∈ I do8: if (4.7) is true for tl, tm, tr and fν,i then9: t∗i := quad approx(tl, tm, tr, fν,i)10: else11: t∗i :=∞12: end if13: end for14: return t∗ := mini=1,...,k t∗i15: else16: tl := tm, tm := lr , tr := 2 ∗ tr17: end if18: end for19: return t∗ := tmAlgorithm 6: Step size tracking procedure for the HCS (for its two versions).
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(or alternatively the one described in section 4.2.2) with x̃i ∈ B(x0, r), i = 1, . . . , Nnd , andsuch that (x0, x̃i), i = 1, . . . , Nnd , are mutually non-dominating. Then, we propose to proceedanalogously to [125], where a step size strategy for multi-objective continuation methods issuggested: given a target value εy ∈ R+ (i.e., the minimal value which makes two solutionsdistinguishable from a practical point of view), the task is to compute a new candidate
xnew = x0 + t̃a such that

||F (x0)− F (xnew )||∞ ≈ εy.
�� ��4.9In case F is Lipschitz continuous (see [96]), there exists an L ≥ 0 such that

||F (x)− F (y)|| ≤ L||x − y||, ∀x, y ∈ Q.
�� ��4.10

This constant can be estimated around x0 by
Lx0 := ||JF (x0)||∞ = max

i=1,...,k ||∇fi(x0)||1,where JF (x0) denotes the Jacobian of F at x0 and ∇fi(x0) denotes the gradient of the i-thobjective at x0.In case the derivatives of F are not given (which is also considered here) the accumulatedinformation can be used to compute the estimation
L̃x0 := max

i=1,...,Nnd

||F (x0)− F (x̃i)||∞
||x0 − x̃i||∞

,

since the x̃i’s are near to x0.Finally, combining (4.9), (4.10) and using the estimation Lx0 the step size control isobtained by
xnew = x0 + εy

Lx0
a
||a||∞

.
�� ��4.11

These step-size controls were used for the experiments in this, and the following chapter,obtaining competitive results. However, the step size control in multi-objective optimizationis a very complicated problem. This will be later discused in detail in Section 6.1.2, page115.
4.2.4 Constraints managementDuring the run of the search algorithm, it can occur that some of the new iterates are notinside the feasible domain Q . That is to say, we are faced with the situation that x0 ∈ Q and
x1 := x0 + h0ν 6∈ Q , where ν is the search direction. In that case, we propose to proceedanalogously to the well-known bisection method for root finding in order to backtrack fromthe current iterate x1 to the feasible set:let in0 := x0 ∈ Q and out0 := x1 6∈ Q and

m0 := in0 + 0.5(out0 − in0) = x0 + h02 ν.
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If m0 ∈ Q set in1 := m0, else out1 := m0. Proceeding in an analogous way, one obtainsa sequence {ini}i∈N of feasible points which converges linearly to the boundary ∂Q of thefeasible set. One can, for example, stop this process with an i0 ∈ N such that
||outi0 − ini0||∞ ≤ tol,obtaining a point ini0 with maximal distance tol to ∂Q .Algorithm 7 illustrates this described process. Note that by this procedure no functionevaluation has to be spent, though a feasibility test may also be of relevant numerical effortin some cases. In case the domain Q is given by box constraints, i.e., if Q can be written as

Q = {x ∈ Rn : li ≤ xi ≤ ui, i = 1, . . . , n} , �� ��4.12where l, u ∈ Rn with l ≤p u, the backtracking can be performed in one step: given a point
x0 ∈ Q and a search direction ν the maximal step size hmax such that x0 + hmaxν ∈ Q canbe computed as shown in Algorithm 8.
Require: x0 ∈ Q , x1 = x0 + h0ν 6∈ Q , tol ∈ R+
Ensure: x̃ ∈ x0x1 ∩ Q with infb∈∂Q ||b − x̃|| < tol1: in0 := x02: out0 := x13: i := 04: while ||outi − ini|| ≥ tol do5: mi := ini + 12 (outi − ini)6: if mi ∈ Q then7: ini+1 := mi8: outi+1 := outi9: else10: ini+1 := ini11: outi+1 := mi12: end if13: i := i+ 114: end while15: return x̃ := iniAlgorithm 7: Backtracking to feasible region when managing constraints in HCS.

Note that the HCS2 is proposed for the unconstrained case. While an extension to theconstrained case for the hill climber is possible (see, e.g., [42] for possible modifications) thisdoes not hold for the movement along the Pareto set (i.e., the side step). Though it is possibleto extend system (4.5) by equality constraints (e.g., by introducing slack variables to transformthe inequality constraints into equality constraints) this could lead to efficiency problems inthe numerical treatment [58]. Hence, we restrict ourselves here to the unconstrained case.
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Require: feasible point x0 ∈ Q , search direction ν ∈ Rn\{0}, lower and upper bounds
l, u ∈ Rn

Ensure: maximal step size hmax such that x0 + hmaxν ∈ Q1: for i = 1, . . .,n do2: if vi > 0 then3: di := (ui − xi)/vi4: else if vi < 0 then5: di := −(xi − li)/vi6: else7: di :=∞8: end if9: end for10: hmax := min
i=1,...,n diAlgorithm 8: Algorithm to deal with box constraints when using HCS.

4.2.5 Numerical resultsTo illustrate the behavior of the HCS as a standalone procedure, we tested both instances—gra-dient-based and gradient-free version—on some examples. We use in the first two examplesa convex model (i.e., a model which does not contain local minima where the LS can get stuck)and we investigate both the unconstrained and the constrained cases. Finally, we considera multi-modal and constrained model (ZDT4 [28]). All computations for these examples havebeen done using the programming language Matlab7.
Example 4.2.1 Consider the MOP defined by minimizing

f1(x) = (x1 − 1)4 + n∑
i=2 (xi − 1)2 and

f2(x) = n∑
i=1 (xi + 1)2.

The Pareto set P of this model is located within [−1, 1]n.
Figure 4.4 shows the results obtained by the modified algorithms HCS1 and HCS2, whenapplied independently on Example 4.2.1. The MOP was set for dimension n = 10 and theexperiment was performed over the domain Q = [−5, 5]10. In both cases the same startingpoint x0 has been chosen. Since P is located within Q in this example, no constraint handlingtechniques had to be applied in order to generate the sequence. Analyzing the cost of theprocedures, we found in a typical trial that, for HCS1 a total of 1693 function calls had to be

7https://www.mathworks.com
47



CHAPTER 4. GRADIENT-BASED LOCAL SEARCH FOR MOPS

spent in order to get this result. For HCS2, 207 function calls, 60 evaluations of the gradientand 192 evaluations of the Hessian were required (which are both given analytically); aconversion would lead to 13,095 function calls (We will explain this equivalences later inSection 5.4.2, page 93). It is evident that due to the different requirements of the algorithms aquantitative comparison is hardly possible. However, as a way of comparison, Figure 4.4 showssome qualitative differences as anticipated from the design of the different algorithms. Wecan see that HCS2 converges faster (in this case four iterates were needed to reach P whileHCS1 needed 23 iterations) and the non-dominated front is better distributed compared to theresults obtained by the gradient-free version HCS. Nevertheless, both results are satisfyingsince both non-dominated fronts represent a good approximation of the Pareto front withreasonable effort.
Example 4.2.2 We consider now the constrained case of the above example. In this case, we
have used dimension n = 2 and the domain has been restricted to

Q = [0.5, 1.5]× [1, 2].
The Pareto set, for this constrained case, is given by

PQ = [0.5, 1]× {1}
and thus included in the boundary of Q.

Figure 4.5 shows a numerical result from the HCS1 over the above constrained example. Theplots show that also in this case the HCS1 is capable of approaching the solution set, andmoving along it further on. However, a total of 997 function calls had to be spent in thissetting, that is, more in comparison to the unconstrained case (note that the dimension of themodel is much lower in the latter case).
Example 4.2.3 We finally consider, in this example, the problem ZDT4 defined by minimizing

f1(x) = x1,
f2(x) = g(x)(1−√f1/g(x)),

with

g(x) = 1 + 10(n − 1) + n∑
i=2 (x2

i − 10cos(4πxi)),
0 ≤ x1 ≤ 1, −5 ≤ xi ≤ 5, i = 2, . . . , n.

This is a highly nonlinear and multi-modal model.

Figure 4.6 shows two results, in image space, for two different initial solutions x0, z0 ∈ Q =[0, 1]× [−5, 5]9, when applying the two variants of the HCS. As anticipated, the results forboth algorithms and starting points differ significantly; this is because the HCS is a local
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strategy, and ZDT4 contains many local Pareto fronts. However, both procedures are able toexplore a part of the local Pareto front—which is located ‘near’ to the image of the initialsolution.To conclude this section, it is worth to notice that the performance of the gradient-basedHCS—in terms of convergence—is better than its gradient-free version (as it is shown inFigure 4.4); but, this improvement does not come for free: for the descent direction allobjectives’ gradients have to be available (or approximated), and to perform the linearizationof P even all second derivatives are required. More tests of the HCS are presented laterin this work, where this operator is combined with MOEAs and its performance as a hybridalgorithm is analyzed.
4.3 The Directed Search Method
When working with MOPs, performing LS movements towards a particular region is sometimesdesired. In this line of thought, we present in this chapter a proposal for the computation ofimproving movements by the Directed Search (DS) method. The complexity of one iterationstep is again equivalent to solving a system of linear equations, and only first order gradientinformation is necessary to use it.This new approach calculates a gradient-based descent direction using a controlled biastowards interest regions determined in objective space. Hence, we claim that this proposalhas many potential applications in the context of designing hybrid MOEAs. This method isbased on a weighting approach but it is also able to reach non-convex regions on the front(see Figures 4.7 and 4.8). It can also be used instead of the greedy approaches presented in[42],[107].The DS method describes the set of descent directions in a similar way to [10]; but,it performs movements inside this cone in a user-preference controlled way. i.e., assuming
x0 ∈ Rn, when using the Jacobian notation (3.1), in page 24, the descent cone (Definition3.1.1 in page 22) can be expressed like:

JF (x0)ν ≤ 0 and JF (x0)ν 6= 0. �� ��4.13

After a possible normalization, Equation (4.13) can be re-stated as
JF (x0)ν = −α, �� ��4.14

where α ∈ Rk is a convex weight (i.e., αi ≥ 0 and ∑k
i=1 αi = 1). Hence, the descent conecan be represented as follows:

Cx0 (−, . . . , −) = {ν ∈ Rn\{0} : ∃α ∈ Rk\{0} : αi ≥ 0, JF (x0)ν = −α} �� ��4.15

and thus, every descent direction ν ∈ D(x0) can be computed by solving the under-determinedsystem of linear equations (4.14) for a given vector −α . Note that α has to be determined
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first, but by this, ν gains a physical meaning: by construction, the direction in image spaceis given by
〈∇fi(x0), ν〉 = −αi, i = 1, . . . , k. �� ��4.16In the following we use the notation d = −α to denote descent direction vectors. It isimportant to notice that such a search direction ν can be computed by solving a system oflinear equations. Since typically the number of parameters is (much) higher than the number ofobjectives in a given MOP, i.e., n >> k , system (4.14) is (probably highly) under-determinedwhich implies that its solution is not unique. To prevent this, the estimated solution with thelowest norm can be chosen leading to

ν = J+F (x0)d, �� ��4.17

where A+ ∈ Rn×k denotes the pseudo inverse of a matrix A ∈ Rk×n, k ≤ n. In case therank of A is maximal, the pseudo inverse is given by A+ = AT (AAT )−1.
In case the MOP contains m active inequality constraints g1, . . . , gm : Rn → R at apoint x—which is not within the scope of this work—one has to solve instead of (4.14) theenlarged system

JF (x)ν = d
JG(x)ν ≤ 0, �� ��4.18

where
JG (x) =

 ∇g1(x)T...
∇gm(x)T

 ∈ Rm×n.
�� ��4.19

For the solution of such systems we refer e.g., to [11]. An analog statement for equalityconstraints, however, does in general not hold since they typically reduce the dimension ofthe search space, and then, the feasible choice of d may be restricted. In that case, onemight change from the fixed direction d to a ‘best fit’, for instance by solving the followingquadratic optimization problem: min
ν
||J+F (x)d − ν||22s.t. JG(x)ν ≤ 0, and
JH(x)ν = 0,

�� ��4.20

where H contains the gradients of the equality constraints. If d ≤ 0 and d 6= 0, i.e., if d isa ‘descent direction’, then one can add the constraint
JF (x)ν ≤ 0 �� ��4.21to (4.20) in order to prevent that the function values of subsequent candidate solutionsdecrease.
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4.3.1 Tracing a solution curveThe above result can be used to define a curve of dominating points. Assume that a (notnecessarily fixed) convex weight α is given and a search in that direction is desired. Using
να (x) := −J+F (x)α, �� ��4.22

one can thus try to solve numerically the following initial value problem:
x(0) = x0 ∈ Rn

ẋ(t) = να (x(t)), t > 0 �
 �	IVPα

A solution of (IVPα ) yields a curve of dominating points, and the proportion of the im-provements of the single objectives is given by α as shown in (4.16). Clearly, if all objectivesare continuously differentiable and if α = α(x) is continuous in x the solution curve x(t) isalso continuously differentiable.
Stopping CriterionIt is important to notice that even if an endpoint x∗ of (IVPα ) exists—for instance if F (Rn) isbounded below—this point does not have to be Pareto optimal since the approach dependsnext to α on the initial point x0. At least, a stopping criterion for the numerical treatment of(IVPα ) can be given to detect if an endpoint of the curve is reached under certain (reasonable)assumptions: if (a) the number of parameters n is at least as large as the number of objectives
k and (b) if the gradients of all objectives are linearly independent at x0, i.e., rank(JF (x0)) = k(which means that all objectives are indeed in conflict at x0), then for every point x(t) alongthe curve the rank of the Jacobian is k , except for the endpoint x∗ (in particular −α is not inthe image of JF (x∗)). The rank of a matrix can of course not be used to detect the endpoint ofa curve numerically, but instead the condition number κ2 of JF (x) can be used: one can e.g.,compute

κ2(JF (x)) = ||JF (x)||2||J+F (x)||2 = σ1
σk
,

�� ��4.23

where σ1 and σk are the largest and smallest singular value of JF (x), respectively, and stopthe process if κ2(JF (xi)) ≥ tol, where tol ∈ R+ is a given (large) threshold. This can be donesince by the above discussion κ2(JF (x(t)))→∞ for x(t)→ x∗.This discussion shows one potential drawback of the approach, namely that the determinationof the search direction by solving (4.14) gets inaccurate for points near the Pareto set due tothe high condition number of JF (x). However, our experience has shown that state-of-the-artnumerical tools allow to come ‘near enough’ to the Pareto set even for higher dimensionalproblems (here we refer to the numerical results presented in Sections 4.3.3 and 4.3.5, inpages 59 and 65 respectively).
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To trace the solution curve of (IVPα ) one can e.g., choose well-established numericaldiscretization methods (e.g., [35]); Algorithm 9 shows a generic procedure. Also, we think thatArmijo-like step size controls for the choice of hi such as the ones presented in [5, 41] canbe adapted to the current context (whereby (4.16) has to be integrated in a suitable way).However, none of these methods allow to perform a correction back to the solution curve.In the following we propose one possible way to compute the solution curve numerically bypredictor corrector (PC) methods (i.e., with a method which allows for such a correction, see
e.g.,, [2]). To do this recall that for every point x on the solution curve it holds

F (x) = F (x0) + λyα,
�� ��4.24

where λy ∈ R. Hence, the curve is contained in the zero set of
H : Rn+1 → Rk

H(x, λy) = F (x)− F (x0)− λyα
�� ��4.25

To comply with the needs of PC methods we introduce an additional parameter λx intothe solution curve (which is defined in parameter space):
x(0) = (x0, λx,0 = 0) ∈ Rn+1
ẋ(t) = ( να (x(t))1 )

, t > 0 �
 �	IVPα,λ

So far, we are not able to apply PC methods since the parameters λx and λy parametrizedifferent curves. The following consideration, however, argues that it is reasonable to matchthe two parameters: Let x0 be given and λx,0 = 0, and let (x1, λx,1) be an Euler step of(IVPα,λ) with a small step size ∆λx , i.e.,
x1 = x0 + ∆λxνα (x0), λx,1 = ∆λx . �� ��4.26

By construction of να (x0) and since ∆λx is small we have
αi ≈

fi(x1)− fi(x0)∆λx , i = 1, . . . , k. �� ��4.27

This implies that F (x1) − F (x0) ≈ ∆λxα and hence H(x1, λx,1) ≈ 0 which suggests to makethe substitution λx = λy. Using this, (IVPα,λ) and (4.25) can now be used to perform classicalPC methods in order to trace one solution curve: starting with the point (x0, λx,0) one canintegrate (IVPα,λ) numerically for a small time step, e.g., via the Euler method as describedabove leading to a predictor solution (x̃1, λ̃x,1). In a next step this solution can be correctedto the desired curve (in objective space). That is, starting with (x̃1, λ̃x,1) and using a (Gauss-)Newton method applied on (4.25) one can try to find a solution (x1, λx,1) with H(x1, λx,1) ≈ 0,and so on. For details on the method including the step size control and the properties of the
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(Gauss-) Newton method we refer e.g., to [2]. Note that H−1(0) forms locally a (n − k + 1)-dimensional set and hence no unique solution is defined (but also not needed). However, ifthe (Gauss-) Newton method is taken for the corrector as described in [2] λx can be chosenas the pseudo arc length to trace such a curve.
Require: starting point x0 ∈ Rn with rank(JF (x0)) = k , tol ∈ R+, convex weight α0 ∈ Rk .1: i := 02: while κ2(JF (xi)) < tol do3: compute νi = −J+F (xi)αi4: compute hi ∈ R+5: set xi+1 := xi + hiνi6: choose αi+1 ∈ Rk7: set i := i+ 18: end while Algorithm 9: Directed Search Method
4.3.2 Directed movementsTo illustrate the potential of biasing search movements, we use the example of Goal Program-ming (GP), where the main task is to find a point such that its image is as close as possibleto a given target value Z ∈ Rk . This leads, for the unconstrained case, to the followingoptimization problem (see e.g., [17] for more information):

min
x∈Rn

d(Z , F (x)), �� ��4.28

where d(·, ·) is a particular (chosen) distance in Rk . When choosing the Euclidean distance,the (local) best search direction at a point x0 is given by
αZ ,2 := F (x0)− Z

||F (x0)− Z|| ,
�� ��4.29

where we assume that Z ≤p F (x0). To satisfy user preferences, or to be able to reachalternative Pareto optimal points, it is commonly desired to use a weighted metric instead ofa fixed metric (e.g., [90]). When using the weighted 2-metric
dD(x, y) := √(x − y)TD(x − y), �� ��4.30

where D is a diagonal matrix with positive diagonal entries, the greedy direction at x0 isgiven by
αZ ,D := D(F (x0)− Z )

||D(F (x0)− Z )|| . �� ��4.31

56



4.3. THE DIRECTED SEARCH METHOD

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

f
1

f 2

F(x
0
)

Pareto front

Directed Search

Weighted Sum

(a) Objective Space

−2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
1

x
2

x
0

Pareto set

Directed Search

Weighted Sum

(b) Parameter Space
Figure 4.7: Numerical result for MOP (4.37): comparison of the numerical solution paths ofthe weighted sum and the directed search approach for x0 = (1.5, 1.5) and α = (0.5, 0.5)T .

