Tópicos Selectos de Aprendizaje Profundo

Objetivo

Los temas de aplicación tratados en el curso incluyen clasificación de imágenes, previsión de series temporales, vectorización de texto (tf-idf y word2vec), traducción de lenguaje natural, reconocimiento de voz y aprendizaje de refuerzo profundo. Los estudiantes aprenderán a utilizar MATLAB Deep Learning ToolboxTM para crear una variedad de redes neuronales profundas: red neuronal convolucional (CNN), red neuronal recurrente (RNN), long short-term memory (LSTM), aprendizaje profundo por refuerzo, etc.

Descripción

Aprendizaje profundo (Deep learning) es una de las habilidades más buscadas en Inteligencia Artificial. Además de los fundamentos teóricos de las redes neuronales, incluyendo la retro propagación y el descenso estocástico del gradiente, los estudiantes obtendrán conocimientos fundamentales de algoritmos de aprendizaje profundo que se desarrollan para extraer representaciones de características de alto nivel de datos, y obtendrán experiencia práctica en la construcción de redes neuronales.

Contenido:

- 1. Redes neuronales y redes de funciones de base radial (RBF)
- 2. Aprendizaje automático de redes neuronales poco profundas
- 3. Asuntos para generalizar aprendizajes profundos
- 4. Aprendizaje de redes neuronales profundas
- 5. Aprendizaje permanente y no supervisado
- 6. Redes neuronales recurrentes (LSTM)
- 7. Redes neuronales convolucionales (CNN)
- 8. Aprendizaje por refuerzo profundo (RL)
- 9. Temas avanzados en el aprendizaje profundo

Bibliography

- 1.- Charu C. Aggarwal, Neural Networks and Deep Learning, Springer, September 2018
- 2.- Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, The MIT Press, 2016
- 3.- Chris A. Mattmann, Machine Learning with TensorFlow, Manning Publications; 2nd ed. (2 Febrero 2021)
- 4.- John D. Kelleher, Deep Learning, MIT Press (2019)
- 5.- Richard S. Sutton, Andrew G Barto, Reinforcement Learning: An Introduction, 2nd ed., Bradford Books, 2018