57



CHAPTER 4. GRADIENT-BASED LOCAL SEARCH FOR MOPS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5  1  1.5  2  2.5  3  3.5  4

f 2

f1

Weighted Sum

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5  1  1.5  2  2.5  3  3.5

f 2

f
1

Directed Search

(a) Objective Space

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

f 2

f1

Weighted Sum

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

f 2

f
1

Directed Search

(b) Parameter Space
Figure 4.8: Numerical result for the same MOP as in Figure 4.7. Comparison of the solutions,for α = (0.5, 0.5)T , of the weighted sum (left) and the directed search approach (right) using100 randomly chosen initial points.

58



4.3. THE DIRECTED SEARCH METHOD

To derive equation (4.31), we define for a given point x0 and a fixed α ∈ Rk the curve
cα : R→ Rk by

cα (t) = F (x0) + tα.
�� ��4.32Also, let gα : R→ R be the square of the weighted 2-metric of Z and cα (t), i.e.,

gα (t) = dD(Z , cα (t))2 = k∑
i=1 di(Zi − fi(x0)− tαi)2, �� ��4.33

where di is the i-th diagonal element of D. Then, the derivative is given by
g′α (t) = − k∑

i=1 2diαi(Zi − fi(x0)− tαi), �� ��4.34

and hence
g′α (0) = −2 k∑

i=1 diαi(Zi − fi(x0)). �� ��4.35

Finally, using (4.35) we can determine the most greedy choice of α, i.e. the steepest descentwith respect to α given by
−∇α (g′α (0)) = D(Z − F (x0)), �� ��4.36

and the claim follows (note that the directional vector is negated in (4.14)). To conclude, thevectors ν(αZ ,2) and ν(αZ ,D) can be viewed as the ‘best’ LS direction for the Goal Programming(4.28) according to the given metric.
4.3.3 Numerical results for the DS methodHere we present some numerical results to illustrate the Directed Search descent method.All computations, in this section, have been done using Matlab8.
Example 4.3.1 First we consider the following parameter dependent MOP ([146][124]):

f1, f2 : R2 → R

f1(x, y) = 12(√1 + (x + y)2 +√1 + (x − y)2 + x − y) + λ · e(−x−y)2
f2(x, y) = 12(√1 + (x + y)2 +√1 + (x − y)2 − x + y) + λ · e(−x−y)2

�� ��4.37

For λ = 0.85 the Pareto front contains a dent. To be more precise, the Pareto front is
connected and consists of two convex parts and one concave part.

8http://www.mathworks.com
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Figure 4.9: Numerical result for MOP (4.38): solution paths for several initial conditions
xi, i = 0, . . . , 5, using the 2-metric for d.
Figure 4.7 shows a comparison of the Weighted Sum method against the Directed Search
method. Starting point for both methods was x0 = (1.5, 1.5), and the weight vector was
chosen as α = (0.5, 0.5)T . For the stopping criterion (4.23) we have chosen for this as well
as for the subsequent examples tol = 1e8. To demonstrate the solution curves we have chosen
to solve (IVPα ) with the Euler method using very small step sizes. While the solution curve
of the Directed Search method steers on a straight line from F (x0) to the corresponding point
on the Pareto front (the same appears in parameter space), the solution curve of the Weighted
Sum approach eludes this straight line leading to a (for this method) better solution. We
have repeated this for 100 randomly chosen starting points within Q = [−5, 5]2; and the
resulting endpoints for both methods are shown in Figure 4.8. While it may be argued that
for a single solution the Weighted Sum approach obtained a good solution (Figure 4.7), this
does not hold in terms of a possible representation of the entire Pareto set, since the concave
part of the Pareto front is left out nearly completely.

Example 4.3.2 Next, we consider the following convex MOP:

f1, f2 : Rn → R

fi(x) = n∑
j=1
j 6=i

(xj − aij )2 + (xi − aii)4, �� ��4.38
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where
a1 = (1, 1, 1, 1, . . .) ∈ Rn

a2 = (−1, −1, −1, −1, . . .) ∈ Rn,
First we turn our attention to the goal programming problem (4.28) where we choose

the target value as Z = (0, 0). Figure 4.9 shows some numerical solution curves for several
starting points where the Euclidean Distance has been chosen.
In Figure 4.10 some numerical results are shown for several problems where x0 has been
fixed, but the weighed 2-metric has been chosen for different matrices. To be more precise,
the curves ci, i = 1, . . . , 5, belong to the matrices Di, where

c1 corresponds to D1 = ( 0.9 0
0 0.1

)
,

c2 corresponds to D2 = ( 0.7 0
0 0.3

)
,

c3 corresponds to D3 = ( 0.5 0
0 0.5

)
,

c4 corresponds to D4 = ( 0.3 0
0 0.7

)
,

c5 corresponds to D5 = ( 0.1 0
0 0.9

)
.

4.3.4 Continuation process for the DS methodIn this section we propose a new PC method for the continuation along (local) Pareto sets of agiven MOP. The central difference from a classical method is that it is based on the geometryof the Pareto front and realized by the Directed Search Method. This new method—unlikeclassical PC methods—does not require to compute the Hessian matrices of the objectives; thisimplies that this method can be used to handle even higher dimensional models (n >> 1000),without exploiting the possibly given sparsity of the system.We concentrate on the two-objective case (i.e., k = 2) since a consideration of k > 2requires an additional data structure for the efficient representation of the approximation (forthis we refer e.g., to [55, 112, 115]). Apart from that, all subsequent ideas are suitable formodels with k > 2.
a) Predictor Assume that we are given a Pareto point x0 with an associated weight α0 suchthat

k∑
i=1 α0,i∇fi(x0) = 0, �� ��4.39

and further we assume that rank(DF (x)) = k − 1. �� ��4.40
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It is known [57] that in this case α is orthogonal to the Pareto front, i.e.,
α ⊥ Ty∂F (Rn), �� ��4.41

where y = F (x) and ∂F (Rn) denotes the border of the image F (Rn) (this holds even inthe constrained case, see [57]). Thus, a search orthogonal to α (in objective space) could bepromising to obtain new predictor points. To use the direct approach (4.14), for instance a
QR-factorization of α can be computed, i.e.,

α = QR,
�� ��4.42

where Q = (q1, . . . , qk ) ∈ Rk×k is an orthogonal matrix and qi, i = 1, . . . , k , its columnvectors, and R = (r11, 0 . . . , 0)T ∈ Rk×1 with r11 ∈ R\{0} (for the computation of such afactorization we refer e.g., to [96]). Since by (4.42) α = r11q1, i.e., α ∈ span{q1}, and Qorthogonal it follows that the column vectors q2, . . . , qk build an orthonormal basis of thehyperplane which is orthogonal to α . Thus, a promising well-spread set of search directions
νi may be the ones which satisfy

DF (x)νi = qi, i = 2, . . . , k. �� ��4.43

Since α is not in the image of DF (x) (else x would not be a Pareto point) and by assumption(4.40) it follows that the vectors q2, . . . , qk are in the image of DF (x), i.e., Equation (4.43)can be solved for each i ∈ {2, . . . , k}. Note that by this choice of predictor direction nosecond derivative of the objectives are required.The predictor direction can—except for its sign—be chosen as described above, i.e., one ofthe normalized vectors ν := ±ν2/||ν2||2, where ν2 satisfies (4.14) as described above for
d = q2. To orientate the curve (i.e., to determine the sign of ν) we can not proceed as for‘classical’ PC methods since this would require as well the derivative of F̃ as in (4.5). Instead,one can define an orientation in the context of two-objective optimization by the increase (ordecrease) of one objective. For this, the signum of the according entry of the direction vector
q2 can be taken. If, for instance, an improvement according to f2 is sought, then

p := x0 − sgn(q2,2)hν �� ��4.44

can be chosen as predictor, where q2,2 denotes the 2nd entry of q2, and h is the desired stepsize. Note that when choosing one of the data structures in [55, 112, 115] for models with
k > 2 no orientation of the solution manifold is required.To choose the step size h we suggest to proceed as follows: assume we are given x0 andthe search direction ν with ||ν||2 = 1 associated to the direction q in objective space for thepredictor, i.e., p = x0 + hν , where h ∈ R+ has to be chosen. The underlying idea of thestep size control is as follows: to obtain an adequate spread of the solutions the functionvalues fj (x) and fj (p) of at least one objective j ∈ {1, . . . , k} differ ideally by a (problemdependent) value ε while the difference for all other objectives does not exceed this threshold.
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Since this value can differ for each objective the demand on the spread can be stated (afterpossible renormalization) as follows:
dw (F (p), F (x)) ≈ ε

�� ��4.45

where dw is the weighted infinity distance, i.e.,
dw (x, y) = k∑

i=1 wi|xi − yi|.
�� ��4.46

Assuming that each objective is Lipschitz continuous and that the step size hi for the i-thobjective is sufficiently small we obtain for i = 1, . . . , k :
|fi(p)− fi(x)|︸ ︷︷ ︸!= ε

wi

≈ Li,x ||p − x||2︸ ︷︷ ︸=hi
�� ��4.47

Since Li,x can be approximated by the norm of the directional derivative we obtain for eachobjective the control
hi = ε

wi|〈∇fi(x), ν〉| , i = 1, . . . , k, �� ��4.48

and hence for the entire MOP
h := min

i=1,...,k hi.
�� ��4.49

By construction, the difference vector F (p)− F (x) is ideally orthogonal9 to α which can beused to determine if the chosen step size (4.49) is too large. If
|〈α, F (p)− F (x)〉| ≤ tol, �� ��4.50

where tol ∈ R+ is a given tolerance, the predictor p can be accepted. If (4.50) is not true,then p does probably not serve as a good predictor, and the step size has to be decreasedaccordingly.Alternative step size controls for multi-objective continuation can be found e.g., in [57, 113].
b) Corrector Given a predictor p, the subsequent solution along the curve can be computedby solving numerically (IVPα ), using p as initial value and choosing α0, i.e., the weight fromthe previous solution x0 leading to a new solution x1. This together with the step size control(4.49) and the ‘quasi-orthogonality’ test (4.50) is intended to obtain an even spread of thesolutions. In fact, this is the case if the value of ε in (4.45) and hence the step size t issufficiently small. The new associated weight α1 can be updated by solving the followingquadratic optimization problem (3.7).

9If the Pareto front around F (x) is convex, this can only be reached asymptotically.
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Algorithm 10 shows a possible realization of the continuation method which does notrequire the second derivatives of the objectives. Hereby, we start with an approximateminimizer of the first objective f1 and trace the curve seeking for improvements according tothe second objective f2. Hence, a possible stopping criterion is that the associated weightof a candidate solution is approximately α̃ = (0, 1). Other stopping criteria, however, arepossible according to the given setting.
Require: Initial solution (x0, α0) with α0 ≈ 1, threshold ε ∈ R+, tolerance δ ∈ R+.
Ensure: Set of candidate solutions xi1: i := 02: while 1− α2 > δ do3: compute q2 as in (4.42)4: compute ν as in (4.43) (i.e., ν := ν2)5: compute h as in (4.49)6: pi := xi − sgn(q2,2)hν7: compute xi+1 by solving (IVPα ) with initial value pi and using αi.8: compute αi+1 as in (3.8)9: set i := i+ 110: end while Algorithm 10: Bi-Objective Continuation
4.3.5 Numerical results for the DS continuation methodHere we present some numerical results to illustrate the novel continuation approach. Allcomputations on this section have been again done using Matlab.
Example 4.3.3 First, we are interested in solving MOP (4.38) by continuation methods.
Figure 4.11 shows a numerical result for n = 10. The figure shows the images of the
solutions F (xi) as well as the images of the predictors F (pi) which are already near to the
solutions.
We have observed that the corrector step uses approximately three iterations to be near
enough to the Pareto set (to be more precise: in the above example we needed, on average,
2.4 iterations). We use this to make a comparison to the classical PC method:
the classical PC method uses in each predictor step one QR-factorization of (F̃ ′)T (x, α)
which implies one Jacobian call (for all objectives) and one Hessian call. For the corrector
at least one Gauss-Newton step has to be performed which implies again one Jacobian and
one Hessian call (here we neglect possible additional function calls due to backtracking
strategies). In total, we can assume that for the generation of a new candidate solution
two Jacobians and two Hessians have to be calculated. The PC method as described above
requires one Jacobian call for the predictor and we estimate three Jacobians for the corrector
(as observed in this example), which makes in total the computation of four Jacobians to
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obtain a new solution. For the sake of comparison, we assume that the gradient information
is not available but has to be calculated or approximated, and hence measure the cost to find
a new candidate solutions in terms of the number of required function calls. If, for instance,
automatic differentiation (AD) is used to compute the derivatives, we can estimate 5 ∗ k
function calls for each derivative call and k ∗ (4 + 6n) function calls for each calculation of
the Hessian ([47]). Then we obtain for our example (n = 10, k = 2):

|f c(PCclassical)| = 276, |f c(PCnew )| = 40, �� ��4.51

where f c(A) denotes the number of required function calls for method A. These values change
when using finite differences (FD). If, for instance, the forward difference quotient

∂f
∂xi

(x) ≈ f (x1, . . . , xi + δi, . . . , xn)− f (x1, . . . , xn)
δi

, i ∈ {1, . . . , n} �� ��4.52

where δi ∈ R+ is a small value, is used to estimate the gradient, apparently n function
calls are required to estimate each gradient. The central difference quotient leads to more
accurate approximations, but does in turn require 2n function calls [47]. A forward difference
quotient approximation of the second derivative requires a total of n2 function calls (and 2n2
or 4n2 function calls when using the central difference quotient, depending on how the rule
is applied). Hence, using the forward difference rule in FD we obtain

|f c(PCclassical)| = 440, |f c(PCnew )| = 80. �� ��4.53

In both cases, i.e., AD and FD, the new PC method requires a much smaller number of function
calls for the computation of the subsequent solution.

Figure 4.12 shows a numerical result for the same model and the same setting but
using n = 100, 000 parameters. Also here, the cost to obtain a new candidate solution
is approximately given by four Jacobian calls (we omit here a comparison as in (4.51) and
(4.53)). Since a naive storage of the Hessian matrix (i.e., without exploiting the sparsity)
requires the size of n2 floats, a straightforward implementation of the classical PC method is
restricted on a standard computer to approximately 2, 000 free parameters, which does not
hold for the new method. Since the second derivatives are not needed for the latter approach,
we think that this one is—independent of the storage problem—a promising alternative to
the classical PC method in particular for higher dimensional problems.

Example 4.3.4 Finally, we reconsider MOP (4.37) from Example 1 and turn our attention
again to Goal Programming. Though it was shown above, that αZ is locally the best search
direction, it is not even guaranteed that a solution of (IVPα ) leads to a local solution of (4.28).
This is due to the fact that the approach depends next to x0 and Z also on the shape of
the Pareto front which is clearly not known a priori. As a possible remedy it seems possible
to combine the two methods proposed in this work to obtain a two-stage algorithm for the
detection of local solutions of (4.28): first, one can compute, starting from x0, the endpoint x∗
those image is on the border of F (Rn). In the second step, a movement along ∂F (Rn) can
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Figure 4.11: Numerical result for MOP (4.38): solution of the continuation algorithm for
n = 10. Shown are the images of the predictors and the solutions.
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Figure 4.12: Numerical result for MOP (4.38): solution of the continuation algorithm for
n = 100, 000. Shown are the images of the predictors and the solutions.

68



4.3. THE DIRECTED SEARCH METHOD

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

f
1

f 2

F(x
0
)

Z

Figure 4.13: Numerical result for MOP (4.38): a combination of the Directed Search descentmethod (indicated by the stars) and a modified continuation procedure (crosses) leads to thesolution of the goal programming problem (filled circle).
be performed seeking for a decrease of the distance toward Z .
Figure 4.13 shows such an example for MOP (4.37). The continuation has been done as
described above but we have changed the orientation according to the problem, and stopped
the process as soon as the search direction flipped (monitored by the value of q2). Though
the first result is quite promising, we feel that much more investigation has to be done in
that direction which we leave for future research.

4.3.6 DiscussionIt is worth noticing that the idea to adjust the search direction in image space a priori toobtain a numerical scheme has been previously discussed in the literature [39]. Some con-sideration that have to be taken are, for example, that the computation of the search vector νrequires the solution of a possibly highly under-determined system of linear equations, andthe condition number of this system increases as the point x gets nearer to a local solution.However, we have observed that state-of-the-art numerical tools are able to handle suchproblems, even for high dimensional problems (for instance, in Section 4.3.5 the Pareto set ofan MOP with n = 100, 000 parameters is presented). Another important observation is thatit is still unclear how to ‘steer’ the optimization process, i.e., how to choose α . Here, we set
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Figure 4.14: In the context of population based optimization, the effective choice of the searchdirections depend on several factors. One of them is the location of the individuals of thepopulation.
a start and present some choices which are locally optimal in certain cases. However, some‘global’ strategies are to be established in the future.A very similar representation of the descent cone which is the basis for our descent methodcan be found in [8]. However, the authors of [8] derived their result differently, and did notexploit the ‘steering feature’ in their work.

To conclude, there exist some options to compute multi-objective search directions insteadof the traditional weighted sum; but the question about how to efficiently integrate them intoa population-based context—as in the set oriented (MOEAs) algorithms—remains open. Itis also worth noting that the suitable choice of the movement direction relies also on thelocation of the point, and on the location of all the other population individuals (see Figure4.14); to this end, the directed search method has a lot of potential.
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“Thought is only a flash betweentwo long nights, but this flash iseverything.” Henri Poincare 5Gradient-based Memetic Algorithms
Along this chapter, our different proposals for hybridization of gradient-based LS and MOEAsare presented. First, we establish a two-stage algorithm and discuss the advantages anddisadvantages of this point of view, followed by numerical examples to study the scalabilityof the method. Finally, our proposals for hybridization of two state-of-the-art MOEAs ispresented and discussed; also, some numerical experiments are presented. In the followingsection, we state some important definitions about the performance indicators used for thesequel.
5.1 Comparison Methodology

Building memetic algorithms (MA) has the aim of improving the efficiency of the base EA—aMOEA in case of multi-objective problems. To verify this improvement, a fair comparison ofperformance is necessary; more precisely, we expect to get a better solution with the samecomputational effort. Assessing the quality of solutions in multi-objective optimization hascertain complications. Thus, the methodology to make the comparison turns over determiningwhich is a better approximation of a continuous manifold between two finite solution sets (Aand B), each one corresponding to the output of each different algorithm.Several performance indicators have been used during the last few years, in order tocompare the quality of Pareto front approximations. Even with these performance indicators,making a good comparison is not an easy task. The main problem is how to assess that acertain finite approximation of a continuous k−dimensional manifold is ‘better’ than anotherone. In multi-objective evolutionary computation, three different aspects on solution qualityare important. First, we want the solutions to be near to the true Pareto front of the MOP.Second, these solutions must cover most of the regions in the manifold. Finally, these solutionsshould be well spread over the space. In the rest of the chapters, we use certain performanceindicators to assess the efficiency of our algorithms taking into account these different aspects;here, we will briefly describe them:Given a finite approximation A of the Pareto front PF of a certain MOP, denote by δithe minimum Euclidean distance from a given point yi, i = 1, . . . , |A|, to the true Pareto
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front PF . Then, the Generational Distance (GD) of a set (population) A is defined [143] as
GD = 1

|A|

√√√√ |A|∑
i=1 δ

2
i .

�� ��5.1

Notice that in practice, PF is also a finite approximation of the true Pareto front. Thisoperator indicates proximity of A to the Pareto front.Another indicator, most commonly used in practice implies a distance from PF to A; andit is known as the Inverted Generational Distance (IGD) [18]. This not only indicates theproximity of the set A to the front, but also gives a certain sense about its extension. TheIGD is analogous to GD, but measured from PF to A; and is defined by
IGD(A) :=

√∑|PF|
i=1 d2

i

|PF| .

where PF is the finite representation of PF, and di is the Euclidean distance from the i−thelement of PF to the set A.Given two finite subsets A and B of Rn the Two Set Coverage Measure [149] is definedas
SC (A, B) = A ≺ B = |{b ∈ B such that ∃a ∈ A with a ≺ b}|

|B|
�� ��5.2

If A ≺ B = 1, it means that all the elements of B are dominated by at least one element of
A. On the other hand, A ≺ B = 0, means that no element of B is dominated by any elementof A. Since the Two Set Coverage Metric is not symmetric, always both values SC (A, B) and
SC (B, A) have to be taken into account.To compute a relative measure of the distance between solutions, the Spacing indicator[108] is a commonly used option. It is defined as:

S =
√√√√ 1
|A| − 1 |A|∑

i=1 (di − d)2
where

di := min
j=1,...,|A|

i6=j
k∑

m=1 |yi
(m) − yj (m)|; and

d := 1
|A|

|A|∑
i=1 di, yi ∈ A ⊆ Rk .

the value of Spacing should be smaller as soon as the solutions yi are close to uniformlyspaced. i.e., the smaller the spacing value is, the better is the distribution of the outputsolutions for a particular algorithm.
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Finally, the Hausdorff distance dH , of two sets A, B ∈ Rk , is defined [103] as
dH := max{dist(Ftrue, Fknown), dist(Fknown, Ftrue)}

where
dist(u, A) := inf

v∈A
||u − v||, for u ∈ B,

and
dist(B, A) := sup

u∈B
dist(u, A).

The Hausdorff distance measures how far two subsets are from each other, so a value nearto zero is desired.
5.2 Two-stage Algorithm GBMES

In the following, we explain our proposal for a two-stage approach, called Gradient-Based
Multi-objective Evolutionary Strategy (GBMES), which is designed to perform a gradient-based search on a reduced population. This approach is complemented with a technique toreconstruct the front at the end. Examples of some hybrid two-stage multi-objective algorithmscan be found in [56] and [78].Since MOEAs are known to perform well on problems with high multi-frontality, ourmethod focuses instead on problems in which the gradient descent is a good option to speedup the first stages of the search. Although obtaining gradient information is an expensiveprocess—because it requires several objective function evaluations—we have shown that itis possible to design a gradient-based hybrid which is very efficient. For this sake, it isimportant to devise a careful interleaving between the MOEA and the gradient-based searchengine, so that we do not exceed a modest budget of function calls. Such a balance is achievedin particular by GBMES, which only performs a total of 3,000 objective function evaluationsfor the test problems—which is a very small value compared to the number of evaluationspreviously reported in the specialized literature for such problems. Another interesting aspectabout this approach (which we believe that is shared by other hybrids between MOEAsand gradient-based methods1) is that it scales well as we increase the number of decisionvariables of a MOP. This is illustrated in this section by two examples in which we useup to 100 decision variables. When increasing the dimension of the MOP, our proposedapproach is found to degrade significantly less than a state-of-the-art MOEA (in this case,the NSGA-II [31]), even while still performing a total of 3,000 objective function evaluations.

1This also depends on the sort of method adopted to approximate the derivatives of the functions.
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5.2.1 Description of the Gradient-based Multi-objective Evolutionary Strat-
egyIn the following, we describe the two stages that conform GBMES. The aim of the first stage isto obtain a small set of Pareto optimal points. In the case of facing moderate multi-frontality,the evolutionary part of the hybrid algorithm can deal with the critical points that are notoptimal; then, we assume that by the end of this first stage, all the points in this set arepart of the global front. The second stage is devoted to the reconstruction of the entire front,starting from a few solutions found in the first stage.

5.2.2 First stage (Approximation)Several populations are involved in the first stage of the algorithm. There are a replaceableand a non-replaceable population, used in an analogous way to the Micro-GA for Multi-objective Optimization [24]. More precisely, we adopt an external population P with areplaceable part Pr and a non-replaceable part Pn. The former population will evolve overtime and the latter will introduce diversity into the process. We use a small population
Pt of parents, with |Pt| = µ, which is randomly chosen from Pr ∪ Pn. The individualsfrom Pt are recombined, at each iteration, to produce a set Pof f of λ descendants. Unlikea traditional evolution strategy, we set λ ≈ µ because we need to bound the number offunction calls in this phase—in order to spend most of them in the gradient-based descentpart. The individuals used for recombination are randomly chosen from Pt . We use twotypes of recombination, arithmetic and discrete ones, choosing one of them randomly, with acertain (predefined) probability. We set a higher probability for the discrete recombination atthis stage (the proportion is 2:1). For the second stage of GBMES, arithmetic recombinationplays a more important role.Once we have selected the nondominated parents from Pt ∪ Pof f , to conform Pnd, weperform an insertion process in order to obtain the secondary population S, and the elite
population E such that E ⊆ S. This insertion process has two cases illustrated by Algorithm11, for the first time that it is applied, and by Algorithm 12, for further iterations. Thesecondary population is directly conformed by the points obtained after applying the steepestdescent procedure, based on the descent direction proposed in [42]—also described in Section3.3. To be more precise, the descent direction that we are looking for is v∗ as in Expression(3.3); and, as Fliege suggests, the step length for the movement can be obtained by anArmijo’s rule, i.e. by decreasing t until the condition

F (x + tv ) ≤ F (x) + βtJF (x)v �� ��5.3

is fulfilled. The value β ∈ (0, 1) is a control parameter to decide how fine grained,numerically speaking, the descent will be. After having x1 = x + tv , the process is repeatedby calculating a new descent direction for x1 or, if this is not possible, we can assume thata critical point has been achieved.
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The condition for a point x ∈ S to be in E is precisely having finished the descent withan α∗ (from (3.3)) value of zero—which means it is a candidate to be a local Pareto point.Note that the latter could not be the case for all the points in S . Thus, this separation is madebecause the descent could be stopped before obtaining a local Pareto point. This happensbecause, in practice, we restrict the number of steps used in the descent. Additionally,we could also stop the descent if a certain tolerance value between the initial and thefinal points in the movement is achieved. Also, in order to handle box constraints, whenthe computed steepest descent direction leads outside of the constraint bounds, the processmust quit exploiting that solution, and then, take the point nearest to the constraint, as thefinal point of the movement. This is necessary, since it is possible that the movement ofthe descent points leads to a local optimum located in the infeasible region or to a localoptimum located in the boundary between the feasible and the infeasible region. In bothcases, it is unnecessary to perform a fine-grained steepest descent, and the cost of performingit could lead to an important increase in the number of function calls. Then, during theprocedure these end points from the descent would enter the elite population, E, only if Eis empty. The algorithm’s implementation should detect the case when, after certain numberof generations, no point has entered the elite population. In this case, we perform uniformmutation on the individuals in the secondary population and we only retain the nondominatedsolutions as candidates for becoming the outcome of the first-stage. In order to feed thereplaceable population, we take P ′′nd , which is conformed by individuals from P ′nd that enteredthe secondary population S at that generation, and we use them to replace those individualsfrom Pr that are dominated. To select the µ parents to conform Pt for the next generation,we take min{µ/3, |P ′′nd|} individuals from P ′′nd and the remainder are randomly selected from
P. The general process of the first stage is described in Algorithm 13.

1: procedure Insertion, case 1(p, Pnd, S = ∅, E = ∅)2: for p ∈ Pnd : do3: Perform the gradient-based descent for p and get p′ as the final point of thedescent.4: Insert the element: S ← S ∪ {p′}. If the necessary condition for being in Eholds, then E ← E ∪ {p′}.5: end for6: end procedureAlgorithm 11: Case 1 of the insertion process of GBMES (applied for the initial generation)
For all the problems tested here, the values for µ and λ were 20, the initial population sizewas of 130 individuals, and the proportion between the non-replaceable and the replaceableparts of the initial population was 3:10. Regarding the value of µ, in general, it must be atrade-off because it has to be big enough in order to allow a good sampling of the populationfor the evolution strategy; but not too large, in order to avoid that too many function callsare spent.
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1: procedure Insertion, case 2(p, Pnd, Pr, S, E.)2: Set P ′nd as the elements from Pnd that are not dominated by any s ∈ E .3: for p ∈ P ′nd : do4: Perform the gradient-based descent for p and get p′ as the final point of thedescent.5: Remove s ∈ S such that p′ ≺ s.6: Insert p′ in S (in E if applicable).7: Remove q ∈ P ′nd such that p′ ≺ q.8: end for9: Use the set of inserted points p′ to replace the dominated individuals from Pr.10: end procedureAlgorithm 12: Case 2 of the insertion process of GBMES (applied in case that generation ≥2.)

Ensure: E, S.1: procedure GBMES (First Stage)2: Initialize the replaceable Pr and non-replaceable Pnr parts of the population.3: Select µ parents to conform Pt .4: Recombine the parents to produce λ offspring Of f .5: Select Pnd nondominated individuals from the union of parents and offspring.6: Perform the insertion process with the gradient-based descent, and feed the secondarypopulation S , the elite population E , and the replaceable population Pr .7: Repeat steps 3 to 6 until having at least four individuals in the elite population oruntil running out of the function-calls budget allowed for this first stage.8: end procedureAlgorithm 13: Description of the first stage of GBMES.
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5.2.3 Second stage (reconstruccion)

Once the Pareto front has been approached, the next step consists of a technique that performsa reconstruction of the entire front departing from a few points out of this set. One possibilityat this point is to use continuation methods [112, 58]; if this is the case, only one point inthe front is necessary to start, but we would have to be able to afford the computational costof calculating the second derivatives of the functions, which is high, even if clever techniquesare devised [50]—here we refer to the discussion in [86].For the second stage of GBMES, we propose for example to use a reconstruction techniquebased on Rough Sets [98, 99]; and we reserve at least one third of our function-calls budget forthis part. This approach (rough sets) consists of a stochastic technique which uses informationabout individuals that were dominated in the last iteration, in order to construct new solutionsclose to the nondominated individuals and far away from the dominated ones. This aims togenerate new nondominated solutions and, as a consequence, fill up the missing parts of thePareto front. For a thorough explanation of the technique we refer to [105, 106]. Here wegive a brief description of how we used it for our purposes.
a) Preliminary Phase: Our approach requires an initial population (P1) which is closeto the true Pareto front. This population is partitioned into two sets: DS , which contains thedominated solutions and NS , which contains the nondominated solutions. At the end of thefirst stage of GBMES, we assume that we have a few (at least four) individuals in the truePareto front. Then, to start the rough sets procedure, we can generate a small populationin the neighborhood of these solutions in the following way: For each point in the elitepopulation, we generate a n−dimensional box with each point as one vertex and its nearestneighbor located in the opposite corner. Then, we generate two types of offspring: first, weapply total arithmetic recombination to get s descendants in the line that joins the referencepoint and its nearest neighbor and we produce another offspring outside the box, but in thesame direction as before (see Figure 5.1). Next, the second kind of offspring consists of tdescendants which are randomly built inside the box. For the examples presented here, weused s = 2 and t = 3.
b) Rough Sets: Once the population is close enough to the true Pareto front, and it ispartitioned into the sets NS and DS, we perform a sequence of iterations until function-callsbudget is spent. At each iteration, we build a grid with k dominated points from DS , whichserve as vertices. We also take q individuals from the set of nondominated solutions NSand we apply a bounded mutation to them. The bounds for these mutations are set from halfof the distance over each coordinate to the limits of the grid (see Figure 5.2). If there isno edge bounding the mutation operator, we set the limit for that specific coordinate as thenatural limits of the box constraints from the problem. The complete procedure is described inAlgorithm 14. For the examples we present here, we used k = 20, q = 10, u = 4, v = 100for the two-objective problem, v = 150 for the three-objective problem, and v ′ = 100 in bothcases.
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Figure 5.1: This figure shows the box formed by two elements in the elite set. Their offspringlie on the line that joins them, and in the neighborhood bounded by their own coordinates(n-dimensional box).
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Figure 5.2: This figure shows the grid for the rough sets method formed with the elements of
DS serving as vertices (marked as black dots in the figure). The nondominated individuals(taken from NS), which are used as the reference solutions, are marked with gray circles.Their descendants, produced by mutation, are marked with the letter ‘m’.
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1: procedure Rough Sets(NS,DS)2: Divide the population P1 into the DS and NS sets.3: Randomly choose k elements from DS to set the limits of the grid.4: Randomly choose q elements from NS to form Q (the set of parents).5: Apply u mutations to each parent and conform Q′ with them.6: Divide the population P ∪ Q′ into the DS and NS sets.7: If v < |NS|, we use a crowding or a clustering technique to reduce the size to v . vis a user-defined parameter.8: If v ′ < |DS|, we keep the solutions that were nondominated in the last iteration,and we choose the rest randomly from the dominated solutions in the population, untilreaching the maximum size allowable for v ′. v ′ is a user-defined parameter.9: Repeat steps 3 to 8 until a certain (predefined) number of function-calls is performed.10: end procedureAlgorithm 14: Adaptation of the rough sets technique to reconstruct the Pareto set.
5.2.4 Numerical resultsIn order to test the scalability of our proposed hybrid approach, we adopted the two problemsdefined in Table 5.1. These test problems have two and three objectives, respectively; Besides,they are both scalable in decision variable space. The final population for both algorithmswas set to 100 individuals, for the problem with two objectives, and to 150 individuals forthe problem with three objectives (a larger value was adopted in this case because of thehigher number of objectives). Our results are compared with respect to those generatedby the NSGA-II [31] using also 100 and 150 individuals, respectively; and performing thesame number of evaluations as our proposed hybrid approach. Tables 5.2 and 5.3 show ourcomparison of results after performing 3,000 objective function evaluations for both problems.In this case, we use n = 10 on Problem1, and n = 12 on Problem2. From Tables 5.2 and5.3, we can see that GBMES achieves much better convergence than the NSGA-II. This canbe corroborated by looking at Figure 5.3, in which it is clear that the NSGA-II is unable toconverge, even when Problem 1 only has ten decision variables.Subsequently, we increased the number of decision variables of the problem and focusedour analysis on the convergence of each approach (ours and the NSGA-II). Figures 5.3 to 5.6show the plots of the final population, corresponding to the run in the mean obtained for IGDover 30 runs, for Problem 1, using n ∈ {10, 30, 60, 100} decision variables. We can observethat, as we increase the number of decision variables, GBMES is still able to generatean important portion of the Pareto front (e.g., it is able to generate the “knee” [12] in allcases) with the same number of evaluations as before (3,000). The values of the performancemeasures (shown in Tables 5.4 to 5.6) indicate that both approaches suffer a performancedegradation as we increase the number of decision variables. This behavior is consistent inthe case of Problem 2, as well. Although the performance of our proposed GBMES degradesas we increase the number of decision variables, such degradation is less significant than the
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Table 5.1: MOPs adopted for our experiments.
Problem 1
f1(x) = (x1 − 1)4 +∑n

i=2(xi − 1)2
f2(x) = ∑n

i=1(xi + 1)2with n = 10
Problem 2 (DTLZ2)
f1(x) = cos( x1π2 ) cos( x2π2 ) . . . cos( xk−1π2 )(1 + g(x))
f2(x) = cos( x1π2 ) cos( x2π2 ) . . . sin( xk−1π2 )(1 + g(x))...
fk−1(x) = cos( x1π2 ) sin( x2π2 )(1 + g(x))
fk (x) = sin( x1π2 )(1 + g(x))
g(x) = n∑

i=k(xi − 12 )20 ≤ xi ≤ 1, i = 1, . . . , nwith k = 3, n = 12
one suffered by the NSGA-II. Also, in all cases (for both problems), our approach outperformsthe NSGA-II with respect to all the performance measures used to assess convergence (seeTables 5.4 to 5.6). This can be better appreciated in Figures 5.7 to 5.9 for Problem 1 andfrom 5.10 to 5.12 for Problem 2, in which we show a graphical comparison of the performance(regarding convergence) of the two approaches (ours and the NSGA-II) as we increase thenumber of decision variables.
5.3 Discussion on Memetic Aspects
Local search can improve a MOEA’s performance if it is efficiently customized for a particularproblem. Applying LS is expected to be less expensive, in terms of function evaluations,for combinatorial problems than for continuous problems. This is because evaluating fitnessfunctions of neighbor solutions can be efficiently done in the combinatorial case. Nevertheless,we can take some ideas from the treatment of such problems, and find analogies that can beused in the continuous-space case.Even when a computer represents only a finite set of points when discretizing continuousdomains, the magnitude of this discretization makes it impossible to apply, in the continu-ous case, the currently available memetic algorithms designed for discrete spaces. In somecombinatorial problems, a good LS mechanism explores more solutions than the evolutionarysearch (see for example [71, 67]). This is due to the fact that producing new solutions isfaster with certain LS operators—especially in the combinatorial case—than with traditionalevolutionary operators. Furthermore, quickly exploring new candidate solutions is not as
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Figure 5.3: This graph shows the approximation of the Pareto front generated by GBMESand NSGA-II on Problem1 (with n = 10), after 3,000 function evaluations.

Figure 5.4: This graph shows the approximation of the Pareto front generated by GBMESand NSGA-II on Problem1 (with n = 30), after 3,000 function evaluations.
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Figure 5.5: This graph shows the approximation of the Pareto front generated by GBMESand NSGA-II on Problem1 (with n = 60), after 3,000 function evaluations.

Figure 5.6: This graph shows the approximation of the Pareto front generated by GBMESand NSGA-II on Problem1 (with n = 100), after 3,000 function evaluations.
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Figure 5.7: Graphical illustration of the performance of GBMES and the NSGA-II in Problem1, regarding the GD performance measure, as we increase the number of decision variables.In all cases, we performed 3,000 function evaluations.
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Figure 5.8: Graphical illustration of the performance of GBMES and the NSGA-II in Problem1, regarding the IGD performance measure, as we increase the number of decision variables.In all cases, we performed 3,000 function evaluations.
83



CHAPTER 5. GRADIENT-BASED MEMETIC ALGORITHMS

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

m
e

a
n

 d
is

ta
n

c
e

# of variables

Problem 1

GBMES (Haussdorf)
NSGA II (Haussdorf)

Figure 5.9: Graphical illustration of the performance of GBMES and the NSGA-II in Problem1, regarding Hausdorff distance, as we increase the number of decision variables. In all cases,we performed 3,000 function evaluations.
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Figure 5.10: Graphical illustration of the performance of GBMES and the NSGA-II in Problem2, regarding the GD performance measure, as we increase the number of decision variables.In all cases, we performed 3,000 function evaluations.
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Figure 5.11: Graphical illustration of the performance of GBMES and the NSGA-II in Problem2, regarding the IGD performance measure, as we increase the number of decision variables.In all cases, we performed 3,000 function evaluations.
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Table 5.2: Comparison of results on Problem1, using n = 10, and performing 3,000 functionevaluations. Statistics were gathered from 30 independent runs. The best results are shownin boldface.
GDMethod Best Mean WorstGBMES 0.023375 0.049261 0.103776NSGA II 0.242919 0.415592 0.539319IGDMethod Best Mean WorstGBMES 0.092534 0.222116 0.549907NSGA II 0.367473 0.565376 0.863660SpacingMethod Best Mean WorstGBMES 0.004457 0.029559 0.081939NSGA II 0.002789 0.022826 0.070167Hausdorff distanceMethod Best Mean WorstGBMES 3.493272 9.823990 21.668491NSGA II 7.022420 15.473644 25.665400

good as exploring only a, well chosen, few candidates. This is a direct motivation to usegradient-based search methods. i.e., we aim to perform a more efficient exploration of potentialsolutions.When hybridizing MOEAS with LS on continuous problems some difficulties arise; one is,for example, that the LS can consume all our budget of objective function evaluations (as wasnoticed in [66] for discrete problems). This situation supports the idea of performing a suitableselection process to determine which individuals will be modified by the LS mechanism. To theauthor’s best knowledge, the work in which the ideas of elitism and local search hybridizationwere implemented, for the first time, is [64, 65]. Also, other important questions are: when toapply the LS into the MOEA, and how often to do it within the evolutionary search.A suitable control of the local-search computational effort and the MOEA-search engineeffort is subject of ongoing research. We focus here on studying this topic mostly for continuousand differentiable problems; studies in this topic are scarce since this is a difficult issue. Forexample, in [78] some attempts to control the probability of application of the LS are presented.That work focused on a particular MOEA—from the class of indicator-based MOEAs—andconcluded that using these control mechanisms with a certain probability function (linear orquadratic) did not outperform the scheme when using a fixed a priori probability. Furthermore,this last scheme was even more stable than the others, in most of their test problems.
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Table 5.3: Comparison of results on Problem2, using n = 12, and performing 3,000 functionevaluations. Statistics were gathered from 30 independent runs. The best results are shownin boldface.
GDMethod Best Mean WorstGBMES 0.003234 0.019648 0.032110NSGA II 0.027392 0.035683 0.043271IGDMethod Best Mean WorstGBMES 0.000421 0.000643 0.001017NSGA II 0.001422 0.001746 0.002200SpacingMethod Best Mean WorstGBMES 0.000737 0.004314 0.009814NSGA II 0.001360 0.005380 0.032598Hausdorff distanceMethod Best Mean WorstGBMES 0.385372 0.842908 1.335189NSGA II 0.556158 0.798111 1.170840

In this point we can take a look on the studies made on discrete models, in order toanalyze differences and common goals. To reduce the computational effort of the LS engine,Ishibuchi et al. proposed two strategies [66, 67]: First, reduce the number of individualson which the local search is applied; and second, apply the LS just partially in a certainsense. The former idea leads to a parameter Nls—explained below—and the latter leadsto a parameter for early termination of the LS. They concluded experimentally that thevalues for these two parameters are related, since both contribute to help the search but theyincrease with the computational effort as well. Therefore, to control the resource spending,they choose to search over just some neighboring points instead of exploring all of them. Thistruncates the LS, in a certain way, since the LS engine is not exploiting the entire possibleneighborhood. The analogy of this idea for the continuous case lies on the tolerance valuefor the line search, and on the number of times the descent movement is performed for eachsolution. Also, in gradient-based procedures these savings on function calls are related, forexample, with a tolerance value in case of using a KKT-based stopping criterion—similar tothe one we use throughout this work.When limiting the number of individuals on which the LS has to be applied, we supportthe idea that the best individuals are the ones that should be pulled toward better regions.But, we expect a growth on the number of these best individuals as the evolutionary search
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Table 5.4: Comparison of results regarding GD for both problems when using
n =original,30, 60, 100, and after performing 3,000 function evaluations. The value cor-responds to the mean over 30 independent runs. The original values adopted for n in eachproblem are those defined in Table 5.1. The best results are shown in boldface.

GD Problem 1 Problem 2n GBMES NSGAII GBMES NSGAIIoriginal 0.0493 0.4156 0.019648 0.03568330 0.3063 2.6406 0.032565 0.13124560 0.8925 6.8851 0.015376 0.308811100 1.7495 12.9756 0.029423 0.567924
Table 5.5: Comparison of results regarding IGD for both problems when using
n =original,30, 60, 100, and after performing 3,000 function evaluations. The value cor-responds to the mean over 30 independent runs. The original values adopted for n in eachproblem are those defined in Table 5.1. The best results are shown in boldface.

IGD Problem 1 Problem 2n GBMES NSGAII GBMES NSGAIIoriginal 0.2221 0.5654 0.000643 0.00174630 0.7449 3.0245 0.000829 0.00644860 1.6436 7.6595 0.001116 0.016010100 2.8417 14.6620 0.001249 0.029858
progresses. One idea to delimit this number is to fix a certain value, that we will call Nls,and select this number out of the best individuals set. To perform this selection we wantto take a spread sample of Nls individuals; for this sake, using a crowding distance basedselection would be helpful.In order to state the control parameters for our gradient-based hybrids we can mentionthe ones presented in Table 5.7:
• Nls determines the number of individuals that conform the LS pool.
• k is the frequency on generations to apply the LS.
• T ol is the tolerance value to finish the descent.
• MaxIter determines the depth of the LS, which means the number of times the LSwill be applied.
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Table 5.6: Comparison of results regarding the Hausdorff distance for both problems whenusing n =original,30, 60, 100, and after performing 3,000 function evaluations. The valuecorresponds to the mean over 30 independent runs. The original values adopted for n in eachproblem are those defined in Table 5.1. The best results are shown in boldface.
Haus. dist Problem 1 Problem 2n GBMES NSGA-II GBMES NSGA-IIoriginal 9.8240 15.4736 0.842908 0.79811130 28.3035 55.6760 1.625643 2.35431160 54.7381 126.3136 1.164723 4.914662100 80.3792 217.4507 2.065171 8.331932

Table 5.7: Control parameters for applying gradient-based LS.
Nls Number of individuals that conform theLS pool.
k Frequency, in generations, of applicationof the LS.
Tol Tolerance value to finish the descent.
MaxIter Depth of the LS, which refers to the num-ber of times the LS will be applied.

The parameter MaxIter plays the role of an iterated LS. The parameter k has beenassumed as 1 in most of the studies but has also been proposed with different values, forcontinuous problems, in some other algorithms [59, 67]. Here, we propose not to set thisparameter as one, in order to let the evolutionary search keep its own “natural” process, butmostly to reduce the total cost for LS. In the works analyzed in Section 5.4 and Chapter 6we use this idea and conducted experiments performing the search in this way, instead ofdoing it at each generation.
5.4 Integrating HCS into MOEAs
In this section we address the integration of the HCS into a given MOEA. One of the mostprominent state-of-the-art MOEAs is the NSGA-II [31]. Since it has been found to be avery efficient and robust algorithm, it makes sense to take its operators when seeking for ahybridization with local searchers.Several design aspects have to be decided in order to make this coupling. The first
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question that arises is: in which part of this well-known algorithm it is more appropriate toperform the LS? We discuss this issue further on, and also address the details about theinterleaving of these two mechanisms—the global and the LS. We also support, with thisproposal, our idea about investing local-search effort only on the best individuals of eachgeneration. This is done in order to find specifically good individuals who will lead the entirepopulation to better search regions during the search.For this, we present first some modifications required on the standalone version of theHCS, in order to be efficiently coupled with an evolutionary algorithm, and discuss the costof the procedure. Finally, we present two particular hybrids where NSGA-II and SPEA2[150]—another state-of-the-art MOEA—are used as baseline MOEAs.
5.4.1 Adapting HCS for local searchThe HCS is presented as standalone procedure in Algorithms 4 and 5—the goal in thosecases was to generate an infinite sequence of candidate solutions, which is certainly notapplicable when coupling it with a MOEA. To ensure enough resources for the global-searchalgorithm (the MOEA), it is rather advisable to stop the iteration of the local searcher aftera few iterations—we denote this parameter by maxiter inside the discussion. In case theHCS finds only a sequence of dominating solutions (i.e., by the hill climber) merely thelast dominating solution (denoted by xd) has to be returned. This is done because the otherintermediate solutions are all dominated by xd; and they are thus not important for the currentpopulation of the MOEA. On the other case, when the sidestep is performed, that means thatthe iterates are ‘near’ to the (local) Pareto set; thus, the iteration can be stopped even before
maxiter is reached. The second modification of HCS that we suggest, compared to thestandalone version presented above, is to perform the sidestep in each diversity directionwhich has been found during the LS. This is due to the fact that the sidestep is the mostexpensive part of the HCS (expensive in terms of function calls, see also the discussion below);and hence all accumulated information should be exploited. In that case, the modified HCSwill return the dominating solution xd (if not equal with the initial solution x0) and also amaximum of 2k − 2 sidestep solutions in all diversity directions of xd—depending on howmany diversity directions of xp have been found within the Nnd ‘unsuccessful’ trials.Algorithm 15 shows such a modification of the HCS1 for k = 3. Hereby,

Cx (s1, s2, s3),where si ∈ {+, −}, i = 1, 2, 3, denotes the diversity cone at a point x. For instance, it is
y ∈ Cx (+,+, −)if and only if

{f1(y) > f1(x) and f2(y) > f2(x) and f3(y) < f3(x)}Finally, the algorithm requires the starting point x0 and returns the set Xnew which canconsist of one candidate solution (i.e., the result of the hill climber xd) up to seven candidate
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solutions (xd plus candidates in all the six diversity directions (4.3) of xd).For HCS2, the modifications described above are much easier to handle: If the sidestep isperformed (i.e., if Equation (4.4) is false) the sidestep solutions can be chosen as
x i+ := xd + hiqi,

x i− := xd − hiqi,for all column vectors qi of QK , which leads to 2k − 2 new candidate solutions.
Require: maximum number of iterations maxiter , rest as in Alg. 4
Ensure: set of candidate solutions Xnew1: L1 := 0, L2 := 0, L3 := 02: a1 := 0 ∈ Rn, a2 := 0 ∈ Rn, a3 := 0 ∈ Rn3: no a1 := 0, no a2 := 0, no a3 := 04: nondom := 05: x1,0 := x06: for i = 1, 2, . . . , maxiter do7: for j = 1, 2, . . . , Nnd do8: choose x2 ∈ B(x1,i−1, r) at random9: if x1,i−1 ≺ x2 then10: compute t ∈ R+ as in Alg. 4 (l. 6-10), set x1,i := x2 + t(x1,i−1 − x2).11: nondom := 0, a1 = a2 = a3 = 012: continue13: else if x2 ≺ x1,i−1 then14: comp. t ∈ R+ as in Alg. 4 (l. 11-13), set x1,i := x1,i−1 + t(x2 − x1,i−1).15: nondom := 0, a1 = a2 = a3 = 016: continue17: else18: nondom := nondom+ 119: if x2 ∈ C (x1,i−1, −,−,+) then20: a1 := a1 + (x2 − x1,i−1)/||x2 − x1,i−1||∞21: no a1 := no a1 + 122: L1 := max(L1, ||F (x2)− F (x1,i−1)||∞/||x2 − x1,i−1||∞)23: end if24: if x2 ∈ C (x1,i−1,+,+, −) then25: a1 := a1 + (x1,i−1 − x2)/||x1,i−1 − x2||∞26: no a1 := no a1 + 127: L1 := max(L1, ||F (x1,i−1)− F (x2)||∞/||x1,i−1 − x2||∞)28: end ifAlgorithm 15: HCS1, for use within MOEAs for k = 3.
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29: if x2 ∈ C (x1,i−1, −,+, −) then30: update a2, no a1, and L2 analogue to lines 19 –22.31: end if32: if x2 ∈ C (x1,i−1,+, −,+) then33: update a2, no a2, and L2 analogue to lines 24 –27.34: end if35: if x2 ∈ C (x1,i−1,+, −,−) then36: update a3, no a3, and L3 analogue to lines 19 –22.37: end if38: if x2 ∈ C (x1,i−1, −,+,+) then39: update a3, no a3, and L3 analogue to lines 24 –27.40: end if41: end if42: end for43: Xnew := {x1,i} . perform sidesteps and return44: if no a1 > 0 then45: ν1 := a1/||a1||∞, h1 := εy/L146: x (1)+ := xi,Nnd + h1ν1, x (1)
− := xi,Nnd − h1ν147: Xnew := Xnew ∪ {x (1)+ , x (1)

− }48: end if49: if no a2 > 0 then50: compute x (2)+ , x (2)
− analogue to lines 44–47, set Xnew := Xnew ∪ {x (2)+ , x (2)

− }51: end if52: if no a3 > 0 then53: compute x (3)+ , x (3)
− analogue to lines 44–47, set Xnew := Xnew ∪ {x (3)+ , x (3)

− }54: end if55: return56: end for57: Xnew := {x1,maxiter} . return dominating solutionAlgorithm 15: HCS1, for use within MOEAs for k = 3 (continued).
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The HCS shows large potential when used within multi-objective memetic algorithms,mainly because it performs an efficient LS which starts with one point and ends not onlywith an improvement of this point, but also, with several candidates for spread. Figure5.13 illustrates the application of the HCS as a local searcher over a population of threeindividuals. When the points are far, a hill climber movement (HC) is performed, and the hillclimber with side step (HCS) is applied when the optima is ‘almost’ reached. The operatorcould (via maxiter) repeat the descent step—hill climber—several times until a sidestep istriggered. The cost and profit of this operator is discussed in the following sections of thischapter.

Pareto
set

HC

HC

HCS

Initial points
Final points 

Figure 5.13: This figure shows the way to use the HCS as a LS operator, when coupledwith a MOEA. The LS starts with a point and ends with an improved point, or with threepoints (in case of k = 2): the one obtained by the gradient-based descent and the other twoobtained by sidesteps.
5.4.2 Cost of the local searchCrucial for the efficient usage of the HCS within a MOEA is the knowledge of its cost.Here we measure the cost of one step of the modified HCS as described above (i.e., for
maxiter = 1). Unfortunately, the different algorithms use different gradient information(quantitatively different) of the model. For sake of comparison, we measure the cost of theHCS in terms of the number of required function calls (to be more precise, we measure the
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running time for a function call and neglect the memory requirement). In other words, tomeasure HCS2 we have to find an equivalent in terms of function calls for the computationor approximation of the derivative ∇f (x), and of the second derivative ∇2f (x) of a function
f : Rn → R at a point x . If for instance automatic differentiation (AD) is used to computethe derivatives, we can estimate 5 function calls for the derivative call and 4 + 6n functioncall for the second derivative [47]. These values change when using finite differences (FD). If,for instance the forward difference quotient

∂f
∂xi

(x) ≈ f (x1, . . . , xi + δi, . . . , xn)− f (x1, . . . , xn)
δi

, i ∈ {1, . . . , n} �� ��5.4

where δi ∈ R+ is a small value, is used to estimate the gradient, then n function calls arerequired. The central difference quotient leads to more accurate approximations, but does inturn require 2n function calls (see [47]). A forward difference quotient approximation of thesecond derivative requires a total of n2 function calls (and 2n2 or 4n2 function calls whenusing the central difference quotient, depending on how the rule is applied). Finally, we haveto estimate the number of function calls required for a line search for the hill climber. Here,we take the value of 3 obtained by our observations.
Then, a call of HCS1 requires at least four function calls, from which one is for the LSaround x0. If the new candidate solution is either dominating or dominated by x0—whichis very likely at the early stages of the optimization process—the next point is found vialine search resulting in 4 function calls due to our assumptions. The most expensive event ofthe HCS is the sidestep; when it is performed, this means that Nnd trial points have beengenerated around x0. Then, it is still necessary to compute candidates in at most 2k − 2directions, with a cost of one function call each (see (4.11)), leading to a total of

Nnd + 2k − 2
function calls.The HCS2 needs, for the realization of the hill climber, the gradients of all k objectives, thesolution of a quadratic optimization problem (which we do not count here since k is typicallylow, and thus, the quadratic problem is easy to solve with standard techniques) and one linesearch. This makes 5k + 3 function calls when using AD and kn + 3 function calls whenusing FD (here we assume the forward difference method). For the sidestep, k gradientsand the second derivative of ∑k

i=1 αifi(xd) have to be computed, and further 2k − 2 sidestepcandidates are produced. This leads to 6n + 7k + 2 function calls when using AD and to
n2 + k (n+ 2)− 2 function calls when using FD.

Table 5.8 summarizes the cost of the different algorithms using the different conversionrules. Hereby, HC2 denotes the hill climber as presented in Algorithm 5 but without thesidestep operator (i.e., for εP = 0). Table 5.9 gives the numerical values for k = 3, and
Nnd = 3, and n1 = 10 and n2 = 30. It is obvious that FD should only be used for
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Table 5.8: Cost of one step of the HCS measured in function calls. To convert the derivativecalls in HCS2 into function calls we have used values based on automatic differentiation (AD)and finite differences (FD).
Method Number of function calls requiredHCS1 from 4 to Nnd + 2k − 2HC2 (AD) 5k + 3HC2 (FD) kn+ 3HCS2 (AD) from 5k + 3 to 6n+ 7k + 2HCS2 (FD) from kn+ 3 to n2 + k (n+ 2)− 2

Table 5.9: Numerical values for the cost of the HCS algorithms for the settings (a) n1 = 10,
k = 3, Nnd = 3 and (b) n2 = 10, k = 3, Nnd = 3. See Table 5.8 for details.

No. of function calls required No. of function calls requiredMethod for n1 = 10, k = 3, Nnd = 3 for n2 = 30, k = 3, Nnd = 3HCS1 from 4 to 9 from 4 to 9HC2 (AD) 18 18HC2 (FD) 33 93HCS2 (AD) from 18 to 83 from 18 to 203HCS2 (FD) from 33 to 138 from 93 to 996
models with moderate dimensional parameter space, otherwise the cost of the HCS2 will gettremendous. On the other side, note that the cost of HCS1 is independent of n and thusrelatively inexpensive, in particular in higher dimensions.
5.4.3 Combining both techniquesThe question which remains open is how to integrate the HCS into a given MOEA, in order toobtain an efficient memetic strategy. Here we give the first steps to answer this problem, andpropose hybrid versions for the state-of-the-art MOEAs NSGA-II and SPEA2. The numericalresults obtained show that the combination is advantageous.We start noticing that the modified HCS can be written in the shorthand form as

PHCS = HCS (x0), �� ��5.5

where x0 is a given point (e.g., coming from the current population of the MOEA) and PHCS isthe output set. Given a probability pHCS for the application of the procedure on an individualof a population, the operator can be defined set-wise as
PHCS = HCS (P, pHCS ), �� ��5.6
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where P denotes a given population. By doing so, the HCS can be interpreted as a particularmutation operator, and thus it can, in principle, be integrated into any given MOEA with littleeffort. However, this should be handled with care since the efficiency of the resulting hybriddepends (among other issues) on (a) which elements of the population the HCS is appliedto, and (b) the balance of the genetic search and the HCS. As an example for (a) we haveobserved that if the HCS is merely applied on elements of the external archive in a combi-nation with SPEA2, that this ‘elitist approach’ has a negative effect on the diversity of thepopulation, at least at early stages of the search. Even the application of the sidestep couldnot compensate this effect, since it is applied on a few, possibly closely located solutions.Problem (b) is another typical problem when designing memetic strategies (probably firstreported in [67] in the context of multi-objective optimization), and in particular in our settingdue to the relatively high cost of the HCS compared to classical mutation operators.Most important for the effect and the cost of the HCS are the parameters maxiter and Nnd(for HCS1). In general, it can be said that if both values of maxiter and Nnd are high, thelocal improvement of a point x0 will be nearly optimal (i.e., the elements of PHCS will be nearto local solutions). This can be advantageous for uni-modal models but can in turn reducethe efficiency of the entire search algorithm for multi-modal models due to the high cost ofthe HCS and the relatively high chance that the search gets stuck in a local (and not global)solution. If the values of maxiter and Nnd are low, the local improvements in one applicationof HCS will typically be sub-optimal. However, the choice of low values offers on the otherhand two advantages: first, the HCS spends less function calls for unpromising starting points.That is apparently also the case for promising starting points but we have observed that it isadvantageous to repeat the LS more often instead of spending the function calls in generatingsingle solutions (future populations contain points which are at least as good as the point x0from the current population). The second advantage is that the population is not disturbedby drastic improvements of single solutions which may cause trouble in elitist strategies [75].The next question is the choice of the probability pHCS to apply the HCS. Due to the costof the HCS, a low value seems to be advisable which also coincides with our observations.Further, we suggest not to apply the HCS in every generation in order not to disturb the ef-ficient but highly sensitive interplay of the different operators of the MOEA (as done in [147]).
To summarize, we suggest low values for the parameters maxiter and Nnd which influenceefficiency and cost of one application of the HCS. Besides, it is convenient a low value for theprobability pHCS since the application of LS influences the overall cost of the entire searchprocedure. See the next section for particular choices of these values.In the following, we propose two particular combinations where we use NSGA-II and SPEA2as baseline MOEAs.

NSGA-II-HCSAs discussed above, crucial are the questions about when and to which elements the LS hasto be applied on within a given MOEA. For NSGA-II, we suggest to perform the LS (i.e.,
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HCS) only on the best individuals of a given generation. This is made in order to find leadersolutions to pull the entire population to better solutions during the search. This exclusivesearch can be done since the diversity of the best (i.e., non-dominated) solutions is typicallyquite high. Thus, it is likely to generate well-spread leader individuals from the beginningof the search which will help to pull the population towards the entire Pareto set.Algorithm 16 shows the way to combine NSGA-II with HCS. Hereby, the procedures ‘FastNon-Dominated Sort’, ‘Crowding Distance Assignment’ and ‘Generate Child Population’ arewell known as parts of the NSGA-II—a thorough discussion can be found in [31].
1: procedure NSGA-II-HCS(N ,G , pHCS , s)2: Generate Random Population P (size N).3: Evaluate Objective Values.4: Fast Non-Dominated Sort5: Crowding Distance Assignment6: Generate Child Population Pof f s7: for i := 1, . . . , G do8: Using P := P ∪ Pof f s:9: if mod(i,s)==0 then10: LocalSearch(pHCS )11: end if12: Fast Non-Dominated Sort13: Crowding Distance Assignment14: Generate Child Population Pof f s15: end for16: end procedure

17: procedure LocalSearch(pHCS )18: for all a ∈ P do19: if @b ∈ P such that b ≺ a then20: Aa = HCS({a}, pHCS )21: P := P ∪ Aa22: end if23: end for24: end procedure Algorithm 16: NSGA-II-HCS
Algorithm 16 applies the LS each s generations after the reproduction process. The LSis applied only to non-dominated individuals, and—due to the cost of the procedure—it isperformed with a certain (low) probability. After having computed the improved solutions ofLS, the regular operations of ranking and crowding are used as in NSGA-II.Contrary to [126], where the LS has been applied after 75 percent of a given budget B of
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function calls has been spent, we have observed that it is advantageous to apply the HCSin all stages of the search to pull the population permanently towards the Pareto set. Infact, we propose here that the LS should be evenly distributed over the run of the algorithm.This guideline and the choice to take only non-dominated solutions as starting points for theHCS have an implication on the rule to choose pHCS : the number of non-dominated points(or rank 0 solutions) is typically very low at the beginning of the search, and increases lateron. From a certain stage of the process, however, the number of non-dominated solutions isnearly constant (i.e., equal to the population size). A constant value of pHCS would hencelead to a permanent growth of the fraction of the LS within the memetic strategy, at least inthe beginning of the search. To counteract to this effect it seems to be better to start with arelatively high probability pmax and to decrease this value during the search process until aprescribed (low) probability pmin is reached. This value is then chosen for the remainder ofthe algorithm’s execution.For the computations presented here, we have used the following strategy which is based onthe above considerations: starting with the probability pHCS (0) := pmax, the LS probabilitiesfor the subsequent generations are updated as follows
pHCS (i) = max

−2(pmax − pmin)
B

i∑
j=1 f c(j ) + pmax , pmin

 ,
�� ��5.7

where f c(j ) denotes the number of function calls spent in the j-th generation. Hereby, thefirst expression in (5.7) is a linear term in the number of function calls spent. Its value is pmaxfor zero function calls (i.e., at the beginning of the search) and pmin for B/2. That is, after atleast 50 percent of a given budget has been spent, the LS probability for future generationsis constantly set to pmin (i.e., pmin times the population size is the number of HCS calls oneis willing to spend on average, per generation, at late stages of the search).
SPEA2-HCS

Unlike above, where NSGA-II is used as the baseline MOEA, we have observed that for ahybridization with SPEA2 it is not always beneficial to apply the HCS only to membersof the archive which consists only of non-dominated solutions. This is because the archivecan—in particular at early stages of the search—consist of few, and probably not well spreadsolutions (which changes with an increasing number of iterations). Thus, for a hybrid of HCSwith SPEA2, we suggest to apply the LS operator to members of the mating pool, i.e., also todominated solutions. Consequently, we propose by the above discussion to set pHCS constantsince the size of the mating pool does not change. See Algorithm 17 for a pseudocode ofSPEA2-HCS.
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1: Generate initial population P0 ⊂ Q and set A0 := ∅, P̄0 := ∅.2: for k = 0, 1, . . . , Nmaxiter do3: Pk+1 := non-dominated solutions of Pk ∪ Ak4: Set Ak+1 := non-dominated solutions of Pk+15: Calculate fitness values of individuals in Pk+16: Perform tournament selection in Pk+1 to fill the mating pool7: Apply crossover, mutation and the LS operators (HCS) to the mating pool.8: Denote the resulting population by Pk+1.9: end for Algorithm 17: SPEA2–HCS
5.4.4 Numerical resultsIn order to demonstrate the benefit of using HCS within a given MOEA, we present anddiscuss some numerical results regarding the two specially designed memetic strategies. Theparticular MOPs we have used here, as test problems, are listed in Table 5.10 for (two andthree objective) convex problems, and in Table 5.19 for multi-modal MOPs.The comparisons presented here, show the two state-of-the-art MOEAs NSGA-II andSPEA2 against their corresponding hybrid variants NSGA-II-HCS and SPEA2-HCS. Sincethe Pareto sets of these test MOPs are located at the boundary of their correspondingdomains, we have specially used a modification of HCS2 which acts just as a hill climber—inother words, the value εP is set to 0; which means, that the search along the Pareto set isnever performed. To agree with our notations, and to avoid confusions, we denote this specialalgorithm by HC2.In order to evaluate the performance of the algorithms we have used the GenerationalDistance, the Inverted Generational Distance and the Two Set Coverage Measure—alsodescribed in Chapter 5—as indicators. All computations have been done using Matlab2.
Convex ModelsFirst we consider the convex and thus uni-modal models CONV1 (with k = 2 objectives) andCONV2 (with k = 3 objectives) which are taken from [32]. The dimension of the parameterspace is set as n = 30.For both models we are interested in the unconstrained case (i.e., where the Pareto setdoes not intersect with the boundary of the domain), and in the constrained case—also namedhere as the bounded case. We have chosen to take the domains

Qu := [−5, 5]30and
Qc := [−1, 1]× [1, 2]29

2https://www.mathworks.com
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Table 5.10: Two and three objective convex problems adopted to test the memetic algorithmsNSGA-II-HCS and SPEA2-HCS.
CONV1
f1(x) = (x1 − 1)4 +∑n

j=2(xj − 1)2
f2(x) = ∑n

j=1(xj + 1)2
CONV2
fi(x) = n∑

j=1
j 6=i

(xj − aj )2 + (xi − ai)4, i = 1, 2, 3
a1 = (1, . . . , 1) ∈ Rn

a2 = (−1, . . . , −1) ∈ Rn

a3 = (1, −1, 1, −1 . . .) ∈ Rn

for the unconstrained and the constrained model, respectively. Thus, the Pareto set of bothproblems3 is located within the box [−1, 1]30. The resulting models are denoted here byCONV1-U and CONV1-C for the two-objective problem, and CONV2-U and CONV2-C forthe three-objective case.Tables 5.12 to 5.17 show averaged numerical results obtained, on the convex models,using SPEA2 and NSGA-II and compare them against their respective memetic strategies.The parameter values used for their realization are displayed in Table 5.11. A budget of
B = 10, 000 function calls was spent in every case. It is worth noticing that B is chosenrelatively low in order to obtain significant differences in the indicator values.For the two cases where we hybridize the baseline MOEA with the HCS the followingobservations can be made: the values of the Set Coverage and the GD improve when theHCS1 is used as an additional local searcher. The values are even much better when usingthe gradient explicitly, i.e., HC2 or HCS2 for the LS; in this case the improvement is roughlyone order of magnitude. This big difference is certainly due to the fact that we are dealingwith convex models. For this reason, the gradient based search—though much more costlythan HCS1 for n = 30, see Table 5.8—leads to great improvements of given initial pointssince it does not get stuck at local solutions. Consequently, the population is pulled tothe ‘right’ set at any stage of the optimization process. For IGD the results are not thatconclusive; however, improvements can be observed.One result of NSGA-II, and their memetic variants, is plotted in Figure 5.14 in consistencywith the above discussion: Figure 5.14 (a) shows the effect of the HCS1 on a typical run, i.e.,better convergence and spread than the result of NSGA-II—due to the two search directionsof HCS1. Convergence is on the other side much better in Figures 5.14 (b) and (c) wheregradient information is used. When comparing the latter two figures, the effect of the sidestepgets visible: The spread in Figure 5.14 (c) is apparently better than in Figure 5.14 (b), where

3That is, considering the entire domain Q = R30
100



5.4. INTEGRATING HCS INTO MOEAS

Table 5.11: Parameter values used for SPEA2 and NSGA-II and the memetic strategiesSPEA2-HCS and NSGA-II-HCS on the convex problems.
SPEA2-HCS NSGA-II-HCSParameters unbounded bounded unbounded bounded

Npop 100 100 100 100
Na 100 100 - -
ηc - - 15 15
ηm - - 20 20
pc 0.9 0.9 0.9 0.9
pm 0.1 0.1 1/30 1/30

pHCS1 0.2 0.2 - -
sHCS1 5 5 10 10
pHCS2 0.1 0.1 - -
sHCS2 10 10 10 10
εy 5 5 5 5
εP 0.0001 0.0001 0.0001 0.0001
r 0.1 0.1 0.1 0.1maxiter 10 10 10 10
Nnd 5 5 3 3tol 10−4 10−4 10−4 10−4
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Table 5.12: Numerical results (GD and IGD) for SPEA2 and the memetic strategies SPEA2-HCS on the convex problems using dimension n = 30 and performing 10,000 function calls.Statistics were gathered from 30 independent runs; average values are presented, showingthe standard deviation in parentheses.
Indicators

Problems GD IGD

CONV1-U SPEA2(A)SPEA2-HCS1(B)SPEA2-HCS2(C)SPEA2-HC2(D)
3.5762(0.9190)1.9399(0.5721)0.1139(0.0505)0.1483(0.0463)

2.5469(0.3460)2.2846(0.5483)1.8377(0.9405)1.8792(0.9371)
CONV1-C SPEA2(A)SPEA2-HCS1(B)SPEA2-HC2(C)

6.8446(2.7245)6.3508(1.9602)0.2800(1.1503)
1.2491(0.1268)1.1985(0.1225)0.4268(0.0069)

CONV2-U SPEA2(A)SPEA2-HCS1(B)SPEA2-HCS2(C)SPEA2-HC2(D)
3.5762(0.9190)1.9399(0.5721)0.1139(0.0505)0.1483(0.0463)

2.5469(0.3460)2.2846(0.5483)1.8377(0.9405)1.8792(0.9371)
CONV2-C SPEA2(A)SPEA2-HCS1(B)SPEA2-HC2(C)

1.7887(0.4642)1.6342(0.7454)0.4902(0.1789)
0.4882(0.1086)0.4341(0.1303)0.2774(0.1440)

Table 5.13: Numerical results, for the CONV1 problems, testing on Set Coverage the al-gorithms SPEA2 (A), and the memetic strategies SPEA2-HCS1 (B), SPEA2-HCS2 (C) andSPEA2-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.Statistics were gathered from 30 independent runs; average values are presented, showingthe standard deviation in parentheses.
Set Coverage CONV1-U
B ≺ A A ≺ B0.7834(0.2726) 0.0984(0.1929)
C ≺ A A ≺ C0.9742(0.0755) 0(0)
D ≺ A A ≺ D0.9770(0.0753) 0(0)Set Coverage CONV1-C

B ≺ A A ≺ B C ≺ A A ≺ C0.4881(0.4119) 0.2932(0.3604) 1(0) 0(0)
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Table 5.14: Numerical results, for the CONV2 problems, testing on Set Coverage the al-gorithms SPEA2 (A), and the memetic strategies SPEA2-HCS1 (B), SPEA2-HCS2 (C) andSPEA2-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.Statistics were gathered from 30 independent runs; average values are presented, showingthe standard deviation in parentheses.
Set Coverage CONV2-U
B ≺ A A ≺ B0.5602(0.2900) 0.1223(0.1405)
C ≺ A A ≺ C0.8963(0.2118) 0(0)
D ≺ A A ≺ D0.9893(0.0324) 0(0)Set Coverage CONV2-C

B ≺ A A ≺ B C ≺ A A ≺ C0.6426(0.3622) 0.1796 (0.2752) 1(0) 0(0)
Table 5.15: Numerical results on GD and IGD for NSGA-II and the memetic strategies NSGA-II-HCS on the convex problems using dimension n = 30 and performing 10,000 function calls.Statistics were gathered from 30 independent runs; average values are presented, showingthe standard deviation in parentheses.

Indicators
Problems GD IGD

CONV1-U NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HCS2(C)NSGA-II-HC2(D)
1.2847(0.2258)0.5661(0.0938)0.0606(0.0054)0.0590(0.0048)

1.6994(0.2843)1.1123(0.4191)1.5931(0.9827)1.3167(0.8445)
CONV1-C NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HC2(C)

1.3747(0.1687)0.1143(0.0417)0.0063(0.0041)
1.0594(0.1027)0.3470(0.0661)0.0386(0.0540)

CONV2-U NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HCS2(C)NSGA-II-HC2(D)
2.1814(0.4247)1.1465(0.1249)0.1041(0.0133)0.1171(0.0136)

0.4618(0.0652)0.4533(0.0784)0.3815(0.1582)0.3374(0.1466)
CONV2-C NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HC2(C)

2.1165(0.3591)0.4333(0.1673)0.0127(0.0114)
1.4540(0.1725)0.5873(0.0794)0.4232(0.1127)
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Table 5.16: Numerical results, for the CONV1 problems, testing on Set Coverage the algo-rithms NSGA-II (A), and the memetic strategies NSGA-II-HCS1 (B), NSGA-II-HCS2 (C) andNSGA-II-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.Statistics were gathered from 30 independent runs; average values are presented, showingthe standard deviation in parentheses.
Set Coverage CONV1-U
B ≺ A A ≺ B0.9516(0.0977) 0.0218(0.0597)
C ≺ A A ≺ C0.9412(0.0825) 0.0032(0.0155)
D ≺ A A ≺ D0.9418(0.1144) 0(0)Set Coverage CONV1-C

B ≺ A A ≺ B C ≺ A A ≺ C1(0) 0(0) 1(0) 0(0)

Table 5.17: Numerical results, for the CONV2 problems, testing on Set Coverage the algo-rithms NSGA-II (A), and the memetic strategies NSGA-II-HCS1 (B), NSGA-II-HCS2 (C) andNSGA-II-HC2 (D). The setting was for dimension n = 30, performing 10,000 function calls.Statistics were gathered from 30 independent runs; average values are presented, showingthe standard deviation in parentheses.
Set Coverage CONV2-U
B ≺ A A ≺ B0.8433(0.1572) 0.0103(0.0332)
C ≺ A A ≺ C0.9397(0.1233) 0(0)
D ≺ A A ≺ D0.9633(0.1035) 0(0)Set Coverage CONV2-C

B ≺ A A ≺ B C ≺ A A ≺ C1(0) 0 (0) 1(0) 0(0)
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Table 5.18: Cost of the HCS variants within SPEA2-HCS in one run on CONV1-U (the runwhich produced the result displayed in Figure 5.14).
Hill climber calls Sidestep calls Function callsMethod (no sidestep) (w or w/o sidestep) (total)HCS1 7 68 2229HC2 69 0 1262HCS2 51 20 6145

the solutions fall into clusters.Table 5.18 gives an impression on the overall cost of the HCS within the search procedure.The table shows the amount of calls of the hill climber and the sidestep procedures, of HCS,when used within SPEA2-HCS to obtain the results shown in Figure 5.14. In this case,HCS1 used 22 percent of the total budget B of SPEA2-HCS1. The relatively large numberof sidestep calls is due to the low value of Nnd (= 3). Larger values of Nnd would resultin less sidestep calls and in turn more hill climber calls. The cheapest LS operator is HC2;only a portion of 13 percent of the function calls is used, since this operator merely computesthe gradients to perform the hill climber. On the other hand, the sidestep operator is muchmore costly since the second derivatives are involved. Table 5.18 shows that, for HCS2, thisLS operator spent 61 percent of B. The better result in Figure 5.14 (c) compared to Figure5.14 (b) in terms of spread, was obtained by merely 20 sidestep calls which, however, usedquite a lot of function calls for this.
To conclude, it can be said that on the convex models (two and three objectives, andalso constrained and unconstrained) a combination of the two baseline MOEAs with the HCSvariants improves the overall performance of the search. On the other hand, considerationsof the cost of the operators show that its application should be handled with care, since theHCS can use a big portion of the budget, resulting therefore, in a risk to decrease the overallperformance of the algorithm (note that we have assumed B to be constant).

DTLZ for Three ObjectivesTo continue with the numerical analysis of the performance for the memetic algorithms, weconsider three MOPs from the widely used benchmark DTLZ [29]. The problems DTLZ1and DTLZ3 are highly multi-modal and thus very difficult for LS methods, in particular forgradient-based ones. Problem DTLZ2 is also a difficult problem but with a moderate multi-frontal geometry. The description of these MOPs is found in Table 5.19. We have set n = 30for the dimension of the parameter space, k = 3 objectives, and the domain Q = [0, 1]30 forall the DTLZ models adopted in our experiments.Tables 5.21 and 5.22 show averaged numerical results obtained by the MOEAs and itsmemetic variant. Hereby, we have used the parameter values shown in Table 5.20 and a
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Figure 5.14: Numerical result for CONV1-U using NSGA-II and the three memetic strategiesNSGA-II-HCS1, NSGA-II-HC2, and NSGA-II-HCS2. The best result (spread and conver-gence) in this case was obtained by SPEA2-HCS2.
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budget of B1 = 100, 000 function calls for the multi-modal models DTLZ1 and DTLZ3 anda budget of B2 = 10, 000 for the uni-modal model DTLZ2—this has again been done inorder to prevent too small values of the indicators. The conclusions which can be drawn fromthe results are not as straightforward as for the convex case. While a similar trend as forthe convex case can be observed for DTLZ2, this does not hold for the multi-modal models.Apparently, the two memetic versions which use HC2 can not compete with their baselineMOEAs. However, to be fair the construction of the models already suggests that gradientinformation is worthless. Thus, it is rather a question of the choice of the model than anindication of a general failure of the HC2. On the other hand, SPEA2-HCS1 outperformsits baseline MOEA—SPEA2—significantly on these highly multi-modal models. Such animprovement, however, can not be observed from NSGA-II-HCS1 and NSGA-II. The latterMOEA is already performing very well in these MOPs. As we noticed before, these problemsmake it hard for any LS strategy to improve the overall performance; besides, such an operator(the HCS in particular) causes an extra computational cost, which diminishes the resourcesinvested in the MOEA execution.
Based on the numerical results presented in this section, it can be said that both variantsof the standalone HCS accomplish their task; i.e., they are capable of moving toward andalong the Pareto set. This implies that, by using the HCS, entire connected components ofthe (local) Pareto set can be explored after starting with one single solution. Furthermore,it has been shown that the hybridization of the HCS, with a given MOEA, can improve theoverall performance of the baseline MOEA adopted. More precisely, satisfying results haveyet been obtained for uni-modal MOPs. The results on multi-modal models, however, do notallow us to draw general conclusions. Due to the relative high cost of the HCS and thenatural handicap of LS methods for multi-modal problems, the balance of local and geneticsearch (such as for DTLZ1 and DTLZ3) is a challenging task. In order to handle this in anefficient manner, adaptive strategies are required, and further research should be done in thatdirection. An alternative for dealing with this problem, together with more insights about this,are presented in the next chapter.
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Table 5.19: Three-objective problems adopted to test the memetic algorithms NSGA-II-HCSand SPEA2-HCS. Hereby, k̃ = n − k + 1.
DTLZ1
f1(x) = 12x1x2 . . . xk−1(1 + g(x))
f2(x) = 12x1x2 . . . (1− xk−1)(1 + g(x))...
fk−1(x) = 12x1(1− x2)(1 + g(x))
fk (x) = 12 (1− x1)(1 + g(x))
g(x) = 100 [k̃ + n∑

i=k(xi − 12 )2 − cos(20π(xi − 12 ))]0 ≤ xi ≤ 1, i = 1, . . . , n
DTLZ2
f1(x) = cos( x1π2 ) cos( x2π2 ) . . . cos( xk−1π2 )(1 + g(x))
f2(x) = cos( x1π2 ) cos( x2π2 ) . . . sin( xk−1π2 )(1 + g(x))...
fk−1(x) = cos( x1π2 ) sin( x2π2 )(1 + g(x))
fk (x) = sin( x1π2 )(1 + g(x))
g(x) = n∑

i=k(xi − 12 )20 ≤ xi ≤ 1, i = 1, . . . , n
DTLZ3
f1(x) = cos( x1π2 ) cos( x2π2 ) . . . cos( xk−1π2 )(1 + g(x))
f2(x) = cos( x1π2 ) cos( x2π2 ) . . . sin( xk−1π2 )(1 + g(x))
fk−1(x) = cos( x1π2 ) sin( x2π2 )(1 + g(x))
fk (x) = sin( x1π2 )(1 + g(x))
g(x) = 100 [k̃ + n∑

i=k(xi − 12 )2 − cos(απ(xi − 12 ))]
α = 200 ≤ xi ≤ 1, i = 1, . . . , n
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Table 5.20: Parameter values used for SPEA2 and NSGA-II and the memetic strategiesSPEA2-HCS and NSGA-II-HCS on the DTLZ functions.
Parameters SPEA2-HCS NSGA-II-HCS

Npop 200 200
Na 100 -
ηc - 15
ηm - 20
pc 0.9 0.9
pm 0.01 1/30

pHCS1 0.3 -
pHCS2 0.3 -
s 10 10
εy 1 5
εP 0.0001 0.0001
r 0.05 0.1maxiter 5 10
Nnd 5 3tol 10−4 10−4
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Table 5.21: Numerical results of SPEA2 and the memetic strategies SPEA2-HCS on theDTLZ benchmarks using dimensions n = 30, k = 3, and performing 100,000 function calls.Statistics were gathered from 30 independent runs.
Indicators

Problems GD IGD

DTLZ1 SPEA2(A)SPEA2-HCS1(B)SPEA2-HC2(C)
22.7984(1.6658)12.2165(3.9738)48.06789(7.5157)

2.4303(0.4716)1.5389(0.2132)1.3770(0.4404)
DTLZ2 SPEA2(A)SPEA2-HCS1(B)SPEA2-HC2(C)

0.0529(0.0102)0.0342(0.0404)0.0557(0.0164)
0.0011(0.0001)0.0007(0.0001)0.0012(0.0001)

DTLZ3 SPEA2(A)SPEA2-HCS1(B)SPEA2-HCS2(C)
218.3484(9.9639)28.1974(3.8434)198.8947(27.5283)

10.3885(2.2814)3.2152(0.3890)3.6925(0.7106)Set Coverage DTLZ1
B ≺ A A ≺ B C ≺ A A ≺ C0.9789(0.0286) 0.0157(0.0227) 0.6925(0.2840) 0.2100(0.2710)Set Coverage DTLZ2
B ≺ A A ≺ B C ≺ A A ≺ C0.7820(0.0779) 0.0040(0.0089) 0.2060(0.0888) 0.3660(0.1740)Set Coverage DTLZ3

B ≺ A A ≺ B C ≺ A A ≺ C1(0) 0(0) 0.7905(0.0862) 0.0877(0.0586)
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Table 5.22: Numerical results of NSGA-II and the memetic strategies NSGA-II-HCS on theDTLZ benchmarks using dimensions n = 30, k = 3, and performing 100,000 function calls.Statistics were gathered from 30 independent runs.
Indicators

Problems GD IGD

DTLZ1 NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HC2(C)
8.5024(1.2081)10.4444(1.1505)18.1555(4.6705)

1.5998(0.1530)1.6856(0.2202)1.0096(0.1899)
DTLZ2 NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HC2(C)

0.0363(0.0041)0.0293(0.0033)0.0097(0.0039)
0.0022(0.0002)0.0018(0.0001)0.0005(0)

DTLZ3 NSGA-II(A)NSGA-II-HCS1(B)NSGA-II-HC2(C)
17.6126(3.5630)16.9381(2.9723)24.6485(3.6724)

3.2696(0.7721)2.9951(0.6861)2.5127(0.4320)Set Coverage DTLZ1
B ≺ A A ≺ B C ≺ A A ≺ C0.1610(0.1376) 0.6035(0.2565) 0.4885(0.1354) 0.3960(0.1627)Set Coverage DTLZ2
B ≺ A A ≺ B C ≺ A A ≺ C0.7125(0.1869) 0.1235(0.0790) 0.9715(0.0284) 0.0105(0.0116)Set Coverage DTLZ3
B ≺ A A ≺ B C ≺ A A ≺ C0.5010(0.3365) 0.3965(0.3243) 0.4435(0.3225) 0.4550(0.2857)
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“This principle is so perfectly generalthat no particular application of it ispossible.” George Pólya 6Seeking a Generic Procedure
In this chapter we suggest and investigate a generic way to introduce gradient-based infor-mation, as a means to improve the search process performed by a MOEA. We present ideasthat can be easily incorporated into any MOEA, and provide some guidelines regarding theuse of our proposed approach. This is an attempt to propose an adaptive mechanism thatallows the local and global search strategies to dynamically interleave. We based the controlmechanism on the observation of the evolutionary search efficiency; in this way, the algorithmcan automatically assign more or less resources either to the local or to the global searchprocedure, as deemed necessary.As a matter of example, in the sequel we present a particular algorithm (Algorithm 18)and then use it to discuss several issues. We also test this algorithm (in Section 6.3) overunconstrained two-objective optimization problems—since just two gradients can effort-lessbe combined into a common descent direction. However, the control part and the rest ofthe analysis could be used for problems with a higher number of objectives. To show ourproposed coupling, we chose the widely used NSGA-II [31] as our global search engine.Nevertheless, the coupling with other MOEAs is also possible as will be later discussed. Inthe following, we present in Algorithm 18 our simple version of a MOEA hybridized withgradient information.The parameters N and G in Algorithm 18, represent the population size and the maximumnumber of generations, respectively. The necessity for the module operation1 in line 15,and the parameter kg will be discussed later in this chapter. Again, the procedures “FastNon-Dominated Sort”, “Crowding Distance Assignment” and “Generate Offspring Population”correspond to the well-known components of the NSGA-II.Algorithm 18 places the LS inside the NSGA-II just after the reproduction and theranking-crowding process. The LS is applied only to non-dominated individuals, but notto all of them. Our control mechanism (global vs. local) uses information that has alreadyemerged from the original ranking process.

1a ≡ b (mod m) is that both numbers a and b leave the same residue when divided by m.
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1: procedure GH-NSGAII(N ,G)2: Generate a Random Population P.3: Evaluate Objective Function Values.4: Fast Non-Dominated Sort5: Crowding Distance Assignment6: for i ← 1, . . . , G do7: Generate Offspring Population Pof f s8: Set P ← P ∪ Pof f s:9: Fast Non-Dominated Sort10: Crowding Distance Assignment11: LocalSearch(i, P)12: end for13: end procedure

14: procedure LocalSearch(i, P)15: if i ≡ 0 (mod kg) then16: Compute e as in equation (6.1).17: Form the set E taking e individuals18: randomly selected out of R1(P).19: for all a ∈ E do20: if local improvement is possible then21: Apply line search to obtain a′.22: Replace a ← a′.23: Set a′ ∈ R1(P).24: Set the crowding distance of a′ as ∞.25: end if26: end for27: end if28: end procedure Algorithm 18: Hybrid GH-NSGAII
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6.1. MULTI-OBJECTIVE LINE SEARCH

6.1 Multi-objective Line Search

6.1.1 Movement directionWe already discussed (in Chapter 3) the concept of multi-objective descent direction ν ∈
Rn. Several methods, that we previously discussed, to compute this directions are currentlyavailable. We have methods which calculate the greedy direction [42, 107], methods whichcompute the entire set of descent directions [53] [8], and our proposed HCS method [86](Section 4.2) that performs two kinds of movements: towards and along the front. In addition,moving in a direction along the Pareto front is also possible using gradient-based continuationmethods such as those in [58] [119] [52] or those without estimation of the gradient as in [86].Furthermore, it is possible to perform directed movements not only towards and along thePareto front, but also to any desired direction in the objective space; for this regard, the DSmethod [118] (discussed in Section 4.3) has the advantage of performing movements alongdetermined paths in objective function space.A descent direction particularly convenient is the one used to apply the line search inAlgorithm 18 (line 21). For the two-objective case, we calculate the descent direction ∇xusing equation (3.3), and we obtain the individual x ′ as

x ′ = x + tx∇x .The advantage of using the formula (3.3) for two objectives (over other currently availablefor multi-objective descent directions [107, 42, 8]) is that no additional effort is needed forits computation itself. While all the other alternatives need to solve a quadratic or linearoptimization problem for each point, we emphasize that for two-objective problems just anarithmetic operation (a geometrical “average”) over the gradients is necessary. This could beattractive for the algorithm designer because no additional code for solvers has to be added,and the procedure can be directly plugged into the MOEA adopted.Once the movement direction is set, other issues come to our attention. Computing anoptimal step length and applying a suitable stopping criterion are necessary in order to finishthe design of the local searcher.
6.1.2 Step length controlOnce the multi-objective descent direction ν is set for a specific point x ∈ Rn, we can justdefine the new line search function as

f iν : R −→ R
t 7−→ fi(x + tν).

It is worth noticing that the computations of the step length of f iν is again a multi-objectiveproblem. In Figure 6.1 it is possible to observe that ti is the local minimum corresponding tothe f iν function (i ∈ {1, 2, 3}); therefore, there are k functions (over one single variable) to
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t 2 3tt 1Figure 6.1: Simultaneous line search for three functions along the direction ν.
be simultaneously minimized in the same neighborhood. Even when solving separately the
k line searches (getting t1, t2 and t3 as in the figure), it is not possible to say which is thesuitable step length for all of them. Nevertheless, since not all the functions are in conflictwith each other—at every point—it is possible to find regions of common improvement; forexample, the region before the first local optimum appears, guarantees that all the functionshave a certain improvement (decrease).Since an exact step length calculation is not possible in this case, the use of inexactmethods is a good option. One practical choice (suggested by [42]) is to adapt the widelyknown Armijo-Goldstein rule to the multi-objective case, and accept any step length t thatholds

F (x + tν) ≤ F (x) − c t JF (x) ν,where F : Rn → Rm is the multi-objective function and JF (x) : Rn → Rn is the Jacobianmatrix of F at x. With a suitable initial step length, this method is easily applicable. However,this is not an efficient approach in general.These inexact methods (such as Wolfe conditions, Armijo conditions, etc.) have been widelystudied in mathematical programming for single-objective optimization, but their applicationin the multi-objective case is still an open problem. Ensuring convergence and the studyof speed of convergence for these methods are important issues to address, when buildingan efficient interleaving between MOEAs and line search. The use of further heuristics andmathematical analysis to deal efficiently with this multi-objective problem (the step lengthcalculation) are an open branch of study, and are also accessible for future experimentalresearch.As a practical choice, in this proposed algorithm, to estimate tx , we use an Armijo-like
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rule starting from a size tmax, and we reduce t ← t/2 at each iteration, until fi(x ′) ≤ fi(x) ∀i(or the Armijo condition) is fulfilled. The procedure is sensitive to this tmax parameter as anyother line-search procedure is to the initial step length choice.
6.1.3 Stopping criterionSince it could happen that a certain point x is already close to a Pareto optimal point, itis necessary to set a stopping criterion—in order not to apply the LS on certain points. InAlgorithm 18, the stopping criterion is applied in line 20. As we stated above, most of thegradient-based descent directions can be automatically tested for a stopping criterion. Thesecriteria are, in general, inspired on the KKT optimality conditions [81].For the particular case of two objectives, it is very easy to set a stopping criterion to applythe steepest descent. The condition is related to certain small tolerance 0 < εtol < 0.01 andis given by the following rule: If

〈∇1,∇2〉 < −1 + εtolholds, then, no LS movement is performed for the point x .
6.2 Balancing Resources
Since there is no a priori knowledge about the benefits of using LS (within the evolutionarysearch) for a specific problem, it is not convenient to previously determine—as it is done,for example, in two-stage algorithms—a specific amount of resources to be devoted for theglobal, and for the local part of the search. Nevertheless, it is a promising idea to incorporateLS, as a method to refine solutions, only at the end (as suggested in [51]); but this leadsagain to a two-stage algorithm. In this case, an adaptive switch mechanism between the twostages is desired, and its design is still an open research problem.An adaptive mechanism to control the use of LS is advised in order to produce efficientalgorithms, but this is, by itself, a non-trivial problem. Because of the high cost, in general,of the application of LS, such balance mechanisms must be capable of determining when thegradient method outperforms the pure evolutionary search during the solution of a specificproblem. This control should be based on a mechanism to determine when the evolutionarysearch is not producing improvements and then allow more resources for the solutions refine-ment. In the following, we discuss our proposal to control the application of LS, based onthe above observations.In chapter 3 we discussed that the descent cone is wider for farther points than for thoseclose to KKT points. In particular, the descent cone shrinks down as the search gets closer tothe optimum. Thus, the probability to locally improve the point x with any kind of perturbationis high when x is far, being this the case—most of the time—during the first stages of theevolutionary search, when many points are likely to be replaced by non-dominated ones. Onthe other hand, when a point highly improves, it is unlikely that new points, stochastically
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generated, could replace it—since the descent cone shrinks down—and it will remain inthis state for several iterations. This is the case when a trusty movement towards a descentdirection is more necessary, and, therefore, the use of LS becomes cost-effective. However,since different MOPs have different fitness landscapes, we do not really know if this stateis reached at the end of the search (or at any other stage, for that sake). Thus, it becomesdesirable to have an adaptive mechanism that can recognize when the use of LS is usefuland when it will produce no gains with respect to the use of the global search engine alone.On the other hand, a well studied fact about the efficiency of MOEAs [62][69] is thatwhen a large portion of the population becomes non-dominated, the selection mechanismof the evolutionary search fails2,—possibly leading to a random behavior. This situation iseasily detected during the execution of the algorithm, mostly within MOEAs that use Paretoranking. Following this reasoning, we propose a control mechanism based on the numberof non-dominated points at each iteration. The idea is that when the evolutionary search ispromising, the LS is scarcely used. On the other hand, when the number of non-dominatedsolutions grows, our method allows the LS mechanism to be applied more often.Then, the control parameter e that we propose should follow the rule:
e =


0 if |R1(P)| < (0.1)(N)⌊

|R1(P)|(0.1)(N)
⌋ otherwise.

�� ��6.1

where
|R1(P)|is the cardinality of the subset R1(P) (lines 18 and 23 of Algorithm 18, in page 114) formedby the elements in P whose Pareto rank is one. N is the population size and b·c representsthe floor function.The idea behind the parameter kg (line 15 of Algorithm 18) is that the LS is improvingonly a few individuals at a certain moment and, since we have a population-based approach(i.e., the MOEA acting as our global search engine) we should let the evolution do its job.In other words, we are expecting that most of the effort will come from the global procedure,and that the gradient-based LS will only refine the solutions generated by the global engine.A deeper study over this parameter is left as future work. During the experiments done inthis thesis, the best behavior was obtained with values between 5 and 10; but it seems thatthis parameter will be problem dependent, in a similar way that it was concluded for thediscrete domain case [66]. Not applying the LS at each iteration will help us to make its costmore affordable. At the same time, this will allow us to push the population of the MOEAtowards better solutions. Thus, parameter kg determines how often do we apply the LS. Webelieve that this parameter must be varied adaptively during the search as a second controlmechanism for balancing resources. A more in depth study of this topic is left as future work.

2This behavior is because the selection in EAs is normally based on the Pareto dominance relation.
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6.3 Numerical Results
For assessing the performance of our proposed approach, and in order to deal with uncon-strained problems, we used the modified Zitzler-Deb-Thiele (ZDT) problems presented in [130]and [129] (with the difference that to use our method we do not need the twice differentiabilityproperty). These test functions are defined in Table 6.1 (ZDT5 was not included because itis defined over a binary space). All these experiments were coded using the programminglanguage C3.The parameters used in our experiments were the following:
• Population size N = 100,
• εtol = 0.0001,
• k = 2, but similar results were obtained for values under 10, and
• tmax = 2.
Regarding the computational costs involved in practice, we are assuming that the userestimates the gradients of the objective functions using an evaluations-saver method suchas Automatic Differentiation [25]. This sort of approach introduces significant savings in thecomputational cost of the gradient values.It is worth noting that we adopted the previously described test problems both, with theiroriginal dimensionality and, as a second instance, with a higher number of decision variables.The specific dimensionalities adopted are indicated in Table 6.2.We compared the plain NSGA-II with respect to our proposed hybrid approach. All theexperiments were run until reaching a certain number of function evaluations (5,000 for ZDT1,ZDT2 and ZDT3; 20,000 for ZDT4 and ZDT6) which corresponds to the moment when certainreasonable proximity to the front has been reached (see the right hand-side plots of Figures6.7 to 6.11). Then, we allowed the algorithms to perform twice these numbers of evaluations.It is worth noting that the same number of evaluations were adopted for the two cases: forthe original test problems and for their extended versions (see Table 6.2).Tables 6.3 to 6.6 show the mean and the standard deviations over 30 independent runs,regarding the indicators Set Coverage and IGD. The calculation of IGD was done usingthe parameter p = 1. Table 6.3 shows that, for the first number of evaluations, the hybridapproach almost always set-covers the plain MOEA (its values are close to one), while theplain NSGA-II almost never set-covers the hybrid approach (its values are close to zero). Theonly two exceptions to notice are ZDT6, where the values of the coverage are exactly oneand zero (which means total coverage of the hybrid over the original approach and never theopposite), and ZDT4 in which the coverage difference was reduced. When performing twice

3We took the implementation of NSGA-II available from its author at
http://www.iitk.ac.in/kangal/codes.shtml
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Table 6.1: Test problems adopted
Problem Functions DomainZDT 1 f1(x) = x1

f2(x) = g(x)(2−√f1(x)/g(x)) [0, 1]× [−1, 1]n
g(x) = 1 + 9

n−1 ∑n
i=2 x2

iZDT 2 f1(x) = x1
f2(x) = g(x)(2− (f1(x)/g(x))2) [0, 1]× [−1, 1]n
g(x) = 1 + 9

n−1 ∑n
i=2 x2

iZDT 3 f1(x) = x1
f2(x) = g(x)(2−√f1(x)/g(x)− [0, 1]× [−1, 1]n(f1(x)/g(x)) sin(10πf1))
g(x) = 1 + 9

n−1 ∑n
i=2 x2

iZDT 4 f1(x) = x1
f2(x) = g(x)(2−√f1(x)/g(x)) [0, 1]× [−5, 5]n
g(x) = 1 + 10(n − 1)+∑n

i=2(x2
i − 10 cos 4πf1)ZDT 6 f1(x) = 1− e−4x1

f2(x) = g(x)(2− (f1(x)/g(x))2) [0, 1]× [−1, 1]n
g(x) = 1 + 9

n−1 ∑n
i=2 x2

i

the number of evaluations, the plain NSGA-II was able to converge closer to the true Paretofront, but was still never able to set-cover the hybrid approach.In Table 6.4, we show the results obtained for the extended versions of the test problems.We can see here similar results to those obtained when dealing with the original versionsof the test problems. However, in this case the outperformance of the hybrid over the plainNSGA-II improved as the number of iterations was increased. Tables 6.5 and 6.6 supportthese results, and show the IGD indicator values which measures both, proximity to the frontand spread of solutions.It is worth noticing that, since ZDT4 is a highly multi-frontal MOP, then, a gradient-basedmethod is expected to get stuck when attempting to solve it, producing, as a consequence, anegative impact on the performance of the hybrid MOEA. However, our results do not indicatethat this is always the case. However, it is important to notice that this problem, as well asZDT2, were the least stable in terms of the standard deviation for the IGD indicator.Another important aspect to mention is that, since the two compared algorithms use thesame crowding selection procedure, the distance towards the Pareto front does not decreasemonotonically at the last stages of the search, since some good solutions could be deleted atfurther iterations. This is also the reason why no useful information (for comparison purposes)can be obtained from letting the algorithms to perform a higher number of objective function
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Table 6.2: Number of decision variables used for each test problem
Problem Original Size Extended SizeZDT 1 30 variables 60 variablesZDT 2 30 variables 60 variablesZDT 3 30 variables 60 variablesZDT 4 10 variables 15 variablesZDT 6 10 variables 15 variables

Table 6.3: Comparison of results using the Set Coverage indicator for the original versions ofthe test problems.
Problem NSGA-II Set Coverage5,000 f. evals. 10,000 f. evals.version: Mean σ Mean σZDT 1 Hybrid < Plain 0.98 0.03 0.78 0.08Plain < Hybrid 0.00 0.00 0.00 0.00ZDT 2 Hybrid < Plain 0.91 0.21 0.88 0.08Plain < Hybrid 0.01 0.07 0.00 0.00ZDT 3 Hybrid < Plain 0.90 0.11 0.60 0.09Plain < Hybrid 0.03 0.06 0.01 0.0320,000 f. evals. 40,000 f. evalsMean σ Mean σZDT 4 Hybrid < Plain 0.66 0.29 0.32 0.19Plain < Hybrid 0.11 0.27 0.00 0.00ZDT 6 Hybrid < Plain 1.00 0.00 1.00 0.00Plain < Hybrid 0.00 0.00 0.00 0.00
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Table 6.4: Comparison of results using the Set Coverage indicator, for the extended versionsof the test problems.
Problem NSGA-II Set Coverage5,000 f. evals. 10,000 f. evals.version: Mean σ Mean σZDT 1 Hybrid < Plain 0.99 0.02 1.00 0.01Plain < Hybrid 0.00 0.00 0.00 0.00ZDT 2 Hybrid < Plain 0.86 0.30 0.90 0.24Plain < Hybrid 0.05 0.17 0.00 0.00ZDT 3 Hybrid < Plain 0.88 0.17 0.95 0.05Plain < Hybrid 0.10 0.18 0.01 0.0320,000 f. evals. 40,000 f. evalsMean σ Mean σZDT 4 Hybrid < Plain 0.55 0.49 0.70 0.29Plain < Hybrid 0.52 0.48 0.13 0.32ZDT 6 Hybrid < Plain 1.00 0.00 1.00 0.00Plain < Hybrid 0.00 0.00 0.00 0.00

evaluations.Figures 6.2 to 6.6 show the Pareto fronts generated for each of the test problems, in theirtwo instances (original and extended), and for the two numbers of iterations adopted. ThesePareto fronts correspond to randomly selected runs.Figures 6.7 to 6.11 show the average over 30 runs for the number of non-dominatedpoints—which is the basis of our control mechanism—and the GD as the number of functionevaluations increases. These comparisons are presented in the original and also in theextended size versions of the problems.When hybridizing MOEAs with gradient-based procedures, an obvious question thatarises is if this sort of hybrid scheme is more cost-effective than the use of a plain MOEA.This cannot be easily answered, and few studies that look into this are currently available.However, we conclude that the answer to this question depends on two things: the specificfeatures of the problem to be solved, and the effectiveness of the mechanism that balances theLS with the global search. Regarding the scalability of Algorithm 18, we can comment thatexcluding the computation of the descent direction (Proposition 3.2.1), the ideas presentedhere can be used to hybridize MOEAs to deal with more than two objectives. For those cases,we suggest to use any of the the procedures proposed in Chapter 4, or the ones proposed byFliege et al. [42] or by Schäffler et al. [107]. It is worth noting that, in these cases (except forHCS1), it is necessary to use a solver for convex quadratic optimization or, at least, a linearoptimization solver.
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Figure 6.2: Pareto fronts corresponding to a random run (seed 0.39) for ZDT1. Original (top)and extended problem sizes (bottom), 5000 (left) and 10000 (right) evaluations.
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Figure 6.3: Pareto fronts corresponding to a random run (seed 0.39) for ZDT2. Original (top)and extended problem sizes (bottom), 5000 (left) and 10000 (right) evaluations.
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Figure 6.7: Average over 30 runs for ZDT1 with both its original size (top) and its ex-tended size (bottom). We also show the number of non-dominated elements (left), and theGenerational Distance (right).
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Figure 6.8: Average over 30 runs for ZDT2 with both its original size (top) and its ex-tended size (bottom). We also show the number of non-dominated elements (left), and theGenerational Distance (right).
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Figure 6.9: Average over 30 runs for ZDT3 with both its original size (top) and its ex-tended size (bottom). We also show the number of non-dominated elements (left), and theGenerational Distance (right).
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Figure 6.10: Average over 30 runs for ZDT4 with both its original size (top) and its ex-tended size (bottom). We also show the number of non-dominated elements (left), and theGenerational Distance (right).
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Figure 6.11: Average over 30 runs for ZDT6 with both its original size (top) and its ex-tended size (bottom). We also show the number of non-dominated elements (left), and theGenerational Distance (right).
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Table 6.5: Comparison of results for the IGD indicator, adopting the test problems with theiroriginal sizes.
Problem NSGA-II IGD5,000 function evals. 10,000 function evals.version: Mean Std. Dev. Mean Std. Dev.ZDT 1 Hybrid 9.059E-03 9.080E-03 4.798E-03 5.318E-04Plain 5.134E-02 1.129E-02 9.349E-03 8.545E-04ZDT 2 Hybrid 4.437E-02 1.109E-01 7.108E-03 1.264E-02Plain 1.114E-01 1.396E-01 1.446E-02 1.398E-02ZDT 3 Hybrid 1.959E-02 1.252E-02 6.084E-03 4.021E-03Plain 3.722E-02 9.161E-03 7.443E-03 6.264E-0420,000 function evals. 40,000 function evalsMean Std. Dev. Mean Std. Dev.ZDT 4 Hybrid 1.237E-01 1.233E-01 4.511E-03 1.441E-04Plain 6.191E-02 8.149E-02 5.483E-03 9.147E-04ZDT 6 Hybrid 2.859E-03 3.342E-04 2.422E-03 1.828E-04Plain 3.262E-01 7.280E-02 1.806E-01 3.616E-02

Table 6.6: Comparison of results for the IGD indicator, adopting the test problems in theirextended versions.
Problem NSGA-II IGD5,000 function evals. 10,000 function evals.version: Mean Std. Dev. Mean Std. Dev.ZDT 1 Hybrid 1.269E-02 5.371E-03 4.816E-03 1.682E-04Plain 1.899E-01 3.366E-02 3.273E-02 5.349E-03ZDT 2 Hybrid 1.785E-01 3.038E-01 4.189E-02 1.016E-01Plain 3.167E-01 1.102E-01 5.197E-02 4.667E-02ZDT 3 Hybrid 1.086E-01 2.525E-02 1.206E-02 7.814E-03Plain 1.487E-01 2.186E-02 2.632E-02 9.028E-0320,000 function evals. 40,000 function evalsMean Std. Dev. Mean Std. Dev.ZDT 4 Hybrid 2.018E+00 9.879E-01 1.137E-01 9.409E-02Plain 2.086E+00 8.390E-01 3.600E-02 2.234E-02ZDT 6 Hybrid 1.080E-02 1.044E-02 2.439E-03 1.434E-04Plain 1.023E+00 1.293E-01 4.985E-01 9.087E-02
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6.4 Archive Bounding Process
Why should we spend resources refining a solution that will be later deleted by a crowding-like strategy? When using gradient information at the end of the search, solutions are asaccurate as the amount of resources we want to spend in the line search. If we incorporatethis refinement as part of the LS engine during the execution of the hybrid algorithm, thesame archive truncation mechanism—present in most of the MOEAs—will withdraw theseimprovements.Another option is to look at special archiving strategies, such as those described in [124],which could deal with this issue. Important open problems in this sense are the interplay ofthe archiving and the selection mechanism of the MOEA, how to set the mutation radius (stepsize) in the MOEA, its relation with the archive setting, and what resolution of the archiveshould be used. Besides, the detection of promising elements in the archive is very importantduring the evolutionary search.From the experiments presented here, it can be noticed in Figures 6.7 to 6.11 (right hand-side) that the crowding procedure truncation does not allow the method to converge. In otherwords, the zero value is never reached when assessing GD for a large number of functionevaluations. The worst part, of this situation, is that there is a positive probability to lose,during the selection (when using the crowding procedure), points which have already beenimproved (by the application of LS). The alternative that we adopted for these experiments wasto skip the calculation of the crowding value for the elements resulting from the applicationof the LS (by assigning a special value to them). However, this mechanism only saves theseelements for the next generation and it does not prevent that, at future generations, theimproved individuals are deleted. Otherwise, we could interfere with the original diversitycontrol process of the MOEA and this could have a negative effect.As a final suggestion, if guaranteed convergence is searched for the procedure, the ob-servation presented above motivates the study and use of different types of archivers forMOEAs.
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“We can only see a short distanceahead, but we can see plenty therethat needs to be done.”Alan Turing 7Conclusions and Extensions
In this work we have presented our research on the design of hybrid MOEAs that incorporategradient information. We analyzed the main issues when making this coupling from both, theLS and the global search point of view. This is an important problem since most of the currentmulti-objective memetic algorithms have focused on discrete problems, in which the LS overneighborhoods has been well studied. However, for the continuous case, there is no directcomparison with such (discrete) proposals. In this sense, for the exploration of continuousneighborhoods we used gradient-based line search. This is a powerful tool that certainlyimplies a high cost, but that it is also a reliable way to produce improvements. The materialpresented in this thesis contributes to increase the knowledge about these mathematicaltechniques and to motivate their use to improve the efficiency of MOEAs. We have shownthe huge potential of combining gradient information with multi-objective evolutionary search.Also, theoretical aspects and open research branches have been discussed.The contributions of this thesis are stated in the following:
1) Specialized local search mechanisms: This is about the construction and computacion ofgradient-based search directions; also about some different aspects regarding the design ofLS operators based on them.First, we incorporated the gradient of two functions (Expression 3.3, in page 26), inthe most simple possible way compared with other works which use gradient-based multi-objective line search—since these other procedures require at least the solution of linearequation systems. In this sense, we developed a “plug and play” method that can be easilycoupled with many MOEAs with little effort. The most important advantage, of implementingLS with our proposed approach, is that no additional quadratic or linear optimization solversare required to calculate the descent direction for two-objective problems. This makes ourapproach cost-free, in a certain extent, for such types of problems.Second, in Chapter 4 we have proposed a novel point-wise iterative search procedure, theHill Climber with Sidestep (HCS), which is designed for the LS of a given MOP. The HCSis intended to be capable of moving both toward and along the set of (local) Pareto points,depending on the location of the current iterate. We proposed two variants of the HCS, agradient-free version (HCS1) and one version which explicitly exploits gradient information(HCS2). Both can be used as standalone algorithms, to explore parts of the Pareto set
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starting with one single solution; and are able to handle constraints of the model, to someextent. We also presented, in Section 4.2.5 (page 47), some numerical results indicating theefficiency of the HCS as a standalone algorithm, and its benefit when being integrated intoa MOEA in Section 5.4.4 (page 99).Third, we presented the Directed Search method (DS) for multi-objective optimization,which allows to steer the search into any direction α, given in objective space. Based onthis idea we also presented a novel continuation procedure, which depends of the initial point
x0 and of the choice of the desired direction α. We have emphasized the similarities anddifferences among our approach and other possibilities like the Weighted Sum approach andGoal Programming. Though these directions are locally optimal, the resulting approachesdo not guarantee, however, that at least a locally optimal point is reached. The essentialnovelty in the alternative continuation method we have presented is the choice of the predictordirection: instead of linearizing the Pareto set we have used a linearization of the Pareto
front to obtain a new predictor solution; By this, no second order information is required,as in ‘classical’ continuation methods. This aspect makes the new strategy a competitivealternative, in particular for the treatment of higher dimensional problems. To conclude, wehave illustrated the behavior of both methods in some benchmark problems.Finally, our three proposals for local searchers also include a tolerance controlled stoppingcriterion—in order to avoid applying LS in a particular (almost optimal) point.
2) Memetic algorithm construction: We have addressed in Chapter 5 the problem of inte-grating some of our local searchers into a given MOEA, in order to obtain novel memeticstrategies. As examples, we have proposed, in Section 5.4 (page 89), the two algorithms (orfamily of algorithms) SPEA2-HCS and NSGA-II-HCS which are derived from SPEA2 andNSGA-II, respectively. More precisely, the results of SPEA2-HCS and NSGA-II-HCS showthat the combination as proposed here is advantageous in many cases. However, it has tobe mentioned that for this, the design parameters of the HCS and the balance between localand genetic search has to be chosen properly. In that chapter we also presented GBMES, atwo stage algorithm which reaches such a balance while requiring a total of 3,000 objectivefunction evaluations—a very competitive performance for the particular benchmark problemsused. With this work we showed that although obtaining gradient information is an expensiveprocess, it is possible to design an efficient gradient-based hybrid. Another studied featureof GBMES is that it scales well as we increase the number of decision variables of theMOP. This was illustrated by two examples in which we use up to 100 decision variables.This approach was found to degrade significantly less than a state-of-the-art MOEA (theNSGA-II), while still performing the small budget of 3,000 objective function evaluations.We also tackled, in Chapters 5 and 6, the problem of the balance between LS and globalsearch. This is not a trivial issue, and it has been indeed recognized as one of the maindifficulties when designing memetic MOEAs. The work presented in Section 6.2 (page 117)is a first step towards developing a fully adaptive method, that can automatically balancethe role of each of the two search engines (i.e., the global search and the LS engines) when
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dealing with continuous problems. We presented a criterion to switch between the local andthe global search procedures based on the cardinality of the non dominated set. The aim ofsuch mechanism is precisely to automatically release resources (i.e., function evaluations) foreach of the two engines. Algorithm 18 presents a generic gradient-helped MOEA which usesthis kind of balance method. The hybrid algorithm showed advantages over the plain MOEAin the test problems adopted in different instances (i.e., with their original dimensionality andwith a higher one). Since the application of LS is an expensive procedure for MOPs, it isadvisable to perform an efficient interleaving with the MOEA.
Future Work

As part of our future work, we are interested in coupling alternative archiving methods (seefor example those in [124]) with our approaches. Such type of mechanism should be able topreserve good solutions during a longer time, which would be beneficial for the performance ofthe final algorithm. Archiving strategies have different edges to investigate, since convergenceof the procedures lies most of the time on them. On the other hand, the management of agood archiving method is not an easy task since it has several computational issues—evenwhen dealing with a moderate number of dimensions.Since gradient-based descent was proved to increase the accuracy of solutions, an inter-esting way to exploit it is by reconstruction techniques—like the one presented in Section5.2.3 (page 77). In this regard, the rough sets mechanism can be improved—as a futurework—by introducing gradient-based information into it; however, this should be done verycarefully, because of the high computational cost associated with obtaining this information.For this sake, it is possible to take advantage of the construction explained in the preliminaryphase of Section 5.2.3 (page 77). Such construction could be selectively repeated and mixedwith a gradient-based descent applicable only to a few selected individuals.When performing a gradient-based line search in multi-objective problems, two importantfactors determine the success of the procedure: First, we must choose a suitable searchdirection, and second, a good step length control must be set. In this thesis, we haveperformed studies for the former issue, which make promising the use of this technique. Onthe other hand, methods to control the step length in a multi-objective problem represent ahard open question—but a treatable one since these methods have been widely studied inthe mathematical programming literature for the single-objective case.In addition, we have the hypothesis that gradient-based movements could deal with
dominance resistant solutions (DRS) [61]. DRS are points in the domain which are difficultto improve using the evolutionary operators. This is an unexplored and natural applicationof our proposed methods. Finally, even when the computation of search directions has beenwell studied, calculating them on the presence of constraint MOPs has scarcely been tackled[53, 42]; this is certainly a topic that deserves further research.

137





Bibliography
[1] S. F. Adra, I. Griffin, and P. J. Fleming. Hybrid Multiobjective Genetic Algorithm with a

New Adaptive Local Search Process. In Hans-Georg Beyer et al., editor, 2005 Genetic
and Evolutionary Computation Conference (GECCO’2005), 1, pages 1009–1010, NewYork, USA, June 2005. ACM Press.[2] E. L. Allgower and K. Georg. Numerical Continuation Methods. Springer, 1990.[3] Eugene L. Allgower and Kurt Georg. Numerical Continuation Methods. SpringerVerlag, 1990.[4] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 16(1):1–3, 1966.[5] L. Armijo. Minimization of functions having Lipschitz-continuous first partial derivatives.
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